ECONOMIC THEORY AND ESTIMATION OF THE DEMAND FOR CONSUMERDURABLE GOODS AND THEIR UTILIZATION:
APPLIANCE CHOICE AND THE DEMAND FOR ELECTRICITY
byJeffrey Alan Dubin
A.B. University of California, Berkeley(1978)
Submitted to the Department of Economics
In Partial Fulfillment of the RequirementsFor the Degree of
Doctor of Philosophyat the
Massachusetts Institute of TechnologyMay 1982
Signature Redacted
\qquad
V" V Department of EconomicsSignature Redacted

ECONOMIC THEORY AND ESTIMATION OF THE DEMAND FOR CONSUMER
 DURABLE GOODS AND THEIR UTILIZATION:
 APPLIANCE CHOICE AND THE DEMAND FOR ELECTRICITY

Abstract

by Jeffrey Alan Dubin Submitted to the Department of Economics on May 17, 1982 in partial fulfillment of the requirements for the Degree of Doctor of Philosophy at the Massachusetts Institute of Technology

Abstract

This thesis develops the theory of durable choice and utilization. The basic assumption is that the demand for energy is a derived demand arising through the production of household services. Durable choice is associated with the choice of a particular technology for providing the household service. Econometric systems are derived which capture both the discrete choice nature of appliance selection and the determination of continuous conditional demand.

Conditional moments in the generalized extreme value family are derived to extend discrete continuous econometric systems in which discrete choice is assumed logistic. An efficiency comparison of various two-stage consistent estimation techniques applied to a single equation of a dummy endogenous simultaneous equation system is undertaken and asymptotic distributions are derived for each estimation method.

Using the National Interim Energy Consumption Survey (NIECS) from 1978 we estimate a nested logit model of room air-conditioning, central air-conditioning, space-heating, and water heating. The estimated probability choice model is used to forecast the impacts of proposed building standards for newly constructed single family detached residences. Monthly billing data matched to NIECS is analyzed permitting seasonal estimation of the demand for electricity and natural gas by households.

The theory of price specification for demand subject to a declining rate structure is reviewed and tested. Finally, consistent estimation procedures are used in the presence of possible correlation between dummy variables indicating appliance ownership and the equation error. The hypothesis of simultaneity in the demand system is tested.

Signature redacted

Thesis Supervisor: Dr. Daniel L. McFadden
Title: Professor of Economics

BIOGRAPHY
Personal Data
Date of Birth: January 24, 1957 (Berkeley, California)Married to Jacqueline Mary Dubin
Education
A.B. (Economics) University of California, Berkeley, 1978, withhighest honors and with great distinction.
Academic Appointments
Reader (Economics), University of California Berkeley, 1977.
Research Assistant (Economics), Massachusetts Institute of Technology,with Professor Daniel L. McFadden, 1979-1981.
Teaching Assistant (Economics), Massachusetts Institute of Technology, Graduate Applied Econometrics (appointment for Spring 1982).
Memberships in Scholarly and Professional Organizations
Phi Beta Kappa
American Economic Association
The Econometric Society
University of California, Lifetime Alumnus
Professional Service
Referee to Review of Economic Studies and Bell Journal of Economics
Fellowships, Scholarships, Honors, and Awards
Edward Frank Kraft Prize 1974-1975
Honor Roll 1974-1978 University of California, Berkeley
Phi Beta Kappa 1978
Department Citation in Economics, University of California, Berkeley,1978
Massachusetts Institute of Technology Fellowship 1978-1980

ACKNOWLEDGEMENTS

There are several people who have made this thesis possible. First I wish to thank my thesis committee Daniel McFadden, Ernst Berndt, and Franklin Fisher. Ernie and Frank read and commented on early drafts of this work and provided general guidance during this last year. My mentor and friend Dan McFadden provided very important advice and support and much of his valuable time. It has been a great pleasure to work as an apprentice under Dan during the last three years and I owe him a principal intellectual debt in teaching me the art and science of econometrics.

I wish to acknowledge further the support and understanding of my parents over the many years of my education. This thesis must be dedicated to them. I want to mention my oldest and dearest friend, Harry Kraus, who often encouraged me to complete this work and who introduced me to my wife Jackie. Jackie suffered with me the joys and trials of completing an empirical thesis. I am indebted to her for her help with typing and assembling of the manuscript.

I acknowledge the support of NSF 7920052-SOC., NSF 80-16043-DAR through Dan McFadden, the typing staff of the MIT Energy Laboratory, and the Department of Economics at MIT for fellowship support during the first two years in graduate school.
Pages
Introduction and Summary

1. Overview 7
2. The Residential Energy Consumption Process 9
3. Economic and Statistical Issues in Modelling the Choice of Durables and their Utilization 11
4. Organization of Thesis 13
Chapter One - On the Theory and Estimation of Consumer Durable Choice and Utilization
5. Introduction 17
6. Classical Models of Consumer Durable Choice 22
7. Consumer Durable Choice and Appliance Technology 29
8. Appliance Technology and Two-Stage Budgeting 44
9. Econometric Specification for Models of Durable Utilization 52
10. Summary and Conclusions 59
Chapter Two - Rate Structure and Price Specification in the Demand for Electricity
11. Introduction 61
12. Specification of Price: Theory 62
13. Specification of Price: Empirical Results 71
14. Measurement of Price: Theory and Estimation 85
15. Summary and Conclusions 106
Chapter Three - Estimation of Nested Logit Model for Appliance Holdings
16. Introduction 108
17. Nested Logit Model of Appliance Choice 109
18. Residential Heating and Comfort 116
19. Room Air Conditioner Choice Model 119
20. Water Heat Choice Model 126
21. Space Heat Choice System 133
22. Central Air Conditioning Choice 149
23. The Effect of the ASHRAE 90-75 Building Standards on the Saturation of Alternative HVAC Systems 156
24. Summary and Conclusions 158
Chapter Four
25. Introduction 159
26. Demand for Electricity by Aggregated Billing Period 160
27. Demand for Natural Gas by Aggregated Billing Period 171
28. Consistent Estimation of the Demand for Electricity and Natural Gas 173
29. Summary and Conclusions 183
Appendix One - A Review of the Appended NIECS Data Base and the Monthly Billing Data 189
30. The Appended NIECS Data Base 191
31. Reprocessing the Monthly Billing Data 194
32. Use of Billing Data to Obtain Marginal Prices 202
33. Adaptation of Annual Thermal Model to Monthly Billing Data 206
34. Case Study of Household Number 1271 223
35. Computer Programs and Selected Output 236
Appendix Two - Conditional Moments in the Generalized Extreme Value Family 259
Appendix Three - Two-Stage Single Equation Estimation Methods: An Efficiency Comparison 296
Glossary 322
References 325

Abstract

Economic Theory and Estimation of the Demand for Consumer Durable Goods and their Utilization: Appliance Choice and the Demand for Electricity

I. Overview

In the years 1947 to 1972 the United States experienced an almost seven-fold increase in the use of electricity. The early 1970's brought the interwined problems of depleting oil resources, increased dependence on oil imports, and a heightened need for a consensus in national energy policy. However, increasing concern over the safety of nuclear power mitigated the trend toward pervasive electrification and the nation's all-electric future.

The need to quantify the responsiveness of electricity utilization to various energy policies rose rapidly in the energy turbulent 1970's. This need was felt all the way down to home owners who became concerned with efficiency and costs of alternative heating and cooling systems. Of course home owners who had witnessed an increase in their energy budget from 26% in 1972 to 33% in 1980 knew all too well that the composition of their appliance stock greatly influenced their usage. ${ }^{1}$

Energy researchers also noted the importance of durable stocks in the energy demand process. ${ }^{2}$ Yet, only in very recent attempts have econometric simulation models allowed policy scenarios simultaneously to affect appliance holdings and resultant usage. In one direction are aggregate studies which fit average appliance saturations to the time
trend of income, prices, and other socio-economic variables. This approach is best exemplified in the modeling efforts of Hirst and Carney (1978). Other aggregate based studies are extensively reviewed in Hartman (1978, 1979). ${ }^{3}$

In contrast to the aggregate studies, several attempts to model jointly the demand for appliances and the demand for fuels by appliance have been completed using cross-sectional micro level survey data. ${ }^{4}$ The use of disaggregated data is desirable as it avoids the confounding effects of either misspecification due to aggregation bias or misspecification due to approximations in rate data.

Either approach has a common objective in modeling household energy consumption patterns from which to evaluate conservation and load management policies. For example, can we evaluate the welfare and distributional impacts of proposed government policies to decontrol the price of natural gas? How rapidly do consumers repond to rising energy prices? What are the differences between the energy consumption of owner-occupiers and tenants? What are the implications for public information programs that provide energy efficiency labeling and building and appliance standards? Does the marketplace offer sufficient incentives to pursue appropriate levels of conservation; what actions should government take, if any, to encourage conservation? Can we quantify the long and short-run responses to policy actions and describe the time path of conservation?

To answer these questions in a logical fashion requires us to conceptualize the residential energy consumption process.

II. The Residential Energy Consumption Process

Figure 1 illustrates the residential energy consumption process. Household demographics, household income, fuel prices, equipment prices, and climate are inputs to a residential choice process which determines appliance and dwelling characteristics. Included in appliance characteristics are fuel types, capacities, efficiencies, and holdings. Included in dwelling characteristics are structure type, size, and thermal integrity. Given the appliance and housing stock, households react to policy and market variables such as energy prices, efficiency standards, etc. to determine energy usage by appliance and by fuel type. Each policy question may be traced in its effects through the diagram in Figure 1. For example, consider a proposed change in the building code which would require all new dwellings to meet a baseline thermal integrity standard through wall and ceiling insulation. The increased thermal integrity in the housing stock would alter the structure of operating and capital costs of available heating and cooling systems available for purchase. Changes in expected operating and capital costs would produce a predictable shift in the saturations of alternative heating and cooling systems. Furthermore, the demand for fuels by appliance would be different to reflect the increased thermal integrity of the dwelling and the resultant changes in the marginal costs of providing these services. For details concerning the implementation of a large scale energy forecasting model the reader should consult Goett (1979) and Cambridge Systematics/WEST (1979).

For the purposes of forecasting, the residential energy consumption process is assumed to be recursive. In the first stage a housing

Figure 1
The Residential Energy Consumption Process

Abstract

decision is made. Conditional on the housing decision, appliance portfolios are chosen by the household, and finally, energy demand is determined conditional on the choice of appliance stock. For the purposes of estimation, however, it must be recognized that the demand for durables and their use are related decisions by the consumer. Econometric specifications which ignore this fact lead to biased and inconsistent estimates of price and income elasticities. It is to these issues that we now turn.

III. Economic and Statistical Issues in Modelling the Choice of Durables and Their Utilization

Economic analysis of the demand for consumer durables suggests that such demand arises from the flow of services provided by durables ownership. The utility associated with a consumer durable is then best characterized as indirect. Durables may vary in capacity, efficiency, versatility, and of course will vary correspondingly in price. Although durables differ, the consumer will ultimately utilize the durable at an intensity level that provides the "necessary" service. Corresponding to this usage will be the cost of the derived demand for the fuel that the durable consumes. The optimization problem posed is thus quite complex. In the spirit of the theory the consumer unit must weigh the alternatives of each appliance against expectations of future use, future energy prices, and current financing decisions.

The specification of econometric demand systems for fuel usage presupposes that consumers can detect prevailing marginal fuel rates in the presence of automatic appliances, billing cycle variations, and limited information on appliance operating characteristics. More fundamentally, there is the assumption that the shares of appliance
portfolios in recent construction provide information on consumer preferences, independently of portfolio decisions made by contractors.

Dubin and McFadden (1979) explore these issues and apply several tests to determine the exogeneity of appliance dummy variables typically included in demand for electricity equations. Their approach derives an indirect utility function which is consistent with the specification of a partial demand equation. The indirect utility function is used to predict portfolio choice while the demand equation predicts conditional electricity usage. ${ }^{5}$ The demand system consists of simultaneous equations with dummy endogenous variables (Heckman (1978, 1979)) and may be thought of as a switching regression with a structure analyzed by Lee (1981), Goldfeld and Quandt (1972, 1973, and 1976), Maddala and Nelson (1974 and 1975), and Fair and Jaffee (1972).

Employing a logistic discrete choice model of all electric versus all natural gas space and water heat systems combined with conditional demand for electricity, Dubin and McFadden (1979) reject the hypothesis that unobserved factors influencing portfolio choice are independent of the unobserved factors influencing intensity of use.

The purpose of this thesis is to analyze the residential demand for electricity and natural gas conditional on the choice of space heat, water heat, central and room air conditioning choice utilizing the National Interim Energy Consumption Survey (NIECS) 1978 survey of 4081 households. The model developed in this thesis is intended to have the flexibility to be included into a large micro-simulation forecasting system (such as the Residential End-Use Energy Policy

System (REEPS)). ${ }^{6}$ The thesis further extends the theoretical development of durable choice and utilization and seeks to examine the hypothesis of simultaneity between appliance choice and electricity and natural gas demand. The thesis is organized into four chapters and three appendices.

IV. Organization of Thesis

In Chapter One we develop the theory of durable choice and utilization. The basic assumption is that the demand for energy is a derived demand arising through the production of household services. The technology which provides the household service is the appliance durable. Durable choice is then associated with the choice of a particular technology from a set of alternative technologies. Using results from household production theory, we derive econometric systems which capture both the discrete choice nature of appliance selection and the determination of continuous conditional demand.

Chapter two reviews the theory of price specification and considers the comparative static analysis of demand subject to a declining block rate schedule. We further investigate the statistical endogeneity of prices whose construction requires utilization of the observed consumption level, and determine price specification within a sample of 744 households surveyed in 1975 by the Washington Center for Metropolitan Studies (WCMS). We finally consider the construction of marginal prices using the WCMS data and monthly billing data from NIECS.

Chapter Three describes the estimation of a discrete choice model for room air-conditioning, central air-conditioning, space heating,
and water heating. The form of the appliance choice model results from the assumption that the unobserved components of utility have a generalized extreme value distribution. A particular form of this distribution is considered which implies that the choice of room air conditioning given the choice of central air conditioing is independent of the choice of space heat system given the choice of central air conditioning. Water heat fuel choice is assumed to depend only on the choice of space heat system.

Chapter Four presents the estimation of the demand for electricity and natural gas. Consistent estimation procedures are used in the presence of possible correlation between the dummy variables indicating appliance holdings and the equation error term. We perform tests for simultaneity using the methods of Hausman (1978). Estimation is based on monthly billing data matched to each household in the NIECS survey. The monthly billing data provides an excellent time profile of usage which permits the determination of individual seasonal effects.

The main text of the thesis is followed by three technical appendices. The first appendix describes the processing of the NIECS data and the creation of an appended NIECS data base. It further describes the creation of marginal electricity and natural gas prices based upon the theory of Chapter Two and describes the use of a network thermal model to provide unit energy consumptions for alternative heating and cooling systems across time. ${ }^{7}$

The second appendix presents the calculation of various conditional moments in the generalized extreme value family. These results extend the analysis given in Dubin and McFadden (1979) for the case of discrete continuous econometric systems where discrete choice is assumed logistic. Finally, this appendix provides the conditional expectations used in selectivity type corrections of dummy endogenous variable systems in which the probability system is nested logistic. ${ }^{8}$

The third appendix considers an efficiency comparison of various two-stage consistent estimation techniques applied to a single equation which is linear in parameters but possibly non-linear in the interaction of a dummy endogenous variable and other exogenous explanatory variables. This class of models covers the demand system estimated in Chapter Four as well as the system of Dubin and McFadden (1979) and Heckman (1979). Asymptotic distributions are derived for each estimator using the methods of Amemiya (1978, 1979).

Footnotes

1. "Annual Report to Congress, Volume Two: Data, "U.S. Department of Energy, Energy Information Administration Report DOE/EIA-0173(80)/2 (Apri1, 1981), p. 9.
2. Classical studies of aggregate electricity consumption given appliance stocks are Houthakker (1951), Houthakker and Taylor (1970), and Fisher and Kaysen (1962). A number of other studies postulate an adaptive adjustment of consumption to long-run equilibrium, which can be attributed to long-run adjustments in holdings of appliances; see Taylor (1975).
3. The Hartman review describes both single fuel and inter-fuel substitution models. Among the single fuel demand studies based on aggregate data, Hartman includes Acton, Mitchell, and Mowill (1976), Acton, Mitchell, and Mowill (1978), Anderson (1973), Chern and Lin (1976), Hartman and Werth (1979), Mount, Chapman and Tyrell (1973), Wilder and Willenborg (1975), and Wilson (1971).
4. Cross-section studies with this structure are McFadden-KirschnerPuig (1977), the residential forecasting model of the California Energy Conservation and Development Commission (1979), the micro-simulation model developed by Cambridge Systematics/West for the Electric Power Research Institute described in Cambridge Systematics/West (1979), Goett (1979), and Goett, McFadden, and Earl (1980).
5. Related work in the area of discrete/continuous econometric systems is given in McFadden (1979), Duncan (1980a), Duncan and Leigh (1980), Duncan (1980b), Hay (1979), King (1980), Lee and Trost (1978), McFadden and Winston (1981), and Hausman and Trimble (1981).
6. See Cambridge Systematics/West (1979) for a description of REEPS.
7. See McFadden and Dubin (1982) for details about the thermal model developed to provide capacity and baseline usage of alternative heating and cooling systems in NIECS single family detached dwellings.
8. The nested logit model is described in McFadden (1978, 1979, and 1981).

CHAPTER I

ON THE THEORY AND ESTIMATION OF COMSUMER DURABLE CHOICE AND UTILIZATION

This chapter reviews and extends the economic and econometric models of consumer durable choice, holdings, and utilization. Examples are drawn primarily from the literature on electricity demand and appliance choice but much of the exposition is consistent with a wider realm of household behavior. For instance, the methodology could be used to develop a model of household automobile choice and utilization without substantive modification.

Consumer durable models are usefully classified by their treatment of durable utilization in addition to the frequent distinction between holdings and purchase. Broadly speaking, a purchase model analyzes the decision to acquire a durable stock while a holdings model attempts to explain how the stock evolves during its economic life.

Examples of pure holdings models are Diewert (1974) who uses the classical stock-flow model to analyze the demand for money over time, and Griliches (1960) who uses a stock-adjustment model to estimate the demand for farm equipment. Pure purchase or choice models are considered by Chow (1957) in the context of the demand for automobiles, Cragg and Uhler (1970), Cragg (1971), and Li (1977) for housing choice. Appliance purchase models are considered by McFadden-Kirschner-Puig (1977).

Examples of holdings and utilization models are the classical stock-flow utilization studies of aggregate electricty consumption given applicance stocks by Houthakker (1951), Houthakker and Taylor (1970), and Fisher and Kaysen (1962). Stock-adjustment models with utilization are treated in the work of Balestra and Nerlove (1966) on the demand for

natural gas.

Purchase or choice models for durable goods which jointly consider utilization are very recent. Dubin and McFadden (1979), Hartman (1979), and Hausman (1979) all consider discrete choice models of appliance ownership and corresponding utilization.

In general, any model of consumer durable choice should consider:

1) the distinction between the decision to purchase a stock of durable goods and the decision to hold or replace that stock,
2) the inherent "discreteness" of durable goods, e.g., while additional cooling may be provided by an individual room air-conditioner, available units offer only fixed ranges of capacity,
3) the imperfect or non-existence of rental markets for durable re-sale,
4) the sizable transaction and installation costs often connected with the decision to retrofit or upgrade a durable stock,
5) the intertemporal utility maximization problem that results from the inherently dynamic choice of a durable stock and the utilization of that stock over its lifetime,
6) the characterization of any solution to be conditioned on information available to the consumer at the time the decision is made; the modifications to that solution as new information becomes available, e.g., technological innovation or change in the relative costs of alternative fuels, and
7) the link between a durable good and the technology which it often embodies.

Unfortunately, previous literature has failed to incorporate all of these crucial points in a consistent model of durable choice behavior. For example, the classical holdings model of consumer durables as presented in Diewert (1974) assumes perfect foresight, perfect rental markets, and a flow of services that results from a stock of durable goods which depreciates but may be augmented continuously. This capital-theoretic framework fails to integrate the purchase decision with the decision to utilize or change the durable stock. The initial choice of durable stock with given features is crucially important, however, since the realization of levels or rates of change of key economic variables which differ from the consumer's ex-ante predicted values may make the ex-ante optimal durable choice ex-post nondesirable. Faced with low resale values of his durable stock, non-accessibility to markets for re-sale, or high transaction costs involved with the decision to retrofit, the consumer would not be expected to change his durable stock of ten and perhaps only when very large changes in utility had occurred. Furthermore, prices of durable goods reflect their capitalized rents and hence tend to have values which become significant fractions of consumers' budgets. The resolution of financing large initial set-up costs may directly affect durable choice when some consumers' access to capital markets is limited. This may indirectly affect the choice of other economic goods and thus affect consumer welfare.

The importance of initial purchase is derived from the notion that once a durable stock is purchased it will remain intact for many years. The classical model de-emphasizes the purchase decision by allowing "putty-putty" flexibility in durable stocks.

It would be unfair to say that the classical model cannot treat
aspects of transaction costs and limited rental markets. Such factors may be incorporated into stock-flow models but invariably surface in their effects on the "user cost of capital." A change in the user cost of capital induces an immediate and continuous response in the desired level of durable stock.

As an alternative to the classical model, consider the general discrete choice model. The discrete-choice model assumes that the purchase, holding, and replacement decisions correspond to differences in utility values crossing threshold levels. The decision to change the level of durable holdings is viewed as a discrete movement from one durable portfolio combination to another. This change is typically costly and occurs infrequently for the usual consumer.

The discrete and classical models of individual choice behavior differ in that the former does not assume that the stock of durable goods can be changed continuously. Thus differences between desired and actual stocks are not instantaneously or adaptively actualized as in the classical model. Finally, depreciation itself is often a stochastic phenomenon which represents durable failure and necessitates a repair or replacement decision on a very discontinuous basis. These distinctions are potentially important since they may imply rather different choice behavior by consumers. A comparison of the predictive abilities of the discrete choice approach with the classical model of durable choice awaits our empirical results.

The bulk of this chapter then is concerned with rigorously developing a theoretical and econometric framework for analyzing durable choice from a discrete choice perspective. We begin the chapter by reviewing several classical models and investigate their extensions. In Section II, we
turn to the development of the discrete choice approach by considering two examples.

The first example motivates the characterization of durable selection as the choice of a particular technology for producing household services which yield direct satisfaction to the consumer. This link to household production theory relaxes the assumed proportionality relationship between flows and stocks in the classical model. The second example explores the engineering characterization of durable selection which emphasizes the trade-offs between operating and capital costs. The engineering approach is shown to be the natural dual to a general utility maximization model which incorporates the aspects of discrete choice, household production and the trade-off between operating and capital costs.

In Section IV, we seek conditions on technology and preferences under which household production of durable services follows a two-stage plan. In the first stage, consumers determine optimal production service levels and in the second stage choose input combinations which produce these services at minimum cost. Section V introduces several econometric models of discrete choice and utilization with explicit attention given to the link with the theoretical model and the treatment of stochastic components. A final section provides a summary and conclusions.

II. Classical Models of Consumer Durable Choice

This section reviews the classical stock flow model and the user cost of capital concept. We then modify the stock-flow model to allow a fixed coefficient technology and an element of discreteness in the durable stock.

1. Stock-Flow Model

For simplicity we discuss a two-period consumer choice model with complete markets and perfect information. Assume that in each period, consumers derive utility from consumption of a non-durable good, denoted by q, and from consumption of the flow of services provided by the stock, K, of a durable good. Here we assume that the flow of services is proportional to the stock and denote the intertemporal utility function by $U\left(q_{1}, q_{2}, K_{1}, K_{2}\right)$ where the stock variables replace the flow variables by a change in units. The basic notation to be used in this section is:
$q_{j}=$ consumption of non-durable good in period j
$p_{j}=$ spot price of non-durable good in period j
$K_{j}=$ stock of durable good in period j
$S_{j}=$ savings in period j
$v_{j}=$ spot price of durable good in period j
$W_{j}=$ income in period j
$D_{j}=$ purchases of durable good in period j
$\omega=$ depreciation rate
i $=$ interest rate
In keeping with the spirit of this model, we assume that income is exogenously determined in each period and that spot prices are known with certainty. In this classical framework, the durable good K is defined over a continuous range and is assumed to depreciate continuously at rate ω.

Three equations determine the relationships among the state variables:

$$
\begin{align*}
& w_{1}-p_{1} q_{1}-v_{1} K_{1}=s_{1} \tag{1}\\
& w_{2}+s_{1}(1+i)=p_{2} q_{2}+v_{2} D_{2} \tag{2}\\
& k_{2}=D_{2}+(1-\omega) K_{1} \tag{3}
\end{align*}
$$

Equation (1) states that cash flow in period 1 is income in period 1 less expenditures on durable and non-durable goods in period 1. Equation (2) similarly states that expenditures on durable and non-durable goods in period 2 must equal disposable income defined by income in period 2 and the second period value of the first period cash flow. In (3), the level of durable stock in period 2 is determined by purchases of the durable good in period 2 plus the net (after depreciation) level of stock of durable good from period 1. Note that we set $S_{2}=0$ which is the two period model constraint and have implicitly set $D_{1}=K_{1}$ which implies from (3) that the consumer begins period 1 without any durable stock. This implies a minor asymmetry between periods 1 and 2 which is basic to finite time horizon models. We combine equations (1) and (2) to obtain:

$$
\begin{equation*}
w_{1}+w_{2} /(1+i)=p_{1} q_{1}+p_{2} q_{2} /(1+i)+v_{1} K_{1}+v_{2} D_{2} /(1+i) \tag{4}
\end{equation*}
$$

In (4), expenditures are allocated over the two periods so that their present discounted value is equal to wealth, i.e., the present discounted value of income. Combining equation (4) with equation (3) we obtain:

$$
\begin{align*}
w_{1}+w_{2} /(1+i)=p_{1} q_{1}+p_{2} q_{2} /(1+i) & +\left[v_{1}-((1-\omega) /(1+i)) v_{2}\right] \cdot k_{1} \tag{5}\\
& +\left[v_{2} /(1+i)\right] \cdot k_{2}
\end{align*}
$$

Equation (5) now has the usual form of a budget constraint set for the utility function $U\left[q_{1}, q_{2}, k_{1}, K_{2}\right]$. The "price of $K_{1},\left[v_{1}-((1-\omega) /(1+i)) v_{2}\right]$, is the "user cost of capital" or "rental equivalent price". Purchasing one unit of durable good has an associated cost of v_{1}. After one period, (1-w) units of the durable stock will remain due to depreciation. The present discounted value of the revenue from reselling the (1-w) units of durables at price v_{2} is $\left[(1-\omega) v_{2} /(1+i)\right]$. The net price is then clearly the difference.

An essential feature of the stock-flow model of durable holdings is the definition of rental equivalent prices. This is accomplished through rearrangement of the budget constraint set and does not involve the preferences defined by $U\left[q_{1}, q_{2}, k_{1}, k_{2}\right]$. The extension of the definitions of user cost and rental equivalent prices where there are more than two periods is straightforward.

Diewert performs precisely this generalization and estimates rental equivalent prices for durable commodities. He then fits a flexible intertemporal indirect utility function using the defined prices.

Diewert (1974) and others have noted that the concept of user cost may be related to the rate of nominal appreciation or depreciation in capital value of the durable good. Specifically, let $k=$ $\left(v_{2}-v_{1}\right) / v_{1}$ so that:

$$
\begin{equation*}
\left[v_{1}-((1-\omega) /(1+i)) v_{2}\right]=v_{1}[1-((1-\omega) /(1+i))(1+k)] \tag{6}
\end{equation*}
$$

A first-order Taylor approximation implies that the second term can be written as $v_{1}[i+\omega-k]$. When second period prices are unknown and consumers use estimated values for k, it is possible that the user cost term may be negative. This would, unrealistically, imply optimally unbounded
purchase of the durable in the first period. ${ }^{2}$ One method of smoothing the connection between the predicted changes in durable stocks implied by changes in the rental equivalent price is to postulate a lag structure in which stocks of durables adjust partially in the direction of the difference between desired and actual holdings. The stock-adjustment variants of the stock-flow model require strong assumptions both in their theory and in their estimation.

The components of user cost v_{1}, i, ω, and k are in reality specific to a particular consumer and a particular durable type. An important generalization to be considered below is the case of a population of consumers with heterogeneous tastes and with choices defined over a broad range of durable categories.

2. Consumer Choice of Fixed Coefficient Technology with Operating Costs

We now extend the stock-flow model of durable choice to incorporate the effects of operating costs. Here we link the durable choice to the selection of a technology for producing a given end-use service. Consider the classic example of a light bulb which may be regarded as a durable good. That is, it represents the technology for producing so many candle hours of lighting service while requiring the basic fuel input of electricity. In this example it is reasonable to assume that the energy service ratio defining electricity input per unit of service output is constant. This assumption is equivalent to assuming that lighting services are delivered by a fixed-coefficient technology.

To extend the neo-classical durable choice model, define:
$x_{j}=$ consumption of input commodity
$\theta \quad=\quad$ energy service ratio
$w_{j}=$ spot price of input commodity
Equations (1) and (2) are modified in equations (7) and (8) respectively to include purchase of the input commodity
(7) $w_{1}-p_{1} q_{1}-w_{1} x_{1}-v_{1} k_{1}=s_{1}$
(8) $w_{2}+s_{1}(1+i)=p_{2} q_{2}+w_{2} x_{2}+v_{2} I_{2}$

Equation (3) remains unchanged while the technology for constant energy service ratio is:
(9) $x_{j}=\theta \cdot K_{j}$ for $j=1,2$

Although the energy service ratio is assumed constant for the present, it would more generally be related to the rate of depreciation and fuel or durable type, etc. Combining equations (3), (7), (8), and (9) we obtain:

$$
\begin{align*}
{\left[w_{1}+w_{2} /(1+i)\right]=p_{1} q_{1}+p_{2} q_{2} /(1+i) } & +\left[v_{1}-((1-w) /(1+i)) v_{2}+w_{1} \theta\right] K_{1} \tag{10}\\
& +\left[\left(v_{2}+w_{2} \theta\right) /(1+i)\right] K_{2}
\end{align*}
$$

The "price" of K_{1}, $\left[v_{1}-((1-\omega) /(1+i)) v_{2}+w_{1} \theta\right]$, consists of the rental equivalent price as defined above plus the term $w_{1} \theta$ which represents the input price per unit of service.

Provided that production technologies for end-use service exhibit constant returns to scale, it is clear that the user cost concept can be extended to include operating costs. Technologies which do not exhibit constant returns to scale are considered below.

3. Neo-Classical Choice of Discrete Durable Stock

Some attempts have been made to incorporate discreteness in a single-period neo-classical framework. ${ }^{3}$ To highlight the salient
features of this approach, suppose that consumers either own one unit of durable stock, $K_{1}=1$, or they do not, $K_{1}=0$. Assume that consumers derive utility $U\left[q_{1}, K_{1}\right]$ from a flow of services assumed proportional to the durable stock and from consumption of a single non-durable good. The one-period budget constraint is:

$$
\begin{equation*}
w_{1}=p_{1} q_{1}+v_{1} K_{1} \tag{11}
\end{equation*}
$$

The durable good is purchased when
(12) $U\left[\left(W_{1}-v_{1}\right) / p_{1}, 1\right]>U\left[W_{1} / p_{1}, 0\right]$

For concreteness, assume $U\left[q_{1}, K_{1}\right]=\left(K_{1}+k_{1}\right)^{\alpha} \cdot q_{1}^{(1-\alpha)}$ with $k_{1}>0$. Then condition (12) implies:

$$
\begin{equation*}
\left(1+k_{1}\right)^{\alpha} \cdot\left[\left(W_{1}-v_{1}\right) / p_{1}\right]^{(1-\alpha)} \geq\left[k_{1}^{\alpha} \cdot\left(Y / p_{1}\right)^{(1-\alpha)}\right] \tag{13}
\end{equation*}
$$

If we let d_{1} be the constant $\left[\left(1+k_{1}\right) / k_{1}\right]^{\alpha(1-\alpha)}$ then condition (13) holds when $W_{1} \geq d_{1} v_{1} /\left(1-d_{1}\right)$. The income level $W_{1}^{0}=d_{1} v_{1} /\left(1-d_{1}\right)$ marks a threshold level of expenditure delineating durable and non-durable owners. The generalization of this simple example to a population of consumers with heterogeneous tastes motivates a probabilistic choice system.

To generate a probabilistic choice system we might assume that the behavioral parameter α has a distribution $F_{\alpha}[t]$ in the population. Let $F_{d_{1}}[t]$ denote the cumulative distribution function for d_{1} induced by the distribution of a. Then from (12) we have:
(14) $\operatorname{Prob}[$ durable is purchased $]=\operatorname{Prob}\left[W_{1} \geq W_{1}^{0}\right]$

$$
=\int_{-\infty}^{W_{1} /\left(W_{1}+v_{1}\right)} d F_{d_{1}}[t]
$$

In the next section, we consider the specification of more general probabilistic choice systems for durable-technology choice consistent with the specification of demand for end-use service.

III. Consumer Durable Choice and Appliance Technology

The demand for energy by the household is a derived demand arising through the production of household services. The technology which provides household services is embodied in the household appliance durable. To understand the residential demand for energy we must therefore understand the residential demand for durable equipment.

Assume that a household faces a decision in which a space heating system is being considered. This decision may arise as a result of the installation of a heating system in new construction, as part of a technological.upgrading of the existing stock (the "retrofit" decision), or from replacement due to existing system failure. Observational experience suggests that households choose a temperature profile during a 24-hour period which they attempt to attain using their heating system. For some households this may involve setting the thermostat at one temperature during the day and at another level at night. Other households rely on thermostat timers or simply the "feel" of the coldness in the air.

The degree to which a given housing structure loses heat to the colder outside is related directly to the size of the various exposed surfaces and their conductivity to heat flow as well as the absolute temperature differential. Insulation in the walls and ceiling and the presence of storm windows all lower the overall thermal conductivity of the housing shell and hence the requirements on a heating system to maintain a given comfort level. As the temperature differential between inside and outside increases, the capacity of a system for providing delivered BTU's of heat may be reached. Recommended construction
practice suggests that a space heating system should provide adequate heating capacity against all but the coldest 1 percent of the heating season. ${ }^{4}$ It is thus an engineering decision which determines required capacity.

Given the capacity of the system, households then choose among available technologies and delivery systems. For example, space heating is commonly provided by central forced air, wall units, hot water radiators, etc. Each system is available at a corresponding capital cost. In choosing a given space heating system type, consumers face an economic decision in which they compare the initial dis-utility of purchasing the capital equipment with the future utility of the heating services provided by its operation.

The simultaneous consideration of ex-ante purchase and ex-post utilization apply to a wide variety of appliance durables. ${ }^{5}$ Assume that the consumer faces a set B of possible appliance designs. We distinguish between variable parameters, a, and fixed design parameters, K, in the definition of $b=(a, K) \varepsilon B$. Examples of characteristics which are fixed in the design and construction of a given appliance and not subject to variation by consumer are capacity, size, voltage, recovery rate, reliability, appearance, durability, and range of operation. Other fixed factors concern the affect of the structure on appliance technology. Examples of structural parameters are the size of the dwelling, the number of rooms, and the thermal integrity of the dwelling.

Variable parameters consist primarily of environmental factors and perhaps the outcome of a random failure of an appliance or a random change in technological performance.

Environmental factors are typically beyond the control of the individual. Structural parameters are variable in the longest run in which major structural changes can be effected. Important exceptions to this include a change in the thermal integrity of the dwelling resulting from installation of insulation or storm windows.

An appliance production $p l a n, Y=\left\{Y_{t}, t=1,2, \ldots L\right\}$ consists of netput vectors $Y_{t}=\left(Z_{t},-X_{t}\right)$ where components of Z_{t} are positive outputs and components of X_{t} are positive inputs. The production plan Y is feasible when Y is a member of the restricted technology set $V(b)$ corresponding to design vector $b \in B$. Outputs of a production plan corresponding to a given appliance technology are end-use services which yield direct utility to the individual. Examples of residential services are degree hours of heating or degree hours of cooling, degree hours of maintained water temperature, loads of dishes washed, etc.

Inputs to an appliance technology would include labor, labor and materials for maintenance, and primarily fuel. Fuel input would almost certainly be determined by choice of a fixed design parameter. Joint production is possible and provides a natural framework for the technology of space-conditioning in which one durable good provides both cooling and heating capability.

We assume that individuals maximize an intertemporal utility function $U\left[Z, Z^{0}\right]$ where Z are the outputs of an appliance production plan, and Z^{0} is a consumption plan in traded commodities Z_{t}^{0}, with $z^{0}=\left\{Z_{t}^{0}, t=1,2, \ldots L\right\}$. We further assume that individuals contract for inputs on future markets with vector P_{X} and price vector $P_{Z} 0$ for traded commodities Z^{0} subject to a budget constraint in wealth W. Suppose further that appliance technology $V(a, K)$ is available to the
consumer at cost $H[K]$. The consumer's problem is then:
$\max U\left[Z, Z^{0}\right]$ subject to :

$$
P_{X} X+P_{Z} 0 Z^{0} \leqq W-H[K] \text { and } Y=(Z,-X) \varepsilon V(b) \text { for } b=(a, K) \varepsilon B .
$$

We will see that the assumption of a distribution for utility in the population and the finiteness of the set K leads to probability choice systems in which each possible resultant technology has a well-defined selection probability. To illustrate these concepts and elucidate their connection to other work we consider two examples.

Example one considers a choice between two alternative technologies for producing identical final services. Example two considers the choice among a continuum of technologies for producing identical final services, each technology available at a pre-specified price. These examples illustrate that the general ex-ante selection of techology will involve both discrete and continuous choices. Each example also suggests a natural cost minimization dual which takes service levels parametrically. Example 1

Our first example assumes a one-period world in which consumers have the choice of two technologies for providing an identical end-use service. The isolated choice of a gas or an electric clothes dryer for providing a given service level, e.g., pounds of dry clothes per day, fits into this category.

Suppose that the alternative technologies are given by $Y_{1}^{1}=f_{1}\left(x_{1} ; \bar{a}\right)$ and $Y_{1}^{2}=f_{2}\left(x_{2} ; \bar{a}\right)$ with respective purchase prices of v_{1} and v_{2}.

Vectors x_{1} and x_{2} represent inputs to the respective technologies and may be purchased at prices p_{1} and p_{2}. The parameters $\overline{\mathrm{a}}$ are assumed fixed in the short run and are independent of techrology choice. Conditioning production on the parameters \bar{a} in the function f
corresponds to the notion of a restricted technology set used above. Note that the durable appliance technology is available in exactly two varieties in contrast to the classical stock-flow model where capital is assumed to be the input to household production.

We assume that preferences are representable by a single period utility function $U\left[Y_{1}, Y_{2}\right]$ where Y_{1} is the end-use service level provided by either of the alternative technologies and γ_{2} is a transferable numeraire or Hicksian commodity.

The consumer's decision problem is to make an ex-ante technology choice recognizing that ex-post, income I will be allocated between expenditures on input commodities and all other goods to achieve maximal utility in goods and services.

The indirect utility corresponding to the choice of the first technology is:

$$
\begin{align*}
V\left[I-v_{1}, p_{1} ; \bar{a}\right] & =\max U\left[Y_{1}^{1}, Y_{2}\right] \text { subject to: } \tag{15}\\
Y_{1}^{1} & =f_{1}\left(x_{1} ; \bar{a}\right) \text { and } p_{1} x_{1}+v_{1}+Y_{2} \leq I
\end{align*}
$$

Similarly the indirect utility corresponding to the choice of the second technology is:

$$
\begin{align*}
V\left[I-v_{2}, p_{2} ; \bar{a}\right] & =\max U\left[Y_{1}^{2}, Y_{2}\right] \text { subject to } \tag{16}\\
r_{1}^{2} & =f_{2}\left(x_{2} ; \bar{a}\right) \text { and } p_{2} x_{2}+v_{2}+Y_{2} \leq I
\end{align*}
$$

In principle, indirect utility is conditioned on the utility and production functionals as well as the parameters \bar{a}. We have followed the usual convention in suppressing these arguments.

Consumers will choose technology 1 if and only if:
(17) $V\left[I-v_{1}, p_{1} ; \bar{a}\right] \geq V\left[I-v_{2}, p_{2} ; \bar{a}\right]$.

This implies that unconditional indirect utility is given by:

$$
\begin{equation*}
V \star\left[I-v_{1}, I-v_{2}, p_{1}, p_{2} ; \bar{a}\right]=\max \left(V\left[I-v_{1}, p_{1} ; \bar{a}, V\left[I-v_{2}, p_{2} ; \bar{a}\right]\right)\right. \tag{18}
\end{equation*}
$$

In this example, ex-ante choice between technologies is discrete. Either technology 1 is purchased or technology 2 is purchased. This choice has an immediate income response through the purchase price v_{j}. In a multi-period model we will consider the financing aspects of durable purchase.

The budget set in final goods and services corresponding to the first technology is:

$$
\begin{equation*}
c_{1}=\left\{\left(Y_{1}, Y_{2}\right) \varepsilon R_{+}^{2} \mid Y_{1}=f_{1}\left(x_{1} ; \bar{a}\right) ; \rho_{1} x_{1}+Y_{2}+v_{1} \leq I ; x_{1} \geqq 0\right\} \tag{19}
\end{equation*}
$$

When the production function $f_{1}\left(x_{1} ; \bar{a}\right)$ is invertible, (19) may be written:

$$
\begin{equation*}
c_{1}=\left\{\left(Y_{1}, Y_{2}\right) \varepsilon R_{+}^{2} \mid p_{1} f^{-1}\left[Y_{1} ; \bar{a}\right]+Y_{2} \leqq I-v_{1}\right\} \tag{20}
\end{equation*}
$$

where $f_{1}^{-1}\left[Y_{1} ; \bar{a}\right]$ denotes the assumed non-negative quantity of input x_{1} necessary to produce service level Y_{1} given the variable parameters $\overline{\mathrm{a}}$.

Assume that the technology is smooth so that the marginal rate of substitution and its rate of change can be calculated on the boundary of c1. From (20):

$$
\begin{align*}
& d Y_{2} / d Y_{1}=-p_{1} / f_{1}^{\prime}\left(x_{1} ; \bar{a}\right)<0 \text { and } \tag{21}\\
& d / d x_{1}\left[d Y_{2} / d Y_{1}\right]=\frac{f^{\prime \prime}\left(x_{1} ; \bar{a}\right) \cdot p_{1}}{\left[f^{\prime}\left(x_{1} ; \bar{a}\right)\right]^{2}}<0
\end{align*}
$$

where we have assumed for convenience that f is strictly increasing and concave in its first argument and that p_{1} is positive. The set c_{1} is
illustrated in Figure 1.

Figure 1

We assume that $f_{1}(0 ; \bar{a})=0$ so that zero utilization of the input comodity results in point A of the budget set. Strict convexity of the budget set is implied by (22). The budget set corresponding to the second technology is the area beneath the dotted line connecting points C and D. Figure 1 illustrates a situation in which maximal utility in final goods and services is achieved at points E and F corresponding to ex-ante choice of technologies 1 and 2 respectively. In this example, maximal utility would be achieved through choice of technology 1.

The indifference curves for utility at points E and F are drawn to reflect the necessary tangency conditions.

The Lagrangian for (15) (with multipliers λ_{1} and λ_{2}) is:

$$
\begin{equation*}
L=U\left[Y_{1}^{1}, Y_{2}\right]+\lambda_{1}\left[Y_{1}^{1}-f_{1}\left(x_{1} ; \bar{a}\right)\right]+\lambda_{2}\left[I-p_{1} x_{1}-v_{1}-Y_{2}\right] \tag{23}
\end{equation*}
$$

The first-order conditions are:

$$
\begin{equation*}
L_{x_{1}}=-\lambda_{1} f_{1}^{\prime}\left(x_{1} ; \bar{a}\right)-\lambda_{2} p_{1}=0, \tag{24}
\end{equation*}
$$

$$
\begin{equation*}
L_{Y_{1}^{1}}=U_{1}\left[Y_{1}^{1}, Y_{2}\right]+\lambda_{1}=0 . \tag{25}
\end{equation*}
$$

Combining (24), (25), and (26) we obtain the tangency condition:
(27) $\frac{-U_{1}\left[Y_{1}^{1}, Y_{2}\right]}{U_{2}\left[Y_{1}^{1}, Y_{2}\right]}=\frac{\lambda_{1}}{\lambda_{2}}=\frac{-p_{1}}{f_{1}^{\prime}\left(x_{1} ; \bar{a}\right)}$

Equation (27) simply equates the marginal rate of substitution between end-use services, Y_{1}^{1}, and all other goods, Y_{2}, to the marginal cost of producing γ_{1}^{1}.

Equation (23) reveals that Roy's identity continues to hold for input or "intermediate" goods. Using the envelope theorem:
(29) $L_{p_{1}}=-x_{1} \lambda_{2}$. From (28) and (29) we have:
(30) $\frac{-V_{2}\left[I-v_{1}, p_{1}\right]}{V_{1}\left[I-v_{1}, p_{1}\right]}=\frac{-L_{2}\left[I-v_{1}, p_{1}\right]}{L_{1}\left[I-v_{1}, p_{1}\right]}=x_{1}$

Dubin and McFadden (1979) have used this result along with simple assumptions about technology to derive a consistent econometric choice and utilization system.

We have, thus far, assumed strict concavity of the production function $Y_{1}^{1}=f\left(x_{1} ; \bar{a}\right)$ which implies the strict convexity of budget constraint set c_{1}. When the production function is in fact linear in x_{1}, the fixed-coefficient technology results. In this case the boundary of c_{1}
is flat and we may define a service price for end-use consumption which is constant. Furthermore, linearity in the input good x_{1} insures that the average efficiency of production defined by the service level achieved per quantity of input utilized is constant.

The appropriate extension of the concept of average efficiency to cases in which production exhibits decreasing returns to scale is the notion of marginal efficiency. We define the marginal efficiency of production resulting from input x as the marginal product of x conditioned on all variable design parameters. This definition implies that the electrical efficiency of providing cooling-degree hours of air-conditioning will depend on climate, usage levels, insulation, capacity of the air-conditioning unit, etc. The quantity $p_{1} / f_{1}\left(x_{1} ; \bar{a}\right)$ in (27) may be interpreted as the end-use service price for Y_{1}^{1}. We see that the end-use service price or marginal cost of Y_{1}^{1} is the price of input commodity x_{1} divided by the marginal efficiency of x_{1}.

This example has considered the choice of alternative technologies with fixed purchase prices for production of an identical end-use service. Our next example considers a similar choice situation but allows service price to vary according to the selection of certain fixed design parameters.

Example ?
Let $U[Y]$ denote the single-period utility derived from consumption of service level Y. Suppose that the technology for Y is given by $Y=f[x ; K]$. For simplicity we assume that Y, x, and K are scalars where x represents an input commodity and K represents a fixed design parameter. In the light bulo example, K might be interpreted as a measure of durability, or K might measure an upper limit to cooling
capacity or efficiency level for an electric air conditioner. The fixed design component determines the purchase price within the function $H[K]$. The function $H[K]$ is assumed known in this example but in practice would be estimated from engineering and marketing data.

The consumer's problem is to distribute income, I, optimally between the initial purchase price $H[K]$ and operating cost to achieve maximal utility. This problem can be formulated as:
(31) $\max U[Y]$ subject to $Y=f[X ; K]$ and $p x+H[K] \leqq I$, which is clearly equivalent to:
(32) $\max U[f[x ; K]]$ subject to $p x \leqq I-H[K]$

Maximization of (31) conditional on K yields indirect utility
$U[f[I-H(K)) / p] ; K])$.
Total utility is then $\max _{K} U(f[(I-H(K)) / p ; K])$ which leads to the following first order condition:
(33) $\frac{f_{2}[(I-H(K)) / p ; K]}{f_{1}[(I-H(K)) / p ; K]}=\frac{H^{\prime}(K)}{p}$

From (33) or by inspection one finds that (32) is clearly the dual to the minimization problem:
(34) min $[H(K)+p x]$ subject to $y^{0} \geqq f(x ; K)$ where Y^{0} represents a pre-chosen service level. The duality between the maximization problem in (32) and the minimization problem in (34) is a consequence of the monotonic transformation of the production function f by the utility function U. The duality exhibited in this example illustrates a deeper issue of separability to be confronted in Section IV.

We consider two specializations of this example which are easily
illustrated. Suppose first that $H(K)=r K$ where r is interpreted as the price of attribute K. The maximization problem in (32) is illustrated in Figure 2 where the indifference surface denoted by \tilde{U} is given by:

$$
\tilde{U}=\{(x, K) \quad U[f(x ; K)]=c\}
$$

for some constant level of indirect utility c. The budget set, B, is given by the area below the line $p \cdot x+r k=I$.

Figure 2

Figure 3

Figure 3 similarly illustrates minimization of isocost, $c=p x+r k$, subject to the isoquant determined by $y^{0}=f(x ; k)$. Tangencies in Figures 2 and 3 represent first-order condition (33).

Hartman's (1979) adapatation of Hausman's (1979) theoretical framework considers precisely the minimization problem: min ($p \cdot x+r K$) subject to $y^{0}=f(x ; K)$. Hartman specifies the service demand y^{0} as a function of exogenous variables and an efficiency adjusted price for fuel input. His methodology, however, begs the separability issues which allow a formal two-stage consistent budgeting decision to be made.

Our second specialization of the maximization problem (31) assumes that the production function $f(x ; K)$ has the form $\rho(K) x$. We assume that $\rho(\cdot)$ is positive and strictly increasing in K. Note that f now exhibits a marginal efficiency which is independent of x yet depends explicitly on the fixed design parameter K. Equation (31) is then equivalent to:

```
max U[Y] s.t. (p/\rho(K))Y\leqI - H[K]
```

We may write the indirect utility from (35) as $V[I-H(K), p / \rho(K)]$ to underscore a direct trade-off between operating and "capital" costs. If we let $\tilde{H}=H[K]$ and $\tilde{p}=p / \rho(K)$ then $V *[\tilde{H}, \tilde{p}]=V[I-\tilde{H}, \tilde{p}]=$ V[I-H(K), p/p(K)] defines the indirect utility when purchase price is H and service price is p. Figure 4 depicts a level set of the function V^{*}.

Figure 4

The curvature and slope of the indifference locus in Figure 4 follow by application of Roy's identity and the Slutsky equation. Specifically, the slope of the indifference locus is:

$$
\begin{equation*}
\frac{d \tilde{H}}{d \tilde{p}}=\frac{V_{2}[I-\tilde{H}, \tilde{p}]}{V_{1}[I-\tilde{H}, \tilde{p}]}=-Y[I-\tilde{H}, \tilde{p}]<0 \tag{36}
\end{equation*}
$$

where the second equality is a consequence of Roy's identity. From equation (36) we have:
(37) $\frac{d}{d \tilde{p}} \frac{d \tilde{H}}{d \tilde{p}}=Y_{1} \frac{d \tilde{H}}{d \tilde{p}}-Y_{2}=-\left[Y_{1} Y+Y_{2}\right] \geq 0$
where $Y_{1} Y+Y_{2}$ is equivalent to the Hick's compensated price derivative of $Y[I-\tilde{H}, \tilde{p}]$ by Slutsky's equation and is therefore nonpositive.

The trade-off between purchase price $\tilde{H}=H[K]$ and $\tilde{p}=\rho / \rho(K)$ is illustrated by the locus T in Figure 4. The slope of this locus at a point ($\tilde{\mathrm{p}}, \tilde{H}$) is negative if we assume that purchase price is increasing in the attribute K;

$$
\frac{d \tilde{H}}{d \tilde{p}}=\frac{d \tilde{H}}{d K} / \frac{d \tilde{p}}{d K} \quad \text { implies: }
$$

$$
\begin{equation*}
\frac{d \tilde{H}}{d \tilde{p}}=\frac{-H^{\prime}(K)(\rho(K))^{2}}{\rho \rho^{\prime}(K)}<0 \text { as } H^{\prime}(K)>0 . \tag{38}
\end{equation*}
$$

The curvature of the locus T will depend on the derivatives of the functions H and ρ and is drawn convex to the origin for illustration only. Note that increasing utility is represented by indifference loci nearer the origin while the feasible price space is determined by the unbounded area above the locus T. It is easy to verify that equating the derivatives (36) and (38) reproduces first-order condition (33) under the maintained assumption $f[x ; K]=\rho(K) \cdot x$.

Figure 4 suggests a motivation for a dual cost minimization problem which is implicit in the approach of Hirst and Carney (1978):
(39) $\min _{\tilde{p}, \tilde{H}}\left(\tilde{p} y^{0}+\tilde{H}\right)$ subject to $(\tilde{p}, \tilde{H}) \varepsilon T$
where y^{0} denotes a predetermined service level.
One may easily verify that (39) produces the first-order condition
(33). The minimization problem (39) is illustrated in Figure 5. We have followed the convention of drawing the locus T concave to the origin. A sufficient condition for this curvature is increasing marginal purchase costs as (38) implies:
(40) $\frac{d}{d K}\left(\frac{d \tilde{H}}{d p}\right)=\frac{-1}{p} \frac{\rho^{\prime}\left[H^{\prime} 2 \rho \rho^{\prime}+\rho^{2} H^{\prime \prime}\right]-H^{\prime} \rho^{2} \rho^{\prime \prime}}{\left(\rho^{\prime}\right)^{2}}<0$
when $H^{\prime \prime}(K)>0$.

Figure 5

These examples have illustrated how the consumers durable choice problem can be represented in terms of the optimal choice of technology subject to financial and technological constraints. In the next section we derive conditions under which the separability in utility implied by appliance-production technologies permits a consistent two-stage or "tree" budget program. Under the two-stage budgeting procedure, consumers first determine optimal production service levels and then choose input combinations which produce these service levels at minimum cost.

IV. Appliance Technology and Two-Stage Budgeting

The examples pressented in section III make clear the observation that household energy demand is a derived demand for basic fuel inputs to appliance technologies. Conditions under which the optimal allocation of inputs to appliance technologies may be separated by appliance type are now examined The separability condition has very strong implications for the form of the production technology and for the final form of the indirect utility function.

Intertemporal Separability

We consider the intertemporal utility maximization problem allocating intermediate goods to the production of final services, over some fixed horizon L. For convenience, we assume that utility, $U=U\left[U_{1}, U_{2}, \ldots, U_{L}\right]$, is weakly intertemporally separable with U_{t} being the utility of goods and services in period t.

The intertemporal utility maximization problem allocates wealth W among the L periods to:
(41) maximize $U=U\left[U_{1}, U_{2}, \ldots, U_{L}\right]$ subject to $\sum_{t=1}^{L} E_{t}\left(U_{t}, P_{t}\right) \leq W$ where
$E_{t}\left(U_{t}, P_{t}\right)=$ present discounted value of the minimum expenditure necessary to achieve utility level U_{t} at price P_{t}.

The demand for goods and services in period t will in general depend on all prices $p_{1}, p_{2}, \ldots, p_{L}$ and wealth W. To achieve demand separability, one must either solve a broad group allocation problem which determines total expenditure in each period or else assume that budget constraints between expenditure groups are set exogeneously. When the intertemporal
allocation problem can be solved using appropriate temporal price indices a perfect aggregation solution is said to exist.

Gorman (1959) determined the necessary and sufficient conditions for perfect aggregation such that the consumer need not know the actual prices of the individual goods in order to carry out his preliminary allocation, as long as he knows the values of the price indices and his own income. The existence of unconditional group price indices requires that the utility function be homothetically separable or strongly separable in Gorman polar form.

An implication of the Gorman proposition noted by Blackorby, Lady, Nissen, and Russel (1970) is that when the utility function is homothetically separable perfect aggregation implies a consistent two-stage budgeting procedure.

In the first stage, consumers solve:

$$
\begin{align*}
& \max U\left[U_{1}, U_{2}, \ldots, U_{L}\right] \text { subject to } \tag{42}\\
& \sum_{t=1}^{L} P_{t}\left(p_{t}\right) \cdot U_{t} \leqq W
\end{align*}
$$

Note that (42) has the usual form of utility maximization subject to a budget constraint with U_{t} interpreted as quantities purchased at prices $P_{t}\left(p_{t}\right)$. The second stage uses the quantities U_{t} implied by (42) to define broad temporal expenditures $I_{t}=U_{t} \cdot P_{t}\left(p_{t}\right)$. Second stage commodity demand satisfies:

$$
\begin{equation*}
\max U_{t}\left(x_{t}\right) \text { subject to } p_{t} \cdot x_{t} \leqq I_{t} \tag{43}
\end{equation*}
$$

Gorman posed the perfect aggregation problem for allocation of expenditure among broad groups of commodities within a single period. We have applied his result in the context of allocaton of inter-temporal expenditure.

For the present, we follow Hausman (1979) and assume that expenditure levels are pre-determined. Demand for goods and services within a period thus become a function only of prevailing prices and expenditure.

Household Production and Separability ${ }^{6}$

We write the utility function in (41) as:

$$
\begin{equation*}
U(x)=U\left[f_{1}^{i}\left(x_{1} ; \bar{a}\right), f_{2}^{i} 2\left(x_{2} ; \bar{a}\right), \ldots, f_{n}^{i} n\left(x_{n} ; \bar{a}\right), x_{n+1}\right] \tag{44}
\end{equation*}
$$

where:
$f_{j}^{i}\left(x_{j} ; \bar{a}\right)=$ production of end-use service $\quad Y_{j}$ by technology type i_{j},

$$
j=1,2, \ldots n
$$

$x_{j}=$ vector of input commodities for production of end-use service j,

$$
j=1,2, \ldots n
$$

$\bar{a}=$ vector of variable parameters;
$x_{n+1}=$ vector of non-produced commodities. ${ }^{7}$
Equation (44) assumes that utility is weakly separable between the end-use service commodities $Y_{j}, j=1,2, \ldots, n$ and all other goods x_{n+1}. The index i_{j} represents a particular technology type for the production of end-use service Y_{j}. Note that the production functions $f_{j}^{i}\left(x_{j} ; \bar{a}\right)$ generically separate the commodities x_{j} for $j=1,2, \ldots, n$.
The partition is termed generic because the same physical commodity is
often an input for several distinct technologies. This interpretation regards electricity used as an input to clothes drying as distinct from electricity used as an input for space heating yet both inputs are priced identically. Total electricity demanded is the sum of electricity demanded in each end-use. We suppose that the input commodities x_{j} are available at prices p_{j} and that p_{n+1} is the price vector for all other goods x_{n+1}. The budget constraint for traded commodities is:

$$
\begin{equation*}
\sum_{j=1}^{n} p_{j} x_{j}+p_{n+1} x_{n+1} \leqq I \tag{45}
\end{equation*}
$$

where I denotes pre-determined total expenditure for the given period.
Conditional on the choice of technologies (e.g., $i_{j}=i_{j}^{0}$,
$j=1,2, \ldots . n$) consumers must allocate resources to maximize (44) subject to (45). Let $c_{j}^{i_{j}}\left(Y_{j}, p_{j} ; \bar{a}\right)$ be the cost function dual to the production function $f_{j}^{j}\left(x_{j} ; \bar{a}\right)$. We can recast the optimization problem using the cost functions as:
$\max u\left[Y_{1}, Y_{2}, \ldots, Y_{n}, X_{n+1}\right]$
subject to $\sum_{j=1}^{n} c_{j}^{i}{ }_{j}\left(Y_{j}, p_{j} ; \bar{a}\right)+p_{n+1} x_{n+1} \leqq I$

By direct analogy to Gorman's proposition, we see that necessary and sufficient conditions for a consistent two-stage budgeting solution to (46) in which consumers first determine optimal service levels and then choose input combinations which produce these service levels at minimum cost require that production be homothetic. A stronger condition, employed by Muellbauer (1974) and Pollak and Wachter (1975), assumes that the production technologies exhibit constant returns to scale. For the purposes of this discussion we adopt this assumption but note that the essential features of the argument are unchanged provided a new utility indicator is defined which is consistent with renormalized production functions. ${ }^{8}$

Under constant returns to scale in production the cost functions have the simple form $c_{j}^{i}{ }_{j}\left(Y_{j}, p_{j} ; \bar{a}\right)=\theta_{j}^{i}\left[p_{j} ; \bar{a}\right] \cdot Y_{j}$, where the unit cost functions $\theta{ }^{j}[\because ; a]$ are perforce linearly homogeneous.

The optimization problem in (46) becomes:
(47) $\max U\left[Y_{1}, Y_{2}, \ldots, Y_{n}, X_{n+1}\right]$

$$
\text { subject to } \left.\sum_{j=1}^{n} \theta_{j}^{i} j_{\left[p_{j}\right.} ; \bar{a}\right] \cdot \gamma_{j}+p_{n+1} \cdot x_{n+1} \leqq I
$$

from which indirect utility is:

$$
\begin{equation*}
V\left[\theta_{1}^{i}\left(p_{1} ; \bar{a}\right), \theta_{2}^{i_{2}^{2}}\left(p_{2} ; \bar{a}\right), \ldots, \theta_{n}^{i} n\left(p_{n} ; \bar{a}\right), p_{n+1}, I\right] \tag{48}
\end{equation*}
$$

where V is dual to U in (44).
We see from (48) that indirect utility satisfies a price partition which corresponds to the commodity partition assumed in (44). The crucial element of the derivation is that the utility function U in (44) is homothetically separable in appliance technologies.

The functions $\hat{\theta}_{j}{ }_{j}\left(p_{j} ; \bar{a}\right)$ have a straightforward interpretation as the unit costs of producing end-use service j. As the notation reflects, the unit costs or service prices will depend on choice of technology type (i_{j}) and all variable factors $\overline{\mathrm{a}}$. By Shephard's Lemma we can determine optimal input factors from the gradient of the cost function:
(49) $\quad x_{j}=\left[\partial \theta_{j}{ }_{j}\left(p_{j} ; \bar{a}\right) / \partial p_{j}\right] \cdot Y_{j}$

Equation (49) demonstrates that the input to service ratios $x_{j k} / Y_{j}$
for input k, are independent of service level. Let V_{j} and V_{I} denote the derivatives of (48) by the $j-t h$ service price and by income respectively. Roy's identity applied to (48) determines optimal service levels in the first stage of the two-stage budget procedure:

$$
\begin{equation*}
y_{j}=\frac{-v_{j}\left[\theta^{i_{1}}\left(p_{1} ; \bar{a}\right), \ldots, \theta^{i} n\left(p_{n} ; \bar{a}\right), p_{n+1}, I\right]}{v_{I}\left[\theta^{i_{1}}\left(p_{1} ; \bar{a}\right), \ldots, \theta^{i} n\left(p_{n} ; \bar{a}\right), p_{n+1}, I\right]} \tag{50}
\end{equation*}
$$

To derive the total demand for a given input, we use (49) and (50) to determine input utilization by end-use and then sum across end-uses. Suppose, by way of an example, that each technology uses electricity and that the price of electricity appears as an argument in the functions ${ }^{i}{ }^{j}\left(p_{j} ; \bar{a}\right)$. Total demand for electricity, x_{e}, satisfies:
(51) $\quad x_{e}=-\sum_{j=1}^{n} \frac{\partial \theta_{j}^{i}\left(p_{j} ; \bar{a}\right)}{\partial p_{e}} \cdot\left(\frac{V_{j}}{V_{I}}\right)$

Equation (51) exemplifies the conditional structure of energy demand. Econometric estimation of (51) must recognize the endogeniety of appliance technology selection. Consider a special case of the generalized Gorman polar form for indirect utility:

$$
\begin{equation*}
V[\tilde{p}, I]=\frac{I-a(\tilde{p})}{b(\tilde{p})} \tag{52}
\end{equation*}
$$

Application of Roy's identity to (52) yields:

$$
\begin{equation*}
Y_{i}=a_{i}(\tilde{p})+\frac{b_{i}(\tilde{p})}{b(\tilde{p})} \cdot(I-a(\tilde{p})) \text { where } \tag{53}
\end{equation*}
$$

$$
\begin{equation*}
a_{i}(\tilde{p})=\frac{\partial a(\tilde{p})}{\partial \tilde{p}_{i}} \text { and } b_{i}(\tilde{p})=\frac{\partial b(\tilde{p})}{\partial \tilde{p}_{i}} \tag{54}
\end{equation*}
$$

Note that (53) implies linear Engel curves which do not pass through the origin. From equations (51) and (53), electricity demand satisfies:

$$
\begin{equation*}
x_{e}=\sum_{j=1}^{n} \frac{\partial \theta_{j}^{j}\left(p_{j} ; \bar{a}\right)}{\partial p_{e}} a_{j}\left(\tilde{p}^{i \star}\right)+\frac{b_{j}\left(\tilde{p}^{i *}\right)}{b\left(\tilde{p}^{i \star}\right)} \cdot\left(I-a\left(\tilde{p}^{i \star}\right)\right) \tag{55}
\end{equation*}
$$

where $\tilde{p}^{i *}=\left[\theta_{1}^{i}{ }^{1}\left(p_{1} ; \bar{a}\right), \theta_{2}^{i^{2}}\left(p_{2} ; \vec{a}\right), \ldots, \theta_{n}^{i} n\left(p_{n} ; \bar{a}\right), p_{n+1}\right]$
and where $i^{*}=\left(i_{1}, i_{2}, \ldots, i_{n}\right)$ indexes a given portfolio of technologies. A Gorman form for indirect utility in each period and strong intertemporal separability imply that the two-level budgeting procedure can be executed over the L-period time horizon using intertemporal price indices. An example of an indirect utility function exhibiting strong intertemporal separability is:

$$
\begin{equation*}
V *=\sum_{t=1}^{L} \delta_{t} V\left[p_{t}^{i *}, I_{t}\right]=\sum_{t=1}^{L} \delta_{t} G_{t}\left[<I_{t} / p_{j t}^{i *}>\right] \tag{56}
\end{equation*}
$$

where the parameter δ_{t} measures the individual's discount rate. Roy's identity applied to (56) demonstrates that service demand in period t is solely dependent on prices and income in period t and independent of the parameter δ_{t}.

