A Genetic Algorithm for Resource-Constrained Scheduling

by
Matthew Bartschi Wall

B.S. Mechanical Engineering
Massachusetts Institute of Technology, 1989

M.S. Mechanical Engineering
Massachusetts Institute of Technology, 1991

M.S. Management
Sloan School of Management, 1991

Submitted to the Department of Mechanical Engineering
in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Mechanical Engineering
at the Massachusetts Institute of Technology

June 1996

©1996 Massachusetts Institute of Technology. All rights reserved.

Signature of Author: A 1ﬁ
- Department of Mechanical Engineering

14 May 1996
'
Certified by: W / . M
y v Mark Jakiela

-/ Associate Professor of Mechanical Engineering
? / Thesis Supervisor
Certified by: e

Woodie C. Flowers
Pappalardo Professor of Mechanical Engineering
Thesis Supervisor

Accepted by:

Ain A. Sonin
AL e) Chairman, Department Committee on Graduate Students
IR I O A L LI A T I T I S

QOFF TECH), Cta 7
APR 1 6 1997 CoHVES

1 IR DWS

A Genetic Algorithm for Resource-Constrained Scheduling
by Matthew Bartschi Wall

Submitted to the Department of Mechanical Engineering on 14 May 1996 in partial fulfillment of
the requirements for the degree of Doctor of Philosophy in Mechanical Engineering

Abstract

This work describes a genetic algorithm approach to resource-constrained scheduling using a
direct, time-based representation. Whereas traditional solution methods are typically sequence-
based, this representation encodes schedule information as a dual array of relative delay times
and integer execution modzs. The representation supports multiple execution modes,
preemption. non-uniform resource availability /usage, a variety of resource types, probabilistic
resource performance models, overlapping precedence relationships, and temporal constraints
on both tasks and resources. In addition, the representation includes time-varying resource
availabilities and requirements. Many objective measures can be defined such as minimization
of makespan, maximization of net present value, or minimization of average tardiness.
Multiple, possibly conflicting objectives are supported. The genetic algorithm adapts to
dynamic factors such as changes to the project plan or disturbances in the schedule execution.

In addition to the scheduling representation, this thesis presents a structured method for
defining and evaluating multiple constraints and objectives.

The genetic algorithm was applied to over 1000 small job shop and project scheduling problems
(10-30C activities, 3-10 resource types). Although computationally expensive, the algorithm
performed fairly well on a wide variety of problems. With little attention given to its
parameters, the algorithm found solutions within 2% of published best in 60% of the project
scheduling problems. Performance on the jobshop problems was less encouraging; in a set of 82
jobshop problems with makespan as the single performance measure, the algorithm found
solutions with makespan 2 to 3 times the published best. On project scheduling problems with
multiple execution modes, the genetic algorithm performed better than deterministic, bounded
enumerative search methods for 10% of the 538 problems tested.

The test runs were performed with minimal attention to tuning of the genetic algorithm
parameters. In most cases, better performance is possible simply by running the algorithm
longer or by varying the selection method, population size or mutation rate. However, the
results show the flexibility and robustness of a direct representation and hint at the possibilities
of integrating the genetic algorithm approach with other methods.

Thesis Committee:

Mark Jakielat , Associate Professor of Mechanical Engineering, MIT

Woodie Flowers, Pappalardo Professor of Mechanical Engineering, MIT

Stephen Graves, Professor of Management Science, Sloan School of Management

Karl Ulrich, Associate Professor of Operations and Information Management, The Wharton School

This documerit is available from ftp://lancet.mit.edu/pub/mbwall/phd/thesis.ps.gz

t effective 1 August 1996, Hunter Associate Piofessor of Mechanical Design and Manufacturing,
Mechanical Engineering, Washington University, St. Louis.

W

‘9) Funding for this work was provided by the Leaders for Manufacturing Program.

1. Introduction 7

2. The Resource-Constrained Scheduling Problem 11
2.1 The Problem (General Formulation) 11
2.2 Characteristics of the Generalized Form 12

2.2.1 Tasks (Activities) 12
2.2.2 Resources 12
2.2.3 Constraints and Objectives 13
2.2.4 Dynamic Variations 13
2.3 Instances of the generalized problem 14
2.3.1 Project Scheduling 14
2.3.2 Job-Shop Scheduling 15
2.4 What makes scheduvling problems hard? 16
2.4.1 Scaling Issues - The Size of the Problem 16
2.4.2 Uncertainty and the Dynamic Nature of Real Problems 17
2.4.3 Infeasibility - Sparseness of the Solution Space 17

3. Related Work 18
3.1 Characterization of the Problems and Problem Generation 19
3.2 Exact Solution Methods 20

3.2.1 Critical Path Method 20
3.2.2 Linear and Integer Programming 21
3.2.3 Bounded Enumeration 21
3.3 Heuristic Solution Methods 22
3.3.1 Scheduiing Heuristics 22
3.3.2 Sequencing Heuristics 23
3.3.3 Hierarchical Approaches 23
3.3.4 Artificial Intelligence Approaches 24
3.3.5 Simulated Annealing 24
3.3.6 Evolutionary Algorithms 25

4. Solution Method 29

4.1 Problem Model 29
4.1.1 Assumptions About Tasks 29
4.1.2 Assumptions About Resources 30
4.1.3 Assumptions About Objectives 31

4.2 Search Method 31
4.2.1 Simple Genetic Algorithm (Non-Overlapping Populations) 33
4.2.2 Steady-State Genetic Algorithm (Overlapping Populations) 33
4.2.3 Struggle Genetic Algorithm 34

4.3 Genetic Representation 35
4.3.1 Start Times 36
4.3.2 Operating Modes 36
4.3.3 Additiona! Characteristics 37

4.4 Genetic Operators 37
4.4.1 Initialization 37
4.4.2 Crossover 37
4.4.3 Mutation 39
4.4.4 Similarity Measure 39

4.5 Objective Function 41
4.5.1 Constraints 41
4.5.2 Objectives 42
4.5.3 Composite Scoring 43

5. Test Problems and Results 47

5.1 Tha Test Problems 47

5.2 Genetic Algorithm Performance 49

5.3 Implementation details 53

6. Conclusions 55
7. References 57
7.1 Sources 57
7.2 Bibliography 57
8. Appendix A - Glossary 61

1. Introduction

Planning and scheduling are common to many different engineering domains. Whether the
project is as large as the Boston Harbor Tunnel or something as seemingly simple as the
redesign of the packaging for a tape dispenser, both planning and scheduling are profoundly
important. Even on a small project, the number of possible courses of action and the number of
ways to allocate resources quickly become overwhelming. On a factory floor, determining
which jobs should be executed on which machines by which employees can mean the difference
between significant profit or debilitating loss. In a software development shop, assigning
responsibility for tasks and effectively managing disruptions can mean the difference between a
product that ships in time to hit a market window and a product that misses that window.

This document describes a genetic algorithm for finding optimal solutions to dynamic resource-
constrained scheduling problems. Rather than requiring a different formulation for each
scheduling problem variation, a single algorithm provides promising performance on many
different instances of the general problem. Whereas traditional scheduling methods use search
or scheduling rules (heuristics) specific to the project model or constraint formulation, this
method uses a direct representation of schedules and a search algorithm that operates with no
knowledge of the problem space. The representation enforces precedence constraints, and the
objective function measures both resource constraint violations and overall performance.

In its most general form, the resource-constrained scheduling problem asks the following:
Given a set of activities, a set of resources, and a measurement of performance, what is the best
way to assign the resources to the activities such that the performance is maximized? The
general problem encapsulates many variations such as the job-shop and flowshop problems,
production scheduling, and the resource-constrained project scheduling problein.

Scheduling requires the integration of many different kinds of data. As illustrated in Figure 1,
constructing a schedule requires models of processes, definition of relationships between tasks
and resources, definition of objectives and performance measures, and the underlying data
structures and algorithms that tie them all together. Schedules assign resources to tasks (or tasks
to resources) at specific times. Tasks (activities) may be anything from machining operations to
development of software modules. Resources include people, machines, and raw materials.
Typical objectives include minimizing the duration of the project, maximizing the net present
value of tke project, or minimizing the number of products that are delivered late.

Planning and scheduling are distinctly different activities. The plan defines what must be done
and restrictions on how to do it, the schedule specifies both how and when it will be done. The
plan refers to the estimates of time and resource for each activity, as well as the precedence
relationships between activities and other constraints. The schedule refers to the temporal
assignments of tasks and activities required for actual execution of the plan. In addition, any
project includes a set of objectives used to measure the performance of the schedule and/or the
feasibility of the plan. The objectives determine the overall performance of the plan and
schedule.

creation of project plan
(definition of constraints and objectives)

-

Alternative A

Bill works Tuesdays and Thurs lays

.

The cutters must be replaced after 3 hours of machining steel
Jim can program the NC mill, but not the NC lathe

ACME deliveries are typically 2 days late

Reaming can be done only after drilling, but requires a setup

Time on the EDM costs $150 per hour, a new EDM costs $80,000
Each day before 1 June is worth a $1000 bonus, each day after a $2000 penalty J

Alternative B
@—O\

S

®
O—@—®

generation of schedule

/Schedule 1
day 1 day 2 day 3
Schedule 2
Qay 1 day 2 day 3)

evaluation of performance

Iresource 3

| ~—____ time

average tardiness: 2 hours
time to complete: 22 weeks
total cost: $1.2M

\

4 R
resource utilization
resource 1
| time
resource 2
[.| []] time

J

Figure 1 The parts of a resource-constrained scheduling problem. A plan is a set of
constraints that define the problem. A schedule consists of a set of assignments of
resources to activities at specific times. Resources include people, machines, and raw
materials. Constraints define the limits of resources and relations between activities.
Objectives define the goals and performance measures for the problem.

Although often treated separately, planning and scheduling are often inseparably connected.
Changes to a schedule may require a different set of activities in order to produce a feasible
schedule. Conversely, a plan may have no corresponding feasible schedule. In either case,
objectives such as “minimize makespan” or “maximize net-present value of the cash flows”,
while independent of the plan or schedule, determine the value of a plan and schedule. Both
the plan and the objectives determine the difficulty of finding a schedule.

Scheduling problems are dynamic and are based on incomplete data. No schedule is static until
the project is completed, and most plans change almost as soon as they are announced.
Depending on the duration of the project, the same may also be true for the objectives. The
dynamics may be due to poor estimates, incomplete data, or unanticipated disturbances. As a

result, finding an optimal schedule is often confounded not only by meeting existing constraints
but also adapting to additional constraints and changes to the problem structure.

Scheduling problems include many types of constraints. Constraints appear in many forms:
temporal constraints such as “James can work only on Tuesdays, Thursdays, and Fridays”;
precedence constraints such as “The design of the interface can be started when library
programming interface is frozen and the analog-to-digital hardware is 75% completed”;
availability constraints such as “three skilled machinists are available ir the second shift, four are
available in the third shift”; and combinations such as “The injection molding machine can run
three shifts between maintenance cycles”. Constraints turn a relatively smooth solution space
with many optima to a very non-uniform space with few feasible solutions. A typical plan
includes many bottlenecks with little flexibility for change, as well as parts that are almost
unconstrained.

This is not a new subject. Planning and scheduling methodz have been proposed and analyzed
since at least the 1950s. Although methods exist for finding optimal solutions to some specific
scheduling problem formulations, many methods do not work when the structure of the
constraints or objectives change. For example, a scheduling heuristic that says “schedule the
task that uses the least number of resources” may not perform well when the problem is
modified to include different types of resources. In addition, many methods do not perform
well when faced with problems of significant size. In many cases, simply finding feasible
solutions is a considerable challenge. The difficult nature of resource-constrained scheduling led
Tavares and Weglarz [Tavares & Weglarz 90] to label project management and scheduling "a
permanent challenge for oper: tions research".

In general, scheduling problems are NP-hard, meaning there are no known algorithms for
finding optimal solutions in polynomial time. Algorithms exist for solving exactly some forms
of the problem, but they typically take too long (i.e. more than polynomial time) when the
problem size grows or when additional constraints are added. As a result, most research has
been devoted to either simplifying the scheduling problem to the point where some algorithms
can find solutions, or to devising efficient heuristics for finding good solutions. In some cases,
the problem may consist of simply finding a feasible solution, and often the existence of a
feasible solution may not be assured.

Many solution methods have been proposed and implemented. Early approaches solved
simplified versions of the problem exactly, but researchers quickly realized that real problems
are too large and complicated for any exact solution. For example, decision trees were used to
enumerate every possible choice. Heuristic methods were then devised to find good solutions,
or to find simply feasible solutions for the really difficult problems. Most research now consists
of designing better heuristics for specific instances of scheduling problems. However, heuristic
solutions are typically limited to a specific set of constraints or problem formulation, and
devising new heuristics is difficult at best.

The complex, combinatorial nature of most scheduling problems has led many researchers to
experiment with genetic algorithms as a solution method. Commonly touted for their ability to
solve nonlinear and combinatorial problems, genetic algorithms typically perform well on
problems in which the objective and/or search space combine both discrete and continuous
variables. They are also often noted for searching large, multi-modal spaces effectively since
they operate on a population of solutions rather than on one individual and use no gradient or
other problem-specific information.

Genetic algorithms are a stochastic search method introduced in the 1970s in the United States
by John Holland [Holland 76] and in Germany by Ingo Rechenberg [Rechenberg 73]. Based on
simplifications of natural evolutionary processes, genetic algorithms operate on a population of
solutions rather than a single solution and employ heuristics such as selection, crossover, and
mutation to evolve better solutions.

Although genetic algorithms have been studied for over 25 years, implementing them is often
as much an art as designing efficient heuristics. Much of the genetic zlgorithm literature is
devoted to relatively simple problems. Simplistic application of a genetic algorithm to small
problems often produces reasonable results, but naive application of genetic algorithms to larger
problems often results in poor performance. This is due to both the nature of the genetic search
and the relationships between a genetic representation and the genetic operators. Direct
representation of problems, i.e. use of data types other than bit strings, promises further
improvements in genetic algorithm applicability, robustness, and performance. Continued
reduction in computational cost along with increases in power and speed make genetic
algorithms viable alternatives despite their significant computational overhead.

Due to the continued challenge of resource-constrained scheduling and the promising
performance of genetic algorithms on similar problems, scheduling problems have attracted a
great deal of attention in the genetic algorithm ccmmunity in the past 5 years. However, most
implementations are variations of traditional operations research approaches to solving
scheduling problems.

In an attempt to expand the generality of genetic algorithms, this work uses a problem-specific
representation with specialized crossover and mutation in concert with domain-independent
genetic algorithms. The representation has been generalized to the point where it can be used
with a wide variety of scheduling problems, but it has been specialized to the structure of
scheduling problems in order to improve the genetic algorithm performance. The result is an
algorithm that works with many different instances of the resource-constrained scheduling
problem.

The second chapter of this document is a description of the resource-constraired scheduling
problem and a summary of some of its variations. The third chapter contains a brief overview
of traditional and not-so-traditional techniques for finding feasible and optimal schedules for
various instances of the general problem. The fourth chapter is a description of the genetic
algorithm and schedule-specific representation. The fifth chapter describes the jobshop and
project scheduling problems on which the genc.ic algorithm was run and summarizes the
algorithm performance. Finally, the sixth chapter offers conclusions and suggestions for future
work. A glossary of terms is included in the Appendix.

10

2. The Resource-Constrained Scheduling Problem

Although related and often tightly coupled, planning and scheduling are distinctly different
activities. Planning is the construction of the project/process model and definition of
constraints/objectives. Scheduling refers to the assignment of resources to activities (or activities
to resources) at specific points in, or durations of, time. The definition of the problem is thus
primarily a planning issue, whereas the execution of the plan is a scheduling issue. Yet
planning and scheduling are coupled; the performance of the scheduling algorithm depends on
the problem formulation, and the problem formulation may benefit from information obtained
during scheduling.

