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ABSTRACT

The stochastic modeling of live loads on buildings is -
presented in this work. It contains two parts; the modeling
of the sustained load and the modeling of transient live
loads. The model of the sustained load treats the load in-
tensity as a random function varying continuously in space
and varying in time at discrete, random points associated
with changes in occupancy. The spatial treatment includes
continuously decaying correlation and the influence of
floor-to-floor and building-to-building effects. Inclusion
of influence surfaces permits treatment of a variety of
structural load effects (column or footing load, moment,
shear etc.). Analysis of the model produces, first, the
approximate distributions, means and variances and covariance
of the load effects at arbitrary points in time. Second,
the approximate distributions of lifetime maximum sustained
load effects are provided. These models are fit to office
load survey data provided by G.R. Mitchell of BRS, Garston,
England, and relatively dependable results are therefore
obtained.

The second part deals with the modeling of the load
effect caused by the occurence in time and in space of
transient live loads. The distribution of the maximum
"extraordinary" load in time interval t is obtained.
Reasonable numerical estimates of parameters are substituted
to yield specific results, but data on this kind of load is
virtually nomexistent. It is anticipated that the analytical
models will stimulate collection of appropriate data in
future surveys.

Analysis is presented of the design load effects when
the sustained load acts simultaneously with the randomly
arriving transient load.

Thesis Supervisor: C. Allin Cornell
Title: Associate Professor of
Civil Engineering
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CHAPTER I

Introduction

I-0: Introduction

With the development of probability codes(lw’(z) it
becomes more and more urgent that a better knowledge about
the live load should be developed in order to achieve a safe
and economic design. We are looking not only for the value of
the design load but also for probabilistic descriptions of
the time-dependent characteristics of live loads. A number
of studies have been made of live loads. It is the purpose
of this work to summarize the previous results, and develop
a new theory to predict the design live load for different
probability levels. A set of the most recent field data(s)
will be used to verify the assumptions and to estimate the
parameters.

Some general points are discussed in Chapter I. A
brief introduction about the past studies is presented in
Section I-1. The nature of the live load is discussed in
Section I-2 with the definition of the different kind of

loads. The remaining sections include different assumptions

and definitions which are important to the following chapters.



I-1: Literature Review

The study of live loads includes two different parts;
data collection and theoretical modeling. The first part can

th (4) studied

be dated back to the 19 century when Stoney
packed crowd loads in 1869. Through the past hundred years
numerous works have been done in this area. Researchers
measured the live load in the buildings and analyzed the
data to come up with suggestions for design live loads and
their reduction factors. The second part, analytical mo-
deling, has, on the other hand, been studied by compara-
tively few. Not until recent years have people started
building statistical and probabilistic load models. With
the accumulation of knowledge the model becomes closey and
closer to the real phenomenon of the live load. As a result
a few building codes have already adopted their work as the
basis for certain aspects of the design live load. It is
believed that in the near future more and more building
codes will follow this trend and adopt design live loads on
a more rational basis.

Several important ﬁorks will be mentioned below,
Dunham(s) studied the survey data from twe federal buildings
in Washington, D.C. and derived the live load reduction

factor which is still used in this country after more than

twenty years. Horne(6) presented a theoretical model by



assuming independence of the load on different areas. The
standard deviation he got is inversely proportional to the
square root of the area. This conclusion led to the form

of the live load reduction factor adopted in the Mexican

and the new Canadian building code. Rosenblueth(7} intro-
duced influence surface into his model. Jauffred(s) col-
lected data from Mexican apartments and offices and related
them to Horne's model. Fader(g) considered spatial corre-
lation among live loads. Karman(lo) studied the load data
from 183 apartments and introduced the idea of the random
changes of occupancies. Bryson and Gross(ll) of National
Bureau of Standard surveyed two federal buildings and used
statistical methods to analyze the data. Their work will be
continued and more data will be collected in the near future.

(12) (13) yere extending sustained live

Corotis and Hasofer
load modeling capabilities. Mitchell and Woddgate(s) have
conducted the most extensive field survey to date. For office
use it covered 1 % million square feet with 32 buildings and
over 100 occupying organizations. They also presented their
data in such a way that it can be relatively easily used
for statistical analysis.

A more complete review of the literature is not neces-

sary here owing to the very thorough survey ‘in Heaney's

recent thesis(14). He has tabulated and summarized virtually



all the work related to live load study. 1In addition to the
references in his 1list, there are also the recent reference

(15) who provides an excellent review, and compares

by Borges
Mitchell's and Karman's work, plotting their data on extreme
value probability papers. ‘

Even though it is conceptually a simple operation to
measure the live load content in a building, many researchers
nevertheless have encountered the difficulties of how to
present the data and how to include the transient, extra-
ordinary loads that might occur during the lifetime cf the
building. Therefore there are many weaknesses in the above
mentioned work. For example there are relatively arbitrarily
applied load to reflect the concentration of people {Mitchell
and Woodgate), mixed room sizes (Karman, and Fryson and (Gross),
etc. Heaney made a detailed discussicn about this problem

which should be considered for any new load survey woTk,
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I-2: General Behavior of the Live Load

As shown in Fig. I-la the average load (or the total
load) on any area (or room) can be plotted along time axis.
The load can be decomposed into two parts. One is the or-
dinary load (Fig. I-1b) which exists on the floor for a
fairly long time until a change occurs. The ordinary load
itself consists of furniture, safes, file cabinets, printing
machines etc. as well as the normal working personnel. The
other is the extraordinary load (Fig. I-1C). This kind of
load occurs relatively rarely but with a relatively high
intensity. It typically has the characteristics of lo-
calized concentration in space and short temporal duration. It
may be caused, for example, by people coming into the building
during a special occasion such as an 'open house'". The
people will concentrate in those organizations that have the
“"open house" or in those areas that are open to the public.
This event in generai will last only a few hours. Another
occasion that will cause the extraordinary load is the re-
modelling of rooms. It may happen that furniture from dif-
ferent rooms will be moved to ore particular room and cause
a heavy loéd concentration.

Let us examine the ordinary load more closely. The
load keeps fairly constant until an abrupt change occurs,

e.g., at point A and B (Fig. I-1b). The reason may be

11



due to the change of the occupancy. The new tenant may have a
higher (or lower) average load. It may also be caused by

the rearrangement of the floor space. An office room may be
converted to a storage room or vice versa and the average load
may change drastically.

Even though the average load in any room under the same
occupant probably has only a small fluctuation in time, there
may be a definite trend. The load can be expected to increase
with time due to the addition of new furniture or the accumu-
lation of files etc. However the magnitude of the increase
is probably small as compared to the variaticen from occupant
to occupant of the basic load itself.

The ordinary load can be further divided into two groups:
the load due to normal working personnel (plus some expected
number of visitors) and the rest of the load. The latter
group is defined as long-term sustained load as opposed to
the normal personnel load. The sustained load is shown in
Fig. I-1d and the personnel load is shown in Fig. I-le on a
finer scale. The total length of time that the personnel
load presents is much shorter than that of the sustained load.
Hence the question arises whether the personnel load should
be treated the same as the sustained load in considering
the long-term effect. Karman(lo) discussed this problem

and concluded that the load, acting at least 5% of the

12



operational time of the building may be considered permanent.
This is to justify that the combination of the above two

loads will be used to produce the long-term effect.

13



I-3: Stationary Process

The basic information we are seeking is a description
of the probabilistic behavior of the load* through the life-
time of the building on any area (Fig. I-1d,e)}. Direct em-
pirical observation would require the continuous monitoring
of the loads on many rooms throughcut this whole period.
This procedure is both expensive and impractical. Another
way togderive the information makes use of the assumption
that tﬁe process is stationary both in time and in space.
This implies: (i) that for any area the probabiliity distri-
butions of the loads at two points on the time axis are
identical, (ii) that for any time point the loads on any
two areas (of common characteristics) have identical pro-
bability distributions, and (iii) that these two distri-
butions (one with respect to time, the other with respect
to space) are identical.

As shown in Fig. I-2 the figure represents three dif-
ferent bays (or rooms) with the same area but different
load history. The load survey conducted at a particular

time to is the measurement of the average load on the

* Either the total load or, equivalent, the load per unit
area (i.e., the spatial average load)

14



different bays. It results in reporting the frequency dis-
tribution of the average load along the cross-section t, and
not the frequency distribution along the time axis. The two
distributions may not be the same for an arbitrary process.
But, once we make the assumption that the process is station-
ary, the above two distributions will be the same. This
stationary assumption (due originally apparently to Karman
but adopted independently by Mitchell(lﬁ)) permits customary
multi-room load survey data to be used to infer behavior-

in-time of an individual room.

15



I-4: Arbitrary-point-in-time Load versus Maximum Lifetime

Sustained Load

The arbitrary-point-in-time load is the load which

exists at any particular time, t its probability distri-

0°
bution (called the marginal or the one-dimensional distri-
bution of the process) is the same as the result from any
load survey. By the assumption of the stationary process
this probability distribution is identical at any time. The
maximum lifetime sustained load is the maximum (sustained)
load that should be expected, under a certain probability
levei, during the lifetime of the structure. 1Its probability
distribution can be visualized by assuming that we have the
load histories of n areas and that we pick the peak sus-
tained load from each history. The frequency distribution

of those n loads is the frequency distribution of the maxi-

mum lifetime sustained load.
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I-5: Design Load versus Performance Load

In the practice of the structural design the engineer
has to consider not only safety but also serviceability.
He has to design the structure to be safe enough to with-
stand without failure the anticipated maximum load appli=d
during the lifetime of the building. He has also to design
the structure strong and rigid enough to maintain the normal
service of the building. There should be few sustained
cracks or excessive deflections that mar the appearance or
function. Therefore two different load criteria have to te
chosen. The load used for the purpose of safety is defined
as the design load. The other load to be used for service-
ability purposes is defined as the performance load. The
former will be associated generally with maximum-in-time
loads that have very small probability of being exceeded;
the latter will usually be sustained loads with relatively

less conservative probability levels.

17



I-6: Load Intensity, Total Load; Unit Load; Load Effect,

EUDL

Several terms will be used quite frequently in the

following chapters. They will be defined here:

Load Intensity:

Total Load:

The value of the load per unit area on
a differential area, in pounds per
square foot.

The sum or the integration of the load
intensity over any finite area, in

pounds.

Unit Load (average load): Total load on an area divided

Load Effect:

EUDL (Equivalent

by its contributing area, a spatial
average load, in pounds per square
foot.

The structural effect produced by the
load, such as moment, shear, deflec-
tion etc. For linear behavior this is
an integration of the product of the
load intensity and an influence surface.
Uniformly Distributed Load): This is
the value of the uniformly distributed
load (in pounds per square foot) that
will produce the same specific load ef-

fect as that produced by the actual

18



load intensity on the floor. For
the same floor area, the EUDL will
have a different value fcr different

lecad effects.

19



CHAPTER 1I1I

Ordinary (Sustained) Load Model

II-0: Introduction

The ordinary load which was defined in Chapter I will
be studied in this chapter. A load model will be proposed
in Section II-1 and compared with data in Section II-2. The
influence surface will be discussed in Section II-3 because
it will be used throughout this work for both the design
load and the performance load. The arbitrary-point-in-time
load will be discussed in Section II-4. This load forms part
of the performance load. In the last section a method to
derive the probability distribution of the maximum lifetime
sustained load will be introduced. This load will form a

part of the design load.

20



II-1: Load Model
IT-la: Model Description:

The load intensity at any location follcows a stochastic
process. This process will be modeled in this section. The
model proposed below can be considered as an extension of the
work done by others. Horne (6) apparently was the first to
start the theoretical modeling of random floor loads. He
assumed spatial independence, but ignored time influence.

(13)

Hasofer constructed a more refined, but similar model.

Rosenblueth(7) used the influence surface in his work.

