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Abstract 

Increasing the dimensionality of NMR experiments strongly enhances the spectral resolution and provides invaluable 

direct information about atomic interactions. However, the price tag is high: long measurement times and heavy 

requirements on the computation power and data storage. We introduce Sparse Fast Fourier Transform (SFFT) as a 

new method of NMR signal collection and processing, which is capable of reconstructing high quality spectra of 

large size and dimensionality with short measurement times, faster computations than the Fast Fourier Transform, 

and minimal storage for processing and handling of sparse spectra. The new algorithm is described and demonstrated 

for a 4D BEST-HNCOCA spectrum. 
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Introduction 

Multi-dimensional NMR spectroscopy is an invaluable biophysical tool in chemistry, structural biology, and many 

other applications. However, from its introduction in 1970s, the technique is impeded by long measurement times, 

heavy computations and large data storage requirements. These problems stem from the huge number of data points 

needed for quantifying the frequency domain spectrum with the required resolution. 

With the traditional systematic data sampling in the time domain, the duration of an NMR experiment increases 

exponentially with spectral dimensionality and polynomially with resolution. The rapid development in the field of 

fast spectroscopy with non-uniform sampling reduces the measurement time by decreasing number of the acquired 

data points (Billeter and Orekhov 2012; Coggins et al. 2010; Hyberts et al. 2014; Orekhov and Jaravine 2011). Non-

uniform sampling (NUS) has enabled the acquisition and analysis of practical high-resolution experiments of 

dimensionality up to 7D (Hiller et al. 2007; Kazimierczuk et al. 2010; Motáčková et al. 2010). Success of the NUS 

techniques is explained by the notion that the NMR spectrum is sparse in the frequency domain, i.e. only a small 

fraction of the spectrum contains signals, while the rest contains only baseline noise. Moreover, typically the higher 

the spectrum dimensionality and resolution are, the sparser the frequency domain spectrum is. While the numerous 

NUS spectra reconstruction algorithms differ in their underlying assumptions, the common theme is that all 

information about the spectral signals can be obtained from a relatively small number of measurements, which is 

linear to the number of signals and nearly independent on the spectrum dimensionality and resolution.  

NMR measurements are performed in the time domain and, in the case of traditional Fourier spectroscopy, the time 

signal is converted to the frequency spectrum by the Discrete Fourier Transforms (DFT). For a d-dimensional 

spectrum with N points for each spectral dimension, we need to sample 𝑁" experimental points, perform DFT with 

O(𝑁" log𝑁") elementary mathematical operations and allocate O(𝑁") bytes for  spectrum processing, storage, and 

analysis. For example, a moderate-resolution 5D spectrum with N=256 for all dimensions requires 4 TB of storage. 

Even if such spectrum can be computed, it cannot be easily handled in the downstream analysis. Algorithms used for 

reconstructing the complete spectrum from the NUS data, require at least the same and often significantly larger 

computations and storage than the traditional Fourier based approach. For example, for the Compressed Sensing 

(CS)(Holland et al. 2011; Kazimierczuk and Orekhov 2011), storage is O(𝑁")  and the amount of calculations is 

polynomial on 𝑁". Moreover, these algorithms are iterative and thus are impractical, when data do not fit into 

computer operative memory. Modern computers meet the computational and storage requirements for 2D, 3D, and 

relatively low-resolution 4D spectra. Yet, spectra of higher dimensionality and/or resolution are still beyond reach, 

unless the analysis is performed in low dimensional projections or is reduced to small regions restricted in several 

spectral dimensions. In this work, we demonstrate for the first time a new approach allowing reconstruction, storage, 

and handling of high dimensionality and resolution spectra.  

Reconstructing a spectrum with computational complexity and storage, which are sub-linear in respect to the number 

of points in the full spectrum (𝑁") may only work by using NUS in the time domain and by computing a sparse 

representation of the spectrum, i.e. without producing the complete spectrum at any stage of the procedure. The latter 



	

requirement excludes powerful non-parametric NUS processing algorithms designed to reconstruct the full spectrum, 

such as Maximum Entropy (ME) (Barna et al. 1987; Hoch et al. 2014), Projection Reconstruction (PR)(Freeman and 

Kupce 2003), Spectroscopy by Integration of Frequency and Time Domain Information (SIFT) (Frey et al. 2013; 

Matsuki et al. 2009), Signal Separation Algorithm (SSA)(Stanek et al. 2012), Compressed Sensing (Holland et al. 