We now consider the financing of durable purchases. Assume that appliance portfolio, i^{*} is purchased as price $H^{i *}$. Let W_{t} denote income in period t. Expenditure I_{t} in (56) must satisfy the inequality:

$$
\begin{equation*}
\sum_{t=1}^{L} \frac{W_{t}}{\left(1+R_{t}\right)}-H^{i *} \geqq \sum_{t=1}^{L} \frac{I_{t}}{\left(1+R_{t}\right)} \tag{57}
\end{equation*}
$$

where R_{t} is the t-period discount rate.
Suppose that purchase price, $H^{i *}$, is allocated to each of the L periods in equal amounts, x, and that the one-period discount rate is identical across periods with $\left(1+R_{t}\right)=(1+R)^{t}$. Then:

$$
\begin{equation*}
\sum_{t=1}^{L} x /(1+R)^{t}=H^{i *} \quad \text { implies: } \tag{58}
\end{equation*}
$$

(59) $X=\left(\frac{1-(1+R)^{-L}}{1-(1+R)^{-1}}\right)^{-1} \cdot(1+R) \cdot H^{i *}$

The economic theory of durable choice does not imply a specific payment plan for amortizing purchase price. This suggests the use of a flexible functional form in discount factors, socio-economic variables, initial purchase price etc., to predict per period payments. Specific payment schemes such as (59) are then testable through appropriate parameter restrictions. In the next section, we investigate econometric specifications for models of durable choice and utilization.

V. Econometric Specification for Models of Durable Utilization

We presented in Section IV a two-level utilization procedure in which service levels, Y_{j}, are determined by equation (50) and optimal input combinations required to produce Y_{j} are detemined by (49). Econometric specification for this system requires explicit functional forms for indirect utility, V, and for service levels Y_{j}. As Roy's identity connects V with Y_{j} through (50), it is often possible to specify a parametric form for demand and then solve a partial differential equation to find a compatible indirect utility function. This methodology has been successfully applied by Housman (1979, 1981), Burtless and Hausman (1978), and Dubin and McFadden (1979) for individual demand equations. We now consider the recovery of an indirect utility function from a system of demand equations as required by (50). We follow Dubin and McFadden (1979) and assume that demand is linear in real income I and additive with a function of real prices:

$$
\begin{equation*}
Y_{j}=\beta_{j} I+m_{j}\left(p_{1}, p_{2}, \ldots p_{n}\right) \quad j=1,2, \ldots, n \tag{60}
\end{equation*}
$$

By Roy's identity we may write the first equation in this system as:

$$
\begin{equation*}
-\partial V / \partial p_{1} / \partial V / \partial I=\beta_{1} I+m_{1}\left(p_{1}, p_{2}, \ldots, p_{n}\right) \tag{61}
\end{equation*}
$$

We apply the implict function theorem and write (61) in differential form as:

$$
\begin{equation*}
-\left[\beta_{1} I+m_{1}\left(p_{1}, \ldots, p_{n}\right)\right] d p_{1}+d I=0 \tag{62}
\end{equation*}
$$

Application of the integrating factor $\mu\left(p_{1}, p_{2}, \ldots, p_{n}, I\right)=$ $e^{-\beta} p_{1} \cdot g\left(p_{2}, \ldots p_{n}\right)$ transforms (62) into an exact differential equation with solution:

$$
\begin{equation*}
V\left(p_{1}, p_{2}, \ldots, p_{n}, I\right)=e^{-\beta} 1_{1} p_{1} g\left(p_{2}, \ldots, p_{n}\right)\left[I+M\left(p_{1}, \ldots, p_{n}\right)\right] \tag{63}
\end{equation*}
$$

where:

$$
\begin{equation*}
M\left(p_{1}, p_{2}, \ldots, p_{n}\right)=\int_{p_{1}} \quad e^{\beta_{1}}\left(p_{1}-t\right)_{m_{1}}\left(t, p_{2}, \ldots, p_{n}\right) d t \tag{64}
\end{equation*}
$$

Note that (64) satisfies:
(65) $\quad \partial M / \partial p_{1}-\beta_{1} M=-m_{1}$

Roy's identity applied to (71) for the second commodity implies:

$$
\begin{equation*}
Y_{2}=-\partial V / \partial p_{2} / \partial V / \partial I \tag{66}
\end{equation*}
$$

$$
\begin{aligned}
& =\frac{-e^{-\beta_{1} p_{1} g\left(p_{2}, \ldots, p_{n}\right) M_{p_{2}}-e^{-\beta} p_{1}[I+M] g_{p_{2}}}}{e^{-\beta} p_{1} g\left(p_{2}, \ldots, p_{n}\right)} \\
& =-M_{p_{2}}-[I+M] g_{p_{2}} / g \quad \text { where } M_{p_{2}}=\partial M / \partial p_{2}
\end{aligned}
$$

Comparing (66) with (60) we must have $-g_{p_{2}} / g=\beta_{2}$ and $-M_{p_{2}}+\beta_{2} M$ $=m_{2}\left(p_{1}, \ldots, p_{n}\right)$. Proceeding similarly for commodities $j=3, \ldots, n$ we find:

$$
\begin{equation*}
V\left(p_{1}, p_{2}, \ldots, p_{n}, I\right)=\left(e^{\left.-\Sigma \beta_{j} p_{j}\right)\left[I+M\left(p_{1}, p_{2}, \ldots, p_{n}\right)\right]}\right. \tag{67}
\end{equation*}
$$

where the function M satisfies the restrictions:

$$
\begin{equation*}
\beta_{j} M-M_{p_{j}}=m_{j} \text { for } j=1,2, \ldots, n \tag{68}
\end{equation*}
$$

The restrictions in (68) imply a relationship among the m_{j} which must be satisfied if (67) is consistent with (60). These restrictions are identical to symmetry of the Slutsky substitution matrix as we now demonstrate. Consider (68) for $j=1,2$:

$$
\begin{equation*}
\beta_{1} M-M_{p_{1}}=m_{1} \rightarrow e^{-\beta} p_{1}\left(\beta_{1} M-M_{p_{1}}\right)=e^{-\beta} p_{1} \cdot m_{1} \quad \text { and } \tag{69}
\end{equation*}
$$

(70) $\quad B_{2} M-M_{p_{2}}=m_{2} \rightarrow e^{-\beta_{2} p_{2}\left(\beta_{2} M-M_{p_{2}}\right)=e^{-\beta_{2} p_{2}} \cdot m_{2}, ~(1)}$

From (69) and (70) we have:
(71) $\partial / \partial p_{1}\left[e^{-\beta} p_{1} \cdot M\right]=-e^{-\beta} p_{1} \cdot m_{1} \quad$ and
(72) $a / \partial p_{2}\left[e^{-\beta} 2_{2} \cdot M\right]=-e^{-\beta} 2_{2} p_{2} \cdot m_{2}$ from which follow
(73) $\partial / \partial p_{1}\left[e^{-\beta} 1_{1} 1^{-\beta} p_{2} \cdot M\right]=-e^{-\beta} 1_{1} 1^{-\beta} p_{2} \cdot m_{1} \quad$ and

$$
\begin{equation*}
\partial / \partial p_{2}\left[e^{-\beta} 1_{1}^{p_{1}^{-\beta}} p_{2} \cdot M\right]=-e^{-\beta} 1_{1}^{p_{1}-\beta} p_{2} \cdot m_{2} \tag{74}
\end{equation*}
$$

Equating the mixed partials of (73) and (74) we have:
(75) $\partial / \partial p_{2}\left[e^{-\beta} 1_{1} p_{1}^{-\beta} p_{2} \cdot m_{1}\right]=\partial / \partial p_{1}\left[e^{-\beta} 1_{1} p_{1}^{-\beta_{2}}-p_{2} \cdot m_{2}\right]$ or

$$
\begin{equation*}
\partial m_{1} / \partial p_{2}-\beta_{2} m_{1}=\partial m_{2} / \partial p_{1}-\beta_{1} m_{2} \tag{76}
\end{equation*}
$$

By Slutsky symmetry we have:
(77) $\partial Y_{1} / \partial p_{2}+\partial Y_{1} / \partial I \cdot Y_{2}=\partial Y_{2} / \partial p_{1}+\partial Y_{2} / \partial I \cdot Y_{1}$ which implies
(78) $\partial m_{1} / \partial p_{2}+\beta_{1} Y_{2}=\partial m_{2} / \partial p_{1}+\beta_{2} Y_{1}$ or

$$
\begin{align*}
& \partial m_{1} / \partial p_{2}+\beta_{1}\left[m_{2}+\beta_{2} I\right]=\partial m_{2} / \partial p_{1}+\beta_{2}\left[m_{1}+\beta_{1} I\right] \text { so that } \tag{79}\\
& \partial m_{1} / \partial p_{2}+\beta_{1} m_{2}=\partial m_{2} / \partial p_{1}+\beta_{2} m_{1} \tag{80}
\end{align*}
$$

Comparing (76) to (80) we find that conditions (68) are equivalent to symmetry of the substitution matrix. Additional integrability restrictions (homogeneity, summability, non-negativity, and negative quasi semi-definiteness) are imposed on M by the requirement that $V\left(p_{1}\right.$, $\left.p_{2}, \ldots, p_{n}, I\right)$ be an indirect utility function.

Equation (67) is a member of the generalized Gormand polar family as can be seen from (52). In this case the demand for electricity in (55)
has the form:

$$
\begin{align*}
& x=\sum_{j=1}^{n}{ }_{\psi_{e}}^{i}\left[\beta_{j} I+m_{j}\left(\tilde{p}^{i *}\right)\right] \quad \text { where } \tag{81}\\
& \psi_{e}^{i}{ }_{j}=\partial \theta_{j}^{j}\left(p_{j} ; \bar{a}\right) / \partial p_{e} \cdot
\end{align*}
$$

Recall that ${ }_{\psi}{ }_{e}{ }^{j}$ are the derivatives of the unit costs of producing end-use service j with respect to the price of electricity conditioned on discrete choice of durable i_{j}. The ${ }_{\psi}{ }_{e}{ }^{j}$ may be linear-in-parameter expressions in weather and appliance characteristics as well as the relevant set of input prices. An alternative form for the service equation is:
(82) $Y_{j}=a_{j} I / p_{j}^{i *} \quad$ which implies the form:

$$
\begin{equation*}
x_{e}=\sum_{j=1}^{n} \psi_{e}^{i}{ }_{j} \cdot\left(a_{j} / p_{j}^{i *}\right) I \quad \text { for electricity demand. This form is } \tag{83}
\end{equation*}
$$

restrictive in the modeling of service demand. A less restrictive system is generated under the assumption that V is given by the linearly homogeneous translog form so that:

$$
\begin{equation*}
Y_{j}=\left(I / p_{j}^{i \star}\right) a_{j}+\sum_{k=1}^{K} b_{k j} \log \left(p_{k}^{i \star} / I\right) \quad \text { so that electricity } \tag{84}
\end{equation*}
$$

demand becomes:

$$
\begin{equation*}
x_{e}=\sum_{j=1}^{n} \psi_{e}^{i}\left(I / p_{j}^{i *}\right) a_{j}+\sum_{k=1}^{k} b_{k j} \log \left(p_{k}^{i *} / I\right) \tag{85}
\end{equation*}
$$

Whichever specification is chosen, attention must be given to the placement of random components. One approach assumes that the demand equations at the various levels represent the behavior of the average
individual. Deviations from the average may be represented by assuming a distribution for the behavioral parameters; estimation should enforce this assumption throughout the equation system. A simpler technique assumes that all random deviations from average behavior are captured in an additive stochastic disturbance. Finding indirect utility functions which are compatible with partial demand systems with additive disturbances is not always feasible. Dubin and McFadden (1979) have had success with the Gorman polar form to which we now return.

Suppose we modify the Gorman form (52) as

$$
\begin{equation*}
V[p, I]=\frac{\left(I-a(p)+\xi_{1} / \theta\right)}{\left(b(p)+\xi_{2}\right)}+\xi_{3} \tag{86}
\end{equation*}
$$

where ξ_{1}, ξ_{2}, and ξ_{3} are random components. Roy's identity implies:
(87) $\quad Y_{j}=a_{j}(p)+\frac{\left(I-a(p)+\xi_{1} / \theta\right) b_{j}(p)}{\left(b(p)+\xi_{2}\right)}$

If $b_{j}(p)=0$ and $a(p)=a_{0}(p)+\sum_{j=1}^{n} p_{j} \eta_{j}$ then

$$
\begin{equation*}
Y_{j}=a_{o j}(p)+\eta_{j} \tag{88}
\end{equation*}
$$

Equation (88) exhibits the additive disturbance structure when n_{j} is interpreted as a random component but is limited in its applicability due to the absence of income effects. If $b_{j}(p) \neq 0$ then (87) will be rather inconvenient for linear estimation techniques unless $\xi_{2} \equiv 0$ and $b_{j}(p) / b(p)=\beta_{j}, \beta_{j}$ constant. Under these assumptions, (87) implies:

$$
\begin{equation*}
Y_{j}=a_{o j}(p)+\beta_{j} I-\beta_{j} a(p)+\beta_{j} \xi_{1} / \theta+\eta_{j} \tag{89}
\end{equation*}
$$

From equation (55) electricity demand satisfies:

$$
\begin{align*}
x_{e} & =\sum_{j=1}^{n} \psi_{e}^{i}\left[a_{a j}(p)-\beta_{j} a(p)+\beta_{j} I+\beta_{j} \xi_{1} / \theta+\eta_{j}\right] \tag{90}\\
& =\sum_{j=1}^{n} \psi_{e}^{i}\left[a_{j}(p)-\beta_{j} a(p)+\beta_{j} I\right]+\sum_{j=1}^{n} \psi_{e}^{i} j_{\beta_{j} \xi_{1}} / \theta+\sum_{j=1}^{n} \psi_{e}^{i}{ }_{j} \eta_{j} \quad \text { so tr.at: }
\end{align*}
$$

(91) $x_{e}=\sum_{j=1}^{n} \psi_{e}^{i}\left[m_{j}(p)+\beta_{j} I\right]+\xi_{1}^{*}$ where $\xi_{1}^{*}=\xi_{1}+\sum_{j=1}^{n} \psi_{e}^{i}{ }^{j \eta}$ and $\theta=\sum_{j=1}^{n} \psi^{i} e^{j \beta}$

We now consider the joint estimation of durable choice and utilization. However, we relax the assumption that the additive error component ξ_{1} in (91) appears consistently in intertemporal utility and suppose instead that random variations in intertemporal utility, V^{*}, are summarized through an additive disturbance $\varepsilon^{i *}$ whose distribution depends on the chosen portfolio $i *$.

Suppose that intertemporal utility is given by $V *$ in (56) and V in (52). Then:

$$
\begin{equation*}
V_{i *}^{\star}=\sum_{t=1}^{L} \delta_{t} e^{-\Sigma \beta j_{j t} p_{j t}^{i *}}\left(I_{t}-a\left(p_{t}^{j *}\right)\right)+\varepsilon^{i *} \tag{92}
\end{equation*}
$$

The probability that portfolio i^{*} is chosen satisfies:

$$
\begin{equation*}
P_{i *}=\operatorname{Prob}\left[V_{i \star}^{*} \geq V_{j \star}^{\star}, j^{\star} \neq i \star\right] \tag{93}
\end{equation*}
$$

$$
=\operatorname{Prob}\left[W^{i *}+\varepsilon^{i \star} \geq W^{j *}+\varepsilon^{j *}, j \neq i \star\right]
$$

$$
=\operatorname{Prob}\left[\varepsilon^{j \star}-\varepsilon^{i \star} \leq W^{j \star}-W^{i *}, j \neq i \star\right] \quad \text { where }
$$

$$
\begin{equation*}
w^{i *}=\sum_{t=1}^{L} \delta_{t}\left[e^{\left.-\Sigma \beta_{j} p_{j t}^{i *}\right]\left(I_{t}-a\left(p_{t}^{i *}\right)\right), ~\left({ }^{i *}\right)}\right. \tag{94}
\end{equation*}
$$

Finally, demand for electricity from (91) satisfies:

$$
\begin{equation*}
x_{e t}=\sum_{j=1}^{n} \psi_{e t}^{i}\left[m_{j}\left(p_{t}^{i *}\right)+\beta_{j} I_{t}\right]+\xi_{1 t}^{*} \tag{95}
\end{equation*}
$$

for $t=1,2, \ldots, L$.
Estimation of the system (93) combined with (95) should account for the endogeneity of variables indicating portfolio choice $i *$. For a detailed review and comparison of available estimation techniques the reader may consult Appendix II, Appendix III, and Dubin and McFadden (1979).

VI. Summary and Conclusions

This chapter has developed a theoretical and econometric framework for analyzing durable choice and utilization. After identifying the essential feature of any model in durable choice behavior, we formulated an ex-ante ex-post utility maximization model which incorporates the aspects of discrete choice, household production, and the trade-off between operating and capital costs. We then illustrated how the theoretical model could be translated into an estimable econometric system. Empirical implementation of the model will, among other things, permit calculation of the time path of energy conservation resulting from alternative economic policies such as mandatory building standards, appliance efficiency standards, or energy price regulation. Slight modification of the model will enable one to rigorously analyze particular issues that relate to the choice and utilization of other durables such as automobiles.

Footnotes

1. The author gratefully acknowledges the very useful comments of his colleagues, Tom Cowing, Peter Navarro, Rhonda Williams, Nigel Wilson, and Cliff Winston.
2. Note that capital market imperfections limit the availability of financing for new purchases due to equity requirements and the dependence of i on the level of borrowing.
3. See McFadden (1974).
4. See McFadden and Dubin (1981) for a detailed account of the construction of a thermal load model for single-family residences.
5. The ex-ante ex-post decision framework is considered in the context of optimal plant design by Fuss and McFadden (1978).
6. See Becker (1965) and Muth (1966) for alternative characterization of the household as a production unit.
7. We drop the subscript t to avoid excessive notation.
8. A production function $f(x)$ is homothetic when $f(x)=g(h(x))$ g monotonic and h linearly homogeneous. If the utility function is given by $U[f(x)]$ then $\tilde{U}(Z)=U[g(Z)]$ is consistent with the linearly homogeneous function $z=h(x)$.

RATE STRUCTURE AND PRICE SPECIFICATION IN THE DEMAND FOR ELECTRICITY

Recent studies in the demand for electricity have raised again the question of price specification. The early work of Houthakker (1951a) discussed demand subject to a quantity dependent rate structure as compared to the classical situation of parametrically given prices. Taylor (1975), in his survey of the electricity demand literature, reviews the rate structure problem and indicates a simple procedure which converts the complex optimization problem of the consumer to the standard case of a linear budget constraint set in marginal prices. Modifications to the Taylor (1975) procedure were noted by Berndt (1978) and Nordin (1976).

A behavioral question is whether consumers can detect prevailing marginal rates in the presence of automatic appliances and billing cycle variations. An alternative hypothesis suggests that consumers respond to a summarizing statistic for the quantity dependent rate structure such as average price.

This chapter reviews the theory of price specification and considers the comparative static analysis of demand subject to a declining block rate schedule. We further investigate the statistical endogeneity of prices whose construction requires utilization of the observed consumption level, and determine price specification within a sample of 744 households surveyed in 1975 by the Washington Center for Metropolitan Studies. ${ }^{1}$ We finally consider the construction of marginal prices using the WCMS data and monthly billing data from the recent National Interim Energy Consumption Survey (NIECS) of 1978.

II. Specification of Price: Theory

1. Quantity Dependent Rate Structures

We begin by reviewing the case of a declining block rate structure and derive a simple relation among quantity, average price, marginal price, and the rate structure premium. Let B be the total expenditure on electricity and Q the amount of electricity consumed. A typical rate structure has the form:

$$
\begin{array}{ll}
B=C & \text { for } 0 \leq Q \leq X_{1} \\
B=C+\pi_{1}\left(Q-X_{1}\right) & \text { for } X_{1}<Q \leq X_{2} \\
B=C+\sum_{j=1}^{r-1}\left(X_{j+1}-X_{j}\right) \pi_{j}+\pi_{r}\left(Q-X_{r}\right) & \text { for } X_{r}<Q \leq X_{r+1}, 1<r \leq n
\end{array}
$$

where X_{i} denote the lower block boundaries and where we have set $X_{n+1}=+\infty$. The constant C is the connect charge and π_{j} is the price of electricity in block j. Suppose measured consumption, Q^{*}, lies in the rth block so that $X_{r}<Q^{*} \leq X_{r+1}$ and total expenditure, B^{*}, is

$$
c+\sum_{j=1}^{r-1}\left(x_{j+1}-x_{j}\right) \pi_{j}+\pi_{r}\left(Q^{*}-x_{r}\right) . \text { We then define the measured }
$$

average price as $B * / Q^{*}$, the measured marginal price as π_{r}, and the rate structure premium (RSP) as the difference between total expenditure and the cost of purchasing the quantity Q^{*} at the marginal rate π_{r}. $R S P=B^{*}-\pi_{r} Q^{*}$. Dividing by quantity we obtain the simple relation average price $=$ marginal price + RSP $/ Q^{*}$. Taylor (1975) shows that the rate structure premium is an adjustment to income such that consumers choose quantity level q^{*} at price π_{r} and income level Y - RSP.

A declining block rate schedule implies an expenditure function or
outlay schedule which increases in linear segments, the slope of each succeeding segment being smaller than the one preceding it. More generally let $B(Q)$ be any quantity dependent expenditure funtion. The marginal price at quantity Q is $B^{\prime}(Q)$ so that the corresponding rate structure premium adjustment is $B(Q)-B^{\prime}(Q) Q$. If $V(P, Y)$ is the indirect utility at prices p and income level Y then the consumer's optimal choice of quantity subject to the expenditure function $B(Q)$ solves the problem: $\operatorname{MAX} V\left[B^{\prime}(Q), Y-\left[B(Q)-B^{\prime}(Q) Q\right]\right]$. Q

The first-order condition implies that optimal Q is given as the solution to Roy's identity:

$$
Q=-\frac{V_{P}\left[B^{\prime}(Q), Y-\left(B(Q)-B^{\prime}(Q) Q\right)\right]}{V_{Y}\left[B^{\prime}(Q), Y-\left(B(Q)-B^{\prime}(Q) Q\right)\right]}
$$

2. Comparative Static Analysis of Demand Subject to a Declining Block

Rate Structure

We now consider the comparative static analysis of demand subject to a declining block rate structure. Let $U[q, Z]$ denote the utility derived from the consumption of electricity q and a Hicksian or numeraire commodity Z. We assume a two-tier tariff for electricity with the price of electricity π given by

$$
\pi= \begin{cases}\pi_{1} & \text { for } 0 \leq q \leq x \tag{1}\\ \pi_{2} & \text { for } x<q \quad \text { with } \pi_{1}>\pi_{2} .\end{cases}
$$

Normalizing the price of the numeraire commodity to equal one the budget constraint satisfies:

$$
\begin{align*}
& \pi_{1} q+z \leq y \tag{2}\\
& \pi_{1} x+(q-x) \pi_{2}+z \leq y
\end{align*}
$$

for $\mathrm{q} \leq X$
for $X<q$
where y denotes income.
We illustrate the declining tariff in Diagram 1 and the corresponding budget set in Diagram 2.

Denote by $D[\pi, y ; B]$ the Marshallian or uncompensated demand for electricity where β is a vector of behavioral parameters and let π^{\star} denote the price at which demand equals the lower block boundary, i.e., $D\left[\pi^{*}, y ; \beta\right]=X$. Let q_{1} denote demand along the segment with slope π_{1} and let q_{2} denote demand along the segment with slope π_{2}. Demand along the first budget segment satisfies
(4) $q_{1}=D\left[\pi_{1}, y ; \beta\right]$ for $\left(\pi_{1}, \pi_{2}, y\right) \varepsilon S_{1}$
while demand in the second segment satisfies
(5) $q_{2}=D\left[\pi_{2}, y-\left(\pi_{1}-\pi_{2}\right) X ; \beta\right]$ for $\left(\pi_{1}, \pi_{2}, y\right) \varepsilon S_{2}$

The term $\left(\pi_{1}-\pi_{2}\right) X$ is the rate structure premium adjustment for demand in the marginal or tail-end block. We now derive certain results concerning local price response.

Lemma 1

Suppose the uncompensated demand for electricity is decreasing in price and increasing in income then:
1a) $\partial q_{1} / \partial \pi_{1}<0$
1b) $\partial q_{2} / \partial \pi_{1}<0$
1c) $\partial q_{2} / \partial \pi_{2}<0$ for $q_{2} \geq x$

$$
\begin{aligned}
& \text { for }\left(\pi_{1}, \pi_{2}, y\right) \varepsilon S_{1} \\
& \text { for }\left(\pi_{1}, \pi_{2}, y\right) \varepsilon S_{2} \\
& \text { and }\left(\pi_{1}, \pi_{2}, y\right) \varepsilon S_{2}
\end{aligned}
$$

Proof Lemma 1

1a) By assumption demand is downward sloping.
1b) $\partial q_{2} / \partial \pi_{1}=\left(D_{Y}\right)(-X)<0$ since we have assumed that electricity is a normal good.

1c) $\partial q_{2} / \partial \pi_{2}=D_{\pi}+D_{Y} X \leq D_{\pi}+D_{Y} q_{2}$ since $X \leq q_{2}$. Finally $D_{\pi}+D_{Y} q_{2}<0$ since $D_{\pi}+D_{Y} q_{2}$ equals the partial derivative with respect to price of the Hicksian or compensated demand function (by Slutsky's relation) and is thus negative.

Remarks: For $\pi_{1} \geq \pi^{*}, q_{1} \leq X$ by Lemma la. For $\pi_{1}<\pi^{*}, q_{1}>X$ so that optimal demand falls outside the range in which π_{1} is the prevailing price. Furthermore $\partial q_{2} / \partial \pi_{2}<0$ for $X \leq q_{2}$ implies that for $\pi_{2}<\pi^{*}, q_{2}>x$. The pattern of prices in which $\pi_{2}<\pi^{*} \leq \pi_{1}$ implies that q_{1} and q_{2} are each feasible.

Let $V(\pi, y)$ be the indirect utility function corresponding to the problem $\operatorname{Max}_{q, Z} U[q, Z]$ subject to $\pi q+Z \leq y$. For $\pi_{2}<\pi^{*} \leq \pi_{1}$, the budget segment with price π_{1} is optimal when $V\left(\pi_{1}, y\right)>V\left(\pi_{2}, y-\left(\pi_{1}-\pi_{2}\right) X\right)$.
It is clear that combinations of π_{1} and π_{2} exist which satisfy $\pi_{2}<$ $\pi^{*} \leq \pi_{1}$ and imply equal indirect utility so that demand for electricity
is multi-valued. For the set of prices which imply equal indirect utility a trade-off exists where an increase in π_{1} may be compensated by a decrease in π_{2}. We have the following result:

Lemma 2
Let $S=\left\{\left(\pi_{2}, \pi_{1}\right) \mid V\left(\pi_{1}, y\right)=V\left(\pi_{2}, y-\left(\pi_{1}-\pi_{2}\right) x\right)\right\}$ for $\pi_{2}<\pi^{\star} \leq \pi_{1}$. Then $\partial \pi_{1} / \partial \pi_{2}<0$ for $\left(\pi_{2}, \pi_{1}\right) \varepsilon S$ and for $v_{y}\left(\pi_{1}, y\right)<v_{y}\left(\pi_{2}, y-\left(\pi_{1}-\pi_{2}\right) x\right)$.

Proof Lemma 2

$$
\begin{aligned}
& \text { For }\left(\pi_{2}, \pi_{1}\right)_{\varepsilon S}, \\
& \begin{aligned}
\left(\partial \pi_{1} / \partial \pi_{2}\right) & \cdot V_{\pi_{1}}=V_{\pi_{2}}+V_{y_{2}}\left[(-x)\left(\partial \pi_{1} / \partial \pi_{2}\right)-1\right] . ~ T h e n ~ \\
\left(\partial \pi_{1} / \partial \pi_{2}\right) & \left(V_{\pi_{1}}+V_{y_{2}} x\right)=\left(V_{\pi_{2}}+V_{y_{2}} x\right) \text { which implies } \\
\left(\partial \pi_{1} / \partial \pi_{2}\right) & =\left(V_{\pi_{2}}+V_{y_{2}} x\right) /\left(V_{\pi_{1}}+V_{y_{2}} x\right) \\
& =\left(x-q_{2}\right) /\left(x-q_{1}\left(v_{y_{1}} / V_{y_{2}}\right)\right)<0
\end{aligned}
\end{aligned}
$$

for $q_{1}<x$ and $q_{2}>x$. Q.E.D.

To complete the static analysis we need the following result which indicates the direction of change in indirect utility from changes in price.

Lemma 3

Let $V_{1}=V\left[\pi_{1}, y\right]$ and $V_{2}=V\left[\pi_{2}, y-\left(\pi_{1}-\pi_{2}\right) X\right]$
Ba) $\partial V_{1} / \partial \pi_{1}<0$
3b) $a V_{2} / \partial \pi_{1}<0$
Bc) $a V_{2} / \partial \pi_{2}<0$ for $X \leq q_{2}$.

3d) $a\left(V_{2}-V_{1}\right) / \partial \pi_{2}<0$ for $\pi_{2}<\pi^{*} \leq \pi_{1}$ and $V_{y_{1}}<V_{y_{2}}$.

Proof Lemma 3
3a) $\partial V_{1} / \partial \pi_{1}=V_{\pi}\left(\pi_{1}, y\right)<0$ (monotonicity property of indirect utility function).

3b) $\partial V_{2} / \partial \pi_{1}=V_{y_{2}}(-X)<0$
Bc) $\partial V_{2} / \partial \pi_{2}=V_{\pi}+V_{y_{2}} x \leqq V_{\pi}+V_{y_{2}} q_{2}<0$ for $x \leq q_{2}$.
3d) $a\left(V_{2}-V_{1}\right) / \partial \pi_{1}=-\left[V_{\pi_{1}}+V_{y_{2}} . X\right]$
$=-v_{y_{2}} \cdot\left[x-q \cdot\left(v_{y_{1}} / V_{y_{2}}\right)\right]<0$
as $V_{y_{1}} / V_{y_{2}}<1$ and $q_{1}<X$.
Q.E.D.

We now collect the results in the following theorem.

Theorem 1 (Two-Tier Declining Block Rate Comparative Statics)
Let π^{*} be defined by $D\left[\pi^{*}, y ; \beta\right]=X$. Define the functions $\pi_{1}^{*}\left(\pi_{2}\right)$
and $\pi \frac{*}{2}\left(\pi_{1}\right)$ by

$$
\begin{aligned}
& V\left(\pi_{1}^{\star}, y\right)=V\left(\pi_{2}, y-\left(\pi_{1}^{*}-\pi_{2}\right) x\right) \text { and } \\
& V\left(\pi_{1}, y\right)=V\left(\pi_{2}^{*}, y-\left(\pi_{1}-\pi_{2}^{\star}\right) x\right) \text { respectively. }
\end{aligned}
$$

Then equilibrium occurs in the first segment for:

$$
S_{1}=\left\{\left(\pi_{2}, \pi_{1}\right) \mid \pi^{\star} \leqq \pi_{1} \text { and } \pi_{2}^{\star}\left(\pi_{1}\right) \leqq \pi_{2} \leqq \pi_{1}\right\} \quad \text { and }
$$

equilibrium occurs in the second segment for:

$$
S_{2}=\left\{\left(\pi_{2}, \pi_{1}\right) \mid 0 \leqq \pi_{2} \leqq \pi^{\star} \text {, and } \pi_{2} \leqq \pi_{1} \leqq \pi_{1}^{\star}\left(\pi_{2}\right)\right\} .
$$

Diagram 3

Proof Theorem 1

The shaded region above the diagonal line in Diagram 3 represents the set of feasible declining block rate structures. The curve with declining slope which intersects the (π^{\star}, π^{\star}) point is the set S of Lemma 2. Suppose we begin at a point on the curve S and increase π_{2} while leaving π_{1} unchanged. Since we are in a region in which both budget segments are feasible, Lemma $3 c$ implies that the increase in π_{2} decreases the utility V_{2}. As we began at a point of equal utility and
V_{2} has decreased while V_{1} remains constant it must be the case that budget segment one is preferred to budget segment two as indicated in the Diagram.

Similarly consider a decrease in π_{1} leaving π_{2} constant. In this case, Lemma 3 d applies so that $V_{2}-V_{1}>0$ and budget segment two becomes optimal. In the southwest quadrant above the 45° degree 1 ine, demand occurs in the second budget segment since optimal demand for prices $\pi_{1}<\pi^{*}$ exceeds the block boundary X. The other quadrants are similarly derived using the results of Lemma 1 and Lemma 3. Q.E.D.

Note that the price pairs below the diagonal imply increasing or non-decreasing block rate schedules which correspond to convex budget sets. The triangular area in the southwest quadrant below the diagonal implies optimal demand in the second budget segment while the area below the diagonal in the northeast quadrant implies demand in the first budget segment. The southeast quadrant which includes the boundary $\pi_{1}=\pi^{*}$ but excludes the boundary $\pi_{2}=\pi^{*}$ implies optimal demand at the block boundary X. We further note that the set S of equal utility points has measure zero in the price space of Diagram 3 .

We now use Diagram 3 to answer simple comparative static problems. Suppose for example that we increase the lower block boundary. Diagram 4 illustrates that the partition moves to an intersection with the 45° line at the point $\left(\pi^{*^{\prime}}, \pi^{*^{\prime}}\right)$ with $\pi^{\star^{\prime}}<\pi^{\star}$ since $X^{\prime}>X$.

Diagram 4
Suppose equilibrium had occurred initially at the point A. The discontinuous change in lower block boundary from X to X^{\prime} implies that the price pair at point A now corresponds to optimal demand in budget segment one versus the initial equilibrium in budget segment two.

Finally we note that our comparative static analysis as developed in Theorem 1 applies to the more general case of multiple tier declining block rate schedules where we interpret π_{2} as the marginal rate and let π_{1} be the intramarginal average price, i.e., the average price up to but not including the marginal block.

III. Specification of Price: Empirical Results

We now address the issue of price specification with an econometric analysis of the 1975 survey of 1502 households carried out by the Washington Center for Metropolitan Studies (WCMS) for the Federal Energy Administration. Individual household locations (identified at the level of primary sampling units) permitted matching of actual rate schedules used in 1975 to each household. The use of disaggregated data is necessary to avoid the confounding effects of misspecification due to aggregation bias or due to approximation of the rate data.

We resolve four empirical issues related to the estimation of the demand for electricity: (1) measured average price and measured marginal price are statistically endogenous so that least squares techniques are not appropriate for the determination of price elasticities, (2) while the rate structure premium adjustment has established theoretical merit its statistical contribution is negligible, (3) consumer behavior in the demand for electricity follows the marginal price specification rather than the average price specification, and (4) estimates of price responsiveness are not statistically different using the tail-end price rather than the true marginal rate.

1. Endogeneity of Measured Prices

The general proposition is that explanatory variables which utilize the observed consumption level introduce correlation between those variables and the error term. To illustrate the direction of least squares estimation bias write the demand for electricity equation as $Q=\beta p+Z \delta+\varepsilon$ where p is the measured marginal price with coefficient
β, Z is a vector of socioeconomic variables with coefficient vector δ and ε is the equation error. For simplicity assume that p is uncorrelated with Z so that $\hat{\beta}_{L S}=\beta+p^{\prime} \varepsilon / p ' p$. An unobserved increase in electricity consumption induces a decrease in price so that we expect an a priori negative correlation between p and ε. The formula for $\hat{\beta}_{L S}$ shows that least squares over estimates in absolute magnitude the priceresponse coefficient β. ${ }^{2}$

McFadden (1977) and Hausman et al. (1979) have demonstrated that an instrumental variable estimation technique provides consistent estimates of the electricity demand equation where instruments are constructed utilizing predicted rather than actual consumption to determine measured prices. In forming predicted consumption levels all endogenous variables are purged from the set of explanatory variables. One must insure that the instruments so constructed are not exact linear combinations of the exogenous variables included in the demand for electricity equation. This is usually not a problem given the non-l inearity of the rate schedule and given the existence of other prices which are exogenous. The tail-end block price, for example, will be used in exactly this role.

To establish empirical verification of the hypothesis of endogeneity of measured price we apply the specification test due to Wu (1973) and recently discussed in Hausman (1978).

The methodology consists of isolating a group of explanatory variables whose endogeneity is under test. Using the result that the least squares estimator has zero asymptotic covariance with its difference from the instrumental variable estimator, we are able to form a simple statistic which is asymptotically chi-squared under the null hypothesis of statistical exogeneity for the test group.

To illustrate the test write the demand for electricity in schematic form as $Q=X_{\beta}+Z_{\gamma}+\varepsilon$ where X is a k-vector of price and income terms under various specifications and Z is a group of assumed exogenous variables. The variables in X will in general be suspect of endogeneity. The test statistic is then:

$$
T=\left(\hat{\beta}_{I V}-\hat{\beta}_{L S}\right)^{\prime}\left[V\left[\hat{\beta}_{I V}\right]-V\left[\hat{\beta}_{L S}\right]\right]^{-1}\left(\hat{\beta}_{I V}-\hat{\beta}_{L S}\right) \stackrel{A}{\sim} x^{2}(k)
$$

where V is the estimated variance covariance matrix and k is the number of coefficients in β.

The dependent variable in each estimated equation is monthly consumption of kilowatt hours of electricity. used by the family in 1975. The socioeconomic variables include appliance ownership dummies for the electric dishwasher, electric washing machine, food freezer, electric range, color television, black and white television, electric clothes dryer, and central air conditioner. To capture the effects of climate, the annual number of cooling degree days (the number of days in which the daily average temperature was greater than 65°) and this number multiplied by respectively the central air conditioner dummy and the number of room air conditioners were included as well as scale variables for the number of rooms, the number of persons, and the number of room air conditioners. ${ }^{3}$

Price terms included the average price, measured marginal price and the tailend block rate. These rates are used below in various combinations and are taken from the rate schedules prevailing in the winter of 1975.

In Table 1 we present the mean values of all variables. To demonstrate the bias induced by least squares under the marginal price
Table 1:
VARIABLE NAME ${ }^{\text {a }}$MEAN

AKWH75
monthly consumption of electricity in 1975 AKWH75 916.5DESCRIPTION
RATE measured marginal price in 1975 02427
AVPRICE measured average price in 1975 03128
WMPE75 winter tail-end block price for electricity 02138in 1975
INCOME monthly income of household head 1322
RSP measured rate structure premium 5.151
WHE electric water heat dummy 0.2728
SHEelectric space heat dummy0.1411
ROOMS number of rooms in household 6.078
PERSONS number of persons in household 3.550
CAC central air-conditioning dummy 0.2890
CDDCAC (annual cooling degree days) * (CAC) 463.7
RACNUM number of room air conditionerss 4382
CDDRACNUM (annual cooling degree days) * (RACNUM) 642.3
AUTOWSH automatic washing machine dumny 0.8898
AUTODSH automatic dishwasher dummy 0.4921
FOODFRZ food freezer dummy 0.5323
ELECRNGE electric range dummy 0.6411
ECLTHDR electric clothes dryer dummy 0.4990
BWTV black and white television dummy 0.5806
CLRTV color television dummy 0.7446
${ }^{a}$ A subsample of the original 1502 observations was selected so that all price and income data were positive and so that complete information was available for each individual.
specification we compare the least squares and instrumental variable estimates of the equation: $Q=\alpha$ (measured marginal price) $+Z \delta+\varepsilon$. For brevity we report the coefficient estimates on the variables: measured marginal price, income, electric water heat and electric space heat in Table 2. At sample means the price elasticity implied by least squares is -0.266 while the instrumental variable estimates imply a price elasticity of -0.159 . The direction of the bias agrees with our a priori expectation that least squares will overestimate in magnitude the price sensitivity coefficient.

Taylor reports both short-run and long-run price and income elasticities. Of nine estimates of residential elasticities two used marginal price. Each of the studies by Houthakker (1951a, 1951t) reports short-run elasticities of approximately $-0.90 .{ }^{4}$ Both our least squares and instrumental estimates are well below this estimate in magnitude but are entirely consistent with other estimates of electricity demand price elasticity using an average price specification. ${ }^{5}$

The Hausman statistic for the endogeneity test of measured marginal price is computed to be 34.18. This well exceeds the critical value for a Chi-squared test of any size given the single degree of freedom. We note that the respective income elasticities for least squares and instrumental variables are 0.118 and 0.109 . Both estimates are consistent with those obtained in previous studies.

If the same test is repeated using measured average price in place of measured marginal price we find price elasticities for least squares and instrumental variables of respectively -0.437 and -0.416 . Note that the direction of bias is the same as that obtained with measured marginal price--a general increase in price sensitivity magnitude. Income

Table 2:

VARIABLE ${ }^{\text {a }}$	LS ESTIMATES	IV ESTIMATES
Measured Marginal Price	-10050.	-6006.
	$(-5.909)^{b}$	(-3.269)
Income	. 08169	. 07570
	(3.330)	(3.071)
WHE	405.6	404.5
	(10.22)	(10.15)
SHE	694.8	714.9
	(14.08)	(14.40)
R^{2}	. 7074	. 7051
Number of Observations	744	744
Sum of Squared Residuals	. $9094 \mathrm{E}+8$. $9166 \mathrm{E}+8$
Standard Error of Regresion	354.2	355.6

a In Tables 2-6 coefficient estimates are not reported for the variables: PERSONS, BWTV, ROOMS, RMCLCAC, CDDCAC, CAC, RACNUM, CDDRACNUM, FOODFRZ, ELECTRNGE, CLRTV, ECLTHDR, AUTODSH, AUTOWSH, and the intercept. The dependent variable is AKWH75.
bt-statistics presented in parentheses.
elasticities were robustly estimated at 0.120 and 0.104 for the two procedures. The Chi-squared statistic was computed in this case to be 118.2 which well exceeds the critical value of 3.84 for a 5 percent test. Parameter estimates for the average price specification are reported in Table 3.

In summary we remark that previous studies in the demand for electricity have undoubtedly been subject to the bias illustrated above. The bias has been demonstrated to be statistically significant for the two most common specifications of price and is qualitatively impressive on the order of 67 percent.

2. Rate Structure Premium Adjustment

From Table 1 we see that the mean value of rate structure premium is $\$ 3.12$ compared to the mean value of income of $\$ 1321 /$ month. The negligible value of RSP as compared to INCOME implies that the difference (INCOME - RSP) could not be distinguished from general measurement error in the definition of monthly income. In Table 4 we present instrumental variable estimates of the electricity demand equation using the marginal price specification and income adjusted by the rate structure premium.

Comparison of the estimates in Table 4 with estimates given in Table 2 for instrumental variables demonstrates the qualitative similarity. Based on these results we do not advocate the rate structure premium correction to income in the WCMS data for 1978. This confirms the findings of Hausman et al. (1979) for insignificance of the RSP adjustment.

VARIABLE	LS ESTIMATES	IV ESTIMATES
Average Price	-12810.	-4266.
	(-8.731)	(-2.563)
Income	. 08304	. 07221
	(3.484)	(2.959)
WHE	388.8	398.1
	(10.05)	(10.06)
SHE	669.2	719.6
	(13.90)	(14.56)
R^{2}	. 7225	. 7095
Number of Observations	744	744
Sum of Squared Residuals	. $8626 \mathrm{E}+8$. $9029 \mathrm{E}+8$
Standard Error of Regresion	344.9	352.9

Table 4:
VARIABLE IV ESTIMATES
Measured Marginal Price -6006.
(-3.269)
NETINC 7560E-01
(3.067)
WHE 404.5
(10.15)
SHE 715.0
(14.40)7050
Number of Observations 744
Sum of Squared Residuals $.9167 \mathrm{E}+8$
Standard Error of Regresion 355.6

3. Average versus Marginal Price

Estimation in demand for electricity studies has followed the predominant usage of either marginal or average price. A simple observation will allow us to nest both the marginal and average price specification in a more general model. We have demonstrated above that the difference between measured average price and measured marginal price is the rate structure premium divided by measured consumption. Hence an unrestricted specification of marginal and average prices has the form: $Q=($ measured marginal price $) \alpha_{0}+\left(\right.$ Rate structure premium/Quantity) α_{1} $+Z_{\delta}+\varepsilon$

Clearly when α_{0} equals α_{1} we have the average price specification. When $\alpha_{1}=0$ we have the marginal price specification.

Ordinary least squares and instrumental variable estimates for the unrestricted model are presented in Table 5. For brevity we report only the coefficient estimates of measured marginal price, rate structure premium/quantity, income, WHE, and SHE. The Hausman statistic of 83.8 with the two degrees of freedom confirms the endogeneity of the explanatory variables measured marginal price and rate structure premium/quantity.

Using the instrumental variables estimates in Table 5 we compute a Wald test of the hypothesis that the coefficients of measured marginal rate and rate structure premium/Q are equal. The test statistic which compares the difference in the estimated coefficients has a value of 7.09 and is distributed chi-squared with one degree of freedom (the number of imposed restrictions). We thus reject the average price specification at the 1 percent critical level. Furthermore the individual t-statistics for the coefficients of measured marginal price and RSP/Q confirm the

VARIABLE	LS ESTIMATES	IV ESTIMATES
Measured marginal rate	-10130.	-6430.
	(-6.158)	(-3.352)
Rate Structure Premium/Q	-22410	10040.
	(-7.236)	(1.777)
Income	. 07702	. 07846
	(3.248)	(3.068)
WHE	374.9	418.4
	(9.717)	(9.961)
SHE	673.6	722.1
	(14.10)	(14.00)
R^{2}	. 7271	. 6840
Number of Observations	744	744
Sum of Squared Residuals	. $8481 \mathrm{E}+8$. $9823 \mathrm{E}+8$
Standard Error of Regresion	342.3	368.3

marginal price specification as the former coefficient is significant while the latter is insignificant at the 5 percent level. It is interesting to note that inspection of the least squares estimates would lead one to choose the average price specification over the marginal price specification. Given the differential in sum of squared residuals for the measured marginal price and average price specifications (using the consistent estimates in Tables 2 and 3 respectively) it is likely that a non-nested test (see Pesaran (1974) for example) would also discriminate between the two models. We are thus led to conclude that consumer behavior in the demand for electricity follows the marginal price specification rather than the average price specification.

4. Measurement Error in Marginal Price

We now consider the impact of the measurement-error misspecification which results from the use of the tail-end rate in place of the measured marginal rate. In Table 6 we reproduce the least squares regression results for this specification. Note that least squares estimation provides consistent parameter estimates since the tail-end price is by definition exogenous. The use of the tail-end rate in place of the measured marginal rate introduces measurement error in the price variable. However it is not appropriate to apply the usual measurement error bias formulae since price is expected to reveal significant correlation with the other explanatory variables and since the difference between the two measures of price is not a mean zero random disturbance.

Comparing the estimate of the tail-end price coefficient in Table 6 with the consistent estimate of the measured marginal price coefficient in Table 2, we see that relative to the standard error the difference is
Table 6:
VARIABLE
LS ESTIMATES
WMPE75-6828.
(-3.644)
Income 08299
(3.277)
WHE 414.1
(10.26)
SHE 721.7
(14.51)
R^{2}6988
Number of Observations 744
Sum of Squared Residuals $9361 \mathrm{E}+8$
Standard Error of Regresion 359.3
not significant. $(t=(-6006)-.(-6828) / .1837 .=0.45)$. This result is
confirmed through the inspection of the variables WMPE75 and RATE; the
correlation coefficient between the two variables is 0.87 and the mean
difference is approximately one-third of a standard deviation. While
there is no specific suggestion that the rate schedules in the WCMS data
are flat, these estimates suggest that many individuals are close to the
tail-end of the rate schedule so that measured marginal rates are well
approximated by the tail-end price. ${ }^{8}$
IV. Measurement of Price: Theory and Estimation

This section investigates the construction of marginal price when basic observations are limited to total quantity consumed and total expenditure. We begin with an analysis of eight locations from the WCMS (1975) data set for which precise matching of rate schedules to households was possible. We compare the two-part tariff approximation to the actual rate schedule and attempt to illustrate the qualitative and quantitative bias in each physical location. We then examine seven locations from the National Interim Energy Consumption Survey (1978) NIECS for which only total expenditure and quantities are observed by billing periods. Under the assumption that households within a primary sampling unit are served by a common utility we attempt to distinguish between all electric and seasonal rates.

1. Washington Center for Metropolitan Studies (1975)

In Figures $1-8$ we plot expenditure versus quantities for eight WCMS households. The figures are organized in pairs: (1) the plot of expenditures versus quantities and (2) the plot of the prevailing rate schedule. The symbol R denotes points chosen from the rate schedule while symbols A and B denote one and two observations respectively. For each location we give the estimates of the two-part tariff approximations, the actual tail-end price and the appropriate connect charge.

Figure 1a illustrates that 9 of the 10 observations from Boston, MA. correspond to the tail-end price. The estimate of marginal price from the two-part tariff approximation is 0.0373 while the actual tail-end

Figure la

Boston, Massachusetts 1975

Figure ib

Figure 2a

Chicago, Lllinois 1975

Figure 2b

Figure 3a

Springfield, Ohio 1975

Figure 3b

Detroit, llichigan 1975

Figure 4a

Detroit, lichigan 1975

Tail-end Price $=0.03386$
Connect Charge $=\$ 2.40$

Pittsfield, fassachusetts 1975

Figure 5a

Pittsfield, Hassachusetts 1 S75

Figure 5b

Figure 6 a

Dayton, Ohio 1975

Figure 7a

Buffalo, ilew York 1975

Figure 7b

Figure 8a

Cortland, Hew York 1975

rate is 0.03693 . The standard error of the slope estimate is 0.000215 so that a t-test for significance of the difference is rejected at the 5 percent leve1. (One-sided test, degrees of freedom $=8$, size $=$ 5 percent, $t=1.172$.) The situation in Figures 2 a and 2 b is qualitatively similar. In this case 9 of the 11 observations lie in the tail-end of the rate structure. The estimate of the slope is 0.0317 which is again not statistically different from the tail-end price 0.03169 (one-sided test, degrees of freedom $=9$, size $=5$ percent).

In Figure 3 fewer observations are in the tail. The estimate of the slope coefficient is 0.0217 while the tail-end price is 0.02043 . The t-statistic for the difference is 3.86 which is significant for a one-sided 5 percent test given the 12 degrees of freedom. Figure 4 illustrates a near-perfect fit as the underlying rate schedule is flat. By contrast the distribution of points in Figure 5 a suggests that the two-part tariff should not approximate the declining block rate schedule very accurately. In this case the estimated slope coefficient is 0.0387 while the true tail-end rate is 0.03465 . With 17 degrees of freedom we reject the hypothesis that the estimate of the tailend rate and the actual rate are equal ($t=9.01$, size $=5$ percent, degrees of freedom 17). Figure 6 is qualitatively similar to Figure 5 ($t=11.58$ with 13 degrees of freedom).

Figures 7 and 8 illustrate a quite different phenomenon. Clearly two separate rate schedules were operative for Buffalo, New York and Cortland, New York in 1975. Their respective rates are given in Figures 7 b and 8 b respectively. Inpsection reveals that the two-part tariff approximation to multiple rate schedules is not likely to provide an adequate estimate of any individual marginal rate $(t=3.52$ and $t=0.17$
for Figure 7 , and $t=8.64$ and $t=0.92$ for Figure 8).
In summary we have seen that the two-part tariff approximation to the declining rate schedule works quite well when many observations lie in the tail-end block. However when more than the one rate schedule prevails within a given primary sampling unit it is possible to estimate incorrectly the tail price. As the eight WCMS locations are not necessarily representative of the complete sample it is not possible to make a statement about general misspecification from only their analysis. The following calculation attempts to bound the estimation error inherent in the use of a two-part tariff approximation for the WCMS data. Essentially misspecification arises because the rate structure premium varies with quantity. If the rate structure premium were constant then the rate structure would be exactly in two-part tariff form. We thus apply a simple misspecification argument to estimate the bias.

Recall that by definition: Expenditure = Rate Structure Premium + Marginal Price * Quantity. For household i we write:

```
\(\operatorname{EXPEN}_{i}=R S P_{i}+\beta Q_{i}+\varepsilon_{i}\) where:
\(\operatorname{EXPEN}_{i}=\) expenditure by household \(i\),
RSP \({ }_{i}=\) rate structure premium for household \(i\),
B \(\quad=\) marginal rate
\(Q_{i} \quad=\) quantity consumed by household \(i\),
\(\varepsilon_{i} \quad=\) disturbance term.
```

Rewrite the true model as:

$$
\operatorname{EXPEN}_{i}=\alpha+\beta Q_{i}+v_{i} \text { where } v_{i}=\varepsilon_{i}+\operatorname{RSP}_{i}-\alpha
$$

$$
(\hat{\beta}-\beta)=\sum_{i}\left(q_{i}-\bar{q}\right)\left(v_{i}-\bar{v}\right) / \sum_{i}\left(q_{i}-\bar{q}\right)^{2}
$$

Since $v_{i}-\bar{v}=\left(\varepsilon_{i}-\bar{\varepsilon}\right)+\left(R S P_{i}-\overline{R S P}\right)$ we have:

$$
\begin{aligned}
& (\hat{\beta}-\beta)=\sum\left(q_{i}-\bar{q}\right)\left(\varepsilon_{i}-\bar{\varepsilon}\right) / \sum\left(q_{i}-\bar{q}\right)^{2} \\
& +\sum\left(q_{i}-\bar{q}\right)\left(R S P_{i}-\overline{R S P}\right) / \sum\left(q_{i}-\bar{q}\right)^{2}
\end{aligned}
$$

so that PLIM $(\hat{\beta}-\beta)=\left(\frac{{ }^{\sigma_{R S P}}}{\sigma_{Q}}\right)$ Correl (q, RSP). In the WCMS data the correlation of rate structure premium and quantity is 0.4659 while the standard deviation of rate structure premium and quantity are 2.906 and 646.3 respectively. Hence the two-part tariff approximation bias underpredicts the true marginal rate by 0.002095 . Using these estimates the two-part approximation would imply marginal price of +0.02348 relative to the mean value tailend price of 0.02138 . This difference is about 25 percent of one standard deviation in the tail-end price. In conclusion it appears that the two-part tariff approximation adequately represents the declining block rate schedule in the determination of the tailend block rate for the WCMS data of 1975.

2. National Interim Energy Consumption Survey (1978)

In Figures 9-15 we plot expenditure versus quantity for selected NIECS locations. We have allowed for the following possible rate schedules:

1 - all electric home in the winter
2 - all electric home in the summer

Figure 9

Buffalo, New York 1978
CERTCODE $=1$

Figure 10

Figure 11

```
CERTCODE = 3
```


Figure 12

Figure 13

Flat River, Hissouri 1978

3 - all electric home during the off-season
4 - not all electric home in the winter
5 - not all electric home in the summer
6 - not all electric home during the off-season
All electric homes are households which have and use an electric space heating system. Winter is defined to be billing periods which begin or end in January 1978. Summer is defined to be billing periods which begin or end in July. The off-season is defined as any billing period which begins in April, October, or September or ends in April, October, or November. The resultant partition closely matches the pattern exhibited by a significant majority of utilities during 1978. In the seven figures we use the symbols $1,2,3,4,5$, and 6 to indicate the observation of a quantity-expenditure pair in a particular cell. It is possible for some cells to be empty (notably all electric homes in some primary sampling units) so that not all points will be found in each figure. Finally in each cell, we have fitted a two-part tariff using least squares. Formal grouping tests are not presented as Figures 9-15 are intended to illustrate the qualitative variety of rate schedules in the NIECS data and to suggest appropriate regression strategies for the estimation of marginal price.

In Figures 9 and 10 we see little evidence of seasonal structure. However Figure 9 indicates the possibility that a winter rate may be distinguished from the rest of the season. (If one checks the national electric rate book for Newark, New Jersey 1978 this supposition is verified.) In Figure 11 we note that estimates of marginal price for all electric households do not differ significantly from those of the non-electric homes. Furthermore, seasonality in rates is not exhibited
on the basis of the slope estimates.
Figure 12 provides a striking illustration of multiple rate schedules. As we pass the 1400 KWh range households in cells 5 and 6 (non-all electric; summer and off-season) appear to fall on two distinct lines. Also the slope estimates indicate a lower marginal price for all electric homes as is illustrated by the households in cell 1 which tend to cluster below all other households. (Consultation of the rate books indicates multiple rates for small and large users of electricity in the Christian, Illinois cluster.) Figure 13 yields an imprecise picture for all-electric homes due perhaps to their few numbers. The price estimates for groups 4, 5, and 6 do not appear to be significantly different. Figure 14 indicates some clustering of all-electric homes in cell 1 and the possibility of an allelectric rate. The winter rate for not all electric homes is lower than the estimated rates in cells 5 and 6 which does not indicate a winter peaking rate. Finally, Figure 15 shows a definite split in cluster 5 households while the number of all electric homes is too few to make an unbiased qualitative statement.

In summary, we see that the two-part approximation to the rate schedule provides an interesting qualitative tool to help determine the presence of seasonal and differential rate schedules. Furthermore when large numbers of observations are present the loss of efficiency from grouping observations into plausible rate cells is compensated by avoiding basic specification bias.

This chapter has reviewed the theory and estimation of price specification in the demand for electricity. We have demonstrated that (1) measured average price and measured marginal price are statistically endogenous, (2) the statistical contribution of the rate structure premium adjustment is negligible, (3) consumer behavior follows the marginal rather than the average price specification, and (4) estimated price elasticities are not significantly different using the tail-end price in place of the measured marginal rate. Finally, we have used the two-part tariff approximation to the rate schedule to provide a means of determining the presence of seasonal and all electric rate schedules.

Footnotes

1. Another source of bias not discussed in this chapter arises from the endogeneity of appliance ownership dummies. Generally, unobserved factors which influence the choice of a durable will also influence its use. For a complete discussion of this problem and evidence of resulting coefficient bias see Dubin and McFadden (1979).
2. This result is further true when p is correlated with Z. However, it is not in general possible to determine the magnitude of the bias when several explanatory variables are correlated with the error term.
3. A maintained hypothesis is that appliance dummies are exogenous. Dubin and McFadden (1979) find evidence that this leads to under estimates (in magnitude) of the true price effects. This point will be reconsidered in Chapter IV.
4. The rate schedule in Houthakker's study consisted of a connect charge and a fixed marginal price. The marginal price elasticity estimated by Houthakker is not tainted by simultaneity bias.
5. Studies by Acton, Mitchell, and Mowill (1976) and Taylor, Blattenberger, and Verleger (1977), find short-run price elasticities from -. 08 to -. 35 with endogenous marginal price specifications.
6. The bias for the average price specification is not as large at approximately 5%.
7. We have rejected the null hypothesis that demand for electricity follows the average price specification. This, of course, is not identical to accepting the marginal price specification. However, given the sign change on the coefficient of (RSP/Q) and its standard error we cannot reject the marginal price specification.
8. This result is likely to remain true for the NIECS survey of 1978 given the trend toward less complicated rate schedules.

CHAPTER III
Estimation of Nested Logit Model
for Appliance Holdings

In this chapter we describe the estimation of a discrete choice model for room air conditioning, central air conditioning, space heating, and water heating. The data used in this study is from the recent National Interim Energy Consumption Survey of 1978. Appendix I describes references to the data set as well as extensive discussion of procedures used to prepare the data for econometric analysis.

Related discrete choice models are Dubin and McFadden (1979), Goett (1979) and McFadden, Puig, and Kirschner (1977). The model estimated here may be embedded in a larger micro-simulation system such as the Residential End-Use Energy Policy System (REEPS) for the purposes of policy forecasting.

Section II discusses the nested logit model of appliance choice and describes the particular tree extreme value form used in our analysis. Section III discusses the utility maximization problem when utility is a function of ambient temperature and the implications for components of indirect utility. Section IV, V, and VI describe the estimation of the room air conditioner, water heat, and space heat choice models. Section VII estimates the full tree structure and discusses central air conditioning choice.

II. Nested Logit Model of Appliance Choice

This section describes the tree extreme value choice model of alternative appliance portfolio combinations estimated for the NIECS data. From the onset we desired to include as many of the major household appliances in the choice system as possible. We have concentrated on the potential choices of nineteen alternative space heating and air-conditioning packages, three water heat fuel types and the choice of room air-conditioning. The possible combinations of appliance portfolios and the possible number of tree structures which might explain the observed choices are essentially 1 imitless.

The empirical searches for nested logit forms which would produce sensible results concentrated on a subset of the nineteen alternative space heating systems. These alternatives form the trunk of the tree structure. In all, we investigated perhaps 200 logit models for space heating choice. The results of this research elicit two important ingredients in the choice process: (1) the importance of eliminating gas heating system alternatives from the choice model when gas was not available, and (2) the treatment of dominated alternatives (i.e. an alternative in which there exists another alternative which is less expensive in operating and capital costs).

Whether a household has availability to natural gas is clearly an important aspect in the decision to install a gas HVAC. Further, inclusion of gas alternatives which appear economically attractive with respect to the choice set is sure to lead to bias when households are observed to choose systems other than gas because it was not available.

Measures of gas availability were not available within the NIECS data base. To construct a measure of gas availability we followed two distinct
procedures. First, a measure of gas availability existed for the Washington Center for Metropolitan studies cross-sectional data. Given our ability to link locational information (at the level of primary sampling units) from one survey to the other, we were able to match the gas availability data from WCMS to NIECS. Unfortunately, gas availability is likely to be determined at the level of city blocks or in regions which correspond to secondary sampling units (see Cowing, Dubin, and McFadden (1981a) which imparts a coarseness to a variable which is to be used at the individual level. A second problem with this procedure was that the survey year for (WCMS) was 1975 while the NIECS survey corresponds to 1978. This gap in time would tend to effect our information about households making choices post 1975.

Our second procedure used natural gas related information in two NIECS variables. The first variable indicated whether the household had any gas appliances and was an index of their cumulative consumptions. The second variable indicated if the household used natural gas for any purposes. We computed the percentage of households in each secondary sampling unit which either had a positive gas index or had positive usage. Gas availability was accordingly assigned to each household in the relevant secondary sampling unit. The inherent weakness of this procedure is that it provides information on households in 1978 rather than the decision date which takes place at the point of construction.

The availability of gas is an essentially discrete phenomenon. When gas is available, gas HVAC systems are in the choice set. When gas is not available, the chosen alternative is presumed selected from alternatives which exclude gas systems. To improve our measure of gas availability we made two modifications. The first change assumes that gas is available (irrespective of our previous assignment) if a particular household chooses
gas. Our second modification works in quite the opposite direction and imposes the condition of non gas availability whenever a household chooses an alternative which is dominated by a gas alternative.

In early attempts to puzzle through the tree structure of appliance choice, we located a few cases in which a household would choose an oil heating system or an electric heating system when, in fact, an all gas system would have been less expensive in terms of both operating and capital costs. For households in which we had previously assumed the availability of gas this posed an interesting problem: Why do households choose dominated alternatives? The answer might be explicable through variations in tastes across individuals yet it was most of ten the case that gas was the dominating non-chosen alternative and not other fuels. We resolved this issue by assuming that our discrete indicator of gas availability was incorrect for the household in question.

