
22.312 ENGINEERING OF NUCLEAR REACTORS 

Monday, December 17th, 2007, 9:00am-12:00 pm 

FINAL EXAM SOLUTIONS 

Problem 1 (45%) – Analysis of Decay Heat Removal during a Severe Accident 

i) The energy balance for the corium melt is as follows: 

McCc 

dTc = Q& dec − Q& boil − Q& cond       (1)  
dt 

where Mc, Cc and Tc are the mass, specific heat and temperature of the corium melt, respectively, 
while Q&dec  is the decay power, Q&boil and Q&cond  are the heat removal by water boiling above the 
corium and conduction through the vessel wall, respectively.  If the right-hand term of Eq. (1) is 
positive, the corium melt temperature is increasing with time; vice versa, if the right-hand term is 
negative, the corium is cooling down.  Therefore, we need to evaluate the three terms on the 
right-hand side of Eq. (1).  The decay power term is simply: 

Q& dec = 0.066Q& 0t
−0.2 ≈35.0  MW       (2)  

Where Q& dec =3400 MW and t =3×3600 s=3 hours, and it was assumed that the reactor had 
operated for a long time before shutdown.   

Because the thickness to diameter ratio for the vessel lower head shell is small 
(0.22/4.8=0.046<<1), we can approximate it to a flat wall with little loss of accuracy1. 
Therefore, the heat rate through the vessel is: 

T −T πQ& cond = kv
c v,o ⋅ D2 ≈9.3  MW       (3)  
δ 2 

Where kv=30 W/m°C is the vessel thermal conductivity, δ=22 cm is the vessel wall thickness, 
the corium temperature at the time of interest is Tc=2000°C and the vessel outer temperature is 

Tv,o=120°C (as per the problem statement).  The term π D2 = 36.2 m2 represents the surface of 
2 

the lower (hemispherical) head. 

The boiling term is found as follows: 

1 Alternatively one can solve the heat conduction equation in spherical coordinates. 
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π Q& boil = hFB (Tc −Tsat ) ⋅ D2 ≈13.8 MW 
4 

(4)

Where the film boiling2 heat transfer coefficient, hFB  (≈400 W/m2°C), is from the Berenson 

correlation given in the problem statement.  The term π D2 = 18.1 m2 is the upper surface area
4 

of the corium melt. 

The right-hand term of Eq. (1) is 35-9.3-13.8=11.9 MW>0.  Therefore, at this time the corium 
melt is still heating up. 

ii) The void fraction, α, in the drift-flux model is given as: 

α = 
jv          (5)  

Co j +Vvj 

2 0.25Where (for churn flow) Co=1 and Vvj = 1.53[σg(ρ f − ρg ) / ρ f ] ≈0.24 m/s.  Now, in the pool of 
water above the corium, the liquid is stagnant, while the vapor flows upward (due to buoyancy). 
Therefore, one has jℓ=0 and also j=jv. The vapor superficial velocity, jv, in general can be 
calculated as xG/ρg. In this case, x=1 (only vapor is flowing, so the flow quality is one) and G is 
equal to the vapor generation rate per unit area of the corium surface.  Thus G=q″/hfg=0.09 
kg/m2s, where q″=200 kW/m2, and jv=0.148 m/s.  From Eq. (5) one finally gets α≈0.381. 

iii) HEM (S= Vv/Vℓ =1) would have clearly been a bad choice because the velocity of the liquid 
is zero, while the velocity of the vapor is greater than zero.  In fact, in this case the slip ratio S is 
infinite. 

Problem 2 (15%) – Boiling Crisis on the Vessel Outer Surface during a Severe Accident 

i) DNB is typical of subcooled boiling or low-quality saturated boiling, while dryout is typical of 
high-quality (annular flow) saturated boiling. 

The energy balance for the water in the gap is: 

Q& = m& Cp , f (Tout −Tin ) ⇒ Tout = Tin + 
Q& 

≈92°C (6)
m& Cp, f 

2 The heat transfer mechanism of interest here is obviously film boiling, as the corium surface is at 2000°C. 
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Where Q& = q"π D2 =14.86 MW, q″=350 kW/m2, D=5.2 m, m& =300 kg/s, Cp,f=4.2 kJ/kg°C,
2 

Tin=80°C. Because the bulk temperature is below Tsat (=100°C) throughout the channel, this is a 
subcooled boiling situation, for which DNB would be the relevant boiling crisis. 

ii) It is well known that the DNB heat flux ( qDNB ′′ ) decreases with increasing equilibrium quality 
and increases with increasing mass flux. Therefore, in the situation of interest here the minimum 
DNB heat flux is at the outlet of the hemispherical section (θ=90°), where the equilibrium 
quality is highest and the mass flux lowest. 

Problem 3 (25%) – Entropy generation in a steam turbine system 

The entropy equation for a generic control volume is: 

∂SCV = ∑m& isi + 
Q& 
+ S& gen (7)

∂t i Ts 

Turbines can be considered adiabatic machines operating at steady state, thus Eq. (7) becomes: 

S&gen = m& (sout − sin ) (8) 

where m&  is the steam flow rate processed by the turbine, and sin and sout are the specific entropy 
at the turbine inlet and outlet, respectively. 

i) In this case m& =600 kg/s. Let Point 1 be the turbine inlet and Point 2 be the turbine outlet. We 
need to find s1 and s2. 