2011; Kazimierczuk and Orekhov 2011), and Low Rank reconstruction (Qu et al. 2014). The parametric methods 

such as Bayesian (Bretthorst 1990), maximum likelihood (Chylla and Markley 1995), and multidimensional 

decomposition (MDD)(Jaravine et al. 2006) approximate the spectrum using a relatively small number of adjustable 

parameters, and thus are not limited in spectral dimensionality and resolution. However, due to the intrinsic problems 

of choosing the right model and convergence, the parametric algorithms cannot guaranty the detection of all 

significant signals in a large spectrum. Another approach Multidimensional Fourier Transform (MFT) (Kazimierczuk 

et al. 2006) for large spectra exploits prior knowledge about the signal positions in some or all of the spectral 

dimensions. MFT reconstructs only small regions around known spectral peaks and thus requires less computations 

and storage.  

In this paper, we introduce the Sparse Fast Fourier Transform (SFFT) as the first non-parametric non-iterative 

algorithm capable of producing a high quality sparse representation for high resolution and dimensionality spectra. 

SFFT (Ghazi et al. 2013; Hassanieh et al. 2012a; Hassanieh et al. 2012b) is a rapidly developing field of signal 

processing methods, which is designed for reconstruction of a spectrum from a minimal number of sampled data 

points and with minimal computations. Similar to CS, the task is to use a small number of measurements in the time 

domain for reconstructing only the essential, i.e. above noise, data points in the frequency domain spectrum. The 

difference with CS is that the remaining data points are assumed to be exactly zero and thus can be omitted during 

the calculations and storage. Since for a sparse spectrum the number of both measured and reconstructed points is 

small, the amount of calculations may be significantly smaller than for the DFT of the complete spectrum. To the 

best of our knowledge, SFFT is the first method for NMR spectra processing that harness the Fourier projection-slice 

theorem in its discrete form. The method fills a several decade gap between the projection and non-uniform sampling 

approaches. By doing so, SFFT combines the benefits of these two worlds. Namely, while offering fast processing 

and requiring manageable data storage, which are sub-linear to the total number of points in the frequency spectrum, 

SFFT allows reconstruction of complete high quality ND spectra of any size and dimensionality. The method is most 

useful for high-resolution spectra of four and more dimensions, where methods like CS require too much 

computations and storage. 

Below, we describe the SFFT algorithm used to process NMR spectra and demonstrate results for the reconstruction 

of a 4D BEST-HNCOCA spectrum. 

The Sparse FFT Algorithm 

The SFFT algorithm operates in two key steps: bucketization and estimation. In the bucketization step, SFFT divides 

the frequency spectrum into buckets where the value of each bucket represents the sum of the values of frequencies 

that map to that bucket. Since the spectrum is sparse, many buckets will be empty and can be discarded. SFFT 



	

focuses on the non-empty buckets and computes the frequencies with large values in those buckets in the estimation 

step. Below we describe in details the bucketization and estimation techniques we use for NMR.  

We will describe the SFFT algorithm for 2D signals of size 𝑁×𝑁. However, the algorithm can be easily extended to 

any dimension. We will use 𝐗 to denote the 2D time signal and 𝐗	to denote its 2D discrete Fourier transform (DFT). 

We will use (𝑓+, 𝑓-) to denote a frequency position and 𝐗(𝑓+, 𝑓-) to denote the spectral value at this frequency 

position. For simplicity, we will refer to frequencies that have no signal energy, i.e. just noise, as the zero frequencies 

and the frequencies that have signal energy as the non-zero frequencies. For a sparse spectrum, the number of non-

zero frequencies is small and the goal of SFFT is to compute the positions and values of these non-zero frequencies. 