Section 2.1 contains a description of the general formulation of resource-constrained scheduling,
Section 2.2 details specific characteristics of the problem, Section 2.3 describes two instances of
the general problem, the job-shop scheduling problem and the project scheduling problem, and
Section 2.4 highlights some of the factors that make scheduling a difficult problem. A glossary
of terms is included in the Appendix.

2.1 The Froblem (General Formulation)
In its most general form, the resource-constrained scheduling problem is defined as follows:
Given
a set of activities that must be executed,
a set of resources with which to perform the activities,
a set of constraints which must be satisfied, and
a set of objectives with which to judge a schedule’s performance,

what is the best way to assign the resources to the activities at specific times
such that all of the constraints are satisfied and the best objective measures are
produced?

The general form includes the following characteristics:

e each task may be executed in more than one manner, depending on which
resource(s) is (are) assigned to it

e task precedence relationships may include overlap so that a given task may
begin when its predecessor is partially complete

* each task may be interrupted according to a pre-defined set of interruption
modes (specific to each task), or no interruption may be allowed

e each task may require more than one resource of various types
e atask’s resource requirements may vary over the duration of the task

» the resources may be renewable (e.g. labor, machines) or non-renewable
(e.g. raw materials)

e resource availability may vary over the duration of the schedule or task
e resources may have temporal restrictions

In order to accurately model the uncertainty common in real problems, the general formulation
includes the following dynamic characteristics:

11

e resource availabilities may change
¢ resource requirements may change
e objectives may change

The following sections clarify these characteristics by viewing the problem from three
perspectives: the tasks, the resources, and the objectives.

2.2 Characteristics of the Generalized Form
2.2.1 Tasks (Activities)

Tasks have measurable estimates of performance criteria such as duration, cost, and resource
consumption. Any task may require a single resource or a set of resources, and the resource
usage may vary over the duration of the task. The estimates of duration and cost may be
dependent upon the resource(s) applied to (or used by) the task. The performance measures
may be probabilistic or deterministic.

A task may have multipie execution modes. Any task may be executed in more than one
manner depending upon which resources are used to complete it. For example, if two people
are assigned to a job it may be completed in half the time required were it done by a single
person. Alternatively, a part might be manufactured using one of three different processes,
depending on which machine tools are available.

A single task may be composed of multiple parts. The definition of the parts includes a
specification for whether or not the task can be interrupted during the parts or only between
parts. For example, a milling operation may require one setup time when performed on a
milling machine or a different setup time when performed on a mill-turn machine. Setup can
be aborted at any time, but once machining has begun, the task cannot be interrupted until the
milling process is complete.

Often the mode includes additional information that leads to further constraints. Some tasks,
once begun, may not be stopped nor their mode switched until the task is complete.
Alternatively, some tasks may be aborted at any time, possibly with some corresponding cost.

Interruption modes may depend on the resources that are applied to the task. Some tasks may
be interrupted, but the resources they use cannot be used elsewhere until the task is finished.
Other tasks may be interrupted, the resources reassigned, then any resource reapplied when
the task is resumed. It may be possible to move a resource from one task to another once the
first task was started. For other tasks, a resource once committed to a task must remain with
that task until it is finished. Some tasks may be interrupted then restarted later, but with some
cost or degradation in performance or increase in estimated time to completion.

Tasks may use resources in constant or variable amounts for the duration of the task. They may
use a fixed amount as a function of time (e.g. 1 person and 1 milling machine), a variable
amount (e.g. $100 for each hour the task is executed), or they may use a fixed amount for the
total duration of the activity (e.g. use $500 at start of task). Tasks may be defined that use some
combination of resource types and uses.

2.2.2 Resources

Resources may be renewable or non-renewable. Renewable resources are available each period
without being depleted. Examples of renewable resources include labor and many types of
equipment. Non-renewable resources are depleted as they are used. Examples of non-
renewable resources include capital and raw materials. Note that the distinction between
renewable and non-renewable resources may be tenuous. In some cases, renewable resources

12

may become non-renewable resources, in others, non-renewable resources may be considered
renewable.

Resources vary in capability, cost, and other performance measures. For example, each vendor
may have an associated likelihood of on-time delivery. One work team may be more efficient
than another.

Resource availability may vary. Resources may become unavailable due to unforeseen
interruptions, failures, or accidents.

Resources may have additional constraints. Many resources include temporal restrictions that
limit the periods of time when they can be used. For example, one team of machinists may be
available only during the first shift. The constraints may be more complicated as well. Another
team of machinists may be available during any shift at a higher labor rate and on the
condition that they receive one shift off for every two shifts on.

2.2.3 Constraints and Objectives

Constraints and objectives are defined during the formulation of the problem. Constraints
define the feasibility of a schedule. Objectives define the opfimality of a schedule. Whereas
objectives should be satisfied, constraints must be satisfied. Both constraints and objectives may
be task-based, resource-based, related to performance measures, or some combination of these.

A feasible schedule satisfies all of the constraints. An optimal schedule not only satisfies all of the
constraints, but also is at least as good as any other feasible schedule. Goodness is defined by
the objective measures. When modeling the problem it is often converient to think of objectives
and constraints as equivalent, but when solving the problem they must be treated differently.

Project scheduling problems typically specify the minimization of project duration as the
primary objective. However, most real problems are subject to multiple, often conflicting,
objectives. Other objectives include minimization of cost, maximization of the net present value
of the project, resource utilization, resource efficiency, number of due dates that were met or not
met, and minimization of work-in-progress.

Often the objectives conflict. For example, it may be easy to shorten a project’s duration by
assigning more expensive resources to work on the tasks, but then the cost of the project
increases. As more objectives are considered, the possibility for conflicts increases.
Consideration of multiple objectives requires the definition of a mechanism for defining the
relationship between conflicting objectives in order to make decisions about which objectives are
more important.

Constraints appear in many forms. Precedence constraints define the order in which tasks can
be performed. For example, the manufacture of a part may require that drilling be done only
after machining a reference plane. Similarly, the design of a feeder mechanism may begin
when design of the hopper is 30% complete. Temporal constraints limit the times during which
resources may be used and/or tasks may be executed. For example, backups can be done only
after everyone has left the office, or Bill can work only on Tuesdays.

2.2.4 Dynamic Variations

From the time they are first defined, most plans and schedules are destined to change. A
project plan is static only when the project has been completed. The schedule for a machine
shop is often modified within the first hour of a shift. Many job shop schedules change because
of uncertainties in arrival times or due to unexpected equipment failures. Many project plans
require modification when initial estimates are found to be inaccurate or when unexpected
delays confound resource availabilities. Both planning and scheduling systems must be able to
adapt to changes.

13

An important part of the stability of a plan is the consistency of the optimization given a
partially completed project. Assuming that the planning tool provides an interface that lets the
user maintain data integrity, an optimizer must be able to use the existing work as a constraint
(or as part of the objective measure) as it determines a new optimal schedule. Another desirable
characteristic is the ability to 'freeze' part of the project schedule and optimize the remainder.

2.3 Instances of the generalized problem

As noted by Sprecher, the flow-shop, job-shop, open-shop, and assembly line balancing
problems are all instances of the general resource-constrained problem [Sprecher 94). In
addition, many production schedvling problems, single-mode resource-constrained project
scheduling, multi-mode resource-constrained project scheduling, and multiple-project
scheduling are also variations of the general problem.

The tests in Chapter 5 and the majority of this paper refer to two variations of the general
problem, the project scheduling problem and the job-shop scheduling problem.

2.3.1 Project Scheduling

In project scheduling problems, a single project consists of a set of tasks, or activities. The tasks
have precedence relationships, i.e. some tasks cannot be started until their predecessors have
been completed. The tasks also have estimated durations and may include various other
measures such as cost. Perhaps the mnost common objective in the project scheduling problem is
to minimize the time to complete the entire project.

Many specializations of the project scheduling problem have been defined. In resource-
constrained project scheduling problems, the tasks have resource requirements and the resources
are limited. In multi-modal resource-constrained project scheduling problems, each task may be
executed in more than one mode, and each mode may have different resource requirements. In
multi-project scheduling problems, more than one project must be scheduled.

14

task task information

project task fabricate mode 1: [T fabrication:
N\ molds Marc (trained to use NC ill)
S~ o0o—d—o 1 3-axis NC milling machine
O/ \ 3 aluminum blanks
Y o O/ O 3 hours programming
u 1 hour setup
O\§ / 6 hours milling
O 4 hours finishing
Precedence relations for the tasks. mode 2: non-NC fabrication:
Tasks are represented by the Marc, Mark, or Matthew
circles (nodes). Precedence rela- 1 Bridgeport mill
tions are represented by the lines 3 aluminum blanks
(arcs). 4 hour setup
18 hours milling
4 hours finishing
design wing Mark (expert with Xfoil)
surfaces 4 hours programming
2 hours simulation/testing
fabricate 2 people required
wings 1 hour mold preparation

1 hour materials preparation
2 hours lay-up
24 hours unattended cure

Figure 2 Parts of a project scheduling problem. A single problem may consist of
multiple projects. Each project contains a set of tasks. Tasks may include many
different kinds of constraints in the form of resource requirements, temporal
restrictions, and precedence relations. Most tasks include measures related to
performance such as quality of product, estimated duration, and cost of materials.
Typical resources include people, machines, and :aw materials, but may also include
physical locations.

To some extent, the multi-mode project scheduling problem mixes planning with scheduling.
In the simple forms of the multi-mode problems, each task may be executed in more than one
mode, so this is the saime as providing a set of plans and choosing between them. In a more
complicated version of multi-modal project scheduling, if each task can be exploded into more
tasks, or if sets of tasks can be interchanged, then the scheduler effectively does an even more
complex combinatorial planning.

The domain of the project is not critical, but it does determine somewhat the complexity of the
problems. It also determines the granularity of the task definition and the time scale. For
example, a construction project typically has a duration measured in months, each task is often a
composite of many smaller activities, and the resources are contractors and vendors. A software
development project, on the other hand, has a time scale measured in weeks and the resources
are individuals on the development team.

2.3.2 Job-Shop Scheduling

The typical job-shop problem is formulated as a work order that consists of set of n jobs, each of
which contains m; tasks. Each task has a single predecessor and requires a certain type of

15

resource. Often many resources of a specific type are available, for example five milling
machines and two lathes. Many tasks can be assigned to any one of the available resources, but
the resource must be of the right type. Typical objectives include minimizing the makespan for
the work order or meeting due dates for specific jobs or tasks.

The job-shop problems evaluated in Chapter 5 are n by m, where n is the number of jobs and m
is the number of tasks per job. In these problems, m #5 also the number of (identical) machines
(resources). Each task has a single execution mode, and each task requires only one resource.
Each task has its own estimated duration.

job tasks

job task NASA 1 rough cut block

\ q : a mill 5 major surfaces
) turn probe mount

O—O——CO mill flat on probe mount
wire EDM slot for sensor
(OO O=0))
(OO OO mOan®)

NASA 2 rough cut
NC machine features
plate part

Acme Corp. cast for rough form
mil] flats and ream holes
anodize

Figure 3 A jobshop scheduling problem. The process plan for a single job is
typically serial since each job is often associated with a single part. Each task
typically requires a single resource. However, more complicated relationships are
possible. The order in which jobs are executed is often unimportant in terms of the
jobs themselves, but very important in terms of the resources used to do them.

Many variations are possible for either the job-shop or project scheduling problems. Some of
these variations include job-splitting, task preemption, multiple execution modes, non-uniform
resource availability and usage, and various resource types. These variations are described in
Section 4.1

2.4 What makes scheduling problems hard?

Aside from the sheer volume of data and management of information required to schedule a
project or machine shop, there are some inherent difficulties to solving even simplified
scheduling problems.

2.4.1 Scaling Issues - The Size of the Problem

The size of a scheduling problem can be approximated by a what-where-when matrix. Using
the nomenclature of Van Dyke Parunak, scheduling problems consist of asking what must be
done where and when. Resources (where) operate on tasks (what) for specific periods of time
(when). Using this simple classification, and neglecting precedence and other constraints, a
rough approximation of a problern’s size can be given by the product of what, where and when
for the problem. How many tasks must be completed, by how many resources, over what time
intervals?

There are many ways to prune the size of the search space. Many methods have been designed
for determining whether parts of a schedule can be feasible given partial kncwledge about that

16

schedule, or whether one part of a decision tree can be any better than another part. These
methods attempt to reduce the size of the search by taking advantage of problem-specific
information Nevertheless, pruning heuristics are not always available, and rarely are they
obvious.

The choice of representation also controls the size of the search space. If one chooses a very
general representation, more types of problems may be solved at the expense of searching a
larger space. Conversely, one may choose a very specific representation that significantly
reduces the size of the search, but will work on only a single problem instance.

2.4.2 Uncertainty and the Dynamic Nature of Real Problems

Practically speaking, finding an optimal schedule is often less important than coping with
uncertainties during planning and unpredictable disturbances during schedule execution. In
some cases, plans are based upon well known processes in which resource behaviors and task
requirements are all well known and can be accuratcly predicted. In many other cases,
however, predictions are less accurate due to lack of data or predictive models. In these cases
the schedule may be subject to major changes as the plan upon which it is based changes.

In either case, unanticipated disturbances to the schedule may occur. Whether a mecnanical
failure, human error, or inclement weather, disturbances are inevitable. Such disturbances may
require only the replacement of a single resource, or they may require complete reformulation
of the plan.

Any optimization technique should be able to adapt to changes in the problem formulation
while maintaining the context of work already completed.

2.4.3 Infeasibility - Sparseness of the Solution Spacs

Depending on the representation and the modeling assumptions, there may be no feasible
solution to a scheduling problem. For example, if all resources are available in constant per-
period amounts and there are no temporal restrictions on tasks or resources, a project is
guaranteed to have a feasible schedule. At the very worst, one need only extend the project
until all tasks are completed. If, on the other hand, resources, once used, are gone forever and
tasks may be executed only at certain times or within certain time limits, a feasible solution is
not guaranteed. Some algorithms are capable of determining if such an infeasible situation
exists. Most heuristic methods cannot.

Constraints make the search for an optimal solution more difficult by breaking up an otherwise
continuous search space. When many constraints are added, traversal of the search space is
confounded. In addition, adding constraints typically reduces the number of feasible solutions
for a given representation.

17

3. Related Work

Variations of the resource-constrained scheduling problem have been proposed, implemented,
and evaluated for over fifty years. The solution methods form two distinct classes: exact
methods and heuristic methods. These classes may be categorized further into stochastic and
deterministic approaches. Exact methods are guaranteed to find a solution if it exists, and
typically provide some indication if no solution can be found. Heuristic solutions may have no
such guarantee, but typically assure analytically some degree of optimality in their solutions.
Stochastic methods include probabilistic operations so that they may never operate the same
way twice on a given problem (but two different runs may result in the same solution).
Deterministic methods operate the same way each time for a given problem. Many hybrid
methods exist that combine the characteristics of these classes.

When resource-constrained scheduling solutions were first proposed, simple models were used
with exact methods for solving the problem. Given a problem, the exact methods find the best
solution (and are guaranteed to find the best solution) every time they are run. However, as
constraints weir> added, the difficulty of solving the problem increased, and simply finding a
good solution (or in some cases, a feasible solution) became good enough. In addition, many
methods take too long when applied to problems of significant size. For example, the critical
path method (CPM) was devised for finding the shortest time to complete a project given
estimates of task durations. The CPM can highlight the activities in a project that will have the
most effect on the completion time of the project should they take longer than predicted to
execute. However, the CPM cannot solve problems that include restrictions on the number of
resources that are available.