(19) and Corotis(lz) introduced various correlation

Fader
factors.
A correlative load model is proposed here to represent

the load in the building at an arbitrary point in time,

W(X,Y) =m +Yb1d+Yflr+€(x’Y) (II"I'I)

where w(x,y) is the load intensity at any particular hori-
zontal location (x,y) of a particular building and flodr.
m is the '"grand mean" of the live loads for the case under
investigation, i.e., office occupancy. Yp1d® Yfir and
€(x,y) are zero mean independent random variables. Yy;4

represents building effects, Y1y TEPTESENts floor effects

21



and e(x,y) represents load intensity variation spatially on
a given floor of a given building. This last term is a ran-

dom spatial function with non-zero spatial correlation.
covle(xg,yg), elxy,y;)] # 0

Then
E[w(x,y)] = m (I1-1-2)

Var[w(x,y)] = °§1d+°§1r+°§ ‘ (I1-1-3)

and for two loads on the same floor at locations (xo,yo)

and (xl,yl) (Fig. I11-1)
COV[W(XO,YO),W(Xl,Yl)] = B[W(XO,YO) W(Xl,}’l)]
"E[w(xg,yo) 1E[W(x;,y4)1]

Op1a*Oe1p*eovielxg, o), e(xy,y,)]

(I1-1-4)

(Load on different floors will be discussed in Section II-1b)
m is the "grand mean" of the live load which should be

the (ensemble) mean of the (spatial) average loads of all

buildings. As discussed below there is a systematic dif-

ference in the average load for different types of buildings;

22



therefore proper sampling techniques must be used to avoid
a biased estimation of m.

The random building effect, Yp14® Tepresents the varia-
tion from office building to office building of the average
(over the total buildings) load. This variation could in
principle be in part systematic. The data from Mitchell and
Woodgate(s), for example, show that the mean loads are 14.%
psf and 10.42 psf respectively for the '"trade union" group
and '"the trading A" group. The same explanation holds for the
floor effect, Y¢ip [t represents the variation from floor
to floor within a given building of the average (over the
total floor) load. Bryson and Grosscll) found that within
the NBS Administration Building the average loads on the
floor 1, 5 and 9 were 5.9 psf, 10.2 psf and 12.7 psf res-
pectively. The cause is apparently that organizations ar-
range their floor spaces in such a way that different func-
tions and types of users occupy different floors, e.g., an
executive floor, a storage floor, a typist and clerical floor
etc. Even if it is an office space, the ground floor is
typically used differently from upper floors(s).

If enough information were available, the means and
the variances of Yp1d and Yelr could be estimated as func-
tions of the type of building or floor occupancy, floor
number, etc. However at the design stage the engineer

usually does not know who is going to occupy the floor of a

23



building or how it will be used, nor does he want to restrict
their future use by designing for other than a very general
office occupancy. If the model is to be used to determine
code specified loadings, then it is describing loads over
the population of future buildings and floors to which the
code will be applied. Under all such circumstances it is
appropriate to treat Yb1d and Yg1p @S Z€Tro mean random terms.
That these variables are modeled in a simple, independent
additive way implies that no complex interactions are hypo-
thesized between floor and building effects, e.g., within-
building, floor-to-floor variability is the same for "light"
as for "heavy" buildings, and the average load on one total
floor is not influenced by its being adjacent to another
floor which is heavier (or lighter) than a typical floor in
the building. These simplifying assumptions can be dropped
if future data prove it necessary. Assigning Ybld and yflr
each a zero mean implies that it is assumed that proper
sampling and averaging has been done. (e.g., if the model
and subsequent code is to be applied to offices on all floor
levels, the sample should contain a proper mix of floor
levels, and should not be dominated by, say, ground floors.)
For these reasons in this work only single global variances
for those two zero mean random t?rms need be used, and
treatment of systematic distinctions between building types,

floor numbers etc. will not be discussed further.

24



The randomness of the stochastic process e(x,y) repre-
sents the uncertainty involved in predicting the floor
loading over a particular floor. e(xo,yo) and s(xl,yl) cor-
responding to two different locations are in generai corre-
lated. If the load intensity is higher than average at a
particular location then it is likely that the load at a near-
by point is high also, i.e., there exists a positive corre-
lation. It is anticipated that the correlation will decrease
with the distance between the locations considered. This

will be verified later.
II-1b: Moments of Total and Unit Loads

The model of the load intensity w(x,y) above is needed
in order to be able to deduce the characteristics of total
loads (or unit loads) and of various load effects. Most
data are available in terms of unit loads. Therefore these
data will be used to deduce estimates of the parameters of
the load intensity process. It is necessary therefore to
establish the relationships between the moments and param-
eters of unit loads and those of the load intensity process.,

Let L(A) be the total load over a rectangular area A

(equal to axb) on the same floor, then

25



a pb
L(A) = fo j(') w(x,y)dx dy = Ay *Aveq,

a rb
7 ecxiyrax ay
%0

the mean and the variance of L(A) are given by (see Appendix

A):

E[L(A)] = j(;afob}a[w(x,y)]dx dy = j{;Ibmdx dy = mA

(IT-1-5)

apaphb b
Var[L(A)] foj;foj; Cov[W (xg»¥g) W (xq 7))

dxo dxl dyo dyl (I1-1-6)

Substitute Eq. (II-1-4) into the equation above
a ra pgb b{ 2 -
Var[L(A)]=ffff of . J+os, *
o Y0 Y0 Yo bld “fir

cov[e(xo,yo),e(xl,yl)]}d;x0 dx; dy, dyy
(II—l—?)

Three different functional forms of covariance functions werxe

examined by Hauser(17). One is a discrete parameter model

26



and the other two are continuous. The first one is not pre-
ferred because the areas that can be considered are limited
to certain discrete values. One continuous model was derived
from a first-order autoregressive process(ls) where the
parameter was spatial distance. The covariance function for
such processes will be:

Cov[e(xos}'o):e(xls)’l)] = Cgp p(r)

2 e-r/d’

where d' is a constant and r is the horizontal distance be-

tween two points (xo,yo) and (xl,yl)

r = J(xo‘x1)2+(}'0'yl)2

The other form, which will be used here, is a slight modi-
fication of the above formula. It uses r2 to replace r,
i.e.,

2
covle(xg,vg),elxy,y;)] = oZe™™ /9 (11-1-8)

When fit to the same data, both formulae lead to approxi-
mately the same results(17). However the second is more
convenient because the spatial variables on two perpendicular

directions, X and Y, can be uncoupled.

27



[ (xy-x;) 2+ (yp-y,)21/4d
covle(xy,yg)selxy,y)] = ol e 01 O

2 2

- 02 e-(xo‘xl) /d '(YO"YI) /d
sp €

and the subsequent integration (e.g., Eq. (II-1-7)) wilil be

greatly simplified. Substitute Eq. (II-1-8) into Eq. (I1-1-4)

and Eq. (II-1-7).

2
coviw(xg,yg),wix;,y;)] = c§1d+0§1r+0§p e /4

(I1-1-9)

for two points (xo,yo) and (xl,yl) on the same floor.

a pa pb b 2
2 2 2 -r°/d
Var[L(A)] =ffff (0, , +0z. _+0° e )
0 Yo Yo Yo bld “flr “sp

dxodxldyody1 _ (I1-1-10)

When two points (xo,yo) and (xz,yz) are located on dif-
ferent floors (Fig. II-1) we shall introduce 2 new factor
Pp Which represents the correlation coefficient botween the
load intensities on two different floors, i.e.

. 2
X 2 “ d & - ~
cov[e(xo,yo),e(xz,yz)] = pmcsp e ¥ / {(I1-1-115

28



" This correlation represents what Mitche11(16) has referred

to as the "stacking effect'". Areas immediately above or be-
low one another apparently have some tendency to be used in

a similar manner (e.g., cabinets may be next to interior
rather than exterior walls.) The value of the decay param-
eters d in Eq. (II-1-11) is taken equal to that in the same-
floor case for simplicity only. (Note that there is some
potential inconsistency in saying that the vy, . terms repre-
sent floor average loads when they are assumed independent and
when at the same time e(xo,yo) and e(xz,yz) are assumed cor-
related. The last assumption in fact implies some correlation
between floor averages. Hence the yg,, terms do not strictly
represent floor average deviations. The décay in correla-

tion, as controlled by parameters d and o is, however,

m’
estimated from data to be so rapid that the correlation be-
tween the e(x,y) processes on two different floors does not
cause substantial correlation among total or unit loads on
areas as large as typical total floor areas. It is therefore
justified practically speaking to think of the vy, .. terms as
representing the deviations in floor averages. In fact,
should future data analysis show substantially more cor-
relation in these floor averages, it can be included by

relaxing the independence assumption on the yg;, terms.)

Following the same derivation as Eq. (I1-1-4), we have

29



' _ 2 2 -r2/d -
cov[w(xy,¥q) W (X,,¥,)] = Opqaten Osp © (I1-1-12)
A priori, it is antitipated this '"stacking correlation' will
decay with m, the number of floors separating the two loca-
tions. Three different forms of P will be examined later
in order to fit the available data.

(1) o, =h" th < 1)

This is the formula derived directly from the simplest,
first-order autoregressive process with a discrete param-

eter, namely story number.

(ii) Py = constant, independent of m.

(iii) P f(m), a general function of m,

To gain insight into the proposed model and to fii its
parameters to commonly available data, let us now determine
the dependence of the mean and variance of the total load and
unit load as functions of the floor area and of the number of
floors involved. First, consider a square area A(a=b=vX )

on a single floor (Eq. (I1-1-5) and Eq. (II-1-10)).
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E[L(A)] = /;mfom ndxdy = mA

/K /K . VA ./A 2
- 2 2 2 -r®/d
Var[L(A) ] j(; ./(; -/:) fo (o’bld+0flr+o‘sp e r )

dxodxldyody1

/K
] 2 2
ffff (0p1a*9F1,)dXgdx dy,dy;
0
B Lxg-xp Erg-yp 2174
+ff/] Isp © dxgdx;dygdyy
0
a2 a2 fpoGemxpie R
= (op1q%051,)A *"Spffe dxgdxy
0

iy -(yo-yl)zld
ﬂe dyod)r1
0
/A .2
-(x5h-%x4)°/a
= .2 2 2, 2 0"*1 2
= (op14%051,)0A *"sp[jfe dxgdxy ]
0
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-
= (G§1d+o§1r)A2+c§pwdA[erf(fé)'.‘JH (1_e-A/d)]2
where erf( ) is the error function (19}, (17)
U 2
erf (L) =2f 1 -tY/2 g,
vZ 0 V727

Let us define the unit load or the spatial average of the

load intensity as:

VK
1
UA) = L(AY/A = vp14*Ye10* & ff e(x,y)dxdy
0

Its mean and variance will be

E[U(A)] = B[4y - Mo (II-1-13)

Var[U(A)] Var[Ucﬁ)] = Var[g(A)]

A

= Op1a* 1 Tap (R [eTE (7 )

-A/d

J%T (1-e Adyy2 (II-1-14)

Let
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K(A) = ogpﬂd[erf‘/g - % (1-e"Ady,? (II-1-15)

Then

Var[U(A)] = c§1d+o§1r+ K(A) (II-1-16)

It is apparent that when the area A is sufficiently large

compared to d, Efél approaches zero and Var[U(A)] approaches

2

f1p- Therefore if A/d > N30 *

2
a constant value, Ob14+°

2 2 2
losp/(cbldfcflr)]’

2 2

Var[U(A)] = Op1a*%f1r

(I1-1-17)
As discussed above this is apparently the case for A = total
floor area, when U(A) is simply the average floor load. For
intermediate-sized areas the last two terms in the parenthe-
sis of Eq. (II-1-15) are small compared to the first term and
therefore can be neglected. The first term can be further

simplified since

erf(Jg) =1

a4

for intermediate area, sayJ > 4. Hence

2

2 K(A) x .2 2 2 md
bld [

Var[U(A)] = o p A cb1d+0f1r+osp K

2
Y10

(I1-1-18)
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Note that the dependence of the last term on A is the same as
that found for the total variance versus A when one adopts the
"independence model'" used by Horne(6) and Rosenblueth(7).

