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ASPECTS OF BIOLOGICAL SEQUENCE COMPARISON

by

Stephen Frank Altschul

Submitted to the Department of Mathematics

on February 12, 1987 in partial fulfillment of the requirements for

the degree of Doctor of Philosophy in Mathematics.

ABSTRACT

This thesis investigates methods for finding optimal alignments and

subalignments of biological sequences and assessing their statistical

significance. Specifically, nonlinear similarity functions are proposed as

the most appropriate for comparing subalignments, in contrast to the linear

similarity functions in wide use. Algorithms are developed for finding

locally optimal subalignments, using any reasonable similarity function as

a selection criterion. The statistical significance of nucleic acid and

protein sequence subalignments is investigated using Monte Carlo methods.

The methods developed are used to find interesting alignments from several

real biological sequences. In addition, the thesis identifies and corrects

mistakes in the literature concerning the optimal alignment of two

sequences using affine gap costs, the time complexity of finding optimal

alignments using concave gap costs, and the random permutation of a

sequence preserving its doublet frequency.

Thesis Supervisor: Professor Daniel J. Kleitman
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I. INTRODUCTION

A sequence is a finite string of letters drawn from a finite alphabet.

While a sequence may be treated as a purely abstract entity, many sequences

have their origin in the real world. Examples of real-world sequences are

pieces of English text and sequences representing the primary structure of

biological macromolecules, such as proteins or nucleic acids. The set of

questions it is fruitful to ask about real-world sequences depends upon the

origin of the sequences. The questions investigated in this thesis are

some of those that seem appropriate for protein or nucleic acid sequences.

Since the discussion will be abstract, the results will apply to sequences

of any kind.

Biological sequences. Deoxyribonucleic acids (DNA), ribonucleic acids

(RNA) and protein molecules are each constructed as a linear sequence of a

small set of chemical building blocks. (In some cases the DNA sequence is

circular.) DNA molecules generally are double stranded with each strand

composed of four types of deoxyribonucleotide in a specific order. The two

strands of a DNA molecule are complementary so that the sequence of

nucleotides in one strand determine the sequence of nucleotides in the

other. RNA molecules generally are single stranded, with a strand

constructed from four types of ribonucleotide. Protein molecules consist

of one or more polypeptide chains constructed from twenty types of amino

acid. The building blocks of DNA, RNA and protein molecules frequently are

represented by single letters from the Latin alphabet, as shown in

Table 1-1.
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Table 1-1. One letter codes for
DNA, RNA and protein sequences

DNA Sequences

A Adenine
C Cytosine
G Guanine
T Thymine

RNA Sequences

A Adenine
C Cytosine
G Guanine
U Uracil

Protein Sequences

Alanine
Cysteine
Aspartic acid
Glutamic acid
Phenylalanine
Glycine
Histidine
Isoleucine
Lysine
Leucine

M
N
P

Q
R
S
T
V
w
y

Methionine
Asparagine
Proline
Glutamine
Arginine
Serine
Threonine
Valine
Tryptophan
Tyrosine
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The primary biological function of a DNA molecule is carrying genetic

information encoded in the sequence of its nucleotides. It is reasonable

that much of the relevant information about a DNA molecule can be captured

in an abstract sequence from an alphabet of four letters representing the

four deoxyribonucleotides. In contrast, the biological function of many

RNA and all protein molecules is dependent upon their conformation in

space. It is thought that under physiological conditions this conformation

is strongly dependent upon the sequence of building blocks from which the

molecules are constructed. Predicting the three-dimensional structure of

these molecules from their sequences alone remains a distant goal.

Nevertheless, much information can be gleaned from protein sequence data.

For example, two proteins with similar sequences may be evolutionarily

related or may share a similar three-dimensional structure. We shall be

content to represent RNA and protein as well as DNA molecules by abstract

sequences of letters (Table 1-1).

Sequence transformation. Consider the three sequences "SHEHERAZADE",

"SHEVARDNADZE" and "IGLOO" drawn from the space of sequences of letters of

the Latin alphabet. Intuitively, the first two sequences are closer or

more similar to one another than either is to the third. One approach to

formalizing this concept is to define a set of operators on the space of

sequences. For example, one operator might change the letter "A" to the

letter "B"; a second might delete the letter "X"; a third might reverse the

order of any two adjacent letters. A sufficiently rich set of operators

will allow any sequence in the space to be transformed into any other by

repeated use of the operators. If a positive cost is assigned to each
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operator, then the cost of a given transformation of one sequence into

another can be defined as the sum of the costs of the operators employed.

The distance between two sequences can be defined as the minimum cost for

transforming one into the other. Generally operators are defined so that

if a given operator will transform sequence X to sequence Y, the inverse

operator exists and has the same cost. When this is the case, distance as

defined above behaves as a metric on the space of sequences.

Real-world considerations may affect the choice of operators and the

costs assigned to them. For example, one may hope to correct spelling

errors in typed text by finding the nearest neighbor(s) of an unrecognized

word. A reasonable operator to use in such a context might be one that

allowed two adjacent letters to be transposed. The cost of replacing one

letter by another might be related to the physical distance of two letters

on a keyboard. For errors made in electronic text transfer a totally

different set of operators and costs would probably be desirable.

Sequence alignment. The theory of evolution provides the main

justification for comparing biological sequences. Two proteins with the

same function in different species may have evolved from the same ancestral

protein; two sections of DNA in the same gene may have descended from a

duplicated ancestral fragment. There are mechanisms of mutation that

permit the substitution of one nucleotide for another and the deletion or

insertion of one or more nucleotides. These mutations at the DNA level can

appear at the protein level as substitutions, deletions or insertions.

While more complicated mutations are possible, these three types are the

most common.

page 10



When the only operators permitted are those that substitute one letter

for another and those that delete or insert one or more letters, a natural

object of study that is central to this thesis is a sequence alignment. An

alignment of two sequences is a one-to-one ordered correspondence of their

elements, where an arbitrary number of nulls (missing letters) may be

inserted into each sequence. Two nulls may not be placed into

correspondence. One alignment of "SHEHERAZADE" and "SHEVARDNADZE" is

SHE-HER--A-ZADE

SHEV-ARDNADZ--E

There is no simple correspondence between sequence transformations, as

described above, and sequence alignments. For example, a transformation of

"SHEHERAZADE" to "SHEVARDNADZE" may pass through the sequence

"THEHERAZADE". There is no way of indicating this in an alignment.

Both sequence transformations and sequence alignments can be thought

of as explaining relationships between sequences. Alignments promote

parsimony of explanation. A letter of one sequence is either unaltered,

changed into a different letter, or deleted. More roundabout explanations

of relationship are excluded.

In this thesis, a subsequence of a sequence is a string of adjacent

letters from the sequence. A subalignment of two sequences is an alignment

of a subsequence from each sequence. A diagonal (sub)alignment is a

(sub)alignment containing no nulls.

The cost of an alignment. As with sequence transformations, the

intuition that one sequence alignment is better (more convincing as an
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explanation of relationship) than another is formalized by defining a

real-valued cost function on alignments. While an infinite variety of cost

functions can be imagined, we use the operator notion to narrow the

definition.

DEFINITION. A substitution cost function is a real-valued function on

unordered pairs of letters.

DEFINITION. A gap cost function is a real-valued function on strings

of letters.

DEFINITION. Given substitution and gap costs, the cost of an

alignment or subalignment is the sum of the substitution cost for each pair

of aligned letters and the gap cost for each maximal string of letters

aligned with nulls.

In this thesis, we shall assume that alignments with lower cost are

better and that all costs are rational and non-negative. Further, we shall

assume that the gap cost of the concatenated string XY is never greater

than the sum of the gap costs of the individual strings X and Y. For

purposes of illustration we shall frequently use the substitution cost

function cid(xy) defined to be 0 when x = y and 1 otherwise.

In the literature of biological sequence comparison, alignment cost as

defined above has sometimes been called distance or similarity (Needleman

and Wunsch, 1970). We shall use the word distance to mean the minimum cost

of aligning two sequences and shall reserve the word similarity for a

concept to be elaborated in Chapter IV. Occasionally additional
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constraints to those given above are either implied or explicitly imposed

on the substitution and gap cost functions. For instance, Sellers

(1974a,b) places conditions on substitution and gap cost functions that

force the minimum cost of aligning two sequences to act as a metric on the

space of sequences.

A brief history of biological sequence comparison. The method of

dynamic programming (described below) was introduced to biological sequence

comparison by Needleman and Wunsch (1970) to find optimal alignments of two

protein sequences. Their algorithm had time complexity O(MN), where M is

the length of the shorter and N the length of the longer sequence. Though

they speculated on the possibility of using various substitution and gap

costs, they.confined their study to the case in which all gap costs are

identical. Sankoff (1972) described how the dynamic programming approach

could be modified so that only alignments with fewer than a fixed number of

gaps were studied. Sellers (1974a), treating the null element as a member

of the alphabet, proved that if the substitution costs provide a metric for

the alphabet, then this metric can be extended to the space of sequences.

He also showed (Sellers, 1974b) that a dynamic programming algorithm can be

used to find the distance between any two sequences. Waterman et al.

(1976) described an algorithm of time complexity O(MN2 ) for finding the

optimal alignments of two sequences when arbitrary gap costs are allowed.

This contrasted with Sellers' algorithm, which required the gap cost of a

string to be the sum of the gap costs for each element of the string.

Dayhoff et al. (1978) derived a substitution cost function for protein

sequence comparison from studies of related proteins with known sequences.
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Schwartz and Dayhoff (1978) studied the relative effectiveness of this and

other substitution cost functions for detecting distant relationships among

proteins. Smith and Waterman (1981a,b) proposed that Needleman-Wunsch

similarity can be used to define optimal subalignments for two sequences,

and described an algorithm for finding optimal subalignments. Smith et al.

(1981) showed that the Sellers minimum-cost and the Needleman-Wunsch

maximum-similarity definitions of optimal alignments are equivalent.

Gotoh (1982) described an O(MN) time algorithm for finding an optimal

alignment of two sequences when affine gap costs are used. His paper was

only partly correct (Chapter III; Altschul and Erickson, 1986a) since his

algorithm correctly finds the minimum alignment cost but in general does

not produce an alignment that has this cost. Sankoff and Kruskal (1983)

edited a book reviewing the entire field of sequence comparison, in which

Erickson and Sellers (1983) described an algorithm for finding optimal

alignments of a specified sequence with unspecified subsequences of a

second sequence. Fitch and Smith (1983) showed that affine gap costs may

be necessary to find the biologically correct alignment of two sequences.

Fitch (1983a) described a procedure for permuting a sequence while

preserving its doublet frequency. His conjecture that this procedure

generates with equal probability all sequences that have identical doublet

composition is incorrect (Appendix; Altschul and Erickson, 1985). Ukkonen

(1983) described an algorithm for finding the optimal alignment of two

sequences which in most cases runs much faster than the traditional dynamic

programming algorithm. Waterman (1984a) reviewed the field of sequence

comparison.

page 14



Waterman (1984b) described two algorithms for finding the optimal

alignment cost of two sequences when arbitrary concave gap costs are

allowed. He conjectured that these algorithms have time complexity O(MN).

This conjecture is incorrect (Chapter III; Altschul, 1987). Sellers (1984)

defined local optimality for subalignments and described an algorithm that

will find all and only the locally optimal subalignments of two sequences

when a linear similarity function is used. He also showed that the

algorithm of Smith and Waterman (1981a,b) can produce different "optimal"

subalignments when the two input sequences are reversed.

Altschul and Erickson (1985) described an algorithm for randomly

permuting a nucleotide sequence while preserving its dinucleotide, its

dinucleotide and trinucleotide, or its dinucleotide and codon usage.

Altschul and Erickson (1986a) described a modification of Gotoh's algorithm

that correctly finds all and only the optimal alignments of two sequences

in O(MN) time when affine gap costs are used. Altschul and Erickson

(1986b) proposed the use of a nonlinear similarity function for comparing

subalignments and studied the significance levels of this function when

used for nucleic acid comparison. Altschul and Erickson (1986c) described

algorithms for finding locally optimal subalignments of two sequences when

nonlinear similarity functions are used. While this list of papers is not

intended to be exhaustive, it does mention most of the papers with major

bearing upon the concerns of this thesis.

Outline of the thesis. Chapter II describes the basic terminology and

methods used through much of the thesis. In Chapter III a modification of

Gotoh's algorithm is described that correctly finds in O(MN) time all and

page 15



only the optimal alignments of two sequences when affine gap costs are

employed. A more detailed form of path graph than that traditionally used

is needed to represent accurately all and only the optimal alignments.

Also, the time complexity of Waterman's 1984 algorithms for concave gap

costs is analyzed.

The problem of finding locally optimal subalignments can be divided

into three separate problems: first, defining a similarity function with

which to compare subalignments; second, devising algorithms to find

subalignments which maximize the chosen similarity function; third,

assessing the statistical significance of a subalignment in the context of

the search performed. These three problems are addressed in Chapters IV, V

and VI. In Chapter IV, functions nonlinear in length and cost are proposed

as more appropriate measures of subalignment similarity than the linear

functions previously used. In Chapter V, various algorithms are described

for finding locally optimal subalignments using the criterion of any

reasonable similarity function. In Chapter VI, the distribution of optimal

similarity scores from the comparison of two nucleic acid or protein

sequences is studied.

Chapter VII presents applications of the methods developed in earlier

chapters. The Appendix presents a method for randomly permuting nucleic

acid sequences while preserving their dinucleotide, dinucleotide and

trinucleotide, or dinucleotide and codon usage. This method can be useful

in Monte Carlo simulations for preserving statistical correlations often

found in real biological sequences.
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II. BASIC TERMINOLOGY AND METHODS

Path graphs. Almost all of the algorithms described in this thesis

are based on the underlying concept of a path graph. The two sequences

being compared are X = x x2'. xM and Y = y y2''' N. Without loss of

generality, X is the shorter of the two sequences, so that M N. The path

graph for these two sequences consists of (M+1)(N+l) nodes and 3MN + M + N

edges, as shown in Figure 2-1a.

Each node N has as many as six adjacent edges (Figure 2-1b). If

each is present, the upper adjacent edges of Ni,j are Vi,j, Hjj and Di,j

and the lower adjacent edges are V i+1,j, Hi, j+1 and Di+1,j+i' Similarly,

each node Nij has as many as six adjacent nodes. The upper adjacent nodes

of Nij are Nii,, Ni,j_. and Ni_,j_ and the lower adjacent nodes are

Ni+1,j, Ni,j+1 and Ni+1,j+l*

DEFINITION. A path in a path graph is a sequence of nodes and edges

noe 1n, ... eznz where for all iE{1,2,...,z) nil1 is an upper adjacent node of

ni and ei is the edge connecting them.

Each subalignment of X and Y corresponds to a unique path in the path

graph, and conversely. Each alignment of X and Y corresponds to a unique

path from N0 ,0 to NM,N, and conversely. In general, vertical edge V

aligns xi with a null after y ,, horizontal edge Hij aligns yj with a null

after xi, and diagonal edge Dij aligns xi with yj (Figure 2-1). Because

of this isomorphism, we shall frequently refer to paths in path graphs as

subalignments or alignments.
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Figure 2-1. Nomenclature for a path graph.

(a) The complete graph for sequences X = x x2.. xM and Y = Y1y2- -YN'

(b) The node Ni, and its six adjacent edges.

a y,
x,

x 2

XM-1

XM

b D1 j
1,9

H ,kj

N.

y2 Y3 YN-1 YN

V.
IJ

V
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The locus Lk is the set of index pairs (i,j) such that i + j = k. For

example, the set {N3 ,0 , N2,1, N1,2, No, 3} contains the nodes of locus L3.

Pair (i,j) is below Lk if i + j > k and above Lk if i + j < k. The

notation Z (note comma) refers to a specific element of the array Zii

(no comma).

The algorithms described in this thesis associate various arrays with

the nodes and edges of a path graph. They frequently use six rectangular

number arrays (Pi , Qi, Rij, A , B , C ). The first three arrays store

numbers associated with the graph nodes Nii; the last three store numbers

associated respectively with the graph edges Vjj, Hii and Dii. The

algorithms also frequently use seven rectangular bit arrays (aii, b i, ...

gij) to store data associated with the graph edges. Arrays aij, dii and

egi are associated with the graph edges Vii; arrays bi, fij and gjj are

associated with the graph edges Hi; array cii is associated with the graph

edges Dij. For all arrays, index i ranges from 0 to M+1 and index j ranges

from 0 to N+1. It is possible to limit the first index to the range 0 to M

and the second index to the range 0 to N, but then dealing with the borders

of the arrays sometimes becomes more complicated.

Dynamic programming. A good description of the dynamic programming

method can be found in Kruskal (1983). The main idea is that the optimal

alignments of two sequences can be found by an inductive procedure that

discovers first the optimal alignments of initial subsequences. The

simplest example of dynamic programming arises when we treat a null

(represented by the character '-') as if it were another letter of the

alphabet, so that only substitution costs c(x,y) need be specified
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(Sellers, 1974a). Using the notation developed above, the basic dynamic

programming algorithm for finding all and only the optimal alignments of

two sequences can be written as follows. All number variables with a

negative index are assumed to have value +oo. All bit variables with first

index greater than M or second index greater than N are assumed to have

value 0.

f1) For i from 0 to M and j from 0 to N:

If i = j 0 set Ru to 0; otherwise set Rij to

min [Ri_,, + c(xi,-), Rigj.i + c(-,yj), Ri_i,j_ + c(xigyj)].

If Rij = Ri j + c(xi,-) set aigj to 1, otherwise to 0.

If Rig = R + c(-,y) set bij to 1, otherwise to 0.

If R 1 = R + Cxipyj) set cij to- 1, otherwise to O.

{21 For i from M to 0 and j from N to 0:

Except when i =M and j = N, if a - b - c-i+j+ 0,i+1, j i ,j+1~ +,+-
set ai,jg bigj and ci,j to 0.

After step {l}, RMN records the minimum cost of aligning sequences X

and Y. After step {2}, all and only the optimal alignments of X and Y are

represented by paths from N0 0 to NM,N that use only edges whose associated

bits are set to 1 in arrays aid, b and . Both the time and space

complexity of the basic dynamic programming algorithm are O(MN).
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III. OPTIMAL SEQUENCE ALIGNMENT USING AFFINE GAP COSTS

While it is possible to define gap costs that depend explicitly upon

the string deleted or inserted, it is generally difficult to find a

justification for doing so. The usual practice and, for ease of

presentation, the one we shall adopt is to choose gap costs dependent only

on the length of the string. Such gap costs can be represented by a

function w(x), where x is the length of the gap.

Sellers' algorithm for finding all optimal alignments (1974a,b) has

time complexity O(MN). The algorithm requires the cost of a gap to be the

sum of costs for each letter in the gap. Such gap costs will be called

linear because if the cost for each letter is U then w(x) = Ux.

Since a single mutation event can insert or delete an entire segment

of a genetic sequence, a long gap should arguably cost only slightly more

than a shorter one. Waterman et al. (1976) have generalized the Sellers

algorithm so that any gap cost function w(x) can be used. Fitch and Smith

(1983) have discussed a case in which such gap costs are necessary in order

to produce the correct alignment. The major disadvantage of the algorithm

of Waterman et al. (1976) is that its time complexity is O(MN2 ). Recently,

Waterman (1984b) has described two algorithms for concave gap costs that he

conjectures to have time complexity O(MN). It is shown below that this

conjecture is incorrect.

The general approach of Waterman et al. (1976) allows each null in a

gap to have a different cost. Gotoh (1982) considered the more restricted

case of affine gag costs. Specifically, the cost of a gap is V plus the
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sum of costs for each letter in the gap. If the cost for each letter is U,

then w(x) = V + Ux, where V,U . 0. The major advantage of Gotoh's

algorithm is that it finds the minimum cost of aligning two sequences in

O(MN) steps.

In addition to the minimum alignment cost, Gotoh's algorithm attempts

to find just one (rather than all) of the optimal alignments. However the

single alignment found occasionally fails to be optimal. Taylor (1984) has

described a modification of Gotoh's algorithm that always finds at least

one optimal alignment. Taylor's algorithm has the disadvantages that in

the general case it does not find all and only the optimal alignments and

that its storage requirements depend on the length of the longest gap to be

allowed.

We describe in this chapter a modification of Gotoh's algorithm,

called the SS-2 algorithm, that correctly finds all and only the optimal

alignments of two sequences in O(MN) steps. We also present two sequences

and a set of gap costs for which Gotoh's algorithm fails to find the single

optimal alignment, and two sequences for which Taylor's algorithm can not

find all and only the optimal alignments. First, we introduce a more

precise form of path graph than previously used, which is needed to

represent accurately all optimal alignments for affine gap costs. In this

chapter the gap costs cid are used for purposes of illustration.

Affine path graphs. If linear gap costs are employed, all optimal

alignments of two sequences can simultaneously be represented in a standard

linear path graph. For example, if w(x) = x, the five optimal alignments
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of sequences AGCCT and AGGTCC are represented by the five overlapping paths

of the linear path graph in Figure 3-1. For affine gap costs, however, a

linear path graph can be ambiguous in indicating precisely which paths are

optimal. For example, if w(x) = 1 + x, sequences AGT and TGAGTT have a

minimum alignment cost of 5. Panels a-c of Figure 3-2 show all three

optimal alignments with this cost and the corresponding simple path graphs.

In Figure 3-3a these three optimal paths are combined to give a composite

graph. This graph contains a fourth path (Figure 3-2d) but fails to

indicate that this fourth path is not optimal.

One way to solve this problem is to represent horizontal and vertical

edges more precisely by the eight symbols shown in Figure 3-4a. Their

meanings are defined by the following four conventions, which are

illustrated in Figure 3-4b. (1) A path using a horizontal edge whose left

half is bold must also use the horizontal edge to its left. (2) A path

using a horizontal edge whose right half is bold must also use the

horizontal edge to its right. (3) A path using a vertical edge whose top

half is bold must also use the vertical edge above. (4) A path using a

vertical edge whose bottom half is bold must also use the vertical edge

below.

A path graph that employs these symbols and conventions is called an

affine path graph. For example, the three optimal alignments in panels a-c

of Figure 3-2 are indicated unambiguously by the affine path graph shown in

Figure 3-3b. The SS-2 algorithm presented below actually produces the

equivalent affine path graph shown in Figure 3-3c.
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Figure 3-1. Paths representing the five optimal alignments of AGCCT and

AGGTCC.

A G G TC C
A
G
c

c

T
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Figure 3-2. Four alignments of AGT and TGAGTT, and their path graphs.

(a-c) Optimal alignments for w(x) = 1 + x.

(d) A non-optimal alignment.

a T G A G T T
- - A G T -

COST: 2 + 1 + 0 + 0 + 0 + 2 5

T G A G T T

bT G A G T T
- - A G - T

COST: 2 1 * 0 + 0 + 2 * 0 - 5

T G A G T T

T G A G T T

A

G
T

d T G A G T T

A
G
T

AG ~ - - T
COST: I + 0 * 2 * 1 + I + 0 - 5

T G A G T T

A G - - T

COST: I + 0 + 2 * I+ 0 + 2 6

T G A G T T
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Figure 3-3. Composite path graphs representing the optimal alignments of

AGT and TGAGTT for w(x) = 1 + x.