Many methods focused exclusively on scheduling and assumed that the plan was static.
Stochastic models were added to account for the uncertainty of real schedules. Later methods
attempted to integrate planning and scheduling in an effort to find optimization possibilities
that take advantage of the inherent coupling between planning and scheduling.

Three general procedures for solving resource-constrained scheduling problems are shown in
Figure 4. Specific variations of these methods are clarified in Sections 3.2 and 3.3. Some
solution methods generate a sequence of tasks then schedule the tasks based on that sequence
(Figure 4a). Others schedule the tasks directly by focusing on other constraints such as resource
availability (Figure 4b). Some methods mix planning and scheduling by allowing the
scheduler to choose from a set of process plans (Figure 4c). Some methods focus on resource
constraints, others focus on precedence or temporal constraints. Some are deterministic; they
find the same solution each time they run. Others are stochastic; they may find a different
solution each time they are run. Many methoc's are hybrids that combine characteristics of
these techniques.

18

planner
\@f_ ® /

@

sequencer
@@@@@@@
scheduler scheduler scheduler

(b) ©

Figure 4 General procedures for three classes of scheduling aigorithms. Some
algorithms generate a precedence-feasible sequence of tasks then schedule the
sequence (a), others schedule tasks directly from the plan by considering both
precedence and resource constraints while they schedule (b), and others combine
both planning and scheduling by modifying the plan to adapt to the schedule as
well as the schedule to adapt to the plan (c). Planning is the definition of constraints
and is represented here as precedence relations between tasks. Scheduling is the
assignment of resources to tasks at specific times and is represented here by Gantt
charts, a graphic display of task durations.

In addition to solution methods, recent work has focused on characterization of the general
problem and creation of standard suites of problems on which to test algorithms. Even
specialized instances of the resource-constrained scheduling problem are very complicated, so
simply formulating the problem is non-trivial. As a result, most of the published problems are
specialized, simplified, instances of the general problem. Section 3.3 highlights some of these
efforts.

3.1 Characterization of the Problems and Problem Generation

After fifty years of research directed at solving scheduling problems, many recent works have
been devoted to characterizing the problems. The purpose of these explorations has been to
understand the structure of scheduling problems so that problems can be generated in order to
rigorously test the many solution methods. Definition of the problem and construction of
problem generators are tightly entwined; most problem generators include a variety of
parameters with which to define the problem characteristics, but those parameters are often
specific to a certain representation or class of problems.

One aspect of the problem faced by those who attempt to characterize scheduling problems is
the sheer number of variations. Scheduling problems come in many different shapes and sizes.
Often a small change results in a completely new formulation.

First introduced in 1950s during the development of the Polaris missile system, the program
evaluation and review technique (PERT) is the forerunner of formal project scheduling
representations [NASA 1962]. PERT is a method of characterizing precedence relationships

19

between tasks and estimates of task requirements. PERT is not a scheduling method per se, but
rather a method for defining some constraints and organizing information. Many solution
methods depend on a PERT representation (or some derivative thereof) for their precedence
constraints,

Sprecher presented a formal formulation of the single- and multi-mode project scheduling
problem and noted the relation between project scheduling problems, the job-shop problem, the
open shop problem, and assembly line balancing [Sprecher 94]. Sprecher included general
temporal constraints and resource requirements that vary in time as well as a general
formulation of many different performance measures.

Kolisch, Sprecher, and Drex] have characterized many variations of the resource-constrained
project scheduling problem [Kolisch, Sprecher, Drexl 92]. They defined a set of parameters such
as “resource strength” and “network complexity” that characterize the resource-constrainedness
and number of precedence relationships in a project plan. ProGen is the problem generator they
created that uses these parameters to specify the characteristics (and often difficulty) of the
problems. In the problem sets described in their paper, Kolisch et al varied three parameters:
complexity, based on the connectivity of the precedence relationship network; resource factor, a
measure of the number of resource types; and resource strength, a measure of resource
availability. Then they applied their solution method to the problems in order to correlate
problem difficulty (based on their algorithm’s performance) with the parameters.

In a paper devoted to the description of a combined heuristic for project scheduling, Boctor
mentioned another problem generator [Boctor 94]. Boctor’s set of 240 problems contains 120 50-
activity problems and 120 100-activity problems. Each activity had an average of 2
predecessors, and the number of resource types varied from 1 to 4.

Many job shop, flow shop, and production scheduling problems are available and have been
described in the literature [Adams et al, 1988] [Fisher and Thompson, 1963] [Lawrence, 1984]
[Applegate and Cook 1991] [Storer et al, 1992] [Yamada and Nakano, 1992]. The classic jobshop
problems include the 6x6 and 10x10 problems first presented by Muth and Thompson [Muth &
Thompson, 1963]. Since then, many others have suggested and solved a variety of more
complex variations.

A set of problems was posted on the world-wide web by Barry Fox and Mark Ringer in early
1995. The set consists of a single life-size (575 tasks, 3 types of labor resources and 14 location-
based resources) problem in twelve parts. Each part encompasses a different variation of the
basic formulation. The variations include changes in resource availability, job-splitting, a wide
variety of temporal and location constraints, and multiple objectives. The set does not include
multi-modal activities. Fox and Ringer noted the dearth of life-like problems that are publicly
available [Fox & Ringer 1995]

Although many solution methods have been published, the complexity of even formulating the
problem has been an obstacle to a widespread, common base of test problems other than the
simplified job-shop formulations or very simple project scheduling problems. In addition, many
solution methods have been tested on problems from industrial sponsors who are
understandably anxious about publication of details about their operations.

3.2 Exact Solution Methods

Exact methods are guaranteed to find the optimal solution, but typically become impractical
when faced with problems of any significant size or large sets of constraints.

3.2.1 Critical Path Method

The critical path method (CPM) provides the resource-unconstrained schedule for a set of
precedence-constrained activities with deterministic durations. It gives the shortest possible

20

makespan assuming infinite resources. Although useful for obtaining a rough idea of the
difficulty of executing a plan, the critical path method does not consider temporal or resource
constraints. Stochastic variations [Neumann 90][Slowinski and Weglarz 89] and dynamic
variations [Blazewicz 83] have also been constructed in an attempt tc bring the critical path
method modeling assumptions closer to reality. These methods include probabilistic estimates
of task duration.

3.2.2 Linear and Integer Programming

Many scheduling problems can be formulated in traditional linear or integer programming
form, but only if significant simplifications are made. Patterson presented an overview of
optimal solution methods for project scheduling [Patterson 84], and Demeulemeester and
Herroelen published a more recent survey [Demeulemeester & Herroelen 92].

In general, exact methods depend on characteristics of the objective function (e.g. strictly integer
values) and specific constraint formulations (e.g. only single-mode tasks). As Lawrence Davis
noted, many of the constraints commonly found in real scheduling problems do not lend
themselves well to traditional operations research or math programming techniques [Davis 85].
In addition, the linear programming formulations typicaily do not scale well, so they can be
used only for specific instances or small problems.

A dynamic programming approach was described by Held and Karp in which an optimal
schedule was incrementally developed by first constructing and optimal schedule for any two
tasks then extending that schedule by adding tasks until all tasks have been scheduled [Held

and Karp 62}].
3.2.3 Bounded Enumeration

Many solution methods search a decision tree generated from the precedence relations in the
project plan. As shown in Figure 5, the root of the tree corresponds to the first task. The second
level of the tree is the set of tasks that can be scheduled once the first task has been scheduled,
and so on. The final tree thus represents a precedence-feasible set of task sequences. Any one
of the root-to-leaf sequences can then be passed to a schedule generator. Alternatively, the
sequence of tasks can be scheduled directly if the tree generation/pruning algorithm also
considers resource constraints. The search consists of traversing the tree until the best root-to-
leaf path is found. Enumerative methods are typically bounded using heuristics in order to
reduce the size of the tree.

(@)

Figure 5 Generation of a tree of precedence-feasible sequences from a project plan
(or work order). The precedence constraints are shown in (a) for a project (or work
order) with 7 tasks. The tree of precedence-feasible sequences for scheduling the 7
tasks is shown in (b).

21

It is easy to see how the tree grows quickly with the number of activities. Depending on the
precedence relations, each new task can add many branches to the tree. When tasks are
modeled with multiple execution modes, each execution mode adds another layer of
combinatorial choices for the scheduler. Sprecher and Drexl note that the enumerative methods
can solve the problem with many different objectives [Sprecher and Drexl 1996]. However,
changing the types of constraints requires a new set of heuristics for the scheduling step, or a
new pruning algorithm for trimming the tree branches.

Variations of branch and bound solution methods were first proposed in the 1960s [Lawler and
Wood 66][Johnson 67][Muller-Merbach 67). Stinson’s branch and bound approach generated a
tree by scheduling activities starting with the first task then adding a node to the tree for each
task that could be scheduled based upon precedence and resource constraints [Stinson et al 78].
Bounds based on partial schedules were used to prune the search tree. The heuristic for
expanding the tree used a vector of six measures.

More recently, Sprecher, Kolisch, Drexl, Patterson, Demeulemeester, and Herroelen have
refined the pruning algorithms so that optimal solutions to single-mode project scheduling
problems of about 100 tasks and multi-mode project scheduling problems of about 10 tasks can
be found in less than a few seconds on personal computers [Kolisch 95][Sprecher & Drexl 96]

As noted by Sprecher and Drexl, enumerative methods cannot solve laige problems; the tree is
simply too big Although significant progress has been made in the pruning techniques, branch
and bound methods are still limited to less than one hundred activities or even fewer in the
multi-modal cases, and they still require special heuristics to accommodate variations in resource
constraint formulations.

3.3 Heuristic Solution Methods

Whereas exact solution methods are guaranteed to find the optimal solution (if one exists),
heuristic methods sometimes find optimal solutions, but more often find simply “good”
solutions. Heuristic methods typically require far less time and/or space than exact methods.
The heuristics specify how to make a decision given a particular situation; heuristics are rules
for deciding which action to take.

Heuristics in scheduling are often referred to as scheduling rules or dispatch rules. The
definition of these rules is often quite complex, and most are tailored for a specific type of
problem with a very specific set of constraints and assumptions. Heuristics may be
deterministic - they end up with the same result every time - or they may be stochastic - each
time they are run they may produce a different result. They may execute one rule at a time, or
they may be capable of parallel decisions. Hybrid algorithms may combine multiple heuristics.

Traditional heuristic methods typically follow three steps: planning, sequencing, then
scheduling. Some methods use heuristics to search the combinatorial space of permutations in
task sequences, others use heuristics to determine feasible time/task/resource assignments
during schedule generation, and others use heuristics to combine sequencing and scheduling.
A few include planning in the generation of schedules by permitting more than one plan and
allowing the search to choose between plans as it schedules. Precedence constraints typically
dominate the search in the sequencer, whereas resource constraints dominate in the scheduler.
Hybrid solutions try to maintain more than one representation or combine multiple search
techniques or constraint satisfaction algorithms.

3.3.1 Scheduling Heuristics

Scheduling heuristics operate on a set of tasks and determine when each task should be
executed. If a task may be executed in more than one execution mode or on any one of a set of
resources, the heuristic must also determine which resources and/or execution mode to use.
Common heuristics are listed in Table 1. The scheduler enforces constraint satisfaction by

22

assigning a task to a resource (or a resource to a task) at a time when the resource is available
and the task can be executed.

heuristic what it does

MIN SLK choose the task with the smallest total slack

MIN LFT choose the task with the nearest latest finish time

SFM choose the execution mode with the shortest feasible duration
LRP choose the execution mode with the least resource proportion

Table 1 Some commonly-used scheduling heuristics. Dispatch rules (a form of
scheduling heuristic) decide which resources should receive tasks as they come in to a
shop.

Panwalker and Iskander surveyed a range of heuristics from simple priority rules to very
complex dispatch rules [Panwalker and Iskander 77]. Davis and Patterson compared eight
standard heuristics on a set of single-mode resourceconstrained project scheduling problems
[Davis and Patterson 75]. They compared the performance of the heuristics with optimal
solutions found by a bounded enumeration method by Davis and Heidorn [Davis and Heidorn
1971]. The results showed that the MIN SLK heuristic performed best. The results also showed
that the heuristics did not perform as well when the resources were tightly constrained.

Lawrence and Morton described an approach that attempted to minimize weighted tardiness by
using a combination of project-, activity-, and resource-related metrics [Lawrence and Morton
93]. The results of their approach were compared to a large set of problems with hundreds of
tasks distributed between five projects with various tardiness penalties, activity durations, and
resource requirements. Their heuristic produced schedules with lower average tardiness costs
than did the standard heuristics.

In his review of heuristic techniques, Hildum made the distinction between single- and
multiple-heuristic approaches [Hildum 94]. While emphasizing the importance of maintaining
multiple scheduling perspectives, Hildum noted that a scheduler with multiple heuristics “is
better able to react to the developing multi-dimensional topology of the search space.” Boctor’s
experiments with multiple heuristics clearly showed the benefits of combining the best of the
single-heuristic methods [Boctor 90].

3.3.2 Sequencing Heuristics

Whereas scheduling heuristics operate on tasks to decide when they should be executed,
sequencing heuristics determine the order in which the tasks will be scheduled. These
heuristics are often used in combination with decision trees to determine which part of the tree
to search or to avoid. For example, limited discrepancy search with backtracking has been used
by William Harvey and Matthew Ginsberg to very effectively solve some classes of scheduling
problems when the sequence for scheduling tasks is structured as a decision tree [Harvey and
Ginsberg 94].

Sampson and Weiss designed a local search procedure for solving the single mode project
scheduling problem [Sampson & Weiss 93]. They described a problem-specific representation, a
neighborhood structure, and method for searching the neighborhood. Their deterministic
method performed fairly well on the 110 Patterson problems [Patterson 84].

3.3.3 Hierarchical Approaches

Goal programming has been used to solve scheduling problems with multiple objectives.
Norbis and Smith described a method for finding near-optimal schedules using levels of

23

consecutive orderings of sub-problems [Norbis & Smith 88]. As a collection of orders moved up
through the levels, the tasks were rearranged to accommodate the priority of objectives at each
level. In addition to dynamic changes such as surprise orders and changes in resource
availability, Norbis and Smith’s implementation also allowed user input during the solution
process.

3.3.4 Artificial Intelligence Approaches

Hildum grouped artificial intelligence approaches to scheduling as either expert systems or
knowledge-based [Hildum 94]. Both are structured heuristic methods that differ in the way
they control the application of their application-specific heuristics.

Expert systems consist of a rule base, a snapshot of the current solution, and an inference
engine. The inference engine determines how the if-then rules in the rule base are applied to
the current solution in order to execute the search. The rule base may be expanded as the
solution progresses. The rule base is tailored explicitly to a specific problem, so expert systems
are typically highly specialized.

Knowledge-based systems typically split the problem into sub-problems or different views.
“Agents” are defined, each of which is concerned with a particular aspect of the solution. Each
agent nudges the solution in the direction of most concern to that agent. Variations to the
algorithms include combinations of micro and macro modifications to solutions as well as the
types of attributes to which the agents are configured to respond. Hildum distinguished
between three commonly known artificial intelligence solutions, ISIS (Intelligent Scheduling and
Information System) [Fox and Smith 84], OPIS (Opportunistic Intelligent Scheduler) [Smith and
Ow 85], and MicroBOSS (Micro-Bottleneck Scheduling System) [Sadeh 91}, based upon the rules
they used to guide their searches. Hildum noted that his own method, DSS (Dynamic
Scheduling System), is basically a multiple attribute, dynamic heuristic approach that focuses on
the most urgent unsolved problem at any given time.

