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Abstract

Single-neuron activity in prefrontal cortex (PFC) is tuned to mixtures of multiple task-related 

aspects. Such mixed selectivity is highly heterogeneous, seemingly disordered and therefore 

difficult to interpret. We analysed the neural activity recorded in monkeys during an object 

sequence memory task to identify a role of mixed selectivity in subserving the cognitive functions 

ascribed to PFC. We show that mixed selectivity neurons encode distributed information about all 

task-relevant aspects. Each aspect can be decoded from the population of neurons even when 

single-cell selectivity to that aspect is eliminated. Moreover, mixed selectivity offers a significant 

computational advantage over specialized responses in terms of the repertoire of input-output 

functions implementable by readout neurons. This advantage originates from the highly diverse 

non-linear selectivity to mixtures of task-relevant variables, a signature of high-dimensional neural 

representations. Crucially, this dimensionality is predictive of animal behaviour as it collapses in 

error trials. Our findings suggest to move the focus of attention from neurons that exhibit easily 

interpretable response tuning to the widely observed, but rarely analysed, mixed selectivity 

neurons.

Neurophysiology experiments in behaving animals are often analysed and modelled with a 

reverse engineering perspective, with the more or less explicit intention to identify highly 

specialized components with distinct functional roles in the behaviour under study. 

Physiologists often find the components they are looking for, contributing to the 

understanding of the functions and the underlying mechanisms of various brain areas, but 
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they are also bewildered by numerous observations that are difficult to interpret. Many cells, 

especially in higher-order brain structures like the prefrontal cortex (PFC), often exhibit 

complex and diverse response properties that are not organized anatomically, and that 

simultaneously reflect different parameters. These neurons are said to have mixed selectivity 

to multiple task-relevant aspects of the task. For instance, in rule-based sensory-motor 

mapping (such as the Wisconsin card sorting test), the response of a PFC cell may be 

correlated with parameters of the sensory stimuli, task rule, motor response, or any 

combination of these [1], [2]. The predominance of these mixed selectivity neurons appears 

to be a hallmark of PFC and other brain structures involved in cognition. Understanding 

such neural representations has been a major conceptual challenge in the field.

To characterize the statistics and understand the functional role of mixed selectivity, we 

analysed neural activity recorded in the prefrontal cortex of monkeys during a sequence 

memory task [3]. Motivated by recent theoretical advances in understanding how machine 

learning principles play out in the functioning of neuronal circuits [4], [5], [6], [7], [8], [9], 

[10], we devised a new analysis of the recorded population activity. This analysis revealed 

that the observed mixed selectivity can be naturally understood as a signature of the 

information encoding strategy of state-of-the-art classifiers like support vector machines 

[11]. Specifically we found that: 1) the populations of recorded neurons encode distributed 

information that is not contained in classical selectivity to individual task aspects, 2) the 

recorded neural representations are high-dimensional, and 3) the dimensionality of the 

recorded neural representations predicts behavioural performance.

Dimensionality and mixed selectivity

The dimensionality of a neural representation in a given time bin is a property of a set of 

vectors, each of which represents the firing rates of N recorded neurons in one experimental 

condition. The pattern of activity encoded in each such vector can be thought of as a point in 

an N -dimensional space. Over a set of such points, the dimensionality we refer to is defined 

as the minimal number of coordinate axes that are needed to specify the position of all 

points (Supplementary Methods M.1). For example, if all points are on a line, then their 

dimensionality is one, as one appropriately aligned axis is sufficient to determine their 

position. The dimensionality of the neural representations recorded during an experiment is 

then the dimensionality generated by the patterns of activity observed in each of the 

different experimental conditions (e.g. all combinations of sensory stimuli and behavioural 

responses).

High-dimensional neural representations have the desirable property of allowing simple 

readouts such as linear classifiers to implement a large set of input-output relations. Model 

circuits that rely on such high-dimensional representations can generate very rich dynamics 

and solve complex tasks [6], [5], [7], [8], [9], [10], and this same property is exploited in 

contemporary machine learning techniques such as support vector machines.