It was discovered quite early that alternatives which included central air-conditioning behaved quite distinctly from the set of HVAC alternatives which did not. Figure 1 illustrates the nested logit model of four space heating systems with central air-conditioning, six space heating systems without central air, water heat fuel choice, and room air-conditioning. The postulated structure assumes that water heat choice is made conditional on the choice of space heat system, that room air-conditioning is selected as an alternative to central air-conditioning (i.e. room air-conditioning is chosen only when central air is not chosen), and finally that space heat choice is made conditional on the choice of central versus no central airconditioning.

Figure 1

14 - Electric Forced Air/with central
2 - Gas Forced Air/with central
8 - 0il Forced Air/with central
15 - Heat Pump
13-Electric Force Air/no central
1 - Gas Forced Air/no central
7 - 0il Forced Air/no central
18 - Electric Wall Unit/no central
3 - Gas Hydronic/no central

9 - 0il Hydronic/no central

To derive a nested logit model for Figure 1 let $Y_{\text {wrsc }}$ denote a positive measure of the desirability of alternatives indexed by wrsc where w denotes water heat choice, r indicates room air-conditioning choice, s indicates space heat choice, and c indicates central air choice. We use the notation of Appendix II and specify a probability generating function $G\left[<Y_{w r s c}>\right]$ as the composition of four generating functions to reflect the levels of the tree in Figure 1:
(1) $G\left[<Y_{\text {wrsc }}>\right]=G^{C}\left[<G^{S}\left[<G^{W}\left[\left\langle G^{r}\left[<Y_{\text {wrsc }^{\prime}}^{>}\right]>\right]>\right]>\right]\right.$.

We take logistic generating forms for G^{C}, G^{S}, G^{W}, and G^{r} so that:
(2) $G^{r}\left[\left\langle Y_{r C}>\right]=\left[\sum_{r} Y_{r c} \frac{1}{1-\phi}\right]^{1-\phi}\right.$
(3) $G^{W}\left[<Y_{W S C}>\right]=\left[\sum_{W} Y_{W S C}^{1 / 1-\sigma}\right]^{1-\sigma}$
(4) $G^{S}\left[<Y_{S C}>\right]=\left[\sum_{S} Y_{S C}^{1 / 1-\delta} C^{1-\delta}\right]^{1}$
(5) $G^{C}\left[<Y_{C}>\right]=\sum_{C} Y_{C}$

From Theorem 1 of Chapter 1 it follows that:

$$
\begin{aligned}
P_{w r s C} & =\left[\partial \ell n G^{C} / \partial \ell n G^{S}\right] \cdot\left[\partial \ell n G^{S} / \partial \ell n G^{W}\right] \cdot\left[\partial \ell n G^{W} / \partial \ell n G^{r}\right] \cdot\left[\partial \ell n G^{r} / \partial \ell n Y{ }_{w r s C}\right] \\
& =P_{C} \cdot P_{s \mid c} \cdot P_{w \mid S C} \cdot P_{r \mid w s C}=\left[\partial \ell n G / \partial \ell n Y{ }_{w r s C}\right]
\end{aligned}
$$

wherc $P_{w r s c}$ denotes the probability of choosing portfolio combination wrsc and $P_{j \mid k}$ denotes the conditional probability of choosing alternative j given that alternative k has been chosen. To derive the structure in Figure 1 we assume that the probability of having room air conditioning conditional on HVAC choice is independent of heating system choice. Furthermore, we assume that the probability of water heat fuel choice is independent of room airconditioning choice. To impose this structure on the probability generating
function G, we let $Y_{w r s c}=Y_{w S C} \cdot Y_{r C} \cdot Y_{S C} \cdot Y_{C}$. This model is consistent with the assumption that households maximize utility:
(6) $U_{w r s c}=V_{w r s c}+\varepsilon_{w r s c}$
where: $\quad V_{\text {wrsc }}=\ell n Y_{\text {wrsc }}$ denotes the strict utility of alternative wrsc and $\left\langle\varepsilon_{\text {wrsc }}>\right.$ have a joint generalized extreme value distribution. Note that the assumption $Y_{w r s c}=Y_{w S C} \cdot Y_{r C} \cdot Y_{S C} \cdot Y_{C}$ implies that strict utility may be written as $\ln Y_{W S C}+\ln Y_{r c}+\ln Y_{S C}+\ln Y_{c}=V_{w S C}+V_{r c}+V_{S C}+V_{c}$ which exhibits the decomposition of the components of indirect utility. The generating function under the conditional independence assumption has the form:
(7) $G\left[Y_{W r S C}\right]=G^{C}\left[<Y_{C} G^{S}\left[<Y_{S C} G^{W}\left[<Y_{W S C}>\right]\right] \cdot G^{r}\left[<Y_{r C}>\right]>\right]$.

It is possible to show that:
(8) $\quad P_{r \mid c}=e^{V_{r c} / 1-\phi} / \sum_{r} e^{V_{r c} / 1-\phi} \equiv P_{r \mid w S C}$
(9) $P_{W \mid s c}=e^{V_{W S c} / 1-\sigma} / \sum_{W} e^{V_{w S c} / 1-\sigma}$
(10) $P_{S \mid C}=e^{\left(V_{S C}+J_{S C}(1-\sigma)\right) /\left(1-\delta_{C}\right)} / \sum_{\sum_{S}}\left(V_{S C}+J_{S C}(1-\sigma)\right) /\left(1-\delta_{C}\right)$
(11) $P_{c}=e^{\left(J_{c}^{S}\left(1-\delta_{c}\right)+V_{c}+J_{c}^{r}(1-\phi)\right)} / \sum_{c} e^{\left(J_{c}^{S}\left(1-\delta_{c}\right)+V_{c}+J_{c}^{r}(1-\phi)\right)}$
where:
(12) $J_{S C} \equiv \ln \left[\sum_{W} e^{V_{w S C}}{ }^{1-\sigma}\right]$
(13) $J_{C}^{S} \equiv \ln \left[\sum_{S} \mathrm{e}^{\left(V_{S C}+J_{S C}(1-\sigma)\right) /\left(1-\delta_{C}\right)}\right]$
and
(13) $J_{c}^{r} \equiv \ln \left[\sum_{r} e^{V} r c^{/ 1-\phi}\right]$

The terms J_{c}^{S}, J_{c}^{r}, and $J_{s c}$ are respectively the inclusive values of space heat choice given central air choice, room air choice given central air choice, and water heat choice given space heat and central air choice. Furthermore, $(1-\phi),\left(1-\delta_{c}\right)$, and $(1-\sigma)$ are the corresponding inclusive value coefficients. We have allowed the inclusive value coefficient ($1-\delta_{c}$) to be different depending on central air choice to reflect a possible dissimilarity in the degree of association in the space heat choice branches. Estimation of the central air-conditioning choice model should identify the coefficients δ_{c}.

III. Residential Heating and Comfor:

Let $u[t, Z]$ denote the utility derived from consumption of a vector of goods Z in an environment with ambient temperature t. It is reasonable to assume that utility is increasing in t up to a temperature T^{*} which provides bliss comfort. Below T* occupants feel too cool and above T* feel too hot. If heating were a free good consumers would set their thermostats at T^{*}. However as heating to an interior temperature T^{*} requires a costly energy input there exists a trade-off between the comfort of the ambient space and the price of obtaining this comfort.

Follwing Brownstone (1980) and Hausman (1979) assume that the utility function $u[t, Z]$ is separable in comfort and goods consumption and suppose that $u[t]$, the utility derived from ambient temperature t, takes the linear form $u[t]=-\alpha\left[T^{*}-t\right]$ for $\alpha>0$ and $t \leq T^{*}$. Let $F[t]$ denote the cummulative distribution for the number of days during the heating season in which the daily mean temperature is less than or equal to t. Utility during the heating season from thermostat setting τ is:

$$
\begin{equation*}
u[\tau]=\int_{-\infty}^{\tau}-\alpha\left(T^{*}-\tau\right) F^{\prime}(t) d t+\int_{\tau}^{T^{*}}-\alpha\left(T^{*}-t\right) F^{\prime}(t) d t \tag{15}
\end{equation*}
$$

The first integral assumes that comfort is constant at the level $(T *-\tau)$ degrees per hour when outside temperature is below the thermostat level τ. The second integral assumes that comfort increases proportionally to increases in temperture below the bliss temperature point. It is straightforward to demonstrate that equation (15) has an interpretation measured in degree days of heating. From equation (15):

$$
\begin{aligned}
u[\tau] & \left.=-\alpha\left[T^{*}-\tau\right) F(\tau)+T^{\star}\left(F\left(T^{*}\right)-F(\tau)\right)-\int_{\tau}^{T^{*}} t F^{\prime}(t) d t\right] \\
& =-\alpha\left[T^{*} F\left[T^{*}\right]-\tau F[\tau]-\int_{\tau}^{T^{*}} t F^{\prime}(t) d t\right] \\
& \left.=-\alpha\left[T^{*} F\left[T^{*}\right]-\int_{-\infty}^{T^{*}} t F^{\prime}(t) d t\right)-\left(\tau F(\tau)-\int_{-\infty}^{\tau} t F^{\prime}(t) d t\right)\right] \\
& =\alpha\left[H(\tau)-H\left(T^{*}\right)\right] \text { where } H\left(t_{0}\right) \text { denotes total heating degree days }
\end{aligned}
$$

measured at base t_{0}, i.e.

$$
H\left[t_{0}\right]=\quad \int_{-\infty}^{t_{0}}\left(t_{0}-t\right) F^{\prime}(t) d t=t_{0} F\left(t_{0}\right)-\quad \int_{-\infty}^{t_{0}} t F^{\prime}(t) d t
$$

Suppose that the BTUH heating required to maintain an interior temperature τ when exterior temperature t is given by the function $Q(\tau-t)$. Let $B(\tau)$ denote the seasonal heating load resulting from thermostat setting τ. Then:

$$
\begin{equation*}
B[\tau]=\int_{-\infty}^{\tau} \operatorname{MAX}[Q[\tau-t], 0] F^{\prime}(t) d t \tag{16}
\end{equation*}
$$

We now consider the optimization problem of maximizing the utility function $U[\tau, Z]$ subject to a budget constraint which takes the heating load $B[\tau]$ into account.

The consumer's choice problem is to maximize utility subject to the budget constraint which allocates weal th W between expenditures on goods Z and on fuel $\left(P_{i} / e_{i}\right) B(\tau)$ where P_{i} is the price of fuel i and e_{i} is the efficiency of the heating system using fuel i. We write:

```
T,Z
```

$$
\begin{align*}
& \text { Lagrangian (with multiplier } \xi \text {) is: } \\
& L=U[\tau, Z]+\xi\left[W-Z-\left(P_{i} / e_{i}\right) B(\tau)\right] \text {. The first order conditions are: } \\
& L_{\tau}=U_{\tau}-\xi\left(P_{i} / e_{i}\right) B^{\prime}(\tau)=0 \text { and } \\
& L_{Z}=U_{Z}-\xi=0 \text { so that: } \\
& U_{\tau}=\left(P_{i} / e_{i}\right) B^{\prime}(\tau) \tag{17}
\end{align*}
$$

We see from (17) that the price of comfort depends on the level of comfort. It is possible to re-formulate the optimization problem by using an appropriately defined rate structure premium. Let τ^{\star} denote the solution to (17) so that $\left(P_{i} / e_{i}\right)\left[B\left(\tau^{\star}\right)-B^{\prime}\left(\tau^{*}\right) \tau^{\star}\right]$ is the rate structure premium adjustment which standardizes the optimization problem. The equivalent standarized problem is then:

$$
\begin{array}{r}
\underset{\tau, Z}{\operatorname{Maximize}} U[\tau, Z] \text { subject to }\left[\left(P_{i} / e_{i}\right) B^{\prime}\left(\tau^{\star}\right) \tau\right]+Z \leq \\
W-\left(P_{i} / e_{i}\right)\left[B\left(\tau^{\star}\right)-B^{\prime}\left(\tau^{*}\right) \tau^{\star}\right] \tag{18}
\end{array}
$$

The indirect utility associated with equation (18) is a function of W and the price of comfort $\left(P_{i} / e_{j}\right) B^{\prime}\left(\tau^{*}\right)$. The thermal model discussed in McFadden ad Dubin (1982) was used to estimate the price of comfort for alternative HVAC systems. The procedure approximates the derivative $B^{\prime}\left(\tau^{*}\right)$ by calculating the change in seasonal utilization associated with a one degree change in the thermostat setting. In our empirical work we ignore the RSP adjustment to W of equation (18).

IV. Room Air Conditioner Choice Model

This section describes the estimation of the choice model for room air conditioning. The analysis considers only the choice of room air conditioning as a cooling alternative to central air conditioning and does not consider either the choice of the number of room air conditioning units or their efficiencies. For detials concerning these latter aspects of the choice process see Brownstone (1980) and Hausman (1979). In the NIECS data set we are provided with information about the number of room air conditioners owned by the househcld and the number of rooms air conditioned but no information is available on individual room air conditioner efficiency.

The thermal model of McFadden and Dubin (1982) may be used to provide estimates of air conditioning design capacity. Design capacity measures the thousands of BTU's per hour required to maintain a given household at summer design temperatures. Our allocation of capital costs to central air conditioning units assumes that households purchase units of design capacity. We follow the same procedure for room air conditioners and assume that room air conditioners are purchased to meet design cooling loads.

More precisely we have assumed that the total cooling load in the residence is distributed equally among the number of rooms in the residence and have then determined the capital costs (materials and installation) for providing one room air conditioning unit per room. Casual empiricism suggests this is a departure from average behavior yet the assumption allows us to determine total capital costs in a manner which recognizes substantial returns to scale in purchasing larger air conditioning units. For additional details concerning the construction
of room air-conditioning costs the reader is referred to Cowing, Dubin, and McFadden (1981e).

Consistent with our determination of room air-conditioning capital costs we have assumed that operating costs for room units distributing the total load are identical to those for a central air-conditioning system. This assumes (perhaps unrealistically) that room air conditioners operated in parallel are as efficient as central systems.

Table 1 presents the mean values of variables used in the discrete choice model.

Table 1

Variable	Description	$\frac{\text { Mean }^{\text {a }}}{}$
	Operating Cost for Room Air-Conditioning (19678)	71.07
RMCPCST	Capital Cost for Room Air-Conditioning (19678)	997.60
RMOPCST1	RMOPCST/(Base Load Usage)	0.00819
RMCPCST1	RMCPCST/(Base Load Usage)	0.2737
CDD78	Cooling Degree Days in 1978	1110
RINCOME	Income (19678)/10	
NHSLDMEM	Number of Household Members	10.38
R	3.3	

aSample size 770 households corresponds to the set of single family detached owner occupied dwelling built since 1955 which do not have central air-conditining. 591 of these homes appear in the nested logit model of HVAC system choice.

Following the discussion in Section III, we would expect, other things equal, that the probability of choosing room air-conditioning given that the household does not have central air-conditioning should increase with income and decrease as operating and capital costs increase. We have attempted an empirical specification in which these variables are interacted with the "purchase" alternative. In the "no purchase" alternative we enter the number of household members and cooling degree
days with the latter a measure of the discomfort the household suffers in not having any air-conditioning. The results are presented in Table 2. RINC1, CDD2, and PERS2 are RINCOME, CDD78, and NHSLDMEM interacted with alternative specific dummies for alternative one, alternative two, and alternative two respectively. A1 is the alternative one specific dummy.

Table 2

Binary Logit Model of Room Air-Conditioning Choice
Given No Central Air-Conditioning ${ }^{\text {a }}$

Alternative 1 - Purchase Room Air-Conditioning	45.06 percent
Alternative 2 - Do Not Purchase Room Air-Conditioning	54.94 percent

Variable Name	Logit Estimate	Standard Error	T- Statistic
RMOPCST	$.2683 E-02$	$.3615 E-02$.7421
RMCPCST	$.2121 E-04$	$.3286 E-03$	$.6453 E-01$
RINC1	$.3619 E-01$	$.1453 E-01$	2.490
CDD2	$-.9832 E-03$	$.1828 E-03$	-5.379
PERS2	$.3047 E-01$	$.4930 E-01$.6180
A1	-1.759	.3434	-5.121

Auxiliary Statistics	At Convergence	At Zero
Log Likelihood	-471.8	-533.7
Percent Correctly Predicted		
	70.00	50.00

[^0]The insignificance of the operating and capital cost coefficients in Table 2 follows the pattern of results obtained by Goett (1979). It is possible to offer a few possible reasons for this result: 1) measurement error would tend to bias these coefficients to zero and is likely given the assumptions made in assigning operating and capital costs, 2) the desirability of room air-conditioning is likely to be greatest when the cooling load is greatest introducing a spurious correlation between operating and capital costs and room air-conditioning purchases, and 3) operating and capital costs really are not significant determinants of the choice of room air-conditioning given that the household has chosen not to purchase central air-conditioning and income and cooling degree days adequately model the true choice process. It is likely that the insignificance appears due to all three effects. It is possible however to investigate the second effect in more detail.

In Table 3 we present the room air-conditioning choice model where we have normalized the operating and capital costs variables by the scale variable of expected base load usage (ACUEC). Note that the operating cost variable is now signficant but of the unexpected sign while the normalized capital cost variable remains insignificant. The significance of the nomalized operating cost variable may be attributable to a regional effect in which the largest average costs of room airconditioning are associated with regions in which there is a summer peaking marginal electricity price. The summer peak rate is again associated with high average loads per customer due to the presence of very high ambient temperatures and a large percentage of homes using airconditioning.

Table 3

Binary Logit Model of Room Air-Conditioning Choice Given No Central Air-Conditioning Normalized Operating and Capital Costs

Given the essentially unchanged log likelihood and percentage correctly predicted we adopt the cleaned specification presented in Table 4 for use in the the estimation of the HVAC choice tree. Corresponding to the parameter estimates in Table 4 we have constructed the inclusive value of room air conditioning choice for our sample of 911 households. The mean value of RMINCV [room air-conditioning inclusive value] is -. 5041 with standard deviation 0.4023 .

Table 4

Binary Logit Model of Room Air-Conditioning Choice Given No Central Air-Conditioning No Operating or Capital Costs

```
Alternative 1 - Purchase
```

Alternative 2 - Do Not Purchase

Variable Name	Logit Estimate	Standard Error	T- Statistic
RINC1	$.3765 \mathrm{E}-01$	$.1380 \mathrm{E}-01$	2.729
CDD2	$-.1104 \mathrm{E}-02$	$.1190 \mathrm{E}-03$	-9.281
A1	-1.796	.2322	-7.732
Auxiliary Statistics		At Convergence	At Zero
Log Likelihood			
Percent Correctly Predicted		-472.6	-533.7
		70.26	50.00

V. Water Heat Choice Model

This section describes the water heat fuel choice model conditional on choice of space heating system fuel type. Related studies are Dubin and McFadden (1979) and Goett (1979). We begin with a review of the construction of operating and capital costs.

1. Water Heat Operating Costs

We define the end-use service of water heating to be a gallon of heated water. To determine energy service ratios (ESR) we used the March 1978 Consumer Report which reviewed eleven electric and twelve gas water heaters. Consumer Reports determined annual consumption in KWH per year and therms per year for electric and gas units respectively based on 100 gallons of hot water consumption per day. We use the mean value of annual consumption accross models to calculate ESR by fuel type. For electric water heaters the energy-to-service ratio is:
$\left(10434.55 \frac{\mathrm{KWH}}{\mathrm{Yr} .}\right)\left(\frac{1 \mathrm{Yr} .}{365 \text { days }}\right)\left(\frac{1 \text { day }}{100 \mathrm{gaT}}\right)=0.28588 \mathrm{KWH} / \mathrm{gal}$.
and for gas water heaters the energy service ratio is:
(502.33 Therms $)\left(\frac{1 \text { Yr. }}{\text { gas }}\right)\left(\frac{1 \text { day }}{105 \text { days }}\right)=0.01376$ Therms $/ \mathrm{gal}$.

Following Dubin and McFadden (1979) we assume that oil water heaters are 74 percent as efficient as electric water heaters. Conversion to units of thousand of BTU's per gallon heated implies energy service ratios: 1.376-gas, $0.97542-e l e c$. , and $1.318-0 i 1$. To determine expected usage we use the relation:

Average usage in KWH $=(2819 .+360 . *$ (NHSLDMEM-2)
for hot water heating 360. * (If NHSLDMEM equals 1)) + 365. * 3.98 * HELDISHW

This relationship is discussed in Dubin and McFadden (1979). Note that NHSLDMEM and HELDISHW are NIECS variables which are the number of household members and a dummy variable indicating that the household has a dishwasher, respectively.

Finally, operating costs by fuel type are the product of (1) expected annual usage, (2) the ratio of the ESR of the fuel under consideration to the ESR of the electric water heater, and (3) the price of the fuel in real year built dollars.

2. Hater Heat Capital Costs

Construction of water heating capital costs requires a relationship between assumed capacity and structural characteristics of the dwelling and family. We follow the recommended practice ("Handbook of Buying 1978," Consumer Research Magazine) of relating capacity utilization to the number of bathrooms and the number of bedrooms (a proxy for number of persons). This relationship includes allowance for recovery rate differential which occurs between fuel types. Materials and installation costs for different capacity water heaters are obtained from MEANS (1981). These estimates do not include the costs of vent for gas and oil water heaters. To obtain vent costs for each water heater, we consulted the National Construction Estimator (Craftsman Book Co., Solano Beach, CA 1978) and determined that in 1981 dollars material costs would be $\$ 18$ while installation costs would be $\$ 26$. The National Construction Estimator also indicated electrical contracting charges of $\$ 145$ and $\$ 161$ for water heaters with capacity on either side of 40 gallons. These costs were included in the installation costs obtained from MEANS (1981). Finally, we have included all cost components which are conditional on the type of space heating system installed. When space heating type is gas or electric, the costs for material and in-
stallation of an oil tank are included with the costs of oil water heating. When space heating type is gas or oil an additional charge of $\$ 112$ is added to the labor costs of the electric water heater due to the installation of increased amp service. (National Construction Estimator, 1978). Other charges for all systems are assumed reflected in the cost of the heating systems.

3. Estimation of Water Heat Choice Model

In Table 5 we present the mean values of variables used in the choice model as well as their descriptions.

Estimation is based on a sample of 1158 households who live in single family owner occupied dwellings built since 1955 and who choose either electric, gas, or oil water heaters. As discussed above the gas alternative is removed from the choice set whenever natural gas is unavailable to the household.

We attempted two basic specifications. The first specification included water heat operating and capital costs as well as space heat fuel type dummies interacted with the alternatives. This specification provided generally wrong signs on variables and was difficult to interpret. Our preferred specification used the operating and capital cost variables in normalized form (i.e. divided by expected utilization). We present the results of the normalized model in Table 6 . Note that normalized operating and capital costs may be interpreted directly as service prices (price per gallon of hot water heated) and capital cost per unit of service.

All variables other than income appear highly significant. In Table 7 we present the identical choice model without the income variables. The ratio of the capital to operating cost coefficients implies a discount

TABLE 5

Mean Values of Variables in Water Heat Choice Model (1967 Dollars)

Variables		Description	Mean
WHOPCST	(1)	water heat operating costs	111.30
WHOPCST	(2)	(by alternative)	27.78
WHOPCST	(3)		16.40
WHOPCST1	(1)	water heat operating cost divided	0.02766
WHOPCST1	(2)	by usage (by alternative)	0.006428
WHOPCSTI	(3)		0.00404
WHCPCST	(1)	water heat capital cost (by	193.20
WHCPCST	(2)	alternative)	129.00
WHCPCST	(3)		582.30
WHCPCST1	(1)	water heat capital cost divided	0.04941
WHCPCST1	(2)	by usage (by alternative)	0.03343
WHCPCST1	(3)		0.1509
SHE	(1)	(space heat fuel electricity)*(ALTl)	0.1649
SHG	(2)	(space heat fue] gas)*(ALT2)	0.4931
SHO	(3)	(space heat fuel oil)*(ALT3)	0.1589
RINCOME			11.52

TABLE 6

Three Alternative Multinomial Logit Model of Water Heat Fuel Choice Given Space Heat Fuel Choice ${ }^{\text {a }}$

Alternative Frequency Label	Percent of Cases	Frequency Chosen	Percent Chosen ${ }^{\text {b }}$
1.0001158.	100.0	451.0	38.95
2.000833 .0	72.02	652.0	78.18
3.0001158.	100.0	55.00	4.750
Variable Name	Logit Estimate	Standard Error	T-Statistic
WHOPCST1	-83.32	13.09	-6.365
WHCPCST1	-19.79	7.208	-2.745
RINCOME1	-. 1739E-02	.2571E-01	-. $6762 \mathrm{E}-01$
RINCOME2	. $5122 \mathrm{E}-02$.2754E-01	. 1860
A1	3.791	. 6618	5.728
A2	1.891	. 7264	2.604
SHE	1.458	. 4046	3.602
SHG	2.182	. 2398	9.102
SHO	1.593	. 4323	3.685
Auxiliary Statistics	At Convergence		At Zero
Log Likelihood	-413.3		-1141.
Percent Correctly Predicted	84.80		37.99

${ }^{a_{\text {Note }}}$ that the natural gas alternative appears in approximately 72 percent of the cases. The remaining 28 percent cases are binary choices between the electric and oil water heat alternatives as gas is unavailable.
bercentage of chosen cases for included alternatives.

TABLE 7

Three Alternative Multinomial Logit Model of Water Heat Fuel Choice Given Space Heat Fuel Choice - Normalized Costs Without Income Variables

Variable Name	Logit Estimate	Standard Error	T-Statistic
WHOPCST1	-83.54	13.04	-6.406
WHCPCST1	-19.87	7.060	-2.814
AI	3.775	. 5785	6.525
A2	1.938	. 6239	3.106
SHE	1.440	. 4018	3.584
SHG	2.198	. 2365	9.295
SHO	1.592	. 4313	3.692
Auxiliary Statistics	At Convergence		At Zero
Log Likelihood	-413.4		-1141.
Percent Correctly	d 84.37		37.09

factor of 23.8 percent. We use the choice model in Table 7 in the estimation of the HVAC choice tree. Table 8 gives the mean and standard deviation of the inclusive values of water heat choice conditioned on space heat fuel type for the sample of 911 households. The calculation of the inclusive values correctly accounts for the availability of natural gas. Thus, when gas is not available the inclusive value corresponds to the electric and oil alternatives only.

TABLE 3

Inclusive Values of Water Heat Choice Given Space Heat Fuel Choice

Variable	Water Heat Inclusive Values Given		Mean	Standard Deviatiori
	Electricity			
WHINCVE	Natural Gas		1.308	0.5928
WHINCVG	Oil		1.318	0.5230
WHINCVO				0.5207

VI. Space Heat System Choice

In McFadden and Dubin (1982) and Cowing, Dubin, and McFadden (1981e) nineteen alternative heating ventilating air-conditioning systems are considered which provide combinations of heating and cooling capacity matched to design temperature conditions. We list the nineteen alternative HVAC systems in Table 9.

Seven of the nineteen HVAC have very small sample frequencies and are not considered further ($4,6,10,12,16,17,19$). We illustrate the capital operating cost trade-offs represented by HVAC systems in Figure 2. Prices are converted to 1967 dollars by cost indices from the actual year built costs (see McFadden and Dubin (1982)). During the post 1955 period, operating costs for oil systems were less expensive in real terms than operating costs for gas systems. This situation changed dramatically in the post 1972 period as illustrated in Figure 3.

From Figure 2 we see that baseboard and wall unit systems tend to be dominant in the sense that they have both lower operating and capital costs than other systems. However, wall units (especially gas and oil) are relatively infrequently selected. One explanation is that non-pecuniary aspects of these systems make them unattractive for installation. It is more reasonable to assume, however, that our assignment of costs to the non-central systems are mismatched due to survey ambiguities. Based on these considerations and various attempts with specifications of choice models which included these alternatives, we have opted to eliminate gas and oil wall units from the analysis. The remaining set of ten HVAC systems represent the choices of 911 single-family detached owner occupied households built since 1955. Four of the ten alternatives include central air-conditioning and the sample is selected so that households choosing central air-conditioning use

HVAC System Frequency ${ }^{\text {a }}$

1	0.2676	Gas Forced Air / No Central Air
2	0.1234	Gas Forced Air / Central Air
3	0.0639	Gas Hot Water / No Central Air
4	0.00496	Gas Hot Water / Central Air
5	0.1214	Gas Wall Unit / No Central Air
6	0.00396	Gas Wall Unit / Central Air
7	0.09118	$0 i 1$ Forced Air / No Central Air
8	0.02725	$0 i 1$ Forced Air / Central Air
9	0.06838	$0 i l$ Hot Water / No Central Air
10	0.00396	$0 i 1$ Hot Water / Central Air
11	0.01933	$0 i 1$ Wall Unit / No Central Air
12	0.00050	$0 i l$ Wall Unit / Central Air
13	0.01283	Elec. Forced Air / No Central Air
14	0.03023	Elec. Forced Air / Central Air
15	0.01685	Electric Heat Pump
16	0.00149	Elec. Hot Water / No Central Air
17	0	Elec. Hot Water / Central Air
18	0.05401	Elec. Baseboard / No Central Air
19	0.00694	Elec. Baseboard / Central Air

[^1]

Figure 2

Capital versus operating costs for alternative HVAC systems - sample mean values in the post 1955 period.

OPERATING COSTS

Figure 3

Capital versus operating costs for alternative - HVAC systems sample mean values in the post 1972 period.
electricity as the primary fuel (a small fraction of homes used gas central air-conditioning). The two branches of the space heat choice model are illustrated in Figure 1 of Section II.

Table 10 presents the mean values of variables used in the choice models. The variables SHOPCST and SHCPCST are calculated using annual predictions of usage and capacity developed in the thermal model. Operating and capital costs for alternatives which include air-conditioning reflect additional costs associated with the central air conditioner and any economies that result from shared costs. For details the reader is referred to Cowing, Dubin, and MCFadden (1981e). The variables SHOPCST1 and SHOPCST2 are SHOPCST divided by two scaling factors: expected usage (SHUECE) and the operating cost of HVAC 18. The empirical analysis determined that either method of scaling provided adequate results. Furthermore, the scaled variables have strong intuitive appeal. Consider the operating cost of system j :

SHOPCST $_{j}=(\operatorname{SHIJECE})\left(D_{j}\right)\left(1 / C O P_{j}\right) \cdot P_{j} \quad$ where

SHOPCST $_{j}$	$=$ operating cost of system j
SHUECE	$=$ base load usage estimate (delivered BTU's)
D_{j}	$=$ adjustment factor for delivery system losses
$C O P_{j}$	$=$ coefficient of performance for system j
P_{j}	$=$ price of fuel used by system j

The normalization rules imply:

$$
\begin{aligned}
& \text { SHOPCST1 }_{j}=\left(D_{j}\right)\left(1 / \text { COP }_{j}\right) P_{j} \\
& \text { SHOPCST2 }_{j}=\left(D_{j}\right)\left(1 / C O P_{j}\right)\left(P_{j} / P_{e}\right)
\end{aligned}
$$

TABLE 10

Mean Values of Space Heat
Iperating and Capital Costs (by alternative)

Alternative	SHOPCST	SHCPCST	SHOPCST1	SHCPCST1	SHOPCST2	SHCPCST2
1	583.2	882.2	0.00890	0.0179	1.096	2.481
2	134.3	1081.	0.00226	0.0218	0.3090	3.015
3	109.0	1724.	0.00169	0.0364	0.2388	4.999
4	536.1	874.7	0.00813	0.0163	1.000	2.256
5	124.4	2375.	0.00208	0.0461	0.2835	6.477
6	100.8	2839.	0.00156	0.0570	0.2191	7.965
7	656.9	1694.	0.01072	0.0328	1.328	4.521
8	206.4	1921.	0.00408	0.0397	0.5410	5.447
9	182.7	2294.	0.00352	0.0485	0.4707	6.638
10	407.2	4355.	0.00678	0.0780	0.8273	10.60
1					HVAC \#13	
2	Gas Forced Air / No Central Air				HVAC \#1	
3					HVAC \#7	
4	Oil Forced Air / No Central AirElec. Baseboard / No Central Air				HVAC \#18	
5					HVAC \#3	
6	Gas Hot Water / No Central Air				HVAC $\ddagger 9$	
7	Elec. Forced Air / Central Air				HVAC \#14	
8	Elec. Forced Air / Central AirGas Forced Air / Central Air				HVAC \#2	
9	0 il Forced Air / Central Air				HVAC \#8	
10	Electric Heat Pump				HVAC \#15	

Note that HVAC 18 has a coefficient of performance equal to one, has delivery factor one, and uses electricity so that the operating cost of HVAC 18 is (SHUECE*P ${ }_{\mathrm{e}}$).

The first normalization method replaces operating cost by an efficiency adjusted price, while the second method further scales all costs by the price of electricity. The efficiency adjusted price SHOPCST1 \mathbf{j} is related to the price of comfort since the latter is SHOPCSTl $_{j}$ multiplied by the marginal increase in usage required to change the thermostat setting one degree. For a given household this quantity is constant across alternatives and would change all normalized operating costs in a proportional manner. Empirical results obtained using the calculated price of comfort rather than normalized operating costs were very similar yet more difficult to interpret for quick checks of the discount rate.

The normalized variables made sense on econometric grounds since the unobserved component of utility would tend to be otherwise heteroscedastic. Furthermore, the normalization seems valid on psychometric grounds since it is reasonable to assume that households view costs relative to the costs of some standard system.

Table 11 presents the results of estimating subsets of the ten alternative systems. The water heat inclusive value is not included in these specifications. Income, while included, has not been presented based on its insignificance across the various specifications. The results of the estimation are quite sensible both in terms of significance and sign. Furthermore, without extensive specification testing it is hard to detect any rejection of the independence of irrelevant alternatives assumption. Future work will explore departures from this assumption in the preferred specification using the methods of Hausman and McFadden (1981).

TABLE 11

Estimation of Space Heat Choice Model (Without Water Heat Inclusive Value) - Alternative Specifications ${ }^{\text {a }}$

	Alternative Label	Frequency	Percent of Cases	Frequency Chosen	Percent Chosen
Specifications 1 and 2:	1.000	591.0	100.0	21.00	3.553
	2.000	424.0	71.74	294.0	69.34
	3.000	591.0	100.0	99.00	16.75
	4.000	591.0	100.0	78.00	13.20
	5.000	424.0	71.74	57.00	13.44
	6.000	591.0	100.0	42.00	7.107
Specifications 3 and 4:	1.000	414.0	100.0	21.00	5.072
	2.000	334.0	80.68	294.0	88.02
	3.000	414.0	100.0	99.00	23.91
Specifications 5 and 6:	4.000	177.0	100.0	78.00	44.07
	5.000	90.00	50.85	57.00	63.33
	6.000	177.0	100.0	42.00	23.73
Specifications 7 and 8:	7.000	289.0	100.0	60.00	20.76
	8.000	223.0	77.16	186.0	83.41
	9.000	289.0	100.0	43.00	14.88
Specifications 9 and 10:	7.000	320.0	100.0	60.00	18.75
	8.000	231.0	72.19	186.0	80.52
	9.000	320.0	100.0	43.00	13.44
	10.00	320.0	100.0	31.00	9.688

TABLE 11, cont.

TABLE 11, cont.

Alternatives

	7	8	9	10
Variable ${ }^{\text {c }}$	789	789	78910	78910
SHOPCSTI	$\begin{aligned} & -509.6 \\ & (89.81)^{b} \end{aligned}$	-	$\begin{aligned} & -471.1 \\ & (76.38) \end{aligned}$	-
SHCPCSTI	$\begin{aligned} & -34.86 \\ & (10.85) \end{aligned}$	-	$\begin{aligned} & -19.08 \\ & (6.138) \end{aligned}$	-
SHOPCST2	-	$\begin{aligned} & -8.863 \\ & (1.562) \end{aligned}$	-	$\begin{aligned} & -5.095 \\ & (.8705) \end{aligned}$
SHCPCST2	-	$-.2325$	-	$\begin{aligned} & -.1068 \\ & (0.0371) \end{aligned}$
A1	-	-	-	-
A2	-	-	-	-
A3	-	-	-	-
A4	-	-	-	-
A5	-	-	-	-
A7	$\begin{aligned} & 2.424 \\ & (.780) \end{aligned}$	$\begin{aligned} & 6.578 \\ & (1.444) \end{aligned}$	$\begin{aligned} & 1.251 \\ & (.654) \end{aligned}$	$\begin{aligned} & 2.541 \\ & (.733) \end{aligned}$
A8	$\begin{aligned} & 2.886 \\ & (.526) \end{aligned}$	$\begin{aligned} & 3.252 \\ & (.5709) \end{aligned}$	$\begin{aligned} & 1.473 \\ & (.586) \end{aligned}$	$\begin{aligned} & 1.407 \\ & (.616) \end{aligned}$
A9	-	-	$\begin{aligned} & -1.654 \\ & (.592) \end{aligned}$	$\begin{aligned} & -1.809 \\ & (.605) \end{aligned}$
Log Likelihood	-141.9	-137.7	-228.5	-234.2
Percent Correctly Predicted	80.28	79.58	72.50	70.94
${ }^{\text {b }}$ Standard Errors in parenthesis.				
${ }^{\text {C }}$ Coefficients of income interacted with reported alternative specific dummies not reported. All coefficients insignificant.				

Estimation of discount factors appear robust across specifications. (For a discussion of the discount factor and its interpretation see Dubin and McFadden (1979)). We present the point estimates in Table 12. The discount rates, which range from 2.1 percent to 9.3 percent, may be interpreted as real rather than nominal factors which annualize capital costs. These values are quite low compared to estimates obtained by Dubin and McFadden (1979) and Hausman (1979).

Table 13 presents the results of estimating subsets of the HVAC alternatives where we have included the water heat choice inclusive value. The variable income is not included in this estimation. Point estimates of discount factors are given in Table 14. The general pattern for the inclusive value coefficient appears to be significant with the incorrect sign under the first normalization procedure and insignificant with the correct sign under the second normalization procedure. Given the small differential between the means of the inclusive value variable across fuel types, it is likely that there is significant interaction between the inclusive value variable and the alternative specific dummies. This is further confirmed by the fact that the model continues to robustly estimate the coefficients of operating and capital costs.

To further explore the interaction hypothesis we have estimated specifications $11,12,13$, and 14 in Table 13 . These models eliminate the alternative specific variable for the oil alternatives. The estimate of the inclusive value coefficient for water heat choice conditional on choosing a space heat system without air-conditioning varies from significance with the wrong sign to insignificance as before. However, the estimate of the coefficient conditional on choice of HVAC within the airconditioning branch cannot be rejected from equaling one under either normalization procedure. There is no a priori reason to expect that the

TABLE 12

Discount Rates from Space Heat Choice Model without Inclusive Value for Water Heat Choice
Specification
Discount Factor (Percent)
3.49
1
5.17
3 4.28
4 4.69
5 4.45
6 9.31
7 6.84
8 2.62
9 4.05
10 2.10

TABLE 13

Space Heat Choice Models with Water Heat Inclusive Value

Alternatives

	1	2	3	4	5	6
Variables:	123456	123456	123	123	456	456
SHOPCSTI	$\begin{aligned} & -755.3 \\ & (83.29) \end{aligned}$	-	$\begin{aligned} & -1032 \\ & (147.1) \end{aligned}$	-	$\begin{aligned} & -910.6 \\ & (154.9) \end{aligned}$	-
SHCPCST1	$\begin{aligned} & -24.42 \\ & (9.615) \end{aligned}$	-	$\begin{aligned} & -35.0 \\ & (17.54) \end{aligned}$	-	$\begin{aligned} & -34.30 \\ & (18.57) \end{aligned}$	-
SHOPCST2	-	$\begin{aligned} & -6.432 \\ & (1.077) \end{aligned}$	-	$\begin{aligned} & -8.771 \\ & (1.514) \end{aligned}$	-	$\begin{aligned} & -5.802 \\ & (2.587) \end{aligned}$
SHCPCST2	-	$\begin{aligned} & -0.3261 \\ & (0.0666) \end{aligned}$	-	$\begin{aligned} & -0.3643 \\ & (0.1251) \end{aligned}$	-	$\begin{aligned} & -0.5795 \\ & (0.1263) \end{aligned}$
AT	$\begin{aligned} & 4.463 \\ & (1.41) \end{aligned}$	$\begin{aligned} & 2.617 \\ & (1.496) \end{aligned}$	$\begin{aligned} & 7.732 \\ & (2.75) \end{aligned}$	$\begin{aligned} & 4.973 \\ & (2.37) \end{aligned}$	-	-
A2	$\begin{aligned} & 2.748 \\ & (0.341) \end{aligned}$	$\begin{aligned} & 2.323 \\ & (0.319) \end{aligned}$	$\begin{aligned} & 1.781 \\ & (.297) \end{aligned}$	$\begin{aligned} & 1.993 \\ & (0.2822) \end{aligned}$	-	-
A3	$\begin{aligned} & 0.5449 \\ & (0.241) \end{aligned}$	$\begin{aligned} & 0.2645 \\ & (0.228) \end{aligned}$	-	-	-	-
A4	$\begin{aligned} & 5.342 \\ & (1.374) \end{aligned}$	$\begin{aligned} & 3.150 \\ & (1.40) \end{aligned}$	-	-	$\begin{aligned} & 7.175 \\ & (2.450) \end{aligned}$	$\begin{aligned} & 1.852 \\ & (2.852) \end{aligned}$
A5	$\begin{aligned} & 1.495 \\ & (0.247) \end{aligned}$	$\begin{aligned} & 1.366 \\ & (0.251) \end{aligned}$	-	-	$\begin{aligned} & 2.054 \\ & (0.376) \end{aligned}$	$\begin{aligned} & 1.403 \\ & (0.407) \end{aligned}$
A7	-	-	-	-	-	-
A8	-	-	-	-	-	-
A9	-	-	-	-	-	-
WHINCV	$\begin{aligned} & -7.212 \\ & (0.832) \end{aligned}$	$\begin{aligned} & 0.4886 \\ & (0.6714) \end{aligned}$	$\begin{aligned} & -3.892 \\ & (1.852) \end{aligned}$	$\begin{aligned} & -0.6431 \\ & (1.371) \end{aligned}$	$\begin{aligned} & -1.674 \\ & (1.308) \end{aligned}$	$\begin{aligned} & 0.4514 \\ & (0.991) \end{aligned}$
Log Likelihood	-568.0	-580.9	-133.7	-738.0	-90.44	-98.81
Percent Correct Predicted	tly 66.16	64.81	89.61	88.89	76.84	76.84

Table 13, cont.
Alternatives

	7	8	9	10	11	12
Variables:	789	789	78910	78910	123456	123456
SHOPCST1	$\begin{aligned} & -519.3 \\ & (94.51) \end{aligned}$	-	$\begin{aligned} & -441.4 \\ & (80.27) \end{aligned}$	-	$\begin{aligned} & -749.8 \\ & (82.98) \end{aligned}$	-
SHCPCST1	$\begin{aligned} & -27.68 \\ & (8.97) \end{aligned}$	-	$\begin{aligned} & -17.76 \\ & (5.636) \end{aligned}$	-	$\begin{aligned} & -39.62 \\ & (7.696) \end{aligned}$	-
SHOPCST2	-	$\begin{aligned} & -8.798 \\ & (1.642) \end{aligned}$	-	$\begin{aligned} & -4.475 \\ & (0.9035) \end{aligned}$	-	$\begin{aligned} & -6.189 \\ & (1.049) \end{aligned}$
SHCPCST2	-	$\begin{aligned} & -0.1715 \\ & (0.0605) \end{aligned}$	-	$\begin{aligned} & -0.1005 \\ & (0.0351) \end{aligned}$	-	$\begin{aligned} & -0.3723 \\ & (0.0557) \end{aligned}$
A1	-	-	-	-	$\begin{aligned} & 3.697 \\ & (1.367) \end{aligned}$	$\begin{aligned} & 2.140 \\ & (1.436) \end{aligned}$
A2	-	-	-	-	$\begin{aligned} & 2.717 \\ & (0.204) \end{aligned}$	$\begin{aligned} & 2.034 \\ & (0.200) \end{aligned}$
A3	-	-	-	-	-	-
A4	-	-	-	-	$\begin{aligned} & 4.541 \\ & (1.325) \end{aligned}$	$\begin{aligned} & 2.677 \\ & (1.341) \end{aligned}$
A5	-	-	-	-	$\begin{aligned} & 1.169 \\ & (0.194) \end{aligned}$	$\begin{aligned} & 1.186 \\ & (0.194) \end{aligned}$
A7	$\begin{aligned} & 4.302 \\ & (1.580) \end{aligned}$	$\begin{aligned} & 7.717 \\ & (2.03) \end{aligned}$	$\begin{aligned} & 1.193 \\ & (0.448) \end{aligned}$	$\begin{aligned} & 2.182 \\ & (0.575) \end{aligned}$	-	-
A8	$\begin{aligned} & 2.457 \\ & (0.256) \end{aligned}$	$\begin{aligned} & 2.692 \\ & (0.274) \end{aligned}$	$\begin{aligned} & 1.476 \\ & (1.151) \end{aligned}$	$\begin{aligned} & 2.284 \\ & (1.030) \end{aligned}$	-	-
A9	-	-	$\begin{aligned} & -1.028 \\ & (1.199) \end{aligned}$	$\begin{aligned} & -0.1847 \\ & (1.067) \end{aligned}$	-	-
WHINCV	$\begin{aligned} & -0.9738 \\ & (1.00) \end{aligned}$	$\begin{aligned} & -0.3788 \\ & (0.86) \end{aligned}$	$\begin{aligned} & 0.4499 \\ & (0.86) \end{aligned}$	$\begin{aligned} & 1.176 \\ & (0.74) \end{aligned}$	$\begin{aligned} & -1.186 \\ & (0.84) \end{aligned}$	$\begin{aligned} & 0.4465 \\ & (0.673) \end{aligned}$
Log Likelihood	-143.8	-140.7	-229.9	-234.6	-570.6	-581.6
Percent Correct Predicted	$\begin{gathered} 1 y \\ 81.66 \end{gathered}$	80.62	72.81	70.94	65.82	64.97

TABLE 13, cont.

	Alternat	
	13	14
Variables:	78910	78910
SHOPCSTT	$\begin{aligned} & -408.5 \\ & 70.82 \end{aligned}$	-
SHCPCST1	$\begin{aligned} & -16.77 \\ & (5.467) \end{aligned}$	-
SHOPCST2	-	$\begin{aligned} & -4.395 \\ & (0.776) \end{aligned}$
SHCPCST2	-	$\begin{aligned} & -0.09885 \\ & (0.03376) \end{aligned}$
A1	-	-
A2	-	-
A3	-	-
A4	-	-
A5	-	-
A7	$\begin{aligned} & 1.154 \\ & (0.446) \end{aligned}$	$\begin{aligned} & 2.158 \\ & (0.557) \end{aligned}$
A8	$\begin{aligned} & 2.453 \\ & (0.212) \end{aligned}$	$\begin{aligned} & 2.459 \\ & (0.205) \end{aligned}$
A9	-	-
WHINCV	$\begin{aligned} & 1.148 \\ & (0.294) \end{aligned}$	$\begin{aligned} & 1.293 \\ & (0.306) \end{aligned}$
Log Likelihood	-230.3	-234.6
Percent Correc Predicted	${ }^{1 y}{ }_{72.19}$	70.94

Discount Rates for Space Heat Choice Model with Inclusive Value of Water Heat Choice

SpecificationDiscount Factor
1 0.0323
2 0.0507
3

$$
0.0339
$$

$$
4
$$

$$
0.0415
$$

5

$$
0.0377
$$

$$
6
$$

$$
7
$$

$$
0.0999
$$

$$
8
$$

$$
0.0533
$$

$$
0.0195
$$

$$
9
$$

$$
0.0402
$$

$$
10
$$

$$
0.0225
$$

$$
11
$$

$$
0.0528
$$

12 0.0602
13
0.0411
14
inclusive value coefficients should differ in the two branches so that any differences between the two estimates would be explicable only by differences in the degree of inter-correlations in each space heat choice cluster. The sequential estimation procedure cannot impose the constraint that the estimates of the inclusive value coefficients be equal.

We have adopted the strategy of not including the water heat choice inclusive value in the space heat choice estimation. We argue that the differences in the inclusive values are small and will be adequately captured in the alternative specific dummies. Further work will be required to determine the correct specification of water heat choice in the full nested logit model.

In Table 15 we present means of the space heat inclusive values constructed conditional on choice of central air-conditioning. Note that the difference in the size of the mean values corresponds to including central air-conditioning operating and capital costs in the space heat costs for the central air branch. This point will be taken up again in the next section.

VII. Central Air-Conditioning Choice

This section presents the results from estimation of the central air-conditioning choice model. From equation (11) of Section II, we see that the probability of air-conditioning choice depends on the inclusive value of room air-conditioning (when central air is not chosen), the inclusive values of space heat choice given air-conditioning choice, and on other attributes of the utility of purchasing an airconditioning system. We follow the formulation of indirect utility discussed in Section IV on room air conditioner choice and use income and cooling degree days interacted with the first and second alternatives

Means of Space Heat Inclusive Values Conditioned on Central Air Choice

VariableMean
SHINCVNC -0.6149(inclusive valuegiven no centralair-conditioning)SHINCVC-2.389
(inclusive valuegiven centralair-conditioning)
(central vs. non-central) as determinants of the utility associated with either alternative. The inclusive value of room air-conditioning choice appears interacted with the second alternative as does the inclusive value of space heat choice given no central air-conditioning. The inclusive value of space heat choice given central air-conditioning is interacted with alternative one.

The results of the estimation are presented in Table 16 . While real income and cooling degree days are significant and have the expected sign the coefficients of the inclusive value terms are all insignificant. To pursue the central air specification, we relax the assumption that the coefficients of operating and capital costs are identical for both components of costs in the space heat given central branch of the tree structure. To do this, we remove the "pure" operating and capital costs for central airconditioning from the total operating and capital space heating costs in alternatives $7,8,9$, and 10 . This cannot effect the space heat choice estimation as the operating and capital costs for central air-conditioning (excluding joint cost components) are constant across alternatives.

In terms of the indirect utility notation of Section II, we note that the utility of alternatives $7,8,9$, and 10 may be written:

$$
\begin{equation*}
V_{s \mid c=1}=V_{s \mid c=1}^{\prime}+V_{c=1} \tag{1}
\end{equation*}
$$

where:

$$
\begin{aligned}
V_{s \mid c=1}= & \text { indirect utility of space heat choice } s \text { given central air-conditioning } \\
& (c=1) \\
V_{s \mid c=1}^{\prime}= & \text { indirect utility of space heat choice } s \text { given central air-conditioning } \\
& \text { (c=1) which varies by alternative } s \\
V_{c=1}= & \text { indirect utility of central air-conditioning (} c=1 \text {) (this does not } \\
& \text { vary with alternative } s \text {) }
\end{aligned}
$$

Binary Logit Model of Central Air-Conditioning Choice Central Air-Conditioning Costs Included in Space Heat Inclusive Value

The operating and capital cost components of $V_{C=1}$ are respectively CACOPC and CACCST. The mean values of these variables are $\$ 73.77$ and $\$ 888.30$ respectively. When these costs are removed from the corresponding costs in $V_{s \mid c=1}$, the mean value of space heat inclusive value changes from -2.389 to -0.9980 .

We present in Table 17 the re-estimated central air-conditioning choice model. In this specification we include the separate operating and capital costs CACOPC and CACCST interacted with the air conditioning choice alternative. Table 18 presents the estimated central air-conditioning choice model in which CACOPC and CACCST are normalized by predicted air-conditioning usage. It is interesting to note that the inclusive value coefficients given in Table 17 are consistent with the hypothesis of utility maximization (see McFadden (1981)) although the coefficients of CACOPC and CACCST are insignificant and of the wrong sign respectively.

The results in Table 18 using normalized operating and capital cost yield insignificant coefficients for two of the three inclusive values. This result may be due to spurious correlations among the variables in non-normalized and normalized forms. Future research will be needed to elicit the correct normalization rule. For the present we argue that a basic model may be used as a very good predictor of the choice of central air-conditioning and should perform adequately in the construction of instrumental variables used in the estimation of the utilization equations. The basic model (without airconditioning operating and capital costs or inclusive values) is presented in Table 19.

TABLE 17

> Einary Logit Model of Central Air-Conditioning Choice Central Air-Conditioning Costs Without Normalization

TABLE 18

Binary Logit Model of Central Air-Conditioning Choice Central Air-Conditioning Costs Normalized by Base Load Usage

TABLE 19

Binary Logit Model of Central Air-Conditioning Choice No Central Air-Conditioning Costs or Inclusive Values

VIII. The Effect of the ASHRAE 90-75 Building Standards on the Saturation of Alternative HVAC Systems

This section calculates the mean predicted probabilities of HVAC system choice under two alternative levels of building thermal characteristics. The first alternative is an uninsulated dwelling without storm windows or double glazing. The second alternative is the ASHRAE 90-75 voluntary thermal standard for new construction. Under this standard, all windows are stormed or double glazed, walls and ceiling are insulated, heating and cooling system capacities are reduced, and tight construction is used to reduce infiltration. The AHSRAE standards vary by region as discussed in McFadden and Dubin (1982).

For the purposes of calculating mean predicted probabilities we use the HVAC choice model illustrated in Figure 1. Coefficient estimates for the six alternative space heat choice model given no central air-conditioning and for the four alternative choice model given central air-conditioning are presented in Table 11.

Table 20 presents the mean predicted probabilities under the two alternative levels of building thermal characteristics as well as the probabilities for the observed level of building thermal integrity. The availability of natural gas is assumed to remain constant under each scenario. Predicted probabilities do not appear to shift significantly between the observed thermal integrity and the no insulation cases yet there is some predicted movement into oil systems from the electric systems.

Under the proposed ASHRAE standards there is a marked shift into electric baseboard and heat pump systems and away from other HVAC's.

The proposed ASHRAE standards would thus appear to increase the shares of energy efficient heating and cooling systems. These results should be viewed tentatively given that they include vintage as well as new construc-

Mean Predicted Probabilities of HVAC System Choice Under Alternative Thermal Integrities

HVAC	NOBS	Base Case	No Insulation	ASHRAE 90-75
1	911	0.0368	0.03996	0.02238
2	655	0.7000	0.6586	0.6884
3	911	0.1598	0.1896	0.1184
4	911	0.1432	0.09514	0.2321
5	655	0.1283	0.1552	0.1153
6	911	0.0646	0.09007	0.04918
7	911	0.1737	0.1759	0.1522
8	655	0.7932	0.7881	0.7881
9	911	0.1390	0.1426	0.1288
10	911	0.1170	0.1148	0.1523

tion and do not take into account the costs of additional insulation. Future analysis will consider these effects and a broader scope of policy scenarios.

IX. Summary and Conclusions

This chapter has estimated a nested logit model of the choice of room air-conditioning, water heat fuel, space heat and central airconditioning systems. The models estimated predict very well and may be used recursively to determine probabilities of alternative portfolios. It was found that the operating and capital cost components of utility in the room air-conditioning choice model were insignificant. Operating and capital costs were significant determinants in water heat fuel choice and space heat system choice after normalization for scale effects. Evidence remains inconclusive as to whether water heat choice given space heat choice is consistent with utility maximization, but evidence appears more conclusive that space heat choice given the choice of central air-conditioning is consistent with utility maximization. Estimates of discount rates are determined to be much larger for water heat choice given the choice of space heat system than for space heat system choice given the decision to install central air-conditioning. The latter discount rates are about an order of magnitude smaller than estimates given in Dubin and McFadden (1979).

Finally, we have used the space heat choice model to calculate changes in the predicted shares of HVAC systems which would result under the proposed ASHRAE 90-75 standards.

Footnotes

1. These preliminary investigations are essentially data analysis done in the absence of a good classical procedure for selecting the correct tree structure. Standard errors should be interpreted with this process in mind.

Estimation of the Demand for Electricity and Natural Gas Using the NIECS Billing Data

The purpose of this chapter is to estimate the demand for electricity and natural gas using the NIECS monthly billing data. A sample of 911 households is selected to correspond to the HVAC nested logit model of Chapter III so that simultaneity between appliance choice and usage may be explored. Estimation utilizes the econometric forms suggested in Chapter I for joint continuous-discrete systems. A complete discussion of the NIECS billing data is given in Appendix I.

Section II presents the electricity demand model estimated by ordinary least squares. Section III considers the natural gas demand estimation. Consistent estimation procedures applied to both demand equations are presented in Section IV.

II. Demand for Electricity by Aggregated Billing Period

In this section we estimate the demand for electricity conditioned on appliance noldings using the monthly billing data from NIECS. A discussion of the procedures used to process the billing data is given in Appendix I. The form of the estimated equation is given by:
$X_{t}^{e}-$ QEBASE $=\sum_{j}^{J} U E C_{j t}{ }^{\delta} j t\left(\alpha_{j}^{l}+p_{j t} \alpha_{j}^{2}+y_{\alpha_{j}^{3}}^{3}\right)+\varepsilon_{t}^{e}$

where:

```
Xe
QEBASE = base usage of electricity in the presence of electric refrigerators,
    ovens, ranges, microwave ovens, freezers, washers, and clothes
    dryers
UEC }\mp@subsup{j}{jt}{}=\mathrm{ predicted usage of appliance }j\mathrm{ in period t
\deltajt = indicator of appliance j in period t
Y = income
\varepsilon
\alpha}\mp@subsup{]}{j}{1},\mp@subsup{\alpha}{j}{2},\mp@subsup{\alpha}{j}{3}=\mathrm{ parameters
J = number of appliance portfolios
```

The decomposition of residual (total-base) usage into component demands has been discussed in Chapter I. The procedure has also been applied in the works of Dubin and McFadden (1979), Goett, McFadden, and Earl (1980) and Parti and Parti (1980). For the purposes of our study we limit
attention to the usage of electricity by space heating, air-conditioning, room air-conditioning, and water heating. This selection of appliances corresponds to the choice model of Chapter III and should account for the greater sources of electricity demand in residences.

Table 1 presents the mean values of the variables $U E C_{j t}$ and $P_{j t}$ where j includes the HVAC systems $2,8,13,14,15,18$, room air-conditioning, and water heating. When an HVAC system includes both heating and airconditioning we distinguish the predicted unit energy consumptions by the letters S and A. Thus, UECI4S and UEC14A denote the predicted usage of HVAC system 14 for space heating and air-conditioning respectively. The UEC determination across appliances utilizes the predicted thermal variable SHUEC with adjustments for delivery system, efficiency, and the length of the billing period. Further details may be found in Appendix I.

The variable $P_{j t}$ (denoted by P2A, P8A, etc.) represents the service price for appliance j in period t. We have used the predicted thermal variable DSHUEC which measures the marginal increase in usage resulting from a one degree change in the thermostat, and the price of electricity to calculate the marginal service price. Further details concerning the construction of unit energy consumptions and service prices may be found in Appendix I. The time index t refers to the three temperature aggregated billing periods: Winter, Off-Season, and Summer. The marginal price of electricity is allowed to vary seasonally as discussed in Appendix I.

Table 2 presents the definitions of variables used in the electricity demand mode1. The product of $U E C_{j t}$ and $\alpha_{j t}$ is denoted by the neumonic SU followed by an HVAC system number. Thus, SUl8 is the product of a dummy variable for HVAC system 18 and UECI8. Table 3 gives the mean values for these variables by aggregated billing period.

TABLE 1

Mean Values of UEC's and Service Prices by Time Period

Variable	Winter	Off-Season	Summer	Units
P18	38.64	24.89	3.844	\$/1 ${ }^{\circ}$
P13	41.99	27.32	4.206	\$/1 ${ }^{\circ}$
P14S	41.99	27.32	4.206	\$/1 ${ }^{\circ}$
P15S	24.61	13.60	2.279	\$/1 ${ }^{\circ}$
P14A	.2402E-01	2.033	5.456	\$/1 ${ }^{\circ}$
P15A	.2402E-01	2.033	5.456	\$/1 ${ }^{\circ}$
P2A	.2402E-01	2.033	5.456	\$/1 ${ }^{\circ}$
P8A	.2402E-01	2.033	5.456	\$/1 ${ }^{\circ}$
PRMAC	.2402E-01	2.033	5.456	\$/10
PWH	. $1128 \mathrm{E}-01$. $1116 \mathrm{E}-01$. $1186 \mathrm{E}-01$	\$/gallon
UEC18	. $2948 \mathrm{E}-05$	8538.	391.2	KWH
UECT3	. $3203 \mathrm{E}+05$	9365.	428.0	KWH
UECI4S	. $3203 \mathrm{E}+05$	9365.	428.0	KWH
UEC15S	.1868E+05	4473.	234.9	KWH
UECT5A	3.427	466.8	1953.	KWH
UEC14A	3.427	466.8	1953.	KWH
UEC8A	3.427	466.8	1953.	KWH
UEC2A	3.427	466.8	1953.	KWH
UECRMAC	3.427	466.8	1953.	KWH
UECWH	2059.	1655.	1492.	KWH
NOBS	777	845	802	
WH -	Electric water heating Room air-conditioning			
RMAC -				

TABLE 2

Variable Definitions

Variable

SU18
SU13
SU14S
SU15S
SUI4A
SU15A
SUWHE SURMAC

Description

SU18P, SU13P, SU14SP, SU15SP, SU14AP, SU15AP, SUWHEP, and SURMACP are variables multiplied by service prices.

SU18Y, SU13Y, SU14SY, SU15SY, SU14AY, SU15AY, SUWHEY, and SURMACY are variables multiplied by income.

MPE
EDAYS
NHSLDMEM
NETEQUAN

Marginal price of electricity (\$/KWH) Number of days in aggregated period Number of household members

Net electricity usage (KWH)

TABLE 3

Nean Values of Variables Appearing in Electricity Demand Model

Variable	Winter	Off-Season	Summer
SU18	1962.	770.2	29.56
SUT3	518.0	374.2	6.656
SUl4S	964.3	606.4	32.46
SUl5S	521.0	162.4	7.404
SU18P	. $6659 \mathrm{E}+05$. $1818 \mathrm{E}+05$	110.8
SU13P	. $1375 \mathrm{E}+05$	8551	49.58
SU14SP	. $3257 \mathrm{E}+05$. $1976 \mathrm{E}+05$	218.8
SUl 5SP	. $1972 \mathrm{E}+05$	2947	22.90
Suliy	. $4146 E+05$. $1662 \mathrm{E}+05$	560.3
SUl3Y	. $1099 \mathrm{E}+05$	9004.	162.5
SU14SY	. $3517 \mathrm{E}+05$. $1792 \mathrm{E}+05$	917.3
SUT 5SY	. $1361 \mathrm{E}+05$	4713.	184.6
SU14A	. 2227	40.15	301.1
SU15A	. 1600	19.79	100.3
SU2A	. 7845	109.4	521.0
SU8A	. 3657	22.83	116.1
SUT4AP	.2310E-01	117.8	3850.
SUl5AP	.9249E-01	65.84	1149.
SU2AP	. 1633	514.0	4042.
SUBAP	. 2571	85.21	1090.
SUl4AY	5.583	1119.	7652.
SUl 5AY	3.836	622.5	2644.
SU2AY	19.01	3033.	.1326E+05
SU8AY	11.89	724.7	3576.
SUWHE	654.8	644.2	604.3
SUWHEP	6.611	5.763	6.478
SUWHEY	. $1589 \mathrm{E}+05$. $1530 \mathrm{E}+05$. $1420 \mathrm{E}+05$
INCOME	22.97	23.00	22.88
MPE	. $3946 \mathrm{E}-01$.3904E-01	.4149E-01
EDAYS	182.4	145.8	134.1
NHSLDMEM	3.264	3.243	3.287
NETEQUAN	4663.	3034.	4275.
NOBS	777	845	802

We have selected the sample to correspond to the 911 households represented in the discrete choice models of Chapter III. Given three billing periods per household, we would have 2733 potential observations. From Table 1 we note that $2424(=777+845+802)$ of the 2733 had available electricity billing data.

The dependent variable for equation (1) is denoted, NETEQUAN, and is the difference in total usage EQUAN and base usage for excluded appliances QEBASE. The construction of QEBASE uses UEC values (in KWH/day units) for electric refrigerators, ovens, ranges, microwave ovens, freezers, washers, and clothes dryers. These UEC values are combined with ownership dummies and then multiplied by the number of days in the billing period EDAYS. The UEC values were obtained from Cambridge Systematics/West (1981). The results of least squares regression of the electricity demand model are given in Tables 4 and 5. Note that in the winter period we have excluded variables related to air-conditioning. The least squares estimates for the summer period did not produce sensible results and are omitted. A pattern of summer consumption dependence on cooling systems would have been expected. That this was not the case suggests the need for further analysis into the precise nature of billing cycle variations.