3.3.5 Simulated Annealing

Simulated annealing approaches require a schedule representation as well as a neighborhood
operator for moving from the current solution to a candidate solution. Annealing methods allow
jumps to worse solutions and thus often avoid local sub-optimal solutions [Kirkpatrick et al 83].
Aarts, Laarhoven, and Lenstra described one of the first simulated annealing approaches to
scheduling problems [Aarts et al 88].

Palmer integrated planning and scheduling in a digraph representation [Palmer 94]. In
Palmer’s representation, a graph of precedence constraints and process plans combined to form
a schedule. The annealer used three operators to modify the ordering of operation-machine
combinations.

Boctor reported fairly good performance by a simulated annealing approach on the Patterson
problems [Boctor 93]. In this work, simulated annealing was used to search the combinatorial
space of sequence permutations. Given a sequence of tasks generated by the annealer,
heuristics were then used to create a schedule. This method is directly analogous to the exact
branch and bound solution, but whereas branch and bound is practically limited by the size of
the decision tree, simulated annealing can be applied to much larger problems. However,
selection of the neighborhood operator and cooling schedule is critical to the performance of the
annealing method. Boctor's implementation maintained precedence feasibility by restricting
the neighborhood operator to only precedence-feasible task swaps. Precedence-feasible lists
generated by the annealer were passed to a heuristic scheduler in order to generate resource-
feasible scheduies.

24

3.3.6 Evolutionary Algorithms

One of the earliest suggested uses of genetic algorithms for scheduling was made by Lawrence
Davis. In his paper [Davis 85], Davis noted the attractiveness of using a stochastic search
method due to the size of the search space and suggested an indirect representation in which
the genetic algorithm operated on a list which was then decoded to form the actual schedule. In
particular he noted the importance of maintaining feasibility in the representation.

Davis observed that many real scheduling problems incorporate layers of ill-defined constraints
that are often difficult, if not impossible, to represent using traditional math programming
techniques. Noting that knowledge-based solutions are typically deterministic and thus
susceptible to entrapment in sub-optimal regions of the search space, Davis suggested that
genetic algorithms, by virtue of their stochastic nature, would avoid sub-optimal solutions.

Since Davis’ paper, numerous implementations have been suggested not only for the jobshop
problem but also other variations of the general resource-constrained scheduling problem. In
some cases, a representation for one class of problems can be applied to others as well. But in
most cases, modification of the constraint definitions requires a different representation.

Ralf Bruns summarized the production scheduling approaches in four overlapping categories:
direct, indirect, domain-independent, and problem-specific representations [Bruns 93]. Most
genetic algorithm approaches employed an indirect representation. These methods were
characterized by traditional binary representatior.s {Nakano 91][Cleveland 89] or order-based
representations [Syswerda 91]. Problem-specific informatior was used in some indirect methods
to improve performance, but these were still list- or order-based, required transformation from
genome to schedule, and in some cases required a schedule builder as well [Bagchi 91]. A
direct representation by Kanet used a list of order-machine-time triplets, but, as noted by Bruns,
was not extensible [Kanet 91]. Noting the inverse relation between the generality of an
algorithm and its performance, Bruns’ representation was tuned “to perform as efficiently as
possible on the problem of production scheduling”. This direct, problem-specific representation
used a list of order assignments in which the sequence of orders was not important.

Bagchi compared three different representations and concluded that the more problem-specific
information was included in the representation, the better the algorithm wonld perform [Bagchi
91].

More recently, Phili;» Husbands outlined the state-of-the-art in genetic algorithms for scheduling
[Husbands 96]. Husbands noted the similarity between scheduling and sequence-based
problems such as the traveling salesman problem. He also referenced other NP-hard problems
such as layout and bin-packing problems that are similar to the jobshop formulation.

Of particular note is Cleveland and Smith’s work in which three models were compared: a pure
sequencing version, a model with release times, and a model with work-in-progress cnsts
[Cleveland & Smith 89]). When the more-realistic objective function of the third model was
used, the pure sequencing model performed poorly whereas the model with schedule
information found significantly better solutions.

In a set of preliminary tests with various representations, the author tried a sequence-then-
schedule approach for project scheduling similar to the simulated annealing approach of Boctor
but with a genetic algorithm. The representation was a sequence-based hybrid; the genetic
algorithm generated sequences then the sequences were heuristically scheduled. Results were
not encouraging; mutation only (i.e. a random search) performed better than the genetic
algorithm. This performance is analogous to the difference in performance between threshold
accepting and a genetic algorithm for the traveling salesman problem. Boctor’s simulated
annealing approach performed better than the genetic algorithm primarily due to better
scheduling heuristics (Boctor implemented a parallel, look-ahead scheduler). Another factor was

the reordering method. In the genetic algorithm implementation, the author used partial match
crossover, whereas Boctor did a random, precedence-based shuffle. As the difference between
edge recombination and partial match on the traveling salesman problem illustrates, choice of
crossover operator can mean the difference between a genetic algorithm that works and one that
does not. Better performance is possible with the genetic algorithm, but only with a crossover
operator tailored to the problem.

A number of hybrid solutions have been implemented. Syswerda and Palmucci combined a
genetic algorithm sequencer with a deterministic scheduler with special order-based operators
[Syswerda 50].

Genetic algorithms have been used to evolve heuristics for scheduling. Hilliard implemented a
classifier system to improve heuristics for determining the sequence of activities that should be
sent to a scheduler (analogous to deciding which path to choose in the decision tree) [Hilliard
88]. Hilliard’s system discovered the “sort the jobs by increasing duration” heuristic for the
simple one-operation-per-job, no ordering constrains, single machine shop scheduling problem.

Dorndorf and Pesch used a genetic algorithm to find optimal sequences of local decision rules to
be used with traditional search algorithms for a range of static, deterministic jobshop scheduling
problems [Dorndorf & Pesch 92]. Their method found shorter makespans more quickly than
the shifting bottleneck procedure of Adams, Balas and Zawack [Balas 88] or Lenstra’s simulated
annealing method [Aarts 88].

Husbands addressed the issue of coupling between scheduling and planning by implementing
an integrated system in which process plans evolved then were combined through a scheduler
to build schedules that could then be evaluated [Husbands 91]. This work was important for its
integration of planning and scheduling; in many cases a change in schedule will necessitate a
change in the plan or result in the possibility for optimizatior by modifying constraints, so an
integrated, adaptive system is well-suited for real scheduling applications.

Various papers have been written describing parallel genetic algorithm implementations, but
most of these are straightforward extensions of serial genetic algorithms and offer little
improvement in algorithmic performance. Parallelization by distributing computation will
speed up execution, but additional evolutionary operations such as migration are required for
improvements in solution quality.

The applications of genetic algorithms to scheduling problems are summarized in Table 2. The
diagrams in the first column illustrate the basic representation used in each case. Note that
these representations were not all designed to solve the same nroblem. Many of these
representations require representation-specific operators.

26

representation characteristics reference
order6) (order1) (order4) -- list of orders to be scheduled [Syswerda 91]
() () Q) in a job-shop
101100111100... binary representation in [Nakano 91]
which each bit determines
which order of a pair should [Cleveland 89]
be executed first on a given
machine
order2 \ (order1) (order4 \ _ list of (order, plan) pairs [Bagchi 91]
plan X lan Q plan B
order 5 order1 list of (order, plan, resource) [Bagchi 91}
plan A plan A tuples
opl: m3 opl: m4
op2:m5 op2: mé
op3:m3 op3:m7
(station 1 ") (station 2 list of order/time preferences [Davis 85]
0: ol wait o4 idle 0: 04 wait o4 idle for each workstation
60 02 wait o1 wait 04 | | 60 05 wait 06 idle
- A
("order5) (order2) (order1 list of order/machine/time [Kanet 91]
machine 3| |machine 6 | |machine 2| ... tuples
(0000 01:05 J{ 00:15
4 order 7 order 9 list of complete order [Bruns 93]
Op7B1:m9:[10,15] | | Op9A1: m9:[10,15] information
Op7B2:m3:[16,17] || Op9A2: m3:[16,17]
&Op7B3 :mé6 : (18,22]
(task 2, mode 5 (task 5, mode 1 list of (activity-mode, order, [Mori and
order 5 order 1 start-finish-time) tuples Tseng 96]
_ 01:00 - 04:30 00:30 - 00:50
(project T (‘project T\ (project 2 list of (project, activity, mode) [Tseng and
activity 2 | | activity 3 | | activity 1 { - tuples Mori 96]
_mode 2

mode 4

mode 1

Table 2 Summary of various genetic algorithm formulations. The references in the
table are representative of the type of solution; this table does not contain an
exhaustive list of published works. Most of the representations are order-baszd, i.e.
the order in which the items appear in the list is a part of the problem structure.

Although some of these methods can be extended to do so, only the representation of Tseng and
Mori considers multiple execution modes. None consider non-uniform resource availabilities.
Most require significant modification to accommodate job-splitting.

None of the evolutionary algorithms can determine if a schedule is infeasible. The problems for
which these methods were designed all had feasible solutions, but in real problems feasibility is
not guaranteed. For example, in a project scheduling problem, if all of the resources are
available in constant amounts, a feasible schedule can always be found by simply extending the

27

duration of the project until all of the resources are unconstrained. When the resources are
available only at specific iniervals, no such guarantee of feasibility exists.

Although Husbands compared the scheduling problem to other sequence-based methods, his
analogy is not entirely appropriate. The scheduling problem is only a sequencing problem
when viewed from the traditional operations research approach, i.e. what should be scheduled
next? While this perspective is entirely appropriate for some types of scheduling problems,
there remain many other perspectives, most of which have not yet been exploited with genetic
algorithms.

Problem-specific operators often improve the performance of genetic algorithms, but so does
definition of a problem-specific representation. The key is to define a representation that is
general enough to accommodate all of the problem instances one wishes to solve, yet specific
enough to actually work.

28

4. Solution Method

This chapter describes the solution method in five parts: (1) the problem model in the form of
assumptions about tasks and resources with their associated constraints, (2) the search method,
(3) the schedule representation, (4) the genetic operators specific to the representation, and (5)
the implementation of objectives and constraints. The problem model determines the variations
of problems that can be solved, the problem representation determines the bounds of the search
space, the genetic operators determine how the cpace can be traversed, and the objectives and
constraints determine the shape of the search space.

4.1 Problem Model

The assumptions made when modeling a problem determine the variations of that problem that
the model will support. The next three sections list assumptions about tasks, resources, and
objectives. The assumptions in the first two sections typically end up being constraints. The
third section highlights some of the more common objectives that may be defined. Satisfaction
of the constraints detenmines the feasibility of a solution, satisfaction of the objectives determines
the optimality of a solution.

4.1.1 Assumptions About Tasks

assumption

description

examples

execution modes

precedence and
overlap

job-splitting

preemption

Tasks may have more than
one mode of execution.
Each execution mode has its
own set of resource
requirements and estimated
duration.

Tasks have precedence
relationships. Normally this
means that one task cannot
be started until another task
has been completed.
However, overlap is
possible; relationships may
be defined in which a task
may be started when its
predecessor is only partially
complete.

Tasks may be split into
smaller units. The
definition of execution
modes may also include
modes for task splitting.

Tasks may be preempted.
A task may be defined so
that its resources may be
applied to a different task,
then returned to the original
task.

29

The machine will require 8 hours if done on
the new milling machine or it will require 12
hours on the older milling machine. The
vendor in Kentucky promises a delivery date
of the fifteenth of the month, whereas the
vendor in Louisiana promises delivery by the
first of the month.

Work on the implementation of a class library
may begin when the interface design is 50%
complete, whereas testing of the PC version
cannot begin until the UNIX version is
complete.

Using one process plan it may be possible to
remove a fixtured part from the machine then
return it later, whereas a different process
may require that the part be completed once
the processing has begun.

Bill can stop work on the enclosure design
after completing the layout in order to work
on the electronics packaging, but if someone
else takes over the task at that point they will
have to learn the FCC regulations, so the task
will take an extra two hours to complete.

assumption description examples
temporal Tasks may have temporal Work on a section of highway must be done
restrictions constraints such that they only at night from 9 p.m. to 6 a.m.

can only be done at a certain

time.
location Tasks may have physical Painting can only be done in the paint booth.
restricuons restrictions. Any part to be anodized must be moved to

4.1.2 Assumptions About Resources

assumption

description

the anodization tank, whereas parts that are
to be refurbished may be worked on in place.

examples

resource type

temporal
restrictions

performance

history

location

restrictions

task-resource
dependencies

performance
attributes

Resources may be
renewable (non-consumable)
or non-renewable
(consumable).. The
distinction between
renewable and non-
renewable is somewhat
tenuous; ir. some cases, non-
renewable resources may
become renewable
resources.

Resources may have
temporal constraints that
limit their use to a certain
time or time period.

Resources may have
performance histories from
which to base estimates of
performance.

Resources may be restricted
to certain locations, or they
may be mobile.

Resources may include
additional availability
constraints depending on
the type of work they are
assigned to.

Resources have an
associated cost, quality, or
efficiency that can be used to
evaluate performance.

30

Labor and machines are examples of
renewable resources. Non-renewable
resources include raw materials. A truckload
of lumber can be considered a non-renewable
resource, but if another truckload can be
delivered within a critical time period, the
lumber may be considered renewable.

Machinists may be available only during the
first two shifts, or a particular tractor may
require two hours of maintenance for every
twenty hours of use.

One vendor might deliver 90% of its orders
on time whereas another delivers 98% of its
orders on time. Or one employee may be
capable of building product models at one
rate and web site design at a different rate.

A telecommunications equipment truck has a
range of 300 miles with a top speed of 55
mph.

A milling machine may require a one hour
setup and a half hour cleanup when working
with aluminum, but a four hour setup and
two hour cleanup when working with
Beryllium.

Skilled labor is more expensive than
unskilled Iabor, and time on one machine
tool may be more expensive than time on
another.

4.1.3 Assumptions About Objectives

Any objective measure can be used as long as it can be determined from a complete schedule.
Examples of objectives include minimization of makespan, minimization of mean tardiness of
part delivery times, maximization of net present value, and minimization of work-in-progress.
For detailed descriptions of the implementation of some common objectives, see Section 4.5.1.3.

Objectives may include more than one part. For example, minimization of the makespan may
be the primary objective, but only if it does not drive the cost above a certain threshold.

4.2 Search Method

Genetic algorithms are a stochastic heuristic search method whose mechanisms are based upon
simplifications of evolutionary processes observed in Nature. Since they operate on more than
one solution at once, genetic algorithms are typically good at both the exploration a1. 1 exploitation
of the search space. Goldberg [Goldberg 89] provided a comprehensive description of the basic
principles at work in genetic algorithms, and Michalewicz [Michalewicz 94] described many of
the implementational details for using genetic algorithms with various data types.

Most genetic algorithms operate on a population of solutions rather than a single solution. The
genetic search begins by initializing a population of individuals. Individual solutions, or
genomes, are selected from the population, then mate to form new solutions. The mating process,
typically implemented by combining, or crossing over, genetic material from two parents to form
the genetic material for one or two new solutions, confers the data from one generation of
solutions to the next. Random mutation is applied periodically to promote diversity. If the new
solutions are bette: than those in the population, the individuals in the population are replaced
by the new solutions. This process is illustrated in Figure 6.

initialize
population

select individuals

for mating

mate individuals Figure 6 Generic genetic algorithm

to produce offspring flowchart. Many variations are possible,
‘ from various selection algorithms to a

wide variety of representation-specific

mutate offspring mating methods. Note that there is no

‘ obvious criterion for terminating the
insert offspring algorithm. Number-of-generations or
into population goodness-of-solution are typically used.

are stopping
criteria satisfied?

finish

Genetic algorithms operate independently of the problems to which they are applied. The
genetic operators are heuristics, but rather than operating in the space defined by the problem
itself (the solution-space, or phenotype-space), genetic operators typically operate in the space
defined by the actual representation of a solution (representation-space, or gene-space). In addition,
genetic algorithms include other heuristics for determining which individuals will mate

31

(selection), which will survive to the next generation (replacement), and how the evolution should
progress (the overall algorithm).