(a) The linear path graph.

(b) An affine path graph representing only the optimal alignments.

(c) The affine path graph produced by the SS-2 algorithm.

a T G A G TT

A

G
T

b T G A G TT

A

G
T

C T G A G T T

A

G
T
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Figure 3-4. New edge symbols and their meaning.

(a) Eight symbols for horizontal and vertical edges.

(b) No path using the central edge may use the dotted edges.
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When affine gap costs are used, the minimum cost of continuing a path

from a given node to the lower right node of the graph may depend upon

whether the given node was entered using a vertical, horizontal or diagonal

edge. Paths that enter a node through different edges may have different

optimal continuations. Thus new edge symbols, such as those in

Figure 3-4a, are necessary if all and only the optimal paths are to be

represented in a single path graph. Using affine gap costs w(x) = V + Ux

is equivalent to charging V + U for the first null in a gap and U for each

subsequent null. Since any path that uses a vertical or horizontal edge

has already opened a gap, each subsequent null in the gap will have

identical cost U. Thus all paths that enter a node through a given edge

will have the same optimal continuations. Therefore the edge symbols of

Figure 3-4a provide sufficient modification of the linear path graph to

indicate precisely all and only the optimal alignments for affine gap

costs.

When non-affine gap costs are employed, however, even an affine path

graph will not suffice in the general case to represent accurately all and

only the optimal alignments of two sequences. For example, if w(1) = 1.2

and w(x) = 0.7 + 0.7(x) for x > 1, there are two optimal alignments of the

sequences AGTCGA and GTTACCG (Figure 3-5a). A linear path graph containing

the paths that represent each of these alignments appears in Figure 3-5c.

It is not possible to use the horizontal edge symbols of Figure 3-4a in

this graph in a way that includes both optimal alignments but excludes the

two non-optimal alignments shown in Figure 3-5b. Further generalization of

the vertical and horizontal edge symbols, however, would allow precise
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Figure 3-5. Non-affine gap costs.

(a) The two optimal alignments of AGTCGA and GTTACCG for w(1) = 1.2

and w(x) = 0.7 + 0.7(x) when x > 1.

(b) Two non-optimal alignments.

(c) A composite path graph representing the optimal alignments.

A G T C G A

COST: I + * 0 + 1.2 + 0 * 1 + 1 - 5.2

G T T A C C G

A G T - - -

COST: 1.2 + 0 + 0 + 1.2 + 0.9 + 0.7 +

C G A
0 + 0 + 1.2

- G T T A C C G

b
A G T

COST: I 1 + 0 + 1.2 + 0.9 +

C G A

0 + 0 +1.2 - 5.3

G T T A C C G

A G T - C G A

COST: 1.2 + 0 + 0 + 1.2 + 0.9 + 0 + 1 1
G T T A C C G

C
G T T A

A

G
T

C
G
A
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representation of the optimal alignments implied by these gap costs. For

general gap costs, a set of pointers can be used at each node to indicate

from which nodes above or to the left optimal alignments can come.

An alignment algorithm for affine gap costs. An extension of Gotoh's

algorithm is presented here that finds all and only the optimal alignments

of two sequences for affine gap costs and represents them by an affine path

graph in the manner described above. Let the affine gap costs be

w(x) = V + Ux. In place of the arrays P and R two one-dimensional number

arrays, and in place of array Q a variable, provide sufficient storage

(Gotoh, 1982). The three rectangular arrays are used here for ease of

exposition.

The SS-2 algorithm consists of the following 11 steps. It calculates

the minimum alignment cost, RM,N, and an affine path graph containing all

and only those paths that represent optimal alignments of sequences X and

Y. All statements involving a negative index should be omitted.

INITIALIZATION. Execute step {11.

M) Initialize the number and bit arrays:

For j from 0 to N, set P 0 9 to +w and R , to V + Uj.

For i from 0 to M, set Qi,0 to +o and Ri,0 to V + Ui.

Set R0,0 to 0.

Set bit arrays a-g uniformly to 0.

Set cM+1,N+1 to 1.
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COST ASSIGNMENT. For i from 0 to M and j from 0 to N, execute steps {2} to

{7}.

{2} Find the minimum cost of a path ending at node Nij and using edge

V .

Set Pij to U + min (Pi-i,j, Ri..1, + V).

{3) Determine if cost Pij can be achieved using edge Vi_ ,j and if it

can be achieved without using edge V

If Piqj = P + U, set di.ij to 1.

If P = Ri-ij + V + U, set ei.ij to 1.

{4} Find the minimum cost of a path ending at node Nij and using edge

Hi~j:

Set Q to U + min (Qi,j_-, Rigj.. + V).

(5} Determine if cost Qi, can be achieved using edge Hijjl and if it

can be achieved without using edge H

If Qi = Qi,9_, + U, set f to 1.

If Qi = Ri, j-_ + V + U, set gv j-, to 1.

{6) Find the minimum cost of a path ending at node N j:

Set R to min (PJ, Q ij Ri + c(xivyj)).

(7} Determine if cost Rij can be achieved by using edge Vi,jg Higj or

Dii:

If Rig = Pig , set ai, to 1.

If R = Qij' set bij to 1.

If R = R i.. 11 .. + c(xiyj), set ci19 to 1.
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EDGE ASSIGNMENT. For i from M to 0 and j from N to 0, execute steps {81 to

{11}.

{81 If there is no optimal path passing through node N which has

cost R at node Ni,j9 remove edges V, Hi and D :

If (ai+, j = 0 o ,j = 0) and (bi,j+1 = 0 or gj =0) and

(c i+1,j+1 = 0),

set ai, bij and cij to 0.

{9} If no optimal path passes through Ni, proceed to the next node:

If a,+1 , j = bi, j+1 = ci+1 , j+1 = 0 9

skip steps {10} and {111.

(10} If edge Vi+,,j is in an optimal path and requires edge Vi,j to be

in an optimal path, determine if an optimal path that uses edge Vj+1,j must

use edge V and the converse:

If a,+,j = 1 and d = 1,

[set di+1,j to 1 - ejj set ejj to 1 - ai,j and]

set aij to 1.

[Otherwise, set di+, j and e to 0.]

{11} If edge H j+1 is in an optimal path and requires edge Hi j to be

in an optimal path, determine if an optimal path that uses edge Hi, j+1 must

use edge Hij and the converse:

If b ij+ 1 = 1 and f = 1,

[set f ij+1 to 1 - g , set gi,j to 1 - bi,j and]

set bij to 1.

[Otherwise, set fi,j+ and gij to 0.]
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Comments on the SS-2 algorithm. The meaning of the bit arrays changes

during the execution of the algorithm. Let an (i,A) path be a path from

N0 ,0 to N . After the cost assignment section is complete, the seven bit

arrays store the following information:

ai = 1 iff an optimal (i,j) path uses Vjj.

bi = 1 iff an optimal (i,j) path uses Hi.

C = 1 iff an optimal (i,j) path uses Dij.

di = 1 iff among (i+i,j) paths through Ni 1 , an optimal one uses

V il.

ei = 1 iff among (i+1,j) paths through Ni, an optimal one does

not use V ,

= 1 iff among (i,j+i) paths through Ni, an optimal one uses

Hi, f

gi = 1 iff among (i,j+i) paths through Ni, an optimal one does

not use H i.

After the edge assignment section is complete, the seven bit arrays store

the affine path graph, as illustrated in Figure 3-6 and described below:

ai 1,j = 1 iff an optimal (M,N) path uses V .

bii = 1 iff an optimal (M,N) path uses Hi.

ci, = 1 iff an optimal (M,N) path uses Dii.

dii = 1 iff every optimal (M,N) path that uses Vij also uses

Vi- 1 ,j. (The top half of Vi, is bold.)

ei 1 = 1 iff every optimal (M,N) path that uses Vij also uses

Vi+1, j (The bottom half of V is bold.)

= 1 iff every optimal (M,N) path that uses Hi1 also uses
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Figure 3-6. Bit array assignments. Arrays a-c correspond to full edges

and d-g to half edges.

a
b

f I

d

e

9
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Hi,j-i. (The left half of Hjj is bold.)

gi,j = 1 iff every optimal (M,N) path that uses Hjj also uses

Hi,j+1' (The right half of Hi is bold.)

Note that if aij = 0, bits d and e are meaningless. Similarly, if

bitj = 0 fij and gj are meaningless. Table 3-1 shows the values of the

number and bit arrays after the cost and edge assignment for sequences

X = AGT and Y = TGAGTT where w(x) = 1 + x. The affine path graph for this

example is presented in Figure 3-3c.

Since the algorithm involves a fixed number of steps for each node,

its execution requires O(MN) steps. In the initialization step, O need

only be a number larger than any number with which it will be compared

during execution of the algorithm; the number 2V + U max(M,N) + 1 will

suffice. The bit cM+1,N+1 is initially set to 1 so that the conditions of

steps (81 and (9) are false for node NM,N If the four expressions in

brackets in steps {10} and {11} are omitted, the linear path graph

represented by bit arrays a-c contains all and only those edges that are

part of some optimal path; such a graph often contains non-optimal paths.

All seven bit arrays are still required to find these edges. While a

specific set of substitution costs has been used in all examples in this

paper, the SS-2 algorithm allows any set of substitution costs to be

employed. Also, slight modification will allow it to employ different sets

of affine gap costs for terminal and interior gaps. When the SS-2

algorithm is implemented on a computer lacking bit storage, the seven bits

associated with a given node may conveniently be packed into a single byte.
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Table 3-1. Number and bit arrays during
execution of the SS-2 algorithm

Node After Cost After Edge
Index Assignment Assignment

i j P Q R a b c d e f g a b c d e f g

00
0 1
0 2
0 3
0 4
0 5
06
10
1 1
1 2
13
114
15
16
20
2 1
2 2
2 3
2 4
2 5
2 6
30
3 1
3 2
3 3
3 4
3 5
3 6

co 2
0 3
CO 4
co5
oo 6
co7
2co
4 4
5 3
6 4
7 5
8 6
9 7
3- c
3 5
5 5
5 3
7 4
8 5
9 6
4 co
4 6
3 5
5 5
5 4
7 5
8 5

01
1 0
1 0
1 0
10
1 0
00
01
0 1
1 0
1 1
1 0
10
0 0
01
0 1
0 1
10
11
1 0
0 0
01
0 1
01
0 1
1 0
0 1
0 0

0 *1
0 1

0 1
0*

01*
0 * *
0*1*

0.1

011

0*1
0.1
01*

0 0

0 0

0*

01*

01*
011
01*
0110*1*

0*1*

1**1
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Previous algorithms. If w(x) = 5 + x, a single optimal alignment

exists for sequences AAAGGG and TTAAAAGGGGTT (Figure 3-7). This alignment

can not be found by Gotoh's algorithm. It saves only the edge bit arrays

a-c during cost assignment in the f orward direction. Steps corresponding

to steps {31 and {5} of the SS-2 algorithm are absent. Gotoh's algorithm

then repeats the cost assignment in the reverse direction, which saves

additional edges, and finds a path with as few turns as possible that uses

only saved edges. Since the two edges marked by arrows in the graph of

Figure 3-7 are not saved during either the forward or reverse cost

assignment, neither edge can appear in the path found by Gotoh's algorithm.

Thus the path shown in Figure 3-7 is not found by Gotoh's algorithm even

though it represents the only optimal alignment.

If w(x) = 1 + x, sequences AGT and TGAGTT have only the three optimal

alignments shown in panels a-c of Figure 3-2. Taylor's algorithm for

finding all optimal alignments (Taylor, 1984) saves at each node one

vertical and one horizontal pointer for path traceback. Such a pointer

system can find any pair of optimal alignments or all four alignments of

Figure 3-2, but it can not find precisely the three optimal alignments. In

order to identify all and only the optimal alignments in the general case,

a pointer system similar to that described by Smith et al. (1981) or Taylor

(1984) must allow for an arbitrary number of pointers at each node, where

many bits may be required to represent each pointer. In contrast, the

system described above requires the storage of only seven bits per node

even when gaps of arbitrary length are present. The optimal alignments can

easily be represented by the corresponding affine path graph.
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Figure 3-7. The optimal alignment of AAAGGG and TTAAAAGGGGTT for

w(x) = 5 + x. Arrows indicate two edges of the path graph not saved by

Gotoh's algorithm.

T T A A A AGGGGT T
A
A
A
G + +

G
G

A A A - - - - - - G G G

COST: I * 1 0 6 +I I I + 0 +1 + 1 -15

T T A A A A G G G G T T
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Alternatively, all optimal alignments may be extracted from the bit arrays

a-g and output linearly, as shown on the right of Figure 3-2. When

non-affine gap costs are employed, a generalization of this system may be

inferior to a system of pointers.

A biological example. The advantage of using affine gap costs when

comparing biological sequences is illustrated by two DNA sequences for

interleukin 2 (IL-2), an important regulator of T-cell clonal expansion.

The DNA sequences code for human IL-2 (Taniguchi et al., 1983) and murine

IL-2 (Yokata et al., 1985). The DD algorithm (see Chapter V) was used to

search for interesting gap-free subalignments of the two IL-2 sequences

using similiarity function si (see Chapter IV). Two of the four best

subalignments found were human segment 65-107 with mouse segment 77-119

(43 nucleotides) and human segment 91-299 with mouse segment 133-341

(209 nucleotides). The ends of these subalignments overlap, as shown by

the two paths in Figure 3-8a for that part of the DD graph involving human

segment 76-107 (H) and murine segment 88-149 (M). Joining these two

subalignments requires a net deletion of 30 nucleotides from M, which can

be achieved by inserting one or more gaps into segment H.

Using the SS algorithm (Sellers, 1974a,b) and gap costs w(x) = 2x

(Erickson and Sellers, 1983) to align segments H and M produces a large

number of optimal subalignments (Figure 3-8b). Because it costs nothing to

open a gap, every optimal alignment contains at least 12 separate gaps in

segment H, as illustrated by line H1 of Figure 3-9. These alignments imply

that at least 12 insertions or deletions are needed to explain the

evolutionary divergence of segments H and M from a common ancestral gene
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Figure 3-8. Five path graphs for two DNA sequences from interleukin 2.

Vertical sequence M is a 62-nucleotide murine segment and horizontal

sequence H is a 32-nucleotide human segment.

(a) Part of a larger DD path graph.

(b) The linear path graph for w(x) = 2x; paths contain 12-18 gaps.

(o) The affine path graph for w(x) = 0.5 + Ux and U k 1; paths con

3-11 gaps.

(d) The affine path graph for w(x) = 1 + Ux and U 1 1; paths conta

1-3 gaps.

(e) The affine path graph for w(x) = V + Ux, V > 1 and U k 0.5; pa

contain only 1 gap.
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Figure 3-8. (Continued). Five path graphs for two DNA sequences from

interleukin 2. Vertical sequence M is a 62-nucleotide surine segment and

horizontal sequence H is a 32-nucleotide human segment.

(a) Part of a larger DD path graph.

(b) The linear path graph for w(x) = 2x; paths oontain 12-18 gaps.

(c) The affine path graph for w(x) = 0.5 + Ux and U 1 1; paths conta

3-11 gaps.

(d) The affine path graph for w(x) = 1 + Ux and U 1 1; paths contain

1-3 gaps.

(e) The affine path graph for w(x) = V + Ux, V > 1 and U k 0.5; path

contain only 1 gap.
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Figure 3-9. Three representative optimal alignments of murine segment M

and human segment H from interleukin 2. Each of the lines H1-H3 is aligned

with line M. Smaller letters are different from the corresponding letters

in M.

88 100 110 120 130 140 149

M TCTACAGCGGAAGCACAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCACCTGGAGCA

Hi TCTACA----AAG-A-A--A--A-CA-CA-CAGCT--A-CA--A--A-C------TGGAGCA

H2 TCTACAAAGAAAACA------------------------------CAGCTACAACTGGAGCA

H3 TCTACAAAGAAAACACAGCTACAAC------------------------------TGGAGCA

76 80 90 100 101 107
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segment. Such a large number of events is considered to be unlikely.

The number of insertions or deletions needed becomes smaller when a

positive cost V is imposed for opening a gap (Figure 3-8c,d,e). For V > 1

and U 0.5, all 30 nulls must be joined into a single gap, which can be

inserted into any one of 11 different places in segment H (Figure 3-8e).

Specifically, it can be placed after nucleotide 90 (line H2 of Figure 3-9),

after nucleotide 100 (line H3 of Figure 3-9), or after any nucleotide in

between. Since murine segment 103-132 encodes 10 glutamine residues, the

alignment of lines M and H2 in Figure 3-9 seems the most plausible. Our

experience in comparing nucleotide sequences using affine gap costs

suggests that the costs w(x) = 2.5 + 0.5(x) are useful.

Concave gap costs. The algorithm of Waterman et al. (1976) allows

arbitrary gap costs w(x). It finds the optimal alignment cost by setting

Ritj = min [(Ri-k,j + w(k))k<i, (Rij.l + w(l)),<jg Ri_,j_ + c(xjyj)]

The time complexity of this algorithm is O(MN2 ).

Waterman (1984b) has recently described two new algorithms for concave

gap costs that he conjectures have time complexity essentially 0(MN). It

is shown below that the first of these algorithms has worst-case time

complexity at least 0(M2N). For reasonable concave gap costs its average

time complexity is also O(M2 N). This algorithm therefore is asymptotically

better than that of Waterman et al. (1976) for sequences with greatly

different lengths, but for the usual case of sequences with approximately

equal length it is better by at most a constant factor. The average time

complexity of the second algorithm of Waterman (1984b) is difficult to
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analyze. Its worst-case time complexity appears to be 0[max(M3 ,MN)].

DEFINITION. Gap costs w(x) are concave (Waterman, 1984b) if for all

ij,k > 0, w(i+j+k) - w(i+k) w(j+k) - w(k).

Waterman's first algorithm (1984b) for finding the minimum cost, RMN

of aligning sequences X and Y using concave gap costs can be written thus:

Mi} For i from 0 to M, set Ri,0 to w(i) and the set Si to the empty set.

For j from 1 to N, set R j to w(j) and the set T to the empty set.

{2} For i from 1 to M and j from 1 to N:

Set P to min [Ri 1  + w(1), (Rkj + w(i-k))keT.J.

If P = Ri.ij+ w(1), add i-1 to the set T .

Set Q to min [Riv.. 1 + w(1), (Rik + w(j-k))kcSi1'

If Q = R u 1 + w(1), add j-1 to the set Si.

Set Ruj to min [P, Q, Riljl + c(xi,yj)].

Waterman conjectures that ISil grows no faster than log(j) and 'T1  no

faster than log(i). He concludes that the time complexity of the algorithm

is effectively O(MN). An example is presented below in which 'Sit grows

linearly with j for j < i and 1T I grows linearly with i for i < j. This

alone renders the time complexity of the algorithm O(M 2 N); any assumption

may be made about the behavior of ISiI as j->o.

Let c(x,y) = 0 if x = y and 1 otherwise, and assume that

w(i+1) > w(i) > 0 for all i > 0. Let X = Y = AAA... AA. During iteration

(i,j) of step {2}, P = R + w(1) if and only if i < j+1. Similarly,
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Q = R, + w(1) if and only if j < i+1. After completion of iteration

(ij), IT I = min(ij+1) and ISI1 = min(i+1,j). The minimization during

iteration (i,j) thus requires examining more than 2 min(i,j) values.

Therefore the algorithm has worst-case time complexity at least O(M2 N).

Gap costs for which the marginal cost of a null is less than half the

mean cost of aligning two elements do not seem appropriate. With such gap

costs, the optimal alignment of two long sequences frequently consists of

one long deletion and one long insertion. This observation motivates the

following definition.

DEFINITION. Gap costs w(x) are reasonable if limx>. [w(x+1)-w(x)) >

6/2 where F is the expected value of c(x,y) for letters x and y chosen

randomly with an appropriate distribution.

When two arbitrary sequences are aligned using reasonable concave gap

costs it is usually the case that Q = Ri, _, + w(1) when J < i+1: on the

average two nulls are replaced by a pair of aligned elements. Thus for

reasonable gap costs the algorithm's average as well as its worst-case time

complexity is at least O(M2N).

Waterman (1984b) suggests that his first algorithm can be improved as

follows. Whenever Q = Rij. 1 + w(1) in step {2}, for each kESi solve

Rij. 1 + w(1+h) = Rik + w(j-k+h) [3.1)

for h. If there is no solution or if J+h > N then remove k from S i. If

j+h < N then Ri,k need not be considered when calculating Ri,x until

x . j+h, at which point j-1 may be removed from Si. The analagous
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calculations are done for T ,

The worst-case time complexity of this algorithm depends strongly upon

the function w(x) and is difficult to analyze. Yet consider sequence X

consisting of M C's and sequence Y consisting of M A's followed by an

arbitrary number of C's. For reasonable concave gap costs ISjj = 1 while

j M+1. For j > M+1, however, it appears that |SA) can grow linearly with

j-M at least until j reaches M+1+i. If N 2M this requires a total of

O(M3 ) solutions of equation 3.1. The worst-case time complexity of the

algorithm therefore appears to be 0[max(M3 ,MN)J for at least some concave

gap costs.

For average sequences and reasonable gap costs, while j 5 i it is

expected not only that Q = Ru,1-i + w(1) but also that equation 3.1 has no

solution. Therefore ISij should stay near 1 for j i. It is not clear

how ISgj grows on the average for j > i. The average time compl'exity of

Waterman's second algorithm (1984b) thus remains an open question.

Conclusion. In this chapter it has been shown how to find in O(MN)

time all and only the optimal alignments of two sequences using affine gap

costs. Previously, Waterman et al. (1976) had shown how to find the

optimal alignments in O(MN2 ) time, Gotoh (1982) how to find the optimal

alignment cost in 0(MN) time, and Taylor (1984) how to find at least one of

the optimal alignments in O(MN) time.

Further, it has been shown that Waterman's algorithms (1984b) for

concave gap costs have worst-case time complexity at least O(M3 ). It

remains a challenge to find an O(MN) time algorithm for concave gap costs.
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IV. SUBALIGNMENT SIMILARITY FUNCTIONS

Finding good subalignments of two sequences involves more than simply

looking for subalignments with minimum cost. Although short perfect

subalignments always exist, a long subalignment with greater cost may be

much more interesting (less likely to occur by chance). To compare

subalignments of different lengths a function of subalignment length and

cost is required (Sellers, 1984). The length of a subalignment is defined

as the average of the lengths of the two aligned segments (Sellers, 1984);

the cost of a subalignment was defined in Chapter I.

DEFINITION. A similarity function s(l,c) is a real-valued function

that increases with length 1 and decreases with cost c.

A similarity function may be thought of as acting upon subalignments.

Given a similarity function s(l,c), an optimal subalignment of two

sequences is a subalignment that maximizes s(l,c). Since a similarity

function is used to compare subalignments, its relative rather than its

absolute value on (l,c) pairs is important.

DEFINITION. Two similarity functions s and s' are equivalent if for

all (11 ,c1 ) and (12 ,c2 ) in their domains, s(1,c 1 ) > s(12 ,2 ) iff

s'(ily~c) > st(12,c2).