For small areas (A < ®10d) all terms are important.

The "nominal column load" will be considered next. This
load is defined as the sum of all loads on the conventionally
considered tributary area of the column, This is not the
real column axial force because owing to the static indeter-
minacy of a typical structure on the conventional tributary
area only part of the load on the conventional tributary area
will transfer to the column and the rest will transfer to
other surrounding columns. Similarly a portion of the loads
on the tributary areas of these columns will be transfered
to the column in question. Let L(An) be the total nominal
column load from n floors. Each floor has equal area A.

Consider the two floor case first (Fig. II-2):

L(Az) =J€ajgbw(x,y)dxdyt/;i/gdw(u,v)dudv

where w(x,y) and w(u,v) are load intensities on the dif-
ferent coordinate axis (x,y) and (u,v) shown in Fig., II-2,

Then (see Appendix A)
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E[L(A,)] = _/(;aj;bmdxdy+j;cj(;dmdudv

a prb pra b
Var[L(A,)] i/g jg./; Jg cov[w(xy,Yq),Ww(x;,yq) 1dx4dx,dyqdy,

+2j(;ajo‘b_/;cj0‘dcov[w(x,y) ,W(u,v)]ldxdydudv

c pc pd pd
+f f f f cov[w(uo,vo) ,w(ul,vl)]duoduldvod\r1
00 Y0 Y0

Assume that two floor plans are identical, i.e. a = ¢ and
b = d, and substitute Eq. (II-1-9) and Eq. (II-1-12) into

the above equations:

E[L(A,)] = 2Am

a pa pb o T /d
Var[L(A,)] = 2[ (o, 4*02) DA +ffff
b ,b 2
2 .2 a aff 2 -r%/d
dxodxldyody1]+2[ob1dA +pL/g jg o Jo Osp®

dxdudydv]

2
1r JA +2AK(A)+20b1dA
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These formulas are very easy to extend to n floors.
E[L(An)] = nAm

- 2 2 2 2 2
Var[L(An)] = n(0b1d+of1r)A +nAK(A)+n(n-1)cb1dA

n-1

+ ) Z(n-m)pmAK(A)
m=1

(I1-1-19)

In terms of unit load:

L(A_)
UAY) = gr—

L(A_)
B[UGA)] = E[— -] = 2 =

L(An) Var[L(An)]
Var[U(An)] = Var| ok 1 = nzAz
2

g n-1
2 flr K(A) 1
%1a* m " ok nl Z

m

2(n-m)p_ K(A)

1

(I1-1-29)
In order to determine their characteristics and to

facilitate parameter estimation, we next examine different
forms of P

36



then

H

2 (I1-1-21)

lim Var[U(A)] ¥ ol ,

1>

In this case all the column variances will converge to the

same limit independent of the area A on each floor.

(ii) Pp = constant = o

then

lim ~ 2 K(A)

naew VATIUCAL] 2= opq4*p. =g
Since Eiﬁl is different for different areas, the column load
in this case will approach different limits for different

areas (unless Pe = 0).

(iii) P = f(m), a general function of m
The Values of p, can be estimated individually, sequentially,
i.e., use the available data for Var[U(An)] versus A and n

to estimate Py first and then p, etc. Inspection of

Eq. (II-1-20) reveals that for fixed A the variance of U(An)
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will have one term independent of P that will decay like

1/n, and a second term which will depend on the form of Py
Assuming, following a priori judgement, that Pn is a positive,
decaying function of m, the forms of decay of Var[U(An)]
versus n possible are restricted to those between 1/n and
those independent of n. If another form is observed in the
data, it implies that P does not conform to this a priori
assumption. This phenomenon was in fact observed in the

data to be considered.
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I1I-2: Comparison of different load models with eiisting data

There are some load survey data sets available but only
Mitchell and Woodgate(s) present the data in such a way that
it can be readily adopted for this study. (A brief descrip-
tion of their work is presented in Appendix B). Therefore
their results will be used to estimate all the parameters
introduced in the previous section. When new data becomes
available it can be used in the manner to be demonstrated to
re-estimate the parameters and to check further whether the
model assumptions are appropriate.

Two sets of the reduced data from the report of Mitchell
and Woodgatecs)’(zo) are particulary useful in estimating

%*
the value of second-moment parameters

War[UTA] , Versus

(i) The coefficient of variation, o

the area (Fig. II-3) which can be used to estimate three
parameters; °§1d+°§1r; ogp and d. (Fig. (II-3) is a slight

modification of the original data. See Appendix C).

(ii) The column load data (Fig. II-4) which can be used

to estimate the remaining two parameters; p_ and Géld

m
The detailed estimation will be demonstrated step

*
Other, more direct schemes of parameter estimation are
possible if one has access to the raw data
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by step below.

(i) From Eq. (II-1-17) the variance of the unit load
on an area on a single floor will approach (c§1d+a%1r) as the

area becomes large. Therefore estimate the value of

(o§1d+0%1r) by the variance of the largest area reported

(see Table B in Appendix c).

2 2
of g0k . = 20.25% (1b/£t2)2 (II-2-1)

(ii) Eq. (II-1-18) could be used to get an estimate

2
sp
the intermediate area; then Eq. (II-1-14) and a small area

of the value of the product of o_,_ and d in the range of

could be used to solve for the individual values of Gzp

and d. In short the data is fit at two points. Unfor-
tunately no pairs of values can fit the data from Mitchell
and Woodgate(s) consistantly at all points. An alternative

2

is to find the value of sp and 4 which will produce a

minimum sumt of the squared error (SSE) of the standard

%
The units will be in feet and pounds throughout this work.

+The sum is taken here over the nine data points (A value)
shown in Fig. II-3. This choice may put undue emphasis
on the smaller areas owing to the particular choices of A
adopted by Mitchell and Woodgate. Weighted least squares
could also be used. _
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deviation. The results are plotted in Fig. II-5, where the

integer d value giving the minimum SSE for each of a set of

02 values is shown. Also shown are several d values for

sSp

cgp = 260. The minimum square error is at
2 _ 2,2
GSp = 260 (1b/ft")
2
d = 9 ft (I1-2-2)

Notice that we use the minimum SSE of the standard deviation
and not that of the variance because the latter will place
too much emphasis on the small areas where the variance is
high. With above parameters the results are plotted in

Fig. II-3. The fits obtained by two other sets of parameters

are shown by dotted lines.

(iii) Use the column load data to find the form of P
and the values of parameters.

The column data show a rather unusual trend. The
variance drops from 1 story to 2 stories by about 48% then
stays constant up to 7 to 9 stories. Beyond that the vari-
ance increases again. It is not clear why the tail went
upward. One possible explanation is that the sample of
taller buildings was too small for the statistics to be

meaningful. This part (more than 8 stories, eicept A = 624
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where n = 8 is not considered) will be neglected from sub-
sequent consideration.

From the figure of the column load data where each
curve approaches a different limit it is clear that P =vhm
cannot fit the data (see eq. (II-1-21)). The second form
Pm =P will be examined first. Again, there is no feasible
way to estimate the parameter separately. Least square

fitting was used again. The following values given the best

fit (Fig. II-6).

p = 0.7 (i1-2-3)

Next consider that p is an arbitrary function of m so that
the model will fit the data completely. As discussed before
the data shows the following trend;

Var[U(A )] = 0.52 Var[U(A;)] for n > 2 (11-2-4)
Substituting Eq. (II-1-16) and Eq. (II-1-20) into the above
equation

»  Tfir . k), 1 Ml K(A) 2 . 2 _K(A
o - = ~
+ + Y 2(n m)pm S 0.52(0b1d+ —£Kl)

b1d" " nA 274 “f1rt

(I1-2-5)
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Use the values of the parameters found from previous fitting,

i.e.

2 2
Op1a*0f1y = 20.25

2

919 = 3

then solve the value of P sequentially from Eq. (II-2-5).

Consider A = 336 first. The results are shown in Table (II-1)

Table II-1
n 2 3 4 5 6
m 1 2 3 4 -5
O -0.08 1.44 0.942 0.931 0.932

The results show that any floor is practically uncorrelated
with its adjacent floor but highly correlated with the rest
of the building. (Note that Pn > 1 is, of course, impos-
sible. The value Py = 1.44 is merely the solution from

Eq. (II-2-5).) There is, as yet, no reasonable explanaticn

for this conclusion. Similar results were found for
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A = 151 and 624 also. (A similar pattern with respect to
py and p, will also emerge if °§1d is changed from the value
found in the previous fitting.)

Another way to investigate the model is to assume p
equals a constant, Pes and then choose P. SO that the model
fits the data for a chosen value of n. This implies finding
for some n the value of Pe that will satisfy Eq. (II-2-5).

The results are shown in Table II-2 for several values of

n with A = 336. The value of Pe (=0.7) obtained above

Table II-2
n 2 3 Y | _ 5 6 . 7 v
Pe -0.08 0.427 0.597 0.682 0.732 0.769

fits the results in Table II-2 except when n = 2. Therefore
the values in Eq. (II-2-3) will be used in the remainder of
this work.

One way to improve the fit to the column load is to in-
clude the correlation between two cflr's‘ This may in fact
exist. However, at the present stage we would like to keep
the model as simple as possible. Any improvement can be
introduced when new data becomes available. Estimating
correlation among the Se1r variables could best be done

by looking directly at the correlation within a building of

pairs of average floor loads spaced m floors apart.

44



II-3: Influence Surface

In structural design it is not the load itself but dif-
ferent load effects, such as axial load, shear, moment etc.,
which are the factors used for the design of an individual
member. It is therefore necessary to transform the load into
the load effect in the process of the design. The first
step will transform the load from the floor to the surrounding
frame. Assuming linear behavior of the structural system,
there are several methods available (such as Navier or Levy
type solutions(ZI)) to represent the behavior of the floor
slab. For most purposes, however, it is believed that a
simplified influence surfaceczz)’(zs)’(lz) is the most
suitable procedure. Even though this method is approximate
it has the advantage of simplicity. All the related equations
will be greatly simplified, e.g., the use of a three-degree
polynomial to replace an infinite series. This method will
be explained below.

An influence surface is the two-dimension extension of
the principle of influence lines. The ordinate I(x,y) of the
influence surface at any point (x,y) is the influence on
some desired load effect due to a unit load at (x,y). The
Muller-Breslau principle states that an influence line (or
surface) for a given load éffect may be constructed by re-
moving the constraint associated with that load effect and

introducing a corresponding unit displacement. The deflected
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shape of a beam without distributed load is governed by:

a fourth order differential equation. Its general solution
is a three-degree polynomial. There are four degrees of
freedom involved which can be solved by introducing four .
boundary conditions. Following Ayer and Cornell's(zs) as-
sumption simplified influence surface may be obtained by
multiplying appropriate influence lines. This is not an
exact solution for a flat plate but is probably as accurate
as is the representation of the real structure by a flat
plate.