The geretic alge-“thm includes some representation-specific operators and some representation-
neutral operators. The initialization, mating (typically implemented as crossover), and mutation
operators are specific to the representation. Selection, replacement, and termination are all
independent of the representation. In the context of the scheduling problem, the representation
is specific to scheduling, but a general representation may be used with many different
variations of the scheduling problem.

In traditional schedule optimization methods, the search algorithm is tightly coupled to the
schedule generator. These methods operate in the problem space; they require information
about the schedule in order to search“for-better schedules. Genetic algorithms operate in the
representation space. They care only about the structure of a solution, not about what that
structure represents. The performance of each solution is the only information the genetic
algorithm needs to guide its search. For example, a typical heuristic scheduler requires
information about the resources and constraints in order to decide which task should be
scheduled next in order to build the schedule. The genetic algorithm, on the other hand, only
needs to know how ‘good’ a schedule is and how to combine two schedules to form another
schedule.

Having said that, many hybrid genetic algorithms exist which combine hill-climbing, repair,
and other techniques which link the search to a specific problem space.

Proper choice of representation and tailoring of genetic operators is critical to the performance of
a genetic algorithm. Although the genetic algorithm actually controls selection and mating, the
representation and genetic operators determine how these actions will take place. Many genetic
algorithins appear to be more robust than they actually are only because they are applied to
relatively easy problems. When applied to problems whose search space is very large and
where the ratio of the number of feasible solutions to the number of infeasible solutions is low,
care must be taken to properly define the representation, operators, and objective function,
otherwise the genetic algorithm will perform no better than a random search.

For example, in the solution of a continuous function of two variables, Grilninger showed that a
real number representation consistently out-performs a binary-to-decimal encoding [Gruninger
96]. In addition, small changes to the algorithm and genetic operators had a significant impact
on the algorithm'’s performance. Gruninger showed that the genetic operators must effectively
balance exploration and exploitation so that the genetic algorithm will be able to both avoid
local minima/maxima in global search and find small improvements in local search.

Some genetic algorithms introduce another operator to measure similarity between solutions in
order to maintain clusters of similar solutions. By maintaining diversity in the population, the
algorithms have a better chance of exploring the search space and avoid a common problem of
genetic algorithms, premuture convergence. After a population has evolved, all of the individuals
typically end up with the same genetic composition; the individuals have converged to the same
structure. If the optimum has not been found, then the convergence is, by definition,
premature. In most cases, further improvement is unlikely once the population has converged.

The similarity measure is often referred to as a distance function, and these genetic algorithms
are referred to as speciating or niching genetic algorithms. The similarity measure may be based
upon the data in the genome (genotype-based similarity), it may be based upon the genome
after it has been transformed into the problem space (phenotype-based similarity), or it may
integrate some combination of these.

Sections 4.2.1-4.2.3 describe three variations of genetic algorithms: simple, steady-state, and
struggle. The tesis describe in Chapter 5 used the steady-state and struggle genetic algorithms.

32

The simple genetic algorithm is one of the more common genetic algorithm implementations; a
description of this algorithm is included for clarity and comparison. The steady-state algorithm
is another standard genetic algorithm made popular by the GENITOR program. The struggle
genetic algorithm is a new kind of speciating genetic algorithm developed by Thomas
Grtininger.

4.2.1 Simple Genetic Algorithm (Non-Overlapping Populations)

The simple genetic algorithm uses non-overlapping populations. In each generation, the entire
population is replaced with new individuals. This process is illustrated in Figure 7. Typically
the best individual is carried over from one generation to the next (this is referred to as elitism)
so that the algorithm does not inadvertently forget the best that it found. Maintaining the best
individual also causes the algorithm to converge more quickly; in many selection algorithms,
the best individual is more likely to be selected for mating.

5 selection selection g selection

G crossover crossover crossover
mutation mutation mutation

Coroct) .

AT N m— — —

_— > _——>

Figure 7 The “simple” genetic algorithm. This algorithm uses non-overlapping
populations; the entire population is replaced each generation. Individual solutions
are represented by shaded ovals. In this case, darker shading represents a better
solution.

Since the entire population is replaced each generation, the only ‘memory’ the algorithm has is
from the performance of the crossover operator. If the crossover accurately conveys good genetic
material from parents to offspring, the population will improve. If the crossover operator does
not maintain genetic material, the population will not improve and the genetic algorithm will
perform no better than a random search. A crossover operator that generates children that are
more often unlike their parents than like them leads the algorithm to do more exploration than
exploitation of the search space. In search spaces with many infeasible solutions, such scattering
will more often generate infeasible rather than feasible solutions.

4.2.2 Steady-State Genetic Algorithm (Overlapping Populations)

The steady-state genetic algorithm uses overlapping populations. In each generation, a portion
of the population is replaced by the newly generated individuals. This process is illustrated in
Figure 8. At one extreme, only one or two individuals may be replaced each generation {close
to 100% overlap). At the other extreme, the steady-state algorithm becomes a simple genetic
algorithm when the entire population is replaced (0% overlap).

33

D

= selection
= crossover
GEE» mutation

FETE

replace worst individuals

Figure 8 The “steady-state” genetic algorithm. This algorithm uses overlapping
populations; only a portion of the population is replaced each generation. The
amou..t of overlap (percentage of population that is replaced) may be specified
when tuning the genetic algorithm.

Since the algorithm only replaces a portion of the population of each generation, the best
individuals are more likely to be selected and the population quickly con-erges to a single
individual. As a result, the steady-state algorithm often converges prematurely to a sub-
optimal solution. Once again, the crossover and mutation operators are key to the algorithm
performance; a crossover operator that generates children unlike their parents and/or a high
mutation rate can delay the convergence.

4.2.3 Struggle Genetic Algorithm

The struggle genetic algorithm is similar to the steady-state genetic algorithm. However, rather
than replacing the worst individual, a new individual replaces the individual most similar to it,
but only if the new individual has a score better than that of the one to which it is most similar.
This requires the definition of a measure of similarity (often referred to as a distance function).
The similarity measure indicates how different two individuals are, either in terms of their
actual structure (the genotype) or of their characteristics in the problem-space (the phenotype).

selection
crossover
mutation

S —

replace most-similar if new is better

Figure 9 The “struggle” genetic algorithm. This algorithm is similar to the steady-
state algorithm, but whereas the steady-state algorithm uses a “replace worst”
strategy for inserting new individuals into the population, the struggle algorithm
uses a form of “replace most similar”.

The struggle genetic algorithm was developed by Griininger in order to adaptively maintain
diversity among solutions [Griininger 96]. As noted previously, if allowed to evolve long
enough, both the simple and the steady-state algorithms converge to a single solution;
eventually the population consists of many copies of the same individual. Once the population
converges in this manner, mutation is the only source of additional change. Conversely, a
population evolving with a struggle algorithm maintains different solutions (as defined by the
similarity measure) long after a simple or steady-state algorithm would have converged.
Unlike other niching methods such as sharing or crowding [Goldberg and Richardson 87]
[Mahfoud 95][De Jong 75], the struggle algorithm requires no niching radius or other
parameters to tune the speciation performance. The struggle algorithm is similar to
deterministic crowding and shares some characteristics of restricted tournament selection.

34

If the similarity function is properly defined, the struggle algorithm maintains diversity
extremely well. However, like the other genetic algorithms, performance is tightly coupled to
the genetic operators For example, if the crossover operator has a very low probability of
generating good individuals when mating between or across species (as defined by the
similarity measure), the algorithm will fail. If the mutation rate is too high, the algorithm will
perform only as well as a random search.

4.3 Genetic Representation

Although much of the early genetic algorithm literature in the United States has focused on bit
representations (i.e. solutions were encoded as a series of 1s and 0s), genetic algorithms can
operate on any date type. In fact, most recent scheduling implementations use list-based
representations. But whether the representation is a string of bits or a tree of instructions, any
representation must have appropriate genetic operators defined for it. The representation
determines the bounds of the search space, but the operators determine how the space can be
traversed.

For any genetic algorithm, the representation should be a minimal, complete expression of a
solution to the problem. A minimal representation contains only the information needed to
represent a solution to the problem. A complete representation contains enough information to
represent any solution to the problem. If a representation contains more information than is
needed to uniquely identify solutions to the problem, the search space will be larger than
necessary.

Whenever possible, the representation should not be able to represent infeasible solutions. If a
genome can represent an infeasible solution, care must be taken in the objective function to give
partial credit to the genome for its “good” genetic material while sufficiently penalizing it for
being infeasible. In general, it is much more desirable to design a representation that can only
represent feasible solutions so that the objective function measures only optimality, not
feasibility. A representation that includes infeasibles increases the size of the search space and
thus makes the search more difficult.

The following representation for scheduling is a minimal representation that can represent
resource-infeasible solutions. As shown in Figure 10, a genome consists of an array of relative
start times and an array of integer execution modes for each task. Each time represents the
duration from the latest finish of all predecessor tasks to the start time of the corresponding task.
Each mode represents which of the possible execution modes will be used for the corresponding
task. As shown in the figure, the modes are typically defined in terms of resource
requirements. This representation is not order-based. The elements in the array correspond to
the tasks in the work order or project plan, but the order of elements relative to each other is
insignificant. Each genome is a complete schedule; the genome directly represents a schedule
by encoding both start times (explicitly) and resource assignments (via the execution mode).

35

mode resource usage profile
h| 2| B 4| B| |t 1T — .,

mp | ma | m3 | mg | m5 |mg | my {

2 = I I —

3 L E—_]

ol = ‘4"

=0

[i3 7

L

Figure 10 The genome and its mapping to the schedule. A single genome is a
double array of floating-point start times and integer execution modes. Each
element in the arrays corresponds to a task in the project plan or work order. The
times represent delay times relative to the estimated finish time of the predecessors.
The execution modes vary from task to task and represent one of the possible
execution modes for the corresponding task.

This representation assumes that the plan exists; execution modes for each task must be
completely defined and the constraints and objectives must be defined a priori. The genome is
not a representation for evolving plans, but it can select between plans in the form of multiple
execution modes for individual tasks. In other words, the topology of the project (the set of
precedence relationships between tasks) does not evoive. In addition, the abstraction from task
to time-mode pairs permits the genome to adapt to changes in the plan. New modes can be
defined or existing modes can be modified without requiring a reformulation of the problem.

4.3.1 Start Times

A single genome contains an array of real numbers. Each real number js associated with a task
and indicates the period of time from the latest finish of all the task’s predecessors to the start of
the task. The times are measured relative to other tasks, not to an absolute reference. If the
precedence constraints for a task allow overlap, then negative values are permitted for the start
time for that task. If overlap is not modeled or not permitted, values are truncated to zero. As a
result, precedence feasibility is assured for every schedule.

4.3.2 Operating Modes

Each genome contains an array of integers which represent execution modes. Each index
indicates in which mode its corresponding task will be executed. If a task has been defined
with multiple modes of operation, the corresponding integer value may assume a value equal
to one of the defined modes. If a task has only one execution mode, its corresponding execution
mode indicator will never change.

36

4.3.3 Additional Characteristics

The combination of relative start times and mode indices completely and uniquely define a
schedule. Given a genome, the corresponding schedule can be evaluated to see if resources are
violated and/or to see how well/poorly the objectives are met. Precedence relationships are
always enforced; only resource and/or temporal constraints may be violated. In fact, temporal
constraints can be enforced by specializing the genetic operators. For example, crossover may
force a task to begin at a certain time, or may assign a resource in a certain amount for a given
period. The genetic operators reinforce constraint satisfaction whenever possible so that
precedence-infeasible solutions are impossible to generate. As a result, the algorithm searches
only in the realm of resource feasibility rather than also in the realm of precedence feasibility.

This representation supports the modeling assumptions outlined in Section 4.1. Of particular
note is the ease with which various objectives and constraints can be included and/or modified.
Since each genome represents a complete schedule, almost any objective measure can be used.
The objective measure is not entwined in either the search algorithm or the representation.

The genetic algorithm operates on the structure of the genome without considering what the
genome means in the schedule space. As a result, the constraints are coupled to the search
algorithm only through the representation-specific genetic operators (initialization, crossover,
and mutation), and the objective measures are completely decoupled from the search algorithm.
Only the initialization, crossover, and mutation operators are tightly coupled to the
representation, and these operators are loosely coupled to the constraint models (and then only
for some problem instances).

4.4 Genetic Operators

Use of a genetic algorithm requires the definition of initialization, crossover, and mutation
operators specific to the data type in the genome. In addition, a comparison operator must also
be defined for use with niching/speciating genetic algorithms such as the struggle genetic
algorithm.

4.4.1 |nitialization

The real number part of the genome was initialized with random numbers. The range of
possible values was based upon the average estimated task durations. The magnitude of the
numbers matters because the algorithm finds better solutions faster if the random numbers are
the same order of magnitude as the task durations.

The mode for each task was randomly selected from the set of modes available for that task. No
task could be assigned a mode which was not defined. Note that the tasks in a given project
plan did not necessarily have the same number of modes.

4.4.2 Crossover

The crossover operator included two parts, one for each data type in the genome. Blend
crossover, a real-number-based operator, was used for the array of time values. Uniform
crossover, a type-independent operator, was used for the array of execution modes.

Blend crossover was used to generate new values for each element in the time component of the
genome. As illustrated in Figure 11(a) and described by Eshelman and Schaffer, the blend
crossover generates a new value depending upon the distance between parent values
[Eshelman and Schaffer 1992]. Blend crossover is adaptive and needs no tuning parameter;
when the parent values are further apart, the child’s value may end up further from the parents
than it would if the parents were closer together.

Three other crossover methods for the time component of the genome were implemented as
illustrated in Figure 11(b-d). These include (b) mean with Gaussian noise, (c) extrapolation, and

37

(d) uniform. In cursory testing prior to the longer runs, uniform crossover performed slightly
worse than the other methods, but in general, the effects on algorithm performance from
changing crossover operators were overshadowed by the effects of changes to the search
algorithm and variations in problem structure. Blend crossover was used for the tests described
in Chapter 5.

Pchild Xchild Pehitd Xchild
10 «I i l ' —
- d/2 d d/2 — / N
— : n -
Xmom *dad fmom Xdad
(@) (b)

/i Pehitd Yehild
| |

X mom Xdad ;dlild *mom Ydad

© d

Figure 11 Four different crossover operators for generating a new time value from
two parent values. Blend crossover (a) adaptively selects a value for the child based
on the distance between the parents. Mean-with-noise crossover (b) generates a child
value based on the mean of the parent values, then adds a random number. The
extrapolation crossover (c) uses the objective scores of the parents to project a value
for the child and choose a value based on that projection. Uniform crossover (d) sets
the child value by picking randomly from the two parent values. Blend crossover
was used in the experiments in Chapter 5.

fitness

The execution modes were selected by randomly choosing from one parent or the other as
shown in Figure 12. Uniform crossover operates independently of the data type; each element
is copied from one parent or the other. If two children are generated in the mating, then if one
child inherits an element from the mother, the other child inherits the corresponding element
from the father, and vice versa.

[iTaT4[2[e]1]

@) (b)

Figure 12 Uniform crossover. If one child is produced in the mating (a), each of its
elements are inherited randomly from one parent or the other. If two children are
produced in the mating (b), an element inherited in one child from the mother is
inherited in the other child from the father.

Time values in the child genome were truncated as needed. For example, if a task did not
allow overlap, the value was truncated to zero. This guaranteed precedence-feasible solutions.