This dimensionality is related to the mixed selectivity of neuronal responses. This is because 

a set of neurons whose responses are selective only to individual task-relevant aspects, or 

even to linear sums of multiple aspects (linear mixed selectivity) can only generate low-

Rigotti et al. Page 2

Nature. Author manuscript; available in PMC 2015 April 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



dimensional representations. Higher dimensional representations can be produced by 

including neurons whose responses cannot be explained as a linear sum of aspect-related 

responses, i.e. neurons with non-linear mixed selectivity (Figs 1a,b).

Mixed selectivity in a memory task

Monkeys were trained to remember the identity and order of presentation of two objects 

sequentially displayed on a screen. Their memory was then tested after a delay (the two-

object delay period) either through a recognition or through a recall task, which were 

interleaved in blocks of 100–150 trials (Fig. 2 and [12], [3] for more details).

We analysed the activity of 237 lateral PFC neurons (area 46) recorded in two monkeys 

during the trial epochs that precede and include the two-object delay period. In these epochs, 

each trial was characterized by a condition defined by three relevant aspects: the identity of 

the two visual objects and the task type. The first cue was randomly selected from a 

predefined set of four objects. The second cue was randomly chosen among the three 

remaining objects. Finally, the task type was either recognition or recall. More generally, for 

other experimental protocols, every situation (condition) would be characterized by the 

values of a set of discrete or continuous variables. We refer to them as to the task-relevant 

aspects.

The analysis of recorded single-neuron responses shows that the majority of neurons are 

selective to at least one of the three task-relevant aspects in one or more epochs [3]. A large 

proportion of neurons, moreover, display non-linear mixed selectivity (Supplementary 

Section S.2). Figs 3a–d show two examples of non-linear mixed selectivity neurons. Fig. 3a 

shows a cell that is selective to a mixture of cue 1 identity and task type: it responds to 

object C when presented as a first cue, more strongly during the recognition task. The 

neuron of Figs 3c,d is mostly selective to objects A and D when presented as second stimuli, 

but only during the recall task and when they are preceded by object C.

Information encoded by mixed selectivity

A neuron is conventionally said to be selective to a task-relevant aspect if it responds 

differentially to the values of the parameters characterizing that aspect. A neuron is, for 

instance, selective to task type, if its average responses in recall and recognition task trials 

are significantly different. The operation of averaging over all conditions corresponding to a 

particular task type (for each task type there are 12 possible combinations of the sample 

visual objects) may, however, result in discarding important information. The responses in 

individual conditions could encode information about task type through the non-linear 

interactions between the cue and the task type aspects, which manifest themselves as non-

linear mixed selectivity. This suggests that if non-linear mixed selectivity is sufficiently 

diverse across neurons, the information about task type could be extracted from the 

covariance between neuronal responses across different conditions, even when individual 

neurons are not “classically” selective to task type (i.e. the average responses to recall and 

recognition tasks are not significantly different). Information could in other words be 

distributed across the neural population, even when it is not present in individual cells (see 

also [13], [14] for recent discussions on distributed codes.)
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To show that this is indeed the case, we manipulated the data to remove the classical 

selectivity to a given task aspect and then tested whether that task aspect could still be 

decoded from the population. In Figs 3e–g we compared the cross-validated trial-by-trial 

population decoding accuracy before and after removing classical selectivity. Neurons that 

were not recorded simultaneously were combined as pseudo-simultaneous population 

activity patterns as explained in Supplementary Methods M.5. The temporal correlations that 

were neglected with this procedure do not seem to appreciably affect the decoding accuracy 

(Supplementary Section S.4). Classical selectivity to a given task-relevant aspect is removed 

from every recorded neuron, by adding noise that equalizes average responses preserving the 

differences between the individual conditions (Supplementary Methods M.3).