As an example consider the axial load on a typical in-
terior column (Fig. II-7). The influence line along the X-X
axis approximately equals the influence line for a two span
fix end beam (Fig. II-8) which can be constructed by assuming
a unit vertical displacement at the middle support. The
deflected shape of the beam is the influence line. Due to
the assumed symmetry only one span will be considered. Four
boundary conditions must be satisfied, i.e. zero slope at
both ends, zero displacement at one end and unit displace-

ment at the other. The above constraints lead to the fol-

lowing equation (Fig. II-9):
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where

deflection of the beam

N
il

o
]

relative location of the beam (0 < x < 1)

The influence line along Y-Y direction is the same.
The influence surface for a bay is approkimately the product

of the two influence linesczs)’(lz), i.e. (Fig. II-10)
I(x,y) = (x%-2x)(3y%-2yh) 0 cx <1, 0 <y <1

A five bay six story frame is selected for the illustration
purpose in this work (Fig. II-11). For any particular force
resultant of interest the influence line along the frame

was constructed by a readily available program called
nsTRUDL 11" (24 A unit deformation corresponding to the
force resultant of interest was the input and the displace-
ments and rotations for all joints were the output. The
influence line can be constructed accordingly. Along the
direction perpendicular to the frame it is assumed that only
two adjacent spans contribute. Consistent with the assump-
tion of behavior approximately like continuous one-way slabs,
the influence line perpendicular to the frame will be as-
sumed the same as that of the axial load (Fig. II-9). This
implies that the loads on the slab are transformed to the

frame first like a column load and then produce the
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influence to the load effect interested as if they were con-
centrated loads on the frame. Part of the influence surface
for the moment at mid-span of beanm A-B is shown in Fig, II-12.
The influence surface will be used throughout this work.
It will not be mentioned eiplicitly but whenever we encoun-
ter load effect it should be understood that the influence

surface as described above has been used.
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1I-4: Arbitrary-Point-in-Time Load:

The previous two sections dealt with the first and
second-order moments of the unit 1oad; U(t). Next we con-
sider the shape of the (marginal) probability distribution of
U(t), that is the PDF of the unit load that exists at a point
t along the time axis (Fig. II-13). The load comes from two
different sources: in part from the personnel in the office
and in part from the sustained load (See chapter I). Due to
the different characteristics of these loads they will be
treated separately. The sustained load in a particular office
will change from time to time, i.e., it is a stochastic pro-
cess, but under the assumption that the process is sta-
tionary in time, the marginal or one-dimensicnal probability

distribution will be the same along time axis, i.e.
fU(t)(u) = fU(u) for all t

where fU(t)(u) is the PDF of the unit 1lcad U(t) as discussed
above. Assuming stationarity in space and time, most histo-
gram results of the load survey conducted by many research-
ers(3),(8],(11) can be interpreted as belonging to this
category.

The probability distribution of the unit load for dif-

ferent areas can be obtained directly from load surveys
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(under the stationary assumption described in Chapter I).

The report of Mitchell and Woodgate(s) is most useful in

this regard because they presented the data in such a way
that it can be adopted for such statistical analysis directly.
As discussed in Appendix B the only discrepancy is that

their report includes both normal working people load and
allowances for loads attributed to transient concentration
of people, in addition to the directly observed or sustained
load results. Owing to the data recording technique, there
is no economical way to separate the latter loads from the
total load reported. Therefore the data will be used as it
is with the understanding that there are some additional
non-observed "loads'" contained in it. The subsequent analy-
sis will at a minimum demonstrate how the model and such
data can be analyzed. At best, the additional loads may
have had little influence on means, variances and histograms.
This is a stronger possibility for the smaller areas (see
Mitchell and Woodgate(s), Table 8).

The sample frequency distributions for different areas
are plotted in Fig. II-14. The distributions are highly
skewed to right when the area is small. The skewness gra-
dually diminishes as the area becomes large. All the distri-
butions can be approximately fitted by different gamma
distributions (Appendix D). It is anticipated that this

conclusion will remain true for other sources of data as
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well. It is therefore assumed in this work that the

(marginal or one-dimensional) probability distribution for the
unit load U(t) from any area is gamma. The mean and the
variance are given by Eq. (II-1-13) and Eq. (I1-1-14).

k and 2 of the gamma distribution can be derived as:

2
- m )
k = ;7 (I11-4-1)
A=
o2
where
m = mean of the unit load = E[{U{t)]

o= variance of the unit load = Var[U(t)]

with the value of k and ? known the gamma distribution is
completely defined. The load associated with any desired
probability level can be derived easily(zs).

The load at any arbitrary-point-in-time contributed
by the normal occupants varies widely but its intensity, with
high probability, is very small as compared to those from
stationary 1oad(14). Some researchers(s)’(ll) included the
personnel load in their survey but they did not treat it
exactly as an arbitrary~point—inatime'1oad; They asked about

the normal working people in the room, which is sort of an

average people load, instead of recording the number of people
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they saw at the time of survey. Besides they did not report
the people load separately and there is no information about
its probability distribution. For this reason the personnel
load will be treated deterministically. Its assumed value
is set equal to the expected (average) value, which is
estimated to be about 1.5 psf (2 persons/200 ftz).
Alternatively the above two loads, stationary and per-
sonnel load, can be lumped together as Mitchell and Karman
did. However, due to their different stochastic properties,
we think it is more appropriate to separate them. We also
suggest that any new load survey should think about this

problem and collect more pertinent data.
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ITI-5: Maximum Lifetime Sustained Load
II-5a: Introduction

The maximum lifetime sustained locad is the maximum sus-
tained load during the lifetime of the building. The purpuose
of this section is to derive its probability distribution.
(14)

Karman(lo) Mitche11(16) and Meaney used a fixed number of

changes of occupants to find the distribution of the maximum
load, but considered only simple unit loads on areas in con-
junction with these time changes. The logical eXtension,
which will be discussed in the following sections, is the
combination of the above idea with the more complete sus-
tained load model from Section II-1la.

The general behavior of live loads was discussed in
Chapter I. Certain simplifications musﬁ be made for
rigorous theoretical consideration to be tractable. There-
fore it is assumed that the load is constant under the same
occupant until either a change of occupants or a re-
arrangement of the furniture by the same owner occurs
(Fig. II-15). The small fluctuation during that period will
be neglected. A more complicated model can include the
presumed trend in this variation. As shown in Fig. I1-16
the load might be increased linearly with time since the

last changes. Then the maximum load during an interval is
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L = L0+650

The magnitude of the load L will not be independent of the
time to the last occurance. If, as previous authors have im-
plicitly done, we assume changes take place at regular time
intervals, Sg» then our interest is only in the random
variable Y = Y0+650, and the analysis is unchanged, provided
information can be obtained about the random variables Y,

and 6. If, on the other hand, load changes are assumed (as
will be done here) to take place at random points in time, the
time intervals SO will be random. In this case the important
load magnitudes, Y = Y0 + BSO, and the number (and times) of
load occurence will not be stochastically independent. The
analysis of such a model becomes much less tractable than
that which follows. Therefore the simplified model (Fig.
ITI-15) will be used in this work. The second model may have
to be considered if there is any new data in the future to
show strongly that the load increase under the same occupant

is significant.

II1-5b: Probability Distribution of the Maximum Lifetime

Sustained Load for a Single Area

Let

z = max L(1)
O<t<t
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where L(t) is the total load at any time 1, then

Fz(a) = P[z<a] = P[L(0)<a]P[no up-crossing of o from 0 to t]
(I1-5-1)

The first term P[L(0)<a], which equals the CDF of L{t) at o
or FL(t)(“)’ can be calculated from the results of the pre-
vious section. In order to evaluate the second term the
results of the survey about the change of occupants must be
examined. Mitchell and Woodgate(s) used a clever way to
saﬁple the period between the change of occupants by sear-
ching through the telephone directories. The results are
plotted in Fig. II-17. As shown in the figure an ekpanen—
tial function fits the data approximately®, which suggests
that the occupants changes follow a Poisson Occurance mo-
del(zs) with mean rate v. Under this assumption (and
assuming independence of the individual load values), the
up-crossings are approximately a Poisson process with ran-
dom selection(zs). Then the probability of no up-crossing
in 0 to t is:

P[no up-crossing of o from 0 to t] = e Vut (11-5-2)

* Relatively short occupancy times (0 to 2 years) may have
been missed by this data collection schemes. Also if lcad
changes are assumed to occur with same occupaent re-
arrangements as well as with occupancy changes, *he short
duration interval (0 to 2 years) will be represented.
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where v, is the average rate of up-crossings of threshold le-
vel o, The approiimation arises from the lack of strict indepen-
dence of the up-crossing event. (There can not be two in a

row for example.) The dependence is weak if the crossings

are relatively rare, i.e., if the threshold is not too low,
ignore this dependence. Eq. (II-5-2) is exact under the
Poisson occurance assumption. If the load changes do not
follow Poisson occurance, Eq. (II-5-2) still holds for high
load levels, i.e., if a is high and the ekpected number of

crossings is much less than one in 0 to t. Then
P[no up-crossing of o from 0 to t]
= 1-P[1 up-crossing]-P[more than 1 up-crossing]

If P[more than 1 up-crossing] is much less than P[1 up-

crossing], then
P[no up-crossing of a from 0 to t]

= 1-P[1 up-crossing]
On the other hand,
mean number of up-crossing = v t = 1*P[1 up-crossing]

+2*%P[2 up-crossings]+3*P[3 up-crossings]+...
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If the events are rare, then

«Q
Y i*P[i up-crossing] << P[1 up-crossing]
i=2

therefore

mean number of up-crossing # P[1 up-crossing]

and thus

P[no up-crossing of o from 0 to t] £ l1-mean
number of up-crossing
- \)at

=1l-v,t 2 e

for vt << 1
The next step is to find Vi the mean rate of up-cros-

sings. Consider an infinitesimal time interval At. Under
the Poisson process assumptions, the probabiiity that more
than two load changes occur in At is assumed zero (strictly
speaking it is a smaller order than the probability of 1

change). Therefore the probability of more than two up-

crossings is also zero:
P[n up-crossings in At] = 0 for n > 2

Vg is the (expected) rate of up-crossings and the expected

number of the up-crossing in At will therefore be:



E[number of up-crossings in At]

<

>

=t
i

a0
J n*P[n up-crossings in At]
n=0

n

P[1 up-crossing in At]

An up-crossing will happen when the load at the beginning of

At is smaller than o and larger than o after At (Fig. I1I-18).

Hence

P[1 up-crossing in At]

<

>

ct
fl

P{L(t+At) > a}{L(t) < al}]

It is useful here to anticipate a more general development
which will be discussed next, to follow the following lines
of development. Since L(t) changes value only at changes in

occupant we can write

v At =P[(there is a change of the occupant in At)N

{L(t+At)>a}NL(t) <al]
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= P[There is a change of the occupant in At]*
P[{L(t+At)3a}ﬁ{L(t)<d}|(There is a change of

occupant in At)] (I1-5-4)

Now(zs)

P[There is a change of the occupant in At] = v At
(I1-5-5)
where v = average rate of the changes of a single occupant.
Given that there is an occupant change in the time interval,
L(t+At) and L(t) are two (assumed independent) random vari-

ables with the same CDF, FL(t)‘ Therefore

P[{L(t+At) > a}ﬂ{L(t)<d} | (There is a change of occu-
pant)]

= [l-FL(t)(a)]FL(t)(a) (II-5-6)
Substituting Eq. (II-5-5) and Eq. (I1-5-6) into Eq. (II1-5-4):
vaAt = v At [1—FL(t)(a)]FL(t)(a)

Since Vg is independent of time, the mean number of oc-

curances in 0 to t reduced to simply
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t ) )
vyt =J£ VoAt = VE[1-Fp 3 ()1F ) (a) (11-5-7)

Combining Eq. (II-5-1), Eq. (II-5-2) and Eq. (II-5-7) we

obtain
FZ(G) = FL(t) (d)exp[-\)dt]
= Fp(g) (@)exp{-vt[1-Fp .y (a)1F] 4y ()} (11-5-8)
If we have interest in only the higher loads, then

FL(t')(a) 21
and

1-F,(a) 2 1—exp{-vt[1-FL(t)(d)]} & Vt{1-Fy ) ()]
(I1-5-9)

This is of the same form that Karman(lo) cbtained for higher
 loads when he derived the maximum load by assuming a fixed
number, n, of load changes; in Eq. (II-5-9) the expected

number of load changes, vt, takes the place of his n.

II-5c: Probability Distribution of the Maximum Lifetime Sus-

tained Load for Multiple Loadings

Consider again the load on a column pictured in Fig.
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I1-19, and recognize that there are time variations in the

floor loads. Let
n
F(t) = ] L;(t)
i=1

be the sum of n total loads at time t. Note the difference
in character of any Li(t) and F(t). The latter has a higher
mean rate of jumps and the relative magnitude of the fluctua-
tions to the mean load is small. (Note the vertical scale
change in Fig. II-19.) The same model will obviously also
treat different occupants on the same floor or any mixture
of number of occupants and number of floors.