The instrumental variable estimation is facilated computationally when we adopt a restricted form of equation (1) in which the coefficients of the variables interacted with price are constrained to be equal. We similarly restrict the coefficients of UEC and UEC interacted with income.

Table 6 presents the means and definitions of the constrained variables. Note that coefficients are permitted to differ between heating and cooling systems. The constrained demand models are presented in Tables 7 and 8 for

TABLE 4

Electricity Demand Model Estimated by Ordinary Least Squares: Winter Period
 Dependent Variable NETEQUAN

Electricity Demand Model Estimated by Ordinary Least Squares: Off-Season
 Dependent Variable NETEQUAN

Variable Name	Estimated Coefficient	T-Statistic
ONE	-895.1	-1.722
MPE	4619.	. 4308
EDAYS	4.568	4.514
NHSLDMEM	240.7	4.710
SU18	. 5102	7.978
SU18P	-. $1009 \mathrm{E}-01$	-4.072
SUIBY	. $1334 \mathrm{E}-01$	4.143
SUl3	. 6330	5.372
SU13P	-. 1904E-01	-4.517
SUl3Y	.1497E-01	4.370
SU14S	. 6056	4.196
SUI4SP	-. 4928E-02	-1.497
SU14SY	. $5804 \mathrm{E}-02$	1.069
SU15S	. 5119	. 9158
SUl5SP	-3666E-01	-2.370
SUl5SY	4825E-01	2.712
SU14A	-6.094	-2.844
SUl4AP	1.066	2.294
SUl4AY	. 6123E-01	. 7387
SU15A	-2.696	-. 5397
SUl5AP	. 9560	1.370
SUl5AY	-. 3755E-01	-. 2907
SURMAC	. 8205	. 9575
SURMACP	-. $5073 \mathrm{E}-01$	-. 4783
SURMACY	. $7381 \mathrm{E}-03$.2927E-01
SU8A	-2.643	-1.421
SU8AP	. 6076	2.827
SUBAY	. 4970 E-01	1.296
SU2A	-. 3693	-. 6714
SU2AP	-. 9563E-01	-2.616
SU2AY	.7291E-01	4.300
SUWHE	2.692	8.177
SUWHEP	-101.1	-4.268
SUWHEY	-. 1512E-01	-1.650
R-Squared	$=.8483$	
Number of Observations	$=845$	
Sum of Squared Residuals	$=.3755 \mathrm{E}+10$	
Standard Error of the Re	ssion $=2152$.	

TABLE 6

Mean Values for Variables in Constrained Demand Model

```
SUSHE = SU18 + SU13 + SU14S + SU15S
SUSHEP = SU18P + SU13P + SU14SP + SU15SP
SUSHEY = SU18Y + SU13Y + SU14SY + SU15SY
SUCAC = SU14A + SUT5A + SU2A + SU8A
SUCACP = SUl4AP + SUl5AP + SU2AP + SU8AP
SUCACY = SU14AY + SUT5AY + SU2AY + SU8AY
```

Variable	Winter	Off-Season	Summer
SUSHE	3965.	1913.	76.09
SUSHEP	. $1326 \mathrm{E}+06$. $4943 \mathrm{E}+05$	402.1
SUSHEY	. $1012 \mathrm{E}+06$. $4825 \mathrm{E}+05$	1825.
SUCAC	1.533	192.2	1038.
SUCACP	. 5360	782.8	. $1013 \mathrm{E}+05$
SUCACY	40.32	5499.	. $2714 \mathrm{E}+05$
NOBS	777	845	802

TABLE 7

Ordinary Least Squares Regression of Constrained Electricity Demand Model: Winter
 Dependent Variable is NETEQUAN

TABLE 8

Ordinary Least Squared Regression of Constrained Electricity Demand Model: Off-Season

Dependent Variable is NETEQUAN

the winter and off-season periods respectively.
We have excluded the variable SUWHEY from the constrained model in Table 7 due to its high colinearity with other income variables. The constrained model in Table 8 further excludes the price and income variables combined with SURMAC. These excluded variables were not significant under any of the test specifications. The coefficients in Table 7 are reasonably well determined and of the expected sign with the exception of the space heat income term. The estimates in Table 8 do confirm negative price and positive income effects both for heating and air-conditioning.

We conclude this section with the calculation of price and income elasticities conditional on the choice of HVAC system. The elasticities are evaluated at the mean values of variables by billing period and presented in Table 9.

III. Demand for Natural Gas by Aggregated Billing Period

This section presents the estimation of the demand for natural gas using the NIECS aggregated billing data. We follow the general procedures of Section II and attempt a decomposition of residual natural gas usage into component appliance demands.

Mean values of unit energy consumptions are given in Table 10 for HVAC systems 1, 2, and 3 and gas water heating. Table 10 further includes the corresponding service prices and their mean values. The choice of systems again corresponds to the nested logit model of Chapter III and the resulting sample of $1380(=459+476+445)$ observations corresponds to available billing data on 655 households for which gas was available.

The dependent variable for the natural gas demand equation is denoted NETGQUAN and is the difference between total usage GQUAN and base usage
Income and Price Elasticities Conditional on
HVAC System Choice For Constrained Electricity Demand Model
Partial Elasticity of Net Usage with respect to: Winter Off-Season
MPE
INCOME +0.219

$$
-0.107 *
$$

PWH

$$
+0.005^{*}
$$

$$
-0.891
$$

Space Heat Service Price

SYSTEM 18	-1.084	-0.421
SYSTEM 13	-1.280	-0.507
SYSTEM 14	-1.280	-0.507
SYSTEM 15	-0.438	-0.121

SYSTEM 18 -0.553
+0.538
SYSTEM 13 -0.601 $+0.590$
SYSTEM 14 -0.601 $+0.590$
SYSTEM 15 -0.350 +0.282
Central Air-Conditioning Service Price -0.044
Central Air-Conditioning
Income Effect $+0.352$

QGBASE. QGBASE was calculated in an analogous manner to the elctricity variable QEBASE and includes the base usage of clothes drying, ovens, and ranges. Unit energy consumptions (measured in therms/day) were obtained from Werth (1978).

Tables 11 and 12 give the definitions and means of the variables used in the natural gas demand model. The results of the least squares regression of the gas demand model are given in Tables 13 and 14 . We ignore the residual demand for natural gas in the summer period.

We follow the approach of Section II and consider a constrained version of the gas demand model for which price, income, and UEC variable coefficients are assumed equal across the three HVAC systems. The mean values and definitions of the constrained variables are given in Table 15. Least squares estimation of the constrained gas demand model is presented in Tables 16 and 17 for the winter and off season periods. Note that we have excluded the income effect for water heating and allow its effect to be captured in an independent income term. The price and income elasticities for the constrained model are given in Table 18.

IV. Consistent Estimation of the Demand for Electricity and Natural Gas

Econometric studies of unit energy consumptions have assumed, implicitly or explicitly, statistical independence of appliance choice and the additive equation error and have proceeded with least squares estimation. In practice some correlation of unobserved variables is likely. For an appliance such as a water heater, unobserved factors which increase intensity of use (e.g. tastes for hot water clothes washing) are likely to decrease the probability of choosing the operating to capital cost intensive electric system. Least squares estimation of the UEC equation induces a classical bias due to

TABLE 10

Mean Values of UEC's and Service Prices by Time Period

Variables	Winter	Off-Season	Summer	Units
P1	8.290	5.913	. 8150	\$/10
P2	8.290	5.913	. 8150	\$/10
P3	7.690	5.424	. 7516	\$/10
PWH	. $3142 \mathrm{E}-02$. $3121 \mathrm{E}-02$. $3114 \mathrm{E}-02$	\$/gallon
UECT	1167.	347.6	16.15	Therms
UEC2	1167.	347.6	16.15	Therms
UEC3	1083.	319.5	14.93	Therms
UECWH	104.6	84.35	68.68	Therms

TABLE 11

Variable Definitions

Variable	Description
SU1	(HVAC 1 dummy) (UECI)
SU2	(HVAC 2 dummy) (UEC2)
SU3	(HVAC 3 dummy) (UEC3)
SUWHG	(Water heat gas dummy)(UECWH)
SU1P, SU2P, SU3P, and SUWHGP are variables multiplied by service prices.	
SUTY, SU2Y, SU3Y, and SUWHGY are variables multiplied by income.	
MPG	Marginal price of natural gas (\$/Therms
GDAYS	Number of days in aggregated period
NHSLDMEM	Number of household members
NETGQUAN	Net natural gas usage (Therms)

TABLE 12

Mean Values of Variables Appearing in Natural Gas Demand Model

Variable	Winter	Off-Season	Summer
SU1	568.6	208.4	8.474
SUIP	5738.	2686.	12.09
SUTY	. $1272 \mathrm{E}+05$	5227.	188.8
SU2	422.5	108.1	5.519
SU2P	4565.	1159.	7.229
SU2Y	.1199E+05	3010.	149.7
SU3	130.1	21.84	1.480
SU3P	1758.	134.5	1.920
SU3Y	3555.	545.6	42.31
SUWHG	97.56	79.81	63.92
SUWHGP	. 3029	. 2445	. 1966
SUWHGY	2368.	2029.	1500.
MPG	. 2284	. 2268	. 2263
GDAYS	193.6	154.0	127.1
NHSLDMEM	3.218	3.214	3.254
NETGQUAN	1437.	501.9	126.0
INCOME	22.95	23.22	22.87
NOBS	459	476	44.5

TABLE 13

Natural Gas Demand Model Estimated by Ordinary Least Squares: Winter

Dependent Variable NETGQUAN

Variable Name Esti	Estimated Coefficient	T-Statistic
SU1	. 7109	6.543
SUIP	-. 2422E-01	-7.208
SUTY	. $5919 \mathrm{E}-02$	1.662
SU2	. 8339	7.791
SU2P	-. 2913E-01	-6.123
SU2Y	. $7749 \mathrm{E}-02$	2.316
SU3	. 3041	2.406
SU3P	.1106E-02	. 1574
SU3Y	. $1873 \mathrm{E}-01$	3.394
SUWHG	-5.283	-3.012
SUWHGP	1614.	3.589
SUWHGY	-. $1241 \mathrm{E}-01$	-. 3071
ONE	366.0	2.158
MPG	-2378.	-3.347
GDAYS	4.122	9.874
NHSLDMEM	34.51	2.390
R-Squared	$=.7514$	
Number of Observations	$=459$	
Sum of Squared Residuals	$=.6962 E+08$	
Standard Error of the Regression	Ssion $=396.4$	

TABLE 14

Natural Gas Demand Model Estimated by Ordinary Least Squares: Off-Season

Variable Name Estima	Estimated Coefficient	T-Statistics
SU1	. 5002	3.317
SUIP	-. 1607E-01	-3.913
SUTY	. $1077 \mathrm{E}-01$	2.210
SU2	. 1434	1.079
SU2P	. 4070 E-03	. $8390 \mathrm{E}-01$
SU2Y	. 2499E-01	6.072
SU3	.2669E-01	. $584.6 \mathrm{E}-01$
SU3P	. $4687 \mathrm{E}-02$. 1210
SU3Y	. $3522 \mathrm{E}-01$	2.478
SUWHG	. 8981	. 6459
SUWHGP	-41.15	-. 9945E-01
SUWHGY	-. 5378E-01	-2.400
ONE	31.68	. 3490
MPG	-744.8	-2.031
GDAYS	2.437	7.576
NHSLDMEM	25.62	3.082
R-Squared	$=\quad .7424$	
Number of Observations	476	
Sum of Squared Residuals	$=.2722 \mathrm{E}+08$	
Standard Error of the Regression	ession $=243.3$	

TABLE 15

Mean Values for Variables in Constrained Demand Model

SUSHG	$=$	SU1 + SU $2+$ SU3
SUSHGP	$=$	SU1P + SU2P + SU3P
SUSHGY	$=$	SU1Y + SU2Y + SU3Y

SUSHG	1121.	338.4	15.47
SUSHGP	$.1206 E+05$	3979.	21.24
SUSHGY	$.2826 E+05$	8782.	380.7

TABLE 16

Ordinary Least Squares Regression of Constrained Natural Gas Demand Model: Winter
 Dependent Variable is NETGQUAN

TABLE 17

Ordinary Least Squares Regression of Constrained Natural Gas Demand Model: Off-Season
 Dependent Variable is NETGQUAN

Price and Income Elasticities Conditional on HVAC System Choice for Constrained Natural Gas Demand Model

Partial Elasticity of Net Usage
With Respect to:
MPG
INCOME
PWH
Winter
-0.496
-0.168
$+0.475$

$$
\begin{array}{ll}
-0.117 & -0.040 \\
-0.117 & -0.040 \\
-0.101 & -0.033
\end{array}
$$

SYSTEM 1
SYSTEM 3
Space Heat Income Effect

SYSTEM 1	+0.295	+0.275
SYSTEM 2	+0.295	+0.275
SYSTEM 3	+0.273	+0.207

SYSTEM 1
$+0.295$
+0.275
SYSTEM 3
$+0.273$
$+0.207$
*Coefficient not significant from zero at 5% level.
correlation of an explanatory variable and the equation disturbance.
Dubin and McFadden (1979) consider several alternative consistent procedures for estimation of the parameters of the UEC equation. In Appendix II these methods are outlined and an argument is made for the asymptotic efficiency and simplicity of a simple instrumental variable method. The IV method uses consistent estimates of choice probabilities (interacted with the explanatory variables) as instruments. The consistency of this procedure has been noted by McFadden, Kirschner, and Puig (1977) and by Heckman (1979). Using the choice probabilities as instruments yields an estimator distinct from two-stage least squares in which choice dummies are replaced by consistent estimates of their expected values. This latter method is termed a reduced form estimator and is discussed in Appendix II.

We have estimated the constrained electricity and natural gas demand models of Sections II and III by instrumental variables. The estimated choice probabilities are obtained from the nested logit model of Chapter III and care must be taken to calculate unconditional probabilities using the appropriate form of Bayes' Rule. The probability of choosing electric water heat, for example, is the sum of the conditional probabilities of choosing electric water heat given space heat fuel multiplied by the unconditional probability of each fuel type.

Attempts to estimate the unconstrained demand models by instrumental variable methods were unsuccessful given the number of endogenous right hand side variables and the effective inter-correlations among the calculated instruments. We thus follow the simpler procedure of estimating the constrained models and allow the instrument list to include variables in Tables 2 and 11 for which choice dummies are replaced by consistent estimates of
their expectations. Tables 19, 20, 21, and 22 present the IV estimates of the constrained models by fuel and aggregated billing period. The parameter estimates are qualitatively similar to their least squares counterparts. To formally test for significant differences in the estimated parameters we have employed a test due to Hausman (1978). The test requires that each suspected endogenous variable be regressed against the instrument list. Fitted values of these variables are then included in the model as additional explanatory variables. A test of the joint significance of the included fitted values is then equivalent to a specification test of correlation between the structural explanatory variables and the equation error. The models in Tables 19, 20, 21 , and 22 estimated by instrumental variables in comparison with their least squares inalogues in Tables $7,8,16$, and 17 yield chi-squared statistics of $3.08,8.17$, 1.84, and 3.44 with degrees of freedom of $6,6,5$, and 5 respectively. Under standard levels of significance we cannot reject the hypothesis of independence between the choice dummies and the unobserved UEC equation errors. This result must be viewed as provisional and highly dependent on the structure of the constrained demand model. Further study will explore the underlying UEC specifications and attempt alternative consistent estimation methods.

V. Summary and Conclusions

This chapter reports estimates of the demand for electricity and natural gas using the NIECS monthly billing data. The procedure attempted to decompose the energy consumption for each household into component demands attributable to type of HVAC system, water heating, and room air-conditioning. The sample of households was selected to correspond to the discrete choice modeling of Chapter III. In this way, we were able to consider simultaneity in the

TABLE 19

Instrumental Variable Estimation of Constrained Electricity Demand Model: Winter
 Dependent Variable NETEQUAN

Instrumental Variable Estimation of Constrained Electricity Demand Model: Off-Season
 Dependent Variable is NETEQUAN

Variable Name	Estimated Coefficient	T-Statistic
SUWHE	3.649	9.431
SUWHEP	-176.5	-4.914
SUCAC	-. $7168 \mathrm{E}-02$	-. 8546E-02
SUCACP	-. 1638	-3.635
SUCACY	. 9554E-01	4.022
SURMAC	. 9903	1.089
SUSHE	. 1941	2.256
SUSHEP	-. 5005E-02	-2.234
SUSHEY	.1272E-01	5.192
ONE	-902.3	-1.554
INCOME	-22.81	-2.635
MPE	. $1037 \mathrm{E}+05$. 8563
EDAYS	4.510	3.949
NHSL DMEM	255.2	4.454
R-Squared	. 8147	
Number of Observations	845	
Sum of Squared Residuals	. $4586 \mathrm{E}+10$	
Standard Error of the Reg	ression $=2349$.	

TABLE 21

Instrumental Variable Estimation of Constrained Natural Gas Demand Model: Winter
 Dependent Variable is NETGQUAN

Variable Name	Estimated Coefficient	T-Statistic
SUSHG	. 2709	2.411
SUSHGP	-.1386E-01	-3.651
SUSHGY	.1636E-01	6.106
SUWHG	-2.834	-1.066
SUWHGP	1557.	1.886
ONE	777.9	2.731
MPG	-2519.	-2.176
INCOME	-11.42	-2.854
GDAYS	3.409	4.579
NHSLDMEM	13.22	. 6292
R-Squared	. 6728	
Number of Observations	459	
Sum of Squared Residuals	. $9163 \mathrm{E}+08$	
Standard Error of the Reg	ression $=451.8$	

TABLE 22

Instrumental Variable Estimation of Constrained Natural Gas Demand Model: Off-Season

 Dependent Variable is NETGQUAN

 Dependent Variable is NETGQUAN}

Variable Name	Estimated Coefficient	T-Statistic
SUSHG	. 6018	4.992
SUSHGP	-. 1084E-01	-2.791
SUSHGY	. 1371 E-01	4.792
SUWHG	-1.060	-. 6208
SUWHGP	73.88	. 1467
ONE	145.3	1.277
MPG	-579.2	-1.335
INCOME	-3.524	-2.378
GDAYS	1.766	3.050
NHSLDMEM	25.96	2.359
R-Squared	. 7013	
Number of Observations	476	
Sum of Squared Residuals	$=\quad .3156 \mathrm{E}-08$	
Standard Error of the Re	ression $=260.2$	

demand system and test the hypothesis that unobserved characteristics which affect the choice of HVAC system are related to unobserved characteristics influencing the demand for energy given system choice. The large number of potentially endogenous explanatory variables reduced the effectiveness of the instrumental variable method used to achieve consistent parameter estimates. We thus adopted a strategy of estimating a constrained demand system and tested for simultaneity using the methods of Hausman (1978). Preliminary evidence does not detect endogeneity of appliance holdings in the constrained system. Further research will explore the system specifications and apply general simultaneous equation methods.

Appendix I. A Review of the Appended NIECS Data Base and the Monthly Billing Data

This appendix reviews the National Interim Energy Consumption Survey (NIECS) data bank developed at the Massachusetts Institute of Technology during the summer and fall of 1981 by Thomas C. Cowing, Jeffrey A. Dubin, and Daniel L. McFadden. Although the NIECS data contain a great deal of detailed information on the residential energy demand characteristics of individual households, it does not contain all of the information required to model household appliance choice and utilization. Substantial amounts of additional data are required, much of it in the form of thermal performance and price information.

A significant determinant of appliance choice, for example, will be related to the capital cost (appliance cost plus installation costs) and expected operating cost of alternative appliance portfolios facing the household at the time the decision is made. Consider in turn the components of expected operating costs and capital costs for alternaivee heating-ventilation-air-conditioning (HVAC) systems. Expected operating costs are related to energy utilization which varies seasonally and with the thermal integrity of the housing shell. Energy utilization may be predicted using a themal network model of the home but requires detailed information on daily temperature distribution, amount and placement of insulation, etc. Expected operating costs are further related to the various coefficients of performance in each HVAC system and to expectations of the course of energy prices. The use of expected fuel prices in a life-cycle intertemporal utility maximization model requires an extensive time-series of data (e.g. by fuel type and state) since
expectations are presumably based in large part on past prices.
Capital costs for alternative HVAC systems are related to capacity load requirements which may be calculated using a themal model under design conditions. For heating systems this requires knowledge of winter design temperatures. For cooling systems it is necessary to collect the summer daily temperature range as well as the summer design temperature. In addition, capital costs given capacity are expected to vary cross-sectionally given the variability of the labor component of installation costs in a national cluster sample. Finally the determination of fuel utilization conditional on choice of HVAC system reqquires explicit construction of HVAC service prices. This calculation requires that marginal prices be determined which correspond to the period in which energy consumption is observed.

The purpose of this appendix is to detail the components of the NIECS data base in its appended form. Section one outlines the documentation and evaluation of the NIECS data base given principally in a series of technical reports by Cowing, Dubin, and McFadden. We go on further to describe the source and description of additonal raw variables matched to each NIECS household. Section two considers the NIECS billing data and reviews procedures used to reprocess the data in a form suitable for econometric research. Section three examines the use of the monthly billing data in the construction marginal prices and section four considers a case study of a particular NIECS household as an illustration of the data structure and as a detailed internal consistancy check. A final section includes several fortran programs described in the text with associated output.

I. The Appended NIECS Data Base

1. Review of Documentation of the NIECS Data Base

The National Interim Energy Consumption Survey (NIECS) contains detailed energy demand information at the household level of 4081 households over the period April 1978 to March 1979. Among the data included are information on the structural characteristics of the housing unit, demographic characteristics of the household, fuel usage, appliance characteristics and actual energy consumption over the 12 -month period. The NIECS annual file coded 59 separate variables to report these items. In Table 1 we provide a list of the NIECS information in summary form. The preparation of a data bank to organize and classify a subset of the NIECS annual file was undertaken by Tom Cowing, Jeff Dubin, and Dan McFadden in the Summer of 1981. At this point an evaluation of the data set was made to determine its usefulness for a demand for energy study. For substantive details concerning this evaluation the reader may consult Cowing, Dubin, and McFadden, "Residential Energy Demand Modeling and the NIECS Data Base: An Evaluation" (1982). In their report, Cowing, Dubin, and McFadden review the NIECS data and consider an assessment of measurement error, sample design, imputation, and other data problems. Related source documents are [101], [108], [112], [107]. [109], [110], [111], and [105].

A collateral evaluation of the NIECS data was conducted by Carl Blumstein, Carl York, and William Kemp [19]. This report has been reviewed and evaluated by Cowing, Dubin, and McFadden (1981b). Independent reports on the weather information contained in the NIECS data set and on procedures used to locate state locations for NIECS households are given in Cowing, Dubin, and McFadden (1981c) and Cowing Dubin, and McFadden (1981d).

Table 1. NIECS Information - A Summary ${ }^{1}$

Housing characteristics
Housing type
Year house built
Number of floors
Floor area
Number of rooms
Number and type of windows
Number and type of storm windows
Number and type of outside doors
Number of storm doors
Presence, type, amount of attic
insulation
Wall insulation
Retrofit/conservation efforts ${ }^{2}$
Storm windows
Weatherstripping
Clock thermostat
Attic insulation
Wall insulation
Floor insulation
Hot water pipe insulation
Hot water heater insulation
Other insulation
Caulking
Plastic coverings on windows or doors

Heating/cooling equipment
Main heating system type and fuel Secondary heating system type and fuel Type of air conditioning equipment Number of rooms air conditioned

Household appliances
Fuel used for water heating
Number and type of refrigerators Number and type of cooking equipment Use of other household appliances

Demographic characteristics
Number age, sex, and employment status of household members
Marital status of respondent
Race of respondent
Eduction of respondent and spouse
Total household income for 1977
Housing tenure (own or rent)
Energy use and consumption ${ }^{3}$
Use of electrictiy, natural gas LPG, and fuel oil

- for different functions
- paid by household
- consumption, and expenditure

Other information
Geographic location Heating degree days Cooling degree days Type of community
$1_{\text {Questions were }}$ also asked about ownership and use of motor vehicles, but this infomation was not relevent to this project.

2Refers to conservation actions taken between January 1977 and the date of the interview, fall 1978.
${ }^{3}$ Data on monthly household fuel consumption and expenditures by type of fuel were obtained from fuel suppliers. The data cover the one-year period from Apri 1978 through March 1979.

2. Additional Variables

In addition to the data items provided directly within NIECS, additional variables were collected and matched to the data base most frequently at the level of the primary sampling unit. Table 2 lists these variables and gives their descriptions.

TABLE 2

Variable
Name

Description

AVEPYB Average electricity price year house built
AVEP78
AVGPYB
AVGP78
AVOPYB
AVOP78
CDD4170
CDD78
CERTCODE
ELEVAWS
ELEVDDWS
ELEVPSU
HDD4170
HDD7879
I INDEX
LATAWS
LATDDWS
LATPSU
MINDEX

> SDDB

SODR
WCMSINDX
WMAET
H99T

Average electricity price 1978
Average gas price year house built Average gas price 1978
Average oil price year house built
Average oil price 1978
Cooling degree days 10 yr . nomals
Cooling degree day 1978
Certainty code of location match
Elevation of ASHRAE Weather Station
Elevation of degree day weather station
Elevation (ft.) of PSU Location
Heating degree days 30 yr . normals
Heating degree days in 1978-1979
City cost index for installation (mech. goods)
Latitude of Ashrae weather station
Latitude of degree-day weather station
Latitude of PSU location
City cost index for materials (mech. goods)
Summer design dry bulb
Summer outdoor daily temperture range
Index of matched WCMS PSU
Winter median of annual extreme temperatures Winter 99 percent temperature

II. Reprocessing the Monthly Billing Data

In this section we discuss the monthly billing data matched to the (NIECS) National Interim Energy Consumption Survey. Following a brief review of the data collection procedure we describe our strategy to re-process the raw billing data into a form useful for econometric analysis. Summary information based on the re-processed data provides a measure of data quality for empirical studies.

NIECS is a four stage area probability sample consisting of 103 primary sampling units. The NIECS sample was drawn from the contiguous United States and the District of Columbia. In final form the sample represents individually specific information on 4081 households. In 3842 cases demographic and structural attributes were obtained by personal interview. In the remaining 239 cases data were obtained by mailed questionnaire and the contractor, Response Analysis Corporation, found it necessary to impute a substantive number of the missing responses. At the completion of each interview, households were asked to sign a Department of Energy waiver allowing Response Analysis to collect data on fuel utilization directly from the appropriate fuel supplier. Utilities responded in varying degrees of completeness. Table 3 summarizes the data collection response rates for 4080 households who used electricity. Referring to Table 3, we see that in approximately three-fourths of the sample at least eleven months of billing data were collected. This is a strikingly high percentage of the cases. In an additional twelve percent of the sample, fewer than ten months of billing data were collected. For these households, the contractor provided imputed annual information using various "hot-deck" and regression estimates. The usefulness of the
imputed annual figures for econometric analysis seems questionable so that it would seem best to concentrate empirical efforts on the first group with nearly complete data.

For each household a maximum of twenty billing periods were recorded with an average length of 30 days per billing period. In each billing period the following information was recorded: the expenditure in dollars for the fuel, the quantity in kilowatt-hours for electricity consumed, the beginning year, month, and date, and the ending year, month, and date. Also recorded were a code for whether or not the beginning and ending dates were known or imputed, whether the end of each billing period was an actual or estimated meter reading, and the total number of heating and cooling degree days for the billing period computed to fourteen separate bases.

In all cases the month in which the billing period took place was known with certainty. Documentation provided by Response Analysis Corporation indicates that there were two major categories of billing date completeness.

The first category consists of the majority of dates unknown for all billing periods. In this case, billing periods were assumed to begin on the fifteenth of the month and end of the fifteenth of the following month with the beginning and ending date codes set to indicate that this assumption had been made. The second category consists of households in which specific dates were unknown for only a few periods at the beginning of the billing record. In this case the initial months were assigned a billing date equal to the first known billing date. It is only possible to determine the exact duration of a billing period for those cases in which the beginning and ending dates are known with certainty.