Before removing classical selectivity, the maximal cross-validated decoding accuracy peaks 

close to 100% for all task-relevant aspects (Fig. 3e). Both the identity and the temporal order 

of the visual objects could also be decoded (see Supplementary Section S.6). Crucially, all 

task-relevant aspects can be decoded even when classical selectivity is removed. The first 

panel of Fig. 3e shows the accuracy of decoding task type from the intact population and 

after removing classical selectivity to task type from all neurons. Note that removing 

classical selectivity causes a larger drop of decoding accuracy in the early epochs of the 

trial. As the trial progresses and more visual cues are memorized (i.e. the task becomes more 

complex), the accuracy progressively increases towards the values of the intact population. 

Moreover, the decoding accuracy increases as the number of neurons read out by the 

decoder increases. We estimated the decoding accuracy for larger neural populations by 

resampling the recorded neurons and randomly relabelling the identities of the visual 

objects, so as to obtain responses whose activity have the same statistics as the recorded 

ones. For example, a new neuron could be obtained by assigning the activity of a recorded 

neuron in response to objects A,B,C,D to the trials in which the objects were B,D,A,C (see 

Supplementary Methods M.3 and M.6 for more details). Similar results hold after removing 

the classical selectivity to cue 1 and cue 2 (Figs 3f,g), or when we removed the classical 

selectivity by subtracting from the neural activity the linear mixed selectivity component 

(Supplementary Section S.3).

Neural representations are high-dimensional

To verify that the observed non-linear mixed selectivity and the diversity of the neural 

responses are a signature of the high-dimensionality of the neural representations, we set out 

to quantify the dimensionality of the recorded activity. As this is notoriously difficult in the 

presence of noise (see Supplementary Sections S.10 and [15]), we adopted a novel strategy 

that exploits the relation between dimensionality and the performance of a linear classifier 

reading out the neural activity (Supplementary Section S.7). Our method relies on the 

observation that the number of binary classifications that can be implemented by a linear 

classifier grows exponentially with the number of dimensions of the neural representations 

of the patterns of activities to be classified (Supplementary Methods M.1). Hence 

dimensionality can be estimated by counting the number of binary classifications that can be 

implemented by a linear classifier. The exponential dependence on the dimensionality 

implies that the number of implementable classifications can vary over several orders of 
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magnitude, allowing for a huge computational advantage of high over low-dimensional 

representations.

In general, a binary linear classifier reads out the activity of the recorded neurons and 

generates an output that can be either 0 or 1 depending on whether the sum of its weighted 

inputs is below or above a threshold. The set of weights determines the specific 

classification that is implemented. In our analysis, the classifier is trained to consistently 

generate the same output for all recorded trials corresponding to the same experimental 

condition. The output can be different for the c different conditions (here, c equals 24 

possible combinations of values for the three task aspects), for a total of 2c possible binary 

classifications or, equivalently, mappings from the c conditions to the binary outputs. 

Among all possible binary classifications we estimated through cross-validation how many 

are implementable by a linear classifier of the recorded patterns of activity (Supplementary 

Methods M.7). The total number of implementable binary classifications Nc is related to the 

estimated dimensionality d of the representations through the expression d = log2Nc, when 

the number of inputs is sufficiently large (Supplementary Methods M.1 and Supplementary 

Section S.7). Accordingly, the dimensionality is bounded by the total number of distinct 

conditions c.

Fig. 4 shows both Nc and d as a function of the number of neurons N read out by the 

classifier for two different neural representations. The first neural representation is given by 

the recorded PFC neurons. For values of N larger than the number of recorded cells, we 

computed the performance by introducing additional resampled neurons as previously 

described for the decoding analysis (Supplementary Methods M.6), after verifying that this 

does not introduce additional artificial dimensions to the neural representations 

(Supplementary Section S.8). The second neural representation is generated from simulated 

pure selectivity neurons that encode only one aspect of the task at a time (Supplementary 

Methods M.4). We computed Nc for these neural representations during two task epochs: the 

one-object (Fig. 4a) and the two-object delay (Fig. 4b). For both epochs, Nc grows with the 

size of the neural population N and it saturates near the value that corresponds to the 

maximal dimensionality. The asymptotic value of Nc is always larger for the recorded 

representations than for the pure selectivity representations. The difference is several orders 

of magnitude for the two-object delay.