Turbine inlet (Point 1): T1=280°C, P1=64 bar, h1=2780 kJ/kg, s1=5.9 kJ/kg⋅K, x1=1.0 

Turbine outlet (Point 2): T2=30°C, P2=0.04 bar, s2s=s1=5.9 kJ/kg⋅K, x2s=(s2s-sf2)/(sg2-sf2)≈0.688,

h2s=hf2+x2s(hg2-hf2)≈1797 kJ/kg, h2=h1-ηT(h1-h2s)≈1865 kJ/kg (where ηT=0.93), x2=(h2-hf2)/(hg2-hf2)≈0.716,

s2=sf2+x2(sg2-sf2)≈6.127 kJ/kg⋅K, and (from Eq.8) S& gen ≈136 kW/K. 

ii) Let Point 1 be the high-pressure turbine inlet, Point 2 be the high-pressure turbine outlet, Point 
3 the low-pressure turbine inlet and Point 4 the low-pressure turbine outlet. Then the total 
entropy generation rate is: 

S&gen = m& HP (s2 − s1) + m& LP (s4 − s3) (9) 

where m& HP =600 kg/s, but m& LP , s1, s2, s3 and s4 are unknown. 

HP turbine inlet (Point 1): T1=280°C, P1=64 bar, h1=2780 kJ/kg, s1=5.9 kJ/kg⋅K, x1=1.0 

HP turbine outlet (Point 2): T2=180°C, P2=10 bar, s2s=s1=5.9 kJ/kg⋅K, x2s=(s2s-sf2)/(sg2-sf2)≈0.826,

h2s=hf2+x2s(hg2-hf2)≈2427 kJ/kg, h2=h1-ηT(h1-h2s)≈2451 kJ/kg (where ηT=0.93), x2=(h2-hf2)/(hg2-hf2)≈0.838,

s2=sf2+x2(sg2-sf2)≈5.956 kJ/kg⋅K 


J. Buongiorno, 2007 

Cite as: Jacopo Buongiorno, course materials for 22.312 Engineering of Nuclear Reactors, Fall 2007. 

MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. 


(http://ocw.mit.edu/)


LP turbine inlet (Point 3): T3=180°C, P3=10 bar, h3=2777 kJ/kg, s3=6.7 kJ/kg⋅K, (moisture separation) 
x3=1.0, m& = x m& ≈503 kg/s LP 2

LP turbine outlet (Point 4): T4=30°C, P4=0.04 bar, s4s=s3=6.7 kJ/kg⋅K, x4s=(s4s-sf4)/(sg4-sf4)≈0.7875, 
h4s=hf4+x4s(hg4-hf4)≈2039 kJ/kg, h4=h3-ηT(h3-h4s)≈2091 kJ/kg (where ηT=0.93), x4=(h4-hf4)/(hg4-hf4)≈0.809, 
s4=sf4+x4(sg4-sf4)≈6.870 kJ/kg⋅K 

From Eq. (9), one gets S& gen ≈119 kW/K. 

iii) Let Point 5 be the liquid outlet of the moisture separator.  If the moisture separator is 
considered adiabatic (no heat exchange with the surroundings), then Eq. (7), applied to the 
moisture separator, yields: 

S&gen = m& HPs2 − x2m& HPs3 − (1− x2 )m& HPs5 = m& HP[s2 − x2s3 − (1− x2 )s5 ] (10) 

But, s3=sg2 and s5=sf2, thus the bracketed term in Eq. (10) is s2 − x2s3 − (1− x2 )s5 =0, and the 
entropy generation in the moisture separator is zero. 

iv) 
Advantages of moisture separator: 

- Increases the quality in the turbine, thus lengthens the lifetime of the turbine.  
(Reliability) 

- The separated moisture can be used for regeneration, thus increasing the thermal 
efficiency of the cycle. (Efficiency) 

- The increased in thermal efficiency reduces the operating costs.  (Economics) 

Disadvantages 
- Added capital cost of the moisture separator and connecting piping.  (Economics) 

Problem 4 (15%) - Sizing the Silicon Carbide Layer in a TRISO Fuel Particle 

The stresses for a thin spherical shell of radius Rs can be calculated as follows: 

σr = -(pi+po)/2          (14)  
σθ = σϕ = (pi-po)Rs/(2 t) 

Where Rs=300 μm, po=9 MPa, t is the (unknown) thickness of the shell, and pi is the internal 
pressure due to the fission gases. The fission gas pressure can be calculated from the perfect gas 
equation as follows: 

pi=NRT/VFG=31.2 MPa (15) 
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4 Where N=10-7 mol, R=8.31 J/mol-K, T=1273 K (1000°C) and VFG = 0.3 πR3 
s =3.4×10-11 m3. 

3 
The Von Mises failure criterion is expressed by the following inequality: 

1 2 2 2 

2 
[(σ r −σθ ) + (σ r −σϕ ) + (σθ −σϕ ) ] < Sy     (16)  

Where Sy=200 MPa for SiC at 1000°C.  Noting that σθ = σϕ , Eq. (16) becomes: 

(σθ −σ r ) < Sy          (17)  

Substituting Eqs. (14) into Eq. (17), one gets: 

(pi-po)Rs/(2 t)+(pi+po)/2<Sy        (18)  

Solving Eq. (18) for t, one gets the minimum required value of the shell thickness to prevent 
failure: 

tmin = Rs 

pi − po =18.5 μm 

2Sy − ( pi + po )


Note that the use of the thin-shell theory is justified because Rs/tmin>10. 
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