Frequency Bucketization 

Bucketization Using Co-Prime Aliasing 

To map frequencies into buckets, one approach is to use a basic property of the Fourier transform: sub-sampling in 

the time domain causes aliasing in the frequency domain. Let 𝐁 be a sub-sampled version of 𝐗, i.e., 𝐁 𝑡+, 𝑡- =

𝐗 𝑝 ⋅ 𝑡+, 𝑝 ⋅ 𝑡-  where 𝑝 is the sub-sampling factor. Then, 𝐁, the FFT of 𝐁, is an aliased version of 𝐗, i.e.:  

										𝐁 𝑏+, 𝑏- = 	 𝐗 𝑏+ + 𝑖 ⋅ 𝑁/𝑝, 	𝑏- + 𝑖 ⋅ 𝑁/𝑝	
89+

:;<

89+

=;<
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Thus, aliasing is a form of bucketization in which frequencies equally spaced by an interval N/p map to the same 

bucket, i.e., frequency (𝑓+, 𝑓-) maps to bucket number 𝑏+, 𝑏-  such that:  

 

																						 𝑏+, 𝑏- = 𝑓+mod	𝑁/𝑝, 𝑓-mod	𝑁/𝑝 																						(2) 

Further, the value of each bucket is the sum of the values of only the frequencies that map to the bucket as can be 

seen from Eq. 1. Now that we mapped the frequencies into buckets, we can leverage the fact that the spectrum of 

interest is sparse and hence most buckets have noise and no signal. SFFT compares the energy (i.e., the magnitude 

squared) of a bucket with the noise level and considers all buckets whose energy is below a threshold to be empty. It 

then focuses on the occupied buckets and ignores empty buckets. 

Fig. 1: Bucketization using co-prime aliasing on a 12×12 signal. (a) Subsampling by a factor of 3 folds (aliases) the spectrum by 
3. Frequencies with the same color sum up together in the same bucket. (b) Subsampling by a factor of 4, which is co-prime to 3 
ensures that the frequencies will be bucketized differently avoiding collisions. 

 

Signal!Subsampling Freq.!Bucketization
(a)!Subsampling by 3!

Signal!Subsampling Freq.!Bucketization
(b)!Subsampling by 4!



	

For occupied buckets, most of these buckets will have a single non-zero frequency. The value of this frequency can 

then be immediately evaluated from the value of the bucket since it is the only non-zero frequency in the bucket. 

However, some of these buckets will have more than one non-zero frequency. We refer to this as a collision of non-

zero frequencies which prevents us from estimating the frequency. To resolve collisions, we need to repeat the 

bucketization but with different frequencies sharing the same bucket. In other words, we need to randomize how 

frequencies map into buckets. This can be done by using different sampling intervals which change how frequencies 

alias. In this case, we repeat the bucketization with a different sampling factor 𝑝. 

So how should we choose the different sampling factors to randomize the bucketization? The best choice of is to use 

co-prime aliasing. Thus, if the first bucketization uses as sampling factor 𝑝+, then the second bucketization should 

use a sampling factor 𝑝- such that 𝑝+ and 𝑝- are co-prime i.e. the greatest common divisor of 𝑝+ and 𝑝- is equal to 1. 

Co-prime aliasing guarantees that any two frequencies that collide in the first bucketization will not collide in the 

second bucketization. Figure 1 shows an example of bucketization using co-prime aliasing, which illustrates which 

frequencies map to which buckets in each of the bucketizations.	 

Bucketization Using Discrete Line Projections 

Another way to bucketize the spectrum is to perform a 1D DFT of discrete lines. This yields the projection of the 

spectrum onto a corresponding line in the Fourier domain. Specifically, let 𝐲 be the 1D discrete line corresponding to 

a 2D signal 𝐗, parameterized by 𝑡 ∈ 0,⋯ , 𝑁 − 1 : 

																									𝐲 𝑡 = 𝐗 𝛼+𝑡	mod	𝑁, 𝛼-𝑡	mod	𝑁 																								(3) 

where 𝛼+, 𝛼- are integers whose greatest common divisor is invertible modulo N such that 0 ≤ 𝛼+, 𝛼- < 𝑁. 𝛼+/𝛼- 

represents the slope of the line.  Then 𝐲, the DFT of 𝐲, is a projection of 𝐗 onto this line. That is each point in 𝐲 is a 

Fig. 2: Bucketization using discrete lines. The top shows the discrete line, which was sampled and the bottom shows how the 
frequencies are projected. Frequencies with the same color will sum up together in the same bucket. This is shown for different 
slope (a)-(f). Since the lines are discrete, they wrap around and can result in pseudo random sampling and projection patterns as 
can be seen in (f). 	