TABLE 3

Energy Consumption Records and Missing Data for Survey Households Using Electricity

	```Electricity no. of households```	Percent
Total households using fuel	4080	100.0
Data received from fuel supplier	3509	86.0
11 months or more	3023	74.1
5-10 months	340	8.3
Less than 5 months	146	3.6
Household pays directly to supplier - no data available	334	8.2
Household not identified in company records	128	3.1
Company refused to participate	0	-
Company unknown or not located	0	-
Authorization Form not signed	206	5.1
Fuel used included in rent or paid in other way	237	5.8

Source: NIECS: Report on Methodology, Part 1. Household and Utility Company Surveys, Response Analysis Corporation, Princeton, N.J; Feb., 1981, Section 5.

Table 4 exhibits the actual data from the NIECS billing tape for the 90 th household. From Table 4 we see that 14 billing periods were coded. Columns $C$ and $D$ indicate whether the beginning and ending dates are known or unknown. The code for this variable is 0 known and 1 unknown. As columns $C$ and $D$ consist of all zeroes, we know that all dates for observation 90 were known with certainty. Reading across the top row of Table 4 we see that the starting date was January 19, 1978 (columns $E, F$, G), and that the ending date was February 23, 1978 (columns H, I, J), which corresponds to 35 elapsed days (column K). Quantity, expenditure, heating and cooling degree days (base 65) are recorded in columns A, B, $L$, and $M$ respectively.

In the econometric analysis of the demand for electricity we must insure that all observations correspond to the behavior of economic agents. Thus we follow a procedure for reprocessing the raw data which determined quantities and expenditures for periods of time bounded at either end by actual meter readings. The estimated versus actual code is given in column 0 of Table 4. The codes in this case are 0 for no data, 1 for actual meter reading, 2 for estimated reading, 8 for no information provided from utility on this item, and 9 for fuel not used. Note that these codes refer to the end of the period so that it is impossible to tell whether period one data is ever actual or estimated.

Given the possibility that a code eight corresponds to an actual meter reading rather than an estimated reading we have followed the convention of bounding observations by code ones or code eights and flagging the later cases to indicate their suspect quality. Given that we do not have any information from the utility for the beginning of period one (i.e. the end of period 0 ) it would seem useful to treat the

## TABLE 4

## Observation No. 90

403	38.28	0	0	78	1	19	78	2	23	35	1455	0	1	1
290	28.76	0	0	78	2	23	78	3	23	28	920	0	2	1
280	28.50	0	0	78	3	23	78	4	20	28	553	0	3	1
341	35.79	0	0	78	4	20	78	5	23	33	398	8	4	2
261	28.95	0	0	78	5	23	78	6	21	29	37	70	5	2
290	31.42	0	0	78	6	21	78	7	21	30	7	196	6	2
232	25.57	0	0	78	7	21	78	8	20	30	0	303	7	1
280	30.25	0	0	78	8	20	78	9	18	29	30	135	8	2
251	27.38	0	0	78	9	18	78	10	17	29	237	5	9	1
340	33.12	0	0	78	10	17	78	11	20	34	485	0	10	1
331	32.54	0	0	78	11	20	78	12	20	30	833	0	11	1
425	39.54	0	0	78	12	20	79	1	18	29	1020	0	12	1
303	29.29	0	0	79	1	18	79	2	24	37	1528	0	13	1
206	20.32	0	0	79	2	24	79	3	22	26	670	0	14	1
0	0	0	0	0	0	0	0	0	0	0	0	0	15	0
0	0	0	0	0	0	0	0	0	0	0	0	0	16	0
0	0	0	0	0	0	0	0	0	0	0	0	0	17	0
0	0	0	0	0	0	0	0	0	0	0	0	0	18	0
0	0	0	0	0	0	0	0	0	0	0	0	0	19	0
0	0	0	0	0	0	0	0	0	0	0	0	0	20	0

A: Quantity KWH
B: Expenditures in $\$$
C: Begin date known
D: End date known
E: Begin year
$F$ : Begin month
G: Begin day
H: End year

I: End month
J: End day
K: Elapsed days
L : Heating degree days - $65^{\circ}$
M: Cooling degree days - 650
$N$ : Billing period No.
0: End of period
Actual or estimated code
end of period zero as if it had been assigned with a code eight.
Reading down column 0 we see that the end of period zero i.e. the beginning of period one has the assigned eight code. In the next line we see that the end of period one corresponds to an actual meter reading. Thus billing period number 1 provides a tentatively valid observation. Comparing the rows of Table 4 for billing periods 1 and 2 we see that the end of period one (equivalent to the beginning of period two) is an actual meter reading. Also the end of period two is an actual reading so that billing period two is bounded by actual readings.

As we go down further in the table, we see that the beginning of period 4 is an actual reading but that the ends of periods 4,5 , and 6 are estimated. Not until the end of period 7 do we have another actual reading. We thus aggregate the infomation in periods $4,5,6$, and 7 to obtain a single observation bounded at each end with actual meter readings. This aggregated period contains 1124 kilowatt hour consumption $(341+261+290+232)$ and corresponds to 122 days or approximately 4 months.

A computer program (reproduced in Section VI) was written which processes the raw billing data and produces the following variables: flag code given in Table 6 , start code, end code, expenditure, heating and cooling degree days (base 65 and base 75), and quantity consumed.

A zero value for the flag code indicates no data, a one indicates that the processed observation is bounded by actual meter readings, a two indicates actual meter readings at both ends of the period but at least one imputed date at either end-point, a three indicates that at least one end-point corresponds to the eight code (no information on type of meter reading), and finally a four corresponds to not knowing whether one of
the end-points is actual versus estimated and that at least one end-point has an imputed date.

Table 5 illustrates the reprocessed data for observation 90. In our reprocessing we found it adequate to allow space for up to 15 billing periods rather that the twenty records allowed for in the raw data set. Note that while Table 4 reports information on 14 billing periods, the reprocessed information corresponds to 10 observations in Table 5. The start and end codes summarize the seven variables allocated in the raw data set for beginning and ending dates and elapsed days. The start and end codes are defined as the number of days from January 1, 1978. A negative number thus would correspond to the number of days before January 1, 1978. The difference between the start and end codes for any billing perod is then the elapsed number of days. For example, the start code in Table 5 for the first reprocessed observation indicates that the observation begins 18 days past the first of January, while the end code indicates that the observation ends 53 days past the first of January for an elapsed time of 35 days. This number may be cross checked in Table 4.

Note that the first three reprocessed observations in Table 5 are identical to their counterparts in Table 4. The fourth observation in Table 5 corresponds to the aggregation of periods 4, 5, 6, 7 from Table 4. Finally, the flag code in column 1 of Table 5 is appropriately set for each reprocessed observation as can be checked with the aid of Table 6 and Table 4.

As mentioned above, we have provided for up to 15 billing records for each of the households under consideration. Table 7 provides a summary of the processing of 2018 cases for which the certainty code of housing location match was greater than three and for which the household was

TABLE 5
Observation 90 Re-Processed

Flag	Start   Code	End   Code	Expenditure	HDD	CDD	Quantity
3.00	18.00	53.00	38.28	1455.00	0.0	403.00
1.00	53.00	81.00	28.76	920.00	0.0	290.00
1.00	81.00	109.00	28.50	553.00	0.0	280.00
1.00	109.00	231.00	121.73	442.00	577.0	1124.00
1.00	231.00	289.00	57.63	267.00	140.00	531.00
1.00	289.00	323.00	33.12	485.00	0.0	340.00
1.00	323.00	353.00	32.54	833.00	0.0	331.00
1.00	353.00	382.00	39.54	1020.00	0.0	425.00
1.00	382.00	419.00	29.29	1528.00	0.0	303.00
1.00	419.00	445.00	20.32	670.00	0.0	206.00
0.00	0.00	0.00	0.00	0.00	0.0	0.00
0.00	0.00	0.00	0.00	0.00	0.0	0.00
0.00	0.00	0.00	0.00	0.00	0.0	0.00
0.00	0.00	0.00	0.00	0.00	0.0	0.00
0.00	0.00	0.00	0.00	0.00	0.0	0.00

TABLE 6

Explanation for Variable Flag

0

No data
Actual meter readings; known dates
Actual meter readings; at least one imputed date

No data on actual vs. estimated; known dates

No data on actual vs. estimated; at least one imputed date


#### Abstract

owner-occupied and single-family detached. For details on the location match the reader may consult Cowing, Dubin, and McFadden (1981d). Table 8 provides a similar summary for the processing of the natural gas billing data. Tables 7 and 8 indicate that no information was available for 127 households in the electricity data and that no information was available for 874 households in the natural gas data. However 79.87 percent and 88.13 percent of the electricity and natural gas billing data are assigned a flag code of one which indicates a very high quality for the overall processed data sets.


## III. Use of Billing Data to Obtain Marginal Prices

This section considers the construction of the marginal price of electricity and the marginal price of natural gas from the monthly billing data. Details concerning the theory of this calculation (as opposed to its implementation are presented in Chapter 2.)

In the process described of going from the raw monthly data to the processed data, we emphasized a need to bound each observation by actual meter readings. These observations correspond to the behavior of the individual. In determining bills, however, it is likely that estimated as well as actual quantities are applied to the rate schedule by the utility. Thus to determine marginal price we recommend the use of the billing data as it appears on the monthly data set.

Under the assumption that the rate schedule can be approximated by a two-part tariff, an appropriate procedure collects all observations from within a primary sampling unit (this roughly corresponds to the area covered by a single utility), and fits a marginal price using ordinary least squares regression of expenditure on a constant term and quantity:

## TABLE 7

Summary Statistics for Variable Flag: Electricity Billing Data

	Code	Absolute Frequency	Relative Frequency (PCT)	Adjusted Relative Frequency
	0	5809	20.48	-
	1	18015	63.51	79.87
	2	1496	5.27	6.63
	3	2635	9.29	11.68
	4	410	1.45	1.82
Total:	28,365			
	$\begin{aligned} & 127 \text { missing } \\ & 1891 \text { partial } \end{aligned}$	cases   cases		

TABLE 8
Summary Statistics for Variable Flag: Natural Gas Billing Data

	Code	Absolute Frequency	Relative Frequency (PCT)	Adjusted Relative Frequency (PCT)
	0	4827	28.13	-
	1	10869	63.34	88.13
	2	122	0.71	0.99
	3	1195	6.96	9.69
	4	147	0.86	1.19
Total:	17,160			
	874 1144	cases		

$$
\begin{equation*}
E_{t}=\alpha+B Q_{t}+V_{t} \quad \text { with: } \tag{1}
\end{equation*}
$$

$E_{t}$	$=$ expenditure by observation $t$
$Q_{t}$	$=$ quantity consumed by observation $t$
$V_{t}$	$=$ random error term for observation $t$
$a$	$=$ fixed charge in two-part tariff
$B$	$=$ marginal price

Before public release, a procedure designed to protect confidentiality randomll adjusted the beginning and ending date of each billing period by up to three days. This innoculation procedure was designed to prevent matching of households with the billing data provided by the fuel supplier. Does this inoculation prevent recovery of marginal rates? Suppose we assume that the two-part tariff is an adequate representation of the billing schedule and that a random fraction $\xi_{2 t}$ of billing period two data is assigned to billing period one data to produce an observed (expenditure, quantity) observation $\left(E_{t}^{*}, Q_{t}^{*}\right)$. Let $\left(E_{1 t}, Q_{1 t}\right)$ and $\left(E_{2 t}, Q_{2 t}\right)$ be the true expenditure, quantity pairs for two contiguous billing periods determined by relation (1). Then,

$$
\begin{align*}
& E_{t}^{*}=E_{1 t}+\xi_{2 t} E_{2 t} \quad \text { and }  \tag{2}\\
& Q_{t}^{*}=Q_{1 t}+\xi_{2 t} Q_{2 t} \tag{3}
\end{align*}
$$

From equation (1),

$$
\begin{equation*}
E_{1 t}=\alpha+B Q_{1 t}+V_{1 t} \text { and } \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
E_{2 t}=\alpha+\beta Q_{2 t}+V_{2 t} \quad \text { Thus: } \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
E_{t}^{*}=\alpha+B Q_{t}^{*}+V_{1 t}+\xi_{2 t} V_{2 t}+\alpha \xi_{2 t} \text { so that } \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
E_{t}^{*}=\alpha+\beta Q_{t}^{*}+\varepsilon_{t} \quad \text { where } \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
\varepsilon_{t}=V_{1 t}+\xi_{2 t} V_{2 t}+a \xi_{2 t} \tag{8}
\end{equation*}
$$

If ordinary least squares is an appropriate technique for estimation of (1), it should also provide consistent estimates of the parameters in (7). Thus, the innoculation done by Response Analysis Corporation would not appear to invalidate the basic statistical integrity of the procedure used to determine marginal prices although it is expected that the standard error of the least squares regression will be increased due to the noise introduced by the randomization process.

In Section VI we reproduce the Fortran programs which calculate the marginal prices of electricity and natural gas from the NIECS billing data. The fortran program which processes the raw electricity billing data constructs four marginal prices AEMPE78 - marginal price of electricity for all electric homes, SMPE78 - summer marginal price of electricity, WMPE78 - winter marginal price of electricity in 1978 and OSMPE78 - off season marginal price of electricity in 1978. Consistency conditions and internal checks are imposed on the estimated prices so that at least ten observations are used in the regression analysis and so that winter and summer rates are in fact peak rates. For details the
reader is referred to the code itself.
The Fortran program for processing natural gas marginal price does not attempt to discern a seasonal effect. Note that the level of aggregation assumed throughout is that of the primary sampling unit (PSU). We therefore assume that all observations within a given PSU are served by one utility.
IV. Adaptation of Annual Thermal Model to Monthly Billing Data

In this section we summarize the heating and cooling energy calculations analyzed in McFadden and Dubin (1982). The calculation considers the dominant modes of heat transfer between interior and exterior in both the design and normal operational modes. For details concerning either the thermal modeling principles or characteristics of single-family dwellings in NIECS used in the calculations the reader should consult McFadden and Dubin (1982).

1. Summary of Winter Heating Calculation

In Table 9 we reproduce a summary of the winter heating calculation. From Table we find that delivered energy per hour on a winter day with mean ambient temperature $t$ and thermostat setting $\tau$ is:

$$
\begin{align*}
Q= & {\left[A_{w} U_{W}+A_{c} U_{c}+A_{w i n} U_{w i n}\right](\tau-t)+A_{c} U_{f}\left(\tau-t{ }_{g}\right) }  \tag{9}\\
& +\theta V[.0103+.00015(\tau-t)](\tau-t)-\text { INTERNAL }
\end{align*}
$$

The notation is

$A_{W}, A_{C}, A_{\text {win }}$	wall, ceiling, and window areas
$U_{W}, U_{C}, U_{w i n}, U_{f}$	conductivities of wall, ceiling, window   (average), and floor
$\theta$	window infiltration loss factor   $V$
$t_{g}$	volume
ground temperature, assumed constant	
throughout the winter	
internal load from occupants and	
appliances.	

We may rewrite (9) in the form
(10) $Q=w_{3}+w_{1}(\tau-t)+w_{2}(\tau-t)^{2}$ with:
$w_{0} \quad=A_{c} U_{f}\left(\tau-t_{g}\right)$
$w_{1} \quad=A_{W} U_{w}+A_{c} U_{c}+A_{\text {win }} U_{\text {win }}+.0103 \theta V$
$w_{2}=.00015 \theta \mathrm{~V}$
$w_{3}=w_{0}-$ INTERNAL

TABLE 9

## Summary of Winter Heating Capacity Calculation

Design Btuh is the sum of the following components. 1. Wall losses:
$\left[\begin{array}{l}\text { Exterior wall area } \\ \text { surrounding heated } \\ \text { space, excluding } \\ \text { windows }\end{array}\right]\left[\frac{0.9394+0.0138 \mathrm{I}_{\mathrm{w}}}{2.85+\mathrm{I}_{\mathrm{w}}}\right] \cdot\left[75-\mathrm{t}_{\mathrm{e}}\right]$
2. Ceiling losses:

$$
[\text { Ceiling area }] \cdot\left[3.834+0.943 I_{C}\right]^{-1} \cdot\left[75-t_{e}\right]
$$

3. Floor losses:

$$
\left[\text { Ceiling area] } \cdot\left[75-\left(36-0.3 t_{e}\right)\right) / 10.05\right.
$$

4. Window losses:

$$
\left[\frac{A_{w s}}{2.78}+\frac{A_{w n}}{0.98}+\frac{A_{s d s}}{1.32}+\frac{A_{s d n}}{0.88}\right] \quad .\left(75-t_{e}\right)
$$

5. Infiltration losses:


## Notation:

$I_{w} \quad$ R-value of wall insulation (minimum of 0.95 for air gap if no insulation).
$I_{C} \quad$ R-value of ceiling insulation
$t_{i}=75$ interior design temperature ( ${ }^{\circ} \mathrm{F}$ )
$t_{e} \quad$ exterior winter design temperature ( ${ }^{\circ} \mathrm{F}$ )
$A_{w s} \quad$ area of stomed windows ( $\mathrm{ft}^{2}$ )
$A_{w n} \quad$ area of non-stormed windows $\left(\mathrm{ft}^{2}\right)$
$A_{s d s} \quad$ area of stormed sliding glass doors ( $\mathrm{ft}^{2}$ )
$A_{s d n} \quad$ area of non-stormed sliding glass doors $\left(\mathrm{ft}^{2}\right)$
$v$ volume of conditioned space ( $\mathrm{ft}^{2}$ )

Source: McFadden and Dubin (1982).

The mean and standard deviation of the thermal coefficients $w_{0}$, $w_{1}, w_{2}, w_{3}$ are given in Table 10.

TABLE 10

Variable
Mean ${ }^{\text {a }}$
Standard Deviation

$w_{0}$	-1604	814.9
$w_{1}$	618.5	258.5
$w_{2}$	1.666	.7101
$w_{3}$	-4050.	1077.

aBased on the sub-sample of 2018 households from NIECS in which household is single-family detached, household is owner-occupied, and the certainty code of the location match is one or two (see Cowing, Dubin, and McFadden (1981d) for details.)

We illustrate the heat function in Figure 1.

FIGURE 1


Inspection of equation (10) shows the heat function falls as the daily mean temperature increases and has a slope which is increasing. Furthermore, the effect of INTERNAL causes the heat function to go negative beyond a critical temperature $t_{6}$. To maintain the thermostat setting $\tau$ it would in fact be necessary to "crack a window" and let some of the internal heat dissapate. The critical temperature $t_{6}$ is defined relative to the themostat setting $\tau$ and only the difference ( $\tau-t_{6}$ ) is uniquely determined. Note that equation (10) implies:

$$
\begin{equation*}
\lambda=\left(\tau-t_{6}\right)=-\left(w_{1} / 2 w_{2}\right) *\left[1-\left(\left(1-4 w_{2} w_{3}\right) / w_{1}^{2}\right)^{1 / 2}\right] \tag{11}
\end{equation*}
$$

## 2. Summary of Summer Cooling Calculation

In Table 11 we present a summary of the summer cooling calculation. This calculation considers three types of net heat flows: (1) radiation heat gain during daylight hours, (2) conduction through walls and ceiling, and (3) conduction through windows and infiltration in the presence of the daily cycle of radiation, temperatures, and flywheel effects.

Let $q_{0}$ denote peak radiation heat gain (before adjustment for latent heat). From Table 11,

$$
q_{0}=13.6 A_{w} U_{w}+13.77 A_{c} U_{c}+37.5 A_{\text {win }} U_{\text {win }},
$$

where $A_{W}, A_{c}, A_{w i n}$ are wall, ceiling, and window areas, and $U_{w}$, $U_{c}, U_{w i n}$ are corresponding conductivities. The radiation at hour $h$ (with $h=0$ at noon) is approximately:

$$
Q_{R}(h)=q_{0} \max \left(0, \cos \frac{\pi h}{12}\right) \quad|h| \leq 12
$$

## TABLE 11

## Summary of Summer Cooling Capacity Calculation

Design Btuh is the sum of the following components:

1. Wall gains:

2. Ceiling gains:

$$
\left[\begin{array}{l}
\text { Ceiling }
\end{array}\right] \cdot\left[\frac{\left(0.9276+0.0165 I_{c}\right)}{\left(1.916+0.608 I_{c}\right)}\right] \cdot\left[13.77-0.202 t_{r}+0.592\left(t_{e}-75\right)\right]
$$

3. Window gains (assuming storms removed) :

$$
\left(A_{w s}+A_{w n}+A_{s d s}+A_{s d n}\right)\left(0.8 t_{e}-30\right)
$$

4. Internal load: (INTERNAL)
```
1200 + 400 (number of occupants)
```

5. Infiltration gains:

$$
0.018 \cdot v \cdot\left(t_{e}-75\right) \cdot\left[0.25+0.02165(7.5)+0.00833\left(t_{e}-75\right)\right]
$$

The sum of $1-5$ is increased by 30 percent to account for latent heat load (dehumidification)

Notation:
$\mathrm{t}_{\mathrm{e}} \quad$ summer design maximum temperature $\left({ }^{\circ} \mathrm{F}\right)$
$t_{r} \quad$ summer design temperature range $\left({ }^{\circ} \mathrm{F}\right)$
$I_{W} \quad$ R-value of wall insulation
$I_{C} \quad$ R-value of ceiling insulation
$A_{w s}+A_{w n}+A_{s d s}+A_{s d n}$ total area of windows and sliding glass doors
$V$ volume of conditioned space
Source: McFadden and Dubin (1982)

Conduction through walls and ceiling, internal load, and average window conduction is assumed uniform over the day due to flywheel effects and equals:

$$
\begin{aligned}
& Q_{A}(t)=A_{W} U_{W}(t-\tau)+A_{c} U_{c}(.592)(t-\tau)-A_{\text {win }} U_{\text {win }}(t-\tau)+ \\
& (.0074) V(t-\tau)+\text { INTERNAL }=q_{1}+q_{2}(t-\tau)
\end{aligned}
$$

Finally, net heat gain which varies with the tempreature cycle, due to infiltration, attic ventilation, and cyclic window conduction is given by:

$$
\begin{aligned}
Q_{v}(h) & =\left[2(.094) A_{c} U_{c}+A_{w i n} U_{w i n}+(.0074) v\right]^{t_{r}} \frac{1}{2} \cos \left(\frac{\pi h}{12}\right) \\
& =q_{3} \cos \left(\frac{\pi h}{12}\right)
\end{aligned}
$$

where $t_{r}=$ summer outdoor temperature range.
Combining these sources, net energy gain at hour $h$ is:

$$
\begin{aligned}
Q & =Q_{r}(h)+Q_{A}(t)+Q_{v}(h) \\
& =q_{0} \max \left(0, \cos \left(\frac{\pi h}{12}\right)\right)+q_{1}+q_{2}(t-\tau)+q_{3} \cos \left(\frac{\pi h}{12}\right)
\end{aligned}
$$

The following approximation is derived in McFadden and Dubin (1982) to determine the average BTU's per hour extracted by the air conditioner during a twenty-four hour period:

$$
Q= \begin{cases}0 & \text { for } t<t_{1}  \tag{12}\\ \left(\left(t-t_{1}\right) /\left(t_{2}-t_{1}\right)\right) \cdot q_{4}+\left(t-t_{1}\right)\left(t_{2}-t\right) \cdot q_{8} & \text { for } t_{1} \leq t<t_{2} \\ \left.q_{4}+\left(\left(t-t_{2}\right) / t_{3}-t_{2}\right)\right) \cdot\left(q_{5}-q_{4}\right)+\left(t-t_{2}\right)\left(t_{3}-t\right) \cdot q_{9} & \text { for } t_{2} \leq t<t_{3} \\ 1.3\left(\left(q_{0} / \pi\right)+q_{1}+q_{2}(t-\tau)\right) & \text { for } t \geq t_{3}\end{cases}
$$

where:

$$
\begin{array}{ll}
t_{1} & =\tau-\left(q_{0}+q_{1}+q_{3}\right) / q_{2} \\
t_{2} & =\tau-q_{1} / q_{2} \\
t_{3} & =\tau-\left(q_{1}-q_{3}\right) / q_{2} \\
Q\left(t_{1}\right) & =0 \\
Q\left(t_{2}\right)=q_{4}=1.3\left(q_{0}+q_{3}\right) / \pi \\
Q\left(t_{3}\right)=q_{5}=1.3\left(q_{3}+q_{0} / \pi\right)
\end{array}
$$

$$
t_{4}=\tau-\left(q_{1}+\left(q_{0}+q_{3}\right) / \sqrt{2}\right) / q_{2}
$$

$$
t_{5} \quad=\tau-\left(q_{1}-q_{3} / \sqrt{2}\right) / q_{2}
$$

$$
Q\left(t_{4}\right)=q_{6}=1.3\left(q_{0}+q_{3}\right)(1 / \pi-1 / 4) / \sqrt{2}
$$

$$
Q\left(t_{5}\right)=q_{7}=1.3\left(q_{0} / \pi+q_{3}(1 / \pi+3 / 4) / \sqrt{2}\right)
$$

$$
q_{8}=\left[q_{6}-\left(\left(t_{4}-t_{1}\right) /\left(t_{2}-t_{1}\right)\right) q_{4}\right] /\left(t_{4}-t_{1}\right) \cdot\left(t_{2}-t_{4}\right)
$$

$$
q_{9} \quad=\left[q_{7}-q_{4}-\left(\left(t_{5}-t_{2}\right) /\left(t_{3}-t_{2}\right)\right) \cdot\left(q_{5}-q_{4}\right)\right] /\left(t_{5}-t_{2}\right) \cdot\left(t_{3}-t_{5}\right)
$$

Means and standard deviations of the thermal coefficients are given in Table 12.

## TABLE 12

Variable	Mean	Standard Deviation
$Q_{0}$	12150.	5327.
$Q_{1}$	2446.	664.6
$Q_{2}$	562.7	231.1
$Q_{3}$	2717.	1354.
$Q_{4}$	6151.	2685.
$Q_{5}$	8560.	3791.
$Q_{6}$	933.3	407.9
$Q_{7}$	7696.	3386.
$Q_{8}$	-6.191	3.056
$Q_{9}$	-37.22	26.16

We illustrate the cooling function in Figure 2 .

FIGURE 2


The temperatures $t_{1}, t_{2}, t_{3}$ define distinct cooling ranges. Below temperature $t_{1}$ there is no predicted cooling. In the range $t_{1}$ to $t_{2}$ there is daytime cooling only and the cooling function has been approximated by a quadratic which is increasing in the daily mean temperature at an increasing rate (reflecting the sign of the average value of $q_{8}$ ). In the range $t_{2}$ to $t_{3}$ there is continuous cooling which is again approximated by the convex shaped quadratic. Beyond temperature $t_{3}$ cooling is again continuous however the cooling function is now linear relfecting a range of daily mean temperatures which exceed the thermostat setting $\tau$.
3. Determination of Energy Consumption Levels for the NIECS Billing Data

Following the approach of McFadden and Dubin (1982) let $F(t)=$ $\left(1+e^{-b(t-\mu)}\right)^{-1}$ denote a logistic approximation to the cumulative distribution of daily mean temperatures for a given billing period. To determine total energy consumption for heating we integrate the heat function in equation (10) for all temperatures below the critical temperature $\mathrm{t}_{6}$. Total delivered heat per hour averaged over the billing period is then:

$$
\int_{-\infty}^{\min \left[\tau, t_{6}\right]}\left[w_{3}+w_{1}(\tau-t)+w_{2}(\tau-t)^{2}\right] F^{\prime}(t) d t
$$

When $\tau \leq t_{6}$, the integral (13) may be evaluated by:

$$
w_{3} P_{\tau}-w_{1} / b \cdot \ln \left[1-P_{\tau}\right]+2 w_{2} / b^{2} \cdot \gamma[b(\tau-\mu)]
$$

where $r(\lambda)=\quad \int_{-\infty}^{\lambda} \ln \left[1+e^{s}\right] d s$. In the case $\tau>t_{6}$ note that:

$$
\begin{aligned}
& \int_{-\infty}^{t_{6}}\left[w_{3}+w_{1}(\tau-t)+w_{2}(\tau-t)^{2}\right] F^{\prime}(t) d t \\
& \left.=\int_{-\infty}^{t_{6}}\left[w_{1}+2 w_{2}\left(\tau-t_{6}\right)\right]\left(t_{6}-t\right)^{+w_{2}}\left(t_{6}-t\right)^{2}\right] F^{\prime}(t) d t \quad a s \\
& w_{3}+w_{1}(\tau-t)+w_{2}(\tau-t)^{2} \\
& =w_{3}+w_{1}\left(t_{6}-t+\tau-t_{6}\right)+w_{2}\left(t_{6}-t+\tau-t_{6}\right)^{2} \\
& =\left[w_{1}+2\left(\tau-t_{6}\right)\right]\left(t_{6}-t\right)+w_{2}\left(t_{6}-t\right)^{2}+\left[w_{3}+w_{1}\left(\tau-t_{6}\right)+w_{2}\left(\tau-t_{6}^{2}\right)\right] \\
& =\left[w_{1}+2\left(\tau-t_{6}\right)\right]\left(t_{6}-t\right)+w_{2}\left(t_{6}-t\right)^{2}
\end{aligned}
$$

$$
\text { since }\left[w_{3}+w_{1}\left(\tau-t_{6}\right)+w_{2}\left(\tau-t_{6}\right)^{2}\right]=0 .
$$

Evaluation of the integral (13) yields:

$$
-\left[w_{1}+2 w_{2}\left(\tau-t_{6}\right)\right] / b \cdot \ln \left[1-P t_{6}\right]+2 w_{2} / b^{2} \cdot r\left[b\left(t_{6}-\mu\right)\right]
$$

The calculation of cooling per hour averaged over the distribution of daily mean temperatures similarly requires the integration of the cooling function (12) from the critical temperature $t_{1}$ up to the upper limit of the temperature distribution. To facilitate the integration of the cooling function the following moments are derived:

$$
\begin{aligned}
& \mu_{1}\left(t^{\prime}\right)=\int_{-\infty}^{t^{\prime}}\left(t^{\prime}-t\right) F^{\prime}(t) d t=\frac{1}{b} \ln \left[1+e^{b\left(t^{\prime}-\mu\right)}\right]=\frac{-1}{b} \ln \left[1-P_{t^{\prime}}\right] \\
& =\left(t^{\prime}-\mu\right)+\frac{1}{b} \ln \left[1+e^{-b\left(t^{\prime}-\mu\right)}\right] \\
& \mu_{2}\left(t^{\prime}\right)=\int_{-\infty}^{t^{\prime}}\left(t^{\prime}-t\right)^{2} F^{\prime}(t) d t=\frac{2}{b^{2}} r\left[b\left(t^{\prime}-\mu\right)\right] \quad \text { so that } \\
& \xi_{1}\left(t^{\prime}, t^{\prime \prime}\right)=\int_{t^{\prime}}^{t^{\prime \prime}}\left(t^{\prime \prime}-t\right) F^{\prime}(t) d t=\left(t^{\prime \prime}-t^{\prime}\right)\left[1-P_{t^{\prime}}\right]^{\frac{1}{b}} \ln \left[\frac{P^{\prime}}{\left.P_{t^{\prime \prime}}\right]}\right. \text { and } \\
& \xi_{2}\left(t^{\prime}, t^{\prime \prime}\right)=\int_{t^{\prime}}^{t^{\prime \prime}}\left(t^{\prime \prime}-t\right)\left(t-t^{\prime}\right) F^{\prime}(t) d t=\left(t^{\prime \prime}-t^{\prime}\right)\left[\mu_{1}\left(t^{\prime}\right)+\mu_{1}\left(t^{\prime \prime}\right)\right]
\end{aligned}
$$

Finally, integration of the cooling function (12) yields:

$$
\begin{aligned}
& q_{4} /\left(t_{2}-t_{1}\right) \cdot \xi_{1}\left(t_{2}, t_{1}\right)+q_{8} \cdot \xi_{2}\left(t_{1}, t_{2}\right)+ \\
& q_{4} \cdot\left(P_{t_{3}}-P_{t_{2}}\right)+\left(\left(q_{5}-q_{4}\right) /\left(t_{3}-t_{2}\right)\right) \cdot \xi_{1}\left(t_{3}, t_{2}\right)+q_{9} \cdot \xi_{2}\left(t_{2}, t_{3}\right)+ \\
& q_{5} \cdot\left(1-P_{t_{3}}\right)-1 \cdot 3\left(q_{2} / b\right) \ln \left[P_{t_{3}}\right]
\end{aligned}
$$

Application of the formulae for $\xi_{1}\left(t^{\prime \prime}, t^{\prime}\right)$ and $\xi_{2}\left(t^{\prime}, t^{\prime \prime}\right)$ require modification to allow for numerical indeterminancies occurring at high temperatures. Consider first the formula for $\xi_{1}\left(t_{B}, t_{A}\right)$ with $t_{B}>t_{A}$ :

$$
\begin{aligned}
\xi_{1}\left(t_{B}, t_{A}\right) & =\mu_{1}\left(t_{A}\right)-\mu_{1}\left(t_{B}\right)-\left(t_{A}-t_{B}\right) F\left(t_{B}\right) \\
& =-1 / b \ln \left[1-P_{t_{A}}\right]+1 / b \ln \left[1-P_{t_{B}}\right]-\left(t_{A}-t_{B}\right) P_{t_{B}} \\
& =1 / b \ln \left[\left(1-P_{t_{B}}\right) /\left(1-P_{t_{A}}\right)\right]-\left(t_{A}-t_{B}\right) P_{t_{B}} \\
& =1 / b\left[\ln \left(1+e^{b\left(t_{A}-\mu\right)}\right)-\ln \left(1+e^{b\left(t_{B}-\mu\right)}\right)\right]-\left(t_{A}-t_{B}\right) P_{t_{B}}
\end{aligned}
$$

When $b\left(t_{B}-\mu\right)$ is sufficiently large so that $P_{t_{B}}$ is approximately equal to one, we have:

$$
\begin{aligned}
& \xi_{1}\left(t_{h i g h},\right.\left.t_{A}\right) \\
& \doteq \frac{1}{b} \ln \left(1+e^{b\left(t_{A}-\mu\right)}\right)-\left(t_{B}-\mu\right)-\left(t_{A}-t_{B}\right) \\
&=-\left(t_{A}-\mu\right)+\frac{1}{b} \ln \left(1+e^{b\left(t_{A}-\mu\right)}\right)=\frac{-1}{b} \ln \left[P_{t_{A}}\right]
\end{aligned}
$$

In the calculation of $\xi_{2}\left(t_{A}, t_{B}\right)$ note that:

$$
\xi_{2}\left(t_{A}, t_{B}\right)=\left[t_{B}-t_{A}\right]\left[\mu_{1}\left(t_{A}\right)+\mu_{1}\left(t_{B}\right)\right]+\mu_{2}\left(t_{A}\right)-\mu_{2}\left(t_{B}\right)
$$

Since $\mu_{1}\left(t_{A}\right)+\mu_{1}\left(t_{B}\right)=\frac{-1}{b} \ln \left[1-P_{t_{A}}\right]-\frac{1}{b} \ln \left[1-P_{t_{B}}\right]$

$$
\begin{gathered}
=\frac{-1}{b} \ln \left[\left(1-P_{t_{A}}\right)\left(1-P_{t_{B}}\right)\right] \text { and } \\
\left(1-P_{t_{A}}\right)=\left[1+e^{b\left(t_{A}-\mu\right)}\right]^{-1} \quad \text { we have: } \\
{ }^{\mu_{1}}\left(t_{A}\right)+{ }_{\mu_{1}}\left(t_{B}\right)=\frac{1}{b} \ln \left(1+e^{b\left(t_{A}-\mu\right)}\right)+\frac{1}{b} \ln \left(1+e^{b\left(t_{B}-\mu\right)}\right) .
\end{gathered}
$$

In the case in which $b\left(t_{B}-\mu\right)$ is large we have;

$$
\mu_{1}\left(t_{A}\right)+\mu_{1}\left(t_{h i g h}\right)=\left(t_{A}-\mu\right)-\frac{1}{b} \ln P_{t_{a}}+\left(t_{h i g h^{-\mu}}\right)
$$

Finally, the calculation of $\mu_{2}\left(t_{B}\right)$ when $b\left(t_{B}-\mu\right)$ is large follows from:

$$
\begin{aligned}
\mu_{2}\left(t_{h i g h}\right) & =\int_{-\infty}^{t_{h i g h}}\left(t_{h i g h^{-t}}\right)^{2} F^{\prime}(t) d t \\
& \doteq \int_{-\infty}^{\infty}\left(t_{h i g h^{-t}}{ }^{2} F^{\prime}(t) d t=\operatorname{VAR}(t)+\left(\mu-t_{h i g h}\right)^{2}\right. \\
& =\pi^{2} / 3 b^{2}+\left(t_{h i g h^{-\mu}}\right)^{2}
\end{aligned}
$$

Since $\quad \gamma\left[b\left(t_{h i g h}-\mu\right)\right]=\frac{b^{2}}{2} \mu_{2}\left(t_{h i g h}\right) \quad$ we have

$$
r\left[b\left(t_{h i g h}-\mu\right)\right] \doteq \frac{\pi^{2}}{6}+\frac{1}{2}\left[b\left(t_{h i g h^{-\mu}}\right)\right]^{2}
$$

The empirical detemination of the paramters $b$ and $\mu$ from observations of heating and cooling degree days measured at similar and dissimilar bases is discussed in McFadden and Dubin (1982).

The logistic distribution provides reasonably stable temperature profiles provided the number of heating or cooling degree days per day during a billing period is not "too small." In the exceptional cases the temperature distribution is taken to be a unit mass at the mean temperature.

This completes the summary of the heating and cooling calculations analyzed in McFadden and Dubin (1982). In Section VI we include a listing of the Fortran program which performs the billing period analysis. Inputs to the program are the processed billing period data as described in Section II, cooling coefficients $q_{0}, q_{1}, q_{2}, q_{3}, q_{4}, q_{5}, q_{6}$, $q_{7}$, and the heating coefficients XXLAM, W1A, W1, W2, W3A, W3 where:

XXLAM $=-\lambda=\left(t_{6}-\tau\right)$
W1A $=w_{1}$ when $\tau \leq t_{6}$ and $\left(w_{1}+2 w_{2}\left(\tau-t_{6}\right)\right)$ when $\tau>t_{6}$
W2 $\quad=W_{2}$
W3A $\quad=W_{3}$ when $\tau \leq t_{6}$ and 0 when $\tau>t_{6}$
W3 $=W_{3}$

Note that the heating and cooling coefficients remain constant over different billing periods for a given household. Outputs of the program are predicted usage in thousands of BTU's for heating and cooling when winter thermostat setting is 70 degrees and summer thermostat setting is 75 degrees as well as the predicted changes in these consumption levels for a one degree change in the thermostat setting. The latter estimates are used in the computation of the marginal price of comfort. Finally, the critical temperatures $t_{1}, t_{2}, t_{3}$, and $t_{6}$ as well as an estimate of mean temperature are provided for each billing period.

## 4. Standardization of Billing, Period Data

To prepare the processed billing data for analysis we have aggregated the fifteen or fewer observations per household into three distinguishable cases. The aggregation takes place however by temperature rather than time. The first case collects all observations for which the daily mean temperature is less than the critical temperature $t_{1}$. This corresponds to a period in which there is no cooling and in which there is likely to be continuous heating. The second case collects observations for each household in which the daily mean temperature exceeds critical temperature $t_{1}$ but is lower than the critical temperature $t_{6}$. In this situation households are likely to be experiencing positive heating and cooling degree days and will utilize both heating and cooling modes. The last case collects observations for which the daily mean temperature exceeds critical temperature $t_{6}$. This case corresponds to temperatures for which heating is unnecessary. Tables 13 and 14 give mean values for the aggregated billing data by fuel type and themal mode. SHUEC refers to predicted heating usage in thousands of BTU's. ACUEC refers to predicted cooling usage in thousands of BTU's. The variables DSHUEC and DACUEC give the marginal increase in energy utilization for a one degree change in thermostat setting sustained for the period in question. In the heating mode this corresponds to raising ambient temperature from 70 to 71 degrees while in the cooling mode this corresponds to a change in temperature from 75 to 74 degrees. Note that usage has not been adjusted to reflect the coefficient of HVAC performance and that mean values are presented for all available observations independent of their chosen system type.

## Table 13

Mean Values of Aggregated Billing Data by Thermal Mode - Electricity

	Ho Cooling	Heat and Cooling	No Heating
DAYS	183	149	137
HDD65	6783	1921	154
CDD65	. 8954	75.96	1049
QUAN(KWH)	6719	4884	4917
EXPEN(\$)	257	264	255
SHUEC	103200	29120	1312
DSHUEC	3250	2319	309
ACUEC	55.57	6434	24180
DACUEC	9.05	722	1630

Table 14
Mean Values for Aggregated Billing Data by Thermal Mode - Natural Gas

	No Cooling	Heat and Cooling	No Heating
DAYS	189	157	131
HDD65	7064	2071	177
CDD65	4.362	94.83	959.6
QUAN(KWH)	1479	544	172
EXPEN( 8 )	376	140	55
SHUEC	107100	32160	1508
DSHUEC	3326	2480	342
ACUEC	176	7091	22930
DACUEC	22	777	1524

## V. Case Study of Household Number 1271

This section illustrates the processing of data from a selected household in the NIECS data file. The household was selected on the basis of three criteria: the household resides in Boston, Masschusetts (a location in which additional weather related information was readily available), the household had available electricity and natural gas billing data, and the household selected one of nineteen alternative HVAC systems of particular interest to our study. The household selected is identified by a unique Department of Energy identification number which in this case is 1271.

Table 15 and Table 16 present the re-processed billing data for household 1271. The electricity billing data cover a period of 462 days while the gas billing data are for a period of length 394 days. Table 17 and Table 18 present the thermal model output for electricity and natural gas respectively. Table 19 presents the actual values of selected variables for household 1271. To compare the processed billing data with the annual information (including the thermal model output based on the annual data) we have selected a subset of the observations which correspond to a period of approximately one year. These subsets lie within the dotted lines in Tables $15,16,17$, and 18 . Tables 20 and 21 present the results of adding together the billing data for the year. Note that ACUEC, DACUEC, SHUECG, and DSHUECG in Tables 20 and 21 have not been adjusted to reflect system coefficient of performance, while similar numbers in Table19 do reflect $C O P$ adjustments. As may be seen by inspection, the estimates in Tables 20 and 21 compare very favorably with each other and with those of the annual file (in Table 19). Furthermore, the thermal model aggregates very well across time and gives values which
track the temperature profile quite well.
Tables 22 and 23 presents the aggregated billing data by thermal mode and fuel type as described in Section IV.4. Table 22 implies unit electricity consumptions (UEC) of $168.8 \mathrm{KWH} /$ day in the heating season and 11.99 KWH/day in the cooling season for electric resistance heating and air-conditioning respectively.

Tables 24 and 25 present the thermal model coefficients and critical temperatures for household 1271. Figure 3 displays the heating function (MBTUH) and Figure 4 displays the cooling function (MBTUH). The horizontal axis is daily mean temperatures. Over the range in which the thermal mode is utilized, the relationships are quite linear. Note, however, that these functions embody the attributes of a particular structure with given insulation levels and may well shift remarkably from household to household.

Table 26 presents the operating and capital costs for ten alternative HVAC systems facing household 1271 in the year of house contruction 1962. Costs have been nomalized to 1967 dollars. Details on capacity estimation and allocation of capital costs are given in McFadden and Dubin (1982) and Cowing, Dubin, and McFadden (1981e). In Figure 5, we plct captial against operating costs. Given gas availability and conditional on not choosing air-conditioning it is interesting to note that household 1271 chooses the gas hydronic system 3 which appears dominated by the gas space heating system 1. The challenge of the discrete choice model is to adequately describe the choice process in the presence of unobserved cost components.

Table 15
Electricity Billing Data - Household 1271


Table 16
Natural Gas Billing Data - Household 1271

HHIDNO	FLAG	Start Code	End Code	QUAN	EXPEN	HDD65	CDD65	HDD75	CDD75
1271	3	87	119	171.20	68.79	706	0	1036	0
1271	1	178	239	103.90	45.87	34	318	362	16
1271	1	239	300	175.20	75.92	593	23	1200	0
1271	1	300	361	271.80	111.62	1654	0	2284	0
1271	1	361	481	663.20	266.57	3914	0	5154	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

## Tablel7

Thermal Model Output - Household 1271 (Electricity)

SHUEC	DSHUEC	ACUEC	DACUEC	T1	T2	T3	T6	TEMP
20800.66	669.35	0	0	42.84	70.15	75.73	63.66	28.34
40604.20	1189.67	0	0	42.84	70.15	75.73	63. 66	$24.64{ }^{-}$
10631.69	517.98	0	0	42.84	70.15	75.73	63.66	40.69
6663.95	510.35	428.57	111.63	42.84	70.15	75. 73	63.66	49.00
914.30	315.24	2746.87	240.60	42.84	70.15	75.73	63.66	61.94
202.87	77.13	4443.27	316.51	42.84	70.15	75.73	63.66	67.98
42.98	19:03	5700.77	388.10	42.84	70.15	75.73	63.66	71.76
1072.82	257.14	2787.20	233.02	42.84	70.15	75.73	63.66	62.48
5273.07	517.54	831.19	145.03	42.84	70.15	75.73	63.66	52.10
7397.13	499.06	231.27	90.60	42.84	70.15	75.73	63.66	47.07
15469.52	592.64	0	0	42.84	70.15	75.73	63.66	34.25
17405.55	555.51	0	0	42.84	70.15	75.73	63.66	28.03
$\overline{2} 0 \overline{2} 2 \overline{3} .63^{-}$	554.35	0	0	$\overline{42.8}{ }^{4}$	70.15	$75.7 \overline{3}$	$\overline{6} 3.6 \overline{6}$	$2 \overline{1.75}$
18871.11	674.80	0	0	42.84	70.15	75.73	63.66	32.06
0	0	0	0	0	0	0	0	0

Table 18
Thermal Model Output - Household 1271 (Natural Gas)

SHUEC	DSHUEC	ACUEC	DACUEC	T1	T2	T3	T6	TEMP
10634.64	565.23	0	0	42.84	70.15	75.73	63.66	42.63
-4798. $60-737.95$ - $7179.21-401.15-42.84-70.15-75.73-63.66-58.71$								
311.75	110.21	9836.77	683.19	42.84	70.15	75.73	63.66	69.57
7862.02	877.43	3185.15	348.32	42.84	70.15	75.73	63.66	55.36
25796.79	1109.09	0	0	42.84	70.15	75.73	63.66	37.58
62916.17	2249.40	0	0	42.84	70.15	75.73	63.66	32.05
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0

## Table19

Selected Variables from NIECS for Household 1271

HDD4170	6848	heating degree days
CDD4170	387	cooling degree days
HDD7879	7057	heating degree days
CDD78	378	cooling degree days

NXELYR $\quad \$ 495$
NCELYRP 10214 KWH
NXNGYR \$567
NCNGYRB 1370.10 Therms

WMPE78	.045172	$\$ / \mathrm{KWH}$
SMPE78	.049483	$\$ / \mathrm{KWH}$
OSMPE78	.045172	$\$ / \mathrm{KWH}$
AEMPE78	.045172	$8 / \mathrm{KWH}$
AVEP78	.053319	$\$ / \mathrm{KWH}$
AVGP78	.40778	$\$ /$ Therm
MPG78	.31540	$\$ /$ Therm


ACUEC	4082	MBTU
DACUEC	368	MBTU
SHUECE	103580	MBTU
DSHUECE	5534	MBTU
SHUECG	141130	MBTU
DSHUECG	7541	MBTU

Table20
Aggregated Monthly Billing Data - Electricity
Household 1271
DAYS ..... 363
KWH ..... 10395
EXPEN ..... 513
HDD65 ..... 6766
CDD65 ..... 384
HDD75 ..... 10150
CDD75 ..... 18
SHUECE ..... 105678
DSHUECE ..... 5051
ACUEC ..... 17169
DACUEC ..... 1525
Table21
Aggregated Monthly Billing Data - Natural ..... Gas
Household 1271
DAYS ..... 362
Therms ..... 1343
EXPEN ..... 560
HDD65 ..... 6586
CDD65 ..... 378
HDO75 ..... 9964
CDD75 ..... 16
SHUECE ..... 101685
DSHUECE ..... 5084
ACUEC ..... 17201
DACUEC ..... 1433

## Table22

Aggregated Electricity Billing Data - Household 1271

HHIDNO	FLAG 1 QUAN	EXPEN	HDD65	CDD65	SHUEC	DSHUEC	ACUEC	DACUEC	DAYS	
1271	1.29	7856	373.30	8823	0	144006	4754	0	0	250
1271	1.00	3850	195.53	1569	49	21321	2099	7025	821	150
1271	1.00	1762	86.01	24	335	246	96	10144	705	62

$1_{\text {Average of }}$ aggregated flag values.

Table23
Aggregated Natural Gas Billing Data - Household 1271

HHIDNO	FLAG 1	QUAN	EXPEN	HDD65	CDD65	SHUEC	DSHUEC	ACUEC	DACUEC	DAYS
1271	1.67	1106	446.98	6274	0	99348	3924	0	0	213
1271	1.00	304	135.65	984	60	12661	1615	7364	749	120
1271	1.00	104	45.87	34	318	312	110	9837	683	61

$1^{1}$ Average of aggregated flag values.
Table 24
Thermal Coefficients for Household 1271
Q0
01 13552.00
2400.00 ..... 623.54
Q3 ..... 3476.30
Q4 ..... 7046.50
Q5 10127.00 ..... Q6
1069.30
9021.80
Q8 ..... -6. 4391
Q9 ..... -31. 5420
WO ..... -2245. 40
W1 ..... 617.21648.482.1305
W24645.40
W30
Table 25
Critical Temperatures for Household ..... 1271

T1a	42.84
T2a	70.15
T3a	75.73
T4a	50.84
T5a	75.09
TEMPb	47.30
T6C	63.66

abased on $\tau=74$based on annual temperature distributionCbased on $\tau=70$


Figure 3
Heat Function for Household 1271


Figure 4
Cooling Function for Household 1271

Table 26

# Operating and Capital Costs of Alternative HVAC in Year House Built - Household 1271 

1967 Dollars

OPCST1	341.54

CAPCST1 1201.80
OPCST2 385.02
CAPCST2 2043.30
OPCST3 $\quad 315.83$
CAPCST3 $\quad 2788.90$
OPCST7 139.83
CAPCST7 1834.40
OPCST8 183.31
CAPCST8 2424.20
$\begin{array}{ll}\text { OPCST9 } & 129.30\end{array}$
CAPCST9 3272.10
OPCST13 $\quad 1203.20$
CAPCST13 982.60
OPCST14 1246.70
CAPCST14 1930.50
OPCST15 630.83
CAPCST15 5084.90
OPCST18 1103.20
$\begin{array}{ll}\text { CAPCST18 } & 1129.70\end{array}$

ACHEAT 28.731
SHEATN 56.968
SHEATD 62.136
SHEATP 57.458


## Figure 6

Graph of operating and capital costs for alternative HVAC systems for household 1271.

	HVAC \#
A	1
B	2
C	3
D	7
E	8
F	9
G	13
H	14
J	15
K	18

OPERATING COST

## VI. Computer Programs and Selected Output

1. Reprocessing the Raw Electricity Billing Data

For documentation on the billing tape see: "Technical Documentation for the Residential Energy Consumption Survey: National Interim Energy Consumption Survey 1978-1979, Household Monthly Energy Consumption and Expenditure, Public Use Data Tapes, User's Guide, August, 1981 (forthcoming NTIS). Input file one of the program corresponds to the ninth data file on the montly billing tape.
2. Reprocessing the Raw Natural Gas Billing Data Input file one of the program corresponds to the tenth data file on the monthly billing tape.
3. Determination of Seasonal Marginal Prices for Electricity Billing Data
A) OUTPUT - Marginal prices by primary sampling unit
B) OUTPUT - Record of observations processed
4. Determination of the Marginal Price of Natural Gas
A) OUTPUT - Marginal price by Primary Sampling Unit
B) OUTPUT - Record of observations processed
5. Thermal Load Model for Processed Billing Data

INTEGER P1I.P1.P2
LOGICAL ACTUAL, ESTIM, KNOW, UNKNOW
DIMENSION A $(20,14), \operatorname{METER}(20), B(15,10)$
SUMO $=0.0$
SUM $1=0.0$
SUM2 $=0.0$
SUM3 $=0.0$
SUM4 $=0.0$
SUMOB $=0.0$
DO $5 \mathrm{~K}=1,3842$
READ $(4,15)$ SAMPLE
FORMAT (F3.1)
IF (SAMPLE.EO.O.O) GO TO 7
DO $10 \quad \mathrm{I}=1.15$
DO $10 \quad \mathrm{~J}=1.10$
$B(I, J)=0.0$
READ ( 1,6 ) HHIDNO, NBILLS, ( $(A(I, J), J=1,14), I=1,20)$, (METER(I),
$1 \mathrm{I}=1,20$ )

1 4OX.2F5.0.20X),2011)
IF (NBILLS.EQ.99) GO TO 100
$\mathrm{Pi}=0$
$\mathrm{P} 2=0$
$\mathrm{NOB}=1$
IF (P2.EQ.NBILLS) GO TO 150
$P 2=P 2+1$
IF ((METER(P2).NE.1).AND.(METER(P2).NE.8)) GO TO 20
QUAN=O.O
EXPEN=0.O
HDDG5 $=0.0$
CDDG5 $=0.0$
HDO75 $=0.0$
CDO75 $=0.0$
P1t $=P 1+1$
DO $30 \mathrm{~J}=\mathrm{P} 11$, $\mathrm{P}_{2}$
ACCUMUL ATE EXPEN, QUAN, HDD, CDD
QUAN=OUAN+A(J,1)
HDO65 = $\mathrm{HDDG5}+\mathrm{A}(\mathrm{u}, 11)$
$\operatorname{CD065}=\operatorname{C0065}+\mathrm{A}(\mathrm{J}, 12)$
$110075=10075+A(4,13)$
$\operatorname{CoD75}=\operatorname{CDO} 75+A(v, 14)$
EXPEN=EXPEN+A(U,2)
CONT INUE
CONVERT BEGINING AND ENDING DATES TO SUMMARY NUMBER $B Y=A(P 11,5)+1900.0$
$B M=A(P 11,6)$
$B D=A(P 11,7)$
$E Y=A(P 2.8)+1900.0$
$E M=A(P 2.9)$
$E D=A(P 2,10)$
CALCULATION FOR BEGINING PERIOD
IF (BM.GT.2.O) GO TO 31
$N B=\operatorname{INT}(365.25 *(B Y-1.0))+I N T(30.6 *(B M+13.0))+\operatorname{INT}(B D)-621049$ GO TO 32
$\mathrm{NE}=\mathrm{INT}(365.25 * \mathrm{BY})+\operatorname{INT}(30.6 *(\mathrm{BM}+1.0))+\mathrm{INT}(\mathrm{BD})-621049$

OBSOOO10 08S00020 OBS00030 OBSOOO40 OBS00050 0BS00060 0B500070 BS 500080 BS00080 OBSOOO90 aBSOO 100 OBSOO110 BSOO 120 OBSOO 130 OBSOO 140 OBSOO 150 BBSOO160 OBSOO170 OBSOO180 OBSOO 190 OBSOO 190 OBSOO200 BSOO2 10 BSOO220 BSOO230 OBSOO240 08500250 OBSOO260 OBSOO270 OBSOO280 OBSOO290 0BSOO300 BSOO300 BSOO310 BSOO320 BSOO330 ORSOO340 0BSOO350 0BS00360 0BS00370 0B500380 OBSOO390 BRS00400 OBSOO4OO OBSOO4 10 BSOO420 OBSOO430 OBSOO440 OBSOO450 OBSOO46O OBSOO470 0BS00480 OBSOO490 OBS00500 BS00500 OBSOO5 10 BSOO520 OBSOO530 OBSOO550

1. Reprocessing the Raw Electricity
Billing Data
$150 \quad$ XNOB =FLOAT ( (NOB-1))
OO $120 \mathrm{~J}=1.15$
IF (B(U.2).NE.O.O) GO TO 121
$S U M O=$ SUMO +1 .
GO IO 120
IF (B(U.2).NE.1.0) GO TO 122 SUM $1=$ SUM $1+1$.
GO TO 120
IF (B(U.2).NE.2.0) GO TO 123
SUM $2=$ SUM $2+1$.
GO TO 120

OBSO0560
OBSOO570 OBSOO570 OBS00580 OBSO0590 OBSOO600 OBS006 10 0BS00620 08S00630 0BS00640 OBS00650 OBS00660 OBS00660 OBS00670 OBS00680 OBSOO690 OBS00700 OB5007 10 OBSOO720 08500730 OBS00740 OBS00750 OBS00760 0B500770 OBSOO77O OBS00780 OBS00790 08500800 OBSOOB 10 OBS00820 08500830 08500840 0BSOO850 0BS00860 0BS00870 OBS00870 OBS00880 OBS00890 08500900 OBSOO9 10 OBS00920 OBSOO930 OBSOO940 0BS00950 OBS00960 0BS00970 0B\$00970 08500980 08500990 OBSO 1000 OBSO1010 OBSO 1020 OBSO 1030 OBSC 1040 OBSO1050 08SO 1060 08501060 OBSO1070 OBSO1080 OBSO1090 08SO1100

IF (B(J.2).NE.3.O) GO TO 124 SUM $3=$ SUM $3+1$
GO $10 \quad 120$
IF (B(U,2).NE.4.O) GO TO 120
SUM $4=$ SUMA +1
CONTINUE
DO $130 \mathrm{Mt}=1,15$
WRITE (2,200) (B(M1,M2),M2=1,10)
CONT INUE
FORMAT (F6.0,1X,F3.0,1X.2(F6.0.1X),2(F10.2,1X), 4(F6.0.1X),5X) SUMOB $=5 U M O B+X N O B$
XACTVE $=1.0$
WRITE ( 17,101 ) XACTVE WRITE (3,300) XNOB
FORMAT ( $5 \times$, F 10. 2, 65X)
GO 105
READ (1.6)
CONT INUE
WRITE (5.499)
FORMAT (80X)
WRITE(5,500) SUMO, SUM1,SUM2, SUM3, SUM4, SUMOB
FORMAT( $1 \mathrm{X}, 6(\mathrm{F9} .0,1 \mathrm{X}), 19 \mathrm{X}$ )
STOP
END

OBSO1110
OBSO 1120
BSO 1120
OBSO1130 OBSO1140 OBSO 1150 OBSO1160 OBSO1170 OBSO 1180 OBSO1190 OBSO 1200 OBSO1210 OBSO 1210 OBSO 1220 OBSO 1230 OBSO 1240 OBSO 1250 OBSO 1260
OBSO 1270 OBSO 1280
OBSO 1290
OBSO 1300
OBSO1310
OBSO 1320
OBSO 1330 OBSO1330

INTEGER P11.P1.P2
LOGICAL ACTUAL, ESTIM, KNOW, UNKNOW
DIMENSION A(20,14), METER(20), B(15, 10)
SUMO $=0.0$
SUM $1=0.0$
SUM2 $=0.0$
UMM3:0 0
UM3-0.0
SUM4 $=0.0$
SUMOB $=0.0$
$5 \mathrm{~K}=1.3842$
$05 \mathrm{~K}=1.3842$
$\operatorname{READ}(4.15)$ SAMPLE
FORMAT(F3.1)
HIS CODE IS SPECIFIC TO THE GAS VERSION OF OBSER ONLY. IT SHOULDOBSOOI30 NOT APPEAR IN THE ELEC VERSION. THIS SECTION OF CODE ALLOWS THE OBSOO14O PROGRAM TO DISREGARD THE FIRST FIVE OBSERVATIONS IN THE GAS BILLING DATA. THESE OBSERVATIONS APPEAR IN THE ELECTRICITY DA BUT DO NOT APPEAR IN THE GAS DATA
IF ((K.LE.5).AND. (SAMPLE.EQ.1.O)) GO TO 100
If ((K.LE.5).AND. (SAMPLE.EQ.1.O)) GO TO 100
IF (K.LE.5).AND. (SAMPLE.EQ.O.O)) GO TO 5
IF ((K.LE.5).AND. (SAMPLE.EQ.O.O)) GO TO 5
IF ((K.GT.5).AND. (SAMPLE.EQ.O.O)) GO TO 7
IN THE ELECTRICITY VERSION OF OBSER FORTRAN THESE LINES ARE REPLACED WITH *** IF (SAMPL.EQ.O.O) GO TO 7 *** END OF SPECIFIC CODE
OO $10 \quad I=1,15$
OO $10 \quad J=1,10$
$B(I, J)=0.0$
READ (1.6) HHIDNO, NBILLS, ((A(I, J), $J=1,14), I=1,20),($ METER(I)
$1 \mathrm{I}=1.20$ )
FORMAT (F4.0.6X, 12, 20 (4X,F7.1.3X,F5.2,2F1.0.6F2.0,63X,2F5.0.
1 40X.2F5.O. 20X), 20I1)
IF(NEII.LS.EQ.99) GO TO 100
$P 1=0$
$P 2=0$
$N O B=1$
IF (P2.EQ.NBILLS) GO TO 150
$P 2=P 2+1$
IF ((METER(P2).NE. 1).AND. (METER(P2).NE.8)) GO TO 20 QUAN $=0.0$
EXPEN $=0.0$
EXPEN $=0.0$
HOD65 $=0.0$
HOD65 $=0.0$
COD65 $=0.0$
HDD75 $=0.0$
C0075=0.0
P11=P1+1
DO $30 \quad \mathrm{~J}=\mathrm{P} 11 . \mathrm{P} 2$
ACCUMULATE EXPEN, QUAN,HDD, CDD
OUAN=OUAN+A $(J, 1)$
$H D D 65=H D D 65+A(U, 11)$
$\operatorname{CD065}=\operatorname{CDD65}+A(\mathrm{U}, 12)$
$\operatorname{HOD75}=\operatorname{HDD} 75+A(\mathrm{U}, 13)$
$\operatorname{COD} 75=\operatorname{CDO} 75+A(\mathrm{U}, 14)$
EXPEN $=\operatorname{EXPEN}+A(J, 2)$
CONT INUE
CONVERT BEGINING AND ENDING DATES TD SUMMARY NUMBER $B Y=A(P 11,5)+1900.0$

OBSOO 40
OBSOOO 10
OBS00020 0B500030 OBSOOO4O 0BSOOOMO OBSOOO5O 0BS00060 0BS00070 0BS00080 OBS00090 OBSOO 100 OBSOO110 OBSOO 160 OBSOO 170 OBSOO18O OBSOO190 OBSOO200 0B5002 10 OBSOO220 OBSOO230 OBSOO240 0BSOO250 0BSOO260 OBSOO260 08500270 OBSOO290 08S00290 OBSOO3 10 08500320 0B500330 0BSOO340 OBS00350 OBSOO360 OBSOO360 OBSOO370 OBSOO380 OBSOO390 OBSOO400 OBSOO4 10 OBSOO420 OBS00430 OBS00440
OBSOO450 OBSCO460 OBSOO470 OBSOO480 OBSOO490 OBS00500 OBSOOS 10 0BSOO520 OBSOO530 0B500540 R8SOO550
2. Reprocessing the Raw Natural Gas Billing Data
$B M=A(P 11,6)$
$B D=A(P \mid 1.7)$
$E Y=A(P 2,8)+1900.0$
$E M=A(P 2.9)$
$E[=A(P 2,10)$
CALCULATION FOR BEGINING PERIOD
IF (BM.GT.2.0) GO TO 31
$N B=\operatorname{INT}(365.25 *(B Y-1.0))+\operatorname{INT}(30.6 *(B M+13.0))+\operatorname{INT}(B D)-621049$
GO TO 32
$N B=\operatorname{INT}(365.25 * B Y)+\operatorname{INT}(30.6 *(B M+1.0))+\operatorname{INT}(B D)-621049$
CONTINUE
CALCULATION FOR ENDING PERIOD
IF (EM.GI.2.0) GO TO 33
NE $=\operatorname{INT}(365.25 *(E Y-1.0))+\operatorname{INT}(30.6 *(E M+13.0))+\operatorname{INT}(E D)-621049$
GO TO 34
$N E=\operatorname{INT}(365.25 * E Y)+\operatorname{INT}(30.6 *(E M+1.0))+\operatorname{INT}(E O)-621049$ CONTINUE
N1178=101479
$N B=N B-N 1178$
NE =NE-N1178
CALCULATION OF FLAG CODE
If (PA.EO.O) GO TO 60
ACTUAL = ( (METER(P1).EQ.1).AND. (METER(P2).EQ.1))
ESTIM=.NOT. (ACTUAL)
GO TO 70
ESTIM = . TRUE
CONTINUE
KNOW = ( $(\mathrm{A}(\mathrm{P} 11,3) \cdot \mathrm{EQ} \cdot \mathrm{O} \cdot \mathrm{O}) \cdot$ AND. (A(P2,4) $\cdot \mathrm{EQ} \cdot \mathrm{O} \cdot \mathrm{O}))$
UNKNOW=. NOT. (KNOW)
IF (ACTUAL. AND. KNOW) FLAG=1.O
IF (ACTUAL. AND . UNKNOW) $F L A G=2.0$
IF (ESTIM.AND.KNOW) FLAG=3.0
IF (ESTIM.AND.UNKNOW) FLAG=4.0
LOAD DATA FOR CURRENT OBSERVATION
$\mathrm{B}($ NOB, 1$)=\mathrm{HHIDNO}$
$B($ NOB, 2$)=F L A G$
$B($ NOB, 3$)=F L$ LOAT (NB)
$\mathrm{B}($ NOB. 4$)=$ FLOAT (NE)
$B($ NOB , 5) $)=$ QUAN
$B($ NOB , 6 $)=$ EXPEN
B(NOB , 7) $=$ HDD 65
$\mathrm{B}($ NOB . 8) $=$ CDD65
$B($ NOB , 9$)=$ HDD75
$\mathrm{B}($ NOB, 10$)=\mathrm{CDO} 75$
EXIT LOOP FOR CURRENT OBSERVATION
$\mathrm{P}_{1}=\mathrm{p}_{2}$
$\mathrm{NOB}=\mathrm{NOB}+1$
IF (NOB.EQ.16) GO TO 150
GO 1020
CONTINUE
XACTVE=O.
WRITE(17.101) XACTVE
FORMAT (F3.O)
GO TO 5
$X N O B=F \operatorname{LOAT}((\operatorname{NOB}-1))$

OBSOO560
OBSOO570
0B500580
OBSOO580
0BS00590
OBS00600
OBS006 10
OBS00620
OBSOO630
aBS00640
OBS00650
OBS00660
OBS00670 BS00670 0BS00680 BSS00690 BS00700 OBS00710 0BS00720 OBS00730 DBS00740 0B\$00750 08S00760 OBS00770
OBS00780
0BS00780
08500790
08500790
08500800