38

Note that all of the crossover techniques listed here required two parents (sexual crossover) but
were capable of generating either one or two children.

A crossover probability was included in the steady-state genetic algorithm. A probability of 1.0
meant that the new individuals would be created from a mix of genetic material from both
parents. A probability less than 1.0 meant that, in some cases, the genetic material from the
parents could be copied directly into the new individuals with no crossing over.

4.4.3 Mutation

Mutation was performed by applying Gaussian noise to each element in the real number array
and by flipping modes in the mode array.

As illustrated in Figure 13, a single element in the genome was mutated by replacing it with a
number chosen based upon a Gaussian curve defined by a mean and standard deviation. The
mean is equal to the previous value. The deviation should be adaptive, but in the tests
reported in this thesis, the deviation used to define the Gaussian curve was fixed.

Execution modes were mutated by randomly picking between valid execution modes. If an
element in the mode array was selected to be mutated, its value was changed to another valid
mode from its corresponding task.

e =l Y (1010

=3} 3L —]

0 “new Y — —
@) (®)

Figure 13 The mutation operators. If selected for mutation, a time was mutated by
applying Gaussian noise to the existing value (a). An execution mode was mutated
by replacing the current mode with a different mode from the set of modes for the
corresponding task (b).

)
/
| WA

If task overlap was included in the task models, then negative delay times were permitted. If
overlap was not allowed, delay times were truncated to zero so that no precedence-infeasible
solutions could be generated.

The mutation probability was gene-based, not genome-based. For example, if a mutation
probability of 50% was specified, then each activity start time had a 50% chance of being
mutated. Mutation of a given start time did not require a corresponding mutation of execution
mode; the mutation operated on the times independently from the execution modes.

4.4.4 Similarity Measure

The similarity function compares two solutions and returns a value that indicates how much the
solutions differ. Often called a 'distance' function, this operator is typically used by speciating
genetic algorithms. Many different similarity measures can be defined for any given
representation. This section describes two similarity measures for the scheduling genome: a
distance-based measure (Euclidean) and a sequence-based measure (Sequence). Both of these
similarity measures neglect the mode components of the genome.

Euclidean. As illusirated in Figure 14, the distance-based, or “Euclidean” comparator uses the
square root of the sum of the squares of the “distance” between each element in the genome.
Note that the Euclidean comparator can be implemented in at least two ways. In the first
implementation, the distances are calculated directly from the relative times in the genome. In

39

the second variation, the times are transformed to absolute times before the distance is
calculated.

—t

8}
=
'_lb—l

i(al -

i=l 3
a; - ith element of genome A G
b; - ith element of genome B \/(1 5-2.52+(2-3)* +(1-1.1)
n - number of tasks
(a) (b)

Figure 14 The Euclidean similarity measure. The similarity, d, of two genomes is
based upon the Euclidean distance between the task start times as shown in (a). The
example in (b) illustrates the comparison of two genomes, each with three elements.
For clarity, the mode components are not shown.

Sequence. In this method, two solutions are compared based on the absolute order in which
tasks are initiated. Figure 15 illustrates the sequence-based comparator. The comparison is
made by first generating the sequence of activities based on the absolute start time of each task.
If multiple tasks share the same start tine, they share the same position in the sequence. Next,
a square incidence matrix is generated with number of rows equal to the number of tasks. The
matrix is initially populated with zeros, then ones are added based on the sequence. A one is
inserted in cell ij if task j follows task i. This procedure is then applied to the second genome to
generate a second matrix. The comparison score is found by adding the number of cells that
differ between matrices. Two identical schedules will have a lower score than two schedules
with different sequences.

40

a,; - element i,j from A’s matrix A 4 | E> *°

00

b;; - element i,j from B’s matrix 5

n - number of tasks 7
(a)

©

Figure 15 Calculation ox the sequence similarity measure. The similarity, d, of two
genomes is based on the upon the order of tasks that the genomes share as shown in
(a). A sample comparison is shown in (b) and (c). The precedence relations are
shown in (b). Two feasible schedules and their corresponding incidence matrices are
shown in (c). The start times of each task are used to determine the absolute
sequence of tasks, then this sequence is used to populate an incidence matrix. The
similarity is calculated by counting the number of cells in the incidence matrix that
are the same. In the example shown here, the similarity measure is 6.

The sequence similarity method is similar in some respects to the edge recombination operator
defined by Whitley for use with the traveling salesman problem [Whitley et al 1989]. Note,
however, that whereas Whitley used the incidence matrix for determining how crossover should
be executed, here it is used only for determining similarity.

4.5 Objective Function

The genome performance measure, often referred to as the objective function, consists of two
parts, each based upon the schedule the genome represents. The first part is a measure of
constraint satisfaction, the second part is based on the schedule performance with respect to the
objectives. Since the genome directly represents a schedule, calculation of both measures is
straightforward. Some typical constraint and objective measures are outlined in this section,
followed by an explanation of how the constraint and objective measures were combined to
produce the overall score for each genome.

4.5.1 Constraints

Most measurements of constraint satisfaction were based upon resource profiles. Resource profiles
define resource availability or consumption as a function of time.

4.5.1.1 Resource Avallability

Part of the planning stage is the definition of resource availability. For each resource, a profile
of availability can be generated to indicate when and how much of that resource will be
available. Sample resource availability and requirement profiles are illustrated in Figure 16.

41

Note that this representation encompasses both resource quantity and temporal restrictions on
resource usage.

amount of
resource
@) available

time

amount of
resource

(b) required

time

difference
between
© available

time
and
required

Figure 16 Resource availability, requirement, and feasibility profiles. (a) represents
resource availability as a function of time, (b) shows the resource requirements as a
function of time, and (c) is the result of subtracting the requirements from the
available resources. Any negative segments in the difference (c) indicate that the
schedule is not feasible because more resources are required than are available.

The feasibility of a given schedule with respect to a given resource is calculated by comparing
the resource availability curve to the resource requirement curve for the resource in question.
The feasibility score is the integral of the availability-required difference with respect to time for
all intervals in which the difference is less than zero. In the example shown in Figure 16(c), the
feasibility score is equal to the sum of the areas of the two regions that dip below the time axis.
This measure of feasibility results in a graduated score that reflects not only whether or not a
solution is feasible, but also the degree of infeasibility if it is infeasible.

4.5.1.2 Temporal Constraints

If a task must be started at a specific time, then the corresponding start time in the genome is
adjusted by the genetic operators so that the task always starts at that time. If a resource is
available only at certain times or for a certain duration, this is reflected in the construction of the
availability profile for that resource.

4.5.1.3 Precedence Feasibility

Precedence feasibility is enforced by the representation and genetic operators, so precedence-
infeasible solutions are not possible.

4.5.2 Objectives

Many different measures of schedule performance exist. The representation described in Section
4.3 permits modification of objective measures with little or no effect on the search algorithm or
genetic representation. The next three sections highlight some of the more common
performance measures.

4.5.2.1 Due Dates and Tardiness

The performance of many p1Jjects is measured in terms of due dates or deviation from projected
finish times. These measures are calculated directly from the schedule. For example, if a work
order specifies that 80% of the jobs must be completed by their specified finish times, the
performance measure can be calculated directly. If each job has a due date, x, specified in the

42

plan and finish time, f, determined from the schedule, the tardiness is the difference d = f; - x;
where d is truncated to zero (early jobs are not tardy). The mnean tardiness for a work order is
simply the average of the tardiness scores of each job.

4.5.2.2 Cost

The total cost of a schedule can be found by adding the individual costs of each activity given
the execution mode ar . resources applied to it. Since the schedule is explicitly defined, any
genome can be used to calculate a net-present value or virtually any other cost measurement of
performance. If each task has a cost, c;, determined from the scheduled modes, then the total
cost is simply the sum of the costs of each task.

4.5.2.3 Makespan

The length of time required to complete a schedule is calculated directly from the information in
the genome. The makespan is simply the finish time of the last task. Note that a schedule may
indicate a makespan when, in fact, that schedule is infeasible due to violations of resource
constraints.

4.5.3 Composite Scoring

The score for any genome consists of two parts: a constraint satisfaction part and an objective
performance part. Since the objective measures are, in practice, meaningless if the schedule is
infeasible, none of the objectives are considered until all of the constraints have been satisfied.
The degree to which constraints are violated determines how feasible the schedule is, and if the
schedule is feasible the objective performance is then considered. For a genome with constraint
performance p, and objective performance p,,;, the overall score is shown in Equation 1. Details
about the calculation of constraint and objective performance are described in the next two
sections.

P_C ifp <1
2 ¢ Equation 1
score =
+p .
PC P Obl if pc =1
2

The score for each genome ranges from 0 to 1, inclusive. Any genome with a score less than 0.5
does not satisfy all of the constraints and is thus infeasible. Any genome with a score of 1.0 not
only satisfies all constraints but also has a perfect score with respect to each objective measure.

When objectives and constraints are treated separately, the genetic algorithm implicitly
distinguishes between feasible and infeasible solutions. The threshold before considering
objectives is critical; if a single score value can represent both an infeasible solution with good
objective performance and a feasible solution with poor objective performance, the genetic
algorithm may be deceived and end up favoring infeasible solutions with better objective
scores.

Numerous experiments were run in which constraints and objectives were given equal weight
in the calculation of the genome score. In many cases, an infeasible solution was found whose
strong objective score belied its infeasibility. Since the genetic algorithm had only the overall
score on which to base its selection, the infeasible solutions often dominated the evolution. The
searches often resulted in infeasible schedules, even when better, feasible solutions were known
to exist.

4.5.3.1 Constraint Satisfaction Part

Each schedule contains multiple constraints, each of which measures some aspect of the
feasibility of the schedule. For each constraint, i, a measure of constraint violation, x;, was

"43

defined. For resource availability, the constraint violation measure was equal to the difference
between the resources available and the resources required. Temporal constraints were
typically measured based on the variance between actual times and desired times.

The constraint measures were normalized to a scale from 0 to 1, inclusive, using a specifications-
based transformation such as those illustrated in Figure 17. The raw constraint measure was
transformed to the interval [0,1] in order to facilitate comparison of multiple objectives. The
transformations allow specification of feasible ranges as well as single values, and they
transform constraint measures in various sets of units to the same zero-to-one, unitless interval.
Also, as described by David Wallace, this method of transformation permits an explicit
clarification of desired performance [Wallace 95].

1.0 1.0 1.0

1 0 0
0 5.0 20 7.0 0

(@) (b) ©

Figure 17 Transformation of constraint components to the interval [0,1]. (a) shows a
specification in which only a value of 5 is acceptable, the specification in (b) accepts
any value between 2 and 7, and (c) shows a specification in which a value of 0 is
acceptable and any values greater than zero receive progressively worse scores.

The performance, g, of the ith constraint is a function of the measure of constraint violation, xX;.
For evaluating resource constraints, the transformation in Equation 2 was used. This
transformation gives most credit to solutions which satisfy all of the constraints, but gives some
credit to those that partially satisfy the constraints.

1 Equaticn 2

g"=l+x,.

The composite constraint satisfaction measure, p,, is calculated by averaging the components
from n transformed constraint measures as shcwn in Equation 3. The components were
averaged rather than multiplied so that partial credit would be given for infeasible solutions. If
the components had been multiplied, one component with a score of zero would have
annihilated all the others. Although annihilation is philosophically the ‘right’ approach since
failure of any constraint means that no other constraint matters, in practice the genetic al gorithm
needs some feedback about the degree of infeasibility on which to base its search.

1 Eguation 3
pc =;2gi q
i=1

In a more general approach, the transformed constraint scores could be weighted to indicate
differences in importance between constraints. However, this such an approach would require
the definition of arbitrary weighting factors. In addition, the constraints are implicitly equal in
importance, so assigning degrees of importance would be meaningless. The implicit equality
stems from the fact that all constraints must be satisfied before the optimality is measured; if one
consiraint fails, they all fail.

The complete process of calculating a constraint satisfaction measure is illustrated in Figure 18.
A project with the three corstraint measures in the figure has a composite constraint score, p,, of
0.492. In this example, the individual components, x,, x,, and x,, are the constraint feasibility
measures for resource types 1, 2, and 3, respectively. For non-renewable resources such as

44

resource type 3, an arbitrary cutoff time was defined to enable calculation of the constraint
violation. The cutoff is required in this case since the non-renewable resource has no explicit
time at which it is no longer available other than the time at which it is completely consumed.
If the resource were not consumed, it would persist indefinitely.

(a) () ©
resource type 1 resource type 2 resource type 3
(renewable) (renewable) (non-renewable)
resources I——I
available
resources
required —] | |]
resource
feasibility I |__|
i

constraint
violation x=6 x; =00 X3 =2
measure
component g =0.143 g, =10 g;=0333
score
total _
constraint p. = 0492
score

Figure 18 Example of constraint satisfaction measure calculation. The project in this
example has three resource types with constraints defined by the resource
availabilities and requirements defined by the profiles in (2), (b), and (c). The first
two are renewable resources, the third is nonrenewable. Subtracting the usage from
the availability profiles yields the actual constraint satisfaction curves. The score
from each of these curves is then normalized using the transformation in Equation 2.
The final constraint score is the average of the component scores.

Giving credit for partially feasible schedules is criticai. Many schedules may be infeasible, but
many infeasible schedules have feasible portions. One option for evaluating the sccre of a
genome is to give it a score of 0 if it does not meet the feasibility requirements. However, a
score of 0 provides no feedback to the genetic algorithm about the value of one genome over
arother, so a genetic search among infeasibles can be no better than a random search. On the
other hand, when a graduated score for infeasible solutions is used, the genetic algorithm can
evolve solutions that are more feasible and may eventually find solutions that are completely
feasible.

Note that the question of feasibility varies from problem to problem and depends upon the
formulation of the constraints and objective measures. One problem may have a single feasible
solution, and thus one optimal solution. Another may have many feasible solutions but only a
single optimal solution. Yet another may have many feasible solutions and nearly as many
optimal solutions.

45

4.5.3.2 Objective Performance Part

A project may have a single objective or multiple, possibly conflicting, objectives. Each
objective is normalized then the lot are averaged to form the overall objective performance, Pobj-
Each objective is normalized to a scale from 0 to 1, inclusive, where 1 indicates perfect
satisfaction of the objective measure. The normalization is done using the specifications-based
transformations described in the previous section. Typical transformations are illustrated in
Figure 19.

1.0 1.0

0 3?).0 makespan 0 20 average tardiness
(days) (hours)

(@) (b)

Figure 19 Transformations from raw measure of performance to normalized
component score. (a) shows a transform for makespan in which any makespan over
30 days is permissible but not desired; longer makespans are less desirable than
shorter makespans. (b) shows a transform for average tardiness in which the
average tardiness for the work order must be less than 2 hours.

The transformed score, f, of the ith objective is a function of the raw objective measure, y;,. The
transformed components are averaged to form the final objective measure, Posj, @s shown in
Equation 4.

1< Equation 4
pobj = ;Z-’; q
i=l

If some objectives are more important than others, weights may be applied to the transformed
scores as shown in Equation 5. Each weight, w, indicates the value of the ith objective relative
to the other objectives.

Z w.f;

Poj = N N Equation 5

m
W

i=1
Note that averaging the components may result in dominance, wherein a single large score
overpowers other scores. Transforming the raw performance measures to the [0,1] interval
mitigates the effects of dominance to some extent, but the transformations mus: be defined so
that changes in the raw objective measure are adequately reflected in the trinsformed score.
An alternative method of combining components is multiplication, but a score derived by
multiplication may suffer from annihilation; when the components are multiplied, a score of 0
on any single component causes all the components to be 0.