DEFINITION. A similarity function s is normalized if s(1,0) = 1 for

all positive lengths 1.

Similarity functions s and s' are equivalent if and only if there

exists a monotonically increasing function f such that s'(l,c) = f(s(l,c)).
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Given a similarity function defined for all (1,0), it is always possible to

find an equivalent similarity function s' that is normalized.

Smith and Waterman (1981a,b) suggested that maximizing the similarity

measure of Needleman and Wunsch (1970) can be used to find interesting

subalignments. Needleman-Wunsch similarity can be defined as a function on

subalignments by the formula

SNW(A) = i - Yj - Zk [4.1]

where subalignment A has i matches, j mismatches and k nulls. The

arbitrary parameters Y and Z can be set to values that prove useful in

distinguishing interesting subalignments from ones that seem insignificant.

Smith et al. (1985) have suggested that useful values are Y = 0.9 and

Z = 2.0. Sellers (1984) has proposed a similarity function for biological

sequence comparison that is linear in 1 and c. The normalized Sellers

similarity function is given by the formula

sS(lc) = 1 - c/T [4.2]

where the arbitrary parameter T determines the relative importance of

length and cost in assessing subalignments. Hidden in the term c is

another parameter, the null cost U. With appropriate choice of parameters,

the Needleman-Wunsch and Sellers similarities are identical. Equations for

transforming between the parameters of Needleman-Wunsch and Sellers

similarity are:
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T = 1/(Y + 1) U = (Z + 0.5)/(Y + 1)

SS to SNW: Y = 1/T - 1 Z = U/T - 0.5.

Due to this equivalence, statements about Sellers similarity apply equally

to Needleman-Wunsch similarity and vice versa.

One undesirable property of similarity function sS is that, for any

choice of parameter T, subalignments with the same similarity value often

have very different probabilities of occurring by chance. As a result,

when optimal subalignments are found by maximizing 5s, a subalignment is

often rejected in favor of another that is much more likely to occur at

random. This problem can be avoided by choosing a similarity function that

in general is nonlinear in the sense that s(l,c) # kil + k 2 c. Nonlinear

functions frequently have been used to evaluate subalignments once they

have been found by algorithms employing linear similarity functions (Goad

and Kanehisa, 1982; Reich et al., 1984).

The major advantage of as is that it is linear. This property is

vital to fast algorithms for finding locally optimal subalignments, such as

Sellers' TT algorithm (1984). Algorithmic considerations, however, should

not determine the definition of a good subalignment.

Probabilistic similarity function s . Initially, we shall consider

only diagonal subalignments. The key question is how to compare

subalignments of different lengths. Given only the length and cost of two

different subalignments, the most straightforward approach is to determine

which is less likely to occur by chance.
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Suppose that every letter has an a priori probability of appearing at

any position in the first sequence X and another probability of appearing

at any position in the second sequence Y. Specifically, these

probabilities may vary from one letter to another and for the two

sequences. For randomly chosen letters x from the distribution for

sequence X and y from the distribution for sequence Y, let pk be the

probability that c(x,y) = k, where c(x,y) is the cost of substituting x and

y. Given letter probability distributions for sequences X and Y, and

substitution cost function c, the pk are easily computed. We shall assume

that p0 # 0, for otherwise the substitution cost function can be redefined

so that this is the case.

Let P(l,c) be the probability that a random diagonal subalignment of

length 1 has cost c. P(l,c) can be calculated recursively.

P(1,k) = pk 
[4.3]

k
P(j,k) = P(J-1,i)pk-i for j > 1 [4.41

i=0

A normalized nonlinear similarity function si can be defined as

C

S 1 (1,c) = logPO I P(li)J [4.51
i=O

In other words, sl(l,c) is the logarithm to the base p0 of the probability

that a random diagonal subalignment of length 1 has cost c or less.

For substitution cost function cid, s, reduces to

S(lC) = logp[ ( ) ) yi p -i [4.6]
i=O

page 50



where p is the probability of a match. Notice that in this case s (l,c)

has the convenient property that for all lengths 1 the similarity of a run

of 1 mismatches is 0 and the similarity of a run of 1 matches is 1.

Therefore a nonintegeral similarity value can be immediately appreciated in

relation to its integral bounds. For example, if nucleic acid sequences

are being compared and p = 0.25, sl( 5 0 ,1 8 ) = 13.6 and si(25,5) = 13.1: a

subalignment of length 50 with 18 mismatches (64% matches) is more

interesting (less likely to occur by chance) than a subalignment of length

25 with 5 mismatches (80% matches). Both are more interesting than a run

of 13 matches and less interesting than a run of 14 matches. Tables 4-1

and 4-2 list values of sl(l,c) from formula 4.6, with p = 0.25.

Interpolation of function s . Similarity function si(l,c) is defined

by formula 4.5 only for integral values of 1 and c. For use with many of

the algorithms of this thesis, it must be extended to half-integral values

of 1. If non-integral gap costs are used, it must also be extended to

non-integral values of c. s 1 (l,c) can be extended to all non-negative

values of 1 and c by linear interpolation in two dimensions.

S 1 (1+x,c+y) = s 1 (,c)(1-x)(1-y) + s (l+1,c)x(1-y)

+ s1(1,c+1)(1-x)y + s (1+1,c+1)xy [4.7)

for 0 < x,y < 1 and integral 1 and c. Interpolation using formula 4.7

requires values of s, at four points.

Alternatively, a nonlinear interpolation of length for fixed cost also

requires four values of s . Let a = s1(1-1,c), b = s1(1,c), d = sl(1+1,c)

and e = si(l+2,c). Then
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Table 4-1. Values of s1 (l,c) 1 from formula 4.6, with p = 0.25.

Length

1
2

3
4
5
6
7
8
9
10
11
12
13
14
15

Cost:

1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00

10.00
11.00
12.00
13.00
14.00
15.00

1.34
2.15
3.00
3.88
4.77
5.68
6.60
7.52
8.46
9.40

10.34
11.29
12.24

1.64
2.37
3.14
3.94
4.77
5.62
6.48
7.35
8.23
9.12

10.02

1.28
2.91
2.60
3.32
4.08
4.86
5.66
6.48
7.31
8.15

1.02
1.57
2.18
2.83
3.52
4.24
4.99
5.76
6.54

1.30
1.84
2.43
3.07
3.73
4.43
5.15

1.08
1.56
2.10
2.68
3.30
3.95

0 1 2 3 4 5 6 7 8 9

Table 4-2. Selected values of s1 (l,c) k 1 from
formula 4.6, with p = 0.25.

10.00
20.00 3.09
30.00 9.53 1.17
40.00 17.16 5.39
50.00 25.39 11.27 3.08
60.00 33.96 18.08 7.60
70.00 42.77 25.47 13.24
80.00 51.75 33.26 19.62
90.00 60.86 41.35 26.52

100.00 70.06 49.66 33.82

1.72
5.12
9.77 3.40

15.27 7.20 2.20
21.39 11.92 5.25 1.37

0 10 20 30 40 50 60 70
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1.82
2.35
2.93

1.14
1.58
2.07 1.38

Length

10
20

30
40
50
60
70
80
90

100

Cost:



[4.8]51 (l+x,c) = b + [(a-3b+3d-e)(2x 2-5x+3)x 3 + (a-2b+d)x2 + (d-a)x]/2

for 0 < x < 1 and integral 1 and c. This interpolation provides s1 (l,c)

with continuous first and second partial derivatives with respect to 1.

Usually, only specific values of x are needed. For example, if x = 0.5,

formula 4.8 becomes

sl(1+0.5,c) = (-a+9b+9d-e)/16 = (b+d)/2 + (b-a+d-e)/16 [4.9]

in contrast to the linear interpolation (b+d)/2.

The analogous interpolation of cost can be done subsequently without

the restriction to integral values of 1. For 0 < x,y < 1, and integral 1

and C, s (1+x,c+y) is calculated by letting a = sl(l+x,c-1), b = sl(1+x,e),

d = s(1C+x,c+1) and e = sl(l+x,c+2) in formula 4.8. Reversing the order of

the two interpolations does not alter the result. The double interpolation

requires values of s, at sixteen points.

The values of sj, defined by formulas 4.3 to 4.5, cannot be calculated

quickly for specific values of 1 and c. Therefore, when using most of the

algorithms of this thesis, a table of s, values must be precomputed. The

size of this table is approximately L2C/2, where L is the length of the

longest possible subalignment and C is the largest value of c(x,y). If

storing this table requires more main computer memory than is available, s

values above a certain number can be kept in peripheral memory and

retrieved only when needed.

page 53



Analytic function . Another approach is use of a function that is

nearly equivalent to s1 but whose values are more easily calculated.

Instead of being stored in a table, these values can be calculated as

needed. One such function is

32(1,0) = (Tl - c - 0.5)/A [4.10]

where T is the expected value of c(x,y) for randomly chosen x and y. The

distribution of costs for random diagonal subalignments of length 1 is

approximated by a normal distribution with a mean of Tl and a standard

deviation proportional to the square root of 1. For a subalignment having

length 1, cost c and no gaps, its s2 value is proportional to the number of

standard deviations its cost falls beneath its expected cost. The term

0.5, a correction for the discreteness of the cost distribution, is based

on the assumption that for subalignments of length 1 all integral costs

near T1 are possible. If only costs separated by some number C are

attainable, the term 0.5 should be replaced by C/2.

Similarity function s2', the equivalent normalized form of s2, is

obtained by algebraic manipulation.

S 2 + T + s2 ,22 + 2T]/(2T2) [4.11]

Substituting formula 4.10 into formula 4.11 yields

s2 '(1,c) = (x + vY- 1)/2T where x = Tl-2c+(2c+1) 2 /4T1 [4.12]

A computer program can use the quickly calculated values of s2 internally

but report the values of the equivalent normalized similarity function s2
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Other similarity functions. When gaps are allowed, and particularly

when low gap costs are used, the justification for employing s, and S2 is

somewhat vitiated. The most fruitful approach may be to use a similarity

function, similar to s2, of the form

s 3 (1,c) = [P(l) - c - 0.5]/(l) [4.13J

Functions 1(l) and G(l) are the mean and standard deviation of the

distribution of minimum costs for aligning the first k with the first 21-k

elements of two random sequences, where k ranges from 0 to 21. Reich et

al. (1984) have experimentally determined p(l) and a(l) for certain gap

costs, but much work remains to be done in this area.
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V. ALGORITHMS FOR FINDING LOCALLY OPTIMAL SUBALIGNMENTS

At present, an algorithm that searches a data bank for interesting

subalignments must employ a linear similarity function in order to attain

reasonable speed. But an algorithm that searches two specific sequences

for interesting subalignments can use a nonlinear similarity function as

the selection criterion. Previous algorithms that search for good

subalignments have assumed that the similarity function is linear.

Gap costs. It is difficult to specify a priori what gap costs should

be used for the comparison of biological sequences. In practice, gap costs

have been chosen experimentally, by determining those that will yield

alignments that are believed to be accurate from a biological perspective

(Fitch and Smith, 1983). Therefore, during a preliminary analysis, it may

be best to look only for interesting diagonal subalignments rather than to

prejudice the results by choosing particular gap costs. The DD algorithm

described below finds all weakly locally optimal diagonal subalignments

using the criterion of any reasonable similarity function. During a

subsequent analysis, however, it is desirable to be able to find the

locally optimal subalignments of two sequences when using specific gap

costs. This problem for nonlinear similarity functions is also addressed

below. Table 5-1 summarizes the function of all the subroutines and

algorithms described in this chapter.

Although all algorithms in this chapter can use a cost function u(x)

for aligning element type x with a null, for simplicity we assume that u(x)

has the constant value U for all x. Charging a cost V for the presence of
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Table 5-1. Subreutines and Algorithms

Subroutine Time Subroutines Function
or Algorithm Complexity Called

SIm o(MN) --- Given edge similarities, finds edges belonging to locally optimal subalignments

LES O(MN) --- Calculates all edge similarities for linear similarity functions

TT-2 O(MN) LES, SIM "Finds all and only those edges that are part of some locally optimal subalignment
for linear similarity functions

NES-1 O(M3N) Calculates all edge similarities for nonlinear similarity functions

VV-1 O(M3 N) NES-1, SIM Finds all and only those edges that are part of some locally optimal subalignment
for nonlinear similarity functions

NES-2 O(M2 N) Calculates edge similarities of locally optimal subalignments for nonlinear
similarity functions

VV-2 O(M2N) NES-2, SIM Finds all edges that are part of some locally optimal subalignment for nonlinear
similarity functions

RPF O(MN) Removes some edges that can not be part of any weakly locally optimal subalignment

APF O(MN) LES Removes some edges that can not be part of any alignment with similarity > s*

DD O(N) Finds all and only those edges that are part of some weakly locally optimal
subalignment lacking gaps for nonlinear similarity functions

CC-1 O(M 3N2 ) a APF, RPF, Finds all and only those edges that are part of some weakly locally optimal
DD, NES-2 subalignment for nonlinear similarity functions

CC-2 O(M2N)a APF, RPF, Finds all edges that are part of some locally optimal subalignmnet for nonlinear
DD, VV-2 similarity functions

a. For large s*, the average time complexity is O(MN).
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each gap generates affine gap costs; certain algorithms have a more

complicated form for affine gap costs than for linear gap costs.

When affine gap costs are used, in place of the linear path graph used

in this chapter the more detailed affine path graph described in Chapter

III is needed to represent accurately all and only the locally optimal

subalignments of two sequences. Though they can be generalized to affine

path graphs, the algorithms of this chapter employ only linear path graphs

even when affine gap costs are used. Any ambiguity that results can be

resolved by the SS-2 algorithm.

Locally optimal subalignments. Two subalignments intersect if their

paths have a node in common. Given a similarity function, Sellers (1984)

proposed the following definition of local optimality based on the concept

of a path graph.

DEFINITION. A subalignment A1 is locally optimal if no set

[A1, A2,..., Ak} of subalignments with equal similarity exists such that Ai

intersects Ai+1 for all i < k and Ak intersects a subalignment with greater

similarity.

For linear similarity functions, the TT algorithm (Sellers, 1984)

finds all and only the locally optimal subalignments of two sequences. It

can not be used with nonlinear similarity functions.

DEFINITION. The similarity of an edge (node) of a path graph is the

maximum similarity of all subalignments whose paths contain that edge

(node).

page 58



The problem of finding locally optimal subalignments can be divided

into two parts. The first part is finding the similarity of each edge of a

path graph. The second part is finding each edge that is part of a locally

optimal subalignment. The SIM subroutine addresses the second part, where

the edge similarities may be defined by any similarity function, linear or

nonlinear.

The SIM subroutine. Given the edge similarities of a path graph, all

and only those edges that are part of a locally optimal subalignment with

similarity k s0 are found by performing steps {1} through (31. Edge

similarities are initially stored in arrays Aij, Bij and Cij. Each

expression involving an index outside the array bounds is ignored.

{1} NODE SIMILARITIES. Set the value of each node to the largest of the

values of its adjacent edges. In other words, for all index pairs (i,j):

Set Rigj to max (Ai,j, Bij, Cij, Ai+1,j, Bij+1, Ci+1,j+1).

For all (i,j), if Ru 0 o execute step (21.

{2} RECURSIVE COMPARISON. If the value of an edge adjacent to the current

node is less than the value of the node, but equal to the value of the

other node it touches, set the value of the other node to and execute

step (2} on the other node. In other words:

If Ai+1 ,j < Rigj and Ai+1,j = Ri+1,j, set Ri+1,j to o and execute

step (2} on (i+i,j).

If Bi j+1 < Rigj and Bij+1 = Ri, j+1, set Rij+1 to o and execute

step {21 on (i,j+1).

If Ci+1,j+1 < R and Ci+1,j+1 = Ri+1,j+1, set Ri+1,j+1 to oo and
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execute step {2} on (i+1,j+1).

If A < R and Aj = Ri. , set Ri...i j to o and execute step

(2} on (-1,j).

If Bi < R and Bij = R , set Rig.j_ 1 to o and execute step

(2} on (ij-1).

If C ij < R and Cjj = Ri.. ,j_1 . set Rj. 1 tJ- 1 to co and execute

step {2} on (i-1,j-1).

{31 EDGE STATES. Set to 1 the state of all and only those edges that are

part of a locally optimal subalignment with similarity s*. In other

words, for all (i,j):

If Ai, = Ri,j s* set au,j to 1, otherwise to 0.

If B, 9 = Rij > s* set bi, j to 1, otherwise to 0.

If Ci, = Ri,j > s* set ci,j to 1, otherwise to 0.

Comments on the SIM subroutine. When step {21 is executed on a given

node as a result of a call from within step {2}, the value of that node is

set to o. As a result, step {2} can be executed at most twice on any given

node and the time complexity of the SIM subroutine is O(MN). Implicit in

the TT algorithm (Sellers, 1984) is a similar subroutine that requires an

undetermined number of visits to each node. Its worst-case time complexity

may therefore be greater than 0(MN).

Each node that is not part of a locally optimal subalignment has its

value set to co before the SIM subroutine is complete. Therefore all and

only those edges that are part of a locally optimal subalignment with

similarity > s* have their states set to 1 in step {3}.
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Sellers (1986) has noted that a locally optimal subalignment may be

defined on any graph for which edge similarities are defined. He further

observed that to find all and only the edges that belong to locally optimal

subalignments it is sufficient to know whether or not the similarity of

each edge is equal to the similarity of each of its two adjacent nodes.

This information requires two bits of storage per edge. It is easy to

modify the SIM subroutine to run on arbitrary finite graphs using two bits

of storage per edge.

The LES subroutine. The LES subroutine calculates all edge

similarities of a path graph using the linear similarity function s (lc)

and af fine gap costs w(x) = V + Ux. The linear edge similarities of a path

graph are calculated and stored in arrays Auj, Bij and C by performing

steps {1} and {2}. Each expression involving an index outside the array

bounds has the value -o. Let u = 1/2 - U/T.

{1} FORWARD SIMILARITIES. For all (i,j), calculate the greatest similarity

of subalignments that end at node Nij and use edge Vi,j, that end at Ni,j

and use edge Hi,j, and that end at Ni,j without restriction. In other

words, for i from 0 to M and j from 0 to N:

Set Pig to u + max (Ri. 1,j - V/T, Pi-1j,).

Set Q 19 to u + max (Ri, j- - V/T, Qij-i).

Set Ri,j to max (0, Pij, Qi~j, Rilgjl + 1 - c(xiyj)/T).

{2} REVERSE SIMILARITIES. For all (i,j), calculate the greatest similarity

of subalignments that begin at node Ni, and use edge Vi+1,j, that begin at

Ni, and use edge Hi,j+1, and that begin at Ni, without restriction. Also
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calculate the similarities of edges Vij, Hij and Di,j. In other words,

for i from M to 0 and j from N to 0:

Set P1,~ to u + max (Ri+1 ,j - V/T, Pi+ 1 ,j).

Set Q to u + max (Ri,j+1 - V/T, Qi,j+1)o

Set H to max (0, P , Qiqj, Ri+1,j+1 + 1 - C(xi+1gyj+1)/T).

Set A to max (R + Pij, Pi_1,j + R , R + R - V/T,

Pi_1,j + Pjj + V/T) + u.

Set Bi, to max (Rj~j + Qij, Qi,jl + Rijj R 1 ,3 , + Rjj - V/T,

Q v + Q + V/T) + u.

Set C to R + 1 - c(xiqy )/T.

Comments on the LES subroutine. Since the LES subroutine performs a

fixed number of operations for each node, its time complexity is O(MN).

This subroutine is used in the APF subroutine described below. For linear

gap costs, the LES subroutine is simpler:

(1) For i from 0 to M and j from 0 to N:

Set R to max (0, Rii j + u, Ri, j_1 + u, R J. . + 1 -

C(x ,y )/T).

f2} For i from m to 0 and j from N to 0:

Set R to max (0, Ri+, j + u, Ri,j+1 + u, Ri+, j+1 + 1 -

C(xi+1pYj+1)/T).

Set Au to Riij + Rij + u.

Set B to R + R + U.

Set C to R + R + 1 - c(xi,yj)/T.
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The TT-2 algorithm. All and only those edges that are part of a

locally optimal subalignment using similarity function sS are found by

performing the LES subroutine followed by the SIM subroutine.

Like its subroutines, this algorithm has time complexity O(MN). The

TT-2 algorithm is equivalent to the TT algorithm (Sellers, 1984) but has

the advantage that it can use affine gap costs.

The NES-1 subroutine. The NES-1 subroutine calculates all edge

similarities of a path graph using any similarity function. This

subroutine is presented here for linear gap costs but is easily generalized

for affine gap costs. Although of theoretical interest, the NES-1

subroutine is impractical because it has time complexity O(M3N). Practical

algorithms that employ nonlinear similarity functions are described in

later sections.

The NES-1 subroutine uses a three-dimensional array R ijk where the

locus index k ranges from 0 to M+N, to store M+N+1 values for each node of

the path graph. All edge similarities of a path graph are calculated and

stored in arrays AiJ, By and Cii by performing steps {1} and {2}. Each

expression involving an index outside the array bounds has the value -0o.

{1} MINIMUM COSTS TO LOCUS Lk. For each node Ni,j find the minimum cost of

a subalignment from that node to a node of locus Lk. In other words, for

locus index k from 0 to M+N:

For all (i,j) of Lk, set Ri,j,k to 0.

For all (i,j) of Lkl and Lk+1, set Ri,j,k to U.
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For all (i,j) of Lk-2 back to Lo, set Ri,j,k to

min (Ri+ljlk + U, Rij+1,k + U, Ri+1,j+1,k + C(i+1tyj+1)*

For all (i,j) of 1 k+2 forward to LM+N, set Ri,j,k to

min (Ri-1, jk + U, Ri,j-1,k + U, Ri-1,j-1,k + c(xi,yj)).

[2} EDGE SIMILARITIES. Determine the similarities of all edges. In other

words, for all (i,j) and locus indices k from i+j to M+N, k' from 0 to

i+j-1, and k" from 0 to i+j-2:

Set A ij to max s[(k-k')/2, Ri,j,k + Ri-1,j,k, + U).

Set Bij to max s[(k-k')/2, Rij,k + Ri, j-1,k' + U].

Set Cij to max s[(k-k")/2, Rijpk + Ri-1,j-1,kw + Cxi,y .

Comments on the NES-1 subroutine. As presented, the time complexity

of the subroutine is O(MN3 ) because in step (21 0(N2 ) operations are

performed for each of O(MN) edges. The subroutine can be modified to

reduce its time complexity to 0(M3N). The key observation is that the

maximum similarity subalignment that passes through a given edge can not

begin or end at a node more than O(M) loci away from the locus of the edge.

As presented, the space complexity of the NES-1 subroutine is O(MN 2 )

due to the array R ijk The subroutine can be modified to reduce its space

complexity to O(MN). The key observation is that if the values of A ,

Big and Cij are calculated one locus at a time, the relevant Ri,j,k may

be calculated using only O(MN) space. This requires 0(N) repetitions of

step {1}, which does not alter the time complexity of the subroutine.
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The VV-1 algorithm. For any similarity function s, all and only those

edges that are part of a locally optimal subalignment with similarity s'

are found by performing the NES-1 subroutine followed by the SIM

subroutine.