The ability to implement such a large number of classifications is due to the diversity of 

nonlinear mixed selectivity responses, which often results in seemingly disordered 

representations and response properties that are not easily interpretable. However, it is 

important to note that high-dimensional representations could also originate from more 

“orderly” responses, in which each neuron behaves as a “grandmother cell” that responds 

only to a single experimental condition – in our case to one out of 24. We ruled out this 

scenario in our data by verifying that PFC representations are rather dense (Supplementary 

Section S.11) and that the sparsest responses are not a major contributor to the observed 

high dimensionality (Supplementary Section S.19).
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Dimensionality predicts animal performance

High-dimensional neural representations encode information that is non-linearly mixed in a 

format that is suitable for local neural processing. Therefore high dimensionality could be 

important for the dynamics of neural circuits that eventually generate behaviour [4], [5], [6], 

[7], [8], [9], [10] (see also Supplementary Section S.1 for an illustration of the 

computational advantages of high-dimensional over low-dimensional representations). If 

this is the case, we should observe a correlation between the dimensionality of the neural 

representations and the performance of the animal. In particular, the dimensionality should 

decrease in error trials.

We tested this prediction by analysing the errors made by the monkeys in the recall task 

(there were too few errors in the recognition task). Fig. 5a shows the number of 

implementable binary classifications and the dimensionality as a function of the number of 

neurons in the input in the 800 ms time bin in the middle of the two-object delay period, as 

in Fig. 4b, but only during the recall task and separately for correct and error trials. As 

predicted, the dimensionality decreases in the error trials. We ruled out that the decrease 

could be explained by a difference in the number of trials (for the 121 neurons with enough 

error trials, the difference between the number of correct and error trials is less than 4%), a 

change in average firing rate (Supplementary Section S.13), in the variability of single 

neuron activity (Supplementary Section S.14) or in the coding level of the activity 

(Supplementary Section S.15).

Remarkably, the identity of the two visual cues could still be decoded with high accuracy in 

the error trials. Fig. 5d shows that the cross-validation performances of the decoder of Fig. 3 

trained on correct trials and tested on a hold-out set of correct (continuous line) and error 

trials (dashed lines) are indistinguishable, demonstrating that when the monkeys make a 

mistake, cue identities are encoded with the same strength as in the correct trials. We 

verified that this correspondence is not a ceiling effect due to the population decoder 

saturating at high performance (Supplementary Section S.16).

These results indicate that the collapse in dimensionality observed in the error trials is not 

due to a failure in coding or remembering the sensory stimuli. Our hypothesis is that non-

linear mixed selectivity, which underlies high dimensionality, is important for the generation 

of the correct behavioural response. In the error trials this component of the selectivity is 

disrupted, leading to a collapse in dimensionality, which impairs the ability of downstream 

readout neurons to produce the correct response.

To test this hypothesis, we quantified the contribution to the collapse in dimensionality of 

the non-linear mixed selectivity component of the neuronal response. The non-linear mixed 

selectivity component represents the signal that is not described by a linear mixing model 

(Supplementary Methods M.2). The collapse in dimensionality that predicts the errors of the 

animal is specifically due to a weakening of the non-linear component of mixed selectivity. 

Indeed, the difference in dimensionality between correct and error trials still remains 

significant after subtracting the linear component of mixed selectivity (Fig. 5c), whereas it is 
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negligible when the non-linear mixed selectivity component is removed (Fig. 5d). These 

results are confirmed by a principal component analysis (Supplementary Section S.17).