OBSOO8 10
BSOO820
OBS00830
OBSOO840
OBSOOB50
0B\$00860
0BS00870
OBSOO880
B8SOO890 88500890 OBSOO900
BS009 10
OBSOO920
BS00930
OBSOO940
OBS00950
OBSOO960
0BS00970
0BS00980
BS00980 OBSOO990 OBSO1000 OBSO1010 OBSO 1020 OBSO 1030 OBSO 1040 OBSO 1050 OBSO1060 OBSO1070
OBSO1080 OBSO1080 BSO1090

	Do $120 \quad J=1.15$	OBSO1110
	IF (B(1,2).NE.O.O) GO TO 121	OBSO1120
	SUMO $=$ SUMO +1.	OBSO 1130
	GO TO 120	OBSO1140
121	IF (B(J.2).NE.1.0) GO TO 122	OBSO1150
	SUM $1=$ SUM 1+1.	OBSO1160
	GO IO 120	OBSO1170
122	IF (B(J,2).NE.2.0) GO TO 123	OBSO 1180
	SUM $2=$ SUM $2+1$.	OBSO 1190
	GO TO 120	OBSO1200
123	IF (B(U,2).NE.3.O) GO TO 124	OBSO 1210
	SUM3 = SUM $3+1$.	OBSO 1220
	GO TO 120	OBSO 1230
124	IF (B(U,2).NE.4.O) GO TO 120	OBSO 1240
	SUM4 $=$ SUM $4+1$.	OBSO 1250
120	CONTINUE	OBSO 1260
	DO $130 \mathrm{M} 1=1,15$	OBSO 1270
	WRITE (2, 200) (B(M1,M2), M2 = 1, 10)	OBSO 1280
130	CONTINUE	OBSO 1290
200		OBSO 1300
	SUMOB $=$ SUMMOB+XNOB	OBSO1310
	XACTVE = 1.0	OBSO1320
	WRITE(17,101) XACTVE	OBSO1330
	WRITE (3,300) XNOB	OBSO 1340
300	FORMAT (5X, F 10.2,65X)	OBSO 1350
	GO TO 5	OBSO 1360
7	READ ( 1.6 )	OBSO 1370
5	CONTINUE	OBSO 1380
	WRITE (5.499)	OBSO 1390
499	FORMAT (80X)	OBSO1400
	WRITE(5.500) SUMO, SUM1, SUM2, SUM3, SUM4, SUMOB	OBSO1410
500	FORMAT (1X.6(F9.0, 1X), 19X)	OBSO1420
	STOP	OBSO1430
	END	OBSO1440

LOGICAL ELEC, NELEC, WIN, SUM, OFF
DIMENSION A $(4,20), \operatorname{QUAN}(5,2000), \operatorname{EXPEN}(5,2000), N(5), X M P R(5)$
DO $1 L=1,103$
$\operatorname{READ}(1,20)$ NOBPSU
FORMAT (14X,13,63X)
DO $5 \mathrm{I}=1,5$
DO $4 \quad J=1,20$
$\operatorname{QUAN}(I, J)=0.0$
$\operatorname{EXPEN}(1, J)=0.0$
CONT INUE
$N(I)=0$
DO $200 \mathrm{KKK}=1$, NOBPSU
READ (2.30) AELEC
FORMAT (3X,F2.0,75X)
ELEC=(AELEC.EQ. 1.0 )
NELEC=.NOT. (ELEC)
$\operatorname{READ}(3,40)$ NBILLS, ( (A(M1, M2) , M1=1,4), M2=1, 20)
FORMAT (1OX,12,20(4X,F7.1,3X,F5.2,4X,F2.O,4X,F2.0,145X),20X)
IF (NBILLS.EQ.99) GO TO 200
$00300 \mathrm{~J}=1$, NBILLS
IF $(A(1, J) . E Q . O$.$) GO TO 300$
IF $(A(2, J) . E Q . O$.$) GO TO 300$
IF(A(1,J).GE. 3000.) GO TO 300
IF(A(2.J).GE.995.) GO TO 300
$W I N=((A(3, J) \cdot E Q \cdot 1.) \cdot O R \cdot(A(4, J) \cdot E Q \cdot 1)$.
SUM = ( $(A(3, J) . E Q .7.) . O R .(A(4, J) . E Q .7)$.

(A(4,J).EQ.4.).OR.(A(4, J).EQ.10.).OR.(A(4,J).EQ.11.))
IF (ELEC) GO TO 50
IF (NELEC.AND.WIN) GO TO 60
IF (NELEC.AND.SUM) GO TO 70
IF (NELEC.AND.OFF) GO TO 80
GO TO 90
$L 1=1$
GO TO 125
$-1=2$
GO TO 125
$L 1=3$
GO TO 125
$1.1=4$
GO TO 125
$1=5$
L. $=5$
$N(L 1)=N(L 1)+1$
$\operatorname{UUAN}(L 1, N(L 1))=A(1, J)$
$\operatorname{EXPEN}(L 1, N(L 1))=A(2, U)$
CONT INUE
CONT INUE
RUN REGRESSIONS AND STORE XMPR
DO $400 \mathrm{I}=1,4$
IF (N(I).LT.10) GO TO 377
$\operatorname{SUMX}=0$.
SUMY $=0$.
$S X Y=0$.
$S X X=0$.
NNN $=N(I)$

B I L00010
BIL.00020 BI L00030 BIL00040 8IL00050 BIL00060 BIL00070 BIL00080 BI L00090
BIL00100
BI LOO100
BILOO110
BILOO120
BILOO120
BI LOO140
BILOO150
BILOO 160
BILOO170
BI LOO180
BILOO190
BILOO200
BILOO200
BILOO2 10
BILOO220
BIL00230
BILOO240
BILOO250
BILOO260
BI L00270
BIL00280
BILOO290
BIL00300
BILOO300
BILOO310
BIL00320
BILOO330
BI L00350
BI L.00360
BIL00370
BIL00380
BIL00390
BIL00400
BILL00400
BIL00410 BILOO420
8 ILOO430 $81 L 00430$
BI L00440 BILOO450 BI L00460 BIL.00470 BILOO480 BIL00490 BIL00500 BILL00500 BILOO5 10 BILOO520 BILOO530 BI L00550
3. Determination of Seasonal Marginal Prices from Electricity Billing Data
$00500 \mathrm{~J}=1$, NNN

BI L00560
BIL00570
BIL00580
BIL00590 BIL00600
BIL006 10
BILO06 10
BIL00620
BILO0630 BIL00640 BI L00650 BIL00660 BIL00670 BIL00680 BIL00690 BIL00700 BIL007 10 BILOO7 10
BILOO720 BIL00720 BI L00730 BILO0740 BILO0750 BIL00760 BIL00770 BIL00780
8IL00790
BIL.00800
BIL008 10
BIL00820
BIL00820
BIL00830
BI L.00840
BIL00850
BI L00860
BIL00870
BIL00880
BIL00890
BIL00900
BIL00910
BIL00920
BILL00920
BIL00930
BIL00940
BILO0950
BIL00960
BIL00970
BIL00980
BI L00990
BILO1000
BILO1010
BILO1020
BILO1020
BILO 1030
BILO 1040
BILO1050
BILO1060 BILO1070 BILOt080 BILO1090 BILOT100
GO TO 450 $\operatorname{XMPR}(5)=-99$. CONT INUE SET THE M $\qquad$ WE FIRST CHECK TO SEE IF THE MARGINAL PRICE USING ALL OBSERVATIONS HAS BEEN SET. IF THIS MARGINAL PRICE IS SET WE LEAVE IT ALONE. IF NOT, THE OVERALL RATE IS SET TO THE FIRST Valid rate starting with non-elec. off Season, then non-elec. SUMMER, NON-ELEC. WINTER AND FINALLY THE ALL ELEC. RATE. IN THE NEXT STEP WE RESET THE NON ELEC. DFF SEASON RATE TO THE OVERALL RATE IF THE FORMER IS INVALID. THE SUMMER AND WINTER NON-ELEC. RATES ARE THEN COMPARED TO THE NON-ELEC. WINTER NON-ELEC. RATES ARE THEN COMPARED TO THE NON-ELEC. OFF SEASON RATE FOR PEAKING. THAT IS, IF THESE RATES ARE HIGHER
THEY ARE LEFT UNCHANGED; IF THEY ARE LOWER THEY ARE SET TO THE THEY ARE LEFT UNCHANGED; IF THEY ARE LOWER THEY ARE SET TO THE NON-ELEC. OFF-SEASON RATE. FINALLY, THE ALL ELEC. RATE IS CHECKED AND RESET TO THE NON-ELEC. OFF SEASON ONLY IF IT IS INVALID.
IF (XMPR(5).EQ. -99.) XMPR(5)=XMPR(4)
IF (XMPR(5).EQ.-99.) XMPR(5) $=\mathrm{XMPR}$ (3)
IF (XMPR(5).EQ.-99.) XMPR(5)=XMPR(2)
IF (XMPR(5).EQ.-99.) XMPR(5)=XMPR(1)
IF (XMPR(4).EQ. -99.$) \quad X M P R(4)=X M P R(5)$
$I F(X M P R(2) . L T . X M P R(4)) \quad X M P R(2)=X M P R(4)$
IF (XMPR(3).LT.XMPR(4)) XMPR(3)=XMPR(4)
IF (XMPR(1).EQ.-99.) XMPR(1)=XMPR(4)
WRITE THE XMPR'S
WRITE $(4,600)$ L. (XMPR(I) $, I=1,5)$
FORMAT(I4,1X,5(E13.6,2X))
WRITE(5,700) L, (N(I), $1=1,5$ )
FORMAT (6(1X,19), 20X)
CONT INUE
STOP
BILO1110
BILOI120
BILOT120
BILO1130
BILO1140 BILO1150 BILO1160 BILO:170 BILO1180 BILO1190 BILO1200 BILO1200 BILOT210 BILO 1220 BILO 1230 BILO 1240 BILO 1250 BILO1260 BILO1270 BILO1280 BILO1290 BILO1300 BILO1310 BILO1310 BILO1320 BILO 1330 BILO1340 BILO1350 BILO 1360 BILO1370 BILO 1380 BILO 1390 BILO1400 BILO14 10 BILO1410 BILO1420

ASAPE78	WMPE78	SMPE 78	OSMPE 78	AVMPE78		PAGE	001
0.615394E-01	0.615394E-01	0.623080E-01	$0.615394 \mathrm{E}-01$	0.678879E-01			
0.695582E-01	$0.695582 \mathrm{E}-01$	$0.695582 \mathrm{E}-01$	$0.695582 \mathrm{E}-01$	0.648289E-01			
0.918956E-01	0.918956E-01	$0.101133 \mathrm{E}+00$	$0.918956 \mathrm{E}-01$	0.867271E-01			
$0.361693 E-01$	0.563768E-01	$0.563768 \mathrm{E}-01$	0.563768E-01	0.559760E-01			
$5 \quad 0.381916 \mathrm{E}-01$	O. $381916 \mathrm{E}-01$	0.381916E-01	$0.381916 \mathrm{E}-01$	0.444611E-01			
$6 \quad 0.442855 \mathrm{E}-01$	0.442855E-01	$0.535490 \mathrm{E}-01$	0.442855E-01	0.509069E-01	(3a)	Marginal	Prices by Primary Sampling
$0.929877 \mathrm{E}-01$	O.929877E-O1	$0.100335 \mathrm{E}+00$	0.929877E-01	0.675159E-01		Unit	
$0.432652 \mathrm{E}-01$	$0.432652 \mathrm{E}-01$	$0.432652 \mathrm{E}-01$	0.432652E-O1	0.564484E-01			
0.451717E-O1	0.451717E-01	0.494833E-01	0.451717E-01	0.575215E-01			
$0.465870 \mathrm{E}-01$	0.465870E-01	0.535044E-01	0.46587OE-O1	0.519443E-01			
$0.974315 \mathrm{E}-01$	0.974315E-01	0.977520E-01	0.974315E-01	0.540452E-O1			
$0.604029 E-01$	0.604029E-01	$0.680853 \mathrm{E}-01$	0.604029E-01	0.604029E-01			
$0.969005 E-01$	O.969005E-01	0.990688E-01	0.969005E-01	$0.656430 \mathrm{E}-01$			
$0.527022 \mathrm{E}-01$	$0.527022 \mathrm{E}-01$	0.527022E-01	0.527022E-01	$0.527022 \mathrm{E}-01$			
$0.669697 E-01$	O.707266E-01	$0.770710 \mathrm{E}-01$	0.669697E-01	0.563852E-01			
$0.376967 E-01$	$0.443928 \mathrm{E}-01$	0.443928E-01	0.443928E-01	$0.477499 \mathrm{E}-01$			
O.419157E-O1	$0.443867 \mathrm{E}-\mathrm{O1}$	0.419157E-01	0.419157E-01	0.516058E-01			
0.329057E-01	$0.368616 E-01$	0.368688E-O1	0.368616E-01	0.396048E-Ot			
0.463114E-01	0.463114E-01	0.464788E-01	0.463114E-01	$0.463732 \mathrm{E}-01$			
$0.739906 E-O 1$	0.573830E-01	0.638053E-01	0.573830E-01	0.474420E-O1			
$0.346334 E-01$	0.347692E-01	0.346392E-01	$0.346334 \mathrm{E}-01$	0.424144E-01			
$0.325585 \mathrm{E}-01$	$0.368810 \mathrm{E}-01$	$0.368810 \mathrm{E}-\mathrm{O1}$	$0.368810 \mathrm{E}-01$	0.435294E-01			
$0.364602 \mathrm{E}-01$	$0.364602 \mathrm{E}-01$	$0.441954 \mathrm{E}-01$	0.364602E-01	0.456277E-01			
$0.374158 \mathrm{E}-01$	$0.402360 \mathrm{E}-01$	0.402360E-O1	0.402360E-01	0.440812E-01			
0.392836E-01	0.407 130E-01	0.534687E-01	0.407130E-O1	$0.477073 \mathrm{E}-01$			
$0.534913 \mathrm{E}-01$	$0.534913 \mathrm{E}-01$	$0.534913 \mathrm{E}-01$	$0.534913 \mathrm{E}-01$	$0.454764 \mathrm{E}-01$			
$0.491435 E-01$	0.496057E-01	$0.491435 \mathrm{E}-01$	0.491435E-01	$0.471774 \mathrm{E}-01$			
$0.185823 \mathrm{E}-01$	0.422624E-01	0.440227E-01	0.422624E-01	0.445839E-O1			
$0.361029 E-01$	0.361029E-01	$0.453730 \mathrm{E}-01$	$0.361029 \mathrm{E}-01$	0.423141E-01			
0.434595E-01	0.434595E-01	0.452091E-01	0.434595E-01	0.451063E-01			
0.520863E-01	0.520863E-01	0.520863E-01	0.520863E-01	0.450764E-01			
$0.386342 \mathrm{E}-01$	0.386342E-01	$0.386342 \mathrm{E}-01$	$0.386342 \mathrm{E}-01$	0.440375E-01			
$0.482186 \mathrm{E}-01$	0.482186E-01	$0.482186 \mathrm{E}-01$	0.482186E-O1	$0.454210 \mathrm{E}-01$			
$0.412887 \mathrm{E}-01$	0.412887E-01	$0.462227 \mathrm{E}-01$	$0.412887 \mathrm{E}-01$	0.442980E-01			
0.469680E-01	0.469680E-01	0.469680E-01	$0.469680 \mathrm{E}-01$	0.463062E-01			
$0.503137 \mathrm{E}-01$	0.503137E-01	$0.503137 \mathrm{E}-01$	$0.503137 E-01$	0.460707E-01			
$0.324032 \mathrm{E}-01$	0.363827E-01	$0.363827 \mathrm{E}-01$	$0.363827 E-01$	0.434091E-01			
0.290702E-01	0.456641E-01	0.551423E-01	0.45664 1E-01	0.467872E-01			
0.366758E-01	0.389163E-01	0.437497E-01	$0.389163 \mathrm{E}-01$	0.448331E-01			
$0.390315 E-01$	$0.390315 \mathrm{E}-01$	0.477616E-01	$0.390315 E-01$	$0.440697 \mathrm{E}-01$			
0.459 190E-01	0.459190E-O1	0.480469E-01	$0.459190 E-01$	O.469977E-01			
$0.463545 E-01$	0.525858E-O1	0.525858E-01	0.525858E-01	0.500885E-01			
0.432786E-01	0.434006E-01	$0.433234 \mathrm{E}-01$	$0.406584 \mathrm{E}-01$	0.449710E-01			
0.308716E-01	0.340208E-01	$0.308716 \mathrm{E}-01$	$0.308716 \mathrm{E}-01$	$0.437011 \mathrm{E}-01$			
$0.301146 \mathrm{E}-01$	0.423565E-01	0.430748E-01	$0.423565 E-01$	0.439700E-01			
$0.401177 \mathrm{E}-01$	0.401177E-01	$0.401177 \mathrm{E}-01$	$0.401177 \mathrm{E}-01$	0.439087E-01			
0.283400E-01	$0.355772 \mathrm{E}-01$	$0.355772 \mathrm{E}-01$	$0.355772 \mathrm{E}-01$	0.444195E-01			
0.356759E-01	0.377090E-01	$0.377090 \mathrm{E}-01$	$0.377090 \mathrm{E}-01$	$0.437510 \mathrm{E}-\mathrm{O1}$			
$0.450659 \mathrm{E}-01$	0.450659E-01	$0.450659 \mathrm{E}-01$	0.450659E-01	0.450659E-01			
0.411910E-01	0.411910E-O1	$0.411910 \mathrm{E}-01$	0.411910E-O1	$0.463053 \mathrm{E}-01$			
$0.450371 \mathrm{E}-01$	0.450371E-01	$0.450371 \mathrm{E}-01$	$0.450371 \mathrm{E}-01$	0.469661E-01			
$0.395219 \mathrm{E}-01$	O.439201E-01	0.439201E-01	0.439201E-O1	$0.471055 \mathrm{E}-01$			
$0.330019 \mathrm{E}-01$	0.418738E-01	$0.431414 E-01$	0.330019E-01	0.470479E-01			
0.426420E-01	0.426420E-O1	$0.426420 E-01$	0.426420E-01	0.465483E-01			
$0.363876 \mathrm{E}-01$	0.359965E-01	$0.359965 E-01$	0.359965E-01	$0.430574 \mathrm{E}-01$			

$56 \quad 0.323260 E-01$
$57 \quad 0.412232 \mathrm{E}-01$
$58 \quad 0.360636 \mathrm{E}-\mathrm{O} 1$
59
60
61
62
$62 \quad 0.329603 \mathrm{E}-\mathrm{O1}$
O. $224490 \mathrm{E}-01$
0. 277734E-01
$0.289309 E-01$
$0.314629 \mathrm{E}-\mathrm{O}$
$0.314629 \mathrm{E}-01$
$0.312201 \mathrm{E}-01$
$0.312201 \mathrm{E}-01$
$0.297718 \mathrm{E}-01$
$0.297718 \mathrm{E}-01$
$0.315099 E-01$
$0.315099 E-01$
$0.302503 E-01$
$0.302503 E-01$
$0.313468 E-01$
0.311292E-01
$0.410165 \mathrm{E}-01$
$0.340119 \mathrm{E}-01$
$0.359174 \mathrm{E}-01$
0.341577E-01
0. $304010 \mathrm{E}-01$
O. $304010 \mathrm{E}-\mathrm{O}$
0. $303919 \mathrm{E}-01$
0.37565 tE-01
0. 267736E-O1
$0.452574 \mathrm{E}-01$
0.249419E-01 $0.383938 \mathrm{E}-\mathrm{O}$ 0.424909E-Ot 0.290708E-01
$0.370014 \mathrm{E}-\mathrm{O}$
0. 390098E-0
O. 237153 E $0.237153 E-01$ $0.357874 \mathrm{E}-01$ $0.472943 \mathrm{E}-01$ $0.512574 E-01$ $0.317062 \mathrm{E}-01$ O. 423982E-01 0.492906E-01 0. 194822E-01 0. 343593E-O1 $0.252773 E-01$ 0. 122910 E - 0 O. $122910 \mathrm{E}-\mathrm{O}$ $0.283751 \mathrm{E}-01$
0. 131349E-01 $0.430073 \mathrm{E}-01$ $0.430062 \mathrm{E}-01$ $0.119395 \mathrm{E}-01$ O. 104731E-01

[^2]


DIMENSION A (4, 20), QUAN(2000), EXPEN(2000)
DO $1 L=1,103$
$\operatorname{READ}(1,20)$ NOBPSU
FORMAT(14X,I3,63X)
$\mathrm{N}=\mathrm{O}$
THIS LINE CORRECTS FOR THE FACT THAT THE FIRST 5
LINES OF THE GAS BILLING DATA ARE MISSING (LRECL 3552)
IF (L.EQ.1) NOBPSU=NOBPSU-5
DO 200 KKK=1, NOBPSU
READ (3,40) NBILLS, ( $(A(M 1, M 2), M 1=1,4), M 2=1,20)$
FORMAT (10X, 12, 20 ( $4 \mathrm{X}, \mathrm{F7} .1,3 \mathrm{X}, \mathrm{F5} .2,4 \mathrm{X}, \mathrm{F} 2.0,4 \mathrm{X}, \mathrm{F} 2.0,145 \mathrm{X}), 20 \mathrm{X}$ )
IF (NBILLS.EQ.99) GO TO 200
DO $300 \mathrm{~J}=1$. NBILLS
IF (A(1.J).EQ.O.) GO TO 300
IF (A(2,J).EQ.O.) GO TO 300
$\mathrm{N}=\mathrm{N}+1$
$\operatorname{QUAN}(N)=A(1, J)$
$\operatorname{EXPEN}(N)=A(2, J)$
CONTINUE
CONTINUE
RUN REGRESSIONS AND STORE XMPR
IF (N.LT.10) GO TO 375
SUMX $=0$.
SUMX $=0$.
SUMY $=0$.
SUMY $=0$.
$S X Y=0$.
$S X X=0$.
DO $500 \mathrm{~J}=1, \mathrm{~N}$
SUMX $=\operatorname{SUMX}+$ QUAN ( $U$ )
SUMY = SUMY + EXPEN( $J$ )
CONT INUE
XBAR $=\operatorname{SUMX} / F \operatorname{LOAT}(N)$
YBAR $=$ SUMY $/ F L O A T(N)$
DO $510 \mathrm{~L} 2=1$, N
SXY=SXY+((QUAN(L2)-XBAR)*(EXPEN(L2)-YBAR))
$S X X=S X X+($ (QUAN $(L 2)-X B A R) *($ QUAN $(L 2)-X B A R))$
CONTINUE
IF (SXX.EQ.O.) GO TO 57
XMPR=SXY/SXX
GO TO 58
IF (SUMX EO O O) GO TO 59
IF (SUMX.EQ.O.O) GO TO 59
XAPR = SUMY / SUMX
GO TO 60
$X A P R=0.0$
CONTINUE
IF (XMPR.LE.O) XMPR=XAPR
IF (XMPR.LE.O.10) GO TO 375
GO TO 400
CONT INUE
$X M P R=0.0$
CONTINUE
WRITE THE XMPR'S
WRITE (4, 600) L, XMPR
FORMAT (I4, 1X, E13.6, 2X, 60X)
WRITE (5,700) L,N

GAS00010 GASOOO2O GAS00030 GASOOO4O GAS00050 GAS00060 GAS00070 GAS00080 GA 000090 GAS00090 GAS00100 GASOO 110 GASOO120 GASOO130 GASOO140 GASOO 150 GA SOO 160 GASOO170 GASOO18O GASOO 190 GA SOO200 GA SOO2OO GAS00210 GASOO220 GASOO230 GASOO240
GAS00250
GASOO260 GASCO270 GASOO280 GAS00290 GASOO300 GAS00300 GASOO3 10 GASOO320 GASOO330 GASOO340 GASOO350 GAS00360 GASO0370 GAS00380 GASOO390 GAS00400 GASOO4 10 GASOO4 10 GASOO420 GAS00430 GASOO440 GASOO450 GASOO460 GAS00470 GASOO480 GAS00490 GAS00490 GASOO500 AAS005 10 GASOO520
GAS00530 GAS00540 GASOO550
4. Determination of the Marginal Price of Natural Gas

FORMAT(2(1X, 19), 60X)
GAS00560
CONTINUE
$8 \quad 0.276353 \mathrm{E}+00$
$0.327669 E+00$
$0.315126 \mathrm{E}+00$
10.0
$0.466833 E+00$
$0.431005 E+00$
$0.243124 E+00$
0. $243124 \mathrm{E}+00$
$0.339862 E+00$
$0.246171 E+00$
$0.226454 \mathrm{E}+\mathrm{O}$
$0.336241 E+00$
$0.289909 E+00$
$0.346979 E+00$
$0.270784 \mathrm{E}+00$
$0.314686 E+00$
$0.284562 E+00$
$0.252753 E+00$
$0.252753 E+O O$
$0.292946 E+O O$
0.29
0.0
$0.289750 \mathrm{E}+00$
$0.289750 E+00$
$0.272271 E+00$
$0.272271 E+00$
$0.264909 E+00$
$0.264909 E+00$
$0.216798 E+00$
$0.216798 E+00$
$0.223869 E+00$
$0.257374 \mathrm{E}+00$
$0.235958 E+00$
$0.255409 E+00$
$0.231851 \mathrm{E}+00$
$0.231851 E+00$
$0.212041 E+00$
$0.219284 \mathrm{E}+00$
$0.207306 E+00$
$0.266101 E+00$
$0.158331 E+00$
$0.169197 \mathrm{E}+00$
42 O. $169310 E+00$
43 O. $155860 E+00$
44 O. $236991 \mathrm{E}+00$
$450.236991 E+00$
$45 \quad 0.249219 E+00$
$46 \quad 0.215887 \mathrm{E}+00$
$47 \quad 0.242971 E+00$
$48 \quad 0.262884 E+00$
$49 \quad 0.231630 E+00$
$\begin{array}{ll}49 & 0.231630 E+00 \\ 50 & 0.209319 E+00\end{array}$
$51 \quad 0.208083 \mathrm{E}+00$
$520.240105 \mathrm{E}+00$
$\begin{array}{ll}52 & 0.240105 E+00 \\ 53 & 0.248587 E+00\end{array}$
$53 \quad 0.248587 E+00$
$54 \quad 0.361061 E+00$
$0.266388 E+00$

56	$0.335851 \mathrm{E}+00$
57	$0.318555 \mathrm{E}+00$
58	$0.220303 \mathrm{E}+00$
59	$0.286067 \mathrm{E}+00$
60	$0.238971 \mathrm{E}+00$
61	0.0
62	$0.242265 \mathrm{E}+00$
63	$0.157452 \mathrm{E}+00$
64	$0.210873 \mathrm{E}+00$
65	0.0
66	$0.274921 \mathrm{E}+00$
67	$0.198469 \mathrm{E}+00$
68	$0.283167 \mathrm{E}+00$
69	$0.270030 \mathrm{E}+00$
70	$0.273660 \mathrm{E}+00$
71	$0.344307 \mathrm{E}+00$
72	$0.240427 \mathrm{E}+00$
73	$0.154741 \mathrm{E}+00$
74	$0.244279 \mathrm{E}+00$
75	$0.308869 \mathrm{E}+00$
76	$0.218792 \mathrm{E}+00$
77	$0.223122 \mathrm{E}+00$
78	$0.207089 \mathrm{E}+00$
79	$0.235208 \mathrm{E}+00$
80	0.0
81	$0.295990 \mathrm{E}+00$
82	$0.239429 \mathrm{E}+00$
83	$0.315688 \mathrm{E}+00$
84	$0.216590 \mathrm{E}+00$
85	$0.228616 \mathrm{E}+00$
86	$0.183363 \mathrm{E}+00$
87	0.0
88	$0.214218 \mathrm{E}+00$
89	$0.200969 \mathrm{E}+00$
90	$0.193940 \mathrm{E}+00$
91	$0.201406 \mathrm{E}+00$
92	$0.204096 \mathrm{E}+00$
93	$0.179709 \mathrm{E}+00$
94	$0.219525 \mathrm{E}+00$
100	$0.170713 \mathrm{E}+00$
103	0.0
95	$0.222310 \mathrm{E}+00$
96	$0.343884 \mathrm{E}+00$
97	$0.314587 \mathrm{E}+00$
98	0.0
$10.322192 \mathrm{E}+00$	
102	


	1	267		
	2	111		
	3	135		
	4	286		
$\underline{\text { PSU }}$	5	172	(4b)	Record of Observations Processed
	6	203		
	7	193		
	8	318		
	9	112		
	10	134		
	11	0		
	12	78		
	13	72		
	14	253		
	15	115		
	16	306		
	17	284		
	18	229		
	19	185		
	20	178		
	21	267		
	22	342		
	23	160		
	24	202		
	25	175		
	26	601		
	27	301		
	28	335		
	29	328		
	30	277		
	31	336		
	32	126		
	33	201		
	34	598		
	35	204		
	36	282		
	37	413		
	38	414		
	39	321		
	40	485		
	41	420		
	42	545		
	43	462		
	44	92		
	45	412		
	46	603		
	47	215		
	48	216		
	49	286		
	50	374		
	51	311		
	52	248		
	53	347		
	54	111		
	55	295		



DO $10 \quad \mathrm{I}=1,1144$
READ (1, 100) XXLAM,WIA,W1,W2,W3A,W3,QO, Q1, Q2,03, 04, O5,
\& Q6.07
FORMAT ( 14 E 15.8)
DO $20 \quad \mathrm{~J}=1,15$
READ (2,200) HHIDNO, FLAG, START, END, QUAN, EXPEN, HDD65, CDD65
8. HDD75, CDO75
(F6.0,1X,F3.0.1X,2(F6.0,1X),2(F10.2, 1X), 4(F6.0,1X),5X)
IF (FLAG.EQ.O.O) GO TO 30
IF (START.EQ.END) GO TO 30
XDAYS = END-START
HDD65=HDD65 / XDAYS
HDD65 $=$ HDD65 $/$ XDAYS
HDD75 $=$ HDD75 $/$ XDAYS
HDD75=HDD75/XDAYS
CDO65=CDD65/XDAYS
CDO65 $=$ CDD65 $/$ XDAYS
CDD75 $=$ CDD $75 / X D A Y S ~$
IF ( (HDD75.EQ.O.O).OR. (CDD65.EQ.O.O)) GO TO 250 CALL COEF (HOD75, CDO65, APAR,BPAR)
CHECK ESTIMATED TEMPERATURE DISTRIBUTION THROUGH BPAR IF(BPAR.EQ.1.O) GO TO 250
$T T=75$.
CALL ACC(APAR,BPAR, QO, Q1, Q2, Q3, Q4, Q5, Q6, O7,T1,T2,T3,TTT, ACUEC) TTT=74.
CALL ACC(APAR,BPAR, QO,Q1,Q2,Q3,Q4, Q5,06,07,T1,T2,T3,TTT,DACUEC) DACUEC=DACUEC-ACUEC
T6 $=70.0+X X L A M$
XLAM =APAR+BPAR*TG
$P 6=1.0 /(1.0+E X P(-X L A M))$
TEMP $=-$ APAR $/$ BPAR
IF ((P6.LE.O.0001).OR.((1.0-P6).LE.O.OOO1)) GO TO 255
CALL HEAT (BPAR, XLAM,W3A,W1A,W2,SHUEC)
$X L A M=X L A M+B P A R$
CALL HEAT (BPAR, XLAM, W3A,W1A,W2,DSHUEC)
DSHUEC = DSHUEC - SHUEC
GO TO 260
CONT INUE
IF (HDD75-CDD65) 251.252.252
$251 \quad$ TEMP $=(65.0+$ CDD65 $)$
GO 10253
TEMP = (75.0-HDD75)
CONTINUE
$T T T=75$
CALL ACC $1(00,01,02,03,04,05,06,07, T 1, T 2, T 3, T T T, A C U E C, T E M P)$
$\mathrm{TT}=74$.
CALL ACC $1(Q 0, Q 1,02,03,04,05,06, Q 7, T 1, T 2, T 3, T T T, D A C U E C, T E M P)$
DACUEC=DACUEC-ACUEC
CONTINUE
T6=XXLAM+70.
$T A U=70$.
CALL HEAT 1 (T6, TAU, TEMP, W3,W1,W2, SHUEC)
$T 6=X X L A M+71$.
$T A U=71$.
TAU $=71$.
DSHUEC=DSHUEC-SHUEC
OSHUEC=D
KO = XDAYS $* 24.0 / 1000.0$

SHUOOO 10 SHUOOO20 SHUOOO3O SHUOOO3O SHUOOO4O SHUOOOSO
SHUOOO6O SHUOOO6O
SHUOOO7O SHUOOO7O
SHU0OO8O SHUOOO8O
SHUOOO9O SHUOO 100 SHUOO 110 SHUOO 120 SHUOO 130 SHUOO 130 SHUOO140 SHUOO 150
SHUCO 160 SHUCO 160
SHUOO 170 SHUOO 170 SHUOO 180 SHUOO190 SHUOO2OO SHUOO2 10 SHUOO220 SHUOO23O SHUOO24O SHUOOO250 SHUOO250 SHUOO260 SHUOO270
SHUOO280 SHUOO280 SHU00290 SHU00300 SHUOO3 10 SHUOO320 SHUOO330 SHUOO33O SHUOO340 SHU00350 SHUOO36O
SHUOO370 SHU0037O
SHUOO38O SHU00380 SHUOO390 SHUOO4OO SHUOO4 10 SHUOO42O SHUOO430 SHUOO4 40 SHUOO440 SHUOO450
SHUOO46O SHUOO470 SHUOO48O SHUOO49O SHUOO500 SHUOOS 10 SHUOOS20 SHUOO52O SHUOO53O SHUOOS50
5. Thermal Load Model for Processed Billing Data

SHUEC $=$ SHUEC $*$ XD SHUOO56O
DSHUEC=DSHUEC*XD
ACUEC = ACUEC $*$ XD
SHUOO570
SHUOO580
SHUOO590
SHUOO600
WRITE (3, 300) HHIDNO, FLAG, START, END, QUAN, EXPEN, HDD65, CDD65
\& HDD75, CDD75, SHUEC, DSHUEC, ACUEC, DACUEC, T1, T2, T3, T6, TEMP
SHUOO6 10 SHUOO62O SHUOO630 SHUOO640 SHUOO650 SHUOO660 SHUOO670 SHUOO680 SHUOO690 SHUOOO700 SHUOO7OO SHUOO7 10 SHUOO72O SHUOO730 SHU00740 SHUOO 750 SHUOO760 SHUOOT70 SHUOO78O SHUOO790 SHUOO8OO SHUOO8 10 SHUOO8 10 SHUOO82O SHUOO83O SHUOO840 SHUOO850 SHUOO860 SHUOO870 SHUOOR8O SHU00890 SHUOO900 SHU00900 SHUOO9 10 SHUOO920 SHUOO930 SHUOO940 SHUOO950 SHUOO960 SHU00970 SHU00980 SHUOO990 SHUO 1000 SHuO 1000 SHUO 1010 SHUO 1020 SHUO 1030 SHUC 1040 SHUO 1050 SHUO 1060 SHUO 1070 SHUO 1080 SHUO 1090 SHUO 1100

SUBROUTINE ZETA(APAR,BPAR,TA,TB,PA,PB,Z1,Z2)
XLAMA = AMAX $1(-12.0,(A P A R+B P A R * T A))$
XLAMA = AMIN1 ( 15.0. XLAMA)
$X L A M B=A M A X 1(-12 \cdot 0,(A P A R+B P A R * T B))$
$X L A M B=A M I N I(15.0, X L A M B)$
$P A=1.0 /(1.0+E X P(-X L A M A))$
$P B=1.0 /(1.0+E X P(-X L A M B))$
IF ( ( $1.0-\mathrm{PA})$. LE. O.OOO1).OR. ((1.O-PB).LE.O.OOO1)) GO TO 10
$Z 1=(A L O G((1.0-P B) /(1.0-P A))) / B P A R-(T A-T B) * P B$
CALL GAMMA (XLAMA,GA)
CALL GAMMA (XLAMB,GB)
$22=-1.0 *(T B-T A) * A L O G((1.0-P A) *(1.0-P B)) / B P A R$
$\&+2.0 *(\mathrm{GA}-\mathrm{GB}) /(\mathrm{BPAR} * \mathrm{BPAR})$
RETURN
$Z 1=(-1.0 / B P A R) * A L O G(P A)$
CALL GAMMA (XLAMA,GA)
$G B=1.6449341+0.5 *(X L A M B *$ XLAMB $)$
$Z 2=-1.0 *(T B-T A) *(A L O G(P A)-X L A M A-X L A M B) / B P A R$
\& +2.0* (GA-GB)/(BPAR*BPAR)
RETURN
END
SUBROUTINE ACC(APAR,BPAR,QO,Q1,Q2,Q3,Q4,Q5,Q6,Q7,
\& T1,T2,T3,TT, AAU)
$T 1=T T-(Q O+Q 1+Q 3) / Q 2$
$T 2=T \mathrm{~T}-\mathrm{Q1} / \mathrm{Q} 2$
$T 3=T T-(01-03) / Q 2$
$3=T T-(01-03) / Q 2$
$T 4=T \mathrm{~T}-(01+(00+03) / 1.4142136) / 02$
$\mathrm{T} 5=\mathrm{TT}-(01-03 / 1.4142136) / 02$
$\mathrm{QB}=(\mathrm{Q6}-\mathrm{Q4} *(\mathrm{~T} 4-\mathrm{T} 1) /(\mathrm{T} 2-\mathrm{T} 1)) /((\mathrm{T} 4-\mathrm{T} 1) *(\mathrm{~T} 2-\mathrm{T} 4))$
Q9 = ( $07-04-(05-04) *(T 5-T 2) /(T 3-T 2)) /((T 5-T 2) *(T 3-T 5))$
CALL ZETA(APAR,BPAR,T1.T2.P1,P2,Z21,Z22)
CALL ZETA (APAR,BPAR,T2,T3,P2,P3,2Z3,ZZ4)
$A A U=Q 4 * Z Z 1 /(T 2-T 1)+Q 8 * Z Z 2+04 *(P 3-P 2)+(Q 5-04) * Z Z 3 /(T 3-T 2)+09 * Z Z 4+$
\& 05*(1.0-P3)-1.3*Q2*(ALOG(P3))/BPAR
RETURN
END
SUBROUTINE ACCI(00, Q1, Q2,03, Q4, Q5,06, Q7.
8 T1,T2,T3,TT, AAU, TEMP)
$T I=T T-(Q O+Q 1+Q 3) / Q 2$
$T 2=T T-Q 1 / Q 2$
$T 3=T T-(Q 1-Q 3) / Q 2$
$T 4=T T-(01+(00+03) / 1.4142136) / 02$
$\mathrm{T} 5=\mathrm{TT}-(\mathrm{Q} 1-03 / 1.4142136) / \mathrm{Q} 2$
$Q B=(06-Q 4 *(T 4-T 1) /(T 2-T 1)) /((T 4-T 1) *(T 2-T 4))$
$\mathrm{Q} 9=(\mathrm{Q7}-\mathrm{Q} 4-(\mathrm{Q} 5-\mathrm{Q4}) *(\mathrm{~T} 5-\mathrm{T} 2) /(\mathrm{T} 3-\mathrm{T} 2)) /((\mathrm{T} 5-\mathrm{T} 2) *(\mathrm{~T} 3-\mathrm{T} 5))$
IF (TEMP-T1) 1,2,2
$A A U=0.0$
GO TO 7
IF (TEMP-T2) 3.4.4
$A A U=04 *(T E M P-T 1) /(T 2-T 1)+08 *(T E M P-T 1) *(T 2-T E M P)$ GO TO 7
IF (TEMP-T3) 5,6,6
$A A U=Q 4+(T E M P-T 2) *(Q 5-Q 4) /(T 3-T 2)+Q 9 *(T E M P-T 2) *(T 3-T E M P)$ GO TO 7
$A A U=1.3 *(Q 0 / 3.141592654+Q 1+Q 2 *(T E M P-T T))$ RETURN END

SHUO 1110 SHUO 1120 SHUO 1130 SHUO 1140 SHUO 1150 SHUO 1150
SHUO 1160 SHUO 1170 SHUO 1180 SHUO 1190 SHUO 1200 SHUO 1210 SHUO 1220 SHUO 1230 SHUO 1240 SHUOO 1250 SHUO 1250
SHUO 1260 SHUO 1270 SHUO 1280 SHUO 1290 SHUO 1300 SHUO 1310 SHUO 1320 SHUO 1330 SHUO 1340 SHUO 1340
SHUO 1350 SHUO 1350 SHUO 1360 SHUO 1370 SHUO 1380
SHUO 1390 SHUO 1390
SHUO 1400 SHUO 1400
SHUO 1410 SHUO 1420 SHUO 1430 SHUO 1440 SHUO 1450 SHUO 1450 SHUO 1460 SHUO1470
SHUO1480 SHUO 1480
SHUO 1490 SHUO 1490 SHUO 1500 SHUO 1510 SHUO 1520 SHUO 1530 SHUO 1540 SHUO 1550 SHUO 1560 SHUO 1570 SHUO158O SHUO 1590 SHUO 1600 SHUO 1610 SHUO 1620 SHUO 1630 SHUO 1640 SHUO 1650 SHUO 1660
SHUO1670

Appendix II. Conditional Moments in the Generalized Extreme Value Family

In this appendix we establish basic results on the conditional moments of generalized extreme value random variables. ${ }^{1}$ We proceed as follows. The generalized extreme value distribution is introduced. We then discuss implications for the marginal extreme value distributions. The first, second and cross moments for G.E.V. variates are derived conditional on the event that a specific alternative is chosen.

Finally we specify a random variable through its linear conditional expectation in the space of G.E.V. random variables and derive its properties. These results in particular provide the distributional framework for the two step consistent estimation techniques to be considered below.

The following theorem due to McFadden (1977) introduces a general family of generalized extreme value choice models.

## Theorem 1 (McFadden)

Suppose $G\left(y_{1}, y_{2}, \ldots, y_{j}\right)$ is a nonnegative, homogeneous of degree one function of $\left(y_{1}, y_{2}, \ldots, y_{j}\right) \geqq 0$. Suppose $\lim _{y_{i} \rightarrow+\infty} G\left(y_{1}, y_{2}, \ldots, y_{j}\right)$ $=+\infty$ for $i=1,2, \ldots, J$. Suppose for any distinct $\left(i_{1}, i_{2}, \ldots, i_{k}\right)$ from $\{1,2, \ldots, J\}, \partial^{k} G / \partial y_{i_{1}}, \ldots, \partial y_{i_{k}}$ is nonnegative if $k$ is odd and nonpositive if $k$ is even. Then,

$$
\begin{equation*}
P_{i}=e^{V_{i}} G_{i}\left(e^{V_{1}}, \ldots, e^{V_{J}}\right) / G\left(e^{V_{1}}, \ldots, e^{V_{J}}\right) \text { defines a choice } \tag{I}
\end{equation*}
$$

model which is consistent with utility maximization.

## Proof Theorem 1.

Theorem 1 is proved in two steps. The first step demonstrates that the function:

$$
\begin{equation*}
F\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{J}\right)=\exp \left[-G\left(e^{-\varepsilon_{1}}, e^{-\varepsilon_{2}}, \ldots, e^{-\varepsilon_{j}}\right)\right] \tag{2}
\end{equation*}
$$

is a multivariate extreme value distribution. The details may be found in McFadden (1977).

The second step assumes a population of individuals with utilities $u_{i}=V_{i}+\varepsilon_{i}$, where $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{j}\right)$ is distributed $F$. Let $\underset{\sim}{ }$ denote the vector $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{J}\right)$ then

$$
\begin{equation*}
P_{i}=\operatorname{Prob}\left[u_{i} \geqq u_{j}, \forall i \neq j\right]=\operatorname{Prob}\left[V_{i}+\varepsilon_{i} \geqq V_{j}+\varepsilon_{j}, \forall i \neq j\right] \tag{3}
\end{equation*}
$$

may be written

$$
\begin{equation*}
\int_{\varepsilon_{i}=-\infty}^{+\infty} F_{i}\left(\left\langle V_{i}+\varepsilon_{i}-V_{j}\right\rangle\right) d \varepsilon_{i} \tag{4}
\end{equation*}
$$

where $F_{i}$ denotes the derivative of $F$ with respect to $i t s i t h$ argument, and $\left\langle a_{j}\right\rangle$ denotes $a$ vector with $j$ th component $a_{j}$. From (4) and the definition of the generalized extreme value distribution we have:

$$
\begin{align*}
P_{i} & =\int_{-\infty}^{+\infty} \exp \left[-G\left[\left\langle e^{-\left(V_{i}+\varepsilon_{i}-V_{j}\right)}\right\rangle\right] G_{i}\left[\left\langle e^{-\left(V_{i}+\varepsilon_{i}-V_{j}\right)}\right\rangle\right] e^{-\varepsilon_{i}} d \varepsilon_{i}\right.  \tag{5}\\
& =\int_{-\infty}^{+\infty} e^{-\varepsilon_{i}} G_{i}\left[\left\langle e^{V_{j}}\right\rangle\right] \exp \left[-G\left[\left\langle e^{V_{j}}\right\rangle\right] \cdot e^{-V_{i}} e^{-\varepsilon_{i}}\right] d \varepsilon_{i} \\
& =\frac{G_{i}\left[\left\langle e^{V_{j}}\right\rangle\right]}{G\left[\left\langle e^{V_{j}}\right\rangle\right]} e^{V_{i}} \quad \text { Q.E.D. }
\end{align*}
$$

The second equality in equation (5) uses the fact that $G$ is homogeneous of degree one and the implication that $G_{i}$ is homogeneous of
degree zero. The third equality makes use of the result:

$$
\begin{equation*}
\int_{-\infty}^{+\infty} e^{-\varepsilon} \exp \left[-e^{-\varepsilon} \cdot \phi\right] d \varepsilon=\phi^{-1} \tag{6}
\end{equation*}
$$

which follows from the subsitution $u=\Rightarrow-\phi \mathrm{e}^{-\varepsilon}$.

Corollary 1. Multinomial Logit Model

$$
\begin{aligned}
& \text { Let } G[y]=\left[\sum_{j=1}^{J} y_{j}^{1 / \phi}\right]^{\phi} \text {. Then } \\
& P_{i}=e^{V_{i} / \phi} / \sum_{j=1}^{J} e^{V_{j} / \phi}
\end{aligned}
$$

## Proof Corollary 1:

This result is found in McFadden (1976). One need simply verify the linear homogeneity of $G$ and apply (1). Q.E.D.

MCFadden shows that when $\varepsilon_{j} \operatorname{Lim}_{>+\infty}$ for $j \neq i$, then from (2), $F\left[\varepsilon_{j}\right]=$ $\exp \left[-a_{i} e^{-\varepsilon} i^{\prime}\right]$, where $a_{i}=G[0, \ldots, 0,1,0, \ldots, 0]$; one in the ith coordinate. Under the assumptions of Corollary 1 , the marginal distribution, $F\left[\varepsilon_{i}\right]$, is $\exp \left[-e^{-\varepsilon_{i}}\right]$ (since $a_{i}=1$ ) which is the cumulative distribution for an extreme value distributed random variate with variance $\pi^{2} / 6$. We note that McFadden's definition of the generalized extreme value distribution is easily modified to encompass marginal distributions with non-normalized variances by choosing:

$$
\begin{equation*}
F\left[\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{j}\right]=\exp \left[-G\left[<e^{-\varepsilon_{j} / \phi}>\right]\right] \tag{7}
\end{equation*}
$$

McFadden's proof of Theorem 1 may be modified to demonstrate that (7)
is a multivariate extreme value distribution. Alternatively, since (2) is a multivariate extreme value distribution, we see by inspection that (7) is as well. Application of (4) implies the probability choice system

$$
\begin{equation*}
P_{i}=e^{V_{i} / \phi} \cdot G_{i}\left[\left\langle e^{V_{j} / \phi}\right\rangle\right] / G\left[\left\langle e^{V_{j} / \phi}>\right] .\right. \tag{8}
\end{equation*}
$$

When $G\left[\left\langle y_{j}\right\rangle\right]=\sum_{j=1}^{J} y_{j}$, equation (8) implies choice probabilities of the multinomial logit form in Corollary 1.

The marginal distribution for $\varepsilon_{i}$ from (7) is $F\left(\varepsilon_{i}\right)=\exp \left[-a_{i} e^{-\varepsilon_{i} / \phi}\right]$ which is the cumulative distribution for an extreme value distributed random variate with variance $\frac{\pi^{2}}{6} \cdot \phi^{2}$. We have applied the following result:

Theorem 2
A random variate $\varepsilon$ with the extreme value distribution $F_{\varepsilon}[t]=\operatorname{Prob}[\varepsilon \leq t]=\exp \left[-e^{-(t-\alpha) / \phi}\right]$ has the properties:

TVa) $E[\varepsilon]=\alpha+\gamma \phi$ where $\gamma=.5772156649 \ldots$ is Euler's constant and
Tab) $\operatorname{Var}[\varepsilon]=\frac{1}{6} \pi^{2} \phi^{2}$.

Proof Theorem 2
See McFadden (1973). Q.E.D.
When $G\left[\left\langle y_{j}\right\rangle\right]=\sum_{i=1}^{J} y_{i}$, (7) implies that $\varepsilon_{i}$ has mean $\gamma b$ (since $\alpha=0$ ) and variance $\frac{1}{6} \pi^{2} \phi^{2}$. Application of Theorem 2 demonstrates that $\varepsilon_{i}$ has a marginal distribution with zero mean when $G\left[y_{1}, y_{2}, \ldots, y_{j}\right]=e^{-\gamma} . \sum_{j=1}^{J} y_{j}$. More generally, $\varepsilon_{i}$ will have mean $u$ and variance $\frac{1}{6} \pi^{2} \phi^{2}$ when $G\left[y_{1}, y_{2}, \ldots, y_{j}\right]=\left(\frac{\exp (u / \phi)}{\exp (\gamma)}\right) \cdot\left(\sum_{j=1}^{J} y_{j}\right)$.

Let $\delta_{j}(\underline{\mathcal{L}})$ be an indicator random variable which is one when $j$ is the chosen alternative, i.e., when $V_{j}+\varepsilon_{j} \geqq V_{i}+\varepsilon_{i}, \forall i \neq j$, and zero otherwise. We have written $\delta_{j}$ as a function of $\underset{\sim}{ }$ to emphasize that $\delta_{j}$ is a random variable whose outcome conditioned on the $V_{j}{ }^{\prime}$ s depends directly on the realization of $\varepsilon$. We now derive the conditional moments. Note that without loss of generality it suffices to consider expressions $E\left[\varepsilon_{1} \mid \delta_{1}=1\right]$ and $E\left[\varepsilon_{2} \mid \delta_{1}=1\right]$ rather than the more general expression $E\left[\varepsilon_{i} \mid \delta_{j}=1\right]$ for $i=j$ and for $i \neq j$.

## Lemma 1

Let $\approx$ be generalized extreme value distributed with cumulative distribution function $F(\underset{\sim}{( })$ given in (7). Let $g($.$) be an arbitrary$ real-valued function. Then:

Lla) $E\left[g\left(\varepsilon_{1}\right) \mid \delta_{1}(\varepsilon)=1\right]$

$$
=E\left[g(\varepsilon) \mid \varepsilon \sim E V\left(\phi\left(\ln G_{1}-\ln P_{1}\right), \phi\right)\right.
$$

where $\operatorname{EV}[a, b]$ denotes an extreme-valued distributed random variate with location parameter a and scale parameter b.
Llb) Let $G$ be additively separable as $G(y)=G^{A}\left(y^{A}\right)+y_{2}$ with $y=$ $\left(y^{A}, y\right)$ and with $G^{A}($.$) homogeneous of degree one. Let \varepsilon$ have the corresponding partition, i.e., $\underset{\sim}{\varepsilon}=\left(\varepsilon^{A}, \varepsilon_{2}\right)$. Then $E\left[g\left(\varepsilon_{2}\right) \mid \delta_{1}(\varepsilon)=1\right]=$ $\frac{G\left[\left\langle e^{V_{j} / \phi}\right\rangle\right]}{G^{A}\left[\left\langle e^{V_{j} / \phi}\right\rangle\right]}\left[E\left(g\left(\varepsilon_{2}\right) \mid \varepsilon_{2} \sim E V[0, \phi]\right)-P_{2} E\left(g\left(\varepsilon_{2}\right) \mid \varepsilon_{2} \sim E V\left[-\phi\left(\ln P_{2}\right), \phi\right]\right)\right]$

## Proof Lemma 1

Lla) We make use of the properties of conditional densities. Recall:

$$
\begin{equation*}
\int_{-\infty}^{y} \int_{x_{\varepsilon} A} f(x, y) d x d y=\operatorname{PR}[x \in A, Y \leq y]=\operatorname{PR}[Y \leq y \mid x \in A] \operatorname{PR}[x \in A] \tag{9}
\end{equation*}
$$

Thus:

$$
\begin{equation*}
\frac{1}{\operatorname{PR}[x \varepsilon A]} \int_{x \in A} f(x, y) d x=f(y \mid x \varepsilon A) \tag{10}
\end{equation*}
$$

Equation (10) implies that:

$$
\begin{equation*}
E[Y \mid x \varepsilon A]=\int_{y} y f(y \mid X \varepsilon A) d y=\frac{1}{P R[x \in A]} \int_{y} \int_{x \in A} y f(x, y) d x d y \tag{11}
\end{equation*}
$$

As an application of (11) we find:

$$
\begin{align*}
& E\left[g\left(\varepsilon_{1}\right) \mid \delta_{1}(\varepsilon)=1\right]  \tag{12}\\
& =\frac{1}{P_{1}} \int_{\varepsilon_{1}=-\infty}^{\infty} \int_{\varepsilon_{2}=-\infty}^{V_{1}-V_{2}+\varepsilon_{1}} \ldots \int_{\varepsilon_{J}=-\infty}^{V_{1}-V_{J}+\varepsilon_{1}} \underset{g}{ }\left(\varepsilon_{1}\right) d F(\varepsilon) \\
& =\frac{1}{P_{1}} \int_{\varepsilon=-\infty}^{\infty} g(\varepsilon) F_{1}\left[<\varepsilon+V_{1}-V_{j}>\right] d \varepsilon \\
& =\frac{1}{P_{1}} \int_{\varepsilon=-\infty}^{\infty} g(\varepsilon) e^{-\varepsilon / \phi} G_{1}\left[\langle e ^ { - ( \varepsilon + V _ { 1 } - V _ { j } ) / \phi } > ] \operatorname { e x p } \left[-G\left[\left\langle e^{-\left(\varepsilon+V_{1}-V_{j}\right) / \phi}>\right]\right] \frac{d \varepsilon}{\phi}\right.\right. \\
& =\frac{1}{P_{1}} \int_{\varepsilon=-\infty}^{\infty} g(\varepsilon) e^{-\varepsilon / \phi} G_{1}\left[\left\langle e^{V_{j} / \phi}>\right] \exp \left(-G\left[\left\langle e^{V_{j} / \phi}\right\rangle\right] e^{-\varepsilon / \phi} e^{-V_{1} / \phi}\right) \frac{d \varepsilon}{\phi}\right.
\end{align*}
$$

Let $\phi_{1}=G\left[\left\langle e^{V_{j} / \phi}\right\rangle\right] e^{-V_{1} / \phi}$ and $\phi_{2}=G_{1}\left[\left\langle e^{V_{j} / \phi}\right\rangle\right]$

$$
\begin{aligned}
(12) & =\frac{\phi_{2}}{P_{1}} \cdot \int_{-\infty}^{\infty} g(\varepsilon) \mathrm{e}^{-\varepsilon / \phi} \exp \left[-\phi_{1} \mathrm{e}^{-\varepsilon / \phi}\right] \frac{d \varepsilon}{\phi} \\
& =\frac{\phi_{2}}{P_{1} \phi_{1}} \cdot \int_{-\infty}^{\infty} g(\varepsilon) \mathrm{e}^{-\left(\varepsilon-\phi \mathrm{k}_{1}\right) / \phi} \exp \left[-\mathrm{e}^{-\left(\varepsilon-\phi \mathrm{k}_{1}\right) / \phi}\right] \frac{d \varepsilon}{\phi}
\end{aligned}
$$

where $k_{1}=\ln \phi_{1}$

$$
=E\left[g(\varepsilon) \mid \varepsilon \sim E V\left(\phi \ln \phi_{1}, \phi\right)\right]
$$

where EV[a, b] denotes an extreme-value distributed random variate with location parameter a and scale parameter $b$, i.e., $F_{\varepsilon}[t]=\exp \left[-e^{-(t-a) / b}\right]$.

From equation (8), $\phi_{2} / \phi_{1}=G_{1} / \phi_{1}=P_{1}$. Hence $\ln \phi_{1}=\left(\ln G_{1}-\ln P_{1}\right)$, so that we can make the substitution in the final equality of (12) to prove the claim.

Llb)

$$
\begin{align*}
& E\left(g\left(\varepsilon_{2}\right) \mid \delta_{1}(\varepsilon)=1\right)  \tag{13}\\
& =\frac{1}{P_{1}} \int_{\varepsilon_{1}=-\infty}^{+\infty} \int_{\varepsilon_{2}=-\infty}^{V_{1}-V_{2}+\varepsilon_{1}} \ldots \int_{\varepsilon_{j}=-\infty}^{V_{1}-V_{J}+\varepsilon_{1}} g\left(\varepsilon_{2}\right) d F(\varepsilon) \\
& =\frac{1}{P_{1}} \int_{\varepsilon_{1}=-\infty}^{+\infty} \int_{\varepsilon_{2}=-\infty}^{V_{1}-V_{2}+\varepsilon_{1}} g\left(\varepsilon_{2}\right) F_{12}\left[\varepsilon_{1}, \varepsilon_{2}, V_{1}-V_{3}+\varepsilon_{1}, \ldots, V_{1}-V_{J}+\varepsilon_{1}\right] d \varepsilon_{2} d \varepsilon_{1} \\
& =\frac{1}{P_{1}} \int_{\varepsilon_{2}=-\infty}^{+\infty} \int_{\varepsilon_{2}+V_{2}-V_{1}}^{+\infty} g\left(\varepsilon_{2}\right) F_{12}\left[\varepsilon_{1}, \varepsilon_{2}, V_{1}-V_{3}+\varepsilon_{1}, \ldots, V_{1}-V_{J}+\varepsilon_{1}\right] d \varepsilon_{1} d \varepsilon_{2}
\end{align*}
$$

From equation (7),

$$
\begin{equation*}
F(\varepsilon)=\exp \left[-G\left[\left\langle e^{-\varepsilon_{j} / \phi}\right\rangle\right]\right] \tag{14}
\end{equation*}
$$

$$
=\exp \left[-G^{A}\left[\left\langle e^{-\varepsilon_{j}^{A} / \phi}\right\rangle\right]\right] \cdot \exp \left[-e^{-\varepsilon_{2} / \phi}\right] \text {, so that: }
$$

(15) $\quad F_{12}(\varepsilon)=\exp \left[-G^{A}\left[\left\langle e^{-\varepsilon_{j}^{A} / \phi}>\right]\right] G_{1}^{A}\left[<e^{-\varepsilon_{j}^{A} / \phi}>\right] e^{-\varepsilon_{1} / \phi} \frac{1}{\phi}\right.$

$$
\text { . } \exp \left[-\mathrm{e}^{-\varepsilon_{2} / \phi}\right] \mathrm{e}^{-\varepsilon_{2} / \phi} \frac{1}{\phi}
$$

Hence:

$$
\begin{align*}
& F_{12}\left(\varepsilon_{1}, \varepsilon_{2}, V_{1}-V_{3}+\varepsilon_{1}, \ldots, V_{1}-V_{j}+\varepsilon_{1}\right)  \tag{16}\\
& \left.=\exp \left[-G^{A}\left[e^{-\varepsilon_{1} / \phi},<e \frac{-V_{1}+V_{j}-\varepsilon_{1}}{\phi}\right\rangle\right]\right] \\
& \text { - } G_{1}^{A}\left[-\varepsilon_{1} / \phi,\left\langle e \frac{-V_{1}+V_{j}-\varepsilon_{1}}{\phi}\right\rangle\right]^{-\varepsilon_{1} / \phi} \frac{1}{\phi} \exp \left[-e^{-\varepsilon_{2} / \phi}\right] e^{-\varepsilon_{2} / \phi} \frac{1}{\phi} \\
& =\exp \left[-e^{-\varepsilon \varepsilon_{1} / \phi} e^{-V_{1} / \phi} \cdot G^{A}\left[<e^{V_{j} / \phi}>\right]\right] G_{1}\left[<e^{V_{j} / \phi}>\right] e^{-\varepsilon} 1 / \phi \frac{1}{\phi} \\
& \text { - } \exp \left[-e^{-\varepsilon_{2} / \phi}\right] e^{-\varepsilon_{2} / \phi} \frac{1}{\phi}
\end{align*}
$$

$$
\begin{align*}
& E\left[g\left(\varepsilon_{2}\right) \mid \delta_{1}(\mathcal{\varepsilon})=1\right]=  \tag{17}\\
& \frac{G_{1}^{A}\left[\left\langle e^{V_{j} / \phi}\right\rangle\right]}{P_{1}} \int_{\varepsilon_{2}=-\infty}^{\infty} g\left(\varepsilon_{2}\right) e^{-\varepsilon_{2} / \phi} \exp \left[-e^{-\varepsilon_{2} / \phi}\right] \\
& \cdot \int_{\varepsilon_{2}+V_{2}-V_{1}}^{\infty} \exp \left(-e^{-\varepsilon_{1} / \phi} e^{-V_{1} / \phi} G^{A}\left[\left\langle e^{V_{j} / \phi}>\right]\right) e^{-\varepsilon_{1} / \phi} \frac{d \varepsilon_{1}}{\phi} \frac{d \varepsilon_{2}}{\phi}\right. \\
& =\frac{G_{1}^{A}\left[\left\langle e^{V_{j} / \phi}>\right]\right.}{P_{1} \cdot \phi_{1}^{A}} \quad \int_{\varepsilon_{2}=-\infty}^{\infty} g\left(\varepsilon_{2}\right) e^{-\varepsilon_{2} / \phi} \exp \left[-e^{-\varepsilon_{2} / \phi}\right]\left[1-\exp \left[-\phi_{1}^{A} e^{-\varepsilon_{2}-V_{2}+V_{1}} \phi_{\phi}^{d \varepsilon_{2}}\right] \frac{\phi}{\phi}\right.
\end{align*}
$$

where $\phi_{1}^{A}=e^{-V_{1} / \phi} G^{A}\left[\left\langle e^{V_{j} / \phi}\right\rangle\right]$ Thus:

$$
\begin{aligned}
(17) & =\frac{G_{1}^{A}\left[\left\langle e^{V_{j} / \phi}\right\rangle\right]}{P_{1} \cdot \phi_{1}^{A}} \quad E\left[g\left(\varepsilon_{2}\right) \mid \varepsilon_{2} \sim E V(0, \phi)\right] \\
& -\frac{G_{1}^{A}\left[\left\langle e^{V_{j} / \phi}\right\rangle\right]}{P_{1} \cdot \phi_{1}^{A}} \quad \int_{\varepsilon_{2}=-\infty}^{\infty} g\left(\varepsilon_{2}\right) e^{-\varepsilon_{2} / \phi} \exp \left[-e^{-\varepsilon_{2} / \phi}\right] \exp \left[-\phi_{1}^{A} e \frac{-\varepsilon_{2}-V_{2}+V_{1}}{\phi}\right] \frac{d \varepsilon_{2}}{\phi}
\end{aligned}
$$

Now $\quad \int_{\varepsilon_{2}=-\infty}^{\infty} g\left(\varepsilon_{2}\right) e^{-\varepsilon_{2} / \phi} \exp \left[-e^{-\varepsilon_{2} / \phi} \cdot \phi_{2}\right] \frac{d \varepsilon_{2}}{\phi}=\frac{1}{\phi_{2}} E\left[g\left(\varepsilon_{2}\right) \mid \varepsilon_{2} \sim E V\left(\phi \ln \phi_{2}, \phi\right)\right]$
where we have defined $\phi_{2}=\left(1+e^{\left(V_{1}-V_{2}\right) / \phi} \cdot \phi_{1}^{A}\right)$. Hence:

$$
\begin{align*}
& E\left[g\left(\varepsilon_{2}\right) \mid \delta_{1}(\varepsilon)=1\right]=  \tag{18}\\
& \frac{G_{1}^{A}\left[<e^{V_{j} / \phi}>\right]}{P_{1} \cdot \phi_{1}^{A}}\left[E\left(g\left(\varepsilon_{2}\right) \mid \varepsilon_{2} \sim E V(0, \phi)\right)-\frac{1}{\phi_{2}} E\left(g\left(\varepsilon_{2}\right) \mid \varepsilon_{2}-E V\left(\phi \ln \phi_{2}, \phi\right)\right)\right]
\end{align*}
$$

Note that $G_{1}^{A}\left[\left\langle e^{V_{j} / \phi}\right\rangle\right]=G_{1}\left[\left\langle e^{V_{j} / \phi}\right\rangle\right]$ implies:

$$
\begin{equation*}
\frac{G_{1}^{A}\left[\left\langle e^{V_{j} / \phi}\right\rangle\right]}{P_{1} \cdot \phi_{1}^{A}}=\frac{G_{1}\left[\left\langle e^{V_{j} / \phi}\right\rangle\right] e^{V_{1} / \phi}}{G^{A}\left[\left\langle e^{V_{j} / \phi}\right\rangle\right] P_{1}}=\frac{G\left[\left\langle e^{V_{j} / \phi}\right\rangle\right]}{G^{A}\left[\left\langle e^{V_{j} / \phi}\right\rangle\right]} \tag{19}
\end{equation*}
$$

Also:

$$
\begin{align*}
\phi_{2} & =\left(1+e^{\left(V_{1}-V_{2}\right) / \phi} \phi_{1}^{A}\right)=\left(1+e^{-V_{2} / \phi} G A\left[\left\langle e^{V_{j} / \phi}>\right]\right)\right.  \tag{20}\\
& =e^{-V_{2} / \phi}\left(e^{V_{2} / \phi}+G^{A}\left[\left\langle e^{V_{j} / \phi}>\right]\right)=e^{-V_{2} / \phi} G\left[\left\langle e^{V_{j} / \phi}>\right]\right.\right.
\end{align*}
$$

Note that $G_{2} / \phi_{2}=P_{2}$ and $G_{2} \equiv 1$ imply:
(21)

$$
\frac{e^{V_{2} / \phi}}{G\left[<e^{V_{j} / \phi}>\right]}=\frac{1}{\phi_{2}}=P_{2}
$$

Combining equations (19) and (21) with equation (18) we have:

$$
\begin{align*}
& E\left[g\left(\varepsilon_{2}\right) \mid \delta_{1}(\varepsilon)=1\right]=  \tag{22}\\
& \frac{G\left[\left\langle e^{V_{j} / \phi}>\right]\right.}{G^{A}\left[\left\langle e^{V_{j} / \phi}>\right]\right.}\left[E\left(g\left(\varepsilon_{2}\right) \mid \varepsilon_{2} \sim E V[0, \phi]\right)-P_{2} E\left(g\left(\varepsilon_{2}\right) \mid \varepsilon_{2} \sim E V\left[\phi 1 n \phi_{2}, \phi\right]\right)\right]
\end{align*}
$$

From equation (21) we have:

$$
\begin{equation*}
\ln \phi_{2}=\ln G_{2}-\ln P_{2}=-\ln P_{2} . \tag{23}
\end{equation*}
$$

Combining (22) and (23) with (21) proves the claim.
Q.E.D.

As an application of Lemma 1 we have:

## Theorem 3.

Let $£$ be generalized extreme value distributed with cumulative distribution function $F(\underset{\sim}{\mathcal{E}})$ given in (7). Then:

T3a) $E\left[\varepsilon_{1} \mid \delta_{1}(\underset{\sim}{\varepsilon})=1\right]=\phi\left[\gamma+\ln G_{1}-\ln P_{1}\right]$

T3b) $E\left[\varepsilon \varepsilon_{1}^{2} \mid \delta_{1}(\underset{\sim}{f})=1\right]=\frac{\pi^{2}}{6} \phi^{2}+\phi^{2}\left[\gamma+\ln G_{1}-\ln P_{1}\right]^{2}$

Let $G$ be additively separable as $G(y)=G^{A}\left(y^{A}\right)+y_{2}$ with $y=\left(y^{A}, y_{2}\right)$ and with $G^{A}($.$) homogenous of degree one. Let { }_{\varepsilon}$ have the corresponding partition, i.e., $\varepsilon=\left(\varepsilon^{A}, \varepsilon_{2}\right)$. Then:
T3c) $E\left[\varepsilon_{2} \mid \delta_{1}(\varepsilon)=1\right]=\frac{G\left[\left\langle e^{V_{j} / \phi}\right\rangle\right]}{G^{A}\left[\left\langle e^{V_{j} / \phi}\right\rangle\right]} \cdot \phi \cdot\left(\left(1-P_{2}\right) \gamma+P_{2} \ln P_{2}\right)$

T3d) $\left.\left.E\left[\varepsilon_{2}^{2} \mid \delta_{1}(\varepsilon)=1\right]=\frac{G\left[\left\langle e^{V}{ }_{j} / \phi\right.\right.}{{ }_{G} A\left[\left\langle e^{V}{ }_{j} / \phi\right.\right.}\right\rangle\right] \quad \phi^{2} \cdot\left(r^{2}-P_{2}\left(\gamma-\ln P_{2}\right)^{2}+\left(1-P_{2}\right) \frac{\pi^{2}}{\delta}\right)$

## Proof Theorem 3:

T3a) Using Lemma la with $g(\varepsilon)=\varepsilon$, we have:

$$
\begin{align*}
E\left[\varepsilon_{1} \mid \delta_{1}(\varepsilon)=1\right] & =E\left[\varepsilon \mid \varepsilon \sim E V\left(\phi\left(\ln G_{1}-\ln P_{1}\right), \phi\right)\right]  \tag{24}\\
& =\emptyset\left[\gamma+\ln G_{1}-\ln P_{1}\right]
\end{align*}
$$

where the second equality uses Theorem 2 a .
T3b) We take $g(\varepsilon)=\varepsilon^{2}$ so that:

$$
\begin{align*}
E\left[\varepsilon_{1}^{2} \mid \delta_{1}(\varepsilon)=1\right] & =E\left(\varepsilon^{2} \mid \varepsilon \sim \operatorname{EV}\left[\phi\left(\ln G_{1}-\ln P_{1}\right), \phi\right]\right)  \tag{25}\\
& =\left(E\left[\varepsilon \mid \varepsilon \sim \operatorname{EV}\left[\phi\left(\ln G_{1}-\ln P_{1}\right), \phi\right]\right)^{2}\right. \\
& +\operatorname{var}\left(\varepsilon \mid \varepsilon \sim E V\left[\phi\left(\ln G_{1}-\ln P_{1}\right), \phi\right]\right) \\
& =\phi^{2}\left[\gamma+\ln G_{1}-\ln P_{1}\right]^{2}+\frac{\pi^{2}}{6} \phi^{2}
\end{align*}
$$

where the third equality uses Theorem 2 b .
Thc) Using Lemma lb with $g(\varepsilon)=\varepsilon$ we have:

$$
\begin{align*}
E[ & {\left[\varepsilon_{2} \mid \delta_{1}(\varepsilon)=1\right] }  \tag{26}\\
& =\left(\frac{G}{G A}\right) \cdot\left[E\left(\varepsilon_{2} \mid \varepsilon_{2} \sim E V[0, \phi]\right)-P_{2} E\left(\varepsilon_{2} \mid \varepsilon_{2} \sim E V\left[-\phi \ln P_{2}, \phi\right]\right)\right] \\
& =\left(\frac{G}{G A}\right) \cdot\left(r \phi-P_{2}\left(\gamma \phi-\phi \ln P_{2}\right)\right) \\
& =\left(\frac{G}{G A} \cdot \phi\right) \cdot\left(\left(1-P_{2}\right) \gamma+P_{2} \ln P_{2}\right)
\end{align*}
$$

TOd) Using Lemma 1 b with $g(\varepsilon)=\varepsilon^{2}$ we have:

$$
\begin{align*}
& E\left[\varepsilon_{2}^{2} \mid \delta_{1}(\varepsilon)=1\right]  \tag{27}\\
& =\left(\frac{G}{G A}\right)\left[E\left(\varepsilon_{2}^{2} \mid \varepsilon_{2} \sim E V[0, \phi]\right)-P_{2} E\left(\varepsilon_{2}^{2} \mid \varepsilon_{2} \sim E V\left[-\phi \ln P_{2}, \phi\right]\right)\right] \\
& =\left(\frac{G}{G A}\right)\left[\left((\gamma \phi)^{2}+\frac{\pi^{2}}{6} \phi^{2}\right)-P_{2}\left(\phi^{2}\left(\gamma-\ln P_{2}\right)^{2}+\frac{\pi^{2}}{6} \phi^{2}\right)\right] \\
& =\left(\frac{G}{G^{A}}\right)\left[(\gamma \phi)^{2}-P_{2} \phi^{2}\left(\gamma-\ln P_{2}\right)^{2}+\left(1-P_{2}\right) \frac{\pi^{2}}{6} \phi^{2}\right]
\end{align*}
$$

$$
=\left(\frac{G}{G^{A}} \cdot \phi^{2}\right)\left[\gamma^{2}-P_{2}\left(\gamma-\ln P_{2}\right)^{2}+\left(1-P_{2}\right) \frac{\pi^{2}}{6}\right] \quad \text { Q.E.D. }
$$

Comments: Theorem 3 imposes strong separability in the functional form for $G$ to obtain a closed form conditional expectation. If in fact $G$ has the additive form $G[y]=G^{A}\left[y_{2}^{A}\right]+y_{2}$ then $\varepsilon_{2}$ is independent from $\varepsilon^{A}$. If we do not impose strong separability then $\mathrm{F}_{12}(\underset{\sim}{\mathcal{\varepsilon}})$ in equation (13) becomes:

$$
\begin{align*}
F_{12}(\varepsilon)= & \exp \left(-G\left[\left\langle e^{-\varepsilon_{j} / \phi}>\right]\right) e^{-\varepsilon_{1} / \phi} e^{-\varepsilon_{2} / \phi} \frac{1}{\phi^{2}}\right.  \tag{28}\\
& \left(G_{1}\left[\left\langle e^{-\varepsilon_{j} / \phi}\right\rangle\right] G_{2}\left[<e^{-\varepsilon_{j} / \phi}>\right]-G_{12}\left[\left\langle e^{-\varepsilon_{j} / \phi}>\right]\right)\right.
\end{align*}
$$

Following the proof of Lemma 1 b we see that the analogue of (16) corresponding to equation (28) does not permit an easy integration in (17).

However, it is possible to extend the results of Theorems 3 c and 3 d by assuming $G[y]=G^{A}\left[y^{A}\right]+a y_{2}$.

We present the results in Theorem 4.

## Theorem 4.

Let $\varepsilon$ be generalized extreme value distributed with cumulative distribution function $F(\underset{\sim}{( })$ given in (7).

Let $G$ be additively separable as $G(y)=G^{A}\left(y^{A}\right)+\alpha y_{2}$ where $y=\left(y^{A}, y_{2}\right)$ and with $G^{A}($.$) homogeneous of degree one. Let \alpha^{*}=\phi \ln \alpha$. Then:

T4a) $\left.E\left[\varepsilon_{2} \mid \delta_{1}(\varepsilon)=1\right]=\frac{G\left[\left\langle e_{j} / \phi\right\rangle\right]}{G^{A}\left[\left\langle e_{j} / \phi>\right]\right.}\left[\left(\gamma \phi+\alpha^{\star}\right)\left(1-P_{2}\right)+\phi P_{2} \ln P_{2}\right)\right]$
TUb) $E\left[\varepsilon_{2}^{2} \mid \delta_{1}(\varepsilon)=1\right]=\frac{G\left[\left\langle e^{V_{j} / \phi}>\right]\right.}{G^{A}\left[\left\langle e^{V_{j} / \phi}>\right]\right.}\left[\frac{\pi^{2}}{6} \phi^{2}\left(1-P_{2}\right)+\left(\gamma \phi+\alpha^{*}\right)^{2}\left(1-P_{2}\right)\right.$

$$
\left.+2 \phi\left(\gamma \phi+\alpha^{\star}\right) \cdot P_{2} \ln P_{2}-\phi^{2} P_{2}\left(\ln P_{2}\right)^{2}\right]
$$

## Proof Theorem 4:

The proof of Theorem 4 requires minor modifications in the arguments which demonstrate Lemma 1 b , Theorem 3c, and Theorem 3d. It is therefore omitted.

As a corollary to Theorems 3 and 4 we derive the conditional moments for the multinomial logit and nested logit models.

Corollary 2. Conditional Moments in the Multinomial Logit Model
Let $G[y]=\alpha\left[\sum_{j=1}^{J} y_{j}\right]$. Then:
C2a) $E\left[\varepsilon_{1} \mid \delta_{1}(\mathcal{\varepsilon})=1\right]=\left(\alpha^{*}+\gamma \phi\right)-\phi \ln P_{1}$ where $\alpha^{*}=\phi \ln \alpha$.

C2b)

$$
E\left[\varepsilon_{1}^{2} \mid \delta_{1}(\varepsilon)=1\right]=\frac{1}{6} \pi^{2} \phi^{2}+\left(\alpha^{\star}+\gamma \phi\right)^{2}+\phi^{2}\left(\ln P_{1}\right)^{2}
$$

$$
-2\left(\alpha^{\star}+\gamma \phi\right) \cdot \phi\left(\ln P_{1}\right)
$$

CDc)

$$
E\left[\varepsilon_{2} \mid \delta_{1}(\varepsilon)=1\right]=\left(\alpha^{*}+\gamma \phi\right)+\phi P_{2} \ln P_{2} /\left(1-P_{2}\right)
$$

C2d)

$$
E\left[\varepsilon_{2}^{2} \mid \delta_{1}(\xi)=1\right]=\frac{1}{6} \pi^{2} \phi^{2}+\left(\alpha^{*}+\gamma \phi\right)^{2}-P_{2} \phi^{2}\left(\ln P_{2}\right)^{2} /\left(1-P_{2}\right)
$$

$$
+2\left(\alpha^{\star}+\gamma \phi\right)\left(\phi \ln P_{2}\right) P_{2} /\left(1-P_{2}\right)
$$

## Proof Corollary 2:

C2a) $G_{1}=\alpha$ and $\phi \ln G_{1}=\phi \ln \alpha=\alpha^{\star}$. Apply Theorem Ba.
C2b) Use Theorem $3 b$ and $G_{1}=\alpha$ to find:

$$
\begin{aligned}
& E\left[\varepsilon_{1}^{2} \mid \delta_{1}(\varepsilon)=1\right]=\frac{\pi^{2}}{6} \phi^{2}+\phi^{2}\left[\gamma+\ln \alpha-\ln P_{1}\right]^{2} \\
& =\frac{\pi^{2}}{6} \phi^{2}+\phi^{2}(\gamma+\ln \alpha)^{2}-2 \phi^{2}(\gamma+\ln \alpha)\left(\ln P_{1}\right)+\phi^{2}\left(\ln P_{1}\right)^{2} \\
& =\frac{\pi^{2}}{6} \phi^{2}+\left(\gamma \phi+\alpha^{\star}\right)^{2}-2\left(\gamma \phi+\alpha^{\star}\right) \phi\left(\ln P_{1}\right)+\phi^{2}\left(\ln P_{1}\right)^{2} .
\end{aligned}
$$

CDc) Apply Theorem Aa with $G^{A}\left[y^{A}\right]=\alpha\left[\sum_{j \neq 2} y_{j}\right]$ so that:

$$
\begin{align*}
& E\left[\varepsilon_{2} \mid \delta_{1}(\varepsilon)=1\right]=\frac{G\left[\left\langle e^{V_{j} / \phi}>\right]\right.}{G^{A}\left[\left\langle e^{V_{j} / \phi}>\right]\right.}\left(\gamma \phi+\alpha^{*}\right)\left(1-P_{2}\right)+\phi P_{2} \ln P_{2} . \\
& \frac{G\left[\left\langle e^{V_{j} / \phi}>\right]\right.}{G^{A}\left[\left\langle e^{V_{j} / \phi}>\right]\right.}=\alpha \sum_{j=1}^{J} e^{V_{j} / \phi} / \alpha\left[\sum_{j \neq 2}^{J} e^{V_{j} / \phi}\right]=1 /\left(1-P_{2}\right) \text { from equation } \tag{8}
\end{align*}
$$

Thus $E\left[\varepsilon_{2} \mid \delta_{1}(\underset{\sim}{\alpha})=1\right]=\left(\gamma \phi+\alpha^{*}\right)+\phi P_{2} \ln P_{2} /\left(1-P_{2}\right)$.

C2d) Apply Theorem 4b with $G^{A}\left[y^{A}\right]=\alpha\left[\sum_{j \neq 2}^{J} y_{j}\right]$ and (29):

$$
\begin{aligned}
E\left[\varepsilon_{2}^{2} \mid \delta_{1}(\varepsilon)=1\right]=\frac{\pi^{2}}{6} \phi^{2} & +\left(\gamma \phi+\alpha^{*}\right)^{2}+2 \phi\left(\gamma \phi+\alpha^{*}\right) P_{2} \ln P_{2} /\left(1-P_{2}\right) \\
& -\phi^{2} P_{2}\left(\ln P_{2}\right)^{2} /\left(1-P_{2}\right) \text {. Q.E.D. }
\end{aligned}
$$

As a second illustration of Theorems 3 and 4 we consider a two-level nested logit model with three alternatives:

$$
\begin{equation*}
G\left[y_{1}, y_{2}, y_{3}\right]=\left[y_{1}^{1 /(1-\sigma)}+y_{3}^{1 /(1-\sigma)}\right]^{(1-\sigma)}+y_{2} \tag{30}
\end{equation*}
$$

Following McFadden (1977) one may verify that (30) satisfies the conditions of Theorem 1. From (8),

$$
\begin{align*}
& P[2 \mid 1,2,3]=\frac{e^{V_{2} / \phi}}{\left[e^{V_{1} / \phi(1-\sigma)}+e^{V_{3} / \phi(1-\sigma)}\right]^{(1-\sigma)}+e^{V_{2} / \phi}}  \tag{31}\\
& P[1 \mid 1,2,3]=\frac{\left[e^{V_{1} / \phi(1-\sigma)}+e^{V_{3} / \phi(1-\sigma)}\right]^{(1-\sigma)}}{\left[e^{V_{1} / \phi(1-\sigma)}+e^{V_{3} / \phi(1-\sigma)}\right]^{(1-\sigma)}+e^{V_{2} / \phi}} \tag{32}
\end{align*}
$$

$$
\begin{aligned}
P[1 \mid 1,2,3]= & \frac{\left[e^{V_{1} / \phi(1-\sigma)}+e^{V_{3} / \phi(1-\sigma)}\right]^{(1-\sigma)}}{\left[e^{V_{1} / \phi(1-\sigma)}+e^{V_{3} / \phi(1-\sigma)}\right]^{(1-\sigma)}+e^{V_{2} / \phi}} . \\