46

5. Test Problems and Results

5.1 The Test Problems

The genetic algorithm was run on the following sets of test problems:

e Patterson’s project scheduling problems (PAT)

¢ single mode project scheduling set by Kolisch ef al (SMCP)

¢ single-mode full-factorial set by Kolisch et al (SMFF)

¢ multi-mode full-factorial set by Kolisch et al (MMFF)

¢ job-shop problems from the operations research “warehouse” (JS)
e the benchmarx problems by Fox and Ringer (BMRX)

First introduced by James Patterson in his comparison -f exact solution methods for resource-
constrained project scheduling, the Patterson set (PAT) consists of 110 project scheduling
problems whose tasks require multiple resources but are defined with only one execution mode.
The problems in the Patterson set are considered easy. First of all, with only 7-48 tasks per
problem, the problems are not very big. Perhaps more importantly, the resource constraints
are not very tight; in many cases the optimal resource-constrained solution is the same as the
resource-unconstrained solution.

Kolisch described a method for generating project scheduling problems based on various
parameters for controlling number of tasks, complexity of precedence relations, resource
availability, and other measures [Kolisch 92]. The SMCP, SMFF, and MMFF problem sets were
generated using ProGen, Kolisch’s implementation of the algorithm he described.

The single mode set (SMCP) are similar to the Patterson set, but they range in size from 10 to 40
tasks and include more resource restrictions. The set includes 200 problems with 1 to 4
renewable resource types. Each task has only one execution mode.

The single mode full factorial set (SMFF) consists of 480 problems. Each problem has 30 tasks
and 1 to 4 resource types, all renewable. Each task has only one execution mode. The set was
generated by varying three parameters: network complexity, resource factor, and resource
strength. These factors correspond roughly to the interconnectedness of tt.e task dependencies,
the number of resource types that are available, and resource quartity availability.

The multi-mode, full factorial set (MMFF) consists of 538 problems that are known to have
feasible solutions from an original set of 640. The possibility of generating problems with no
solution arises with the addition of non-renewable resources. The problems include four
resource types, two renewable and two non-renewable. The number of activities per project is
10, and each activity has more than one execution mode. The set was generated by varying
three parameters: network complexity, resource factor, and resource strength. Complete details
of the problem generation are given in Kolisch description [Kolisch 92].

The jobshop problems (JS) are from the ‘jobshopl’ compilation of problems from the operations
research library (http://mscmga.ms.ic.ac.uk/). The set consists of 82 problems commonly cited in
the literature. The problems are the standard nxm jobshop formulation in which n jobs with m
steps (tasks) are assigned to m machines (resources). They range in size from 6x6 to 15x20. In
other words, they range from 36 tasks and 6 resources to 300 tasks and 20 resources. Each task
has its own estimated duraiion, and each task must be performed by one (and only one)
resource in a specific order. The objective of each problem is to minimize the makespan.
Descriptions of the problems may be found in [Adams et al, 1988] [Fisher and Thompson, 1963]
[Lawrence, 1984] [Applegate and Cook 1991] [Storer et al, 1992] [Yamada and Nakano, 1992].

47

The benchmarx problem was proposed by Barry Fox and Mark Ringer in early 1995. It is a
single problem with 12 parts. Each part adds additional constraints or problem modifications
that test various aspects of a solution method. The first four parts are fairly standard
formulations. It gets harder from there. The problem is large: 575 tasks, 3 types of labor
resources and 14 location-based resources. In addition to resource/location constraints, it
includes many temporal restrictions such as three shifts per day with resources limited to certain
shifts and task start/finish required within a shift or allowed to cross shifts. The last of the
twelve parts includes multiple objectives. By varying resource availability and work orders
after a schedule has been determined, the problem also tests the ability of solution methods to
adapt to dynamic changes.

The characteristics of the problem sets are summarized in Table 3. With the exception of the last
eight parts of the benchmarx problem, optimal solutions and best-known solutions are
commonly available.

number of number of number of number of characteristics
problems activities renewable non-
per resources renewable
problem per resources
problem per
problem

PAT 110 748 1-3 project scheduling, single
mode, multiple resources per
task

SMCP 200 1040 1-6 project scheduling, single
mode, multiple resources per
task

SMFF 480 30 4 project scheduling, single
mode, multiple resources per
task

MMFF | 538 10 2 2 project scheduling, multi-mode,
multiple resources per task

5 82 36-300 6-20 job-shop scheduling, single
mode, one resource per task

BMRX 1(12) 575 17 general scheduling, one
resource per task

Table 3 Characteristics of the test suites. Tasks in the project scheduling problems
typically required more than one resource per task, whereas those in the job-shop
problems required only one resource per task. All of the problems have feasible
solutions. Optimal solutions are known for many of the problems, best-known
solutions are used for comparison when no optimal solution is known.

Although the representation described in Chapter 4 supports multiple objectives, with the
exception of the benchmarx problem, the objective for all of these problem sets was only to
minimize the makespan. In addition, only the benchmarx problem specifies temporal
constraints. All of the problems with renewable resources specify uniform resource availability,
so a feasible solution is guaranteed for those problems. The multi-mode full factorial set
includes non-renewable resources, so a feasible solution is not guaranteed for problems in this

48

set. However, the published results of Sprecher and Drexl show optimal solutions for the 538
problems in the MMFF set [Sprecher & Drexl 96).

Most of the results were achieved using a steady-state genetic algorithm. However, some runs
were made using the struggle genetic algoriium in order to evaluate the effects of speciation on
the genetic algorithm performance on these problems.

No specific attempt was made to tune the genetic algorithm; it was run for a fixed number of
generations with roulette wheel selection, a reasonable mutation rate, population size, and
replacement rate. Table 4 summarizes the parameters used in the genetic algorithm runs in
Figures 20-28.

genetic number of mutation crossover population number

algorithm generations probability probability size of runs
PAT-55-500-50 steady-state 500 3% 90% 50 50
PAT-55-1000-50 steady-state 1000 3% 90% 50 10
SMCP-SS-500-50 steady-state 500 3% 90% 50 50
SMCP-55-500-100 steady-state 500 3% 90% 100 10
SMFF-S5-500-50 steady-state 500 3% 90% 50 10
MMFF-55-500-50 steady-state 500 3% 9% 50 20
MMFF-STR-500-50 struggle 500 3% (100%) 50 10
MMFF-STR-500-50 struggle 500 3% (100%) 50 10
J5-55-2000-50 steady-state 2000 3% 90% 50 10

Table 4 Genetic algorithm parameters used for each set of tests. Crossover
probability was specified for the steady-state algorithm since it may generate
individuals by simply copying parents if no crossover is specified. The struggle
algorithm always performs crossover.

The genetic algorithm required no modifications to switch between any of these problem sets.
The benchmarx problem required additional data structures to include shift constraints and
other modeling parameters, but no change to the algorithm or genome was required.

5.2 Genetic Algorithm Performance

Figures 20-28 summarize the performance of the genetic algorithm on the PAT, SMCP, SMFF,
MMEFF, and JS problem sets. In each figure, the results of the genetic algorithm are compared to
the optimal score if it is known, or the published best if an optimal score is not known. In these
problem sets, the performance measure is simply the makespan. The figures show the genetic
algorithm performance relative to the best solution, so a valuz of 0% means that the genetic
algorithm found the optimal makespan, a value of 100% means that the genetic algorithm found
a makespan twice as long as the published best.

49

deviation from optimum

deviation from optimum

deviation from optimum

R

75% -

2%

80 90 100 10

10 20 30 40 50 60
problem number

Figure 20 Summary of best, mean, and worst genetic algorithm performance on the
Patterson problem set using a steady-state genetic algorithm for 500 generations with
population size of 50 individuals (PAT-SS-500-50).

Lls 11} t nM* 4“.}&#”Iﬂ.oﬂo#*o**fﬁf‘&.- ’1?"#”““?’”‘*1H*h?....”5#’*“““?“.0‘”“?
10 2 30 40

!

50 60 70 80 % 100 1o
problem number

0

Figure 21 Summary of best, mean, and worst genetic algorithm performance on the
Patterson problem set using a steady-state genetic algerithm for 1000 generations
with population size of 50 individuals (PAT-SS-1000-50).

175%
150%
125%

5%

25%

0%
0

|
ﬂw h

“#* ‘;W .%M’ﬁh**bi“}wj«ﬂwlwﬁhﬂj | Nl‘lbi;t&.%

80 120 130
problem number

20

Figure 22 Summary of best, mean, and worst genetic algorithm performance on the
single-mode project scheduling problem set using a steady-state genetic algorithm
for 500 generations with a population size of 50 individuals (SMCP-SS-500-50).

50

deviation from optimum

deviation from optimum

deviation from optimum

deviation from optimum

250% -
200%
150%
100%
50%
20 40 60 80 100 120 140 160 180 200 220 240
problem number
250%
200%
150% |
HI 1l ‘ I \!
100% # il !
50% ' W l u M Ly
A 5 o] (- ' 5
o ' Ll W | uth'.. -y WA, h ! il
240 260 280 300 320 340 360 380 400 420 440 460 480

problem number

Figure 23 Summary of best, mean, and worst genetic algorithm performance on the
single-mode full factorial problem set using a steady-state genetic algorithm for 500
generations with a population size of 50 individuals (SMFF-SS-500-50).

0 20 40 60 80 100 120 140 160 180 200 220 240
problem number

250%

200%

150%

-l v M* ,
50% w . “ ‘

0%240 260 280 300 320 340 360 380 400 420 40 460 480

problem number
Figure 24 Summary of best, mean, and worst genetic algorithm performance on the

single-mode full factorial problem set using a steady-state genetic algorithm for 1000
generations with a population size of 50 individuais (SMFF-SS-1000-50).

51

deviation from optimum

deviation from optimum

deviation from optimum

deviation from optimum

st L ool L oslli

m I N S| }
0 20 40 0 80 100 120 140 160 180 200 220 240 260
problem number

problem rumber

Figure 25 Summary of best, mean, and worst genetic algorithm performance on the
multi-mode full factorial problem set using a steady-state genetic algorithm for 500
generations with a population size of 50 individuals (MMFF-SS-500-50).

100%

0 20 40 60 80 100 120 140 160 180 200 220 240 260
problem number

problem number
Figure 26 Summary of best, mean, and worst genetic algorithm performance on the

multi-mode full factorial problem set using a steady-state genetic algorithm for 500
generations with a population size of 50 individuals (MMFF-STR-EUCL-500-50).

52

[l f

0% -
0 20 40 60 80 100 120 140 160 180 200 220 240 260
problem number

~
G
*®

deviation from optimum

*

deviation from optimum

- M‘ ﬂwww—w_

Figure 27 Summary of best, mean, and worst genetic algorithm performance on the
multi-mode full factorial problem set using a steady-state genetic algorithm for 500
generations with a population size of 50 individuals (MM.FF-STR-SEQ-500-50).

o) ‘ l*”;l‘ol.#lHli”{hullmm'l'lhf”hl“#’?'”*mw””l”

D

100% ¢

uCvisuull LuI uptiiium

30
problem number

Figure 28 Summary of best, mean, and worst genetic algorithm performance on the
jobshop problems using a steady-state genetic algorithm for at most 2000
generations with a population size of 50 individuals (JS-SS-2000-50).

In general, the genetic algorithm took more time than would the equivalent enumerative search
or heuristic scheduler. However, it is important to note that no attempt was made to tune the
genetic algorithm parameters. This set of tests focused entirely on creating a representation and
set of operators for a baseline comparison; these results represent the worst-case for this
algorithm and representation.

One important area in which the genetic algorithm out-performed the exact solution method of
Sprecher et al was the multi-modal problems. The genetic algorithm performed well on some
problems that were very difficult for the brarch and bound techniques (i.e. the branch and
bound method took a long time to find the optimal solution).

Typical run times for a single evolution ranged from a few seconds for 100 generations on a
small Patterson problem to over one hour for 5,000 generations on a large jobshop protlem.

5.3 Implementation details

All of the tests were run using a single implementation of the genetic algorithm; although
minor changes were made to read various data formats and to accommodate different sets of
objectives and types constraints, no changes to the genome or genetic algorithm were required.

53

The implementation was written in C++ using GAlib, a C++ library of genetic algorithm
components developed by the author. Tests were run on a variety of Silicon Graphics
workstations with MIPS R4x00 CPUs running at 100 to 150 MHz.

6. Conclusions

There is a distinct need for more realistic problem sets. In particular, no problem sets exist with
multiple objectives, and the few that include multiple execution modes are far too easy. Only
the Benchmarx set includes temporal constraints. Creating such problem sets is no trivial
matter; these problems are difficult to formulate even when many simplifying assumptions are
made. The Benchmarx set is a step in the right direction.

The genetic algorithm performed best (compared to exact solution methods) on the problems
with multi-modal activities. The extra combinations introduced by the multiple execution
modes did not hurt the genetic algorithm performance. In fact, in some cases it made the
problem easier for the genetic algorithm whereas it made the search more difficult for the
branch and bound methods. This suggests that the genetic algorithm (or a hybrid which
includes some xind of genetic algorithm variant) is well-suited to more-complicated problems
with a mix of continuous and discrete components.

As illustrated in Figures 23 and 24, the genetic algorithm did not perform well on problems in
which the resources were tightly constrained. This comes as little surprise since the
representation forces the genetic algorithm to search for resource-feasibility, and tightly
constrained resources mean fewer resource-feasible solutions. As is the case with most
optimization methods, adding more constraints correlates to increased difficulty in solving the
problem.

As illustrated in Figure 28, the genetic algorithm did not perform well on the jobshop problems.
This is due to the structure of the jobshop problems. As illustrated in Figure 3, the jobshop
problems are typically parallel in nature. Since the representation uses relative times,
modification of a single value affects all successive activities if they depend strictly upon the
predecessor tree of the activity being modified. As a result, one small change has a great affect
on a large part of the schedule. A typical project plan, on the other hand, has more
interconnections, so a change to a single activity may not affect directly as many successors.

The struggle genetic algorithm consistently found better solutions than the steady-state
algorithm at some cost in execution time. Since it must make comparisons and often discards
newly created individuals, the struggle genetic algorithm performs more evaluations than the
steady-state genetic algorithm, but it always found feasible solutions, whereas in some runs the
steady-state algorithm did not. The struggle algorithm deserves more study, in particular with
respect to comparison methods of genomes and parallelization of the algorithm.

The representation described in this work is minimal (or nearly so) for this class of problems. If,
as Davis notes [Davis 85], there is an inverse relationship between knowledge in a
representation and its performance, then the methods described in this work can be improved
upon a great deal.

What can be done to improve the genetic algorithm performance? Hybridize the representation
and/or algorithm and improve the operators. Combining the genetic algorithm with another
search algorithm should provide immediate improvement. A hybrid representation that
explicitly contains both the resource-constraints as well as the precedence constraints would
permit the algorithm to attack the problem from both the resource-constraint perspective as well
as the precedence/temporal constraint perspective. Alternatively, a hybrid that maintains both
absolute and relative times but operates on one or the other depending on the problem
complexity and/or structure might improve the poor performance on problems with parallel
structure such as the job shop problems. Finally, the crossover and mutation operators can be
tuned to adapt to specific problem structures. For example, one might use a mutator that looks
at the parallel/serial nature of the precedence relations as it makes its modifications.

55

Initializing to good solutions should improve performance. During the course of this work, a
number of different initialization approaches were implemented, including initialize-to-critical-
path-resource-violated, initialize-to-resource-feasible, and initialize-to-random-delay-times. With
the representation and operators described in this work, initializing to a CPM-feasible or
resource-feasible set did not help much. This is due in part to the simplicity of the problems; in
most cases a feasible solution could be found simply by extending the delay times between
tasks. Since there is no direct correlation between a resource-feasible and resource-infeasible
solution, in some cases the search space is so sparse that the process of initializing to a set of
resource-feasible solutions results in a population of identical (or genetically similar) solutions.