Discussion

We showed that the mixed selectivity that is commonly observed in PFC responses can be 

interpreted as a signature of high-dimensional neural representations. One advantage of high 

dimensionality is that information about all task-relevant aspects and their combinations is 

represented in a way that is easily accessible to linear classifiers, such as simple neuron 

models. The information is distributed across multiple neurons in an “explicit” format [16] 

that allows a readout neuron to implement an arbitrary classification of its inputs. Previous 

studies have already shown that a linear readout is often sufficient to decode particular task 

aspects or to perform specific tasks (see e.g. [17], [18]). Here, by showing that the neural 

representations are high-dimensional, we demonstrate that ANY binary choice task 

involving the 24 experimental conditions that we analysed could be performed by a linear 

readout.

One of our main results is that the dimensionality of the neural representations collapses in 

error trials, suggesting that non-linear mixed selectivity might be important for generating 

correct behavioural responses. It is tempting to speculate about the causes of this 

dimensionality collapse. Nonlinear mixed selectivity can change in a way that is compatible 

with our observations when neurons integrate multiple sources of information, which 

include those that are relevant for the task and those that are not under experimental control. 

The change in dimensionality may be caused by the excessive variability of sources that are 

not task-relevant. In other words, in order to perform correctly, the brain has to mix non-

linearly the task-relevant sources of information in a way that is consistent across trials. This 

consistency requires to restrict the contribution of the other sources. This is similar to what 

has been observed in premotor cortex, where firing rates tended to be less variable on trials 

in which the reaction time was shorter [19]. A theoretical argument (Supplementary Section 

S.18) shows that neurons with a strong non-linear mixed selectivity are more sensitive than 

pure selectivity neurons to the task irrelevant sources of variability. Non-linear mixed 

selectivity is most useful but also most fragile. Pure and linear mixed selectivity, which are 

more robust, make it possible to decode individually all task-relevant aspects even in the 

error trials, as observed here.

Although high dimensionality is not strictly necessary for generating rich dynamics and 

performing complex tasks, it is known to greatly simplify the design of local neural circuits 

[9]. Indeed, realizing a complex and rich dynamics is for some model circuits equivalent to 

solving a classification problem in which the network has to generate a particular output for 

each input. In these models this is typically realized by training a subset of neurons to 

respond in a specific way to an external input or to the internally generated activity. This is 

equivalent to classifying the activity of the input neurons for every time step. In many 

situations this activity is read out by downstream circuits. In others it is fed back to the 

neural circuit to affect its dynamics and hence the statistics of future inputs. Especially in the 

latter situations, the number of input-output functions or classifications that must be 

implemented by each neuron can be significantly larger than the number of functions 
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required to simply produce the observed final behavioural response, because the neurons are 

required to generate the proper output for every time step. For this reason, it is often 

necessary to expand the dimensionality of the neuronal representations of the external 

sensory input and the internal state. In recent models [5], [6], [7], [8], [9], [10], the 

dimensionality of the neuronal representations is expanded by mixing in a non-linear way 

the different sources of information in a population of randomly connected neurons. The 

resulting neuronal representations are high-dimensional (see e.g. [20]), like those observed 

in PFC, and consistent with high dimensionality, the neurons exhibit mixed selectivity 

which is diverse across time (i.e. in different epochs of the trials) and space (i.e. across 

different neurons). Random connectivity in small brain regions has been suggested based on 

anatomical reconstructions [21] and recently observed in the connections from the olfactory 

bulb to the olfactory cortex [22] (see also [14] for a general discussion).

We showed that the recorded mixed selectivity can be useful for the activity to be linearly 

read out. It is legitimate to ask whether these considerations would still be valid if we 

consider more complex non-linear readouts. For example, some of the transformations 

which increase the dimensionality of the neural representations could be implemented at the 

level of individual neurons by exploiting dendritic non-linearities. Our results do not exclude 

the functional importance of such dendritic processes. They do, however, tend to argue 

against a scenario where all important non-linear transformations are carried out at the level 

of single neurons, a situation where dimensionality expansion could happen in a “hidden 

way”, and the observable representations provided by the neuronal firing rates could 

therefore be low-dimensional.