Like the NES-1 subroutine, the VV-1 algorithm has time complexity

O(M3N).

The NES-2 subroutine. For any similarity function, the similarities

of all edges that are part of a locally optimal subalignment can be found

in O(MN2 ) time by the NES-2 subroutine. The similarities of other edges

may be underestimated. For linear gap costs (V = 0), the steps in brackets

can be omitted and the algorithm can be rewritten to dispense with arrays

ij and Qij. Edge similarities are output as arrays Aij, Bij and Cij,

which are initialized to 0. Expressions involving an index outside the

array bounds are ignored.

For locus index k from 0 to M+N execute steps {11} to {4}.

{1) MINIMUM COST FROM LOCUS Lk. For each node on or below Lk, find the

minimum cost of a subalignment ending at that node and starting at a node

of locus Lk:

For all (i,j) of Lk, set Ri'j to 0.

[For all (i,j) of Lk, set Pjj and Q to -0o.]

For all (i,j) of Lk+1, set P Qij and Ri,j to V + U.

For all (i,j) of Lk+2 to LM+N:

Set P to Ri..,J + U + V.
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[Set P to min (P j, Pi-i + U).]

Set Q to Rv i + U + V.

[Set Q to min (Q ,jv Q ij-i + U).]

Set Ru to min (Pj,jq Qjjl Ri_.j.i + c(xiqyj)).

[2} PATH GRAPH BELOW LOCUS Lk. For all (i, j) below Lk+1i

If R j = Pij, set aj.j to 1, otherwise to 0.

If Rij = Qij set bit to 1, otherwise to 0.

If R = Rilj.j + c(xiyj), set c to 1, otherwise to 0.

[If P = Pi.JtJ + U, set djtj to 1, otherwise to 0.]

[if Pi'J = R + V + U, set ejj to 1, otherwise to 0.]

[If Q Q ij-, + U, set fj9j to 1, otherwise to 0.]

[If Q = Ri'j.. + V + U, set g to 1, otherwise to 0.]

(3} MAXIMUM SIMILARITY FROM LOCUS Lk. For each node below Lk, find the

maximum similarity of all subalignments starting at a node on locus Lk and

passing through that node. In other words, for all (i,j) of LM+N to Lk+1:

Set Rij to s[(i+j-k)/2, Rij].

If ci+1,j+1 = 1, set Ri j to max (Rjj Ri+ 1 , j+)1

[Set K to R .]

If ai+ 1 ,j = 1, set Rij to max (Rij Ri+1,j).

If bij+1 = 1, set R to max (R , Rij+1 ,

Adjust the path graph into node Ni,j (Chapter III):

[If (Rij # K) and (Ruj * Ri+1, j or ai+1, j = 0 or ei+1, j = 0) and

(Ri, j * Rij+1 or bi,j+1 = 0 or gi,j+1 = 0), set aij, bitj and ci,j to 0.]

[If Ri = Ri+1,jand ai+1,j = 1 and di+i,j = 1, set aij to 1.]
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[If Ri, j = Ri, j+1 and bi, j+1 = 1 and ffi j+1 = 1, set b, I to 1 .)

{4} EDGE SIMILARITIES BELOW LOCUS Lk. Store the similarity of all locally

optimal subalignments beginning at a node of Lk. In other words, for (i,j)

below Lk:

If aij = 1, set A to max (A , Ri).

If bi~i = 1, set B to max (Bij, Rij).

If cij = 1, set C to max (C., R ).

Any locally optimal subalignment beginning on a node of loci L0 through Lk

now has its similarity stored in the value of each of its edges.

Comments on the NES-2 subroutine. As presented, the NES-2 subroutine

has time complexity O(MN 2 ) because steps {1} through {4} involve O(MN)

operations and are executed for each of M+N loci. Because the subalignment

with maximum similarity that passes through a given edge can not begin at a

node more than O(M) loci above the locus of the edge, the time complexity

of the subroutine can be reduced to O(M2N).

When the subroutine is finished, arrays Auj, Bij and Cii store the

similarity of each edge that is part of a locally optimal subalignment.

Because the similarities of subalignments that are not locally optimal are

not necessarily stored during step {4}, the values of other edges may

underestimate their similarities.

The VV-2 algorithm. All edges that are part of a locally optimal

subalignment with similarity > s* are found by performing the NES-2

subroutine followed by the SIM subroutine.
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The edges of some subalignments that are not locally optimal may also

be found. Except for the optimal subalignment, it is not possible to say

without further investigation whether or not any found subalignment is

locally optimal. Figure 5-1 illustrates the operation of the VV-2

algorithm.

Weak local optimality. A problem with finding only locally optimal

subalignments is that good subalignments are sometimes suppressed even

though they do not intersect a better subalignment that appears in the path

graph. A very good subalignment A appears in the graph flanked by a large

silent region containing no subalignments. Subalignment A suppresses the

appearance of poorer intersecting subalignments as well as, indirectly,

some flanking (but nonintersecting) subalignments. A subalignment C

flanking the very good subalignment A can often be extended (at the cost of

several mismatches or nulls) to be a better subalignment B that contains a

part of A. Since B intersects and is better than C, C does not appear.

Likewise, since A intersects and is better than B, B does not appear

either. In essence, A suppresses the appearance of C through the

intermediate subalignment B, even though C does not intersect A. This

phenomenon suggests that a less stringent definition of local optimality

than that proposed by Sellers (1984) may be useful.

DEFINITION. A subalignment is weakly locally optimal if it intersects

no weakly locally optimal subalignment with greater similarity.

This definition is not circular but recursive. Any subalignment that

is locally optimal is also weakly locally optimal. Finding all weakly
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Figure 5-1. Stages in the execution of the VV-2 algorithm on the DNA

sequences TGATG and CGACTGA using gap costs w(x) = x, similarity function

S with p = 0.25, and s* = 1.

(a) Costs Ru19 after initialization of L2 and L3 in step (1) of the

NES-2 subroutine (locus counter k = 2).

(b) Costs after step {2} of the NES-2 subroutine (k = 2); lines

represent edge states of 1.

(c) Costs converted to similarities (k = 2).

(d) All edges whose value is set 1.0 during step {31 of the NES-2

subroutine (k = 2).

(e) All edges with value k 1.0 after the NES-2 subroutine is complete.

(f) All edges with state 1 after the SIM subroutine.
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locally optimal subalignments is usually more desirable than finding all

locally optimal subalignments because interesting regions of similarity may

appear that otherwise would have been suppressed.

The CC-1 algorithm described below finds all and only those edges that

are part of some weakly locally optimal subalignment with similarity k s*.

The algorithm employs two filters that remove in O(MN) time most edges that

can not be part of any such subalignment.

Isosimilarity curves and the feasible region. Occasionally it is

convenient to represent subalignments by points in the 1,q plane, which is

the quarter plane whose positive x-axis represents length and positive

y-axis represents cost. All subalignments that have the same length and

cost are represented in the 1,c plane by the same point. A similarity

function that is defined for all non-negative 1 and c can be represented in

the 1,c plane by its isosimilarity curves. Equivalent similarity functions

have the same isosimilarity curves; only the value each associates with a

given curve is different.

When two specific sequences are compared, the sequence lengths impose

an upper limit on the length of subalignments at any given cost. For

example, with sequence lengths 40 and 60 and gap costs w(x) = 4 + x, the

the maximum length for a subalignment with cost 10 is 43, corresponding to

aligning subsequences of lengths 40 and 46 using a single gap of length 6.

In this example, the maximum length of a subalignment independent of its

cost is 50, corresponding to aligning the whole of both sequences. This

constraint can be represented in the 1,c plane by a right boundary
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(Figure 5-2). All points representing subalignments must lie to the left

of this boundary.

Typically one is interested only in subalignments whose similarity

exceeds a cutoff value s#. Points representing such subalignments must lie

below the isosimilarity curve s(l,c) = s*. This curve, along with the

right boundary, confines subalignments of interest to a feasible region of

the 1,c plane (Figure 5-2). The apex of the feasible region is the point

where the right boundary and the curve s(l,c) = s* intersect. Certain of

the algorithms that follow require two assumptions about the slopes of

isosimilarity curves in the feasible region. Both assumptions are true of

all reasonable similarity functions and cutoff values s*.

First, we assume that in the feasible region no isosimilarity curves

are concave down. For s2 (l,c) this is true when s* 0 because from

formula 4.10 d2c/d12 = s/(413/ 2 ), which is non-negative for s ? s1 . Since

we are interested only in subalignments with similarity greater than that

expected of a random subalignment, s* will always be chosen greater than 0.

Thus in the feasible region

Ac > T*Al implies s(l,c) > s(l+Al,c+Ac) (5.11

where T* is the maximum slope of an isosimilarity curve in the feasible

region. For reasonable s(l,c) and s*, the slope T* always occurs at the

apex. Thus it is easily estimated by determining the largest 1 in the

feasible region, finding cl and cl+1 such that s(l,cl) = s0 and

s(l+1,c1 +1 ) = s*, and taking T* as c1+1 - c1 .
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Figure 5-2. The feasible region for a comparison of sequences of lengths

40 and 60, with w(x) = 4 + x, using similarity function s, with p = 0.25

and s* = 5. The function is defined for non-integral 1 and a by

interpolation. Subalignments with lengths greater than 40 must contain

nulls and can not have 0 cost. The right boundary of the feasible region

reflects this fact. The upper boundary of the feasible region is the

isosimilarity curve s1(1,c) = 5. Isosimilarity curves are shown also for

values of 10, 20 and 30. The maximum slope (T*) of the isosimilarity

curves in the feasible region is 0.66 and occurs at the apex. An alignment

that begins with a match followed by two mismatches can not be self-optimal

with T* = 0.66.
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Second, we assume that T* is less than 2U. This assumption merely

corresponds to the intuition that adding a mismatch to a subalignment

should decrease its similarity.

Any locally optimal subalignment A found using a nonlinear similarity

function s whose isosimilarity curves are not concave down in the feasible

region can also be found using the linear similarity function s (formula

4.2) if the parameter T is the slope of the isosimilarity curve of s at

(l(A),c(A)). The reasons for not using a linear similarity function are

that in general the appropriate T is different for different subalignments

and that even for the optimal subalignment the appropriate T is not known a

priori.

The DD algorithm. When affine gap costs are used, two parameters must

be chosen to define the cost of a gap. It is difficult to determine what

the values of these parameters should be and the choice made is generally

somewhat arbitrary. The DD algorithm described below uses no parameters to

describe the cost of a gap. Since it considers only diagonal

subalignments, all gaps are assigned by visual inspection of the resulting

DD graph. In practice, the strategy of not assigning gaps during the

initial pattern search is not a serious limitation because the DD graph

usually draws attention to a few obvious places where gaps should be

assigned. Gaps can be assigned visually or the more costly algorithms for

finding locally optimal subalignments containing gaps can be run on these

regions of the path graph using a variety of gap costs. Thus, arbitrary

decisions concerning gap costs do not prejudice the DD output.
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A subalignment found by one of the Sellers algorithms (1974b; 1984)

may contain any edge in the complete path graph (Figure 5-3a). A

subalignment found by the DD algorithm, however, may contain only the

diagonal edges of the diagonal graph (Figure 5-3b), which consists of

diagonals that begin and end at the borders of the graph. Thus the

strategy of allowing no insertions and deletions reduces the search for

locally optimal subalignments in the complete path graph to a search in

diagonals of the diagonal graph.

A diagonal subalignment can be represented by a string of numbers

corresponding to the appropriate substitution costs. In the feasible

region, the addition of the paired elements (x,y) to a subalignment can

increase the subalignment similarity only if c(x,y) < T*. A T-match run is

a string of adjacent substitutions with identical costs < T, and an

T-mismatch run is a string of substitutions each with cost > T. The cost

of a T-match or T-mismatch run is the sum of the costs of its

substitutions.

All weakly locally optimal diagonal subalignments whose similarity is

at least s are found by performing steps (1} through (6).

1} Calculate the similarity s(l,c) for all values of 1 M and all

relevant values of c. Start at the first (lower left) diagonal of the

graph.

f2} Find the beginning, length, and cost of each of the T*-match runs and

T 0 -mismatch runs of the current diagonal.
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Figure 5-3. Two path graphs for the sequences CGGA and CGA.

(a) The complete graph.

(b) The diagonal graph.
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{3} Record the similarity of all diagonal subalignments that start at the

beginning of a T 1 -match run and stop at the end of one.

(41 Find the diagonal subalignment with the highest similarity. If its

similarity is not below s*, mark this subalignment in the graph and execute

step {5}. If its similarity is less than s and the current diagonal is

not the last (upper right) diagonal move to the next diagonal and execute

step {21. Otherwise, execute step {6}.

(5} Repeat step {41 for the set of subalignments of the current diagonal

that do not overlap any of the subalignments already marked in the graph.

{61 Print the DD graph containing just the marked subalignments.

Comments on the DD algorithm. Not all subalignments in the DD graph

need be locally optimal. For example, consider the diagonal of Table 5-2.

Ift s1 is used with p = 0.25, and s = 3, both subalignments A and C would

appear in the graph. Subalignment C is not locally optimal because it

overlaps B, which has a higher similarity. Since A appears, B does not

appear because it overlaps A. Thus C appears by step {51. In practice,

finding all the weakly locally optimal subalignments is more useful than

finding only the locally optimal subalignments.

The length of the longest diagonal is M, the length of the shorter

sequence. A diagonal of length M contains O(M) match runs and O(M2 )

subalignments to be examined. In practice, s is chosen so that on the

average less than one subalignment is marked in the graph per diagonal.

Since the number of diagonals is O(N), where N is the length of the longer
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Table 5-2. Three substrings of the diagonal 10000111100011

Substring Similarity

A 0000 4.00
B 00001111000 3.52
C 000 3.00
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sequence, the time complexity of the DD algorithm is approximately O(M 2 N).

This algorithm was implemented in the C programming language. The

program calculated a DD graph of dimensions 500 x 800 in 5.5 processor

minutes on a Digital Equipment Corp. VAX 11-780 minicomputer running under

the Berkeley 4.2 version of the UNIX operating system.

Self-optimality. Generalizing an argument due to Sellers (1984), it

can be shown that an alignment is not optimal in the context of its own

subalignments if it can be separated into two subalignments such that one

has c/l > T*. This leads to a fast subroutine for eliminating edges that

cannot be part of any weakly locally optimal subalignment.

DEFINITION. An alignment A is self-optimal if for every subalignment

B of A sl(A), c(A)J > s[l(B), c(B)].

THEOREM. Suppose that the cost of increasing the length of a gap by 1

is always at least U. Then given a similarity function that satisfies

[5.1J for some T* < 2U, an alignment A with similarity s* is not

self-optimal if there exists a pair of subalignments B and C, produced by

dividing A at some position, such that c(B)/l(B) > T* or c(C)/l(C) > T*.

PROOF. Without loss of generality, assume that c(C)/l(C) > T*, so

that c(C) > T*l(C). If A is divided in the middle of a gap to make B and

C, produce a different division of A into B' and C' where the whole of the

gap is in C'. C' differs from C by the addition of k nulls. Thus

c(C')/l(C') [c(C) + kU]/[l(C) + k/2] > [c(C) + T*k/2]/[l(C) + k/2J > T*
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Therefore we may assume without loss of generality that A is not divided in

the middle of a gap. Thus

c(A) = c(B) + c(C) > c(B) + Tfl(C) [5.2]

By formula 5.1,

s[l(B), c(B)] > s[l(B) + 1(C), c' = s[l(A), C']

for all c' > c(B) + T'l(C). By formula 5.2, one such c' is c(A), so that

s[l(B), c(B)] > s[l(A), c(A)]

which by definition means that A is not self-optimal.

A test for self-optimality. This theorem indicates that an alignment

is not self-optimal if it contains a terminal subalignment for which

s= 1 - c/T* < 0.

DEFINITION. The terminal subalignment S consists of the first i

positions of an alignment.

One can calculate s (Si) recursively from ss(Sii) by adding

1 - c(x,y) if position i aligns elements x and y, adding 0.5 - V/T* - U/T*

if it contains the first null of a gap, and adding 0.5 - U/T* if it

contains a subsequent null. For example, consider the case of substitution

costs Cid, gap costs wk = 2k and T* = 2/3. Shown below are the values of

SS(si) for one alignment of X and Y.
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i = 1 2 3 4 5 6 7 8

X A T C C T - C T

Y A T G G T G C T

sS(Si) 1.0 2.0 1.5 1.0 2.0 -0.5 0.5 1.5

Since the sixth score is negative, this alignment is not self-optimal.

Note that if all scores from each end of an alignment are non-negative, the

theorem is silent as to whether the alignment is self-optimal.

A subalignment that is not self-optimal contains a section with

greater similarity. The existence of this section insures that the

subalignment can not be weakly locally optimal. Therefore, if no

subalignment that uses a given edge can be self-optimal, that edge can be

removed from the path graph without destroying any weakly locally optimal

subalignments. This strategy can also be used to speed up the DD algorithm

by splitting long diagonals into several sections that can be considered

separately.

A relative prefilter: the RPF subroutine. The states of some edges

that can not be part of a weakly locally optimal subalignment are set to 0

by performing steps {1} to 3). A path graph is initially stored in arrays

aij, bij and cii by having the states of those edges present in the path

graph set to 1. Any expression involving an index outside the array bounds

has the value -o. For linear gap costs (V = 0), the steps in brackets can

be omitted and the algorithm can be rewritten to dispense with arrays P

and Q .
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{1} INITIALIZATION. Calculate T* < 2U, an upper bound on the maximum slope

of isosimilarity curves in the feasible region.

Set X to 0.5 - V/T* - U/T*.

[Set Y to 0.5 - U/T*.J

{2) FORWARD SELF-OPTIMALITY TEST. For i from 0 to M and j from 0 to N:

When aij = 1,

set P to Ri.ij + X;

[set P to max (P ij, Pi-ij + Y);)

if P < 0, set a to 0.

When bi9 = 1,

set Q to Ri, j.1 + X;

[set Qj to max (Qi,jq Qij-1 + Y);J

if Qj < 0, set bjj to 0.

When = 1,

set Ru to Ri.ij.i + 1 - c(xigyj)/T*;

if R9 < 0, set ci j to 0.

Set R to max (0, Pj, Q ij, R j).

If no edge state was changed during this step, and step {3} has been

executed at least once, stop.

{3} REVERSE SELF-OPTIMALITY TEST. For i from M to 0 and j from N to 0:

When ai+1 j = 1,

set Pj to Ri+1,j + X;

[set P to max (P , Pi+1,j + Y);]

if Pi < 0, set ai+1,,j to 0.
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When bi j+1 = 1,

set Qif to RiJ+1 + X;

[set Qij to max (Qij, Qij+1 + Y);J

if Qij < 0, set bi,j+1 to 0.

When c 1+1,j+1 = 1,

set R to Ri+1,j+1 + 1 - C(xi+1g j+1)/T*;

if R < 0, set ci+1 ,j+1 to 0.

Set R ,v to max (0, P , Qj' Rij).

If some edge state was changed during this step, return to step {2}.

Comments on the RPF subroutine. Steps {2} and {3} each require O(MN)

time. The RPF subroutine removes edges that can not be part of any weakly

locally optimal subalignment, but in general it can not remove all such

edges. Therefore, steps {2} and {3} may be executed until no more edges

can be removed (as presented above), or they may be executed a small fixed

number of times. Figure 5-4 illustrates the edges of the path graph that

remain after the RPF subroutine has been executed on a specific pair of

sequences.

An absolute prefilter: the APF subroutine. Since we seek weakly

locally optimal subalignments with similarity 2 s*, any edge whose

similarity is < sO may be eliminated. Let s(l,c) be a normalized

similarity function. Then (s*,O) is the point where the isosimilarity

curve s(l,c) = s* intersects the x-axis (Figure 5-5a). Let A be apex of

the feasible region. Let s (lc) = 1 - c/T, where T is the slope of the

line L connecting (s*,O) and A. The s5-similarity of any point on L is s*.
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Figure 5-4. Operation of the RPF subroutine on the complete path graph for

comparison of segments 188-263 and 488-568 of the human DNA sequence for

beta-1 interferon, using gap costs w(x) = 0.5 + 1.5(x) and similarity

function si with p = 0.25.

(a) The edges of the path graph that remain after filtering with

s* =5.

(b) The edges of the path graph that remain after filtering with

5* 7.
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Figure 5-5. Isosimilarity lines for linear similarity functions that

approximate the upper boundary of the shaded feasible region.

(a) Points (l,c) above the line 1 - c/T = sO can not be in the

feasible region.

(b) Points (l,c) above both lines 1 - c/T = st and 1 - c/T2  s2 can

not be in the feasible region.

a
c A
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Since the s-isosimilarity curves are never concave down in the feasible

region, this region lies below L in the 1,c plane. Any subalignment in the

feasible region therefore has s3-similarity ? s*.

The states of some edges whose s-similarity must be < s5 are set to 0

by performing steps {1) and {2}:

{1) Determine the apex A of the feasible region. Let sS(lc) = 1 - c/T,

where T is the slope of the line through (s*,O) and A.

{2} Execute the LES subroutine using sS and remove all edges whose

5S-similarity is less than sf.

Comments on the APF subroutine. Like the LES subroutine, the time

complexity of the APF subroutine is O(MN). Figure 5-6 illustrates the

edges of the path graph that remain after the APF subroutine has been

executed on a specific pair of sequences. The APF subroutine may be

executed on partial or complete path graphs.

It is possible the extend the APF subroutine so that it will remove

more edges. Let B be some point between (s*,0) and A on the curve

s(l,c) = s* (Figure 5-5b). Let T1 be the slope of the line through (s*,O)

and B, let T2 is the slope of the line through A and B, and let (s2*,0) be

the 1-intercept of this line. Then if 1 - c/T < s* and 1 - c/T 2 < S2*9

(l,c) can not be in the feasible region. This fact suggests an obvious

extension of the APF subroutine. The usefulness of this extension depends

on the degree to which the isosimilarity curves of s(l,c) are concave up.
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Figure 5-6. Operation of the APF subroutine on the complete path graph for

comparison of segments 188-263 and 488-568 of the human DNA sequence for

beta-1 interferon, using gap costs w(x) = 0.5 + 1.5(x) and similarity

function s1 with p = 0.25.

(a) The edges of the path graph that remain after filtering with

s* = 5.

(b) The edges of the path graph that remain after filtering with

S* = 7.
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The CC pattern recognition algorithms. The VV-2 algorithm runs too

slowly to be practical for even relatively small sequence comparisons, such

as 100 x 300. The APF and RPF subroutines described above can remove from

the complete path graph many edges that can not be part of any weakly

locally optimal subalignment. While these prefilters may be executed in

either order, we have found that a program that executes the APF subroutine

first runs slightly faster. The path graph that remains consists of

disjoint connected components (Figure 5-7). An algorithm that executes the

DD algorithm and the NES-2 subroutine on these connected components can run

much faster than the VV-2 algorithm, which executes the NES-2 subroutine on

the complete path graph.