Genetic algorithms are conceptually simple and well-suited to problems with a mix of
continuous and discrete variables. However their implementation is far from trivial. Although
the basic ideas are straightforward, there is actually a great deal of work (at this point it is still
an art) to implementing genetic algorithms on real problems with large search spaces.

56

7. References

7.1 Sources

This document and the test problems described in this document are available from
ftp://lancet.mit.edu/pub/mbwall/phd/

GALlib is available from http://lancet.mit.edu/ga/

The job-shop problems and many other operations research problems are available from
http://mscmgd.ms.ic.ac.uk/info.html

The ProGen program and PSPLIB problems (the SMCP, SMFF, MMFF problem sets) are
available from ftp://ftp.bwl.uni-kiel.de/pub/operations-research/

The benchmarx problem is located at http://www.neosoft.com/~benchmnv/

7.2 Bibliography

Aarts, E., P. Laarhoven, et al. (1988). “Job Shop Scheduling by Simulated Annealing.” Technical
Report OS-R8809 Centre for matematics and computer science(Amsterdam).

Adams,], E. Balas and D. Zawack (1988). “The shifting bottleneck procedure for job shop
scheduling”. Management Science 34, 391-401.

Applegate, D., and W. Cook (1991). “A computational study of the job-shop scheduling
instance”, ORSA Journal on Computing 3, 149-156.

Bagchi, S., S. Uckum, et al. (1991). “Exploring Problem-Specific Recombination Operators for Job
shop Scheduling.” Proceedings of the Fifth International Conference on Genetic
Algorithms.

Balas, E.,]. Adams, et al. (1988). “The Shifting Bottleneck Procedure for Job-Shop Scheduling.”
Management Science 34(3): 391-401.

Blazewicz, |,]. K. Lenstra, et al. (1983). “Scheduling Subject to Resource Constraints:
Classification and Complexity.” Discrete Applied Mathematics 5: 11-24.

Boctor, F. F. (1990). “Some Efficient Multi-Heuristic Procedures for Resource-Constrained Project
Scheduling.” European Journal of Operational Research 49(1): 3-13.

Boctor, F. F. (1993). “Heuristics for scheduling projects with resource restrictions and several
resource-duration modes.” International Journal of Production Research 31(11): 2547.

Boctor, F. F. (1994). “A new and efficient heuristic for scheduling projects with resource
restrictions and multiple execution modes.” Document de Travail 94-46. Québec,
Canada, Groupe de Recherché en Gestion de la Logistique.

Boctor, F. F. (1994). “ An adaptation of the simulated annealing algorithm for solving resource-
constrained project scheduling problems”. Document de Travail 94-48. Québec, Canada,
Groupe de Recherche en Gestion de la Logistique.

Bruns, R. (1993). “Direct Chromosome Representation and Advanced Genetic Operators for
Production Scheduling.” International Conference on Genetic Algorithms: 352-359.

Cleveland, G. A. and S. F. Smith (1989). “Using Genetic Algorithms to Schedule Flow Shop
Releases.” Proceedings of the Third International Conference on Genetic Algorithms.

57

Davis, L. (1985) “Job Shop Scheduling with Genetic Algorithms.” Proceedings of an
International Conference on Genetic Algorithms and their Applications, Pittsburgh,
Lawrence Erlbaum Associates.

Davis, E. W. and G. E. Heidorn (1971). “An Algorithm for Optimal Project Scheduling under
Multiple Resource Constraints.” Management Science 17(12): B-803-b817.

Davis, E. W. and]. H. Patterson (1975). “A Comparison of Heuristic and Optimum Solutions in
Resource-Constrained Project Scheduling.” Management Science 21(8): 944-955.

Demeulemeester, E. and W. Herroelen (1992). “A Branch-and-Bound Procedure for the Multiple
Resource-Constrained Project Scheduling Problem.” Management Science 38(12): 1803.

DeJong, Kenneth A. (1975). “An analysis of the behavior of a class of genetic adaptive
systems.” Dissertation Abstracts International 36(10), 5140B; UMI 76-9381. University
of Michigan, Ann Arbor.

Eshelman, L. J. and J. D. Schaffer. (1992). “Real-Coded Genetic Algorithms and Interval-
Schemata”. In L Darrel Whitley (ed), Foundations of Genetic Algorithms 2. San Mateo,
CA, Morgan Kaufmann Publishers.

Fisher, H., and G.L. Thompson (1963). “Probabilistic learning combinations of local job-shop
scheduling rules”. J.F. Muth, G.L. Thompson (eds.), Industrial Scheduling, Prentice
Hall, Englewood Cliffs, New Jersey, 225-251.

Fox, B. and M. Ringer, (1995). “The BENCHMRX Problems”
http://www.neosoft.com/~benchmrx/

Fox, M. S, and S. F. Smith (1984). “ISIS - a knowledge-based system for facotry scheduling.”
Expert Systems, 1(1):25-49.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning,
Addison-Wesley.

Goldberg, D. E. and J. Richardson (1987). “Genetic Algorithms with sharing for multimodal
function optimization”. Proceedings of the Second International Conference on Genetic
Algorithms, Lawrence Erlbaum Associates, Hillsdale, NJ.

Grtininger, Thomas (1996). “Multimodal Optimization using Genetic Algorithms.” Master
Thesis, Stuttgart University.

Harvey, W. D., and M. L. Ginsberg (1995). “Limited Discrepancy Search.” CIRL, University of
Oregon, Eugene, OR, USA.

Held, M. and R. M. Karp (1962). “A Dynamic Programming Approach to Sequencing
Problems.” Journal of the Society for Industrial and Applied Mathematics 10(1): 196-210.

Hildum, D. (1994). “Flexibility in a Knowledge-based System for Solving Dynamic Resource-
Constrained Scheduling Problems”. Umass CMPSCI Technical Report 94-77, University
of Massachusetts, Amherst.

Hilliard, M. R., G. E. Liepins, et al. (1988). “Machine Learning Applications to Job Shop
Scheduling.” Proceedings of the AAAI-SIGMAN Workshop on Production Planning and
Scheduling.

Holland, J. (1975). Adaptation in Natural and Artificial Systems. The University of Michigan
Press.

58

Husbands, P. and F. Mill (1991). “Simulated Co-Evolution as the Mechanism for Emergent
Planning and Scheduling.” Proceeding from the International Conference on Genetic
Algorithms and their Applications, 264-270.

Husbands, P. (1996). “Genetic Algorithms for Scheduling.” AISB Quarterly, No 89.

Johnson, T.].R (1967). “An algorithm for the resource-constrained project scheduling problem.”
Doctoral Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA.

Kanet, J. . and V. Sridharan (1991). “PROGENITOR: A Genetic Algorithm for Production
Scheduling.” Wirtschaftsinformatik.

Kirkpatrick, S., C. D. Gelatt, et al. (1983). “Optimization by Simulated Annealing.” Science 220:
671-680.

Kolisch, R., A. Sprecher, and A. Drexl (1992). “Characterization and Generation of a General
Class of Resource-Constrained Project Scheduling Problems”. Institut fur
Betriebswirtschaftslehre, Universitit zu Kiel.

Kolisch, R. (1995). Project Scheduling under Resource Constraints. Heidelberg, Physica-Verlag.

Lawler, E. L. and D. E. Wood (1966). “Branch and Bound Methods: A Survey.” Operations
Research 14(4): 699-719.

Lawrence, S. (1984). “Resource constrained project scheduling: an experimental investigation of
heuristic scheduling techniques (Supplement)”, Graduate School of Industrial
Administration, Carnegie-Mellon University, Pittsburgh, Pennsylvania.

Lawrence, S. R. and T. E. Morton (1993). “Resource-Constrained Multi-Project Scheduling with
Tardy Costs: Comparing Myopic, Bottleneck, and Resource Pricing Heuristics.”
European Journal of Operational Research 64(2): 168-187.

Mahfoud, Samir W. (1995). “Niching Methods for Genetic Algorithms.” University of Illinois at
Urbana-Champaign, IlliGAL Report 95001.

Mori, M., and C. C. Tseng (1996). “A Genetic Algorithm for Multi-mode Resource Constrained
Project Scheduling Problem.” European Journal of Operational Research (to appear).

Michalewicz, Z. (1994). Genetic Algorithms + Data Structures = Evolution Programs. Springer,
Berlin.

Muiiller-Merbach, H. (1967). “Ein Verfahren zur Planung des optimalen Betriebsmitteleinsatzes

bei der Terminierung von Grofiprojeckten” Zeitschrift fir wirtschaftliche Fertigung,
Vol. 62, pp. 83-88, 135-140.

Muth, J. F., and G. L. Thompson (eds) (1963). Industrial Scheduling. Prentice-Hall, Englewood
Cliffs, NJ.

Nakano, R. (1991). “Conventional Genetic Algorithm for Job Shop Scheduling.” Fifth
International Conference on Genetic Algorithms, Morgan Kaufmann Publishers.

NASA (1962). PERT/Cost System Design, DOD and NASA Guide. Washington DC, Office of the
Secretary of Defense, National Aeronautics and Space Administration.

Neumann, K. (1990). Stochastic Project Networks - Temporal Analysis, Scheduling, and Cost
Minimization. Berlin, Springer-Verlag,.

Palmer, G. (1994). “An Integrated Approach to Manufacturing Planning”. University of
Huddersfield.

59

Panwalkar, S. S. and W. Iskander (1977). “A Survey of Scheduling Rules.” Operations Research
25(1): 45-61.

Patterson, J. H. (1984). “A Comparison of Exact Approaches for Solving the Multiple Constrained
Resource, Project Scheduling Problem.” Management Science 30(7): 854.

Rechenberg, Ingo (1973). Evolutionsstrategie. Fromman-Hozboog Verlag.

Sadeh, N. (1991). “Look-Ahead Techniques for Micro-Opportunistic Job Shop Scheduling.” PhD
thesis, £chool of Computer Science, Carnegie Mellon University, Pittsburgh, PA, March
1991.

Sampson, S. E. and E. N. Weiss (1993). “Local Search Techniques for the Generalized Resource
Constrained Project Scheduling Problem.” Naval Research Logistics 40(5): 665.

Slowinski, R. and]. Weglarz, Eds. (1989). Advances in Project Scheduling. Amsterdam, Elsevier.

Smith, S. F,, and P. Ow (1985). “The use of multiple problem decompositions in time
constrained planning tasks”. In Proceedings of the Ninth International Joint Conference
on Artificial Intelligence (IJCAI), vol. 2 pages 1013-1015, Los Angeles, CA.

Sprecher, A. (1994). “Resource-Constrained Project Scheduling: exact methods for the multi-
mode case.” Lecture Notes in Economics and Mathematical Systems 409.

Sprecher, A. and A. Drexl (1996). “Manuskripte aus den Instituten fiir Betriebswirtschaftsiehre
der Universitit Kiel”. Kiel, Universitit Kiel.

Stinson, J. P., E. W. Davis, et al. (1978). “Multiple Resource-Constrained Scheduling Using
Branch and Bound.” AIIE Transactions 10(3): 252-259.

Storer, R.H., S.D. Wu, and R. Vaccari (1992). “New search spaces for sequencing instances with
application to job shop scheduling”, Management Science 38, 1495-1509.

Syswerda, G. (1990). “The Application of Genetic Algorithms to Resource Scheduling.”
Proceedings from the Fourth International Conference on Genetic Algorithms : 502-508.

Syswerda, G. (1991). “Schedule Optimization Using Genetic Algorithms.” Chapter 21 of the
Handbook of Genetic Algorithms, New York, New York, Van Nostrand Reinhold.

Tavares, L. V. and]. Weglarz (1990). “Project Management and Scheduling: A Permanent
Challenge for OR.” European Journal of Operational Research 49(1-2).

Tseng, C. C,, and M. Mori (1996). “A Genetic Algorithm for Multi-mode Resource-Constrained
Multi-Project Scheduling Problems.” Department of Industrial Engineering and
Managent, Tokyyo Institute of Technology, Tokyo, Japan.

Wallace, D. (1994). “A Probabilistic Specification-based Design Model: applications to design
search and environmental computer-aided design”. Doctoral Thesis, Mechanical
Engineering. Massachusetts Institute of Technology, Cambridge, MA, USA

Whitley, D., T. Starkweather, et al. (1989). “Scheduling and the Travelling Salesmen: The
Genetic Edge Recombination Operator”. Proceedings of the Third International
Conference on Genetic Algorithms, Morgan Kaufmann Publishers.

Yamada, T, and R. Nakano (1992), “A genetic algorithm applicable to large-scale job-shop
instances”, Manner, R., and B. Manderick (eds.), Parallel instance solving from nature 2,
North-Holland, Amsterdam, 281-290.

60

8. Appendix A - Glossary

allele

chromosome

crossover

crowding

deme

due date
earliest finish

earliness

evolutionary
algorithm

exploitation
exploration

gene

genetic
algorithm

genetic
programming

genome

genotype

idle time

latest finish

One of a set of possible values for a gene. In a binary string genome, the
alleles are 0 and 1.

A set of information that encodes some of an individual’s traits. In
evolutionary algorithms, chromosome is often used to refer to a genome.

A genetic opera‘or that generates new individuals based upon combination
and possibly permutation of the genetic material of ancestors. Typically used
to create one or two offspring from two parents (sexual crossover) or a single
child from a single parent (asexual crossover).

A niching method in which speciation is encouraged by replacing individuals
in the current population with newly generated individuals that share the
same characteristics.

A population of individuals. Members of a deme typically share common
traits.

The time at which a job is supposed to be finished.
The earliest time at which an activity can be completed.

The amount of time between the due date and actual finish time for an
activity.

A class of stochastic algorithms based on simplifications of natural evolutionary
processes such as selection, survival-of-the-fittest, mating, mutation, and
extinction.

Local search.
Global search.

The smallest unit in a genome. In a binary string genome, the bits are genes.
In an array of characters, each character in the array is a gene.

An evolutionary algorithm in which a population of individuals is evolved
using selection, crossover, and mutation. Originally devised as a model of
evolutionary principles found in Nature, genetic algorithms have evolved into
a stochastic, heuristic search method. A genetic algorithm may operate on any
data type with operators specific to the data type.

The use of genetic aigorithms to evolve programs. Genetic programming
typically uses tree genomes (or tree genomes in combination with other data
structures) to represent parse trees. A genetic algorithm then evolves trees
using the parsed tree’s performance as the objective function.

A complete representation of the information required to characterize the traits
of an individual. In evolutionary algorithms, a single solution to a problem.

The genetic traits of an individual. In a binary-to-decimal genome, the bits are
the genotype.

The amount of time a resource is not actually working on an activity.

The latest time at which an activity can be completed.

61

makespan
migration
mutation

non-renewable
resource

phenotype

renewable
resource

sharing

slack time (float)

speciation

tardiness

The amount of time required to complete a set of activities.
The transfer of individuals from one population to another population.
A genetic operator that modifies the genetic material of an individual.

Also referred to as consumable resources. Non-renewable resources, once
used, are no longer available. Examples of non-renewable resources include
money and raw materials.

The physical traits of an individual. In a binary-to-decimal genome, the
decimal values are the phenotypes.

Also referred to as non-consumable resources. Renewable resources are
refreshed each period. The length of the period is undefined. Examples of
renewable resources include labor and computer time.

A niching method in which the fitness of similar individuals is deprecated in
order to encourage speciation.

The amount of time an activity can be delayed before further delays will delay
any successor activities.

Also referred to as niching, speciation is the development of a group of
individuals who share the same genetic composition (a species) within a
population.

The amount of time between the due date and actual finish time for an
activity.

62