Finally, the particular form of redundancy inherited from high-dimensional representations 

allows neural circuits to flexibly and quickly adapt to execute new tasks, just as it allows 

them to implement arbitrary binary classifications by modifying the weights of a readout 

neuron (using, for instance, a supervised procedure like the perceptron learning rule [23]). In 

Supplementary Section S.9 we show an example of this flexibility by training a simulated 

neuron to perform a new virtual task based on the recorded activity. High dimensionality 

might therefore be at the basis of the mechanisms underlying the remarkable adaptability of 

the neural coding observed in PFC [13] and, as such, be an important element to answer 

fundamental questions that try to map cognitive to neurophysiological functions.

In conclusion, the measured dimensionality of the neural representations in PFC is high, and 

errors follow a collapse in dimensionality. This provides us with a motivation to shift the 

focus of attention from pure selectivity neurons, which are easily interpretable, to the widely 

observed but rarely analysed mixed selectivity neurons, especially in the complex task 

designs that are becoming progressively more accessible to investigation.

Methods Summary

The formal definitions of dimensionality and mixed selectivity are in Supplementary 

Methods M.1, M.2, respectively. The procedures for removing selectivity, decoding task-

relevant aspects and resampling neurons used in Fig. 3 are explained in Supplementary 

Methods M.3, M.5, M.6. The dimensionality estimate of Fig. 4 is detailed in Supplementary 
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Methods M.7. The analysis of the linear and non-linear components of Fig. 5 is in 

Supplementary Methods M.8.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We are grateful to Larry Abbott for many useful comments on the manuscript and for interesting discussions. Work 
supported by the Gatsby Foundation, the Sloan-Swartz Foundation and the Kavli Foundation. M.R. is supported by 
Swiss National Science Foundation grant PBSKP3-133357 and the Janggen-Poehn Foundation; E.K.M. is 
supported by NIMH grant 5-R37-MH087027-04 and The Picower Foundation; M.R.W. from the Brain & Behavior 
Research Foundation.

References

1. Asaad WF, Rainer G, Miller EK. Neuron. Dec; 1998 21(6):1399–1407. [PubMed: 9883732] 

2. Mansouri FA, Matsumoto K, Tanaka K. J Neurosci. Mar; 2006 26(10):2745–2756. [PubMed: 
16525054] 

3. Warden MR, Miller EK. J Neurosci. Nov; 2010 30(47):15801–15810. [PubMed: 21106819] 

4. Buonomano DV, Merzenich MM. Science. Feb; 1995 267(5200):1028–1030. [PubMed: 7863330] 

5. Maass W, Natschlager T, Markram H. Neural Comput. 2002; 14:2531–2560. [PubMed: 12433288] 

6. Jaeger H, Haas H. Science. Apr; 2004 304(5667):78–80. [PubMed: 15064413] 

7. Buonomano DV, Maass W. Nat Rev Neurosci. Feb; 2009 10(2):113–125. [PubMed: 19145235] 

8. Sussillo D, Abbott LF. Neuron. Aug.2009 63(4):544. [PubMed: 19709635] 

9. Rigotti M, Ben Dayan Rubin DD, Wang X-J, Fusi S. Frontiers in Computational Neuroscience. 
2010; 4(24):29.

10. Pascanu R, Jaeger H. Neural Netw. Mar; 2011 24(2):199–207. [PubMed: 21036537] 

11. Cortes C, Vapnik V. Machine Learning. 1995; 20(3):273–297.

12. Warden MR, Miller EK. Cereb Cortex. Sep; 2007 17(Suppl 1):i41–i50. [PubMed: 17726003] 

13. Duncan J. Nat Rev Neurosci. Nov; 2001 2(11):820–829. [PubMed: 11715058] 

14. Yuste R. Neuron. Sep; 2011 71(5):772–781. [PubMed: 21903072] 

15. Machens CK, Romo R, Brody CD. J Neurosci. Jan; 2010 30(1):350–360. [PubMed: 20053916] 

16. DiCarlo JJ, Zoccolan D, Rust NC. Neuron. Feb; 2012 73(3):415–434. [PubMed: 22325196] 

17. Meyers EM, Freedman DJ, Kreiman G, Miller EK, Poggio T. J Neurophysiol. Sep; 2008 100(3):
1407–1419. [PubMed: 18562555] 