The CC-1 algorithm. All and only those edges that are part of a

weakly locally optimal subalignment with similarity s* are found by

performing steps (1} through {4}.

{11 Execute the APF subroutine on the complete path graph.

{21 Execute the RPF subroutine on the resulting path graph.

{31 Execute the DD algorithm on each connected component whose nodes all

lie on the same diagonal. Save all edges found by the DD algorithm.

{4} Execute the NES-2 subroutine on each connected component whose nodes do

not all lie on the same diagonal. If the greatest edge similarity found is

less than s*, save no edges of the connected component. Otherwise, save

only the edges with the greatest similarity and execute the CC-1 algorithm

on the connected component minus these saved edges.
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Figure 5-7. Connected components of the path graph for comparison of

segments 188-263 and 488-568 of the human DNA sequence for beta-1

interferon, using gap costs w(x) = 0.5 + 1.5(x) and similarity function s

with p = 0.25, after filtering with the RPF and APF subroutines.

(a) APF followed by RPF with s* = 5.

(b) RPF followed by APF with s* = 5.
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Comments on the CC-1 algorithm. The recursion of step (4} makes the

worst-case time complexity of the CC-1 algorithm O(M 3 N 2 ). In practice, for

reasonably large s6, each connected component contains only a small number

of weakly locally optimal subalignments. For very large se, steps Mi} and

{21 remove almost all edges of the path graph and the average time

complexity approaches O(MN). Since the CC-1 algorithm can be very slow for

small s*, it is recommended only as a secondary tool for sequence

comparison. A faster algorithm, such as DD, can be used as a primary tool

to find subalignments with high similarity. The CC-1 algorithm can then be

executed on a region of the path graph containing these subalignments,

using a large s*.

The CC-2 algorithm. All edges of locally optimal subalignments with

similarity 2 se plus the edges of some subalignments with similarity se

that are not locally optimal are found by performing steps {M} to {31 of

the CC-1 algorithm and the following non-recursive step:

{4a} Execute the VV-2 algorithm on each connected component whose nodes do

not all lie on the same diagonal. Save all edges of the path graph found

by the VV-2 algorithm.

The non-recursive CC-2 algorithm runs faster than CC-1. Like the VV-2

algorithm, its worst-case time complexity O(M2 N). For reasonably large se,

it runs much faster than VV-2.

Implementation of the CC-1 algorithm. The CC-1 algorithm has been

implemented in the C programming language. The use of this program is

illustrated in the context of comparing a 636-nucleotide DNA segment

page 95



encoding all of human beta-1 interferon with itself, a problem previously

studied with the TT algorithm (Erickson et al., 1984). Using similarity s

of formulas 4.6 and 4.7 as the selection criterion, with

w(x) 0.5 + 1.5(x), a 76 and an 81-nucleotide segment from the human gene

for beta-1 interferon were compared using the CC-1 program. Running under

version 4.2BSD of the UNIX operating system on a Digital Equipment Corp.

VAX 11/780 minicomputer, the the CC program required 23 seconds with s* set

to 5 and only 10 seconds with s* set to 10. Figure 5-8 shows the final

path graph for s* = 5. The two long, nearly identical central paths (solid

arrows) are equivalent to the DNA subalignments of Figure 5-9. These

globally optimal subalignments have greater sl-similarity than the best

subalignment noted in a previous analysis (Erickson et al., 1984).
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Figure 5-8. The path graph produced by the CC-1 algorithm for comparison

of segments 188-263 and 488-568 of the human DNA sequence for beta-1

interferon, using gap oosts w(x) x 0.5 + 1.5(x), similarity function 3

with p = 0.25, and s* = 5.
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Figure 5-9. The two globally optimal subalignments found by the CC-1

algorithm for comparison of a 636-nucleotide DNA sequence (encoding human

beta-1 interferon) with itself. One subalignment is shown explicitly and

the other differs only in having A-256 aligned with T-559 instead of G-560.

These two best alignments of DNA segments 195-262 and 498-566 correspond to

the nearly identical pair of locally optimal paths (solid arrows) present

in the path graph of Fig. 5-8. The DNA subalignment shown is annotated

(Erickson and Sellers, 1983; Erickson et al., 1984) to display the amino

acid residues of the beta-1 interferon protein encoded by these DNA

segments and the five common amino acids. Since both alignments contain a

null near the end of the first DNA segment, the amino acids encoded by the

last several alignment positions are out of phase and thus can not be

common amino acids. Both alignments contain 29 matches, 27 mismatches and

1 null (V+U = 2), so the cost of each is 29. By formula 4.6 with p = 0.25,

the similarity of this pair of subalignments is si( 6 8 .5,2 9 ) = 13.3.

Deleting the last eight alignment positions from the alignment shown here

gives a subalignment with lower similarity (sl(61,25) = 12.9), which is the

best subalignment noted previously (Erickson et al., 1984). In the context

of comparing a 636-nucleotide segment with itself, a value of s, k 12.9 for

a subalignment lacking gaps is significant at the 99% confidence level

(Chapter VI).

page 98



beta-I interferon (20-41)
different local alignments

beta-I DNA segment (195-262)
common nucleotides

beta-1 DNA segment (498-566)

codon phase
beta-1 interferon (121-142)

common amino acids

'0

20 25 30 35 4041
sLeuLeuTrpGlnLeuAsnGlyArgLeuGluTyrCyLeuLysAspArgMetAsnPheAsp IleProG

:--------------------------------------------------------------2:------
195 200 210 220 230 240 250 262
GCTCCTGTGGCAATTGAATGGGAGGCTTGAATACTGCCTCAAGGACAGGATGAACTTTGAC-ATCCCTG
GC CCTG AT ATGGGAGG TT A T CCT AAGG CA G G AC T AC T CCTG
GCACCTGAAAAGATATTATGGGAGGATTCTGCATTACCTGAAGGCCAAGGAGTACAGTCACTGTGCCTG

498 510 520 530 540 550 560 566
<--- in phase ---------------------------------------------- > < out >
uHisLeuLysArgTyrTyrGlyArgIleeuHisTyrLeuLysAlaLysGluTyrSerHisCysAlaTr
121 125 130 135 140 142

Leu GlyArg LeuLys:



VI. SIMILARITY SIGNIFICANCE LEVELS

It is important to know how great the similarity of a subalignment

must be before the subalignment can be considered surprising.

Specifically, given a number E _ 0.1 and two random sequences of lengths M

and N, we wish to estimate the value s for which the probability is less

than E that the greatest similarity of a subalignment of these sequences

will be greater than s C. For various similarity functions, the

distribution of maximal scores from comparison of random sequences has been

studied recently by both theoretical derivation (Karlin and Ghandour, 1985;

Arratia and Waterman, 1985; Gordon et al., 1986; Arratia et al., 1986) and

experimental simulation (Smith et al., 1985).

For a wide range of similarity functions, the distribution of maximal

scores is well modeled by the extreme value distibution (Gumbel, 1962),

whose cumulative distribution function is

exp(-exp(-\(x-u))) (6.1]

Parameter u, called the characteristic value, measures the center of the

distribution. Parameter X measures the exponential rate of decay of the

right-hand tail of the distribution.

The extreme value distribution is the limiting ditribution for the

maximum of a large number of i.i.d. (independent identically distributed)

continuous unbounded random variables with at least exponential decay

(Gumbel, 1962). The similarity of the optimal subalignment of two random

sequences does not satisfy these conditions, but there is sufficient
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analogy that one may expect an extreme value distribution to apply. A

subalignment can begin with any pair of elements from the two sequences.

The greatest similarity of a subalignment beginning at a given position is

dependent on that of subalignments beginning at other positions.

Furthermore, since the two sequences are finite, the distribution of such

greatest similarities is position dependent. Nevertheless, the dependence

between the maximum similarity of subalignments starting at different

positions is in general very weak, and the position dependence is important

only for those subalignments that begin near the end of one sequence.

Gordon et al. (1986) have shown that for a sequence of n independent

coin tosses, the longest head run interrupted by k tails is closely

approximated by an extreme value distribution. Parameter X remains

constant with increasing n and parameter u grows approximately as a linear

function of ln(n). When two random sequences are compared using a

normalized similarity function such as s or s2', the similarity of an

optimal subalignment is analogous to the longest head run studied by Gordon

et al., because a subalignment of length 1 and cost 0 has similarity 1.

The product of the lengths of the two sequences (MN) is analagous to the

number of tosses, because a subalignment may begin at any of MN different

positions. While these are no more than analogies, they lead us to expect

that for pairs of sufficiently long sequences the distribution of optimal

similarities can be well approximated by an extreme value distribution.

For normalized similarity functions, the parameter X should not change with

MN and the parameter u should be well approximated by the formula

u = ln(k1 MN)/k2 (6.2]
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For c < 0.1, the significance levels of the extreme value distribution of

formula 6.1 are then closely approximated by the formula

s = u - ln(E)/X [6.3]

Range of the analysis. While for certain similarity functions an

extreme value distribution has been shown to apply, and formulas for u and

A have been derived theoretically (Arratia and Waterman, 1985; Gordon et

al., 1986; Arratia et al., 1986), theory for similarity functions such as

s, remains undeveloped. Assuming an extreme value distribution, parameters

u and A must be estimated experimentally. In this chapter we investigate

the distibution of optimal similarities for the function si of formula 4.5

for both nucleic acid and protein sequence comparison. As mentioned in

Chapter IV, the use of similarity function s1 is justified for only

diagonal subalignments, and we accordingly investigate only such

subalignments.

For nucleic acid sequences, we allow a variety of probability

distributions for nucleotide usage, but investigate only the substitution

cost function cid and its associated s1-similarity function. For protein

sequences, we use only one distribution for amino acid usage, but

investigate a variety of substitution cost functions and their associated

5
1-similarity functions. We also investigate the distribution of optimal

similarities for three-sequence comparison.

While our results are confined to a specific similarity function and

to diagonal subalignments, it is evident how they can be extended to more
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general cases. Since the methods described require substantial computer

time, it is hoped that analytic methods can be developed to render Monte

Carlo simulation unnecessary.

Estimation of parameters. In this section we describe in detail how

parameters u and X are estimated for the simple case of nucleic acid

sequences with uniform nucleotide usage, substitution costs cid, and the

associated sl-similarity of formula 4.6 with p = 0.25. Later this method

is applied to a variety of other cases.

For nine sequence lengths M = N between 70 and 518, a series of 1000

pairs of random sequences were generated. Nucleic acid sequences were

simulated by sequences having four types of elements selected randomly with

equal probabilities. For each pair of sequences, the DD algorithm was used

to find the maximum sl-similarity of all diagonal subalignments. From

these 1000 similarity values, the parameters X and u were estimated by the

method of moments using the formulas A = T//T and u = p - y/X, where

Y = 0.577... is Euler's constant, 1' is the sample mean, and V is the sample

variance (Gumbel, 1962).

The results are summarized in Table 6-1. In order to test the claim

that the distribution of optimal similarity scores can reasonably be

modelled by an extreme value distribution, we did a X2 goodness-of-fit test

on the data. A typical result, that for M = N = 245, is shown in

Table 6-2. In order to compensate for the discreteness of the data, a

similarity score of the form i + x, where i is an integer and 0 x < 1,

counts as the fraction (1 - x) of an observation at i and the fraction x of
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Table 6-1.
A for M = N

Estimation of the parameters u and

M N ln(MN) u x

70 70 8.50 5.98 t 0.03 1.36 + 0.04
90 90 9.00 6.42 * 0.03 1.38 + 0.04

116 116 9.51 6.89 0.03 1.34 + 0.04
148 148 9.99 7.33 t 0.04 1.29 t 0.05
191 191 10.50 7.79 t 0.04 1.27 * 0.04
245 245 11.00 8.23 t 0.04 1.31 t 0.05
314 314 11.50 8.64 0.04 1.27 + 0.04
403 403 12.00 9.13 * 0.04 1.28 t 0.05
518 518 12.50 9.44 0.03 1.32 + 0.05

Table 6-2. X2 goodness-of-fit test for
1000 optimal 8 -scores for M = N = 245.
Estimated u: 8.23 Estimated X: 1.31

i x 0 . (Xi-0i) 2/

7- 74.12 90.00 3.40
8 421.43 405.48 0.60
9 331.87 321.74 0.31

10 122.75 125.84 0.08
11 36.13 42.28 1.05
12+ 13.70 14.66 0.07

Total: 5.51
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an obsevation at (i + 1). Let Xi be the number of scores expected at i, and

01 the number observed. Then since two parameters for the extreme value

distribution of formula 6.1 are estimated from the data, the statistic

12
I [(x - 0i)2/Xii . 6.41

i=7

is distributed as X2 with 3 degrees of freedom (Larsen and Marx, 1981,

pp 365-366). 90% of the distribution for X2 with 3 degrees of freedom

falls below 6.25. Since the observed value for the statistic of formula

6.4 is 5.51 (Table 6.2), the data fit the extreme value model within

statistical uncertainty.

Above sequence lengths M = N = 130, the estimate for parameter X shows

no tendency to increase or decrease with increasing size of the product MN.

Its average value for the six cases examined is

X = 1.29 [6.5)

Linear regression analysis of u versus ln(MN) yielded a correlation

coefficient of 0.9995. The best straight line through these points is

given by the formula

u = 0.879 ln(MN) - 1.471 [6.6]

The standard error in the coefficient of ln(MN) is about 0.010 (Mood et

al., 1974, pp 482-502). The estimated value of the constant term is

dependent upon the estimated coefficient of ln(MN), and is not as important

for the estimate of u as MN grows. Formula 6.6 can be written as

u = ln(0.19 MN)/1.14 [6.7]
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From formulas 6.3, 6.5 and 6.7, the significance levels for nucleic acid

sequence comparison using similarity function si of formula 4.6 can be

estimated as

s = ln(O.19 MN)/1.14 - ln(e)/1.29 [6.8]

for F 0.1.

Formulas 6.5 and 6.6 were derived by Monte Carlo simulation using

sequence lengths of equal size. By analogy with results for the longest

perfect subalignment of two sequences (Arratia and Waterman, 1985), we

expect formula 6.6 to overestimate u when the ratio of ln(M) to ln(MN) is

far from 0.5. The parameters u and X were estimated as above for six pairs

of sequence lengths with the same product. The results appear in

Table 6-3. Although the estimated u decreases with decreasing

ln(M)/ln(MN), formula 6.7 overestimates u by less than 0.3 even for the

case of M = 60 and N = 2160. When ln(M)/ln(MN) is far from 0.5, formula

6.8 will tend to underestimate the significance of subalignments.

Nucleic acid sequences with non-uniform nucleotide usage. Frequently

nucleic acid sequences have nucleotide usage that is far from uniform. If

similarity function s1 of formula 4.6 is used to compare nucleic acid

sequences, it is important that p accurately reflect the probability that

random nucleotides from each sequence match. If too great a p is used,

then short subalignments will be emphasized over long ones. Conversely, if

too small a p is used, then long subalignments will be emphasized over

short ones. Even large deviations from non-uniform nucleotide usage can

leave p close to 0.25. In practice it is rare for p to be outside the
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Table 6-3. Estimation of
for ln(MN) = 11.77

the parameters u and X

M N ln(M)/ln(MN) u A

(MN = 3602) 8 .8 7 a 1.29b
360 360 0.500 8.84 + 0.04 1.27 0.05
240 540 0.466 8.84 0.04 1.32 0.04
180 720 0.441 8.83 0.04 1.27 0.04
120 1080 0.407 8.70 0.04 1.37 0.04

90 1440 0.382 8.68 0.03 1.33 * 0.04
60 2160 0.348 8.59 0.03 1.30 0.04

a From formula 6.6. b From formula 6.5.
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range 0.2 to 0.3.

We have investigated the distribution of maximal subalignment

similarities for several sets of nucleotide frequencies. Specifically, two

distributions of nucleotide frequency were specified. These distributions

determined p, the probability of a match, from which s 1-similarity values

were calculated using formula 4.6. Then 400 pairs of random sequences were

generated; random letters for each sequence were chosen with reference to

the appropriate distribution. The DD algorithm was used to find the

optimal subalignment similarity for each pair of sequences. Finally, the

method described in the previous section was used to estimate parameters

k1 , ik2 and X for the formula

= ln(k1 MN)/k 2 - ln(E)/X [6.9]

Since it is difficult to determine the value that X approaches, the mean of

the estimated estimated values of X for each set of lengths was used as an

estimate for X. It is not known how to attach a standard error to this

estimate, but it appears to be good to about 5%.

The results appear in Tables 6-4 through 6-21, where L.R. means linear

regression, and in Table 6-26. In every case the correlation coefficient

of the estimated characteristic value u with ln(MN) is greater than 0.9988.

While k1 stays approximately constant at 0.15, k 2 and X decrease with

increasing p. However, as seen in Table 6-26, the ratio of k2 and X to

ln(p) is essentially constant. This is expected because s is defined to

be the logarithm to the base p of a certain probability. If s, were

defined instead as simply the natural logarithm of this probability then k2
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Table 6-4. Estimation of u & )
Nucleic acid frequencies:
(0.4, 0.3, 0.2, 0.1) and
(0.1, 0.2, 0.3, 0.4). p = 0.20

M,N u

70 5.00 + 0.05 1.34 + 0.07
90 5.39 t 0.05 1.29 t 0.06

116 5.75 0.05 1.39 0.08
148 6.19 0.06 1.29 0.08
191 6.55 0.05 1.48 0.07
245 6.91 0.05 1.44 0.17
314 7.28 t 0.05 1.31 + 0.07
403 7.63 0.05 1.34 0.07
518 8.02 + 0.05 1.51 + 0.10

Mean : 1.38
L.R.: u = 0.753 ln(MN) - 1.381
Slope standard error: 0.014

Table 6-5. Estimation of u & X
Nucleic acid frequencies:
(0.3, 0.4, 0.2, 0.1) and
(0.1, 0.2, 0.3, 0.4). p = 0.21

M,N u

70 5.10 0.05 1.37 * 0.06
90 5.60 + 0.05 1.35 0.06

116 5.94 t 0.05 1.30 * 0.06
148 6.28 + 0.06 1.26 0.06
191 6.75 0.05 1.36 0.05
245 7.17 0.05 1.53 0.07
314 7.54 0.05 1.43 + 0.07
403 8.02 0.05 1.39 0.08
518 8.35 + 0.05 1.39 * 0.07

Mean : 1.38
L.R.: u = 0.812 ln(MN) - 1.776
Slope standard error: 0.014
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Table 6-6. Estimation of u & /
Nucleic acid frequencies:
(0.4, 0.2, 0.3, 0.1) and
(0.1, 0.2, 0.3, 0.4). p = 0.21

M,N u

70 5.21 + 0.05 1.39 t 0.08
90 5.54 0.06 1.32 0.11
116 5.96 + 0.05 1.48 * 0.06
148 6.38 0.05 1.37 t 0.06
191 6.81 + 0.05 1.41 0.07
245 7.21 t 0.05 1.33 * 0.07
314 7.59 0.05 1.42 + 0.07
403 7.95 0.05 1.36 0.07
518 8.26 + 0.05 1.34 0.06

Mean : 1.38
L.R.: u = 0.784 ln(MN) - 1.467
Slope standard error: 0.014

Table 6-7. Estimation of u & A

Nucleic acid frequencies:
(0.3, 0.4, 0.1, 0.2) and
(0.1, 0.2, 0.3, 0.4). p = 0.22

M,N u x

70 5.27 t 0.05 1.28 t 0.05
90 5.75 0.05 1.36 0.07

116 6.23 * 0.05 1.34 + 0.06
148 6.62 + 0.06 1.24 1 0.06
191 6.93 0.05 1.33 0.07
245 7.39 0.06 1.26 + 0.10
314 7.80 + 0.05 1.32 + 0.07
403 8.20 + 0.05 1.39 0.05
518 8.51 0.05 1.39 t 0.07

Mean 1.32
L.R.: u = 0.808 ln(MN) - 1.513
Slope standard error: 0.014
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Table 6-8. Estimation of u & X
Nucleic acid frequencies:
(0.2, 0.4, 0.3, 0.1) and
(0.1, 0.2, 0.3, 0.4). p = 0.23

M,N u

70 5.44 0.06 1.29 0.08
90 5.92 0.06 1.20 * 0.04

116 6.36 0.06 1.28 * 0.07
148 6.74 + 0.05 1.31 0.04
191 7.12 + 0.05 1.31 + 0.07
245 7.61 0.05 1.24 0.05
314 8.04 + 0.06 1.28 + 0.07
403 8.40 + 0.05 1.31 0.07
518 8.85 0.06 1.25 0.07

Mean 1.27
L.R.: u = 0.844 ln(MN) - 1.697
Slope standard error: 0.016

Table 6-9. Estimation of u & A
Nucleic acid frequencies:
(0.3, 0.2, 0.4, 0.1) and
(0.1, 0.2, 0.3, 0.4). p = 0.23

M,N u

70 5.44 + 0.06 1.16 + 0.06
90 5.86 + 0.05 1.26 + 0.05

116 6.25 * 0.06 1.21 + 0.05
148 6.71 0.06 1.29 0.08
191 7.21 0.05 1.30 t 0.06
245 7.58 - 0.05 1.35 0.06
314 8.02 + 0.05 1.31 + 0.06
403 8.43 + 0.05 1.27 + 0.06
518 8.80 0.05 1.26 * 0.05

Mean : 1.27
L.R.: u = 0.852 ln(MN) - 1.804
Slope standard error: 0.015
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Table 6-10. Estimation of
Nucleic acid frequencies:
(0.2, 0.3, 0.4, 0.1) and
(0.1, 0.2, 0.3, 0.4). p = 0.24

M,N u x

70 5.59 0.05 1.30 + 0.05
90 6.08 0.05 1.29 0.04

116 6.47 + 0.05 1.25 t 0.05
148 7.00 + 0.06 1.08 t 0.05
191 7.37 + 0.05 1.26 + 0.06
245 7.79 + 0.06 1.22 + 0.07
314 8.20 + 0.06 1.26 + 0.08
403 8.70 0.06 1.20 0.07
518 9.11 0.05 1.26 + 0.04

Mean 1.24
L.R.: u = 0.873 ln(MN) - 1.801
Slope standard error: 0.016

Table 6-11. Estimation of u & A
Nucleic acid frequencies:
(0.2, 0.2, 0.3, 0.3) and
(0.3, 0.3, 0.2, 0.2). p = 0.24

M,N u

70 5.76 + 0.04 1.52 0.05
90 6.20 + 0.05 1.33 * 0.08

116 6.67 + 0.06 1.26 + 0.06
148 7.10 0.05 1.32 + 0.06
191 7.58 + 0.06 1.24 + 0.07
245 7.95 + 0.05 1.39 t 0.04
314 8.44 + 0.06 1.23 0.07
403 8.74 t 0.05 1.34 + 0.07
518 9.16 0.05 1.30 t 0.07