(a) Slope = ∞ (b)"Slope = 0" (c)"Slope = 1 (d)"Slope" = 1/2 (e)"Slope = 3" (f)"Slope" = 4/5
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summation of the 𝑁 frequencies that lie on a discrete line orthogonal to y as shown in Figure 2. Specifically, the 

frequencies	 𝑓+, 𝑓-  that satisfy 𝛼+𝑓+ + 𝛼-𝑓- = 𝑓	mod	𝑁	will project together into the same bucket 𝑓 and sum up to 

𝐲 𝑓 .	 	Figure 2 shows some examples of discrete lines and their projections. Note that discrete lines (Eq. 3) wrap 

around as can be seen in Figures 2d,e,f and the bucketization can result in a pseudo random non-uniform sampling as 

shown in Figure 2f. Also note that this can be extended to any number of dimensions. In that case, we can take 

projections of discrete lines, planes or hyper-planes.  

The above procedure is based on the Fourier projection-slice theorem (Bracewell 1956) and thus bears resemblance 

to the reduced dimensionality techniques and radial sampling(Bodenhausen and Ernst 1981; Coggins et al. 2010; 

Hiller et al. 2005; Szyperski et al. 1993). The important difference, however, is that the sampling defined by Eq. 3 is 

performed on the Nyquist time domain grid of the full multidimensional experiment, while the traditional radial 

sampling is off-grid. As it is described in the next section, having all sampled point on the grid allows direct 

frequency estimation without resorting to the often problematic inverse Radon transform used in the traditional 

projection reconstruction (Kupce and Freeman 2004). 

Further, discrete projections can benefit from the complex virtual echo representation (Mayzel et al. 2014), which 

improves the sparsity.  Specifically, for this representation, once we sample a discrete line passing through the origin 

(0, 0), we automatically obtain the samples of another discrete line which is symmetric to the first line with respect to 

one of the axes i.e. if we sample a line with slope 𝛼+/𝛼-	, we directly get the line with slope −𝛼+/𝛼-. For higher 

dimensions the gain is larger. If we sample a discrete line in a d-dimensional signal, we automatically get the 

samples of 2"	-1 other discrete lines. For example, in 3D for a discrete line with slope (𝛼+, 𝛼-, 𝛼M), we get the 

samples of three other discrete lines which are (−𝛼+, 𝛼-, 𝛼M), (𝛼+, −𝛼-, 𝛼M), (𝛼+, 𝛼-, −𝛼M). Note that (−𝛼+, −𝛼-, 𝛼M) 

and (𝛼+, 𝛼-, −𝛼M) define the same projections and thus only one of these is needed. 

Fig. 2: Combining discrete projections with aliasing.  (a, b) Projection on sub-sampled discrete line gives number of buckets <
	𝑵. (c) Projection on two lines (i.e. sub-sampled plane) gives number of buckets > 	𝑵. Frequencies with the same color sum up 
together in the same bucket.   

(a) !Projection on line
sub-sampled by 2

! ! !

Si
gn

al
!

Sa
m

pli
ng

Fr
eq

ue
nc

y
!

Bu
ck

eti
za

tio
n

(b) ! ! (c)Projection on line
sub-sampled by 3

Projection on 2 lines



	

 Choosing the Bucketization and Number of Buckets 

The choice of bucketization and number of buckets depends on the sparsity. If the signal has 𝑘 non-zero frequency 

peaks, then the number of buckets in each bucketization should be at least 𝑂 𝑘  or larger. The discrete projections 

and aliasing approaches give us a lot of flexibility in choosing the number of buckets.  For example, in a 4D signal, if 

𝑘 is very large we can project on 2D discrete planes to get 𝑁- buckets or 3D discrete hyper-planes to get 𝑁M buckets. 

If 𝑘 is small, we can project on 1D discrete lines to get 𝑁 buckets. We can also combine discrete projections with 

aliasing to accommodate almost any value of 𝑘. For example, we can project on sub-sampled lines as shown in 

Figure 3a,b to get 𝑁/2 or 𝑁/3 buckets. We can also project on sub-sampled plane as shown in Figure 3c to get 2𝑁 

buckets. In the next section, we explain how the choice of number of buckets affects the running time of the 

algorithm.  

Frequency Estimation 

In this step, for each of the occupied buckets we want to identify which frequencies created the energy in these 

buckets, and what are the values of these frequencies. If we can do that, we then have recovered a complete 

representation of the frequencies with non-zero signal values, i.e., we acquired the full signal in the Fourier domain. 