Define the maximum column load as

Z, = max F(t)
0 <t <t

Following the same derivation as in the previous section:

P[Znia] = P[F(0)<a]P[no up-crossing of a from 0 to t]

and
~\)dt
P[no up-crossing of o from 0 to t] = e (I1-5-10)

We. have already demonstrated that the reason why the load

will jump from below @ to above o is due to the load changes.
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There are n different loads in this case. Each load may in
general have different probability distribution or different
occupancy change rates vy and therefore different associated

rates of up-crossing, (va)i. Let

(va)i = average rate of up-crossing of a-threshold due

to a change in the ith load (or occupant)

then
P[no up-crossing of o from 0 to t due to ith load

-Vt

changes] = e (I1-5-11)

Consider Eq. (II-5-10).

P[no up-crossing of o from 0 to t] = P{(no up-crossing
of o from 0 to t due to 1st load)U

(no up-crossing of o from 0 to t due to 2nd lecad)U

-

(no up-crossing of a from 0 to t due to nth load)]

Assume that (consistant with Poisson occurances) nc two
load changes occur at the same time and that the load changes
by different occupants are independent of each cther, then

all events in the above equation are independent. Then
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P[no up-crossing of a from 0 to t]
= P[no up-crossing of o from 0 to t due to 1st load]*

P[no up-crossing of a from 0 to t due to 2nd load]l*®

P[no up-crossing of a from 0 to t due to nth load]

- t -(v ),t -(v))_t
=e (Vo)1 e Va2 ce e(va)n

O )t s (o) e

(1I-5-12)
Comparing with Eq. (II-5-10),
Va T (va)1+(va)2+(vd)3+ e +(vd)n
n
= | (11-5-13
121 (va)i (II 13)

Again, following the same derivation as in previous

sections up to Eq. (II-5-4),

(Vd)jAt = P[There is a change of the jth occupant in At]*
P[{F(t+At)iaﬂF(t)<d}|(There is a change of the

jth occupant in At)] (TI-5-14)
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Now

P[There is a change of the jth occupant in At]=vjAt
(I1-5-15)

in which Vj is the mean rate of occupancy changes in the

jth floor (or area). And

P[{F(t+At)>aNF(t)<a}| (There is a change of the jth oc-
cupant in At)]

=j;aP[F(t+At)3a|F(t)=x]fF(t)(x)dx (11-5-16)

where fF(t)(x) is the PDF of the total 1load F{t). Substi-
tuting Eq. (II-5-15) and Eq. (II-5-16) into Eq. (II-5-14),

o
(va)jAt vjAtng[F(t+At)3aIF(t)=x]fF(t)(x)dx

It

vjAthaP[{F(t+At)—F(t)}Za-x[F(t)=x]fF(t)(x)dx

(II-5-17)

Since the jth load changes, then

n
F(t+At)-F(t) { E L, (t) | +L. (t+At)- § L.(t)
i=1 ! J i=1

it]

]

Lj(t+At)—Lj(t) (I1-5-18)
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Substituting Eq. (II-5-18) into Eq. (II-5-17),

(Vo) 58t = v;At Oap[{Lj(t+At)-Lj(t)}id-klp(t)=x]fp(t)(x)dx

{I1-5-19)

Let Wj equal the random change in load on the jth floor when

a new load replaces an old one.

Wj = Lj(t+At)-Lj(t) (I1-5-20)
Assume as before that the new load is independent of the old
one and that they have identical (gamma) probability distri-
bution. Then the distribution of Wj can be derived from ele-

mentary probability theory. The mean of W is
E[W.] =my =m -m = 0
W. L. L.
) j j j

2
Var[W.] = oy + ¢ =
L. L. L.
) j 3 3
The correlation between Wj and F(t) will be examined
next. Wj and F(t) are not strictly independent, because
they both are functions of the random variable Lj(t). But

their covariance is
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cov[W;,F(t)] = E[(Wj-mwj)(F(t)-mF(t))]
=E[WjF(t)] - mwij(t)
=E[{Lj(t+At)-Lj(t)}F(t)]
=E[Lj (t+At)F(t)] -B[Lj (t)F(1)]
n n
=E[L; (t+At) 121 L (£)1-E[L; (1) i§1 L; ()]

Ignoring, for this argument, the correlation among floor

loads

cov[Wj,F(t)] =

-
=
A\

e
i
3
b=

The correlation coefficient between Wi and F(t) is

2
cov[Wj,F(t)] "’Lj
Gyy O - :
Wj E(t) VZ GLjGF(t)

The absolute value of the correlation coefficient is down to
0.707 even if only a single floor, when GF(t) = Oy - But,
this case will be handled by the method described in Section

IT-5b rather than the method above. For more floors it will
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fall off with the rate between 1/¥n and 1/n. Therefore the
worst case we have is when n = 2 and the correlation coef-
ficient equal to 0.707/vZ = 0.5. (Note that the above argu-
ment applies only to the case where all Li's are of the same
order of magnitude. The case where one load dominates will
be discussed later). The conclusion is that Wj and F(t) are
not highly correlated, therefore they will be assumed indepen-
dent.* The conditional probability in Eq. (II-5-19) can then

be replaced by a marginal value.

H

PL{L; (t+at)-L;(t) }2a-x| F(£)=x] = P[L; (t+At)-L;(t)>a-x]

-1-FW. {a-x)
J
where F, (x) is the CDF of W..
j ) :
If n or A is large F(t) is at least approximately nor-
mal, This approximation is also checked numerically in

Appendix E and found satisfactory for practical bay sizes.
Then
1 x'“‘F-(t))z

f (x) & 1 expl- (
F(t) _ z OF (1)
cF(t)/TF

*This assumption is checked numerically against an exact
result in Appendix E for the special case when the L;(t)'s
are independent.
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where

mF(t) = mean of F(t)
GF(t) = standard deviation of F(t)

(See, for example, Eq. (II-1-19) for values of two moments

for simple nominal column loads.) Substitute into Eq. (II-5-19)

(vg) 50t = /;avjAt[l-FWj (a-x)] IGF(.,lc)/’Z'ﬁ expl %(XGZIZS))Z
dx
Since (v,); is independent of t
(vy) 5t = fot(va)jAt =f03jt[1-pwj(a-x)} m
expl - %(fg—zf(%l) ! ax (1I-5-21)

All (va)j's can be found from Eq. (II-5-21) and
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Then, combining results
an(a) = FF(t)(a)exp[-vdt]

= 1-v,t (for large threshold @)
(11-5-22)

If all loads have identical distributions and common vj's,

then

vy =V for all j

(v); = (Va)j for all i and j
hence

vt = n(vd)j

o . X-Mgp 2
=f nvt[l-Fw_(a—x)] 1 exp[-%(—a—fﬁ)—) Jdx
0 - j GF(t) T F(t)
(1I-5-23)

Next, the probability distribution of Wj will be derived.

Recall that

W. = L. -L.
j LJ(t+At) LJ(t)

and the probability distribution of Lj(t) is assumed gamma.
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Consider the case that the parameter k is integer, then

k. k-1 -Xx
. AX e
ij(t)(x) = T

The distribution of Wj is obtained by simple convolution(zs).

Several derived distribution of Wj are presented below. The
distributions are symmetrical about zero; only the results

for positive argument W or (a-x) are shown.

ij(a-x) =1- 7 e” A(a-x) for k=1
FWj(a-x) = 1—e‘*(“‘x)[% + %gx(a-x)+ %3 A% (a-x) 21
for k=3
ij(a-x) - 1-e‘A(“‘x3[% - %gg A(a-x)+53s A2 (a-x) 2
+ o A (a-x) 3 _— 2 (a-x)4 for k=5
(I1-5-24)

Note that Fw.(a-x) is a function of A(a-x) only. It is
shown in theJAppendix F that we can also use the unit
load to replace total load in the Eq. (II-5-21) and Eq.
(I1-5-22).

There is no guarantee, of course, that the distribution

of Lj(t) will have an integer k. In most cases they will
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not. There is apparently no closed form solution for Fw_(a-x)
when k is not integer. Two approaches can solve this prob-
lem; first, solve Eq. (II-5-21) numerically or second; solve
Eq. (II-5-21) twice with two integer k and then interpolate
the results to the desired k value. e.g., i(kz.é) =
0.4*x(k3)+0.6*x(k2) where x(kz,a) is the load due to k = 2.6,
-etc.

The second approach is much preferred because of its
simplicity and it will be used in this work. 1Its accuracy
will be examined next. Assume an arbitrary case of column
load with 150 sq. ft. area and a unit influence surface.

The maximum lifetime sustained load corresponding to a pro-
bability 0.99 of not being exceeded was calculated from Eq.
(I1-5-22) for different integer k values. (Note that the
values of A are so chosen that they all have the same mean.)
The results are plotted in Fig. II-20. The figures show

that the results for any two adjacent k values are so close
that simple interpolation will have a high accuracy. The
only exception is when k lies between 1 and 2. The gap is
larger for smaller n and smaller k. However the interpola-
tion still can be used because the lcad is higher for smaller
k and the error will remain small in percentage basis. Also
k is greater than 2 when the area is greater than 150 £12, (3

Most cases that we are interested in will have k greater than
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2. Another case with a more typical area, 624 ft.z, was

examined also. The results (Fig. II-21) are the same as
the previous one.

A closed form approximation for Vo and hence Fz(d) is
derived in Appendix G. The range of its application is rather
limited, therefore it will not be discussed here.

The independence between Wj and F(t) will be re-examined.

Recall Eq. (II-5-19):

(Va)jAt = VjAtjgaP[{Lj(t+At)-Lj(t)}3a-x|F(t)=x]fF(t)(x)dx

(II-5-19)
If all Lj(t)'s are of the same order of magnitude (like the
column axial load where Lj(t) is the contribution due to the
jth floor) Wj = [Lj(t+At)-Lj(t)] and F(t) are approximately
independent. This was discussed before. However in a situa-

tion where one load component, say L.(t), dominates, i.e.,

2 = 2
°Li(t) OF(t)
then the correlation coefficient between Wj and F(t) will be
as high as 0.7 and will not fall off with n. The indepen-
dent assumption is not very appropriate. Let us examine

the correlation between Li(t) and F(t). Since
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F(t) = -

j L; (£)+L; (£) = (SL)_1+L; (t)
J

M e~

=1
i

The correlation coefficient between F(t) and Lj(t) will be

°Li(t)*°(SL)n_1,Li(t)GLi(t)"_(.SL)n_1

°F(t)°Li(t)

PE(t),L; (t)

where p(SL)n-l,Li(t) is the correlation coefficient between

(SL)n_1 and Li(t).
p(SL)n-l,Li(t) will be negative. (The negative correlation

There is no reason to believe that

coefficient under the linearity assumption means that the

larger the Li(t), the smaller the (SL)n_1 and vice versa.)

Assume that p(SL)n-l,Li(t) is positive, then

2
9L, (1)
PF(t),L; (t) = °F(t)°L; () )

This shows that F(t) and Li(t) are almost perfectly correla-

ted. Assume that the above relation is true, i.e., F(t) and

Li(t) are perfectly correlated, then
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P{L; (t+4)-L; (t)}>0-x|F(t)=x] = P[L, (t+At)>q]
=1-F :

Substitute the above equation into Eq. (II-5-19):

a .
(vg) 30t = vyt [1-F (p) ()] p) (x)dx

viAt[l—FLi(t)(a)]FF(t)(d) (I11-5-25)

Thus (va)i corresponding to the dominating load Li(t) can
be evaluated from Eq. (II-5-25). The load other than Lj(t)
will be treated the same as before. A numerical example

will be used to check the above assumptions in Chapter IV.