Mean : 1.32
L.R.: u = 0.808 ln(MN) - 1.513
Slope standard error: 0.014
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Table 6-12. Estimation of
Nucleic acid frequencies:
(0.2, 0.4, 0.1, 0.3) and
(0.1, 0.2, 0.3, 0.4). p

u &

0.25

M,N u

70 5.77 + 0.07 1.14 + 0.08
90 6.28 * 0.06 1.22 t 0.06

116 6.71 + 0.05 1.31 t 0.05
148 7.13 0.06 1.20 * 0.05
191 7.69 t 0.06 1.23 0.07
245 8.07 t 0.06 1.26 t 0.09
314 8.43 t 0.05 1.28 0.06
403 8.91 * 0.06 1.13 0.06
518 9.37 0.06 1.22 + 0.05

Mean 1.22
L.R.: u = 0.889 ln(MN) - 1.742
Slope standard error: 0.017

Table 6-13. Estimation of u & N
Nucleic acid frequencies:
(0.2, 0.3, 0.2, 0.3) and
(0.2, 0.2, 0.3, 0.3). p = 0.25

M,N u

70 5.98 t 0.05 1.39 + 0.09
90 6.39 + 0.06 1.25 * 0.06

116 6.91 + 0.07 1.17 0.08
148 7.29 0.05 1.38 + 0.07
191 7.72 + 0.06 1.34 + 0.09
245 8.23 0.05 1.27 - 0.05
314 8.60 0.05 1.28 + 0.05
403 9.11 0.06 1.29 0.09
518 9.48 + 0.05 1.36 + 0.09

Mean : 1.30
L.R.: u = 0.883 ln(MN) - 1.526
Slope standard error: 0.016
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Table 6-14. Estimation of
Nucleic acid frequencies:
(0.1, 0.4, 0.3, 0.2) and
(0.1, 0.2, 0.3, 0.4). p =

u &N

0.26

M,N u x

70 6.04 + 0.06 1.20 + 0.07
90 6.49 0.06 1.25 * 0.08

116 7.02 0.05 1.26 + 0.04
148 7.37 * 0.06 1.21 * 0.06
191 7.94 + 0.06 1.21 + 0.06
245 8.39 0.06 1.22 0.06
314 8.79 + 0.07 1.10 * 0.07
403 9.18 0.06 1.22 0.07
518 9.65 0.05 1.28 * 0.06

Mean 1.22
L.R.: u = 0.903 ln(MN) - 1.604
Slope standard error: 0.017

Table 6-15. Estimation of u & X
Nucleic acid frequencies:
(0.2, 0.2, 0.3, 0.3) and
(0.2, 0.2, 0.3, 0.3). p = 0.26

M,N u

70 6.17 0.06 1.33 t 0.08
90 6.56 0.06 1.20 * 0.06

116 7.05 0.05 1.27 * 0.05
148 7.51 + 0.06 1.25 0.07
191 7.99 + 0.05 1.29 + 0.05
245 8.39 t 0.05 1.35 t 0.05
314 8.81 + 0.06 1.26 + 0.06
403 9.31 0.06 1.26 0.10
518 9.75 + 0.06 1.29 0.07

Mean 1.28
L.R.: u = 0.899 ln(MN) - 1.494
Slope standard error: 0.017
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Table 6-16. Estimation of
Nucleic acid frequencies:
(0.1, 0.3, 0.4, 0.2) and
(0.1, 0.2, 0.3, 0.4). p

u & A

0.27

M,N u

70 6.28 0.06 1.24 0.07
90 6.67 + 0.06 1.21 * 0.06

116 7.12 0.07 1.08 + 0.07
148 7.68 * 0.06 1.13 * 0.04
191 8.17 * 0.06 1.11 * 0.05
245 8.57 * 0.05 1.27 * 0.05
314 9.06 + 0.06 1.22 + 0.06
403 9.43 0.06 1.19 0.07
518 9.99 * 0.06 1.15 - 0.06

Mean 1.18
L.R.: u = 0.930 ln(MN) - 1.656
Slope standard error: 0.017

Table 6-17. Estimation of u & A
Nucleic acid frequencies:
(0.3, 0.2, 0.4, 0.1) and
(0.1, 0.2, 0.3, 0.4). p = 0.27

M,N u

70 6.07 0.06 1.12 * 0.04
90 6.66 + 0.06 1.20 t 0.05

116 7.09 0.06 1.17 t 0.06
148 7.53 + 0.06 1.19 t 0.09
191 7.90 + 0.06 1.21 + 0.05
245 8.43 0.06 1.19 0.06
314 8.89 0.06 1.15 * 0.06
403 9.39 0.06 1.12 + 0.05
518 9.88 + 0.06 1.16 + 0.04

Mean : 1.17
L.R.: u = 0.931 ln(MN) - 1.797
Slope standard error: 0.017
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Table 6-18. Estimation of u &
Nucleic acid frequencies:
(0.2, 0.1, 0.4, 0.3) and
(0.1, 0.2, 0.3, 0.4). p 0.28

M,N u

70 6.24 * 0.06 1.17 . 0.06
90 6.76 + 0.06 1.13 * 0.06
116 7.29 + 0.07 1.10 t 0.07
148 7.82 - 0.06 1.17 * 0.06
191 8.34 0.06 1.17 0.05
245 8.83 t 0.06 1.15 t 0.06
314 9.26 + 0.06 1.18 + 0.07
403 9.82 0.06 1.16 * 0.04
518 10.24 * 0.07 1.16 * 0.08

Mean 1.15 '
L.R.: u = 1.005 ln(MN) - 2.260
Slope standard error: 0.017

Table 6-19. Estimation of u & A
Nucleic acid frequencies:
(0.1, 0.2, 0.4, 0.3) and
(0.1, 0.2, 0.3, 0.4). p = 0.29

M,N u

70 6.49 t 0.06 1.13 0.06
90 7.03 * 0.06 1.14 * 0.04

116 7.57 * 0.06 1.08 * 0.04
148 8.00 + 0.06 1.14 + 0.07
191 8.70 0.06 1.11 0.06
245 9.04 * 0.06 1.15 0.06
314 9.58 + 0.06 1.10 + 0.06
403 10.09 t 0.06 1.10 t 0.05
518 10.54 0.06 1.13 0.05

Mean : 1.12
L.R.: u = 1.015 ln(MN) - 2.098
Slope standard error: 0.018
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Table 6-20. Estimation of
Nucleic acid frequencies:
(0.1, 0.3, 0.2, 0.4) and
(0.1, 0.2, 0.3, 0.4). p 0.29

M,N u x

70 6.50 0.06 1.27 t 0.06
90 7.06 + 0.07 1.07 0.06

116 7.54 + 0.06 1.11 + 0.06
148 8.03 - 0.06 1.12 * 0.05
191 8.52 + 0.07 1.06 + 0.08
245 9.11 0.06 1.09 * 0.05
314 9.58 k 0.07 1.08 0.06
403 10.06 * 0.06 1.12 + 0.05
518 10.51 + 0.06 1.10 + 0.05

Mean 1.10
L.R.: u = 1.007 ln(MN) - 2.028
Slope standard error: 0.019

Table 6-21. Estimation of u & X
Nucleic acid frequencies:
(0.1, 0.2, 0.3, 0.4) and
(0.1, 0.2, 0.3, 0.4). p = 0.30

M,N u

70 6.69 t 0.07 1.05 0.05
90 7.17 t 0.07 1.01 t 0.07

116 7.75 0.06 1.17 0.07
148 8.24 + 0.07 1.03 0.06
191 8.91 + 0.07 1.08 * 0.07
245 9.36 + 0.06 1.17 0.04
314 9.86 + 0.06 1.11 0.06
403 10.31 0.06 1.14 + 0.06
518 10.81 0.07 1.03 k 0.06

Mean : 1.09
L.R.: u = 1.042 ln(MN) - 2.149
Slope standard error: 0.019
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Table 6-22. Estimation of u & A
Standard amino acid frequencies.
Costs: cid po = 0.06

M,N u x

55 2.68 t 0.03 2.38 + 0.14
70 2.88 t 0.03 2.57 t 0.18
90 3.15 0.03 2.43 + 0.10

116 3.32 0.03 2.57 0.12
148 3.56 0.03 2.47 0.11
191 3.80 + 0.02 2.71 + 0.09
245 4.01 0.02 2.87 0.14
314 4.21 + 0.03 2.65 + 0.13
403 4.39 0.03 2.66 t 0.09
518 4.62 0.03 2.62 0.10

Mean : 2.59
L.R.: u = 0.433 ln(MN) - 0.772
Slope standard error: 0.007

Table 6-23. Estimation of u & X
Standard amino acid ftequencies.
Costs: cd6 P0 = 10~

M,N u

55 0.88 * 0.01 8.5 0.4
70 0.94 0.01 7.9 0.5
90 1.01 + 0.01 9.4 + 0.5

116 1.07 0.01 7.4 0.4
148 1.13 0.01 8.0 + 0.4
191 1.21 0.01 8.2 * 0.5
245 1.27 * 0.01 8.5 0.4
314 1.34 + 0.01 8.3 0.3

Mean : 8.3
L.R.: u = 0.132 ln(MN) - 0.180
Slope standard error: 0.003
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Table 6-24. Estimation of u &

Standard amino acid frequencies.
Costs: c ge p0 = 0.06

M,N u N

55 2.83 t 0.03 2.72 + 0.18
70 3.02 0.03 2.67 t 0.11
90 3.24 + 0.03 2.60 + 0.11

116 3.49 0.03 2.57 t 0.13
148 3.72 + 0.03 2.55 + 0.20
191 3.91 0.03 2.51 0.14
245 4.10 t 0.03 2.49 t 0.12
314 4.29 0.03 2.53 t 0.13
403 4.55 t 0.03 2.65 t 0.13

Mean 2.59
L.R.: u = 0.428 ln(MN) - 0.601
Slope standard error: 0.009

Table 6-25. Estimation of u & A
Standard amino acid frequencies.
Costs: c__ p0 = 0.06

M,N u

55 2.80 0.03 2.57 0.13
70 3.02 * 0.03 2.70 0.13
90 3.22 0.03 2.65 0.13

116 3.47 0.03 2.27 t 0.10
148 3.67 0.03 2.43 0.13
191 3.93 + 0.03 2.70 * 0.17
245 4.14 t 0.03 2.48 + 0.14
314 4.32 + 0.03 2.71 + 0.14
403 4.55 0.03 2.57 0.10

Mean : 2.59
L.R.: u = 0.433 ln(MN) - 0.772
Slope standard error: 0.007
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Table 6-26. Estimated parameters k1 , k 2 and X for a variety
of letter distributions, substitution costs, and the
associated similarity functions s i

Table P0  ki k2 x -k2/ln(p0 ) -x/ln(p0 )

6-4 0.20 0.16 1.328 1.38 0.83 2% 0.86
6-5 0.21 0.11 1.232 1.38 0.79 2% 0.88
6-6 0.21 0.15 1.276 1.38 0.82 + 2% 0.88
6-7 0.22 0.15 1.238 1.32 0.82 + 2% 0.87
6-8 0.23 0.13 1.185 1.27 0.80 + 2% 0.86
6-9 0.23 0.12 1.174 1.27 0.80 + 2% 0.86
6-10 0.24 0.13 1.145 1.24 0.81 * 2% 0.87
6-11 0.24 0.18 1.171 1.33 0.82 + 2% 0.93
6-12 0.25 0.14 1.125 1.22 0.81 2% 0.88
6-13 0.25 0.18 1.133 1.30 0.82 2% 0.94
6-14 0.26 0.17 1.107 1.22 0.82 2% 0.91
6-15 0.26 0.19 1.112 1.28 0.82 + 2% 0.95
6-16 0.27 0.17 1.075 1.18 0.82 + 2% 0.90
6-17 0.27 0.15 1.074 1.17 0.82 + 2% 0.89
6-18 0.28 0.11 0.995 1.15 0.79 + 2% 0.90
6-19 0.29 0.13 0.985 1.12 0.80 + 2% 0.90
6-20 0.29 0.13 0.993 1.10 0.80 * 2% 0.89
6-21 0.30 0.13 0.960 1.09 0.80 + 2% 0.91

6-22 0.0( 0.17 2.31 2.59 0.82 t 2% 0.92
6-23 10- 0.25 7.58 8.3 0.82 + 2% 0.90
6-24 0.06 0.19 2.27 2.56 0.81 2% 0.91
6-25 0.06 0.25 2.34 2.59 0.83 + 2% 0.92
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and X would remain independent of p. As a result, we can present the

following general formula for the significance levels of s1 when used for

nucleic acid sequence comparison:

s = [ln(0.15 MN)/0.81 - ln()/0.90J / [-ln(p)] [6.10]

While the ratio of k2 to ln(p) is constant within statistical error,

the ratio of X to ln(p) shows substantial variation. In particular, this

ratio seems to depend upon the distributions of nucleotide frequencies.

Since significance levels are desired generally for only a relatively small

range of c, say from 0.1 to 0.001, the value of X is not as important as

that of k2 for estimating s . Nevertheless, better prediction of the value

of X is desirable.

Protein sequences. Several sets of substitution costs have been used

for protein sequence comparison. We have investigated four of these. The

first set, cid (identity), was discussed above. The second set is cd6

(Dayhoff-6), which is shown in Table 6-27. It is a scaled version of the

PAM-250 matrix of Dayhoff et al. (1978). The third set is c (genetic

code), which is shown in Table 6-28. For cgo the cost of aligning two

amino acids is the minimum number of point mutations needed to change a

codon for one amino acid into a codon for the other. The fourth set of

substitution costs, c (genetic metric), is a metric version of cgc, in

which all 3's are replaced with 2's (Erickson and Sellers, 1983). Using

the amino acid frequencies shown in Table 6-29 (Dayhoff et al., 1978), s1

values were calculated for each of these substitution cost functions.
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Table 6-27. Amino acid substitution costs cd6 '

A S G L K V T P E D N I Q R F Y C H M W

A 3 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 4 4 4 5
S 4 3 4 5 4 4 4 4 4 4 4 4 4 4 5 5 4 4 4 4
G 4 4 3 5 4 4 4 4 4 4 4 5 4 5 5 5 5 4 5 6
L 4 5 5 2 5 3 4 5 5 5 5 3 4 5 3 4 5 4 3 4
K 4 4 4 5 3 4 4 4 4 4 4 4 4 3 5 5 5 4 4 5
V 4 4 4 3 4 3 4 4 4 4 4 3 4 4 4 4 4 4 3 5
T 4 4 4 4 4 4 3 4 4 4 4 4 4 4 5 5 4 4 4 5
P 4 4 4 5 4 4 4 2 4 4 4 4 4 4 5 5 5 4 4 5
E 4 4 4 5 4 4 4 4 3 3 4 4 3 4 5 5 5 4 4 6
D 4 4 4 5 4 4 4 4 3 3 3 4 3 4 5 5 5 4 5 6
N 4 4 4 5 4 4 4 4 4 3 3 4 4 4 5 4 5 3 4 5
I 4 4 5 3 4 3 4 4 4 4 4 3 4 4 4 4 4 4 3 5
Q 4 4 4 4 4 4 4 4 3 3 4 4 3 4 5 5 5 3 4 5
R 4 4 5 5 3 4 4 4 4 4 4 4 4 2 5 5 5 3 4 3
F 5 5 5 3 5 4 5 5 5 5 5 4 5 5 2 2 5 4 4 4
Y 55545455551445521 14141414
C 4 4 5 5 5 4 4 5 5 5 5 4 5 5 5 4 1 5 5 6
H 4 4 4 4 4 4 4 4 4 4 3 4 3 3 4 4 5 2 4 5
M 4 4 5 3 4 3 4 4 4 5 4 3 4 4 4 4 5 4 2 5
W 5 4 6 4 5 5 5 5 6 6 5 5 5 3 4 4 6 5 5 0
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Table 6-28. Amino acid substitution costs cgc.

A S G L K V T P E D N I Q R F Y C H M W

A 0 1 1 2 2 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2
S 1 0 1 1 2 2 1 1 2 2 1 1 2 1 1 1 1 2 2 1
G 1 1 0 2 2 1 2 2 1 1 2 2 2 1 2 2 1 2 2 1
L 2 1 2 0 2 1 2 1 2 2 2 1 1 1 1 2 2 1 1 1
K 2 2 2 2 0 2 1 2 1 2 1 1 1 1 3 2 3 2 1 2
V 1 2 1 1 2 0 2 2 1 1 2 1 2 2 1 2 2 2 1 2
T 1 1 2 2 1 2 0 1 2 2 1 1 2 1 2 2 2 2 1 2
P 1 1 2 1 2 2 1 0 2 2 2 2 1 1 2 2 2 1 2 2
E 1 2 1 2 1 1 2 2 0 1 2 2 1 2 3 2 3 2 2 2
D 1 2 1 2 2 1 2 2 1 0 1 2 2 2 2 1 2 1 3 3
N 2 1 2 2 1 2 1 2 2 1 0 1 2 2 2 1 2 1 2 3
I 2 1 2 1 1 1 1 2 2 2 1 0 2 1 1 2 2 2 1 3
Q 2 2 2 1 1 2 2 1 1 2 2 2 0 1 3 2 3 1 2 2
R 2 1 1 1 1 2 1 1 2 2 2 1 1 0 2 2 1 1 1 1
F 2 1 2 1 3 1 2 2 3 2 2 1 3 2 0 1 1 2 2 2
Y 2 1 2 2 2 2 2 2 2 1 1 2 2 2 1 0 1 1 3 2
C 2 1 1 2 3 2 2 2 3 2 2 2 3 1 1 1 0 2 3 1
H 22212221211211212033
M 2 2 2 1 1 1 1 2 2 3 2 1 2 1 2 3 3 3 0 2
W 2 1 1 1 2 2 2 2 2 3 3 3 2 1 2 2 1 3 2 0
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Amino acid frequencies (Dayhoff et al., 1978)

Gly 0.089 Val 0.065 Arg 0.041 His 0.034
Ala 0.087 Thr 0.058 Asn 0.040 Cys 0.033
Leu 0.085 Pro 0.050 Phe 0.040 Tyr 0.030
Lys 0.081 Glu 0.050 Gln 0.038 Met 0.015
Ser 0.070 Asp 0.047 Ile 0.037 Trp 0.010

Table 6-30. Estimation of the parameters u and X.

L M N ln(I4N) uN xN up xP

40 40 40 11.07 3.62 + 0.05 2.8 + 0.3 1.97 0.03 5.1 0.4
60 60 60 12.28 4.27 0.05 2.6 0.2 2.20 0.03 4.5 + 0.6
80 80 80 13.15 4.68 + 0.06 2.3 0.2 2.33 0.03 4.1 + 0.3

100 100 100 13.82 4.88 0.05 2.8 0.3 2.49 0.03 4.6 0.5
120 120 120 14.36 5.20 + 0.06 2.3 0.1 2.61 t 0.03 5.1 + 0.6
140 140 140 14.82 5.48 0.06 2.4 + 0.2 2.70 0.03 5.0 + 0.4
160 160 160 15.23 5.56 + 0.05 2.9 0.3 2.82 0.03 5.5 0.7
180 180 180 15.58 5.76 + 0.05 2.8 0.2 2.90 t 0.03 5.2 + 0.5
200 200 200 15.89 5.80 t 0.05 2.6 + 0.1 2.99 + 0.03 4.7 t 0.7
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Using the frequencies in Table 6-29, 400 pairs of random protein

sequences of various lengths were generated, and the parameters kj, k2 and

X were estimated as described above. As is seen in Tables 6-22 to 6-26,

the significance levels for protein sequence comparison using any of the

four substitution cost functions and their associated similarity functions

are well approximated by formula 6.10, with p replaced by p0. The main

difference is that for the four protein sequence comparisons the estimated

value of k1 averages 0.21 rather than 0.15.

Hypothesis testing. The significance levels derived above are

appropriate for any diagonal subalignment. A subalignment need not be

found by using the DD algorithm in order to calculate its sl-similarity and

evaluate its significance using formula 6.10. Even the simple exercise of

sliding one sequence past another and visually inspecting the resulting

alignments can occasionally yield useful diagonal subalignments. What is

required is both the subalignment and knowledge of the context in which it

was found.

When testing experimentally the hypothesis that a segment of a given

gene probe is significantly similar to a segment present somewhere in the

entire genome of an organism, M must be set equal to the length of the gene

probe and N to the effective genome length, which is somewhat less than the

actual length if long stretches of repetitive DNA are present.

When testing the hypothesis that a particular gene segment has

internal repeats, both M and N should be set equal to the length of the

gene segment. In order to allow for the symmetry of the comparison, the
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term MN of formula 6.10 should be replaced by MN/2. For example, two

61-nucleotide segments (195-255 and 498-558) of the human interferon beta-1

gene align with 25 mismatches (Erickson et al., 1984). Using s1 of formula

4.6 with p = 0.25, the similarity of this subalignment is s 1(61,25) = 12.9.

Since this result was found by comparing the first 636 nucleotides of this

gene with itself (M = N = 636), formula 6.10 with the correction mentioned

above gives so., = 12.9. Thus the subalignment is significant at the 99%

level. The dinucleotide and codon usage of these segments does not account

for their similarity (Appendix; Altschul and Erickson, 1985).

The Needleman-Wunsch similarity (formula 4.1 with Y = 0.9) explored by

Smith et al. (1985) scores this subalignment as sNw(61,25) = 13.5. This is

essentially equal to the mean optimal sNW score (13.48) for comparisons of

two unrelated sequences of length 636, corrected for symmetry (Smith et

al., 1985). Thus the subalignment is not significant by their criterion.

One reason for this discrepancy is that subalignments more likely to appear

by chance are also given this sNW score. For example, a subalignment of

length 23 with 5 or fewer mismatches is seven times more likely to appear

by chance than one of length 61 with 25 or fewer mismatches, but

sNW(23,5) = 13.5. Similarly, a subalignment of length 25 with 6 or fewer

mismatches is also seven times more likely to appear by chance than one of

length 61 with 25 or fewer mismatches, but sNW( 2 5 ,6) = 13.6. Because

similar sNW scores are assigned to all three forms of subalignment, the

SNW( 6 1,25) score is not statistically significant. Smith et al. (1985)

used natural nucleotide sequences, rather than a random model of nucloetide

sequences, to derive their heuristic formula. Although using a different
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value for the probability of a match might decrease the estimated

significance of this interferon beta-1 subalignment, the basic point

remains.

Generalizations. As discussed in Chapter IV, parameters need to be

found for similarity function s3 defined by formula 4.13 so that it may be

used with non-infinite gap costs. Once such parameters have been found,

the CC-2 can be used to do a statistical analysis for s3 similar to that

provided for s above.

For nucleic acid sequences, in addition to non-uniform nucleotide

usage, dinucleotide usage can differ significantly from that predicted by

base composition alone (Swartz et al., 1962; Fitch, 1983b; Lipman et al.,

1984) and in coding regions codon usage can be markedly non-random (Smith

et al., 1983). These factors can render the significance levels of formula

6.10 unreliable. Markov sequence generation or the dinucleotide and codon

preserving permutation methods described in the Appendix can be used to

investigate what effect such non-uniformity has upon significance levels.

Three-sequence comparison. Alignments, subalignments, costs and

similarities can be defined for three-sequence and multi-sequence

comparison just as they are defined for two-sequence comparison. All of

the alignment algorithms presented in this thesis have obvious

generalizations to three or more sequences. At present, time

considerations render rigorous three-sequence alignment algorithms

practical only for sequences containing a few hundred elements,

Nevertheless, it is worthwhile investigating the significance levels of
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three-sequence similarity functions because these significance levels can

be applied to alignments from any source.