The frequency identification procedure uses a voting based approach where the occupied buckets vote for the 

frequencies that map to them. Since the spectrum is sparse, most of the buckets are empty and hence only few 

Fig. 4: Two examples of the voting approach used to recover the discrete positions of the large frequencies from projections on 
discrete lines. The 2D spectrum is projected on a row, a column and a diagonal. Each large projection votes for the frequencies 
that map to it. Using only projections on a row and column, many frequencies get two votes. By adding a 3rd projection on the 
diagonal, only the large frequencies get 3 votes. (a) Frequencies (5,5),  (5,9), and (9,5) are large and only they get 3 votes. (b) 
Some frequencies on the diagonal are large and only these frequencies get 3 votes.	

2D Spectrum

Project on row

Project on 
column

Project on 
Diagonal

Voting Scores

1 vote 2 votes 3 votes

2D Spectrum

Project on row

Project on 
column

Project on 
Diagonal
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5 9
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9

(a) Voting Example 1

(b) Voting Example 2



	

frequencies get votes each time. Since by definition the non-zero frequencies will end up in occupied buckets, they 

will get a vote every time we perform a new bucketization. After performing a few random bucketizations by using 

co-prime aliasing or discrete lines with different slopes (Eq. 3), the non-zero frequencies will have the largest 

number of votes, which allows SFFT to identify these frequencies. 

To better illustrate this voting technique, consider a simple example shown in Figure 4a. The 2D spectrum has only 3 

nonzero frequencies at (5, 5), (5, 9)	 and (9, 5). When we perform bucketization by projecting on a vertical line 

(row), the 5th and 9th buckets will be large and will vote for all frequencies in the 5th and 9th columns. Similarly, 

when we perform bucketization by projecting onto a horizontal line (column), the projection will vote for all 

frequencies in the 5th and 9th rows. At this point, only frequencies (5, 5), (5, 9), (9, 5), (9, 9)	have two votes. 

However, when we project on the diagonal, frequency (9, 9)	will not get a vote since its projection is not large. After 

3 projections only the non-zero frequencies will get 3 votes. Another example is shown in Figure 4b. 

Now that we have a list of non-zero frequencies 𝑓+, 𝑓- , we want to estimate the values  𝐗 𝑓+, 𝑓- 	 of these 

frequencies. We may use a simple approach analogous to those used in the method of projection 

reconstruction.(Kupce and Freeman 2004) It would estimate the value of each non-zero frequency as the median 

value of the different buckets to which this frequency was mapped across the different bucketizations. However, this 

approach may yield a poor reconstruction in the presence of noise and significant signal overlap. Instead, we can 

compute better estimates of the values of the non-zero frequencies by harnessing the fact that all these frequencies 

are defined at the same Nyquist grid. The values of the occupied buckets can be viewed as linear combinations of the 

values of the non-zero frequencies. Hence, we can construct a linear system of equations: 

																																																			𝐴𝐱 = 𝐛																																																(4) 

where the unknown vector 𝐱 corresponds to the values of the non-zero frequencies and the known vector 𝐛 

corresponds to the values of the buckets. The matrix 𝐴 is a sparse binary matrix that specifies which frequency 

values contribute to which buckets. In general, this system is over-determined since the number of occupied buckets 

can be as large as the number of non-zero frequencies times the number of bucketizations. Hence, the solution that 

minimizes the mean square error of the frequency values is: 

																																															𝐱∗ = 𝐴W𝐛																																																(5) 

where 𝐴W is the is the pseudo inverse of 𝐴. This approach of computing the values of non-zero frequencies is more 

robust to noise and can correct for errors by estimating the falsely presumed non-zero frequencies to near zero 

values. This comes at the cost of the additional computational complexity associated with computing the pseudo 

inverse. However, since the number of non-zero frequencies is small, the size of the matrix 𝐴 is still small.  