ITI-5d: Probability Distribution of the Maximum LIfetime

Sustained Load Effect

“Let G(A) be the total load effect of any kind from area

A, then

VA
G(A) = ./gfl(x,y)w(x,y)dxdy (II-5-26)
0
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where w(x,y) is defined in Section II-2 and I(x,y) is the
coordinate of the influence surface at point (k,y). Its

mean and variance are (see Appendix A):

E[G(A)]

A
ff et yvix,y)1axay
0

VK
m ffI(x,y)dxdy
0

= m‘VI (II-5-27)

where V; 1is the volume enclosed by the influence surface.

/K
varfe@1 = ffff 16,1 vy coviutx,y) wixp,yy)])
0

dxdxldydy1 (II-5-28)

This last equation reduces to Rosenblurth's(7) if the w(x,y)
process is assumed to be "white noise", i.e., lacking spa-
tial correlation. The equation is identical to that con-

sidered by Fader(g).
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Recall that in Section II-5b and Section II-5c, where
we derive the maximum lifetime sustained load, there was no
restriction on the total load, Li(t). If we replace it with
total load effect, Gi(t), we will end in the same result as

Eq. (II-5-7) and Eq. (1I-5-21). That is, for one occupant,
vdt = vt[l—FG(t)(a)]FG(t)(a) (11-5-29)

and for several occupants

o
1
(v).t = v:t[1-F, (a-x)] ——r————
o3 j:)J "3 op (1) VIT
1 (¥ Mpce) |\ 2
exp|- —r ) ]dx (I11-5-30)
p A ( Ok (1) )
where
wj = Gj(t+At)—Gj(t)
n
F(t) = Z G; (t)
1
and
n
vt=7 (v).t (IT-5-31)
j %

This is the equation needed to evaluate the probability
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distribution of the maximum lifetime sustained load effect,
Eq. (II-5-22). If we make the same assumption that the
probability distribution of G, (t) is gamma, Eq. (II-5-24)
can be used in the evaluation of Eq. (II-5-30). This assump-
tion wili be adopted in the subsequent chapters.

After the maximum load effect is found for a preécribed
probability level, the corresponding EUDL, that will produce
the same load effect when it is put on the structure, is
equal to the load effect divided by VI’ the volume of
influence surface.

The above model can be used in a more general way. For
example in a column load case (Fig. II-22) we can assume that
each floor has different tenants. The load changes on each
floor will be independent of each other. We can also assume
that the same tenant occupies both floor A and B. Then the
load on those two floors will change simultaneously. Under
this circumstance we can combine the load on floors A and B
as a single load and proceed as before to find the maximum
lifetime sustained load. Any other combination can be
treated in the same way. Thus the model can handle cases
ranging from a multiple number of tenants on each of a number

of floors through a single occupier of all floors.
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CHAPTER II1I

Extraordinary (Transient) Load Model

III-0: Introduction

The general characteristics of ektraordinary transient
loads were discussed in Chapter 1. We seek in this section
the effect of a single event. The load model proposed below
can be best thought of by considering the load caused by
crowds of people but it is not limited to this source. Any
other extraordinary load that has the same characteristics
can be represented by this model also. Lacking other infor-
mation, it will be assumed hére to represent all sources of
transient loads, including re-modeling loads.

There has been virtually no stochastic modeling of

(14)

these transient loads in the literature. (See Heaney and

Karman(lo).) The model proposed here assumes random oc-
curances in time of events which are characterized in space
by randomly located load "cells". This latter aspect of
the model is somewhat similar to the sustained load models
proposed by Corotis(lz) and independently by Hasofercls).
This chapter will develop the model and its analysis.
First the random load effect associated with a particular

event will be modeled and analyzed. Then, the random oc-

curance in time of these events will be considered, and the
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behavior of their maximum effect will be sought. The com-
bination of this extraordinary load with the ordinary (sus-

tained) load will be treated in Chapter IV,
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ITI-1: Load Model for a Particular Event

A distinguishing characteristic of the behavior of a
group of people that get together is that they tend to gather
in small groups. The number of groups (or load cells) depends
upon the area of the floor and the number of people in the
building. Each cell contains an uncertain number of per-
sons which may vary from cell to cell. Therefore the first
assumption is that the loads are grouped into N load cells
and each cell contains R items (Fig. III-1). Both N and R
are random numbers.

Consider a single load cell first. Let

Sr = Q1+Q2+ cee *QL (I11-1-1)
where

Qi = weight of the ith item, a random variable

Sr = weight of the sum of r items

Assuming that the weights of all items are independent and
identically distributed, the probability distribution of S,

can be derived by convolution integration. Let

S = the weight of the sum of R items where R

is a random variable.
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Its cumulative distribution will be:
P[Sss] = Fg(s) = ) P[Sr:s|R=r]P[R=r] (IT1-1-2)
' T

For situations other than such crowds (e.g. remodeling loads)
a cell and its weight S may represent a particular heavy item
or a cluster of items.

The area occupied by a load cell is assumed to be small
as compared to the whole contributing area. Therefore the
change in the value of the influence surface over the area
of the cell will be small. This difference will be neglected,
i.e., the influence surface will be assumed uniform ovér a

load cell. The load effect, P, due to a locad cell is then
P = S*I (I11-1-3)

where I is the value of the influence surface 2t the center

of the load cell.

P[P<p] = Fp(p) = P[S*I<p]

S
P g= .
"/0 P[I< £ |S=s]fg(s)ds

If, at the instant of maximum load effect, the loca-

tion of a load cell is assumed to be equally likely to occur
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at any point over the whole area under consideration, then

I, its influence value is a random variable and

area with I< g
— (I11-1-4)

E. = -
PlI< 3 s s] total area
Let

Hm = P1+P2+...+Pm (IT1I-1-5)
where Hm is the total load effect of m load cells. Its pro-
bability distribution can be derived in the same way as Sr

if all P;'s are assumed independent. Let

H = total load effect due to M load cells

where M is a random number

Then the CDF of H is

Fyy(h) = P[H<h] = } P[HMf_hIM=mV]P[M=m]
. i .

CDF of the extraordirary load effect

i

Theoretically the probability distribution of the
extraordinary load effect H can be derived following the

above steps. However there are some difficulties. First
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the probability distributions of Q, R and M are not known;
second no closed form solution can be obtained because some
of the integrations may not be tractable analytically. There
are two approaches that can be employed to resolve this
problem; one is making some particular distribution assump-
tions so that all the analytical difficulties can be avoided
or solved by numerical integration; the other is an approxi-
mate method. The first approach is not preferred because our
knowledgéfaboua'the extraordinary load is so limited that any
sophisticated assumption is not justified. Therefore the
second approach will be used and is described below;

The only distribution assumption required ultimately is
the shape of the distribution of H. It will be demonstrated
in the next section by a numérical example that the probability
distributiqn of P is "exponential-like" and that the distri-
bution of H is close to gamma. Therefore H is assumed to
be gamma distributed. Only its parameters are now required.

Assuming independence of R and the Q;, and of S and I,

the mean and variance of S and P areczs):
E[S] = QOR
_ 2 2
Var[S] = mROQ.+ onR
E[P] = memy
Var[P] = mgc%+m%og+o§cé
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Assuming independence of M and the P;, the equation of H has
the same form as that of S and therefore the formulas for

the mean and the variance are the same also:
E[H] = mpmM
Var([H] = myop + mgﬁﬁ

Once the mean and the variance are known; the gamma distri-
bution of H is completely defined.

In the above derivation only the means and the variances
of Q, R and M are used. It is much easier to make a rea-
sonable assumptions or estimations about their two moments

than about the complete distributions.
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I1I1-2: Maximum Extraordinary Load -

The probability distribution of a single occurance of
the eXtraordinary load is discussed in the previous section,
Next we want to find the probability distribution of the
maximum extraordinary load. There is as yet no data about
the occurances in time of the extraordinary load available.
Assume that they follow a Poisson process with mean rate
Vs then the CDF of the maximum extraordinary load in the

time interval 0 to t 15(25):
FLzIt(x) = exp[—ve(l—FH(x)t] (I11-2-1)

where L, = the maximum extraordinary load during the period
of 0 to t.

If we set t equal to the lifetime of the building, Eq.
(III-2-1) gives the CDF of the maximum lifetime eitraordinary
load. |
Because of the short duration and low mean arrival rate
of extraordinary events, if there is more than one occupant
involved, it is unlikely that they will have transient extra-
ordinary loads at the same time. (Neglecting this possibility
is exact if these loads are assumed to be instantaneous.)
Assume that the occurances of the extraordinary loads on the

n, different occupants are mutually independent with average
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rates of occurance, Ve s for i =v1,2,,..n0, then

i
P[maximum extraordinary load effect from 0 to

=P[ (maximum extraordinary load effect due to

0 to t < x)U

(maximum extraordinary load effect due to

0 to t < x)y

.
.

(maximum extraordinary load effect due to

from 0 to t < x)]

=P{maximum extraordinary load effect due to

0 to t < x]*

P[maximum extraordinary load effect due to

0 to t < x]*

P[maximum extraordinary load effect due to

.0 to t i‘x]

Substitute Eq. (III-2-1) into above equation:
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t < x]

occupant 1 from

occupant 2 from

occupant ng,

occupant 1 from

occupant 2 from

occupant n, from

(ITI-2-2)



no
FtOtal(x) = F(llt(x)

I .
= 1 [exp{-v, (1-F{M) (x))t}]
1 1

3 (i) 3
= exp[-t ] Ve, (1-F5 7 (x))] (11-2-3)
1 i
where
total _

F (x) = CDF of the (total) L, from 0 to t

L[t 2

F£11t = CDF of L2 from 0 to t due to occupant i

2

alone

The term "occupant" can be broadly interpreted here.
It can represent the personnel of an individual room or a
set of rooms (in which case the mean number of load cells,
My » would be relatively small). On the other hand, each
"occupant'" might represent a firm occupying several floors
and the events their individual open house. Finally the
"occupant" might be associated with a building-wide event
(opening day, passing parades, etc.); in which mM; the mean
number of load cells, should perhaps be associated with the

total (public) area of the building. Finally it might be
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important to consider the possibility that all of the various
kinds of events can occur (some might be more important for
small members and some for larger). Then assuming indepen-
dence, the CDF, ngTil, of each individual kind of occupant
can be found and their product (see the derivation of Eq.
(ITI-2-3)) is the CDF for all types of events. A general

equation of the CDF of the maximum load due to q different

independent events is:

F, (x) = F, (x)F, (x)...F, (x)
max 1 max 2 max g max
(I11-2-4)
where Fz (x) is the CDF of the maximum load Zi’ (Zi

i max
itself may be a combination of different events like Eq.

(I11-2-3).)

It is assumed above that the eXtraordinary lcad follows
Poisson occurance. This is not appropriate for people load
from seasonal parties, e.g., a Christmas party or a birth-
day party where the event will take place at a fixed interval
of time (one year). Under this circumstance the probability
distribution of L, will be:

v _ t
FLZIt(x) = [1-F4(x)] € (111-2-5)
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Eq. (III-2-5) can be combined with other types of load
(Eq. (III-2-1)) as part of Eq. (III-2-4).
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III-3: Example: The Extraordinary Load for a Column

The probability distribution of the extraordinary axial
load will be determined here to demonstrate the model and to
show that the results from the approximate approach are about
the same as those from exact numerical integration. Assume
that a column with a single floor is considered (Fig. III-1).
The exact integration will be discussed in Section III-3a and

the approximate approach will be discussed in Section III-3b.

III-3a: Exact Solution

Assume that all Q's (the weight of items) have the same
normal distribution and that they are independent of each

other with:

145 1bs

30 1bs

°Q

Then Sr is also normal.

S, = N(r*145, /T*30)

The discrete distribution of R is assumed as shown in Fig.