& \frac{e^{V_{1} / \phi(1-\sigma)}}{\left[e^{V_{1} / \phi(1-\sigma)}+e^{V_{3} / \phi(1-\sigma)}\right]} \\
= & P[(1,3) \mid(1,2,3)] \cdot P[1 \mid(1,3)]
\end{aligned}
$$

where $P(i \mid A)$ denotes the probability that $i$ is chosen from the set $A$.
From equation (30) we calculate:

$$
\begin{equation*}
G_{1}=\left[e^{V_{1} / \phi(1-\sigma)}+e^{V_{3} / \phi(1-\sigma)}\right]^{-\sigma} \cdot e^{V_{1} \sigma / \phi(1-\sigma)}=P[1 \mid 1,3]^{\sigma} \tag{33}
\end{equation*}
$$

Further we define $G^{A}\left[y_{1}, y_{2}, y_{3}\right]=\left[y_{1}^{1 /(1-\sigma)}+y_{3}^{1 /(1-\sigma)}\right]^{(1-\sigma)}$ so that:

$$
\begin{align*}
\left(\frac{G}{G}\right)\left[\left\langle e^{V_{j} / \phi}\right\rangle\right] & =\frac{\left[e^{V_{1} / \phi(1-\sigma)}+e^{V_{3} / \phi(1-\sigma)}\right]^{(1-\sigma)}+e^{V_{2} / \phi}}{\left[e^{V_{1} / \phi(1-\sigma)}+e^{V_{3} / \phi(1-\sigma)}\right]^{(1-\sigma)}}  \tag{34}\\
& =1+\frac{P[2 \mid(1,2,3)]}{P[(1,3) \mid(1,2,3)]} \\
& =(1-P[2 \mid(1,2,3)])^{-1}
\end{align*}
$$

Application of Theorem 3a and Theorem 3b for $G$ given by (30) implies:

$$
\begin{align*}
& E\left[\varepsilon_{1} \mid \delta_{1}(\varepsilon)=1\right]=\phi(\gamma+\sigma \cdot \ln P(1 \mid 1,3)-\ln P(1 \mid 1,2,3))  \tag{35}\\
& E\left[\varepsilon_{1}^{2} \mid \delta_{1}(\underset{\sim}{\varepsilon})=1\right]=\frac{\pi^{2}}{6} \phi^{2}+\phi^{2}(\gamma+\sigma \cdot \ln P(1 \mid 1,3)-\ln P(1 \mid 1,2,3))^{2} \tag{36}
\end{align*}
$$

Application of Theorem 3c and Theorem 3d using (34) imply:

$$
\begin{align*}
& E\left[\varepsilon_{2} \mid \delta_{1}(\varepsilon)=1\right]=\phi\left[\gamma+P_{2} \ln P_{2} /\left(1-P_{2}\right)\right] \text { and }  \tag{37}\\
& E\left[\varepsilon_{2}^{2} \mid \delta_{1}(\varepsilon)=1\right]=\phi^{2}\left[\frac{\pi^{2}}{6}+\left(r^{2}-p_{2}\left(r-\ln P_{2}\right)^{2}\right) /\left(1-P_{2}\right)\right]
\end{align*}
$$

In equations (35) and (36), one observes that the nested logit model implies a closed-form expression in the conditional probabilities of reaching alternative one from different nodes of the tree.

The conditional expectations in (35) and (36) differ from their counterparts derived in Corollary 2a and Corollary 2b for the multinomial logit model by the term $\sigma \ln P(1 \mid(1,3))$. As $\sigma$ tends to zero in the
limit, the nested logit model converges to the multinomial logit model and the term $\sigma \operatorname{lnP}(1 \mid(1,3))$ vanishes.

Comparison of (37) and (38) with the corresponding expressions in Corollary 2 reveals equal conditional expectations for both models. In other words, the variate $\varepsilon_{2}$ behaves as if it were given from a multinomial logit specification rather than equation (30). This is of course the essence of the separability assumption.

The calculations involved in (35) - (38) are easily modified to trees of any depth. As an illustration consider the nested logit model:

$$
\begin{equation*}
G(y)=\sum_{m=1}^{M} a_{m}\left[\sum_{i \in B_{m}} y_{i}^{1 /\left(1-\sigma_{m}\right)}\right]^{1-\sigma_{m}} \tag{39}
\end{equation*}
$$

where $B_{m} \subseteq\{1,2 \ldots, J\}, \bigcup_{m=1}^{M} B_{m}=\{1,2, \ldots, J\}, a_{m}>0$, and $0 \leq \sigma_{m}<1$. McFadden (1976) derives the choice probabilities for equation (39) and shows that they satisfy:

$$
\begin{align*}
& P_{i}=\sum_{m}^{M} e_{i \varepsilon B_{m}}^{M} e^{V_{i} /\left(1-\sigma_{m}\right)} a_{m}\left[\sum_{j \varepsilon B_{m}} e^{V_{j} /\left(1-\sigma_{m}\right)}\right]^{-\sigma_{m}} / \sum_{n=1}^{M} a_{n}\left[\sum_{k \varepsilon B_{n}} e^{V_{k} /\left(1-\sigma_{n}\right)}\right]^{\left(1-\sigma_{n}\right)}  \tag{40}\\
&=\sum_{m i \varepsilon B_{m}}^{M} P\left[i \mid B_{m}\right] P\left[B_{m}\right] \\
& \text { where: } \\
& P\left[i \mid B_{m}\right]= \begin{cases}e^{V_{i} /\left(1-\sigma_{m}\right) / \sum_{j \varepsilon B_{m}} e^{V_{j} /\left(1-\sigma_{m}\right)}} & \text { if i\&B} m \\
0 & \text { otherwise }\end{cases}
\end{align*}
$$

and where:

$$
\begin{equation*}
P\left[B_{m}\right]=a_{m}\left[\sum_{j \in B_{m}} e^{V_{j} /\left(1-\sigma_{m}\right)}\right]^{\left(1-\sigma_{m}\right)} / \sum_{n=1}^{M} a_{n}\left[\sum_{k \in B_{n}} e^{V_{k} /\left(1-\sigma_{n}\right)}\right]^{\left(1-\sigma_{n}\right)} \tag{42}
\end{equation*}
$$

From (39) we have:

$$
\begin{align*}
& G_{i}(y)=\sum_{m}^{M} a_{i \in B_{m}}\left[\sum_{j \in B_{m}} y_{j}^{1 /\left(1-\sigma_{m}\right)}\right]^{-\sigma_{m}} \cdot y_{i}^{\sigma_{m} /\left(1-\sigma_{m}\right)} \text { so that: }  \tag{43}\\
& G_{i}\left(\left\langle e^{V_{j}}\right\rangle\right)=\sum_{m=1}^{M} a_{m} p\left[i \mid B_{m}\right]^{\sigma_{m}} \tag{44}
\end{align*}
$$

The form of the derivative in (44) generalizes to higher order tress. As an example consider a three-level tree structure implied by

$$
\begin{equation*}
G=\sum_{a}\left[\sum_{d}\left[\sum_{m} y_{\text {mda }}^{1 /(1-\sigma)}\right]^{(1-\sigma) /(1-\delta)}\right]^{(1-\delta)} \tag{45}
\end{equation*}
$$

In this case one may show

$$
\begin{equation*}
G_{m d a}\left[\left\langle e^{V_{j}}\right\rangle\right]=\sum_{a} \sum_{d} P[d \mid a]^{\delta} \cdot P[m \mid d a]^{\sigma} \tag{46}
\end{equation*}
$$

where $G_{\text {mda }}$ denotes the derivative of $G$ in (45) with respect to $y_{\text {mda }}$. Furthermore, equation (34) will generalize to cover all cases in which $G$ exhibits strong separability. Suppose for example $G=G^{A}+a_{M+1} y_{M+1}$, then $P_{M+1}=a_{M+1} e^{V_{M+1} / \phi} / G$ and $\left(\left(G-G^{A}\right) / G\right)\left(<e^{V_{j} / \phi}>\right)=P_{M+1}$. Thus $\left(G / G^{A}\right)\left(\left\langle e^{V_{j} / \phi}\right\rangle\right)=\left(1-P_{M+1}\right)^{-1}$ as in (34).

We now consider the conditional moment of the product of two generalized extreme value random variables. Rather than calculate $E\left[\varepsilon_{1} \varepsilon_{2} \mid \delta_{1}(\varepsilon)=1\right]$ we will alternatively find $E\left[\left(\varepsilon_{2}-\varepsilon_{1}\right)^{2} \mid \delta_{1}(\varepsilon)=1\right]$ and use the relation $\left(\varepsilon_{2}-\varepsilon_{1}\right)^{2}=\varepsilon_{2}^{2}-2 \varepsilon_{1} \varepsilon_{2}+\varepsilon_{1}^{2}$ along with Theorems 3 and 4. The difference $\left(\varepsilon_{2}-\varepsilon_{1}\right)$ has the well known logistic distribution when $\varepsilon_{1}$ and $\varepsilon_{2}$ are independent identically extreme value distributed. Our next result finds the joint distribution function for $\left(Y_{2}, Y_{3}, \ldots, Y_{j}\right)=\left(\varepsilon_{2}-\varepsilon_{1}, \varepsilon_{3}-\varepsilon_{1}, \ldots, \varepsilon_{j}-\varepsilon_{1}\right)$ when $\varepsilon$ has the
generalized extreme value distribution.

## Theorem 5. Generalized Logistic Distribution

Let $Y_{j}=\varepsilon_{j}-\varepsilon_{1}$ for $j=2,3, \ldots, J$ where $\underset{\approx}{ }$ has the generalized extreme value distribution given by $G(y)$ and equation (7). Then:

$$
\begin{aligned}
& H\left[w_{2}, w_{3}, \ldots, w_{J}\right]=\operatorname{Prob}\left[Y_{2} \leq w_{2}, Y_{3} \leq w_{3}, \ldots, Y_{J} \leq w_{J}\right] \\
& =G_{1}\left[<e^{-w_{j} / \phi}>\right] / G\left[<e^{-w_{j} / \phi}>\right] \quad \text { where } w_{1} \equiv 0 .
\end{aligned}
$$

Proof Theorem 5

$$
H=\operatorname{Prob}\left[Y_{2} \leq w_{2}, \ldots, Y_{J} \leq w_{J}\right]
$$

$$
=\int_{\varepsilon_{1}=-\infty}^{\infty} \int_{\varepsilon_{2}=-\infty}^{\varepsilon_{1}+w_{2}} \cdots \int_{\varepsilon_{j}=-\infty}^{\varepsilon_{1}+w_{J}} \mathrm{dF}(\underline{\varepsilon})
$$

$$
=\int_{\varepsilon_{1}=-\infty}^{\infty} F_{1}\left[\varepsilon, \varepsilon+w_{2}, \ldots, \varepsilon+w_{j}\right] d \varepsilon
$$

$$
=\int_{\varepsilon=-\infty}^{\infty} \exp \left[-G\left[<e^{-\left(\varepsilon+w_{j}\right) / \phi}>\right]\right] G_{1}\left[\left\langle e^{\left(-\varepsilon-w_{j}\right) / \phi}>\right] e^{-\varepsilon / \phi \frac{d \varepsilon}{\phi}}\right.
$$

$$
=\int_{\varepsilon=-\infty}^{\infty} \exp \left[-e^{-\varepsilon / \phi} G\left[\left\langle e^{-w_{j} / \phi}\right\rangle\right]\right] G_{1}\left[\left\langle e^{-w_{j} / \phi}\right\rangle\right] e^{-\varepsilon / \phi} \frac{\mathrm{d} \varepsilon}{\phi}
$$

$$
=\frac{G_{1}\left[\left\langle e^{-w_{j} / \phi}\right\rangle\right]}{G\left[\left\langle e^{-w_{j} / \phi}\right\rangle\right]}
$$

Two familiar results follow immediately from Theorem 5.

## Corollary 3

C3a) $H\left[V_{1}-V_{2}, v_{1}-V_{3}, \ldots, v_{1}-V_{J}\right]=P_{1}$
C3b) $\left(Y_{2}, Y_{3}, \ldots, Y_{J}\right)$ has the logistic distribution when
$G[y]=\sum_{j=1}^{J} y_{j}$.

## Proof Corollary 3:

C3a) $H\left[V_{1}-V_{2}, \ldots, V_{1}-V_{J}\right]=\frac{G_{1}\left[\left\langle e^{-\left(V_{1}-V_{j}\right) / \phi}\right\rangle\right]}{G\left[\left\langle e^{-\left(V_{1}-V_{j}\right) / \phi}\right\rangle\right]}$
$\left.=e^{V_{1}} G_{1}\left[\left\langle e^{V_{j} / \phi}\right\rangle\right] / G\left[e^{V_{j} / \phi}\right\rangle\right]$
$=P_{1}$
where the first equality applies the result of Theorem 5 , the second equality applies the homogeneity properties of $G$, and the third equality applies (8).

C3b) Since $G[y]=\sum_{j=1}^{J} y_{j}, G_{1}[y]=1$. Theorem 5 implies $H\left[w_{2}, \ldots, w_{J}\right]=1 / \sum_{j=1}^{J} e^{-w_{j} / \phi}$ which is the multivariate logistic distribution. Q.E.D.

## Theorem 6

Let $£$ be generalized extreme value distributed with $G[y]=\alpha y_{1}+\alpha y_{2}$ $+\alpha G^{A}\left[\left\langle y_{j}^{A}\right\rangle\right]$ where $G^{A}$ is homogeneous of degree one and where $y=$
$\left(y_{1}, y_{2}, y^{A}\right)$. Then:

$$
\begin{aligned}
& E\left[\left(\varepsilon_{2}-\varepsilon_{1}\right)^{2} \mid \delta_{1}(\varepsilon)=1\right]= \\
& \\
& \quad=\phi^{2}\left[\ln \left(\left(1-P_{2}\right) / P_{1}\right)\right]^{2}-2 \phi^{2} \ln \left(\left(1-P_{2}\right) / P_{1}\right)\left(P_{2} \ln P_{2} /\left(1-P_{2}\right)+\ln \left(1-P_{2}\right)\right) \\
& \\
& \quad+\phi^{2} /\left(1-P_{2}\right) \quad \int_{-\infty}^{\ln \left(\left(1-P_{2}\right) /\left(P_{2}\right)\right)} h(z) \text { dz where } h(z)=\frac{z^{2} e^{-z}}{\left[1+e^{-z}\right]^{2}} .
\end{aligned}
$$

Comment: We have assumed that $\varepsilon_{1}$ and $\varepsilon_{2}$ are independent from each other and from $\varepsilon^{A}$ by necessity. A closed form solution for the conditional cross moment will not exist under weaker assumptions.

## Proof Theorem 6:

$$
\begin{aligned}
& E\left[\left(\varepsilon_{2}-\varepsilon_{1}\right)^{2} \mid \delta_{1}(\varepsilon)=1\right] \\
& =\frac{1}{\rho_{1}} \int_{\varepsilon_{1}=-\infty}^{\infty} \int_{\varepsilon_{2}=-\infty}^{V_{1}-V_{2}+\varepsilon_{1}}\left(\varepsilon_{2}-\varepsilon_{1}\right)^{2} F_{12}\left[\varepsilon_{1}, \varepsilon_{2}, V_{1}-V_{3}+\varepsilon_{1}, \ldots,\right.
\end{aligned}
$$

$$
\left.V_{1}-V_{J}+\varepsilon_{1}\right] d \varepsilon_{2} d \varepsilon_{1}
$$

We now make a logistic transformation: $z_{1} \longleftarrow \varepsilon_{1}, z_{2} \longleftarrow \varepsilon_{2}-\varepsilon_{1}$.
It is easily verified that this transformation has unit Jacobian. Thus:

$$
\begin{aligned}
& E\left[\left(\varepsilon_{2}-\varepsilon_{1}\right)^{2} \mid \delta_{1}(\varepsilon)=1\right] \\
& =\frac{1}{P_{1}} \int_{z_{1}=-\infty}^{\infty} \int_{z_{2}=-\infty}^{V_{1}-V_{2}}
\end{aligned}
$$

$$
\left.v_{1}-v_{J}+z_{1}\right] d z_{2} d z_{1}
$$

$$
\begin{gathered}
=\frac{1}{P_{1}} \int_{z_{2}=-\infty}^{V_{1}-V_{2}} z_{2}^{2} \int_{z_{1}=-\infty}^{\infty} F_{12}\left[z_{1}, z_{1}+z_{2} v_{1}-v_{3}+z_{1}, \ldots,\right. \\
\left.v_{1}-v_{J}+z_{1}\right] d z_{1} d z_{2}
\end{gathered}
$$

$$
\text { Let } H\left[w_{2}, \ldots, w_{j}\right]=\int_{\varepsilon=-\infty}^{\infty} F_{1}\left[\varepsilon, \varepsilon+w_{2}, \ldots, \varepsilon^{+} w_{j}\right] d \varepsilon \text {. Then: }
$$

$$
E\left[\left(\varepsilon_{2}-\varepsilon_{1}\right)^{2} \mid \delta_{1}(\varepsilon)=1\right]=\frac{1}{P_{1}} \int_{z_{2}=-\infty}^{V_{1}-V_{2}} z_{2}^{2} \cdot H_{2}\left[z_{2}, v_{1}-V_{3}, \ldots, v_{1}-V_{J}\right] d z_{2}
$$

Since $G\left[y_{1}, y_{2}, \ldots, y_{j}\right]=\alpha y_{1}+\alpha y_{2}+\alpha G^{A}\left[\left\langle y_{j}^{A}\right\rangle\right], G_{1}=\alpha$ and by
Theorem 5:

Thus

$$
H\left[w_{2}, \ldots, w_{J}\right]=\alpha\left[\alpha+\alpha e^{-w_{2} / \phi}+\alpha G^{A}\left[\left\langle e^{-w_{j} / \phi}\right\rangle\right]\right]^{-1}
$$

$$
H_{2}\left[w_{2}, \ldots, w_{J}\right]=e^{-w_{2} / \phi}\left[1+G^{A}\left[\left\langle e^{-w_{j} / \phi}\right\rangle\right]+e^{-w_{2} / \phi}\right]^{-2}
$$

and

$$
\begin{aligned}
& E\left[\left(\varepsilon_{2}-\varepsilon_{1}\right)^{2} \mid \delta_{1}=1\right]= \\
& \frac{\phi^{2}}{P_{1}} \int_{y=-\infty}^{\left(V_{1}-V_{2}\right) / \phi} y^{2} e^{-y} /\left[A+e^{-y}\right]^{2} d y=\frac{\phi^{2}}{P_{1} A^{2}} \int_{y=-\infty}^{\left(V_{1}-V_{2}\right) / \phi} y^{2} e^{-y} /\left[1+e^{-\ln A-y}\right]^{2} d y
\end{aligned}
$$

where $A=1+G^{A}\left[\left\langle e^{-\left(V_{1}-V_{j}\right) / \phi}\right\rangle\right]$ and we have made the transformation $z_{2} / \phi \rightarrow y$. Note that:

$$
\left(1-P_{2}\right) /\left(P_{1}\right)=\frac{G-\alpha e^{V_{2} / \phi}}{\alpha e^{V_{1} / \phi}}=\frac{\alpha e^{V_{1} / \phi}+\alpha G^{A}}{\alpha e^{V_{1} / \phi}}=1+e^{-V_{1} / \phi} \cdot G^{A}\left[\left\langle e^{V_{j} / \phi}>\right]=A\right.
$$

Let $z=y+\ln A$. Then:

$$
\begin{aligned}
& E\left(Y_{2}^{2} \mid \delta_{1}=1\right)=\frac{\phi^{2}}{P_{1} A^{2}} \cdot \int_{-\infty}^{\left(\left(V_{1}-V_{2}\right) / \phi\right)+\ln A} \frac{(z-\ln A)^{2} A e^{-z}}{\left[1+e^{-z}\right]^{2}} d z \\
& E\left[Y_{2}^{2} \mid \delta_{1}=1\right]=\frac{\phi^{2}}{P_{1} A} \cdot \int_{-\infty}^{\left(\left(V_{1}-V_{2}\right) / \phi\right)+\ln A} \frac{\left[z^{2}-2 z \ln A+(\ln A)^{2}\right] e^{-z}}{\left[1+e^{-z}\right]^{2}} d z
\end{aligned}
$$

Since $\quad\left(V_{1}-V_{2}\right) / 6=\ln \left(P_{1} / P_{2}\right)$ and $A=\left(1-P_{2}\right) / P_{1}$ it follows that

$$
\left(V_{1}-V_{2}\right) / 6+\ln A=\ln \left(P_{1} / P_{2}\right)+\ln \left(\left(1-P_{2}\right) / P_{1}\right)=\ln \left(\left(1-P_{2}\right) / P_{2}\right)
$$

Let $x=\ln \left(\left(1-P_{2}\right) / P_{2}\right)$. It follows that $E\left[Y_{2}^{2} \mid \delta_{1}=1\right]$

$$
\begin{aligned}
&=\frac{\phi^{2}}{P_{1} A} \int_{-\infty}^{x} \frac{z^{2} e^{-z}}{\left[1+e^{-z}\right]^{2}} d z+\frac{\phi^{2}}{P_{1} A} \int_{-\infty}^{x} \frac{e^{-z}}{\left[1+e^{-z}\right]^{2}} d z \cdot(\ln A)^{2} \\
& \frac{-2(\ln A) b^{2}}{P_{1} A} \int_{-\infty}^{x} \frac{e^{-z}}{\left[1+e^{-z}\right]^{2}} d z \\
&= \frac{\phi^{2}}{\left(1-P_{2}\right)} \\
& \int_{-\infty}^{x} \frac{z^{2} e^{-z}}{\left[1+e^{-z}\right]^{2}} d z+\phi^{2}\left(\ln \left(\left(1-P_{2}\right) / P_{1}\right)\right)^{2} \\
& \frac{-2(\ln A) b^{2}}{\left(1-P_{2}\right)} \int_{-\infty}^{x} \frac{z e^{-z}}{\left[1+e^{-z}\right]^{2}} d z
\end{aligned}
$$

We use the result that: (Integration by Parts)

$$
\begin{aligned}
& \int_{t=-\infty}^{x} \frac{t e^{-t} d t}{\left(1+e^{-t}\right)^{2}}=\frac{x}{1+e^{-x}}-\ln \left[1+e^{x}\right] \\
& \int_{t=-\infty}^{\ln \left(\left(1-P_{2}\right) / P_{2}\right)} \frac{t e^{-t} d t}{\left(1+e^{-t}\right)^{2}}=\frac{\ln \left(\left(1-P_{2}\right) / P_{2}\right)}{\left(1-P_{2}\right)^{-1}}+\ln P_{2}=\left[P_{2} \ln P_{2}+\left(1-P_{2}\right) \ln \left(1-P_{2}\right)\right]
\end{aligned}
$$

Hence: $\quad E\left(Y_{2}^{2} \mid \delta_{1}(\varepsilon)=1\right)=\phi^{2}\left(\ln \left(\left(1-P_{2}\right) / P_{1}\right)\right)^{2}$

$$
\begin{gathered}
-\frac{2 \phi^{2}}{\left(1-P_{2}\right)} \ln \left(\left(1-P_{2}\right) / P_{1}\right)\left[P_{2} \ln P_{2}+\left(1-P_{2}\right) \ln \left(1-P_{2}\right)\right] \\
+\frac{\phi^{2}}{\left(1-P_{2}\right)} \cdot \int_{-\infty}^{\ln \left(\left(1-P_{2}\right) / P_{1}\right)} \operatorname{h(z)dz} \\
E\left(Y_{2}^{2} \mid \delta_{1}(\varepsilon)=1\right)=\phi^{2}\left(\ln \left(\left(1-P_{2}\right) / P_{1}\right)\right)^{2}-2 \phi^{2} \ln \left(\left(1-P_{2}\right) / P_{1}\right)\left[P_{2} \ln P_{2} /\left(1-P_{2}\right)+\ln \left(1-P_{2}\right)\right] \\
\\
+\frac{\phi^{2}}{\left(1-P_{2}\right)} \cdot \int_{-\infty}^{\ln \left(\left(1-P_{2}\right) / P_{2}\right)} h(z) d z \quad \text { Q.E.D. }
\end{gathered}
$$

## Theorem 7.

Let $G[y]=\alpha \sum_{j=1}^{J} y_{j}$ and let $\alpha^{\star}=\phi \ln \alpha$. Then:

$$
\begin{aligned}
& E\left[\left(\varepsilon_{1} \varepsilon_{2}\right)^{2} \mid \delta_{1}(\varepsilon)=1\right] \\
& =\left[\frac{1}{6} \pi^{2} \phi^{2}+\left(\alpha^{\star}+\gamma \phi\right)^{2}-\left[P_{2} \phi^{2} /\left(1-P_{2}\right)\right]\left(\ln P_{2}\right)^{2}\right. \\
& \\
& \quad+2\left(\alpha^{\star}+\gamma \phi\right)\left(\phi \ln P_{2}\right) P_{2} /\left(1-P_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{1}{6} \pi^{2} \phi^{2}+\left(\alpha^{*}+\gamma \phi\right)^{2}+\phi^{2}\left(\ln P_{1}\right)^{2}-2\left(\alpha^{*}+\gamma \phi\right)\left(\phi \ln P_{1}\right) \\
& -\phi^{2}\left(\ln \left(\left(1-P_{2}\right) / P_{1}\right)\right)^{2}+2 \phi^{2} \ln \left(\left(1-P_{2}\right) / P_{1}\right) P_{2} \ln P_{2} /\left(1-P_{2}\right)+\ln \left(1-P_{2}\right) \\
& \left.-\frac{\phi^{2}}{\left(1-P_{2}\right)} \int_{-\infty}^{\ln \left(\left(1-P_{2}\right) / P_{2}\right)} \frac{z^{2} e^{-z}}{\left[1+e^{-z}\right]^{2}} d z\right]\left(\frac{1}{2}\right)
\end{aligned}
$$

Proof Theorem 7: Note that $\varepsilon_{1} \varepsilon_{2}=\left(\varepsilon_{1}^{2}+\varepsilon_{2}^{2}-y_{2}^{2}\right) \frac{1}{2}$, and use the results of Corollary 2 and Theorem 6 after applying conditional expectations. Q.E.D.

The integral $\int_{-\infty}^{x} h(z) d z$ where $h(z)=\frac{z^{2} e^{-z}}{\left(1+e^{-z}\right)^{2}}$ is in fact related to $E\left[y^{2} \mid y<x\right]$ where $y$ has a univariate logistic distribution. A closed form expression for this distribution does not exist. It is however related to a series expansion involving terms in the incomplete gamma distribution. See Hay (1980) and Lee (1981). Using an alternate series expansion we provide a more useful form of the integral.

Theorem 8

$$
\begin{aligned}
& \int_{0}^{\ln \lambda^{-1}} \frac{u^{2} e^{-u}}{\left(1+e^{-u}\right)^{2}} d u=\frac{\pi^{2}}{6}-\frac{\lambda(\ln \lambda)^{2}}{(1+\lambda)}-2(\ln \lambda)(\ln (1+\lambda)) \\
& \quad+2 \sum_{i=0}^{\infty}(-1)^{i} \frac{\lambda^{i+1}}{(i+1)^{2}}
\end{aligned}
$$

For $\ln \lambda^{-1}>0$ or $\lambda^{-1}>1$ or $0<\lambda<1$.

## Proof 8:

From the formula for the sum of a geometric series we have $(1+x)^{-1}=\sum_{i=0}^{\infty}(-1)^{i} x^{i}$ for $|x|<1$. Differentiating and integrating term by term provides two useful relations:

$$
\frac{1}{(1+x)^{2}}=\sum_{i=1}^{\infty}(-1)^{i+1} i x^{i-1}=\sum_{i=0}^{\infty}(-1)^{i}(i+1) x^{i} \text { for }|x|<1
$$

and

$$
\ln (1+x)=\sum_{i=0}^{\infty} \frac{(-1)^{i}}{(i+1)} x^{i+1}
$$

Take $x=e^{-u}$ for $u>0$, then

$$
\begin{aligned}
& \frac{1}{\left(1+e^{-u}\right)^{2}}=\sum_{i=0}^{\infty}(-1)^{i+1}(i+1) e^{-u i} . \text { Thus: } \\
& \int_{0}^{\ln \lambda^{-1}} \frac{u^{2} e^{-u}}{\left(1+e^{-u}\right)^{2}} d u=\int_{0}^{\ln \lambda^{-1}} u^{2} \sum_{i=0}^{\infty}(-1)^{i}(i+1) e^{-u(i+1)} d u \\
& \quad=\sum_{i=0}^{\infty}(-1)^{i}(i+1) \quad \int_{0}^{\ln \lambda^{-1} u^{2} e^{-u(i+1)} d u}
\end{aligned}
$$

Next use the fact that $\int y^{2} e^{-i y} d y=\frac{-1}{i}\left[y^{2}+\frac{2}{i} y+\frac{2}{i^{2}}\right] e^{-i y}$ so that:

$$
\begin{aligned}
& \int_{0}^{\ln \lambda^{-1}} \frac{u^{2} e^{-u}}{\left(1+e^{-u}\right)^{2}} d u \\
& =\left.\sum_{i=0}^{\infty}(-1)^{i}(i+1)\left[\frac{-1}{(i+1)} y^{2}+\frac{2}{(i+1)} y+\frac{2}{(i+1)^{2}}\right] e^{-(i+1) y}\right|_{0} ^{\ln \lambda^{-1}}
\end{aligned}
$$

$$
\begin{aligned}
= & \sum_{i=0}^{\infty}(-1)^{i+1}\left[\left[\left(\ln \lambda^{-1}\right)^{2}+\frac{2}{(i+1)} \ln \lambda^{-1}+\frac{2}{(i+1)^{2}}\right]^{i+1}-\frac{2}{(i+1)^{2}}\right] \\
= & -2\left[\sum_{i=0}^{\infty}(-1)^{i+1} /(i+1)^{2}\right]+\left(\ln \lambda^{-1}\right)^{2} \cdot \sum_{i=0}^{\infty}\left[(-1)^{i+1} \lambda^{i+1}\right] \\
& +2\left[\ln \lambda^{-1}\right] \sum_{i=0}^{\infty}(-1)^{i+1} /(i+1) \lambda^{i+1}+2 \sum_{i=0}^{\infty}(-1)^{i+1} \lambda^{i+1} /(i+1)^{2} \\
= & \frac{\pi^{2}}{6}-\left[\frac{\lambda(\ln \lambda)^{2}}{(1+\lambda)}-2(\ln \lambda)(\ln (1+\lambda))+2 \sum_{i=0}^{\infty}(-1)_{\lambda}^{i}{ }_{\lambda}^{i+1} /(i+1)^{2}\right]
\end{aligned}
$$

where we have used the fact that:

$$
\sum_{i=0}^{\infty}(-1)^{i} /(i+1)^{2}=\pi^{2} / 12 .
$$

Q.E.D.

For reference below we let:

$$
G(\lambda)=\left[\frac{\lambda(\ln \lambda)^{2}}{(1+\lambda)}-2(\ln \lambda) \ln (1+\lambda)+2 \sum_{i=0}^{\infty}(-1)^{i} \lambda^{i+1} /(i+1)^{2}\right]
$$

Application of Theorem 6 for the case of binary alternatives gives:

## Theorem 9

Consider the case in which $m=2$. Then

$$
E\left(y_{2}^{2} \mid \delta_{1}=1\right)= \begin{cases}\phi^{2} / P_{1}\left[\pi^{2} / 3-G\left(P_{2} / P_{1}\right)\right] & \text { for } P_{1}>P_{2} \\ \phi^{2} / P_{1}\left[G\left(P_{1} / P_{2}\right)\right] & \text { for } P_{1}<P_{2} \\ \phi^{2} / P_{1}\left[\pi^{2} / 6\right] & \text { for } P_{1}=P_{2}\end{cases}
$$

## Proof Theorem 9

$$
\text { Using Theorem } 6, E\left(\left.y_{2}^{2}\right|_{1}=1\right)=\frac{\phi^{2}}{P_{1}} \int_{-\infty}^{\ln \left(P_{1} / P_{2}\right)} h(z) d z \quad \text { where we have }
$$

imposed the restriction $P_{1}+P_{2}=1$ implied by this case of binary alternatives. For $P_{1}>P_{2}$ :

$$
E\left(y_{2}^{2} \mid \delta_{1}=1\right)=\frac{\phi^{2}}{P_{1}} \int_{-\infty}^{0} h(z) d z+\frac{\phi^{2}}{P_{1}} \int_{0}^{\ln \left(P_{1} / P_{2}\right)} h(z) d z
$$

We let $\lambda^{-1}=P_{1} / P_{2}$ so that $\lambda=P_{2} / P_{1}$. Application of Theorem 8 implies $E\left(y_{2}^{2} \mid \delta_{1}=1\right)=\phi^{2} / P_{1}\left[\pi^{2} / 6\right]+\phi^{2} / P_{1}\left[\pi^{2} / 6-G\left(P_{2} / P_{1}\right)\right]$.

For $P_{1}<P_{2}$ :

$$
\begin{aligned}
E\left(y_{2}^{2} \mid \delta_{1}=1\right) & =\frac{\phi^{2}}{P_{1}} \int_{-\infty}^{0} h(z) d z-\frac{\phi^{2}}{P_{1}} \int_{\ln \left(P_{1} / P_{2}\right)}^{0} h(z) d z \\
& =\frac{\phi^{2}}{P_{1}} \frac{\pi^{2}}{6}-\frac{\phi^{2}}{P_{1}}\left[\pi^{2} / 6-G\left(P_{1} / P_{2}\right)\right]=\frac{\phi^{2}}{P_{1}} G\left(P_{1} / P_{2}\right)
\end{aligned}
$$

Finally, at $P_{1}=P_{2}$, note that $G(1)=\pi^{2} / 6$ implies continuity for $E\left(y_{2}^{2} \mid \delta=1\right)$.

We now introduce a random variable $n$ and suppose that conditional on $\varepsilon$, $n$ has mean $\frac{\sqrt{6} \sigma}{\pi \phi} \sum_{i=1}^{m} R_{i} \varepsilon_{i}$ and variance $\sigma^{2}\left(1-\sum_{i=1}^{m} R_{i}^{2}\right)$ with $\sum_{i=1}^{m} R_{i}=0$ and $\sum_{i=1}^{m} R_{1}^{2}<1$.

It will be convenient to assume that $\left\langle\varepsilon_{i}\right\rangle$ are independently, identically extreme value distributed and that $E\left(\varepsilon_{\mathfrak{j}}\right)=0$.
From Theorem 2, this is accomplished by assuming that the location parameter $\alpha=-\gamma \phi$. Note that $\frac{\sqrt{6} \sigma}{\pi \phi}=\frac{\sigma}{\sigma_{\varepsilon}}$ where $\sigma_{\varepsilon}$ is the square root of the variance of $\varepsilon_{i}$. Unconditional moments are presented in Theorem 10.

Theorem 10 (Dubin and McFadden)
T10a) $E(\eta)=0$
T10b) $E(\eta)^{2}=\sigma^{2}$
T10c) Correl $\left(n, \varepsilon_{j}\right)=R_{i}$

Proof Theorem 10:
T10a) $E(\eta)=\underset{\sim}{E}[\underset{\eta}{E}(\eta \mid \boldsymbol{\sim})]=\underset{\mathcal{\sim}}{E}\left(\frac{\sigma}{\sigma_{\varepsilon}} \sum_{i=1}^{m} R_{i} \varepsilon_{i}\right)=0$

T10b)

$$
\begin{aligned}
E\left(n^{2} \mid \underset{\sim}{\varepsilon}\right) & =\operatorname{var}(\eta \mid \varepsilon)+(E(\eta \mid \xi))^{2} \\
E\left(n^{2}\right) & =\underset{\varepsilon}{E}\left[\sigma^{2}\left(1-\sum_{i=1}^{m} R_{i}^{2}\right)+\left(\frac{\sigma}{\sigma} \sum_{\varepsilon}^{m} R_{i=1} \varepsilon_{i}\right)^{2}\right] \\
& =\sigma^{2}\left(1-\sum_{i=1}^{m} R_{j}^{2}\right)+\frac{\sigma^{2}}{\sigma_{\varepsilon}^{2}} \sum_{i=1}^{m} R_{i}^{2} \sigma_{\varepsilon}^{2}=\sigma^{2}
\end{aligned}
$$

T10c)

$$
\begin{aligned}
E\left(n \varepsilon_{i}\right) & =\underset{\mathcal{E}}{E}\left[\underset{\eta}{E}\left(\eta \varepsilon_{i} \mid \varepsilon\right)\right]=\underset{\mathcal{E}}{E}\left[\varepsilon_{i} E(\eta \mid \varepsilon)\right] \\
& =\underset{\varepsilon}{E}\left[\varepsilon_{i} \frac{\sigma}{\sigma_{\varepsilon}} \sum_{i=1}^{M} R_{i} \varepsilon_{i}\right]=\frac{\sigma}{\sigma_{\varepsilon}} R_{i} \sigma_{\varepsilon}^{2}=\sigma R_{i} \sigma_{\varepsilon}
\end{aligned}
$$

$\operatorname{Correl}\left(\eta, \varepsilon_{i}\right)=E\left(\eta \varepsilon_{j}\right) / \sigma \sigma_{\varepsilon}=R_{i}$ Q.E.D.

We now derive the first moment of $n$ conditional on the event that a particular alternative is chosen.

Theorem 11 (Dubin and McFadden)

$$
E\left(n \mid \delta_{i}(\varepsilon)=1\right)=\frac{\sqrt{6} \sigma}{\pi}\left[\sum_{j=1}^{m} \frac{R_{j} P_{j}}{\left(1-P_{j}\right)} \ln P_{j}-R_{i} \frac{\ln P_{i}}{\left(1-P_{i}\right)}\right]
$$

Proof Theorem 11

$$
\begin{aligned}
& \text { Let } A_{i} \equiv\left\{\varepsilon \mid \delta_{i}(\varepsilon)=1\right\} \text { Then: } \\
& E\left(n \mid \delta_{i}=1\right)=\frac{1}{P_{i}} \quad \int_{A_{i}} E(\eta \mid \varepsilon) \prod_{j=1}^{m} f\left(\varepsilon_{j}\right) d \xi \\
& E\left(\eta \mid \delta_{i}=1\right)=\frac{1}{P_{i}} \quad \int_{A_{i}}\left(\frac{\sigma}{\sigma_{\varepsilon}} \sum_{j=1}^{m} R_{j} \varepsilon_{j}\right) \prod_{j=1}^{m} f\left(\varepsilon_{j}\right) d \varepsilon_{\sim} \\
& =\frac{\sigma}{\sigma_{\varepsilon}} \sum_{j=1}^{m} \frac{R_{j}}{P_{i}} \int_{A_{i}} \varepsilon_{j} \prod_{j=1}^{m} f\left(\varepsilon_{j}\right) d \varepsilon \\
& =\frac{\sigma}{\sigma_{\varepsilon}} \sum_{j=1}^{m} E\left[\varepsilon_{j} \mid \delta_{i}(\varepsilon)=1\right] \cdot R_{j} \\
& =\frac{\sigma}{\sigma_{\varepsilon}} \sum_{j \neq i}^{M} E\left[\varepsilon_{j} \mid \delta_{i}(\varepsilon)=1\right] R_{j}+\frac{\sigma}{\sigma_{\varepsilon}} E\left[\varepsilon_{i} \mid \delta_{i}(\varepsilon)=1\right] R_{i}
\end{aligned}
$$

Using the results of Corollary 2:

$$
E\left(n \mid \delta_{i}=1\right)=\frac{\sigma}{\sigma_{\varepsilon}} \sum_{j \neq i}^{m} \frac{\phi R_{j} P_{j} \cdot \ln P_{j}}{\left(1-P_{j}\right)}-\frac{\sigma}{\sigma_{\varepsilon}} R_{i} \phi \ln P_{i}
$$

where we have imposed $\alpha=-\gamma \phi$. Noting that $\sigma_{\varepsilon}=\frac{\pi \phi}{\sqrt{6}}$, we have:

$$
\begin{aligned}
E\left(\eta \mid \delta_{i}(\xi)=1\right) & =\frac{\sqrt{6} \sigma}{\pi}\left[\left(\sum_{j \neq i}^{m} \frac{R_{j} P_{j} \cdot \ln P_{j}}{\left(1-P_{j}\right)}\right)-R_{i} \ln P_{i}\right] \\
& =\frac{\sqrt{6} \sigma}{\pi}\left[\left(\sum_{j=1}^{m} \frac{R_{j} P_{j} \cdot \ln P_{j}}{\left(1-P_{j}\right)}\right)-\frac{R_{i} \ln P_{i}}{\left(1-P_{i}\right)}\right] \quad \text { Q.E.D. }
\end{aligned}
$$

Let $\delta_{i j}$ be the Kronecker delta. Then we may rewrite the result of Theorem 11 as:

$$
\begin{aligned}
E\left(\eta \mid \delta_{i}(\varepsilon)=1\right) & =\frac{\sqrt{6} \sigma}{\pi}\left[\left(\sum_{j \neq i}^{m} \frac{R_{j} P_{j} \cdot \ln P_{j}}{\left(1-P_{j}\right)}\right)+\frac{R_{i} \cdot \ln P_{i}\left(P_{i}-1\right)}{\left(1-P_{i}\right)}\right] \\
& =\frac{\sqrt{6} \sigma}{\pi}\left[\sum_{j=1}^{m} \frac{R_{j} \cdot \ln P_{j}}{\left(1-P_{j}\right)}\left(P_{j}-\delta_{i j}\right)\right] .
\end{aligned}
$$

We now consider the conditional second moments of $\eta$. Recall that $E\left(\eta^{2} \mid \delta_{i}=1\right)=\frac{1}{P_{i}} \cdot \int_{A_{i}} E\left(\eta^{2} \mid \varepsilon\right) f(\varepsilon) d \varepsilon$ where $f\left(\varepsilon_{\sim}\right)=\prod_{i=1}^{m} f\left(\varepsilon_{i}\right)$. We use the relation $E\left(\eta^{2} \mid \underset{\sim}{x}\right)=\operatorname{Var}(\eta \mid \xi)+(E(\eta \mid \xi))^{2}=\sigma^{2}\left(1-\sum_{i=1}^{2} R_{i}^{2}\right)+\frac{\sigma^{2}}{\sigma_{\varepsilon}^{2}}\left(\sum_{i=1}^{2} R_{i} \varepsilon_{i}\right)^{2}$
to obtain:

$$
\begin{aligned}
E\left(n^{2} \mid \delta_{i}=1\right)=\sigma^{2}\left(1-\sum_{t=1}^{m} R_{t}^{2}\right) & +\frac{\sigma^{2}}{\sigma_{\varepsilon}^{2}} \sum_{t=1}^{m} R_{t}^{2} E\left(\varepsilon_{t}^{2} \mid \delta_{i}=1\right) \\
& +\frac{2 \sigma^{2}}{\sigma_{\varepsilon}^{2}} \sum_{\substack{t=1 \\
s>t}}^{m} R_{t} R_{s} E\left(\varepsilon_{t} \varepsilon_{s} \mid \delta_{i}=1\right)
\end{aligned}
$$

We continue with the case in which $m=2$ :

Theorem 12 (Dubin and McFadden)

$$
\begin{aligned}
& E\left(\eta^{2} \mid \delta_{1}(\varepsilon)\right)=\sigma^{2}+2 \sigma^{2} R_{2}^{2} H\left(P_{1}, \delta_{1}\right) \quad \text { where } H\left(P_{1}, \delta_{1}\right)= \\
&
\end{aligned}\left\{\begin{aligned}
1 / P_{1}-1-3 / \pi^{2}\left(1 / P_{1}\right) \cdot G\left[\frac{\left(1-P_{1}\right)}{P_{1}}\right] & \text { if } \delta_{1}=1 \text { and } P_{1}>1 / 2 \\
-1+3 / \pi^{2}\left(1 / P_{1}\right) \cdot G\left[\frac{P_{1}}{\left(1-P_{1}\right)}\right] & \text { if } \delta_{1}=1 \text { and } P_{1} \leq 1 / 2 \\
-1+3 / \pi^{2}\left(1 /\left(1-P_{1}\right)\right) G\left[\frac{\left(1-P_{1}\right)}{P_{1}}\right] & \text { if } \delta_{1}=0 \text { and } P_{1}>1 / 2 \\
P_{1} /\left(1-P_{1}\right)-3 / \pi^{2}\left(1 /\left(1-P_{1}\right)\right) G\left[\frac{P_{1}}{\left(1-P_{1}\right)}\right] & \text { if } \delta_{1}=0 \text { and } P_{2} \leqq 1 / 2
\end{aligned}\right.
$$

Proof Theorem 12:

$$
\begin{aligned}
E\left[\eta^{2} \mid \delta_{1}\right]= & \sigma^{2}\left(1-\left(R_{1}^{2}+R_{2}^{2}\right)\right)+\frac{\sigma^{2}}{\sigma_{\varepsilon}^{2}}\left[R_{1}^{2} E\left(\varepsilon_{1}^{2} \mid \delta_{1}=1\right)+\right. \\
& \left.R_{2}^{2} E\left(\varepsilon_{2}^{2} \mid \delta_{1}=1\right)+2 R_{1} R_{2}\left(\varepsilon_{1} \varepsilon_{2} \mid \delta_{1}=1\right)\right]
\end{aligned}
$$

In the binary case $P_{1}+P_{2}=1$ and $R_{1}+R_{2}=0$. Application of Corollary 2, and Theorems 7 and 9 implies:

$$
E\left[n^{2} \mid \delta_{1}=1\right)=\sigma^{2}\left(1-2 R_{2}^{2}\right)+\left(\sigma_{2}^{2} / \sigma_{\varepsilon}^{2}\right) \cdot R_{2}^{2} \begin{cases}\frac{\phi_{1}^{2}}{P_{1}}\left[\pi^{2} / 3-G\left(\left(1-P_{1}\right) / P_{1}\right)\right] & \text { for } P_{1}>1 / 2 \\ \frac{\phi^{2}}{P_{1}} G\left(P_{1} /\left(1-P_{1}\right)\right) & \text { for } P_{1} \leqq 1 / 2\end{cases}
$$

Using $\sigma_{\varepsilon}^{2}=\pi^{2} \phi^{2} / 6$ and rewriting, yields the first two parts of the claim. It
is then easy to derive the expression for $E\left(n^{2} \mid \delta_{1}=0\right)$ using

$$
\left[E\left(n^{2} \mid \delta_{1}=1\right) P_{1}+E\left(\eta^{2} \mid \delta_{1}=0\right)\left(1-P_{1}\right)\right]=E\left(\eta^{2}\right)=\sigma^{2} \text {. Q.E.D. }
$$

We now relax the assumption that $\left\langle\varepsilon_{i}\right\rangle$ are independently, identically extreme value distributed and assume that $\left\langle\varepsilon_{i}\right\rangle$ have the sequential form of the generalized extreme value family. It has been demonstrated that conditional moments for the generalized extreme value family require quite strong assumptions to insure tractability. Indeed, the strong separability used for the function $G$ in Theorems 4 and 6 if applied symmetrically to all components of $G$ would imply the simple multinomial logit specification. The joint assumption that $n$ have a linear conditional expectation in the space of $\left\langle\varepsilon_{i}\right\rangle$ and that $\left\langle\varepsilon_{i}\right\rangle$ are not independently, identically extreme value distributed goes beyond computational feasibility.

A simple alternative for the sequential form of the generalized extreme value family assumes that $n$ has a linear conditional expectation in the space of the "induced" independent extreme value random variables which generate the conditional probabilities. This assumption is motivated by two considerations: (i) multinomial logit models tend to "robustly" fit data generated within a non-independent error system and (ii) that the simple multinomial logit probability form is implied by but does not imply an independent extreme value error structure. The first observation comes from a growing body of econometric and Monte-Carlo evidence while the second observation is usefully illustrated by the bivariate extreme value distribution:

$$
\begin{equation*}
G(y)=\left[y_{1}^{1 /(1-\sigma)}+y_{2}^{1 /(1-\sigma)}\right]^{(1-\sigma)} \tag{47}
\end{equation*}
$$

The probability choice system for (47) implies:

$$
\begin{equation*}
P_{1}=e^{V_{1} / \phi(1-\sigma)} /\left(e^{V_{1} / \phi(1-\sigma)}+e^{V_{2} / \phi(1-\sigma)}\right) \tag{48}
\end{equation*}
$$

which is observationally equivalent to the multinomial logit probability choice system:

$$
\begin{equation*}
P_{1}=e^{V_{1} / \phi} /\left(e^{V_{1} / \phi}+e^{V_{2} / \phi}\right) \tag{49}
\end{equation*}
$$

since the scale parameters $\phi(1-\sigma)$ and $\phi$ are not identified in (48) and (49) respectively. Equation (49) is generated by the independent form of the generalized extreme value family by:

$$
\begin{equation*}
G[y]=y_{1}+y_{2} . \tag{50}
\end{equation*}
$$

Equation (47) implies that the stochastic components of utility are correlated while (50) implies independence; yet the binary probabilistic choice systems are observationally equivalent.

To illustrate the methodology consider the nested logit model (39). The second level conditional probabilities in (41) may be thought of being generated by the independent extreme value random variables $\left\langle\varepsilon_{j}^{B_{m}}\right\rangle$ with variance $\left(\pi^{2} / 6\right)\left(1-\sigma_{m}\right)^{2}$. Specifically,

$$
\begin{equation*}
\operatorname{P}\left[i \mid B_{m}\right]=\operatorname{Prob}\left[V_{i}+\varepsilon_{i}^{B_{m}} \geqq V_{j}+\varepsilon_{j}^{B_{m}} \text { for } i, j \varepsilon B_{m} \text { and } j \neq i\right] . \tag{51}
\end{equation*}
$$

Finally, suppose that $n=\sum_{i=1}^{M} \lambda_{i} \eta_{i}$ where:

$$
\begin{equation*}
E\left[\eta_{i} \mid\left\langle\varepsilon_{j}^{B_{i}}\right\rangle\right]=\left(\sum_{j \in B_{m}} \varepsilon_{j}^{B_{i n}} \cdot R_{j}^{B_{m}}\right) \cdot \frac{\sigma^{2}}{\left(1-\sigma_{m}\right)^{2}} \tag{52}
\end{equation*}
$$

Equation (52) implies an error structure which may be analyzed through Theorems 10, 11, and 12.

## Footnotes

1. In the course of the exposition several theorems related to the independent form of the generalized extreme value family, i.e., the multinomial logit model, are derived. Specifically, Corollary 2 and Theorems 8, 10, 11, and 12, which involve conditional moments in the multinomial logit model, have been derived jointly with Daniel McFadden and are presented in Dubin and McFadden (1979). It should further be noted that Theorems 8, 10, and 11 have been independently demonstrated by Hay (1980).

Appendix III. Two-Stage Single Equation Estimation Methods: An Efficiency Comparison

In this appendix we consider various two-stage consistent estimation techniques applied to a single equation. We begin with a linear in parameters form:

$$
\begin{equation*}
y_{t}=f\left[z_{t}, \delta_{t}\right] \beta+n_{t}, \quad t=1,2, \ldots, T \tag{1}
\end{equation*}
$$

where:
$\beta=$ column vector of $K_{1}$ parameters,
$z_{t}=$ row vector of $K_{0}$ explanatory variables,
$y_{t}=$ scalar dependent variable,
$n_{t}=$ scalar equation error, and
$\delta_{t}=$ scalar dummy variable.
The function $f$ allows non-linear interaction between the elements of $z_{t}$ and $\delta_{t}$ and maps into a row vector of structural explanatory variables. We assume that the dummy variable $\delta_{t}$ is determined by a random event and takes the value one to indicate that the latent variable $y_{t}^{\star}$ is less than zero. Equation (1) and the stochastic specification for $y_{t}^{*}$ form a dummy endogenous simultaneous equation system. We now consider several two-step procedures which provide consistent estimates of the parameters $\beta$ under the assumption that the dummy indicator variable is endogenous.

We define the following matrices:

$$
\begin{align*}
& W_{\delta}=\left\langle f\left(z_{t}, \delta_{t}\right)\right\rangle  \tag{2}\\
& W_{p}=\left\langle f\left(z_{t}, P_{t}\right)\right\rangle \\
& W_{\hat{p}}=\left\langle f\left(z_{t}, \hat{P}_{t}\right)\right\rangle \tag{4}
\end{align*}
$$

The order of the matrices $W_{\delta}, W_{p}$, and $W_{p}$ is $T \times K_{1}$. The matrix $W_{p}$ is constructed by replacing the indicator $\delta_{t}$ in $W_{\delta}$ by its expected value denoted $p_{t}$. The matrix $W_{\hat{p}}$ is constructed by replacing the indicator $\delta_{t}$ in $W_{\delta}$ by an estimate of the true probability denoted $\hat{P}_{t}$.

Define two least squares projections:

$$
\begin{equation*}
W=W_{p}\left(W_{p}^{\prime} W_{p}\right)^{-1} W_{p}^{\prime} W_{\delta} \quad \text { and } \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\hat{W}=W_{\hat{p}}\left(W_{\hat{p}^{\prime}} W_{\hat{p}}\right)^{-1} W_{\hat{p}^{\prime}} W_{\delta} \tag{6}
\end{equation*}
$$

Let $y=\left\langle y_{t}\right\rangle$ and $n=\left\langle n_{t}\right\rangle$.
We express equation (1) alternately as:

$$
\begin{equation*}
y=w_{\delta} \beta+v^{0} \quad \text { where } v^{0}=\eta \tag{7.0}
\end{equation*}
$$

(7.1) $y=W_{B}+v^{1} \quad$ where $v^{1}=n+\left(W_{\delta}-W\right) \beta$
(7.2) $y=\hat{W}_{B}+v^{2} \quad$ where $v^{2}=n+\left(W_{\delta}-\hat{W}\right)_{\beta}$

$$
\begin{equation*}
y=W_{p} \beta+v^{3} \quad \text { where } v^{3}=\eta+\left(W_{\delta}-W_{p}\right)_{\beta} \tag{7.3}
\end{equation*}
$$

(7.4) $y=W_{\hat{p}^{\beta}}+v^{4}$
where $v^{4}=n+\left(W_{\delta}-W_{p}\right)_{\beta}-\left(W_{\hat{p}}-W_{p}\right)_{\beta}$

In the presence of correlation between $\delta_{t}$ and $n_{t}$, ordinary least squares applied to (7.0) will yield inconsistent estimates of $\beta$. We consider in turn the ordinary least squares estimators of equations (7.1) to (7.4). It should be noted that the estimators for (7.2) and (7.4) are viable estimators of equation (1). One would not be able to use the least squares estimates of (7.1) and (7.3) as $P_{t}$ is unobservable.

Ordinary least squares applied to (7.1) through (7.4) produces:

$$
\begin{array}{ll}
(8.1) & \hat{\beta}^{1}=\left(W^{\prime} W\right)^{-1}\left(W^{\prime} y\right) \\
(8.2) & \hat{\beta}^{2}=\left(\hat{W}^{\prime} \hat{W}^{-1}\left(\hat{W}^{\prime} y\right)\right. \\
(8.3) & \hat{\beta}^{3}=\left(W_{p}^{\prime} W_{p}\right)^{-1}\left(W_{p}^{\prime} y\right) \\
(8.4) & \hat{\beta}^{4}=\left(W_{\hat{p}}^{\prime} W_{\hat{p}}\right)^{-1}\left(W_{\hat{p}}^{\prime} y\right) \tag{8.4}
\end{array}
$$

We observe that (8.1) and (8.2) are instrumental variable estimators with instrument matrices $W$ and $\hat{W}$ respectively. In the first stage of (8.1), the endogenous right-hand side variables in (1) are projected onto the exogenous set of instruments $W_{p}$. The resultant instrument matrix is given by $W$ in (5). In the second stage, the instrument matrix is used with (7.0) to obtain:

$$
\begin{equation*}
\hat{\mathrm{B}}_{\mathrm{IV}}=\left(W^{\prime} W_{\delta}\right)^{-1}\left(W^{\prime} y\right) \tag{9}
\end{equation*}
$$

Equation (9) is identical to (8.1) since $\left(W^{\prime} W_{\delta}\right)=\left(W^{\prime} W\right)$. With this observation, (8.1) and (7.0) imply:

$$
\begin{equation*}
\left(\hat{\beta}^{1}-\beta\right)=\left(W^{\prime} W_{\delta}\right)^{-1}\left(W^{\prime} n\right) \tag{10}
\end{equation*}
$$

Alternatively, equations (8.1) and (7.1) imply:

$$
\left(\hat{\beta}^{1}-\beta\right)=\left(W^{\prime} W\right)^{-1}\left(W^{\prime} v^{1}\right)
$$

However, $W^{\prime} v^{I}=W^{\prime}\left(n+\left(W_{\delta}-W\right)_{B}\right)=W^{\prime} n$ since the residual portion of $\nu^{1},\left(W_{\delta}-W\right)_{\beta}$, is orthogonal to $W$.

These comments apply directily for (8.2) and produce the instrumental variable estimator:

$$
\begin{equation*}
\left(\hat{\beta}^{2}-\beta\right)=\left(\hat{W}^{\prime} W_{\delta}\right)^{-1}\left(\hat{W}^{\prime} \eta\right) \tag{11}
\end{equation*}
$$

The estimators $\hat{\beta}^{3}$ and $\hat{\beta}^{4}$ are defined by (8.3) and (8.4). Combining
these expressions with (7.3) and (7.4) we obtain:

$$
\begin{align*}
& \left(\hat{\beta}^{3}-\beta\right)=\left(W_{p} \cdot W_{p}\right)^{-1} W_{p}{ }^{\prime} \nu^{3}  \tag{12}\\
& \left(\hat{\beta}^{4}-\beta\right)=\left(W_{\hat{p}} \prime W_{\hat{p}}\right)^{-1} W_{\hat{p}} v^{4}
\end{align*}
$$

Alternatively, equation (12) (or (13)) may be derived by combining
(8.3) and (7.0):

$$
\begin{aligned}
\hat{\beta}^{3} & =\left(W_{p}^{\prime} W_{p}\right)^{-1}\left(W_{p}^{\prime} y\right)=\left(W_{p}^{\prime} W_{p}\right)^{-1}\left[W_{p}^{\prime} W_{\delta} \beta+W_{p}^{\prime} n\right] \text { so that: } \\
\left(\hat{\beta}^{3}-\beta\right) & =\left(W_{p}^{\prime} W_{p}\right)^{-1}\left[W_{p}^{\prime} W_{\delta} \beta+W_{p}^{\prime} \eta-\left(W_{p}^{\prime} W_{p}\right) \beta\right] \\
& =\left(W_{p}^{\prime} W_{p}\right)^{-1}\left[W_{p} '\left[\eta+\left(W_{\delta}-W_{p}\right) \beta\right]\right] \\
& =\left(W_{p}^{\prime} W_{p}\right)^{-1}\left[W_{p}^{\prime} v^{3}\right]
\end{aligned}
$$

It is important to note that the residual portions of the errors $\nu^{3}$ and $\nu^{4}$ are not orthogonal to $W_{p}$ and $W_{p}$ except asymptotically. Since $W_{p} v^{3} \neq W_{p}^{\prime} n$ it is not possible to interpret (7.3) and and (7.4) as instrumental variable estimators. We refer to (7.3) and (7.4) as reduced form estimators.

We introduce two additional instrumental variable estimators:

$$
\begin{align*}
& \hat{\beta}^{5}=\left[\omega^{\prime} Z^{\prime} W_{\delta}\right]^{-1}\left[\omega^{\prime} Z^{\prime} y\right]=\beta+\left[\omega^{\prime} Z^{\prime} W_{\delta}\right]^{-1}\left[\omega^{\prime} Z^{\prime} n\right]  \tag{14}\\
& \hat{\beta}^{6}=\left[W_{\hat{p}^{\prime}} X^{\prime} X W_{\hat{p}}\right]^{-1}\left[W_{\hat{p}^{\prime}} X^{\prime} X y\right]=\beta+\left[W_{\hat{p}^{\prime}} X^{\prime} X W_{\hat{p}}\right]^{-1}\left[W_{\hat{p}^{\prime}} X^{\prime} X \nu^{4}\right] \tag{15}
\end{align*}
$$

The instrument matrix for the estimator in (14) is $Z \omega$ where $Z=\left\langle z_{t}\right\rangle$ is order $T \times K_{0}$ and $\omega$ is order $K_{0} \times K_{1}$. The instrument matrix for estimator (15) is $X \times X W$ where $X$ is an exogenous matrix of order $L \times T$. The matrices $\omega$ and $X$ are specified below. Note that (15) is an instrumental variables estimator of equation (7.4).

We now consider the conditional expectation correction estimator of Amemiya (1979) and Heckman (1973). Assume that $n_{t}$ in (1) has conditional expectation:

$$
\begin{equation*}
E\left[n_{t} \mid \delta_{t}\right]=g\left(z_{t}, \delta_{t}, p_{t}\right) \gamma \tag{16}
\end{equation*}
$$

where $g$ is a differentiable function of $\delta_{t}$ and the reduced form variables $z_{t}, P_{t}$ and $r$ is a column vector of $K_{2}$ parameters.

We rewrite equation (1) as:

$$
\begin{equation*}
y_{t}=f\left(z_{t}, \delta_{t}\right) \beta+g\left(z_{t}, \delta_{t}, p_{t}\right) \gamma+v_{t}^{7} \tag{17}
\end{equation*}
$$

where $v_{t}^{7}=n_{t}-g\left(z_{t}, \delta_{t}, p_{t}\right) \gamma$
When $P_{t}$ is replaced by its estimate $\hat{P}_{t}$ we have:

$$
\begin{equation*}
y_{t}=f\left(z_{t}, \delta_{t}\right) \beta+g\left(z_{t}, \delta_{t}, \hat{P}_{t}\right) \gamma+v_{t}^{8} \tag{18}
\end{equation*}
$$

where $v_{t}^{8}=n_{t}-g\left(z_{t}, \delta_{t}, p_{t}\right) \gamma+\left[g\left(z_{t}, \delta_{t}, p_{t}\right)-g\left(z_{t}, \delta_{t}, \hat{p}_{t}\right)\right] \gamma$
Notationally, let $W_{g}=\left\langle g\left(z_{t}, \delta_{t}, p_{t}\right)\right\rangle$ and $W_{g}=\left\langle g\left(z_{t}, \delta_{t}, \hat{P}_{t}\right)\right\rangle$. $W_{g}$ and $W_{g}$ are of order $T \times K$. Also denote $\tilde{n}_{t}=\eta_{t}-g\left(z_{t}, \delta_{t}, P_{t}\right) \gamma$. Note that $E\left[\tilde{n}_{t} \mid \delta_{t}\right]=0$. Equations (17) and (18) may be rewritten in matrix form as:

$$
\begin{align*}
& y=\left[W_{\delta}: W_{g}\right]\left[\cdot_{\dot{\gamma}}^{\beta} \cdot\right]+v^{7} \text { and }  \tag{19}\\
& y=\left[W_{\delta}: W_{\hat{g}}\right]\left[\cdot \stackrel{\gamma}{\gamma}_{\beta} \cdot\right]+v^{8} . \tag{20}
\end{align*}
$$

We present in Table 1 the various two-stage estimators. We use the notation:

$$
W^{\star}=\left[W_{\delta}: W_{g}\right], \quad \hat{W}^{\star}=\left[W_{\delta}: W_{\hat{g}}\right]
$$

and $\beta^{*}=[\cdot \stackrel{\beta}{\dot{\gamma}} \cdot]$.
To derive the asymptotic distribution of each estimator we need the following assumptions:
(A1) $f$ is differentiable;
(A2) $\quad B$ is interior to a compact parameter space;
(A3) $\quad z_{t}$ is uniformly bounded with a convergent empirical distribution function; and

$$
\begin{equation*}
\underset{T \rightarrow \infty}{\operatorname{PLIM}}\left(\frac{W_{\delta}^{\prime} W_{p}}{T}\right)=A_{1}, \tag{A4}
\end{equation*}
$$

$$
\underset{T \rightarrow \infty}{\operatorname{PLIm}}\left(\frac{W_{p}^{\prime} W_{p}}{T}\right)=A_{2}, \quad \text { with } A_{1} \text { and } A_{2} \text { positive definite. }
$$

From equation (5) we find:

$$
\begin{equation*}
\operatorname{PLIM}\left(\frac{W^{\prime} W}{T}\right)=A_{1} A_{2}^{-1} A_{1}^{\prime} . \tag{21}
\end{equation*}
$$

To demonstrate equation (21) observe that:

$$
\begin{equation*}
\frac{W^{\prime} W}{T}=\frac{W^{\prime} W_{\delta}}{T}=\left[\frac{W_{\delta}^{\prime} W_{p}}{T}\right]\left[\frac{W_{p}^{\prime} W_{p}}{T}\right]^{-1}\left[\frac{W_{p}^{\prime} W_{\delta}}{T}\right] \tag{22}
\end{equation*}
$$

and use the fact that the probability limit of a product is the product of the limits when all limits are finite.

From equation (6) we find:

$$
\begin{equation*}
\operatorname{PLIM}\left(\frac{\hat{W}^{\prime} \hat{W}}{T}\right)=\operatorname{LIM}\left(\frac{W^{\prime} W}{T}\right)=A_{1} A_{2}^{-1} A_{1}^{\prime} \tag{23}
\end{equation*}
$$

Equation (23) follows from Lemma 4 of Amemiya (1973) and uses the fact
that PLIM $\hat{P}_{t}=P_{t}$.
When $f\left(z_{t}, \delta_{t}\right)$ is linear in $\delta_{t}, A_{1}$ equals $A_{2}$. This follows as:

TABLE 1
Two Stage Estimators For: $y_{t}=f\left[z_{t}, \delta_{t}\right]_{\beta}+n_{t}$
(i) $\quad \hat{\beta}^{1}-\beta=\left(W^{\prime} W_{\delta}\right)^{-1}\left(W^{\prime} v^{1}\right)$ I.V.
(ii) $\hat{\beta}^{2}-\beta=\left(\hat{W}^{\prime} W_{\delta}\right)^{-1}\left(\hat{W}^{\prime} v^{2}\right)$ I.V.E.
(iii) $\hat{\beta}^{3}-\beta=\left(W_{p}{ }^{\prime} W_{p}\right)^{-1}\left(W_{p} v^{3}\right)$
R.F.
(iv) $\hat{\beta}^{4}-\beta=\left(W_{\hat{p}}^{\prime} W_{\hat{p}}\right)^{-1}\left(W_{\hat{p}}{ }^{\prime} \nu^{4}\right)$
R.F.E.
(v) $\hat{\beta}^{5}-\beta=\left(\omega^{\prime} Z^{\prime} W_{\delta}\right)^{-1}\left(\omega^{\prime} Z^{\prime} \nu^{5}\right)$
I.V.
(vi) $\quad \hat{\beta}^{6}-\beta=\left(W_{\hat{p}^{\prime}} X^{\prime} X W_{\hat{p}}\right)^{-1}\left(W_{\hat{p}}{ }^{\prime} X \cdot X \nu^{6}\right)$ I.V.E.+ R.F.E.
(vii) $\hat{\beta}^{7}-\beta^{\star}=\left(W^{*} W^{*}\right)^{-1}\left(W^{*} v^{7}\right)$
A.H.
(viii) $\hat{\beta}^{8}-\beta^{\star}=\left(\hat{W}^{*} \cdot \hat{W}^{\star}\right)^{-1}\left(\hat{W}^{\prime} v^{8}\right)$
A.H.E.

## NOTES:

$v^{1}=v^{2}=v^{5}=n$
(2) $\quad v^{3}=\eta+\left(W_{\delta}-W_{p}\right)_{\beta}$
(3) $\quad v^{4}=v^{6}=n+\left(W_{\delta}-W_{p}\right) B-\left(W_{p}-W_{p}\right) B$
(4) $v^{7}=\tilde{\pi}$
$v^{8}=\tilde{n}+\left(W_{g}-W_{\hat{g}}\right) \gamma$
IV: Instrumental Variables
IVE: Instrumental Variables Estimated
RF: Reduced Form
RFE: Reduced Form Estimated
AH: Amemiya-Heckman
AHE: Amemiya-Heckman Estimated

$$
\begin{align*}
& f\left(z_{t}, \delta_{t}\right)=\left[f_{0}\left(z_{t}\right) \delta_{t}, f_{1}\left(z_{t}\right)\right] \quad \text { implies: }  \tag{24}\\
& E\left[f\left(z_{t}, \delta_{t}\right)\right]=\left[f_{0}\left(z_{t}\right) P_{t}, f_{1}\left(z_{t}\right)\right]=f\left(z_{t}, P_{t}\right) \text { so that: }  \tag{25}\\
& A_{1}=\operatorname{PLIM}\left(\frac{W_{\delta}^{\prime} W_{p}}{T}\right)=\operatorname{PLIM}\left(\frac{W_{p}^{\prime} W_{p}}{T}\right)=A_{2} .
\end{align*}
$$

Furthermore, (23) and (24) imply:

$$
\begin{equation*}
\operatorname{PLIM}\left(\frac{W^{\prime} W}{T}\right)=A_{2} . \tag{27}
\end{equation*}
$$

For the asymptotic distributions of the Amemiya-Heckman estimators we assume:
(A5) $g$ is differentiable;
(A6) $\quad \gamma$ is interior to a compact parameter space;

$$
\begin{equation*}
\operatorname{PLIM}\left(\frac{W^{*} W^{*}}{T}\right)= \tag{A7}
\end{equation*}
$$



$$
=\left[\begin{array}{ccc}
A_{3} & \vdots & \\
A_{4} \\
A_{4}^{i} & \vdots & \\
A_{4}
\end{array}\right]
$$

with $A_{3}, A_{4}$ and $A_{5}$ positive definite.

From (A7) we have:

$$
\operatorname{PLIM}\left(\frac{\hat{W}^{*} \cdot \hat{W}^{\star}}{T}\right)=\operatorname{PLIM}\left(\frac{W^{*} \cdot W^{\star}}{T}\right)=\left[\begin{array}{ccc}
A_{3} & \vdots & A_{4}  \tag{28}\\
\cdot & \cdot & \dot{A}_{5}^{i} \\
A_{4} & \vdots & A_{5}
\end{array}\right]
$$

Equation (28) follows from the definition of $\hat{W}^{\star}$ and uses the consistency of $\hat{P}_{t}$ together with Lemma 4 of Amemiya (1973).

The two-stage estimators presented in Table 1 have the form:

$$
\begin{equation*}
\hat{\beta}^{k}-\beta=\left(W_{1}^{k}\right)^{-1}\left(W_{2}^{k} v^{k}\right) \tag{29}
\end{equation*}
$$

for appropriate choices of the matrices $W_{1}^{k}$ and $W_{2}^{k}$. We rewrite equation (29) as:

$$
\begin{equation*}
\sqrt{T}\left(\hat{\beta}^{k}-\beta\right)=\left(\frac{W_{1}^{k}}{T}\right)^{-1}\left(\frac{W_{2}^{k} v^{k}}{T}\right) \tag{30}
\end{equation*}
$$

Under the conditions of the Lindberg-Feller central limit theorem it is possible to show that:

$$
\begin{equation*}
\frac{W_{2}^{k_{1}} v^{k}}{\sqrt{T}} \xrightarrow{L} \rightarrow N\left[0, \operatorname{Lim} E\left[\frac{1}{T} W_{2}^{k_{1}} v^{k_{v}} v^{k_{1}} W_{2}^{k}\right]\right] \tag{31}
\end{equation*}
$$

We now postulate an error structure for the probability model:

$$
\begin{align*}
& P_{t}=\operatorname{Prob}\left[y_{t}^{\star}<0\right]=V\left[z_{t}, \alpha\right] \text { where } V \text { is a given function of the }  \tag{A8}\\
& \text { exogenous variables } z_{t} \text { and a column vector of } L \text { parameters } \alpha \text {. }
\end{align*}
$$

We suppose that the probability model (A8) is estimated by maximum likelihood. For the maximum likelihood estimator of the parameters $\alpha$, the following useful approximation results:

## Lemma 1

Let $\hat{P}_{t}$ be the estimated value of $P_{t}$ i.e. the value of $P_{t}$ which results when $V\left[z_{t}, \alpha\right]$ is replaced by $V\left[z_{t}, \hat{\alpha}\right]$ where $\hat{\alpha}$ is the maximum likelihood estimate of $\alpha$. Then:

$$
\begin{array}{ll}
(\hat{P}-P)=Y \cdot V Y D_{0}^{-1}(\delta-P) & \text { where: }  \tag{32}\\
\hat{P}=\left\langle\hat{P}_{t}\right\rangle, \quad P=\left\langle P_{t}\right\rangle, \quad D_{0}=\operatorname{diag} P_{t}\left(1-P_{t}\right), \delta=\left\langle\delta_{t}\right\rangle,
\end{array}
$$

$$
V=E\left[(\hat{\alpha}-\alpha)(\hat{\alpha}-\alpha)^{\prime}\right]
$$

$$
\underset{\operatorname{LxT}}{Y}=\left[\begin{array}{lllllll}
\left(\frac{\partial P_{1}}{\partial \alpha}\right)^{\prime} & \vdots & \left(\frac{\partial P_{2}}{\partial \alpha}\right)^{\prime} & \vdots & \cdots & \vdots & \left(\frac{\partial P_{T}}{\partial \alpha}\right)^{\prime} \tag{33}
\end{array}\right]
$$

$$
\text { N.B. } V \neq v\left[z_{t}, \alpha\right]
$$

Proof Lemma 1
The $\log$ likelihood function, $L$, is given by

$$
\begin{equation*}
L=\frac{1}{T} \sum_{t} \delta_{t} \ln P_{t}+\left(1-\delta_{t}\right) \ln \left(1-P_{t}\right) \tag{34}
\end{equation*}
$$

From equation (34):

$$
\begin{align*}
& L_{\alpha}=\frac{1}{T} \sum_{t}\left[\left(\frac{\delta_{t}}{P_{t}}\right)\left(\frac{\partial P_{t}}{\partial \alpha}\right)-\frac{\left(1-\delta_{t}\right)}{\left(1-P_{t}\right)}\left(\frac{\partial P_{t}}{\partial \alpha}\right)\right]  \tag{35}\\
& L_{\alpha}^{\prime}=\frac{1}{T} \sum_{t} \frac{\left(\delta_{t}-P_{t}\right)}{P_{t}\left(1-P_{t}\right)}\left(\frac{\partial P_{t}}{\partial \alpha}\right)^{\prime}=\frac{1}{T} Y D_{0}^{-1}(\delta-P)
\end{align*}
$$

To complete the derivation we use a first-order Taylor expansion for $\hat{P}_{t}$ around $P_{t}$ :

$$
\begin{equation*}
\hat{P}_{t}-P_{t} \stackrel{D}{=}\left(\frac{\partial P_{t}}{\partial \alpha}\right)(\hat{\alpha}-\alpha) \tag{37}
\end{equation*}
$$

and apply the usual asymptotic argument to establish:

$$
\begin{equation*}
\hat{\alpha}-\alpha \stackrel{D}{=}-L_{\alpha \alpha}^{-1} L_{\alpha}^{\prime} \cdot \text { Combining (37) and (38), we find: } \tag{38}
\end{equation*}
$$

$$
\begin{equation*}
\hat{P}_{t}-P_{t} \stackrel{D}{=}-\left(\frac{\partial P_{t}}{\partial \alpha}\right) L_{\alpha \alpha}^{-1} L_{\alpha}^{\prime} \tag{39}
\end{equation*}
$$

Finally, we substitute the expression for $L_{\alpha}^{\prime}$ given in (36) into (39) and use $\dot{V}=-\frac{1}{T} L_{\alpha \alpha}^{-1}$ to obtain the matrix form (32). Q.E.D.