Running Time and Sampling Complexity 

For a signal 𝐗 with 𝑑	dimensions each of which is of size 𝑁 i.e. total number of samples is 𝑁", the signal is sparse in 

the frequency domain if the number of non-zero frequencies is 𝑘 ≪ 𝑁".  The running time, storage and sampling 

complexity depends on the choice of the number of buckets. The discrete line projections, co-prime aliasing 



	

algorithms and their combinations allow much freedom for designing sub-sampling schemes and, in particular, for 

selecting the number of buckets. Thus, one can choose to use one or higher dimensional projections with different 

degree of aliasing as explained in the end of the bucketization section. To minimize the number of samples and the 

storage, SFFT would use O(𝑘) buckets. However, this would generate a lot of votes and would take a linear time to 

process. Alternatively to minimize the running time, SFFT would use O 𝑘	𝑁"/ log𝑁"  buckets, which gives a 

sub-linear running time faster than FFT as well as sub-linear storage. The table below shows the number of samples 

and running time of SFFT for these two settings of number of buckets. The table also shows the running time and 

sampling complexity for FFT and compressive sensing (CS). CS uses the minimum number of samples. However, 

CS has a running time, which is polynomial in the size of the signal.  

Table 1: The sampling and running time complexity of SFFT as compared with CS and FFT 

 Samples Storage Time 

FFT O 𝑁"  O 𝑁"  O 𝑁" log𝑁"  

CS O 𝑘 log𝑁"  O 𝑁"  O 𝑝𝑜𝑙𝑦 𝑁"  

SFFT 

O 𝑘 log𝑁"  O 𝑘- log𝑁"  O 𝑁" + 𝑘M log𝑁"  

O 𝑘	𝑁" log𝑁"	  O 𝑘	𝑁" log𝑁" + 𝑘- log𝑁"  O 𝑘	𝑁" log𝑁" + 𝑘M log𝑁"  

 

Materials and methods 

The 4D fully sampled BEST-HNCOCA (Lescop et al. 2007) spectrum of 1.7 mM human ubiquitin sample 

(H2O/D2O 9:1, pH 4.6) was acquired at 25 °C on 800 MHz Bruker AVANCE III HD spectrometer equipped with 

5mm CP-TCI probe with the Nyquist grid of 16 x 16 x 16 complex time points (acquisition times 12 ms, 10 ms and 

4.4 ms) for the 15N, 13CO and 13Cα spectral dimensions, respectively. The amide region of the full reference 4D 

spectrum (9.7 -7.0 1H ppm, 174 points) was processed using NMRPipe software (Delaglio et al. 1995). For the SFFT 

processing, only the directly detected dimension was processed in NMRPipe followed by extraction of the same 

amide region. The hyper-complex time domain data were converted to the complex virtual echo representation 

(Mayzel et al. 2014) with dimensions 174 x 32 x 32 x 32. The virtual echo improves the result of the reconstruction 

from NUS data and, unlike the original hyper-complex data, is directly amenable for the multi-dimensional SFFT 

processing. Two independent sampling tables were generated using Discrete Line Projections algorithm described in 

the theory section (Eq 3). Each of the tables contained 6 orthogonal projections, i.e. (1, 0, 0), (0 1 0), (1 1 0), (1 0 1), 

(0 1 1), (1 1 1), and 16 projections obtained by random combinations of prime numbers less than 32 (i.e. 0 1 2 3 5 7 

11 13 17 23 29 31). As described in the theory, these 6 + 16 unique line projections were augmented by 7 + 48 

symmetric projections, respectively, which resulted in total 77 line projections in the SFFT calculations. In total, 

each NUS data set included 2096 (6.4%) out of total 32k complex time domain points in the indirectly detected 



	

dimensions. Supplementary Figure 2 shows a few examples of the obtained discrete line projections. The number of 

used samples or discrete lines depends on the sparsity of the 3D spectra. Since, for all 174 directly detected points, 

the same indirectly detected points are used, the minimum number of samples needed is bounded by the 3D sub-

spectrum with the lowest sparsity, i.e. the largest part occupied by signals. Although, the same discrete lines are used 

in all 3D sub-spectra, the cut-off threshold for selecting frequencies varies for different directly detected points. 

SFFT adaptively sets the cut-off threshold by ensuring that the system of linear equations in Eq. 4 is well determined. 

This allows lowering the cut-off and thus improving sensitivity for regions with small number of signals.  

The SFFT calculations were performed in MATLAB with the resulting spectrum exported to NMRPipe format for 

comparison with the reference spectrum. The code will soon be available from the authors. 

