
22.312  ENGINEERING OF NUCLEAR REACTORS 
 

Due November 17, 2006 by 12:00 pm
 
 

TAKE HOME QUIZ 2 (SOLUTION) 
 

 

Problem 1 (60%) – Hydraulic Analysis of the Emergency Core Spray System in a BWR 

The numbering of the relevant locations within the system is shown in Figure 1 below. 
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Figure 1.  Numbering of the locations within the emergency spray system. 

 
The pumping power, , is: pW&
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where =50 kg/s, ρ=997 kg/mm& 3, ηp=0.8 and ΔPpump is the pressure head provided by the pump 
(i.e., ΔPpump=P4-P3).  To find ΔPpump, we have to solve the momentum equation for this system, 
which we can break down in the segments 1→2, 2→3, 3→4 and 4→5.  First, let us calculate 
some parameters that will be used in the analysis.  The mass flux in the pipes, G, is: 
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where Di=0.1 m.  Obviously, the velocity in the pipes is V=G/ρ≈6.385 m/s.  The Reynolds 
number is the pipes, Re, is: 
 

 
μ

iGD
=Re ≈707376        (3) 

 
where μ=9×10-4 Pa⋅s.  The flow is turbulent and the friction factor in the (smooth) pipes, f, can 
be calculated as follows: 
 

 2.0Re
184.0
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Momentum equation for 1→2: 
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where z1 and z2 are the elevation of location 1 and 2, respectively. 
 
Momentum equation for 2→3: 
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where L23=2 m, Kentrance=0.5 and the last two terms on the right-hand side of the equation 
represent the form acceleration and form loss term, respectively. 
 
Momentum equation for 4→5: 
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where L45=27 m, Kelbow1=Kelbow2=0.9, Kspray=15 and Aspray=26 cm2.  The last term on the right-
hand side of the equation represents the form acceleration term for the spray nozzle, and was 
calculated using the definition of form acceleration plus the continuity equation for the nozzle: 
 

 spraysprayi AVDV ρπρ =2

4
       (8) 

 
where Vspray is the water velocity immediately outside the nozzle. 
Adding Eq. (5), (6) and (7), one gets: 
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           (9) 
where it was assumed z3≈z4, as per the problem statement.  Note that z5-z1=16.5 m. 
However, P1=P5=0.1 MPa and P4-P3=ΔPpump, therefore Eq. (9) becomes: 
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Substituting all numerical values in Eq. (9), one gets ΔPpump≈766.7 kPa.  Finally, Eq. (1) gives 

≈48.06 kW. pW&

 
ii) There are three thermal resistances here, i.e., convection in the steam, conduction in the pipe 
wall and convection in the water.  Thus the total temperature drop from steam to water, Tsteam-
Twater=200°C-25°C=175°C, can be expressed as: 
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where q′ is the heat transfer rate per unit length of the pipe, Do=11 cm, ho=5000 W/m2K (given 
in the problem statement), kss=14 W/m·K and hi is the heat transfer coefficient on the water side 
of the pipe.  Note that Eq. (11) is very similar to the expression to calculate the temperature drop 
within a fuel pin.  Solving for q′, one gets: 
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In order to obtain q′ from Eq. (12), one needs to know hi.  To find hi, we recognize that: 
 
- The heat transfer mode is internal forced convection 
- The fluid of interest is non-metallic (Pr=cpμ/k≈6.917) 
- The geometry is round tube 
- The flow regime is turbulent, so the boundary condition does not matter much 
- Entry region effects are neglected, as suggested by the problem statement 
 
With these assumptions the Dittus-Boelter correlation is suitable to calculate hi: 
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 ≈2385  ⇒ h4.08.0 PrRe023.0=Nu i =Nu·k/Di≈14.55 kW/m2 (13) 
 
Substituting the numerical values in Eq. (12), one gets q′≈93 kW/m.  Because the length of pipe 
exposed to steam is 5 m, the total heat transfer rate is =93×5≈465.1 kW. Q&
 
 

iii) The water temperature rise due to heating from the steam is small, 
p

water cm
QT
&

&
=Δ ≈2.2°C, so 

the assumption of constant properties used in part ‘i’ is accurate. 
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Problem 2 (40%) – Radial and Axial Temperature Distribution in a Restructured Fuel Pin 
 
i) Restructuring will occur where the temperature exceeds 1600°C.  To find the first axial 
location at which restructuring occurs, one needs to know the axial distribution of the coolant 
and fuel temperature.  The coolant energy equation is: 
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where Tb is the bulk coolant temperature, z is the axial coordinate measured from the channel 
inlet, =0.38 kg/s, cm& p=6.1 kJ/kg·K, mq′ =40 kW/m and L=4 m.  Equation (14) can be integrated 
to give: 
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where Tb0=285°C.  At any axial location before restructuring occurs, the max fuel temperature, 
Tmax, can be calculated by means of Eq. (8-119) in the T&K textbook: 
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where kf=3 W/m·K (assumed to be independent of temperature, as per the problem statement), 
Rg=4.14 mm, hg=5 kW/m2K, kc=13 W/m·K and h=25 kW/m2K.  Substituting Eq. (15) into Eq. 
(16), one gets: 
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           (17) 
 
If Tmax is set equal to 1600°C, Eq. (17) can be solved for z, to find the axial location at which 
restructuring first occurs.  Note that Eq. (17) can be re-arranged as follows: 
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           (18) 
 
Equation (18) is in the form  1cosxbsinxa =⋅−⋅ , with a=1.14834 and b=0.01699.  Thus, the 
solution is (πz/L)=1.07147, or z≈1.364 m. 
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ii) The linear power at z=2 m is at its maximum mq′ =40 kW/m.  The bulk coolant temperature at 
this axial location is Tb≈307°C, obtained from Eq. (15).  The fuel outer temperature, Tfo, can be 
found from the following equation: 
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One can find Rs, the boundary of the restructured region, from Eq. (8-99) in the T&K textbook 
for the two-zone restructuring situation: 
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Eq. (20) yields Rs/Rfo≈0.4251, or Rs≈1.743 mm.  Then, the radius of the void region, Rv, can be 
found from Eq. (8-98) in the textbook: 
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where ρs=97 %TD and ρ=95 %TD.  Finally, the maximum temperature in the fuel at this axial 
location, Tmax, can be found from Eq. (8-100) in the textbook: 
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where kf,s≈3.093 W/m·K is the thermal conductivity of the restructured fuel (97 %TD), obtained 
scaling the value at 95 %TD with the Biancharia’s correlation (spherical pores).  Equation (22) 
yields Tmax≈1770.8°C. 
 
iii) There is no void region for z<1.364 m because the temperature in the fuel does not reach 
1600°C.  For z>1.364 m the void region expands as the linear power increases and contracts as 
the linear power decreases above the fuel pin midplane.  Note that there exists an axial location 
where the fuel temperature drops again under 1600°C and no restructuring occurs.  The 
(quantitative) Rv vs. z plot is shown in Figure 2 below.  While it is hard to see from this figure, 
the maximum Rv is reached at a location slightly above the midplane. 
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Figure 2.  Axial variation of the void region radius. 
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