II1-2. The CDF of S can be numerically integrated according
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to Eq. (III-1-2). The results are shown in Fig. III-3,

The influence surface for a column axial load is shown
in Fig. II-10. The results of the numerical integration from
Eq. (ITI-1-4) are shown in Fig. III-4. Assume also that the
number of load cells has a Poisson distribution and that the

expected number is a function of the area:

)\m - )\M

M e
fy(m) = P[M=m] = =

E[M] = A = JT—-LIM for A > 200 (I11-3-1)

The last expression is simply unsubstantiated judgement, but
it is designed to reflect the fact that the number of people
per square foot will be (on the average) smaller during an
extraordinary event in a larger area. The particular numbers
were chosen to give an extraordinary event an expected total
load per square foot of about 7.25 psf at A=200 and about
3.74 psf at A = 4000,

Consider two cases with different areas, 1208 ftz and
604 ftz. The numerical integration results for the CDF of
P and H are plotted in Fig. III-5 and Fig. III-6. The pro-

bability distribution of P is "exponential-like' and the

probability distribution of H is very close to gamma. The
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former conclusion is apparently dominated by the character of
the distribution of I which is in turn related to the nature
of the influence surface. It is anticipated that most other
surfaces, which are typically equally or more peaked than
that of Fig. II-10, will give a similar conclusion., That V

has a gamma distribution would follow directly from the assump-

M .

tion that the Pi's in H = Z Pi have (common) exponential
1

distributions, if M were not random but deterministic(zs).

The assumed randomness of M makes the gamma distribution only

an approximation.
ITI-3b: Approximate Solution

For the same assumptions as above, the mean and the vari-

ance of the weight of a load cell are:

E[S] = QOR = 725 1bs.

2

2
RUQ 46550 (1bs)

Var[S] = m + méoé

The mean and the variance of I can be found analytically or

numerically and tabulated for various load effects and aspect

ratios a/b.
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[+

1 apgb
m; = oy f f I(x,y)dxdy (I11-3-2)
0Y0

-
I
g‘IH

a pb 2 2
f f I (x,y)dxdy~m1 {(111-3-3)
0 Yo

For this example of the column with the influence surface of

Fig. II-10:

my 0.254

0.0745

2
°1
for any area A and any aspect ratio. Then

E[P] = mgmy =

1}

Z = 46270 (1bs)?

2 w2 2 2, 2
Var([P] = Mg Of+M70c+0g0

From Eq. (III-3-1) for A = 604 ft?
E[M] = Ay = 6.99

Var[M] = A\, = 6.99

M
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and

_ 2, 2.2 _
Var[H] = My Op*MpTy = 560,000

Since the distribution of H is assumed gamma, its parameters

can be estimated as:

n
kH = 'o’—'z— = 2.96
H
k
= _H _
AH = ﬁa = 0.0023

The results are plotted in Fig. III-7, which is almost iden-
tical to the curve in Fig. III-6. It is therefore concluded
that the assumption of the gamma distribution of H is appro-
priate. The results for A = 1208 are also plotted in Fig.
III-7. Clearly more examples should be considered to con-

firm this assumption or to determine the range of its validity.
On the other hand, given the difficulty of obtaining informa-
tion on the subject of transient live loads, it may be just

as appropriate simply to assume H is gamma distributed as

to make and justify the intermediate distribution assumptions

on Q, R and M.
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CHAPTER IV

Load Combinations, Design Load and Performance Load

IV-0: Introduction

Due to the complexity of the live load it has been de-
composed into several components (sustained, normal personnel
and extraordinary load). Each component was discussed in a
previous chapter. It is the purpose of this chapter to develop
logical ways to combine the above load components for various
design conditions. Several load combinations will be con-
sidered and their probability distributions determined.
Throughout this chapter reference will be made to "loads"
but one can equally well read '"load effect"; because they
have been assumed in previous chapters to follow the same

probability laws (with different parameters).
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IV-1: Load Combination for the Design Load

Recall that in Chapter.l we discussed three different
kinds of loads: extraordinary loads, sustained loads and
normal personnel loads (Fig. I-1). The combination o¢f the
above loads is shown in Fig. IV-1. For design with respect
to safety, it is the maximum of this process that represents
the extreme combined load. The direct determination of the
distribution of the maximum of the sum of two random processes
is a difficult problem. Here we shall assume that this maxi-
mum of the total coincides with one or the other of two ex-

treme events defined below and shown in Fig. IV-1.

i = J-1 -
i) Lt L1+L2+L3 (Iv-1-1)
where

Ly = the total load

L1 = the maximum lifetime sustained load

L2 = the maximum extraordinary load during the

period of 1,
L3 = the arbitrary-point-in-time people load.
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'ii) L, = L, + L, + L (IV-1-2)

where

L, and L3 are defined above.

L4 = the maximum extraordinary load during the
lifetime of the building
L = the arbitrary-point-in-time sustained lcad

There is a high probability that one or the other of the
above combinations will include the maximum combined load
during the lifetime of the building, but this may not always
be true. For some load histories a moderate (or less than
maximum) stationary load plus a moderate (or less than
maximum) extraordinary load will be higher than either of
the above load combinations. The probability of such an
event causing the maximum combined load will be ignored.

The probability distribution of each of these potential
maximum combined loads will be derived below. Several alter-
native applications are possible. First, consistant with
modern ''load-factor" and '"limit-state'" design philosophies,
the '"design loads'" (i.e., the loads associated with selected
high probabilities of not being exceeded) for each combina-

tion can be computed. These are then treated as two of the
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seferal load combinations that are considered in deSign:
Second, one could uée each of these distributions for more
complex structural reliability studies involving uncertain
resistances, etc. Third, one can estimate the CDF of the
maximum combined load by assuming it is the product of the
CDF's of each of the two potential maxima(zs) (i.e.; by
assuming one or the other causes the maximum combined load
and by assuming the two loads are independent.). With this
probability distribution of the maximum (combined) 1live load,
one can either set a single '"design load" or work with the
probability distribution in conjunction with more complek
reliability analysis. In this work emphasis will be on the
separate treatment of the two loads and their individual

design values.
IV-1la: Combination 1: L1+L2+L3

The probability distribution of L, is derived in pre-

vious chapter.
FLzlt(x) = exp[-v (1-Fy(x))t]

The probability distribution of T, the duration of the oc-

cupant in a building, is exponential with parameter v as
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discussed in Section II-5. L2 is the maximum extraordinary
load during the random duration of the maximum sustained load.

(Fig. IV-1). 1Its probability distribution is:

FLZ(x) =‘ngL2]t(x)fT(t)dt

./;wexp[-ve(l-FH(x))t]v e Vtat

- v
T VY, (T-F (X)) (1V-1-3)

If there is more than one occupant involved, Eq. (III-2-2)

should be used instead of Eq. (III-2-1). Then

Fp (x) = - v (IV-1-4)
2 0 .
ve I v (1-FED G
1 1

The fixed interval event which led to Eq. (III-2-4) will
not be considered here because generally a party is held at
a particular room where either there are very few items of
furniture and equipment or where the furniture has been re-
moved. It is not clear at this time what the interaction

will be and what is the influence on the combination of loads.
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The probability distribution of L1 is found in Section

I1-5. L, is assumed as a constant, 23, in Section II-4,

3
The probability distribution of the total load, Lt’ can be

evaluated by a simple straight-forward (but numerical) con-

volution integration:

2-2

3 _
1
E. (1) =./' protal o v 9.)f, (x)dx
L, 0 L, 3%,

2-23
= Jf Fy (z-x-zs)f£°talcx)dx (IV-1-5)
0 1 2

IV-1b: Combination 2: L3+L4+L5

The probability distribution of L, is given by Eq.
(III-2-1) or Eq. (III-2-2) where t equals the lifetime of
the building. Lg is discussed in Section II-4. The com-
bined load can be obtained by the same way as above.

It should be pointed out that the model can be used
to treat a variety of mixtures of conditions. As discussed
in Section II-5d the maximum sustained load (or load effects)
model can represent a variety of different assumptions about

the nature of occupancy (or re-modeling) changes. Similarly,
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as discussed in Section III-2, the maximum extraordinary
load model can represent a variety of assumptions about the
types and combinations of types of "occupants" associated
with the events causing extraordinary loads. There is no
reason why the '"occupants” need be the same in the analyses
of the two loads. For example, for a single owner-user
building, the sustained loads might change everywhere vir-
tually simultaneously whereas the extraordinary loads might
be considered to be those associated with many independent
local events associated with individual rooms within the
building. The model has all these capabilities. How they
should be excercised for any particular building or for a

. general code study is a difficult question requiring further

study.
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IV-2: Load Combination for Performance Load

The performance load, Lp, is simply the sum of L5 and
L3, the arbitrary-point-in-time sustained load plus the
arbitrary-point-in-time people load respectively; Since the
second load is assumed constant, 23 (Section II-4), the
probability distribution of the performance load will be

virtually the same as the first load (see Section II-4).

F, (x) = F, (x-2%,)
Lp X Lg 3
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IV-3: Loading Pattern

No specific loading pattern is assumed in the above
derivations. All loadings are modeled as close to reality as
possible. Ly and L. are the sustained loads which exist on
the building all the time to a greater or lesser extent. Con-
trary to the conventional, conservative checkerboard loading
pattern we load Ll and L5 on all floors and bays. Since wé
integrate over the whole distribution of the load, we have
considered all possible combinations of low and high values
already, i.e., the distribution of L, represents the sum of
different combinations each weighted by its joint probability.
Nothing artificial has entered into this scheme. The extra-
ordinary loads are modeled in the same way, but it results
that they will contribute to the distribution of the load
effect Lt only when they occur on its positive influence

contribution areas. Examine Eq. (III-2-2). For positive x
P[maximum extraordinary load due to occupant i<x]} =1
if the ith occupant is located in the negative influence area

because it can never produce a load effect greater than zerc.

This conclusion is in essence saying that we load the extra-

ordinary load in checkerboard pattern (or; in general, on
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the positive influence portions of the influence surface).

We come to this conclusion through the model itself and not
from the reasoning of 'conservatism'. For example; an
influence line for the mid-span moment is shown in Fig. IV—Z;
Spans 1, 3 and 5 have positive contribution and spans 2 and
4 have negative contribution. The sustained load is applied
on all spans. Though the mean of the load effect will be
smaller as compared to the checkerboard loading pattefn, the
variance will be larger because all spans contribute posi-
tive variance. Actually it is not immediately clear which
approach is more conservative when we compare the performance
load, say at 99%. Span 2 and 4 contribute not only to the

variance but also to the v, the average rate of up-crossing

a?
of o threshold. The event that the total load effect changes
from below o to above o happens in two different ways: ..

the positive load effect changes from a small value to a large
one or the negative load effect changes from a large value

to a small one. Therefore even though the load effect itself
is negative, it will effectively contribute to the maximum
lifetime sustained load.

The extraordinary load is applied to all spans also,

but spans 2 and 4 contribute nothing to the maximum extras
ordinary load (i.e., they contribute nothing to the proba-

bility of exceeding a given design load). The results will

104



be the same as if we only load spans 1, 3, and 5. This is
the same as if we used the checkerboard loading pattern for

extraordinary loads.
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4: Design Load and Performance Load

The EUDL for different areas and different floors will
be evaluated in this section for different load effects.
Under the present code formats this is the design (or per-
formance) load that should be specified for a comsistent
probability of not being exceeded. The values of the load
that will be evaluated in the following sections are the
99% load which implies that there are 1% probability of
being exceeded in the lifetime* of the building.

In order to have numerical results for the design load
and the performance load we need numerical estimates of all
parameters. The values obtained in Section II-2 will be used
for sustained loads and the values estimated in Section III-3
will be applied to extraordinary load. We also estimate that
v, the expected number of the occupant change, is %
changes/year and vt equals 8, the total changes during the
lifetime of the building. The value of Vs the average rate
of occurance of the extraordinary load, is set arbitrarily
to 1. There are many parameters involved (e.g. ve; Q; R and
M), and the effects of the parameter are not independent of

each other, because there is a continuous spectrum of "unusual"

b
The lifetime is assumed 64 years. Its sentivity will be
examined.
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events. For example, My the expected number of load cells,
will be different (smaller) if we set v, = 1 than if we set
ve = 0.1 (occurances/year). We can expect that there are
fewer load cells associated with the event which happened; on
the average, once a,year than that associated with the-event
which happened, on the average,+once in ten years. Therefore we
just set the value of one parameter, and estimate the others.
Thus, here, extraordinary loads are by definition those which
occur once a year on the average.