Results and Discussion 

We demonstrate SFFT by reconstructing 4D HNCOCA spectrum using a NUS data set extracted from the complete 

experiment, which is acquired with 512 x 16 x 16 x 16 complex time points for the 1H, 15N, 13CO and 13Cα spectral 

dimensions, respectively. After conventional Fourier processing of the directly detected 1H dimension and extraction 

of the amide region 9.7 - 7.0 1H ppm (174 points), the Discrete Line Projections algorithm (Eq 3) selected 262 

(6.4%) hyper complex time domain points in the indirectly detected dimensions. In a real experiment, of course, only 

these selected data points need to be acquired, thus reducing the measurement time to 6.4% of the full experiment. 

The selected hyper-complex data points were converted to the complex virtual echo representation(Frey et al. 2013; 

Mayzel et al. 2014), which contained 174 x 2096 points out of the full complex array with dimensions 174 x 32 x 32 

x 32. Then, in the frequency domain, the SFFT voting algorithm identified 10588 non-zero points, which correspond 

to approximately 100 peaks with 100 data points per peak in the 4D spectrum. In the resulting spectrum, only these 

non-zero intensities were stored, which constitute to less than 0.2 % of the full reference spectrum.  

The running time of the SFFT is dominated by the time to compute the projections and perform the pseudo inverse 

(Eq. 5). For the current experiment, the time to compute all projections in MATLAB is 0.25 ms and the time to 

perform the pseudoinverse is around 150 ms. CS based algorithms like IST would require between 10-100 iteration 

while performing a full FFT on 3D spectra and hence take between 30-300 ms. The computational advantage of the 

SFFT is expected to increase for higher resolution and dimensions. However, a more thorough analysis of runtime 

would require implementing the SFFT algorithm in C/ C++ and is thus is left for future work.   

A few points are worth noting. First, the pseudoinverse matrix is computed separately for each point in the directly 

detected dimension. Thus, the size of this matrix depends on the number of peaks in each of the 3D spectra of 

indirectly detected dimensions as opposed to the number of peaks in the entire 4D spectrum. The pseudoinverse of 

the matrix used in our work (ca 2000x250), takes 0.15 sec. Hence, calculating the pseudoinverse fits well in to a 

desktop computer memory and scales as the third power of the matrix size. Even for a more demanding case of 

quadruple matrix size required for a large system or NOESY type spectrum, the calculation will take less than 40 

seconds per point in the directly detected spectral dimension. Second, the SFFT algorithm can naturally benefit from 



	

prior knowledge about the dark regions in the spectrum in a similar manner to the SIFT method. For example, we 

can compute the pseudoinverse only for the peaks, which we want to estimate. We can also avoid collecting votes for 

frequencies that we know do not contain energy. However, these extensions of the SFFT algorithm are left for future 

work.  

Figure 5 illustrates the SFFT reconstructed spectrum using two different approaches for the evaluation of the 

frequency values. Comparison of panels a,b and c,d in Figure 5 shows that the spectrum obtained using the matrix 

inversion (Eqs 4,5) is very similar to the full reference spectrum. This visual impression is corroborated by the 

correlation (Figure 5e) of the cross-peak intensities between the full reference and SFFT spectrum. It can be seen that 

most of the peaks found in the reference spectrum (red circles) are faithfully reproduced in the SFFT reconstruction. 

Results of spectral reconstructions from NUS may vary for different sampling schedules (Aoto et al. 2014). In order 

to check this we calculated SFFT spectrum with an alternative set of randomly selected projections (Supplementary 

Figure 1S). The two independent SFFT spectral reconstructions had comparable quality. Pairwise correlations 

Fig. 5. 4D BEST-HNCOCA spectrum of ubiquitin. Orthogonal 1H/15N (a, b) and (c,d) 13CO/13Cα projections of fully sampled 
and FFT processed (a,c) and 6.4% NUS processed with SFFT processed (b,d). (e,f) Correlation of peak intensities measured in 
the full reference spectrum (abscissa) and the SFFT reconstruction (ordinate) using the matrix inversion (e) and median 
estimation (f). Dark red circles and blue crosses show intensities measured at the positions of peaks picked in the reference and 
SFFT spectra, respectively.  
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between the peak intensities in the reference spectrum and in the two independent SFFT reconstructions were very 

similar. 98 peaks were detected in the reference spectrum using the peak-picker program from NMRPipe software 

(Delaglio et al. 1995) with the noise level of 0.01 (in the scale used in Fig. 5e,f) and peak detection threshold 0.05. 