We now consider the binary logit model as an illustration of (A8). To generate a logit probability model, we assume that: $y_{t}^{*}=\left(V_{2 t}-V_{1 t}\right)+\left(\varepsilon_{2 t}-\varepsilon_{1 t}\right)$ where $V_{j t}=V_{j}\left[z_{t}, \alpha\right]$ is a given function of $z_{t}$ and $\alpha$ and where $\varepsilon_{j t}$ are random variables independent and identically extreme value distributed with variance $\left(\pi^{2} / 6\right) \phi^{2}$. Note that $\delta_{t}=1$ if only if $y_{t}^{*}<0$ so that $V_{1 t}+\varepsilon_{1 t}>V_{2 t}+\varepsilon_{2 t}$. It then follows that:

$$
\begin{align*}
P_{t} & =\operatorname{Prob}\left[\delta_{t}=1\right]=\operatorname{Prob}\left[V_{1 t}+\varepsilon_{1 t}>V_{2 t}+\varepsilon_{2 t}\right]  \tag{40}\\
& =e^{V_{1 t} / \phi} /\left[e^{V_{1 t} / \phi}+e^{V_{2 t} / \phi}\right] \\
& =1 /\left[1+e^{-\left(V_{1 t}-V_{2 t}\right) / \phi}\right] \\
& =1 /\left[1+e^{-V_{t}} \quad \quad \text { where } V_{t} \equiv\left(V_{1 t}-V_{2 t}\right) / \phi .\right.
\end{align*}
$$

Furthermore, equation (40) implies:

$$
\begin{equation*}
\frac{\partial P_{t}}{\partial \alpha}=P_{t}\left(1-P_{t}\right)\left[\frac{\partial V_{t}}{\partial \alpha}\right] \tag{41}
\end{equation*}
$$

We have demonstrated the following result:

## Lemma 2

Let $X=\left[\left(\frac{\partial V_{1}}{\partial \alpha}\right)^{\prime} \vdots\left(\frac{\partial V_{2}}{\partial \alpha}\right)^{\prime} \vdots . . . \vdots\left(\frac{\partial V_{T}}{\partial \alpha}\right)^{\prime}\right]$. Then :

$$
\begin{equation*}
(\hat{P}-P) \stackrel{D}{=} D_{0} X \operatorname{VX}(\delta-P) \tag{42}
\end{equation*}
$$

when $P_{t}$ is given by the binary logit model (40).

Proof Lemma 2
For the binary logit model (41) implies that $Y=X D_{0}$.
Substituting into (32) proves the Lemma. . Q.E.D.

Note that when $Y=X D_{0}, V^{-1}=\left(X D_{0} X^{\prime}\right)$ since $V^{-1}=E\left[L_{\alpha}^{\prime} L_{\alpha} \cdot T^{2}\right]=$ $Y D_{0}^{-1} Y^{\prime}$ from (36).

Consider the important special case in which $V_{j}\left[z_{t}, \alpha\right]$ is linear so that $V_{j}\left[z_{t}, \alpha\right] / \phi=w_{j t} t^{\alpha}$ where $w_{j t}$ is an $L$ component row vector of explanatory variables which vary by alternative and observation. Then $V_{t}=V_{1}\left[z_{t}, \alpha\right] / \phi-V_{2}\left[z_{t}, \alpha\right] / \phi=\left(w_{1 t}-w_{2 t}\right) \alpha$. Suppose $z_{t}=\left[w_{1 t}, w_{2 t}, w_{t}^{\star}\right]$.

Then $\partial V_{t} / \partial \alpha=z_{t}\left[\begin{array}{c}\mathrm{I} \\ -I \\ 0\end{array}\right]$ and $X^{\prime}=\left[\begin{array}{c}2 V_{1} / 2 \alpha \\ 2 \ddot{V}_{2} / 2 \alpha \\ \vdots \\ 2 V_{T} / 2 \alpha\end{array}\right]=Z \rho$ where $\rho=\left[\begin{array}{c}\mathrm{I} \\ -I \\ 0\end{array}\right]$.

Throughout the remainder of this section we use the binary logit probability model. To return to the general framework one need simply substitute $X=Y D_{0}^{-1}$.

In Lemma 3 we evaluate the expressions of $E\left[\nu^{k} v^{k_{1}}\right]$ for the limiting distribution in equation (31).

Lemma 3
Let $E\left[\eta n^{\prime}\right]=A$ with $A$ diagonal. Then:
L3a) $E\left[v^{3} v^{3}\right]=A+2 D_{1} D_{3}+D_{1}^{2} D_{0}$

$$
\begin{align*}
E\left[v^{4} v^{4}\right]=A & +D_{1}^{2} D_{0}+2 D_{1} D_{3} \\
& -\left[D_{1} D_{0} x^{\prime} v \times D_{3}+D_{3} \times \cdot v \times D_{0} D_{1}+D_{1} D_{0} \times \cdot v \times D_{0} D_{1}\right]
\end{align*}
$$

L3c) $E\left[v^{7} v^{7}\right]=A+D_{4}$

LSd) $E\left[v^{8} v^{8}\right]=A+D_{4}+D_{2} D_{0} X \cdot v \times D_{0} D_{2}$
where $D_{1}=\operatorname{diag}\left\{f^{\prime}\left(z_{t}, P_{t}\right) \beta\right\}$
$D_{3}=\operatorname{diag}\left\{E\left[n_{t}\left(\delta_{t}-\rho_{t}\right)\right]\right\}$

$$
D_{2}=\operatorname{diag}\left\{g^{\prime}\left(z_{t}, \delta_{t}, P_{t}\right) r\right\} \quad D_{4}=\operatorname{diag}\left\{\left(E\left[n_{t} \mid \delta_{t}\right]\right)^{2}\right\}
$$

## Proof Lemma 3

Lea) $\quad v_{t}^{3}=n_{t}+\left[f\left(z_{t}, \delta_{t}\right)-f\left(z_{t}, P_{t}\right)\right] \beta$
We make a first-order Taylor approximation to $f\left(z_{t}\right.$, . ) to obtain:
$f\left(z_{t}, \delta_{t}\right)-f\left(z_{t}, P_{t}\right) \stackrel{D}{=} f^{\prime}\left(z_{t}, P_{t}\right)\left(\delta_{t}-P_{t}\right)$
where $f^{\prime}\left(z_{t}, P_{t}\right)=\partial f\left(z_{t}, s\right) /\left.\partial s\right|_{s=P_{t}}$.

Thus $v_{t}^{3} \xlongequal{D} n_{t}+\left(f^{\prime}\left(z_{t}, P_{t}\right) \beta\right)\left(\delta_{t}-P_{t}\right)$
Let $D_{1}=\operatorname{diag}\left\{f^{\prime}\left(z_{t}, P_{t}\right) \beta\right\}$ so that $v^{3}=n+D_{1}(\delta-P)$. Then:

$$
\begin{aligned}
E\left[\nu^{3} \nu^{3}\right]= & E\left[\left(\eta+D_{1}(\delta-P)\right)\left(\eta^{\prime}+(\delta-P)^{\prime} D_{1}\right)\right] \\
= & E\left[\eta \eta^{\prime}\right]+D_{1} E[(\delta-P) \eta]+E\left[\eta(\delta-P)^{\prime}\right] D_{1}+ \\
& D_{1} E\left[(\delta-P)(\delta-P)^{\prime}\right] D_{1}
\end{aligned}
$$

Now let $D_{3}=E\left[n(\delta-P)^{\prime}\right]$ and note that $E\left[(\delta-P)(\delta-P)^{\prime}\right]=D_{0}$ since $\left.E\left(\delta_{t}-P_{t}\right)^{2}\right]=P_{t}\left(1-P_{t}\right)$ and $E\left[\left(\delta_{t}-P_{t}\right)\left(\delta_{s}-P_{s}\right)\right]=0$ for $t \neq s$. Thus: $E\left[v^{3} v^{3}\right]=A+D_{1} D_{3}+D_{3} D_{1}+D_{1} D_{0} D_{1}=A+2 D_{1} D_{3}+D_{1}^{2} D_{0}$.

$$
\begin{align*}
\operatorname{Recall} v_{t}^{4}=n_{t} & +\left(f\left(z_{t}, \delta_{t}\right)-f\left(z_{t}, P_{t}\right)\right) \beta \\
& -\left(f\left(z_{t}, \hat{P}_{t}\right)-f\left(z_{t}, P_{t}\right)\right) \beta
\end{align*}
$$

We use the approximation of Lemma aa to obtain:

$$
\begin{aligned}
& v^{4} \stackrel{D}{=} n+D_{1}(\delta-P)-D_{1}(\hat{P}-P) . \text { From Lemma } 2: \\
& v^{4} \stackrel{O}{=} n+D_{1}(\delta-P)-D_{1} D_{0} X^{\prime} v \times(\delta-P)=n+D_{1}\left[I-D_{0} X^{\prime} V X\right](\delta-P)
\end{aligned}
$$

Thus:

$$
\begin{aligned}
E\left(v^{4} v^{\prime}\right)= & E\left(\left[\eta+D_{1}\left(I-D_{0} X^{\prime} V X\right)(\delta-P)\right]\right. \\
& \left.\cdot\left[\eta^{\prime}+(\delta-P)^{\prime}\left(I-X^{\prime} V X D_{0}\right) D_{1}\right]\right) \\
= & A+D_{1}\left[I-D_{0} X \cdot V X\right] D_{0}\left[I-X ' V X D_{0}\right] D_{1} \\
& +D_{3}\left[I-D_{0} X ' V X D_{0}\right] D_{1}+D_{1}\left[I-D_{0} X^{\prime} V X\right] D_{3}
\end{aligned}
$$

But $D_{1}\left[I-D_{0} X V V\right] D_{0}\left[I-X \cdot V X D_{0}\right] D_{1}=D_{1}^{2} D_{0}-D_{1} D_{0} X \cdot V X D_{0} D_{1}$ since $V=$ $\left(X D_{0} X^{\prime}\right)^{-1}$. Finally:

$$
E\left(v^{4} v^{4}\right)=A+D_{1}^{2} D_{0}+2 D_{1} D_{3}-\left[D_{1} D_{0} \times \cdot v \times D_{3}+D_{3} \times \prime v \times D_{0} D_{1}+D_{1} D_{0} x^{\prime} v \times D_{0} D_{1}\right]
$$

L3c) $\quad v_{t}^{7}=\tilde{\pi}_{t}=\pi_{t}-E\left[\pi_{t} \mid \delta_{t}\right]$
since $E\left[n_{t}\right]=0, E\left[v^{7} v^{7}\right]=A+D_{4}$ where $D_{4}=\operatorname{diag}\left\{\left(E\left[n_{t} \mid \delta_{t}\right]\right)^{2}\right\}$.

$$
\nu_{t}^{8}=\tilde{n}_{t}-\left(g\left(z_{t} \delta_{t}, \hat{P}_{t}\right)-g\left(z_{t}, \delta_{t}, p_{t}\right)\right) \gamma
$$

We make a first-order Taylor approximation to $g\left(z_{t}, \delta_{t}\right.$, .) to obtain $g\left(z_{t}, \delta_{t}, \hat{P}_{t}\right)-g\left(z_{t}, \delta_{t}, P_{t}\right)=g^{\prime}\left(z_{t}, \delta_{t}, P_{t}\right)\left(\hat{P}_{t}-P_{t}\right)$ where:
$g^{\prime}\left(z_{t}, \delta_{t}, P_{t}\right) \stackrel{D}{=} 2 g\left(z_{t}, \delta_{t}, s\right) /\left.\partial s\right|_{s=P_{t}}$.
Hence $\nu_{t}^{8}=\stackrel{D}{\pi_{t}}-\left(g^{\prime}\left(z_{t}, \delta_{t}, P_{t}\right) \gamma\right)\left(\hat{P}_{t}-P_{t}\right)$.
Let $D_{2}=\operatorname{diag}\left\{g^{\prime}\left(z_{t}, \delta_{t}, P_{t}\right) r\right\}$ so that:

$$
\begin{aligned}
& \nu^{8} \stackrel{D}{=} \widetilde{\pi}-D_{2}(\hat{P}-P) \stackrel{D}{=} \tilde{n}-D_{2} D_{0} X \cdot V X(\delta-P) \\
& \text { As } E\left[\widetilde{n}(\delta-P)^{\prime}\right]=\operatorname{diag}\left\{E\left[\tilde{\pi}_{t}\left(\delta_{t}-P_{t}\right)\right]\right\}=0, \\
& E\left[v^{8} v^{\prime}\right]=A+D_{4}+D_{2} D_{0} X \cdot V X D_{0} D_{2}
\end{aligned}
$$

From Lemma 3 and equation (31) we are able to find the asymptotic distributions for the two-stage estimators listed in Table 1.

Theorem 1

$$
\text { Let } \begin{aligned}
B_{1} & =A_{1}^{-1} A_{2} A_{1}^{-1}, A=\sigma^{2} I \\
B_{2} & =\operatorname{PLIM}\left[\frac{1}{T} W_{p}^{\prime}\left(2 D_{1} D_{3}+D_{1}^{2} D_{0}\right) W_{p}\right] \\
B_{3} & =\operatorname{PLIM}\left[\frac{1}{T} W_{p}^{\prime}\left[D_{1} D_{0} X ' V X D_{3}+D_{3} X ' V X D_{0} D_{1}+D_{1} D_{0} X^{\prime} V X D_{0} D_{1}\right] W_{p}\right]
\end{aligned}
$$

Tia) $\sqrt{T}\left(\hat{\beta}^{1}-\beta\right) \xrightarrow{L} N\left[0, \sigma^{2} B_{1}\right]$

T1b) $\sqrt{T}\left(\hat{\beta}^{2}-\beta\right) \xrightarrow[L]{L}\left[0, \sigma^{2} B_{1}\right]$
Tlc) $\quad \sqrt{T}\left(\hat{B}^{3}-B\right) \xrightarrow{L} N\left[0, \sigma^{2} A_{2}^{-1}+A_{2}^{-1} B_{2} A_{2}^{-1}\right]$

T1d) $\sqrt{T}\left(\hat{\beta}^{4}-\beta\right) \xrightarrow{L} N\left[0, \sigma^{2} A_{2}^{-1}+A_{2}^{-1} B_{2} A_{2}^{-1}-A_{2}^{-1} B_{3} A_{2}^{-1}\right]$

TIe) $\sqrt{T}\left(\hat{\beta}^{5}-\beta\right) \xrightarrow{L} N\left[0, \sigma^{2}\left(C_{1} C_{2}^{-1} C_{1}\right)^{-1}\right]$

T1f) $\sqrt{T}\left(\hat{\beta}^{6}-\beta\right)^{L} \rightarrow N\left[0, \sigma^{2}\left(C_{3}^{1} C_{3}\right)^{-1}\left(C_{3}^{1} C_{4} C_{3}\right)\left(C_{3}^{1} C_{3}\right)^{-1}\right]$.
where $C_{1}=\operatorname{PLIM}\left(\frac{Z^{\prime} W_{\delta}}{T}\right) \quad C_{2}=\operatorname{PLIM}\left(\frac{Z^{\prime} Z}{T}\right)$,
and $\quad C_{3}=\operatorname{PLIM}\left(\frac{Z^{\prime} W_{\delta}}{T}\right) \quad C_{4}=\operatorname{PLIM}\left(\frac{X X^{\prime}}{T}\right) \quad$ and $\omega=\left(Z^{\prime} Z^{-1} Z^{\prime} W_{\delta}\right.$.

Let $D_{5}=D_{2} D_{0} \times \cdot V \times D_{0} D_{2}$
$\mathrm{Tlg}) \sqrt{T}\left(\hat{\beta}^{\top}-\beta^{*}\right) \xrightarrow{L} N\left[0, \sigma^{2}\left[\begin{array}{ccc}A_{3} & \vdots & A_{4} \\ { }_{A_{4}^{i}}^{i} & \vdots & \dot{A}_{5}\end{array}\right]^{-1}\right.$

$$
\left.+\left[\begin{array}{ccc}
A_{3} & \vdots & A_{4} \\
\hdashline A_{4}^{i} & \vdots & \dot{A}_{5}
\end{array}\right]^{-1} \cdot\left[\begin{array}{ccc}
B_{4} & \vdots & B_{5} \\
\cdot_{4}^{i} & \vdots & \dot{B}_{5}
\end{array}\right] \cdot\left[\begin{array}{ccc}
A_{3} & \vdots & A_{4} \\
e_{4}^{i} & \vdots & \dot{A}_{5}
\end{array}\right]^{-1}\right]
$$

Tin) $\sqrt{T}\left(\hat{\beta}^{8}-\beta^{\star}\right) \xrightarrow{L} N\left[0, \sigma^{2}\left[\begin{array}{ccc}A_{3} & \vdots & A_{4} \\ \cdot A_{4}^{i} & \vdots & \dot{A}_{5}\end{array}\right]^{-1}\right.$

$$
\left.+\left[\begin{array}{ccc}
A_{3} & \vdots & A_{4} \\
\cdot A_{4}^{i} & \vdots & \dot{A}_{5}
\end{array}\right]^{-1}\left[\begin{array}{ccc}
B_{4}+B_{7} & B_{5}+B_{8} \\
\dot{B}_{5}^{\prime}+B_{8}^{i} & \vdots \dot{B}_{6}+B_{9}^{*}
\end{array}\right]\left[\begin{array}{ccc}
A_{3} & \vdots & A_{4} \\
\dot{A}_{4}^{i} & \vdots & \dot{A}_{5}
\end{array}\right]^{-1}\right]
$$

Proof Theorem 1

Tia)

$$
\operatorname{PLIM}\left(\frac{1}{T} W^{\prime} W_{\delta}\right)^{-1}=\left(A_{1} A_{2}^{-1} A_{1}^{1}\right)^{-1}=A_{1}^{-1} A_{2} A_{1}^{-1}=B_{1}
$$

where we have used (21), (22), and the continuity property of matrix inversion. Also,

$$
\operatorname{Lim} E\left[\frac{1}{T} W \cdot v^{1} v^{1} W\right]=\operatorname{Lim}\left[\frac{1}{T} W \cdot E\left(v^{1} v^{1}\right) W\right]=\sigma^{2} B_{1}^{1}
$$

Finally, write $\sqrt{T}\left(\hat{\beta}^{1}-\beta\right)=\left(\frac{W^{\prime} W_{\delta}}{T}\right)^{-1}\left(\frac{W^{\prime} v^{1}}{T}\right)$ and
apply (31) so that $\sqrt{T}\left(\hat{\beta}^{1}-\beta\right) \rightarrow N\left[0, \sigma^{2} B_{1}^{2}\right]$.
In Tl to Th we calculate the appropriate probability limits but omit the details relating to the application of (31).

TID) $\quad \operatorname{PLIM}\left(\frac{1}{T} \hat{W}^{\prime} W_{\delta}\right)^{-1}=B_{1} \quad \operatorname{LimE}\left[\frac{1}{T} \hat{W}^{1} v^{2} v^{2}(\hat{W}]=\sigma^{2} B_{1}^{-1}\right.$.
Tic) $\quad \operatorname{PLIM}\left(\frac{1}{T} W_{p}^{\prime} W_{p}\right)^{-1}=A_{2}^{-1} \quad \operatorname{Lim} E\left[\frac{1}{T} W^{\prime} v^{3} v^{3} W_{p}\right]=\sigma^{2} A_{2}+B_{2}$.

TId) $\quad \operatorname{PLIM}\left(\frac{1}{T} W_{\hat{p}}{ }^{\prime} W_{\hat{p}}\right)^{-1}=A_{2}^{-1} \quad \operatorname{Lim} E\left[\frac{1}{T} W_{\hat{p}}^{\prime} \nu^{4} \nu^{4} W_{\hat{p}}\right]=\sigma^{2} A_{2}+B_{2}-B_{3}$
Tle) $\quad$ PLIM $\left[\left[\frac{W_{\delta}^{\prime} Z}{T}\right]\left(\frac{Z^{\prime} Z}{T}\right)^{-1}\left[\frac{Z^{\prime} W_{p}}{T}\right]\right]^{-1}=\left(C_{1}^{\prime} C_{2}^{-1} C_{1}\right)^{-1}$
$\left.\operatorname{PLIM}\left[\frac{W_{\delta}^{\prime} Z}{T}\right]\left(\frac{Z^{\prime} Z}{T}\right)^{-1}\right]=C_{1}^{\prime} C_{2}^{-1}$
$\operatorname{LIME}\left[\frac{1}{T} Z z^{\prime} v^{5} v^{5} \cdot Z\right]=\sigma^{2} C_{2}$
$\operatorname{PLIM}\left(\left[\frac{W_{\delta}^{\prime} X^{\prime}}{T}\right]\left[\frac{X W_{p}}{T}\right]\right)^{-1}=C_{3}^{\prime} C_{3}$.

TIf) $\quad X v^{6}=X v^{4}=X_{\eta}+D_{1} X\left[I-D_{0} X V X\right](\delta-P)$
$=X_{n}$ since $X\left[I-D_{0} X^{\prime} V X\right]=0$
$\operatorname{LIME}\left[\frac{1}{T} X v^{6} v^{6} \cdot x^{1}\right]=\sigma^{2} C_{4}$

Tlg) $\quad \operatorname{PLIM}\left(\frac{1}{T} W^{*} W^{*}\right)^{-1}=\left[\begin{array}{cccc}A_{3} & & A_{4} \\ \cdot & \vdots & \dot{A}_{4}^{i} & \vdots \\ A_{5}\end{array}\right]^{-1} \quad$ from (A7).
$\operatorname{LIME}\left[\frac{1}{T} W^{*} v^{7} v^{7} W^{*}\right]=$

$$
\begin{aligned}
& \text { LIME }
\end{aligned} \quad\left[\begin{array}{lll}
\frac{1}{T} W_{\delta} \cdot v^{7} v^{7} W_{\delta} & \vdots & \frac{1}{T} W_{\delta}{ }^{\prime} v^{7} v^{7} W_{g} \\
\frac{1}{T} \cdot W_{g} \cdot v^{7} v^{j} \cdot W_{\delta} & \vdots & \frac{1}{T} \cdot W_{g}{ }^{\prime} v^{7} v^{j} \cdot W_{g}
\end{array}\right]
$$

T1h)

$$
\left[\begin{array}{ccc}
A_{3} & \vdots & A_{4} \\
A_{4}^{i} & \vdots & \dot{A}_{5}
\end{array} \cdot\right]^{-1}
$$

$\operatorname{LIM} E\left[\frac{1}{T} \hat{W}^{*} \cdot v^{8} v^{8} \cdot \hat{W} *\right]=$

$$
=\sigma^{2}\left[\begin{array}{ccc}
A_{3} & \vdots & A_{4} \\
\cdot A_{4}^{i} & \vdots & \dot{A}_{5}
\end{array}\right]+\left[\begin{array}{ccc}
B_{4} & \vdots & B_{5} \\
\cdot B_{5}^{i} & \vdots & \dot{B}_{6}
\end{array}\right]+\left[\begin{array}{ccc}
B_{7} & \vdots & B_{8} \\
\cdot & \cdot & B_{8} \\
B_{8} & & \dot{B}_{9}
\end{array}\right]
$$

Q.E.D.

Comment: We have taken $\omega=\left(Z^{\prime} Z\right)^{-1} Z^{\prime} W_{\delta}$ which is the least squares projection of $W_{\delta}$ onto the linear span of $Z$. Among instrumental variable estimators of equation (1) which use instruments linear in $Z$, $\hat{\beta}^{5}$ in Theorem le is optimal having the smallest asymptotic covariance matrix.

It is useful to find the asymptotic distributions of the eight estimators under the null hypothesis in which $\eta$ and $\underset{\sim}{\mathcal{E}}$ are uncorrelated. This is accomplished in Corollary 1.

## Corollary 1

Let $B_{2}^{N}=\operatorname{PLIM}\left[\frac{1}{T} W_{p}{ }^{\prime}\left(D_{1}^{2} D_{0}\right) W_{p}\right]$

$$
B_{3}^{N}=P \operatorname{IIM}\left[\frac{1}{T} W_{p} \cdot\left[D_{1}\left(D_{0} X \cdot V X D_{0}\right) D_{1}\right] W_{p}\right]
$$

Under the null hypothesis in which $n$ and $\underset{\sim}{ }$ are uncorrelated:
Cia) $\sqrt{T}\left(\hat{\beta}^{1}-\beta\right) \xrightarrow{L} N\left[0, \sigma^{2} B_{1}\right]$

C1b) $\sqrt{T}\left(\hat{\beta}^{2}-\beta\right) \xrightarrow{L}\left[0, \sigma^{2} B_{1}\right]$
CDc) $\quad \sqrt{T}\left(\hat{\beta}^{3}-\beta\right) \xrightarrow{L} N\left[0, \sigma^{2} A_{2}^{-1}+A_{2}^{-1} B_{2}^{N} A_{2}^{-1}\right]$

CId) $\quad \sqrt{T}\left(\hat{\beta}^{4}-\beta\right)^{L} \xrightarrow{L}\left[0, \sigma^{2} A_{2}^{-1}+A_{2}^{-1}\left(B_{2}^{N}-B_{3}^{N}\right) A_{2}^{-1}\right]$

GIe) $\quad \sqrt{T}\left(\hat{\beta}^{5}-\beta\right) \xrightarrow{L} N\left[0, \sigma^{2}\left(C_{1}^{1} C_{2}^{-1} C_{1}\right)^{-1}\right]$

C1f) $\sqrt{T}\left(\hat{\beta}^{6}-\beta\right)^{L} N\left[0, \sigma^{2}\left(C_{3}^{1} C_{3}\right)^{-1}\left(C_{3}^{1} C_{4} C_{3}\right)\left(C_{3}^{1} C_{3}\right)^{-1}\right]^{-1}$
$C 1 g) \quad \sqrt{T}\left(\hat{\beta}^{7}-\beta^{*}\right)^{L} \xrightarrow{L}\left[0, \sigma^{2}\left[\begin{array}{ccc}A_{3} & \vdots & A_{4} \\ \cdot A_{4}^{i} & \vdots & \dot{A}_{5}\end{array}\right]{ }^{-1}\right]$
C1h) $\left.\sqrt{T}\left(\hat{\beta}^{8}-\beta^{\star}\right) \xrightarrow{L} N\left[0, \sigma^{2}\left[\begin{array}{ccc}A_{3} & \vdots & A_{4} \\ A_{4}^{i} & \vdots & \dot{A}_{5}\end{array}\right]\right]^{-1}\right]$
Furthermore, $B_{2}^{N}$ and $B_{2}^{N}-B_{3}^{N}$ are positive definite and positive semidefinite matrices respectively.

## Proof Corollary 1

Under the null hypothesis, $E\left[\eta_{t} \mid \delta_{t}\right]=0$ so that $D_{3}=D_{4}=0$.
Since $E\left[n_{t} \mid \delta_{t}\right]=g\left(z_{t}, \delta_{t}, p_{t}\right) \gamma$ it follows that $\gamma=0$ and hence $D_{2}=\operatorname{diag}\left\{g^{\prime}\left(z_{t}, \delta_{t}, P_{t}\right) \gamma\right\}=0$. Furthermore $D_{2}=0$ implies $D_{5}=0$ so that $B_{4}=B_{5}=B_{6}=B_{7}=B_{8}=B_{9}=0$. Making the appropriate substitutions in Tla-Tlh demonstrate C1a-C1h. Note that the instrumental variable estimators: $\mathrm{Cla}, \mathrm{Clb}, \mathrm{Cle}, \mathrm{Clf}$ remain unchanged and that $\mathrm{D}_{3}=0$ implies $B_{2}=B_{2}^{N}$ and $B_{3}=B_{3}^{N}$. Finally, $B_{2}^{N}$ is positive definite since $D_{1}^{2} D_{0}$ is diagonal with positive terms. To prove that $B_{2}^{N}-B_{3}^{N}$ is positive semidefinite we write $B_{2}^{N}-B_{3}^{N}=\operatorname{PLIM}\left(\frac{1}{T} W_{p}^{\prime}\left[D_{1}\left(D_{0}-D_{0} X^{\prime} v X D_{0}\right) D_{1}\right) W_{p}\right]$ and demonstrate that $D_{1}\left(D_{0}-D_{0} X \cdot V X D\right) D_{1}$ is positive semi-definite. Note that $D_{1}\left(D_{0}-D_{0} X \cdot V X D_{0}\right) D_{1}=D_{1} D_{0}^{1 / 2}\left[I-D_{0}^{1 / 2} X^{\prime} V X D_{0}^{1 / 2}\right] D_{0}^{1 / 2} D_{1}$, and that the matrix $\left[I-0_{0}^{1 / 2} \times V \times 0_{0}^{1 / 2}\right]$ is idempotent, and hence positive semi-definite. Q.E.D.

## Estimator Efficiency Orderings

1. Comparing Tla with T1D we see that asymptotically estimator one and estimator two have identical distributions. Thus one does no harm asymptotically by using the estimated rather than the actual probabilities. The limiting distributions are identical under the null hypothesis in which $\eta$ and $\approx$ are uncorrelated. When $f\left(z_{t}, \delta_{t}\right)$ is linear as in (24) the limiting distribution for $\mathrm{Tla}, \mathrm{Tlb}, \mathrm{Cla}, \mathrm{Clb}$ is $\mathrm{N}\left[0, \sigma^{2} A_{2}^{-1}\right]$.
2. Comparing Tlc with Tld we see that asymptotically the distributions of the reduced form estimators are different when estimated rather than actual probabilities are employed. However, it is not possible to determine whether one does better or worse (in the positive definite sense) using the estimated probabilities. The difference of the covariance matrices is indefinite since $V\left(\hat{\beta}^{4}\right)-V\left(\hat{\beta}^{3}\right)=-A_{2}^{-1} B_{3} A_{2}^{-1}$ and $B_{3}$ need not be definite. Under the null hypothesis, we see from C1c and C1d that $V\left(\hat{\beta}^{4}\right)-V\left(\hat{\beta}^{3}\right)=-A_{2}^{-1} \beta_{3}^{N} A_{2}^{-1}$ which is negative definite when $D_{1}$ is scalar.
3. Comparing Tlg with T1h we find that the asymptotic covariance matrices differ by a matrix which is positive definite. Hence, the Amemiya-Heckman estimator is more efficient when actual probabilities are used rather than estimated probabilities. To demonstrate this claim we note that $D_{4}$ is positive-definite since it is a diagonal matrix with positive terms and that $D_{5}=D_{2} D_{0} X{ }^{\prime} V X D_{0} D_{2}$ is positive definite since $V$ is the variance-covariance for the estimated logistic parameters $\hat{\alpha}$.

$$
\text { The definitions of }\left[\begin{array}{ccc}
B_{4} & \vdots & B_{5} \\
B_{5}^{\prime} & \vdots & \dot{B}_{6}
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{ccc}
B_{7} & \vdots & B_{8} \\
\cdot B_{8} & \cdot & \dot{B}_{9}
\end{array}\right]
$$

imply that each is positive definite as a consequence of the definiteness of $D_{4}$ and $D_{5}$.

From $T 1 g$ and $T 1 h$ we see that $V\left(\hat{\beta}^{8}\right)-V\left(\hat{\beta}^{7}\right)=$

$$
=\left[\begin{array}{ccc}
A_{3} & \vdots & A_{4} \\
\cdot A_{4}^{i} & \vdots & \dot{A}_{5}
\end{array}\right]^{-1}\left[\begin{array}{ccc}
B_{7} & & B_{8} \\
B_{8}^{\vdots} & \vdots & \dot{B}_{9}
\end{array}\right]\left[\begin{array}{ccc}
A_{3} & & A_{4} \\
\cdot A_{4} & \vdots & \dot{A}_{5}
\end{array}\right]^{-1}
$$

which is positive definite. Under the null hypothesis, C1g and C1h indicate that $\hat{\beta}^{7}$ and $\hat{\beta}^{8}$ have identical asymptotic distributions.

## Efficiency Orderings for the Reduced Form and Instrumental Variable Estimators

1. Comparing T1c with T1a (or T1b), we see that the difference $V\left(\hat{\beta}^{3}\right)-V\left(\hat{\beta}^{1}\right)=A_{2}^{-1} B_{2} A_{2}^{-1}+\sigma^{2}\left(A_{2}^{-1}-B_{2}\right)$. When $f\left(z_{t}, \delta_{t}\right)$ is linear, $A_{2}^{-1}-B_{2}=0$ so that $V\left(\hat{\beta}^{3}\right)-V\left(\hat{\beta}^{1}\right)=A_{2}^{-1} B_{2} A_{2}^{-1}$. Since $B_{2}=$ $\operatorname{PLIM}\left(\frac{1}{T} W_{p}^{\prime}\left(2 D_{1} D_{3}+O_{1}^{2} D_{0}\right) W_{p}\right)$ we cannot determine whether $A_{2}^{-1} B_{2} A_{2}$ is definite. Under the null hypothesis and assuming linearity for $f\left(z_{t}, \delta_{t}\right)$ we find $V\left(\hat{\beta}^{3}\right)-V\left(\hat{\beta}^{1}\right)=A_{2}^{-1} B_{2} A_{2}^{-1}$ which is positive definite from Corollary 1. Hence the reduced form estimator using known probabilities is less efficient than instrumental variable estimators $\hat{\beta}^{1}$ (or $\hat{\beta}^{2}$ ) under the null hypothesis.
2. Comparing Tld with Tla (or T1b) we see that the difference $V\left(\hat{\beta}^{4}\right)$ $V\left(\hat{\beta}^{3}\right)$ is indefinite. In this case one cannot determine whether the matrix $A_{2}^{-1}\left(B_{2}-B_{3}\right) A_{2}^{-1}$ is definite. Under the null hypothesis and assuming linearity for $f\left[z_{t}, \delta_{t}\right]$ we find that $V\left(\hat{\beta}^{4}\right)-V\left(\hat{\beta}^{1}\right)=$ $A_{2}^{-1}\left(B_{2}^{N}-B_{3}^{N}\right) A_{2}^{-1}$ which is positive definite from Corollary 1 . Hence the reduced form estimator using estimated probabilities is less efficient than instrumental variable estimators $\hat{\beta}^{l}$ (or $\hat{\beta}^{2}$ ) under the null hypothesis.
3. We now compare the instrumental variable estimators, $\hat{\beta}^{2}$ and $\hat{\beta}^{5}$, which differ by choice of instrument matrices. The instrument matrix for $\hat{\beta}^{2}$ is $W_{\hat{p}}\left(W_{\hat{p}}^{\prime} W_{\hat{p}}\right)^{-1} W_{\hat{p}} W_{\delta}$ while the instrument matrix for $\hat{\beta}^{5}$ is $Z\left(Z^{\prime} Z\right)^{-1} Z^{\prime} W_{\delta}$.

Intuitively, one would conclude that instruments provided by the "structural" span in $W_{p}$ would contain more information than those provided by the "reduced form" span in $Z$ since $W_{\delta}$ is expected to be more highly correlated with $W_{p}$ than with $Z$. In the case in which $W_{\delta}=[Z: \delta]$ (so that the dummy indicator variable is isolated in the equation $y=W_{\delta} \beta+n$ ) and in which $P_{t}$ is determined by a linear probability model: $P_{t}=Z_{t} \Delta$ it can be shown that the instrumental variable estimators $\hat{\beta}^{2}$ and $\hat{\beta}^{5}$ have identical limiting distributions. One suspects that a measure of the efficiency differential between the two estimators is provided by the degree of robustness in using a linear probability model to approximate logistic probabilities.
4. Reviewing points one and two above, we have not been able to make a positive statement about the relative efficiency of the reduced form estimators except under the null hypothesis. We can however compare the joint instrumental variable and reduced form estimator $\hat{\beta}^{6}$ with a pure instrumental variable estimator.

Suppose we use ( $X^{\prime} X W \hat{p}$ ) with order $T \times K_{1}$ as instruments for $y=W_{\delta} \beta+n$. The resultant estimator is:
$\hat{\beta}-\beta=\left[W_{\hat{p}}^{\prime} X^{\prime} X W_{\delta}\right]^{-1}\left[W_{\hat{p}}^{\prime} X^{\prime} X_{n}\right]$ which has the asymptotic distribution:

$$
T(\hat{\beta}-\beta) \rightarrow N\left[0, \sigma^{2}\left(C_{3}^{1} C_{3}\right)^{-1}\left(C_{3}^{1} C_{4} C_{3}\right)\left(C_{3}^{1} C_{3}\right)^{-1}\right] \text { which is precisely the }
$$

asymptotic distribution of $T\left(\hat{\beta}^{6}-\beta\right)$. The equivalence of the asymptotic distributions is due to the orthogonality of $X$ and the residual portion of the error term $\nu^{6}$. Recall:

$$
X v^{6}=X v^{4}=X\left[\eta+D_{1}\left(I-D_{0} X \cdot V X\right) \cdot(\delta-P)\right]
$$

$$
=X_{\eta}+D_{1}\left(X-X D_{0} X^{\prime} V X\right)(\delta-P)=X_{n}
$$

since $\left(X-X D_{0} X V X\right)=0$.
We conclude that the reduced form estimator using estimated probabilities differs from a pure instrumental variable estimator by a projection with the matrix $X$.

Estimator Efficiency Orderings for the Amemiya-Heckman and Instrumental Variable Procedures

The Amemiya-Heckman estimators $\hat{\beta}^{7}$ and $\hat{\beta}^{8}$ are least squares estimators of the transformed equations $y=W_{\delta} \beta+W_{g} \gamma+v^{7}$ and $y=W_{\delta} \beta+W_{\hat{g}} \gamma+\nu^{8}$. We concentrate our attention on the efficiency of estimating $\beta$ regarding $\gamma$ as nuisance parameters.

Estimation of $\beta$ by the Amemiya-Heckman methods implies:

$$
\begin{aligned}
& \left(\hat{\beta}^{7}-\beta\right)=\left(W_{\delta}^{\prime} M_{g} W_{\delta}\right)^{-1}\left(W_{\delta}^{\prime} M_{g} \nu^{7}\right) \text { and } \\
& \left(\hat{\beta}^{8}-\beta\right)=\left(W_{\delta}^{\prime} M_{\hat{g}} W_{\delta}\right)^{-1}\left(W_{\delta}^{\prime} M_{\hat{g}} \nu^{8}\right) \text { where } \\
& \left.M_{g}=\left[I-W_{g}\left(W_{g}^{\prime} W_{g}\right)^{-1} W_{g}\right]^{\prime}\right] \text { and } M_{\hat{g}}=\left[I-W_{\hat{g}}\left(W_{\hat{g}^{\prime}} W_{\hat{g}}\right)^{-1} W_{\hat{g}}{ }^{\prime}\right]
\end{aligned}
$$

Consider the asymptotic distribution of $\hat{\beta}^{7}$. Since $E\left[v^{7} v^{7}\right]=\sigma^{2} I+D_{4}$ it follows that:

$$
\begin{aligned}
& \sqrt{T}\left(\hat{\beta}^{7}-\beta\right) \xrightarrow{L} N\left[0, \sigma^{2} E_{1}+E_{2}\right] \text { where } \\
& E_{1}=\operatorname{PLIM}\left(\frac{1}{T} W_{\delta}^{\prime} M_{g} W_{\delta}\right)^{-1} \text { and } \\
& E_{2}=\operatorname{PLIM}\left(\frac{1}{T} W_{\delta}^{\prime} M_{g} D_{4} M_{g} W_{\delta}\right) .
\end{aligned}
$$

Clearly $E_{2}$ is positive definite so that $V\left(\hat{\beta}^{7}\right)>\sigma^{2} E_{1}$. Under the null hypothesis, $\mathrm{O}_{4}=0$ so that $V\left(\hat{\beta}^{7}\right)=\sigma^{2} E_{1}$ which exceeds the covariance matrix of the ordinary least squares estimator for $y=W_{\delta} \beta+n$.
2. It is not possible to order the Amemiya-Heckman with the instrumental variable estimator. Consider the difference in covariance matrices:

$$
V\left(\hat{\beta}^{7}\right)-V\left(\hat{\beta}^{1}\right)=\sigma^{2} E_{1}+E_{2}-\sigma^{2} B_{1}=\sigma^{2}\left(E_{1}-B_{1}\right)+E_{2}
$$

When $f\left(z_{t}, \delta_{t}\right)$ is linear, $B_{1}=A_{2}^{-1}$ and $E_{1}-B_{1}=\operatorname{PLIM}\left(\frac{1}{T} W_{\delta} M_{g} W_{\delta}\right)^{-1}-$ $\operatorname{PLIM}\left(\frac{1}{T} W_{p}^{\prime} W_{p}\right)^{-1}$. Now $E_{1}-B_{1} \geq 0$, if and only if $B_{1}^{-1}-E_{1}^{-1} \geq 0$. But $B_{1}^{-1}-E_{1}^{-1}=\operatorname{PLIM}\left(\frac{1}{T} W_{p}^{\prime} W_{p}\right)-\operatorname{PLIM}\left(\frac{1}{T} W_{\delta}^{\prime} W_{\delta}\right)+\operatorname{Plim}\left(\frac{1}{T}\left[W_{\delta}^{\prime} W_{g}\left(W_{g}^{\prime} W_{g}\right)^{-1} W_{g} W_{\delta}\right]\right)$ and $\operatorname{PLIM}\left(\frac{1}{T} W_{p}^{\prime} W_{p}\right) \leq \operatorname{PLIM}\left(\frac{1}{T} W_{\delta}^{\prime} W_{\delta}\right)$ so that $B_{1}^{-1}$ need not be greater than $E_{1}^{-1}$ in the positive definite sense.

If as an empirical matter, the difference between PLIM $\left(\frac{1}{T} W_{p}{ }^{\prime} W_{p}\right)$ and $\operatorname{PLIM}\left(\frac{1}{T} W_{\delta}^{\prime} W_{\delta}\right)$ is small relative to $\operatorname{PLIM}\left(\frac{1}{T} W_{\delta} W_{g}\left(W_{g} W_{g}\right)^{-1}\left(W_{g}^{\prime} W_{\delta}\right)\right)$ then $E_{1}$ will exceed $B_{1}$ implying that the instrumental variable estimator has better efficiency than the Amemiya-Heckman estimator.

The difference $V\left(\hat{\beta}^{7}\right)-V\left(\hat{\beta}^{1}\right)$ is further influenced by the positive matrix $E_{2}=\operatorname{PLIM}\left(W_{\delta} M_{g} D_{4} M_{g} W_{\delta}\right)$. The diagonal elements of $D_{4}$ are squares of the conditional expectation $E\left[\pi_{t} \mid \delta_{t}\right]$. Thus the power of the Amemiya-Heckman estimator as considered relative to the instrumental variable procedure is greatest when the hypothesized correlation in the error structure is largest.

## CHAPTER 2:

## VARIABLE

DESCRIPTION
AKWH75
RATE
AVPRICE
WMPE75
INCOME
RSP
WHE
SHE
ROOMS
PERSONS
CAC
CDDCAC
RACNUM
CDDRACNUM
AUTOWSH
AUTODSH
FOODFRZ
ELECRNGE
ECLTHDR
BWTV
CLRTV
monthly consumption of electricity in 1975 measured marginal price in 1975
measured average price in 1975
winter tail-end block price for electricity in 1975
monthly income of household head
measured rate structure premium
electric water heat dummy
electric space heat dummy
number of rooms in household
number of persons in household
central air-conditioning dummy
(annual cooling degree days) * (CAC)
number of room air conditioners
(annual cooling degree days) * (RACNUM)
automatic washing machine dummy automatic dishwasher dummy food freezer dummy electric range dummy electric clothes dryer dummy black and white television dummy color television dummy

## CHAPTER 3:

Room Air-Conditioning Choice Model:

RMOPCST	operating cost for room air-conditioning (1967\$)
RMCPCST	capital cost for room air-conditioning (1967\$)
RMOPCST1	RMOPCST/(base load usage)
RMCPCST1	RMCPCST/(base load usage)
CDD78	cooling degree days in 1978
RINCOME	income (1967\$)/103
NHSLDMEM	number of household members
Water Heat Choice Model:	
WHOPCST	
WHOPCST1	
WHCPCST	water heat operating costs
WHCPCST1	water heat operating cost divided by usage
SHE	water heat capital cost
SHG	water heat capital cost divided by usage
SHO	(space heat fuel electricity)*(ALT1)


1	electric water heat
2	natural gas water heat
3	oil water heat

Water Heat Inclusive Values:

| WHINCVE | water heat inclusive value given electricity |
| :--- | :--- | :--- |
| WHINCVG | water heat inclusive value given natural gas |
| WHINCVO | water heat inclusive value given oil |

Space Heat Inclusive Value:
SHINCVNC space heat inclusive value given no central airconditioning
SHINCVC space heat inclusive value given central airconditioning

Central Air Choice Model:
CACOPC central air-conditioning operating cost
CACCST
central air-conditioning capital cost

SU18
SU13
SU14S
SU15S
SUT4A
SU15A
SUWHE
SURMAC
(HVAC 18 dummy)(UEC18)
(HVAC 13 dummy) (UEC13)
(HVAC 14 dummy) (UECT4S)
(HVAC 15 dummy) (UEC15S)
(HVAC 14 dummy) (UEC14A)
(HVAC 15 dummy)(UECT5A)
(Water heat electric dummy)(UECWH)
(Room air conditioner dummy)(UECRMAC)

SU18P, SU13P, SU14SP, SU15SP, SU14AP, SU15AP, SUWHEP, and SURMACP are variables multiplied by service prices.

SU18Y, SU13Y, SU14SY, SUl5SY, SU14AY, SU15AY, SUWHEY, and SURMACY are variables multiplied by income.


## REFERENCES

1. Acton, J.P., B.M. Mitchell, and R.S. Mowill (1976), Residential Demand for Electricity in Los Angeles: An Econometric Study of Disaggregated Data, The Rand Corporation, R-1899-NSF.
2. Acton, J.P., B.M. Mitchell, and R.S. Mowill (1978), Residential Electricity Demand under Declining Block Tariffs: An Econometric Study Using MicroData, The Rand Corporation, P-6203.
3. Amemiya, T. (1973), "Regression Analysis When the Dependent Variable is Truncated Normal," Econometrica 41, pp. 997-1016.
4. Amemiya, T. (1974a), "Bivariate Probit Analysis: Minimum Chi-Square Methods," Journal of the American Statistical Association 69, pp. 940-944.
5. Amemiya, T. (1974b), Multivariate Regression and Simultaneous Equation Models When the Dependent Variables are Truncated Normal, "Econometrica 42, pp. 999-1012.
6. Amemiya, T. (1974c), "A Note on the Fair and Jaffee Model," Econometrica 42, pp. 759-762.
7. Amemiya, T. (1978a), "The Estimation of a Simultaneous Equation Generalized Probit Mode1," Econometrica 46, pp. 1193-1205.
8. Amemiya, T. (1978b), "On a Two-Step Estimation of a Multivariate Logit Model," Journal of Econometrics, Vol. 8, no. 1, p. 13-21.
9. Amemiya, T. (1979), "The Estimation of a Simultaneous Equation Tobit Model," International Economic Review in press.
10. Amemiya, T. and G. Sen (1977), "The Consistency of the Maximum Likelihocd Estimator in a Disequilibrium Model," Tech. Report 238, Institute for Math. Studies in Social Sciences, Stanford.
11. Anderson, K.P. (1973), Residential Energy Use: An Econometric Analysis, The Rand Corporation, R-1297-NSF.
12. Annual Climatological Data - National Summary 1978-1979.
13. Association for Space Heat, Refrigeration, Air-Conditioning Manufacturers (1977), Handbook and Product Directory, Fundamentals, New York: ASHRAE.
14. Balestra, P. and Nerlove, M. (1966), "Pooling Cross Section and Time Series Data in the Estimation of a Dynamic Model: The Demand for Natural Gas," Econometrica 34, pp. 585-612.
15. Barnes, R., R. Gillingham, and R. Hagemann (1981), "The Short-Run Residential Demand for Electricity," Review of Economics and Statistics.
16. Becker, G.S. (1965), "A Theory of the Allocation of Time," Economic Journal, 75, no. 299, pp. 493-517.
17. Berndt, E.R. (1978), "The Demand for Electricity: Comment and Further Results," Resources Paper No. 28, Department of Economics, University of British Columbia.
18. Blackorby, C., G. Lady, D. Nissen, and R.R. Russell (1970), "Homothetic Separability and Consumer Budgeting," Econometrica 38, pp. 468-472.
19. Blumstein, C., C. York, and W. Kemp, "An Assessment of the National Interim Energy Consumption Survey," undated draft, Energy Resources Group, University of California - Berkeley.
20. Brownstone, D. (1980), An Econometric Model of Consumer Durable Choice and Utilization Rate, unpublished Ph.D. thesis, University of California, Berkeley.
21. Burtless and Hausman (1978), "The Effect of Taxation on Labor Supply," J. Polit. Econ., 86, pp. 1103-30.
22. California State Energy Conservation (1979), "California Energy Demand 1978-2000," working paper.
23. Cambridge Systematics/West (1979), "An Analysis of Household Survey Data in Household Time-of-Day and Annual Electricity Consumption," Cambridge Systematics/West, working paper.
24. Cambridge Systematics, Inc. (1981), "Development of a Residential Appliance Survey for New England Electric System."
25. Chern, W.S., and W. Lin (1976), "Energy Demand for Space Heating: An Econometric Analysis," American Statistical Association, Proceedings of the Business and Economic Statistics Section.
26. Chow, G.C. (1957), Demand for Automobiles in the United States, ("Contribution to Economic Analysis," Vol. XIII Amsterdam: North-Holland Publishing Co.).
27. Cowing, T., J. Dubin, and D. McFadden (1981a), "Residential Energy Demand Modeling and the NIECS Data Base: An Evaluation," Massachusetts Institute of Technology Energy Laboratory Report No. MIT-EL-82-009.
28. Cowing, T., J. Dubin, and D. McFadden (1981b), "A Review and Evaluation of "An Assessment of the National Interim Energy Consumption Survey," by Carl Blumstein, Carl York, William Kemp - Energy Resources Group, University of California, Berkeley," Massachusetts Institute of Technology, DMCF-81-3.
29. Cowing, T., J. Dubin, and D. McFadden (1981c), "The NIECS Weather Information," Massachusetts Institute of Technology, DMCF-81-4.
30. Cowing, T., J. Dubin, and D. McFadden (1981d), "Report on Procedures Used to Identify State Locations for NIECS Households," Massachusetts Institute of Technology, DMCF-81-5.
31. Cowing, T., J. Dubin, and D. McFadden (1981e), "Estimating HVAC and Water Heating Equipment and Installation Costs Using NIECS Data," Massachusetts Institute of Technology, DMCF-81-8.
32. Cragg, J.G. (1971), "Some Statistical Models for Limited Dependent Variables with Application to the Demand for Durable Goods," Econometrica 39, pp. 829-844.
33. Cragg, J.G. and R. Uhler (1970), "The Demand for Automobiles," Canadian Journal of Economics 3, pp. 386-406.
34. Diewert, W.D. (1974), "Intertemporal Consumer Theory and the Demand for Durables," Econometrica 42, pp. 497-516
35. Dubin, J. and D. McFadden (1979), "An Econometric Analysis of Residential Electric Appliance Holdings and Consumption," Massachusetts Institute of Technology, Department of Economics Working Paper, presented at the 4th World Conference of the Econometric Society, Aix-en-Provence, France.
36. Duncan, G. (1980a), "Formulation and Statistical Analysis of the Mixed Continuous/Discrete Variable Model in Classical Production Theory," Econometrica 48, pp. 839-851.
37. Duncan, G. (1980b), "Mixed Continuous Discrete Choice Models in the Presence of Hedonic or Exogenous Price Functions," Washington State University, working paper.
38. Duncan, G. and Duane Leigh (1980), "Wage Determination in the Union and Non-Union Sectors: A Sample Selectivity Approach," Industrial and Labor Relations Review (forthcoming).
39. Fair, R.C. and D.M. Jaffee (1972), "Methods of Estimation for Markets in Disequilibrium," Econometrica 40, pp. 497-514.
40. Fisher, F. and C. Kaysen (1962), A Study in Econometrics: The Demand for Electricity in the U.S., North-Holland Publishing Company.
41. Fuss, M. and D. McFadden (1978), "Flexibility versus Efficiency in Ex-Ante Plant Design, in Fuss and McFadden (eds.), Production Economics: A Dual Approach to Theory and Applications, North-Holland Publishing Company, Amsterdam.
42. Geary, P.T. and M. Morishima (1973), "Demand and Supply under Separability," in Theory of Demand: Real and Monetary, M. Morishima and others (eds.), Oxford: Clarendon.
43. George, S. (1979), Short-Run Residential Electricity Demand: A Policy Oriented Look, Ph.D. Dissertation, University of California, Davis.
44. George, S. (1981), "A Review of the Conditional Demand Approach to Electricity Demand Estimation," (revised version of a paper given at the EPRI Conference on "End-Use Modeling and Conservation Analysis," Atlanta, Georgia).
45. Goett, A. (1979), "A Structured Logit Model of Appliance Investment and Fuel Choice," Working Paper, Cambridge Systematics, Inc. West.
46. Goett, A., D. McFadden, and G.L. Earl (1980), "The Residential End-Use Energy Policy System: Model Description and Analysis of Energy Usage and Efficiency Choice."
47. Goldfeld, S.M. and R.E. Quandt (1972), Nonlinear Methods on Econometrics, Ansterdam: North-Holland Publishing Company.
48. Goldfeld, S.M. and R.E. Quandt (1973), "The Estimation of Structural Shifts by Switching Regressions," Annals of Economic and Social Measurement 2, pp. 475-485.
49. Goldfeld, S.M. and R.E. Quandt (1976), "Techniques for Estimating Switching Regressions" in S.M. Goldfeld and R.E. Quandt (eds.) Studies in Non-Linear Estimation, Cambridge: Ballinger.
50. Gorman, W.M. (1959), "Separable Utility and Aggregation," Econometrica 27, pp. 469-481.
51. Griliches, Z. (1960), "The Demand for a Durable Input: Farm Tractors in the United States, 1921-57," in Demand for Durable Goods, Harberger (eds.).
52. Härtman, Raymond S. (1978), A Critical Review of Single Fuel and Interfuel Substitution Residential Energy Demand Models, Massachusetts Institute of Technology Energy Laboratory Report, MIT-EL-78-003.
53. Hartman, R.S. (1979a), "Discrete Consumer Choice Among Alternative Fuels and Technologies for Residential Energy Using Appliances," Massachusetts Institute of Technology Energy Laboratory Working Paper, MIT-EL-79-049WP.
54. Hartman, Raymond S. (1979b), "Frontiers in Energy Demand Modeling," Annual Review of Energy, Forthcoming.
55. Hartman, R.S., and A. Werth (1979), "Short-Run Residential Demand for Fuels: A Disaggregated Approach," Working Paper, MIT-EL-79-01WP. A1so in Land Economics, 1981.
56. Hausman, J. (1978), "Specification Tests in Econometrics," Econometrica 46, pp. 1251-1271.
57. Hausman, J. (1979), "Individual Discount Rates and the Purchase and Utilization of Energy-Using Durables," The Bell Journal of Economics, Volume 10, No. 1, pp. 33-54.
58. Hausman, J. (1981), "Exact Consumer's Surplus and Deadweight Loss," American Economic Review 71, pp. 663-676.
59. Hausman, J., M. Kinnucan, and D. McFadden (1979), "A Two-Leve1 Electricity Demand Model," Journal of Econometrics 10, pp. 263-289.
60. Hausman, J. and D. McFadden (1981), "Specification Tests for the Multinomial Logit Model," Department of Economics, Massachusetts Institute of Technology Working Paper No. 292.
61. Hausman, J. and Taylor, W.E. (1981), "Panel Data and Unobservable Effects, Econometrica 49, No. 5.
62. Hausman, J. and Trimble, J. (1981), "Appliance Purchase and Usage Adaptation to a Permanent Time of Day Electricity Rate Schedule, mimeo Massachusetts Institute of Technology.
63. Hay, J. (1979), "An Analysis of Occupational Choice and Income," Ph.D. Dissertation, Yale University.
64. Heckman, J. (1976a), "Simultaneous Equations Model with Continuous and Discrete Endogenous Variables and Structural Shifts" in Goldfeld and Quandt (eds.), Studies in Non-Linear Estimation, Cambridge: Ballinger.
65. Heckman, J. (1976b), "The Common Structure of Statistical Models of Truncation, Sample Selection and Limited Dependent Variables and a Simple Estimation for Such Models," Annals of Economic and Social Measurement 5, pp. 475-492.
66. Heckman, J. (1978), "Dummy Endogenous Variables in a Simultaneous Equation System," Econometrica 46.
67. Heckman, J. (1979), "Sample Selection Bias as a Specification Error," Econometrica 47.
68. Hirst, E. and J. Carney (1978), "The Oak Ridge National Laboratory Engineering-Economic Model of Residential Energy Use," ORNL/CON-24.
69. Hirst, E., R. Goeltz, and J. Carney, "Residential Energy Use and Conservation Actions: Analysis of Disagaregate Household Data," ORNL/CON-68 Oak Ridge National Laboratory.
70. Houthakker, H.S. (1951a), "Electricity Tariffs in Theory and Practice," Economic Journal 61, pp. 1-25.
71. Houthakker, H.S. (1951b), "Some Calculations of Electricity Consumption in Great Britain," JRSS Series A 114, 351-371.
72. Houthakker, H.S. and L. Taylor (1970), Consumer Demand in the U.S., 2nd edition, Harvard University Press.
73. King, Mervyn (1980), "An Econometric Model of Tenure Choice and Demand for Housing as a Joint Decision," University of Birmingham Working Paper.
74. Lancaster, K. (1966), "A New Approach to Consumer Theory," J. Polit. Econ., 74, pp. 132-57.
75. Lee, L.F. (1978), "Unionism and Wage Rates: A Simultaneous Equation Model with Qualitative and Limited Dependent Variables," International Economic Review 19, pp. 415-433.
76. Lee, L.F. (1981), "Simultaneous Equations Models with Discrete and Censored Variables," in C. Manski and D. McFadden (eds.), Structural Analysis of Discrete Data, Cambridge, The Massachusetts Institute of Technology Press.
77. Lee, L.F. and R.P. Trost (1978), "Estimation of Some Limited Dependent Variable Models with Applications to Housing Demand," Journal of Econometrics 8, pp. 357-382.
78. Lee, L.F., G.S. Madalla, and R. Trost (1980), "Asymptotic Covariance Matrices of Two-Stage Probit and Two-Stage Tobit Methods for Simultaneous Equations Models with Selectivity," Econometrica 48, pp. 491-503.
79. Li, M. (1977), "A Logit Model of Home Ownership," Econometrica 45, pp. 1081-1097.
80. Maddala, G. and F. Nelson (1974), "Maximum Likelihood Methods for Markets in Disequilibrium," Econometrica 42, pp. 1013-1030.
81. Maddala, G. and F. Nelson (1975), "Switching Regression Models with Exogenous and Endogenous Switching," Proceedings of the American Statistical Association, Business and Economics Section, pp. 423-426.
82. McFadden, D. (1973), "Conditional Logit Analysis of Qualitative Choice Behavior," in P. Zarembka, Frontiers in Econometrics, Academic Press, New York.
83. McFadden, D. (1974), "The Measurement of Urban Travel Demand," Journal of Public Economics 3, pp. 303-328.
84. MCFadden, D. (1978), "Modelling the Choice of Residential Location," in A. Karlquist, et al., Spatial Interaction Theory and Residential Location, Amsterdam: North-Holland, pp. 75-96.
85. McFadden. (1979a), "Econometric Net Supply Systems for Firms with Continuous and Discrete Commodities," mimeo, Department of Economics, Massachusetts Institute of Technology.
86. McFadden, D. (1979b), "Quantitative Hethods for Analyzing Travel Behavior of Individuals," in D. Hensher and P. Stopher (eds.), Behavioral Travel Modeling, Croom-Helm.
87. McFadden, D. (1981a), "An Evaluation of the ORNL Residential Energy Use Model," Iraft Report, Massachusetts Institute of Technology Energy Laboratory, Energy Model Analysis Program.
88. McFadden, D. (1981b), "Econometric Mode1s of Probabilistic Choice" in C. Manski and D. McFadden (eds.), Structural Analysis of Discrete Data, Massachusetts Institute of Technology Press.
89. McFadden, D., D. Kirshner, and C. Puig (1978), "Determinants of the Long-Run Demand for Electricity," Proceedings of the American Statistical Association.
90. McFadden, D. and J. Dubin (1982), "A Thermal Model for Single-Family OwnerOccupied Detached Dwellings in the National Interim Energy Consumptior Survey," Working Paper, Department of Economics, Massachusetts Institute of Technology.
91. McFadden, D. and C. Winston (1981), "Joint Estimation of Discrete and Continuous Choices in Freight Transportation," Working Paper, Department of Economics, Massachusetts Institute of Technology.
92. Mount, T.D., L.D. Chapman, and T.J. Tyre11 (1973), "Electricity Demand in the United States: An Econometric Analysis," Oak Ridge National Laboratory.
93. Muellbauer, John (1974), "Household Production Theory, Quality, and the 'Hedonic Technique'," American Economic Review 64, pp 977-994.
94. Muth, Richard F. (1966), "Household Production and Consumer Demand Functions," Econometrica 34, pp. 699-708.
95. National Electric Rate Book, August 1978, DOE/EIA-0110 (78), Department of Energy-Energy Data Reports-New Jersey.
96. Nordin, J.A. (1976), "A Proposed Modification of Taylor's Demand Analysis: Comment," Bell Journal of Economics.
97. Parti, M. and C. Parti (1980), "The Total and Appliance-Specific Conditional Demand for Electricity in the Household Sector," Bell Journal of Economics.
98. Pesaran, M.H. (1975), "On the General Problem of Model Selection," Review of Economic Studies 41, 153-171.
99. Pollak, R.A. and M.L. Wachter (1975), "The Relevance of the Household Production Function and Its Implications for the Allocation of Time," J. Polit. Econ., 83, pp. 255-277.
100. Response Analysis Corporation (1976), Lifestyles and Household Energy Use: Report on Methodology, Report \#3819, Princeton, New Jersey.
101. Response Analysis Corporation (1981), Report on Methodology, 6 vols. (Princeton, New Jersey).
102. Rosen, S. (1974), "Hedonic Prices and Implicit Markets: Product Differentiations in Price Competition," J. Polit. Econ., 82, pp. 34-55.
103. Taylor, L.D. (1975), "The Demand for Electricity: A Survey," Bell Journal of Economics 6, Number 1, 74-110.
104. Taylor, L.D., G.R. Blattenberger, and P.K. Verleger (1977), "The Residential Demand for Energy," Electric Power Research Institute, Palo Alto.
105. U.S. Department of Energy, Energy Information Administration, Office of Energy Markets and End Use, DOE/EIA-0272, Exploring the Variability in Energy Consumption, July 1981.
106. U.S. Department of Energy, Energy Information Administration, Office of Energy Markets and End Use, DOE/EIA-0272/5, Exploring the Variability in Energy Consumption: A Supplement, October 1981.
107. U.S. Department of Energy, Energy Information Administration, Residential Energy Consumption Survey: Characteristics of the Housing Stocks and Households, 1978, Feb. 1980, D0E/EIA-0207/2.
108. U.S. Department of Energy, Energy Information Administration, Resdiential Energy Consumption Survey: Conservation, February 1980, DOE/EIA-0207/3.
109. U.S. Department of Energy, Energy Information Administration, Residential Energy Consumption Survey: Consumption and Expenditures, April 1979 Through March 1979, July 1980, DOE/EIA-1017/5.
110. U.S. Department of Energy, Energy Information Administration, Residential Energy Consumption Survey: 1979-1980 Consumption and Expenditures, Part I: National Data (Including Conservation), April 1981, DOE/EIA-0262/1.
111. U.S. Department of Energy, Energy Information Administration, Residential Energy Consumption Survey: 1979-1980 Consumption and Expenditures, Part II: Regional Data, May 1981, DOE/EIA-0262/2.
112. U.S. Department of Energy, Energy Information Administration, Single-Family Households: Fuel Inventories and Expenditures: National Interim Energy Consumption Survey, Dec. 1979, DOE/EIA-0207/1.
113. U.S. Department of Energy, "STATE Energy Fuel Prices by Major Economic Sectors from 1960-1977," DOE-EIA-0190, July, 1979.
114. U.S. Department of Energy, Office of Energy Markets and End Use Energy Information Administration, "Technical Documentation for the Residential Energy Consumption Survey: National Interim Energy Consumption Survey 1978-1979, Household Monthly Energy Consumption and Expenditures Public Use Data Tapes - User's Guide," August, 1981.
115. Werth, Alix (1978), "Residential Demand for Electricity and Natural Gas in the Short Run: An Econometric Analysis, Massachusetts Institute of Technology Energy Laboratory Working Paper No. MIT-EL-78-031WP.
116. Wilder, R.P., and J.F. Willenborg (1975), "Residential Demand for Electricity: A Consumer Panel Approach," Southern Economic Journal.
117. Wilson, J. (1971), "Residential Demand for Electricity," Quarterly Review of Economics and Business.
118. Wu, D. (1973), "Alternative Tests of Independence Between Stochastic Regressors and Disturbances," Econometrica 41, 733-750.

[^0]:    ${ }^{\text {a }}$ Estimation is by maximum likelihood using the QUAIL (Qualitive, Intermittent, and Limited Dependent Variable Statistical Program) developed by Daniel McFadden and Hugh Wills.
    $\mathrm{b}_{\text {A }}$ case is taken as being correctly predicted when the chosen alternative is forecast to have the highest probability of being chosen.

[^1]:    a Based on the sample of 2018 owner occupied single-family detached dwelling built since 1955.

[^2]:    $0.413572 \mathrm{E}-01$ $0.412232 \mathrm{E}-01$ $0.410820 \mathrm{E}-01$ $0.308467 \mathrm{E}-01$ $0.288042 \mathrm{E}-01$ $0.351842 \mathrm{E}-01$ 0. 257686E-01
    $0.356741 \mathrm{E}-01$ . 282682F-01 . 367810 E-O1 . $367810 E-01$ $0.355750 \mathrm{E}-\mathrm{O} 1$ $0.316213 \mathrm{E}-\mathrm{O} 1$ $0.363177 \mathrm{E}-01$ $0.371938 E-01$ $0.357129 E-01$ $0.356104 \mathrm{E}-01$ $0.410165 \mathrm{E}-01$ O.244420E-O1
    $0.425731 \mathrm{E}-01$ 0. 365681E-01 . 365681 E -OI $0.284403 E-01$ $0.354836 \mathrm{E}-01$ 0. 350035E-01 $0.252713 E-01$ $0.409030 \mathrm{E}-01$ 0.311559E-01 $0.415701 \mathrm{E}-01$ $0.458561 \mathrm{E}-01$ $0.318975 \mathrm{E}-01$ $0.370014 E-01$ . 390098E-01 . $390098 \mathrm{E}-01$ . $237153 \mathrm{E}-01$ . $357874 \mathrm{E}-01$ $0.472943 E-01$ . $512574 \mathrm{E}-01$ $0.317062 \mathrm{E}-01$ $0.499166 \mathrm{E}-01$ $0.464387 E-01$
    . 194822E-O1
    $0.343593 E-01$
    . 242158 E -01
    . 242 158E-01
    . 100343E-01
    . 3699 1OE-O1
    0.11798 1E-01 $0.378893 \mathrm{E}-01$ 0.430062E-01 O. $106878 \mathrm{E}-01$ O. 151837E-01
    $0.459339 E-01$
    $0.475107 \mathrm{E}-0$
    $0.465003 \mathrm{E}-\mathrm{O}$
    $0.458806 E-0$
    $0.373267 \mathrm{E}-0$ $0.398837 E-0$ $0.380255 \mathrm{E}-01$
    $0.409918 \mathrm{E}-01$
    $0.354884 \mathrm{E}-0$ O. $354884 \mathrm{E}-0$ 0.3678 1OE-O $0.383042 \mathrm{E}-\mathrm{O}$ $0.381194 \mathrm{E}-0$ $0.382188 \mathrm{E}-0$ $0.390650 \mathrm{E}-\mathrm{O}$ 0.38963 1E-O 0. 377790E-O 0. 393671E-O $0.360207 E-01$ $0.414345 E-01$ $0.414201 E-01$ O. 361560 E O. 361560 E -O O. 36985 1E-O 0.372527E-O $0.358435 E-0$ $0.409030 \mathrm{E}-\mathrm{O}$ $0.388244 \mathrm{E}-\mathrm{O}$ 0.429540 E - 0 $0.460569 \mathrm{E}-\mathrm{O}$ $0.373043 E-01$ 0. 365076E-01 $0.420379 \mathrm{E}-\mathrm{O}$ $0.420379 E-0$ $0.237153 E-0$ $0.357874 \mathrm{E}-\mathrm{O}$ $0.402931 E-0$ $0.388125 \mathrm{E}-\mathrm{O}$ $0.354506 \mathrm{E}-\mathrm{O}$ $0.368473 \mathrm{E}-\mathrm{O}$ $0.409899 E-01$ 0.388453E-01 $0.343593 \mathrm{E}-01$ $0.311832 \mathrm{E}-01$ 0. 249291 E $0.249291 E-O$ $0.326029 E-0$ O. $246782 \mathrm{E}-\mathrm{O}$ 0.292362E-O1 $0.301974 \mathrm{E}-\mathrm{O} 1$ $0.275485 E-01$ O.272085E-O