Given a substitution cost function c for aligning two letters, the

cost c(x,y,z) of a three-way alignment of letters x, y and z is best

defined as the minimum of c(x,w) + c(y,w) + c(z,w) where w may be any

allowed letter (Kruskal, 1983). For example, cid(xy) extends to the

function cid(x,y,z), which has the value 0 when x = y = z, 1 when exactly

two of the three arguments are equal, and 2 otherwise.

The function si of formula 4.5 can be used for multiple-sequence

comparison as well as two-sequence comparison. For nucleic acid sequences

in which all types of nucleotide have the same probability of occurrence,

PO = 1/16, p1 = 9/16, p2 = 6/16 [6.11]

For protein sequence comparison using the amino acid frequencies given in

Table 6-29,

P0 = 0.0041, p1 = 0.1684, p2 = 0.8275 [6.12)

For ten sequence lengths L = M = N between 40 and 200, a series of 100

sets of three random sequences were generated. Nucleic acid sequences were

simulated by sequences having four types of elements selected randomly with

equal probabilities. Protein sequences were simulated by sequences whose

elements were selected randomly using the probabilities shown in

Table 6-29. For each set of three random sequences, the DDD algorithm (a

generalization to three sequences of the DD algorithm) was used to find the
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maximum s 1-similarity of all diagonal three-way subalignments. From these

100 similarity values, the extreme value distribution parameters A and u

were estimated as described above.

The results for nucleic acid sequences (subscript N) using the

probabilities of formula 6.11 are summarized in Table 6-30. Parameter XN

shows no tendency to increase or decrease with increasing size of the

product LMN. Its average value for the ten cases examined is

XN = 2.6 [6.13]

Linear regression analysis of uN versus ln(LMN) yielded a correlation

coefficient of 0.997. The best straight line through these points is given

by the formula UN = 0.457 ln(LMN) - 1.384, which can be written as

uN = ln(0.05 LMN)/2.19 [6.14]

From formulas 6.3, 6.13 and 6.14, the significance levels for three-way

nucleic acid sequence comparison using s, with parameters pi of formula

6.11 can be estimated as

SEN = ln(O.05 LMN)/2.19 - ln(E:)/2.6 [6.15)

for F _ 0.1.

The results for protein sequences (subscript P) using the

probabilities of formula 6.12 are also summarized in Table 6-30. A similar

analysis to that provided above yields

scop = ln(0.15 LMN)/4.74 - ln(E)/4.9 [6.16]
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for E 0.1, where linear regression analysis of u P versus ln(LMN) gave a

correlation coefficient of 0.996.

When the similarity of a diagonal subalignment of three nucleic acid

or protein sequences appears significant by formula 6.15 or 6.16, great

care should be taken before the alignment is claimed to be significant.

First, two of the three sequences may be very similar but the third may not

be significantly similar to either. Therefore, the significance of each of

the three two-sequence alignments should be compared to that of the

three-sequence alignment. Including the third sequence may actually

decrease the significance of the subalignment. The parameters pk used with

81 should correspond reasonably closely to those calculated from the

compositions of the sequences being studied. If different s, parameters

than those of formulas 6.11 and 6.12 are used, new values of X and u need

to be estimated.
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VII. APPLICATIONS

Comparison of interleukin 2 cDNA. The DD algorithm and similarity

function s5 are useful in recognizing similarities and differences between

two nucleotide sequences, such as the cDNA sequences for interleukin 2

(IL-2) from man and mouse. This lymphokine plays a key role in the

regulation of T-cell clonal expansion. The coding cDNA sequences for human

IL-2 (h; 459 nucleotides) (Taniguchi et al., 1983) and murine IL-2 (m; 507

nucleotides) (Yokota et al., 1985) were compared using the DD algorithm.

In the context of the comparison (by formula 6.10, with p = 0.25,

S0.1 = 11.2 and s0.001 = 14.9), four significant diagonal subalignments

were found: A (hl-80 vs. ml-80; s = 24.6), B (h65-107 vs. m77-119;

s = 18.0), C (h91-299 vs. m133-341; s = 88.3) and E (h313-453 vs. m358-498;

s = 64.6). Murine IL-2 cDNA (814 nucleotides) was identified by screening

for IL-2 activity about 104 independent clones containing plasmids with

cDNA inserts about 1-2 x 103 nucleotides in length derived from murine

T-cell mRNA (Yokota et al., 1985). By formula 6.10, the probability is

less than 0.002 that this effective experimental comparison of 814

nucleotides with 2 x 107 nucleotides would find a subalignment of

similarity 24.2 or higher by chance. Thus subalignments A, C and E are

each significant at the 99.8% level by this criterion.

Joining these four subalignments into a composite alignment required

assignment of the insertions and deletions indicated in two small portions

of the DD graph. Figure 7-1a shows the end of A, all of B, and the

beginning of C, and Figure 7-1b shows the end of C and the beginning of E.

Joining A and B required a horizontal jump from the end of A to the
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Figure 7-1. Two portions of the DD graph for two interleukin 2 cDNA

sequences. See text for details.

(a) Joining of subalignments A, B and C.

(b) Joining of C, D and E.
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beginning of B or a vertical jump to the middle of B. Both jumps could

correspond to insertion of a segment into the m (side) sequence, while the

vertical jump could also represent a deletion from the h (top) sequence.

Figure 7-1a shows that the 12-nucleotide human segment h67-78 is very

similar to two adjacent murine segments, m67-78 and m79-90 (arrows). In

addition, all three segments encode the same four residues,

Thr-Ser-Ser-Ser. This situation is consistent with jump T of Figure 7-1a

and probably resulted from tandem duplication of the original 12-nucleotide

segment in murine IL-2.

Vertical jump I from the middle of B to the beginning of C

(Figure 7-1a) represents a net insertion of 30 nucleotides (m103-132) into

the murine sequence. This insert consists of 10 adjacent CAG triplets

encoding 10 glutamine residues. It could have arisen by duplication of

segment m133-138 encoding Gln-Gln to give m127-138 encoding Gln4 followed

by two tandem duplications of the latter to give m103-138 encoding Gln1 2 '

Joining of C and E is mediated by subalignment D (Figure 7-1b), which is

significant not by its similarity of 5.1 but by its position between C and

E in the DD graph. A vertical jump (arrow) from the end of C to the

beginning of D corresponds to a two-nucleotide insertion in m or deletion

in h. A second vertical jump (arrow) from D to the beginning of E

corresponds to a similar one-nucleotide insertion/deletion event. The cDNA

segments that start at the beginning of C and stop at the end of E

(h91-453, m133-498) were aligned using the SS algorithm (Sellers, 1974a,b)

with a null cost of 2 (Erickson and Sellers, 1983). Since the resulting 7

alignments have length 364.5, cost 93 and similarity 143.6 by linear
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interpolation of formula 4.6 with p = 0.25, they are probably much more

significant than either C or E alone. These optimal alignments differ only

in the position of the jump from D to E.

A composite alignment of the human and murine cDNA sequences that

encode IL-2 is shown in Figure 7-2, in which the bold letters A-E

correspond to all or part of the subalignments. None of the jumps between

subalignments occur near the three intron junction sites (arrows) present

in the genomic DNA sequence for human IL-2 (Fujita et al., 1983). The

amino acids encoded by the cDNA sequences are indirectly aligned in

Figure 7-2. Of the 153 residues in human IL-2, 100 (65%) are preserved in

murine IL-2 ("common acids"), including all four Cys residues (circles).

This alignment of the IL-2 protein sequences differs from the visually

derived alignment reported previously (Yokota et al., 1985) in three

regions (human residues 13-18, 23-33 and 101-105). Thus the DD algorithm

has revealed interesting DNA and protein patterns not previously described.

This example illustrates the following search procedure for

recognition of patterns shared by two nucleotide sequences. The DD graph

is examined visually to identify two (or more) subalignments that might be

combined into a single subalignment. Each such subalignment is generated

using the SS algorithm and its similarity is calculated. If its similarity

is higher than s0.1, its biological relevance is considered.
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human interleukin 2;
number of alignrments:

human IL-2 cDNA
common bases

murine IL-2 cDNA;

murine interleukin 2;

common acids:

CAGCAGCA
10
GnGinGi

1 5 10 15 20 23 26
MetTyrArgMetGlnLeuLeuSerCysIleAlaLeuSerLeuAlaLeuValThrAsnSerAlaProThrSerSerSer
------------------------------------------------------------- 
1 10 20 30 40 50 60 67 70 78
ATGTACAGGATGCAACTCCTGTCTTGCATTGCACTAAGTCTTGCACTTGTCACAAACAGTGCACCTACTTCAAGTTCT
ATGTACAG ATGCA CTC TC TG T CA T A CTTG CT T AACAG GCACC ACTTCAAG TC
ATCTACAGCATGCAGCTCGCATCCTGTGTCACATTGACACTTGTGCTCCTTGTCAACAGCGCACCCACTTCAAGCTCC
1 10 20 30 40 50 60 67 70 78
MetTyrSerMetGlnLeuAlaSerCysValThrLeuThrLeuValLeuLeuValAsnSerAlaProThrSerSerSer

1 5 10 15 20 23 26
MetTyr MetGlnLeu Se y Leu Leu Leu AsnSerAlaProThrSerSerSer

23 2 f 30
ThrSerSrSerThrLysLysThr

67 70 78 90
ACTTCAAGTTCTACAAAGAAAACA
ACTTCAAG TCTACA G AA CA
ACTTCAAGCTCTACAGCGGAAGCA

79 90 102
ThrSrSerSerThrAlaGluAla
27 30

ThrSerSerSerThr

CAGCAG
103 1

GlnGln
35

31 35 40 45 r5o 55 60 65
GInLeuGlnLeuGluHisLeuLeuLeuAspLeuGinMetIleLeuAsnGlylleAsnAsnTyrLysAsnProLysLeuThrArgMetLeuThrPheLysPheTyrMetPro

91 100 110 120 130 140 150 160 170 180 190 200
CAGCTACAACTGGAGCATTTACTGCTGGATTTACAGATGATTTTGAATGGAATTAATAATTACAAGAATCCCAAACTCACCAGGATGCTCACATTTAAGTTTTACATGCCC
CAGC CA CTGGAGCA T TG TGGA TACAG G T TGA G AT A AATTACA GAA C AAACTC CCAGGATGCTCAC TT AA TTTTAC TGCCC

GCAGCAGCAGCAGCAG CAGCAGCACCTGGAGCAGCTGTTGATGGACCTACAGGAGCTCCTGAGCAGGATGGAGAATTACAGGAACCTGAAACTCCCCAGGATGCTCACCTTCAAATTTTACTTGCCC
120 132 133 140 150 160 170 180 190 200 210 220 230 240

nGlnGlnGlnlnGln GlnGInHisLeuGluGInLeuLeuMetAspLeuGlnGluLeuLeuSerArgMetGluAsnTyrArgAsnLeuLysLeuProArgMetLeuThrPheLysPheTyrLeuPro
40 44 45 50 55 60 65 70 75 80

Gln LeuGlu LeuLeu AspLeuGln Leu AsnTyr Asn LysLeu ArgMetLeuThrPheLysPheTyr Pro

to 75 80 85 90 95 100 105 110
LysLysAlaThrGluLeuLysHisLeuGlnCysLeuGluluGluLeuLysProLeuGluGluValLeuAsnLeuAlaGlnSerLysAsnPheHisLe uArgProArgAsp LeuIleSerAsnIleAsn
------- --------- ------------------------------------------------ ------ 7:::: ::: -- -- ---

210 220 230 240 250 260 270 280 290 299 300 312 313 320 330
AAGAAGGCCACAGAACTGAAACATCTTCAGTGTCTAGAAGAAGAACTCAAACCTCTGGAGGAAGTGCTAAATTTAGCTCAAAGCAAAAACTTTCACTT -AAGACCCAGGGAC- TTAATCAGCAATATCAAC
AAG AGGCCACAGAA TGAAA ATCTTCAGTG CTAGAAGA GAACT ACCTCTG G A GT CT ATTT CTCAAAGCAAAA CTTTCA TT AAGA C G GA TT ATCACCAATATCA
AAGCAGGCCACAGAATTGAAAGATCTTCAGTGCCTAGAAGATGAACTTGGACCTCTGCGGCATGTTCTGGATTTGACTCAAAGCAAAAGCTTTCAATT GGAAGATGCTGAGAAT TTCATCAGCAATATCAGA

250 260 270 280 290 300 310 320 330 341 342 350 357 358 370
LyslnAlaThrGluLeuLysAspLeuGlnCysLeuGluAspGluLeuGlyProLeuArgHsValLeuAspLeuThrGlnSeryserPheGlnLe uGluAspAlaGluAsn PhelleSerAsnIleArg

85 90 95 100 105 110 115 120 125

Lys AlaThrGluLeuLys LeuG1 euGlu GluLeu ProLeu ValLeu Leu GlnSerLys Phe Leu 1leSerAsnIle
-::::::::::- ---- ---- s z D =0> <Zzz::::azatagzzzs

115 120 125 130 135 140 145 150
Vall1eValLeu~luteuLysGlySerGluThrThrPhemetCys~luTyrAlaAspGluThrAlaThrlIeValGluPheLeuAsnArgTrpfleThrPheCysGInSerIlelleSerThr
------------------------------------------------------------------------------------------------------------------------- 5

340 350 360 370 380 390 400 410 420 430 440 453

GTAATAGTTCTGGAACTAAAGGGATCTGAAACAACATTCATGTGTGAATATGCTGATGAGACAGCAACCATTGTAGAATTTCTGAACAGATGGATTACCTTTTGTCAAAGCATCATCTCAACA
GTAA GTT T AACTAAAGGG TCTGA A ACATT GTG AAT G TGATGAG CAGCAAC T GT GA TTTCTGA AGATGCAT CCTT TGTCAAAGCATCATCTCAACA
GTAACTGTTGTAAAACTAAAGGGCTCTGACAACACATTTGAGTGCCAATTCGATGATGAGTCAGCAACTGTGGTGGACTTTCTGAGGAGATGGATAGCCTTCTGTCAAAGCATCATCTCAACA

380 390 400 410 420 430 440 450 460 470 480 490 498
ValThrValValLysLeuLyslySerAspAsnThrPheGluCysGlnPheAspAspGluSerAlaThrVelValAspPheLeuArgArgTrpIleAlaPheCyslnSerllelleSerThr

130 135 145 150 155 165
Val Val LeuLysGlySer ThrPhe Cy AspGlu AlaThr Val PheLeu ArgTrphle Ph Cy InSerIlehleSerThr
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Comparison of yeast and E. coli pyrophosphatases. The complete amino

acid sequence (Figure 7-3a) for yeast pyrophosphatase has been determined

(Cohen et al., 1978), and recently a 3.0 A three-dimensional structure has

been proposed (Terzyan et al., 1984). Partial amino acid sequences

(Figure 7-3b,c) for E. coli pyrophosphatase are known (Cohen, 1978). We

used the DD algorithm to search for similarities between the yeast and E.

coli sequences.

First, we employed the substitution costs cid and the associated

similarity function s5 of formula 4.6 with p = 0.06. The best seven

diagonal subalignments found when sequences y and e of Figure 7-3 were

compared are shown in Table 7-1. Using the parameters kj, k 2 and X of

Table 6-26, for sequences of lengths 285 and 86, u = 3.6 and s0.1 = 4.5.

Thus none of the diagonal subalignments found are statistically

significant. Nevertheless, it is interesting that four of the seven best

subalignments (numbers 1, 2, 5 and 6) are very near each other in the path

graph, suggesting they may be part of a longer and more interesting

subalignment that contains gaps.

We compared the same two sequences using substitution costs cd 6

(Table 6-27) and the associated similarity function si generated from

formulas 4.3 to 4.5 by the amino acid frequencies of Table 6-29. The best

eight diagonal subalignments are shown in Table 7-2. Variations of the

four close diagonal subalignments found with cid are also found with cd6'

The subalignment of diagonal 27 extends from lenth 7 to length 34 while the

subalignment of diagonal 49 is trimmed from length 20 to length 8.
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Figure 7-3. Three protein sequences.

(a) Yeast pyrophosphatase.

(b) E. coli pyrophosphatase, peptide I.

(c) E. coli pyrophosphatase, peptide II.

a. -Yeast pyrophosphatase (yl-285)

TYTTR QIGAK NTLEY KVYIE KDGKP VSAFH DIPLY ADKED NIFNM VVEIP
RWTNA KLEIT KEETL NPIIQ NTKGK LRFVR NCFPH HGYIH NYGAF PQTWE
DPNVS HPETK AVGDN NPIDV IQIGE TIAYT GQVKE VKALG IMALL DEGET
DWKVI AIDIN DPLAP KLNDI EDVEK YFPGL LRATD EWFRI YKIPD GKPEN
QFAFS GEAKN KKYAL DIIKE THNSW KQLIA GKSSD SKGID LTNVT LPDTP
TYSKA ASDAI PPASP KADAP IDKSI DKWFF ISGSV

b. E. coli pyrophosphatase peptide I (ei-86)

SLLNV PAGKD LPEDI YVVIE IPANA DPIKY EIDKE SGALF VDRFM STAMF
YPCNY GYINH TLSLD GDPVD VLVPT PYPLE KGQVI R

c. E. coli pyrophosphatase peptide II (E1-23)

RCHPV GVLKM TDEAG EDAKL VAV
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Table 7-1. The seven best weakly locally optimal subalignments
from comparison of sequence e with sequence y using substitution
costs cid and the associated similarity function s .

Start End
No. Sim. Length Diagonal e y e y

1 4.06 20 49 65 114 84 133
2 3.95 7 27 29 56 35 62
3 3.94 33 136 3 139 35 171
4 3.62 8 243 27 270 34 277
5 3.56 30 37 32 69 61 98
6 3.45 5 28 18 46 22 50
7 3.45 5 -43 65 22 69 26

Table 7-2. The eight best weakly locally optimal subalignments
from comparison of sequence e with sequence y using substitution
costs 0d6 and the associated similarity function s1 .

No.

1
2

3
4
5
6
7
8

Sim.

1.24
1.20
1.11
1.09
1.08
1.02
0.98
0.98

Length

34
8

36
7
3

21
6
6

Start
Diagonal

27
49
13
31

126
-43
28
37

e

2
65
12
54
50
65
17
51

End
y

29
114
25
85

176
22
45
88

e

35
72
47
60
52
85
22
56

y

62
121
60
91

178
42
50
93

Table 7-3. Yeast pyrophosphatase residues identified as
belonging to the active site (Kuranova et al., 1983).

* E-48 * Y-88 * D-146 Y-191
* E-58 * Y-92 * E-147 N-200
x Q-70 x N-116 x E-149
* R-77 ' D-119 * D-151

Starred residues are aligned with an identical E. coli residue
in Figure 7-4. Residues marked with an x are aligned with a
different E. coli residue. Unmarked resides are not aligned.
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We attempted to piece together the close subalignments found on

diagonals 27, 28, 37 and 49 by running the SS-2 algorithm (Chapter III) on

the segments e2-84 and y29-133, using substitution costs cd6 and a variety

of gap costs. One set of gap costs that yielded an alignment containing

sections from all the previously observed subalignments was

w(x) = 2.2 + 2.5(x). One of the optimal alignments of e2-84 and y29-133

using these costs is shown in Figure 7-4a.

Is the subalignment of Figure 7-4a statistically significant? We do

not have the tools to answer this question, as we have studied statistical

significance only for diagonal subalignments. However, there is an

observation that supports the claim that this subalignment is significant.

Of the 105 amino acids of y29-133, 27 (26%) are aligned with identical

amino acids in e2-84. Kuranova et al. (1983) claim the active site of

yeast pyrophosphatase consists of the residues listed in Table 7-3. By

chemical modification studies, Bond et al. (1980) provide additional

evidence that Arg7 7 is an active-site residue and Gonzalez and Cooperman

(1986) that Glu1 419 is an active-site residue. Of the 8 putative

active-site residues contained in segment y29-133, 6 (75%) are aligned with

identical amino acids. One of the two remaining amino acids (Asn1 16) is

aligned with an amino acid that is conformationally almost identical

(aspartic acid). Furthermore, the active site residues are generally found

in regions that are very similar to regions of the E. coli sequence. This

suggests that the active sites of the two enzymes may be very similar while

the rest of the enzymes have little in common.

When sequence E (Figure 7-3c) is compared with sequence y
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Figure 7-4. Two subalignments of yeast pyrophosphatase and E. coli

pyrophosphatase. Identities are echoed on central line. Plus signs

identify aligned elements with an substitution cost of 3 or less. Yeast

pyrophosphatase residues identified as being in the active site are

underlined.

(a) An optimal alignment of segments e2-84 and y29-133 using

substitution costs Cd6 and gap costs w(x) = 2.2 + 2.5(x).

(b) The optimal subalignment of sequences E and y using substitution

costs cd6 and the associated similarity function sj.

a. e2 10 20 30 40
LLNVPAGKDLPEDIY-VVIEIPANADPIKYEIDKES--GALFVD-----RFMS---
+ ++P D ++I+ +V+EIP + K EI KE + + RF+
FHDIPLYADKEDNIFNMVVEIPRWTNA-KLEITKEETLNPIIqNTKGKLRFVRNCF

y29 40 50 60 70 80

50 60 70 80 84
TAMFYPCNYG-----YINHTLSL-------DGDPVDVLVPTPYPLEKGQV

Y NYG + +S D +P+DVL GQV
PHHGYIHNYGAFPQTWEDPNVSHPETKAVGDNNPIDVIQIGETIAYTGQV

90 100 110 120 133

b. E5 10 20 23
VGVLKMTDEAGEDAKLVAV
+G++ + DE D K++A+
LGIMALLDEGETDWKVIAI

y139 150 157
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(Figure 7-3a) using the substitution costs cd6 and the associated

similarity function sg, the optimal subalignment is that shown in

Figure 7-4b. Again, while only 6 of 19 (32%) residues of segment y139-157

are aligned with identical amino acids, 3 of the 4 putative active-site

residues are so aligned. The one remaining active-site residue, Glu 1 9 , is

aligned one position away from an identical residue, as is the adjacent

residue Gly 14.

Work is in progress (Barry Cooperman, private communication) to use

the alignments presented in this section to build a three-dimensional model

of the sequenced portions of E. coli pyrophosphatase based upon the

published structure of yeast pyrophosphatase (Terzyan et al.).

page 141



APPENDIX. RANDOM DINUCLEOTIDE AND CODON PRESERVING SEQUENCE PERMUTATION

As described in Chapter VI, the question of statistical significance

for sequence alignments is often approached with Monte Carlo methods that

require the generation of random sequences. The question arises from what

set the random sequences should be chosen. Several methods have been used

for choosing such a set. One is to use existing data banks data banks of

real biological sequences. Care must be taken to separate related from

unrelated sequences in such data banks. This approach has the disadvantage

that the problem of deciding whether a given pair of sequences shows

significant relationship expands into the problem of deciding which among

many hundreds of sequences are related. A second approach is to generate

random sequences having certain well defined statistical properties such as

nucleotide or amino acid composition. This can be done either by using the

original sequences to define probabilities of occurance for each letter or

by shuffling the original sequences.