Thanks to the high spectral sensitivity for the 1.7 mM ubiquitin sample, the signal dynamic range in the reference 

spectrum reached 1:50, which covers the range typically found in the triple resonance experiments for assignment 

and approaches the dynamic range in 4D NOESY spectra.  

Practical sensitivity in a spectrum can be defined as a level of reliable signal detection, i.e. separation of true signals 

from noise and spectral artefacts. The weakest detected peak in the reference spectrum has intensity 0.12. Out of total 

98, five weakest peaks with intensity up to 0.25 were lost in the SFFT reconstruction. No peaks above this level were 

missing. The observed decrease of the sensitivity seems reasonable considering that duration of the SFFT experiment 

is only 6.4 % of the reference and thus up to four times drop of sensitivity is expected for the SFFT reconstruction. In 

the SFFT voting algorithm, the frequency detection is limited by the sensitivity in the individual projections, whose 

measurement time was 1/77 of the total SFFT experiment time. On the other hand, combined analysis of many 

projections provides efficient cross-validation of the selected frequencies and allows lowering of the detection 

threshold in the individual projections (Supplementary Figure 2S). Similar to the geometric analysis of projections 

(GAPRO) algorithm in APSY (Hiller et al. 2005), the SFFT voting procedure, recovers large part of the sensitivity 

that is lost due to short measurement time of the projections. It should be noted also that in SFFT, purpose of the 

frequency identification voting algorithm is not to find peaks but to select frequencies, which are worth for the 

evaluation. The detection limit corresponds to a trade-off between the number of points selected for the evaluation 

and the requirements for low computational complexity and data storage. Thus, lowering of the detection threshold 

does not lead to many additional false peaks but only increases the computational complexity and storage. 

The correlation for the peaks picked in the SFFT spectrum is shown in Figures 5e,f with blue crosses. The peaks 

were detected by NMRPipe peak-picker with the same noise and detection threshold parameters as for the reference 

spectrum. This plot is intended for revealing peaks in the SFFT reconstruction that are not present in the reference 

spectrum, i.e. false positives. As it is seen in Figure 5e,f, while the median algorithm for the frequency evaluation 

resulted in many false peaks, no false peaks were detected when the SFFT reconstruction was obtained using the 

matrix inversion method. As expected, the median method also provided less accurate peak intensities. Notably, both 

methods evaluate intensity of the same set of frequencies, which are defined at the common frequency identification 

step of the SFFT algorithms. Thus, the matrix inversion method effectively supresses the false positives peaks. Apart 

from the signals, which were identified by the peak-picker as peaks, the SFFT spectrum obtained by the matrix 

inversion method contained a number of signals with intensities lower than the peak detection cut-off. In addition, 

there were several relatively low intensity (<0.3) signals, which didn’t pass the peak quality checks. In most cases 

such signals were represented by only one point in two or more spectral dimensions.  Finally we should note that the 

reduced dimensionality data collection used by the SFFT may be prone to false peaks artefacts that are not, in 

general, the result of the methods used to compute spectra, but is intrinsic for this type of data sampling(Mobli et al. 

2006).  



	

Typically, the number of cross-peaks does not increase with spectrum dimensionality and resolution. Consequently, 

the number of non-zero frequencies, which is related to the number of cross-peaks, only moderately increases 

proportionally to dimensionality and resolution of the spectrum. This makes it possible for the SFFT to handle very 

large spectra. 

Another good feature of the technique is that the data sampling using the discrete line projections (Eq. 3) and voting 

algorithm used by the SFFT for the identification of non-zero frequencies are fully compatible with the optimization 

by incremental data collection and analysis (Eghbalnia et al. 2005; Jaravine and Orekhov 2006). For example we can 

envisage an approach where an experiment is continued until the list of identified frequencies stabilizes and reaches a 

plateau. Thus, the number of projections can be adjusted for every experiment. 

Finally, SFFT represents a group of rapidly developing algorithms successfully applied in multitude of technical 

applications. From the NMR perspective, the method for the first time combines the best features of so far distinctly 

different approaches known as reduced dimensionality and compressed sensing. The former is robust and 

computationally very efficient, the later provides highest quality spectral reconstructions. In this work we presented 

the NMR tailored version of the SFFT algorithm and demonstrated its performance for 4D BEST-HNCOCA 

spectrum of ubiquitin.  
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