18. Klampfl S, David SV, Yin P, Shamma SA, Maass W. J Neurophysiol. Sep.2012 108:1366–1380. 
[PubMed: 22696538] 

19. Churchland MM, Yu BM, Ryu SI, Santhanam G, Shenoy KV. J Neurosci. Apr; 2006 26(14):3697–
3712. [PubMed: 16597724] 

20. Barak O, Rigotti M, Fusi S. J Neuroscience. Feb.2013 33:3844–3856.

21. Braitenberg, V.; Schüz, A. Cortex: statistics and geometry of neuronal connectivity. Vol. 249. 
Springer; Berlin: 1998. 

22. Sosulski DL, Bloom ML, Cutforth T, Axel R, Datta SR. Nature. Apr; 2011 472(7342):213–216. 
[PubMed: 21451525] 

23. Rosenblatt, F. Principles of Neurodynamics. Spartan Books; New York: 1962. 

Rigotti et al. Page 9

Nature. Author manuscript; available in PMC 2015 April 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Low and high-dimensional neural representations, and mixed selectivity. a, Contour plots of 

the responses (spikes/s) of four hypothetical neurons to two continuous parameters that 

characterize two task-relevant aspects (a,b, varying between 0 and 1) corresponding to 

relevant stimulus features (e.g. contrast and orientation). Neurons 1,2 are pure selectivity 

neurons, selective to individual parameters (a and b, respectively). Neuron 3 is a linear 

mixed selectivity neuron: its response is a linear combination of the responses to parameters 

a and b. Neuron 4 is a non-linear mixed selectivity neuron: its response cannot be explained 

by a linear superposition of responses to the individual parameters. The green circles 

indicate the responses to three sensory stimuli parametrized by three a,b combinations. b, 

The responses of the pure and linear mixed selectivity neurons from a in the space of 

activity patterns (the axes indicate the firing rates of the neurons) elicited by the three 

stimuli indicated by the green circles in a lie on a line, therefore spanning a low-dimensional 

space. c, As in b, with the third neuron being the non-linear mixed selectivity Neuron 4 in a. 

The representations of the stimuli lie on a plane, no longer being confined on a line. This 

higher dimensionality plays an important role when the activity is read out by linear 

classifiers, since they can only separate the input space into classes that are separable by a 

plane (in general by a hyper-plane). This limits the implementable classifications (See 

Supplementary Section S.1). For example, in b it is impossible for any linear classifier to 

respond to the darker central circle and not to the other two. But it is possible in c, for 

instance for a linear classifier corresponding to an appropriately positioned horizontal plane.
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Figure 2. 
Behavioural task from [3]. a, Sample sequence: each trial began when the monkeys grasped 

a bar and achieved central fixation. A first sample object was followed by a brief delay (the 

one-object delay), then a second sample object (different from the first sample object), then 

another delay (the two-object delay). b, Recognition task: the sample sequence was followed 

by a test sequence, which was either a match to the sample sequence, in which case the 

monkeys were required to release the bar, or a nonmatch, in which case the monkeys were 

required to hold the bar until a matching sequence appeared. c, Recall task: the sample 

sequence was followed by an array of three objects that included the two sample objects. 

Monkeys were required to make a sequence of saccades in the correct order to the two 

sample objects. Recognition and recall task trials were interleaved in blocks of 100–150 

trials.
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Figure 3. 
Mixed selectivity in recorded single-cell activity and population decoding. a, Average firing 

rate of a sample neuron (Gaussian smoothing with 100 ms window, shaded area indicates 

s.e.m). Colours denote different combinations of task type and sample cues (condition), 

indicated in parenthesis (task type, first cue, second cue). The ‘?’ indicates that cue 2 

identities were averaged over. This neuron preferentially responds to object C as first cue in 

Task 1 blocks (recognition task). b, Peri-condition histogram (PCH): average firing rate in a 