A simple permutation approach can be too optimistic in claiming

sequence similarity. Natural nucleotide sequences are often statistically

non-random, which can increase their similarity compared to that of

artificial nucleotide sequences generated by random permutation. For

instance, dinucleotide usage can differ significantly from that predicted

from base composition alone (Swartz et al., 1962; Fitch, 1984b; Lipman et

al., 1984). In coding regions, the codon usage can be markedly non-random

(Smith et al., 1983). It is important to avoid claiming that sequence

similarity is due to nucleotide order if it can be explained merely by

non-random usage of dinucleotides and/or codons.
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Fitch (1983a) has discussed two methods that can be used to simulate

non-random dinucleotide and codon usage. The Markov method, produces

sequences that preserve the chosen properties of the original sequence only

on the average. The permutation method chooses sequences at random among

those that exactly preserve the chosen properties. As noted by Fitch

(1983a), the permutation method requires but the Markov method only expects

a random sequence to preserve the chosen properties. This appendix

describes and illustrates a method that generates with equal probability

all permutations with a given dinucleotide usage or dinucleotide and codon

usage.

Fitch (1983a) states that for two sequences of sufficient length (i.e.

longer than about 300 residues for dinucleotide usage), the two methods

should be equivalent. For two interferon DNA sequences of length 60

described later, we found that the Markov and permutation methods yield

notably different distributions of alignment distances. A sample of 1000

pairs of sequences that preserve dinucleotide usage was generated. The

Markov method gave a sample mean of 41.7 and a sample standard deviation of

3.9; the permutation method gave a sample mean of 39.2 and a sample

standard deviation of 2.9. The Markov method also gave a broader range of

distances (27-55) than the permutation method (30-46). Fitch (1983a) has

discussed the appropriateness of using these methods in different contexts.

Terminology. Although motivated by permutation of nucleotide

sequences, the following algorithms can be applied to sequences of any

kind. They are based on a theorem first proved by van Aardenne-Ehrenfest

and de Bruijn (1951) and later restated by Kasteleyn (1967),
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Knuth (1973, p 375) and Zaman (1984).

We shall use the term singlet rather than mononucleotide, doublet in

place of dinucleotide, and triplet instead of trinucleotide. Rather than

speak of codons, we define a triplon to be a member of a set of consecutive

non-overlapping triplets. These terms are illustrated in Figure A-1 .

By definition, sequence permutation preserves singlet usage and

sequence length. Generation of a random triplon preserving (tP)

permutation is easy, since it involves only random permutation of one set

of non-overlapping triplons. Generation of a random doublet preserving

(DP), doublet and triplet preserving (DTP), or doublet and triplon

preserving (DtP) permutation is more difficult because the elements to be

preserved overlap. Fitch (1983a) has described an algorithm for generating

DP permutations, but it does not generate all permutations with equal

probability. (For example, there are two DP permutations of the sequence

AATAT, the original sequence and ATAAT. Fitch's algorithm generates the

original sequence with probability 1/3 and the second sequence with

probability 2/3. If one adds the extra edge TA to the doublet graph as

Fitch suggests, his method still generates ATAAT twice as frequently as

AATAT.) We describe a modification of Fitch's algorithm that does generate

random DP permutations. Lipman et al. (1984) mention without details that

they have used such an algorithm. We show how our algorithm can be

extended to generation of random DTP or DtP permutations.

As Fitch (1983a) has noted, generating a random DP permutation is

equivalent to finding a random Eulerian walk in a directed multigraph. We
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Figure A-1. Sequence 31 and three permutations of S 1 . The set of doublets

(D), triplets (T) and one set of triplons (t) for S, are illustrated. S2

is a doublet preserving (DP) permutation, S3 is a doublet and triplet

preserving (DTP) permutation and S. is a doublet and triplon preserving

(DtP) permutation.

1 5 10 15 20 25

S1  AGACATAAAGTTCCGTACTGCCGGGAT

S2 = AAGTTACGAATACATCCCTGGAGGCGT (DP)

S3 z AGTACTGCCGTTCCGGGATAAAGACAT (DTP)

S4 = AAAGATCCGGTTAGACGGTACTGCCAT (DtP)

D ------------- 26

4 8 12 16 20 24

--- --- --- --- --- --- ---25
T --- --- --- --- --- --- 2

4 8 12 16 20 24

2 --- ---
2 14 6 8
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use the following definitions. A subgraph of a graph G consists of the set

of vertices in G and a subset of the edges in G. An ordered graph is a

graph whose edges are ordered. An Eulerian walk is a walk that uses each

edge in the graph exactly once. Vertex x1 is connected to vertex x2 in a

graph G if there is a walk from x1 to x2 in G. Note that x1 may be

connected to x2 even though x2 is not connected to x1 . Every vertex is

connected to itself.

Graphs and edge orderings. Given a sequence S s1 2..s f, construct

a doublet graph G which has a vertex for each singlet that appears

somewhere in S and one edge from vertex si to vertex si+i for each

occurence of the doublet sisi+1 in S. The s edge list is an ordered list

of all edges from vertex s. An edge ordering E of the graph is a complete

set of edge lists for G. Note that the sequence S determines an edge

ordering E(S) as well as the graph G, because the doublets beginning at

s1S2 occur in a specific order in S. For example, DNA sequence S1 of

Figure A-1 specifies the graph G(S 1 ) of Figure A-2 and determines edge

ordering E(S 1 ) of Figure A-3. As in this example, the doublet graph of a

sequence is a directed multigraph that may contain loops.

Just as S uniquely determines an edge ordering E(S) of its graph, so

conversely this edge ordering uniquely determines S. Furthermore, E(S)

uniquely determines an Eulerian walk in G from s1 in the obvious way. For

this reason, E(S) will be called an Eulerian edge ordering. On the left of

Figure A-4, the edges of G are numbered according to the edge ordering

E(Sj). This numbering can be interpreted as an Eulerian walk in G.
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Figure A-2. The doublet graph G(S). Ten edges are used twice, as

indicated.

2 2 2
A -C

T1 t2 G

2
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Figure A-3. The edge orderings E(S1 ), E(S2 ) and E*. In each edge

ordering, numbers indicate the order of each edge in the corresponding long

walk. Edges in brackets are not used in the long walk. Underlined edges

belong to the last edge graph determined by the ordering.
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Figure A-4. Three long walks. Left, the Eulerian long walk determined by

E(S1 ). Center, the Eulerian long walk determined by E(S 2 ). Right, the

non-Eulerian long walk determined by Ef. The emphasized edges belong to

the last edge graph determined by the corresponding edge ordering.

4 I-

00
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If sequence S' is a doublet preserving permutation of S, it determines

the same doublet graph as S. The edge orderings E(S) and E(S') differ only

in the internal order of their edge lists. For example, sequence S2 of

Figure A-1 is a DP permutation of S 1. Its edge ordering E(S2 ) is shown in

Figure A-3 as a set of edge lists and in the center of Figure A-4 as the

edge numbering of an ordered graph. In general, each DP permutation S' of

S preserves the terminal singlets s and sf of S and specifies a unique

Eulerian edge ordering of G. Conversely, each Eulerian walk in G from s

to sf specifies a unique DP permutation of S.

A new edge ordering of G can be generated by separately and randomly

permuting each edge list of E(S). This random edge ordering determines a

long walk in G that starts at vertex s1 and ends at a vertex whose edge

list has been exhausted. This vertex must be sf, the final vertex of S.

Since such a long walk in G usually ends before every edge is used, it is

seldom an Eulerian walk. For example, consider the edge ordering E* on the

right of Figure A-3. Its long walk on the right of Figure A-4 is not

Eulerian because three edges (AA, AG, GA) are still not used when final

vertex T is reached for the last time. It is inefficient to trace a long

walk most of the way through G before finding that it is not Eulerian. The

following theorem provides a general criterion for quickly determining

whether or not an edge ordering of G is Eulerian. Given an edge ordering E

of G, let the last edge from vertex x be the final edge of the x edge list.

The last edge graph Z is the subgraph of G consisting of all last edges

except that of the final vertex s .
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EULERIAN EDGE ORDERING THEOREM. An edge ordering E is Eulerian iff

all vertices in the last edge graph Z are connected in Z to sf.

PROOF. If E is Eulerian, then all vertices are connected in Z to if.

A vertex is exhausted during a walk in G when its last edge is used.

Note that when a vertex other than s f is exhausted, not only have all edges

from it been used but also all edges to it. If E is Eulerian, the long

walk determined by E exhausts all vertices in G. Except for sf, number

these vertices from 1 to N in the order in which they are exhausted. The

last edge from N must point to sf because all long walks must end at sf and

all other vertices have been exhausted. Thus vertex N is connected in Z to

s foThe last edge from N-1 must point to N or sf because vertices

1, ... , N-1 have been exhausted; thus N-1 is also connected in Z to s .* By

similar reasoning, every vertex is connected in Z to s .

If E is not Eulerian, then not all vertices are connected in Z to s.

Let U be the set of all vertices not exhausted during the long walk

determined by E. Since E is not Eulerian, U must contain at least one

vertex because the long walk determined by E does not use all edges of G.

Vertex s f is not a member of U because sf is exhausted in all long walks.

Each edge not used in the walk points to a vertex in U because all other

vertices are exhausted. In particular, the last edge of each vertex in U

points to a vertex in U. Thus all walks in Z that begin at a vertex in U

must end at a vertex in U. Therefore, no vertex in U can be connected in Z

to S ,
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Random DP permutation algorithm. A random doublet preserving

permutation S' of sequence S is generated by following steps {11 to (61.

(1) Construct the doublet graph G and edge ordering E corresponding to S.

(21 For each vertex s in G except sf, randomly select one edge from the s

edge list of E(S) to be the last edge of the s list in a new edge ordering.

(31 From this set of last edges, construct the last edge graph Z and

determine whether or not all of its vertices are connected to s .

M4} If any vertex is not connected in Z to sf, the new edge ordering will

not be Eulerian, so return to {2}. If all vertices are connected in Z to

sf, the new edge ordering will be Eulerian, so continue to (5}.

(5} For each vertex s in G, randomly permute the remaining edges of the s

edge list of E(S) to generate the s edge list of the new edge ordering

E(S').

(6} Construct sequence S', a random DP permutation of S, from E(S') as

follows. Start at the s, edge list. At each si edge list, add si to S',

delete the first edge sjs of the edge list, and move to the s i edge list.

Continue this process until all edge lists are exhausted.

E(S') is Eulerian because all vertices of its last edge graph are

connected to sf. Sequence S' is a DP permutation of S because by

construction both S and S' specify Eulerian edge orderings of the same

graph G. Finally, S' is a random DP permutation because edge ordering

E(S') was randomly selected from the set of all Eulerian edge orderings.
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DNA examples. This algorithm is efficient because only one edge must

be chosen from each edge list except the sf edge list in order to determine

whether or not a DP permutation will result. In particular, the Eulerian

edge ordering theorem guarantees that for any DNA sequence no more than

three last edges (doublets) need to be selected before deciding whether or

not a DP permutation will result. For example, generation of the random DP

permutation S2 from S1 is illustrated in Figure A-3. AG was randomly

selected from the eight doublets of the A edge list to be a new last edge.

Similarly, CG was selected from the C edge list and GT from the G edge

list. As shown in the middle graph of Figure A-4, all vertices of the

emphasized last edge graph are connected to T, so E(S2 ) is Eulerian. The

last edge of the T edge list is not present in Z because T is the final

singlet of S1. In contrast, as shown by the graph on the right in

Figure 4, three vertices of this emphasized last edge graph are not

connected to T, so this edge ordering of G(S1 ) is not Eulerian.

The Eulerian edge ordering theorem can be used to calculate not only

the probability p that a random edge ordering of a graph G will be Eulerian

but also the number of possible Eulerian walks starting at s, (van

Aardenne-Ehrenfest and de Bruijn, 1951). Although p depends on graph G, an

approximate value of p can be calculated by assuming that the last edge

from each vertex is equally likely to point to any vertex. For a long DNA

sequence S containing all four nucleotides, p is approximately 1/4. In

other words, about 3/4 of the random edge orderings of G are not Eulerian.

Each of these undesired edge orderings is efficiently rejected as soon as

one vertex of its last edge graph is known to be not connected to s .
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Random doublet and triplet preserving permutation. The DP permutation

algorithm can be modified to generate a random permutation of sequence S

that preserves not only singlet and doublet usage but also triplet usage.

The triplet graph G' of S is the graph having a vertex for each doublet

that appears somewhere in S and an edge from s ii+1 to si+1si+2 for each

occurence of the triplet s ii+1i+2 in S. S uniquely defines an Eulerian

walk in G' from s 12 to sf-isf and vice versa. A random Eulerian walk in

G' starting at s 12 corresponds to a random DTP permutation of S.

The Eulerian edge ordering theorem can be applied to G' just as it was

to the doublet graph G. The random DP permutation algorithm is readily

extended to an algorithm for generating a random DTP permutation of

sequence S. For instance, DNA sequence S1 specifies an edge ordering

E'(S 1 ) that consists of 16 edge lists (Figure A-5). Edge ordering E'(S3 )

was generated by separately and randomly permuting these lists. The 15

edges of Z(S3 ) are underlined. All 16 doublet vertices in Z(S3 ) are

connected to AT, so edge ordering E'(S3 ) is Eulerian and sequence S3 of

Figure A-1 is a random DTP permutation of S .

These algorithms can be extended to a set of algorithms for finding

random permutations that preserve all doublets, triplets, ... , and

n-tuplets of sequence S. As the length of the largest preserved n-tuplet

increases, the number of possible permutations decreases, until at some

point only S is possible.

Random doublet and triplon preserving permutation. Both dinucleotide

usage and codon usage of coding DNA sequences are often non-random. The
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Figure A-5. Edge orderings E'(S3) and E'(S3 ) for the triplet graph G'(S1 ).

Edge
list

E'(S 1 ) E'(S 3 )

7 8 20 21
AA: AAA AAG AAA AAG

3 17
AC: ACA A T

1 9
AG: AGA AGT

5
AT: ATA

4
CA: CAT

4 24
ACT ACA

1 22
AGT AGA

18
ATA

25
CAT

13 21 8 13
CC: CCG CCG CCG CCG

14 22
CG: CGT CGG

18
CT: CTG

9 14
CGT CG

5
CTG

Edge E'(S1 ) E'(S 3 )list

2 25 17 23
GA: GAC GAT GAT GAC

20
GC: GCC

7
GCC

23 ?4 15 .16
GG: GGG GGA GGG GGA

10 15
GT: GTT GTA

6 16
TA: TAA TAC

12
TC: TCC

19
TG: TGC

11
TT: TTC

2 10
GTA GTT

3 19
TAC TAA

12
TCC

6
TGC

11
TTC
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appropriate permutation method for this situation should preserve both the

doublet usage and usage of just one of the three sets of triplons.

Consider a sequence S whose length is divisible by 3 and whose first

triplon is t1 = s1323, as illustrated in Figure A-1. Since triplon

Sisi+1i+2 contains doublets sisi+1 and 3i+15 i+2, preservation of a triplon

also preserves both intratriplon doublets. Thus the problem of preserving

the triplons and doublets is reduced to the problem of preserving the

triplons and intertriplon doublets, which is solved by using the random DP

permutation algorithm.

Random DtP permutation algorithm. A random doublet and triplon

preserving permutation S' of sequence S is generated by following steps {1)

to (61.

(1} Represent sequence S as a sequence of upper case letters.

12} Change the upper case letters at positions 3, 6, 9, ... into the

corresponding lower case letters to generate sequence SO.

(3} Assign each triplon to an ordered triplon list according to its first

and last letters and its order in SO. For example, AGa and ATa are both

stored in the Aa triplon list.

(4} Delete the letters at positions 2, 5, 8, ... from SO to form a reduced

sequence R, which contains alternating upper-lower case (UL) doublets and

lower-upper case (LU) doublets.

{5} Treating the upper and lower case letters as distinct, generate from

sequence R a random DP permutation R' using the DP permutation algorithm.
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16} Expand random DP permutation R' into the random DtP permutation S' as

follows. Randomly permute each triplon list. Start at the first UL doublet

of R'. Replace the current UL doublet in R' by the first triplon of the

corresponding triplon list, delete this triplon from the list, and move to

the next UL doublet in R'. Continue this process until the triplon lists

are exhausted. Change each lower case letter back into the corresponding

upper case letter to produce S'.

During step (51, the UL doublets correspond to triplons in S and the

LU doublets correspond to intertriplon doublets in S. The random DP

permutation R' preserves the alternation of these distinct sets of

doublets. The intratriplon doublets are stored during step (31, removed in

step {41, and replaced during step {61. Since each triplon list is

randomly permuted before R' is expanded, sequence S' is a random DtP

permutation of S. This algorithm is readily extended to a set of

algorithms that preserve all doublets and one set of n-tuplons, where an

n-tuplon is a member of a set of contiguous non-overlapping n-tuplets.

A DNA example. The random DtP permutation algorithm is illustrated by

the generation from DNA sequence S, of the new sequence S4, which preserves

all 8 triplons (codons) and 23 doublets (dinucleotides) of S1 . First, S1

is converted into equivalent sequence S 1* as shown in Figure A-6. Next, the

9 triplons are stored in the 5 triplon lists of S * shown in Figure A-7.

Then reduced sequence R1 is generated by deleting the middle singlet of

each triplon.

Next, edge ordering E(R 1 ) is constructed and 7 doublets are randomly
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Figure A-6. A series of sequences constructed during generation of S4, a

DtP permutation of S

3 6 9 12 15 18 21 24 27
S 1 A G A C A T A A A G T T C C G T A C T G C C G G G A T

2 5 8 11 14 17 20 23 26
A G a C A t A A a G T t C C g T A c T G c C G g A A t

1 3 5 7 9 11 13 15 17 18
= A a C t A a G t C g T c T c C g A t

3
a G

5
t c g

9 11 13 15 17 187
G t A a C g T c T c C t

2 5 8 11 14 17 20 23 26
A A a G A t C C g G T t A G a C G g T A c T G c C A t

3 6 9 12 15 18 21 24 27
A A A G A T C C G G T T A G A C G G T A C T G C C A T
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selected, one from each edge list except the t list, as shown in

Figure A-7. The 8 vertices of the last edge graph having these 7 doublets

as its edge set are connected to final vertex t, as shown at the top of

Figure A-8. Thus a new edge ordering having these last edges will be

Eulerian. One such edge ordering, E(R4 ) of Figure A-7, is randomly

selected by completing the random permutation of each list of E(R1 ). This

edge ordering corresponds to the Eulerian long walk at the bottom of

Figure A-8. Then random DP permutation R is expanded into sequence S4 of

Figure A-6 by replacing each UL doublet of R4 by the next unused triplon

from the correponding permuted triplon list. Finally, the 8 lower case

letters are changed back into upper case letters to generate DNA sequence

S4, which is a random DtP permutation of DNA sequence Si.

Significance of an interferon alignment. A practical application of

these permutation algorithms is the significance of the similarity of two

sequences from the human gene for beta-1 interferon (Erickson et al.,

1984). The DNA sequence of this gene was determined by Ohno and Taniguchi

(1981) and by Fiers et al. (1982). Using a substitution cost of 1 and an

insertion/deletion cost of 2, the distance between sequence A (nucleotides

196-255) and sequence B (nucleotides 499-558) is 25. The alignment having

this distance is shown in Figure A-9. Can this distance be explained by

base composition alone? To answer this question, each sequence was

permuted 1,000 times and 1,000 permutation distances were calculated. A

histogram of these distances is shown at the top of Figure A-10. The

distance of 25 is 6.0 standard deviations less than the mean permutation

distance. If the distribution of permutation distances is assumed to be
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Figure A-7. Edge orderings E(R1 ) and E(R4) and triplon lists for S and

S4*.

Edge
list

E(R 1 )

1 5
A: Aa Aa

3 9 15
C: Ct Cg Cg

7 17
G: Gt Gt

11 13
T: Tc Tc

2 6
a: aC aG

12 14
c: cT cC

10 16
g: gT G

4 8
t: tA, tC

E(R )

1 9
Aa Aa

5 11 17
Cg Cg Ct

3 7
Gt Gt

13 15
Tc Tc

2 10
aG aC

Triplon S1 0
list

1 3
AXa: AGa AAa

S 4

1 5
AAa AGa

5 8 3 6
CXg: CCg CGg CCg CGg

2
CXt: CAt

9
CAt

4 9 2 4
GXt: GTt GAt GAt GTt

6 7 7 8
TXc: TAc TGc TAc TGc

14 16
cT cC

6 12
gG gT

4 8
tC tA
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Figure A-8. Last edge graph Z(R 4) and the Eulerian long walk in G(R4)

determined by E(R )-

A

c

C

10 2 16

9

G
17

11

14 6<

C

3 1 13
15

7

12 8 4

9
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Figure A-9. Alignment of sequences A and B from the human beta-1

interferon gene. The center line echoes the 35 nucleotide identities.

196 200 210 220 230 240 250 255
CTC CTGTGGCAATTGAATGGGAGGCTTGAATACTGCCTCAAGGACAGGATGAACTTTGAC
C CCTG AT ATGGGAGG TT A T CCT AAGG CA G G AC T AC
CACCTGAAAAGATATTATGGGAGGATTCTGCATTACCTGAAGGCCAAGGAGTACAGTCAC

499 510 520 530 540 550 558
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Gaussian, this is a highly significant result. In fact, the distribution

is somewhat non-Gaussian. If one wishes to make no assumptions about tail

behavior, order statistics can be used to assess the significance of the

result. If N permutation distances are calculated and M of the N are as

small or smaller than the evolutionary distance in question, then the

probability that the distance is due to chance is (M+1)/(N+1). In the

present case, order statistics allow one to reject with 99.9% confidence

the null hypothesis that the evolutionary distance between A and B is

explainable by the similarity of their base compositions alone.

The algorithms described above were used to permute DNA sequences A

and B while preserving their codon usage, dinucleotide usage or both

simultaneously. Histograms representing 1,000 tP, DP and DtP permutation

distances are shown in Figure A-10. The evolutionary distance of 25 is

respectively 5.3, 4.9 and 4.7 standard deviations less than the mean

permutation distance. The DP and DtP distributions are definitely

non-Gaussian, so it is best to use order statistics when assessing the

significance of the evolutionary distance. The hypothesis that the

distance between A and B can be explained by the similarity of their

dinucleotide and codon usage alone can be rejected with 99.9% confidence.

In this example, the small distance between the beta-1 interferon

sequences A and B is better explained by the order of their nucleotides

(Erickson et al., 1984). In other cases, the dinucleotide and codon usage

may be sufficient to explain an evolutionary distance that would seem

significant if only base composition were considered. The permutation

algorithms described in this appendix are useful in recognizing such cases.
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Figure A-10. Four histograms of 1,000 permutation distances for sequences

A and B from the human beta-1 interferon gene. Top, simple permutations;

tP, triplon preserving permutations; DP, doublet preserving permutations;

DtP, doublet and triplon preserving permutations.

-100

t P -100

DP -100

DtP -100

25 30 35 40 45 50
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