100 ms time bin (±s.e.m) at the yellow arrow in a for different conditions. The response to 

object C as first cue is significantly different for the two task types (p < 0.05, two-sample t-

test). c,d, Same as a,b for a different neuron with preference for object A and D as second 

objects during task 2 trials (recall task). e–g, Comparison of population decoding accuracy 

for task type (e), cue 1 (f) and cue 2 (g) before (dashed) and after (solid) removing classical 

selectivity. Dashed lines: average trial-by-trial cross-validated decoding accuracy of the 

decoder reading out the firing rate of 237 neurons in different independent time bins. Curves 

represent the average decoding accuracy over 1000 partitions of the data into training and 

test set (shaded areas show 95% confidence intervals). Horizontal dashed lines indicate 

chance level. Solid lines: decoding accuracy after the removal of classical selectivity for 237 

(bright) and 1000 resampled neurons (dark) (see Supplementary Methods M.6). e, Accuracy 

in decoding task type from neurons whose selectivity to task type was removed. The 

decoding accuracy is initially at chance, but steadily grows above chance level as the 

complexity of the task and the number of conditions increases. f,g, analogous plots for the 

decoding accuracy of cue 1,2 identity, when instead selectivity to cue 1,2 was removed.
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Figure 4. 
The recorded neural representations are high-dimensional. Number of implementable binary 

classifications, Nc, (left ordinate, on logarithmic scale) and dimensionality of the inputs 

(right ordinate, linear scale) for varying number of neurons of the population read out by a 

linear classifier. a, The black trace represents the number Nc of implementable binary 

classifications of the vectors of recorded mean firing rates in the 800 ms bin in the middle of 

the one-object delay period. In this epoch a trial is defined by one of c = 8 different 

conditions, corresponding to all the combinations of task type and cue 1 objects. Nc reaches 

the value that corresponds to the maximal dimensionality d = 8 (indicated by the dashed 

line). The grey line shows Nc when the neural representations contain only the responses of 

artificially generated pure selectivity neurons with a noise level matching that of the data 

(See Supplementary Methods M.4). b, Same plot computed over the 800 ms bin in the 

middle of the two-object delay period. The advantage of the recorded representations over 

the pure selectivity neurons is huge. For the recorded data (black line) Nc reaches 224, the 

value that corresponds to the maximal dimensionality d = 24, given by all possible 

combinations of cue 1 object, cue 2 object and task type are 24 (dashed line). On the other 

hand, representations based on pure selectivity (grey line) generate less than 8 dimensions. 

Error bars are 95% confidence bounds estimated as detailed in Supplementary Methods M.7. 

See Supplementary Section S.20 for this analysis during the test epochs.
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Figure 5. 
The dimensionality of the neural representations predicts animal behaviour. a, Same plot as 

Fig. 4b, with the difference that the analysis is restricted to the recall task and the two curves 

represent the number of implementable binary classifications of the recorded activity in the 

case of correct (black) and error (grey) trials. For the correct trials the number of 

implementable classifications corresponds to a dimensionality that is close to maximal (d = 

12, dashed line). In the error trials the dimensionality drops significantly. b, The identity of 

the two cues can still be decoded in the error trials: decoding accuracy as in Fig. 3 in the 

correct (continuous lines) and error trials (dashed lines) for the identity of cue 1 (green lines) 

and cue 2 (orange line). The correct cue identities are perfectly decoded also during error 

trials. c,d, Contribution of non-linear and linear mixed selectivity to the collapse in 

dimensionality observed in the error trials. c, After removing the linear component of mixed 

selectivity from the response of each neuron, the dimensionality is estimated as in a. The 

dimensionality in the correct trials (black line) is still significantly higher than in the error 

trials (grey line). d, Same as in c, but after the nonlinear component of mixed selectivity is 

subtracted from each neuron. The two curves are not significantly different, indicating that 

the non-linear component of mixed selectivity is responsible for the collapse in 

dimensionality. These analyses were carried out on a subset dataset of 121 neurons that were 

recorded in as many correct as error trials during the recall task.
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