A sensitivity analysis will be carried out in the next

chapter to identify the important parameters and to study the

effect of its changes.
IV-4a: EUDL for Axial Load

The EUDL's foi two design combinations and performance
column load are evaluated. Here, each floor is assumed to
be occupied by a different occupant and therefore the change
of occupancy on any floor is independent to that of other
floors. The extraordinary load is also assumed to take place
on each floor independently. The results are plotted in
Fig. IV-3, Fig. IV-4, and Fig. IV-5. Since the influence
surface for column axial load is assumed independent of the

building frames, the results in those figures is suitable
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for any frame.

The 99% maximum lifetime load is shown in

Fig. IV-6 and the design ioad of different probabilities is

plotted in Fig. IV-7.

IV-4b: EUDL for Beam Moment

The influence line for the moment at mid-span RS (Fig.

IT-11) was comstructed by STRUDL II. The joint rotations of

the nine most influential spans are tabulated in Table IV-1

Table IV-1

Joint Rotation

at Mid-span RS

for the Influence Line

Joint

Rotation

I T T - B V> B~ - B o TR o B N O

»

0.00183
-0.01003
0.01002
-0.00186
-0.00419
0.0495
-0.0495
0.00409
0.00126
-0.00831
0.00831

-0.00127
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(The joint displacements are of small order and neglected).
The means and the variances of the load effect are tabulated
in Table IV-2, It is apparent that the contribution from span
RS dominates. Let us check the assumption made in Section
II-5c¢ that F(t) and Lj(t) are almost perfectly correlated

for this case. Since

2}
F(t) = g L (t) = L;(8) + Li(t) = (SL) 4+L;(¢)

s S ]

i=1
i7]

Var[F(t)] = Var[(SL)n_1]+Var[Lj(t)+

*20(s1) Lj(t)U(SL)n_1°Lj(t)

Therefore n-1

Var[F(t)]-Var[(SL)n_l]-Var[Lj(t)]

0 - =0.555
(SL) ;1515 (1) | 2"(SL)n_l"Lj(t)

Var[L, (t)]+P(SL) . _-L; (£)9(sSL)__,L.(t)
- j n-17j n-1 7j- 7.
0 = =0.993
F(t),Lj(t) GF(t)ng(t)

Its correlation coefficient is as high as .993 so the as-

sumption made before seems justified.

The occupancy pattern is assumed different from that



Table IV-2 Means and Variances of the Moment at

Mid-span RS due to Loads on Other Spans

Span Mean Variance (105) Total Variance (10°)
QR -713.3 1.292 E 1.292
ST -711.9 1.288 : 2.802
KL . -266.2 0.173 3.142
JK : 157.4 0.062 3.488
IM 157.7 0.062 3.846
YZ -220.6 0.119 4,241
XYy 127.0 0.041 4,571
Za 127.2 0.041 _ 4.909
RS 7649.0 164.9 201.3
£6307.0
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of the column load. Here, each single bay is assumed to be
occupied by a different tenant. The occupancy change and the
ektraordinary load from any bay are assumed independent of
each other. The 99% design load for combinations 1 and 2

are calculated to be 70 psf and 61 psf respectly. The 99%
performance load is 32 psf.

The procedures to find the design and the performance
load are the same for the moment as for the column axial load;
but there are two additional problems. First, the influence
lines for moments depend upon the relative stiffness of the
structural frame. We can not possibly make an exhaustive
examination of all different frames. Second, the EUDL depends
upon the assigned loading pattern. This will be discussed
later.

Since the moment is dominated by span RS, it will be
helpful to examine the change of the design locad etc. due to
the change of the influence line which is caused by the
change of the frame stiffness. Three different influence
lines on a single span were examined (See Fig. IV-8). Beam
A shows exactly the same influence line as that from the
whole frame. Beam B has a more rigid end while Beam C a
more flexible end. It is belived that in a real frame the
influence line for span RS will lie between the above two.
Means, variances, design loads and performance loads for

the above three beams are calculated and tabulated in Table
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IV-3. The results for different beams are surprisingly close
to each other. Results from different areas are also given
in Table IV-3. The same conclusion still holds,'i.e.; the
results are very close to each other for different end condi-
tions.

Next, compare two results; one is calculated by consi-
dering the whole frame, the other by considering only the
dominating span. In the first case, we considered nine bays
and each bay had its own tenant and extraordinary load. In
the second case only one bay and one tenant was involved.

The EUDL's for the combination 1 of the design load are 70
psf and 57 psf respectively. The difference between the two
EUDL design load is due partly to the fact that we use dif-
ferent loading patterns for the two cases. In the first
case we load all nine spans uniformly with 70 psf; it

will produce the moment at mid-span of RS equal

70%6307/11.8 = 37400 1P~ ft

(Note that 6307 (sum of the mean from 9 spans) is the moment
produced by a uniform 11.8 psf load (mean sustained load).)
In the second case we only load span RS with 57 psf which
will produce moment at mid-span equal

57%7649/11.8 = 370001P £t
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Table IV-3 EUDL for the Moment at Mid-span due to Different End Rotations

2 =15 A = 900
' . 7. ] c.o. Design Load (EUDL Performance
Beam| Mean Variance(10') o
o ' : (% Combination 1 | Combination 2 Load (EUDL)
A 7649.3 1.649 53 57 53 31
B 6330. 1.176 54 59 54 31.5
C 8987. 2,215 52. 56 52 31
% = 10 A = 400
A 2269. 0.2195 65. 80 77 36.5
B 1875. 0.1576 66. 83 80 37.5
C 2662, 0.2924 64. 78 74 36
2 = 20 A = 1600
A 18152 7.406 47, 48 43 28.5
B 15005 5.222 48. 49 44 29.0
C 21303 | 9.993 47 47 42 28.5




After translating from EUDL to the load effect; we find that
two different considerations give almost the same results;
Therefore we can draw the conclusion that in order to find the
design load and the performance load for the mid-span moment,
only the dominating span need be considered. The corresponding
EUDL will depend upon the assumed loading pattern.

As discussed in the previous paragraph the fixed end beam
(Beam B in Fig. IV-8) will produce about the same design load
etc. as the other two beams. Since Beam B gives about the
same results as the whole frame, we can conclude that the
design load and the performance load for the mid-span moment
of any beam in a structural frame is approximately the same
as that of a fixed end beam with the same span and area.

An influence line is also constructed for the mid-span
moment on the exterior span TU(Fig. II-11). Only six spans
are considered in this case and the results are tabulated in
Table IV-4. The design loads are 67 psf and 58 psf for com-
bination 1 and 2 respectively. The performance load is 31

psf. The load effect produced by 67 psf is

67%6774/11.8 = 384001P ft

which is about the same as before.
In all three cases discussed above, the interior span,

the exterior span and a single span fixed end beam, we got

114



Table IV-4 Means and Variances of the Moment at

Mid-span TU due to Loads on Other Spans

Span Mean Variance (105). Total Variance (109)
TU 7816.0 [175.2 | 175.2
ST -725.7 | 1.334 | 179.0
MN -339.9 0.283 184.7
LM 167.9 0.071 | 185.6
Za 132.7 | 0.044 186.4
ab .-276.6 | 0.187 | 191.2
26774.0i'
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the same load effect (mid-span moment) for design, but

its EUDL is different due to the loading pattern we chose;
i.e., apply the uniform load to all spans or to one span.

If we define a different loading pattern in which case we
only apply the uniform load to the beam in consideration,
then the EUDL will be a function of the span length only

and independent of the frame. Even though this is not the
traditionally used loading pattern, yet it has the advantage
that the EUDL derived from it is independent of the location
of the beam. Other loading patterns such as checkerboard or
uniform pattern will produce different EUDL for interior

span than exterior span. The design load and the performance
load under the specified load pattern is given in Fig. IV-9
for different areas.

For negative moment at the end of the beam, the influence
from an adjacent span becomes important. Following the con-
clusion from previous paragraph we can use a two-span
fixed-end, continuous beam (Fig. IV-10) to find the design
load and the performance load for the negative moment. Results

for different areas are plotted in Fig. IV-11.

IV-4¢c: EUDL for Shear in Beams

The design load, the performance load and the total
load effect for shear are computed for four different loca-

tions on a beam (Fig. IV-12). The results are tabulated in

116



Table V-5. As can be expected, the mean load effect decreases
to zero as the location moves closer to mid-span. The cor-
responding c.o.v. and EUDL increase. When the mean load
effect becomes zero, both c.o.v. and EUDL approach infinity.
The total load effect to be désigned for, however, is
decreasing with the mean load effect; it does not approach
zero, of course, because the variance of the load effect is
not zero. The assumed loading pattern, i.e. the entire span
loaded uniformly, is apparently not suitable for this case
because the EUDL will approach infinity. A different loading
pattern has to be developed. (It may not be in EUDL form.)
Since the total design load effect can be calculated, the
artificial EUDL can easily be obtained once the loading

pattern is decided upon.
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Table IV-5 Design Load and Performance Load for Shear
at Different Locations on a Beam

81T

Mean Variance | c.o.v.|Design Load EUDL (Total Load | performance Load
(10%) (3) Effect) | pyDL (Total Load
; o Combination 1| Combination 2 Effect)
Beam A| 0 | 1.52 © w w | w
(2295 1b.) (2070 1b.) (900 1b.)
Beam 4.11 78 psf 75 psf 38 psf
(6510 1b.) (6270 1b.) (3180 1b.)
Beam 5.48 80 psf 66 psf 35.5
(7350 1b.) (6930 1b.) (3520 1b.)
Beam 18.4 56 pst 52 pst 31.5 psf
(12600 1b.) (11700 1b.) (7090 1b.)




CHAPTER V

Discussion and Applications

V-0: Introduction

Due to the lack of data many parameters in previous
chapters were estimated using the incomplete information
available or by judgement. Their sensitivity to the final
results is studied in Section V-1. The live load reduction
factor is discussed in Section V-2. In many probabilistic
code formats(l) the analysis requires the mean and the
variance of the live load, which are studied in Section V-3.
In Section V-4 the load concentration factor, as defined by
Mitchell and Woodgatecs) are evaluated as a check on the
model. Finally the relation between coefficient of varia-
tion of the sustained load and the EUDL is discussed in

Section V-5.
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V-1: Sensitivity Analysis

Different parameters are analyzed below:

(a) d: the constant in the correlation equation (Eq.

I11-1-8).

The square root of d is a measure of the 'correla-
tion distance". For example, if r = Vd, then the correla-
tion has decreased to e ! = 0.368. An increase in d has the
effect of increasing the area over which important local
correlation exists, and thus of causing a slower decay in

variance with the area. Three curves for different d values

are shown in Fig. V-1.

(b) v: the average rate of change of occupancy.

Increasing v tends to have the effect of increasing
the maximum lifetime sustained load because the number of
load changes during the lifetime is increased. On the con-
trary, the maximum extraordinary load during the (random)
period associated with the maximum sustained load is likely
to decrease because the expected duration of the max imum
sustained load decreases. Both effects are small and compen-
sate each other so the resulting change in the design load
due to the change of v is practically negligible. This
conclusion is supported by the results in Table V-1 where

three different values of v are used to find the design load
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Table V-1

Design Load for Different Values of v

Area = 900 v = 0,125 v = 00,1875 v = 0.25
vt= 8 vt= 12 vt= 16
Design Load (EUDL) Design Load (EUDL) : Design Load (EUDL)
Combina- | Combina- Combina- | Combina- Combina-{ Combina-
tion 1 tion 2 tion 1 tion 2 tion 1 tion 2
Moment 60 55 60 55 61 55
Influence
Surface
Axial Load 57 52 57 52 57 52
Influence
Surface




for two different influence surfaces. (Note that the per-
formance load is independent of v.) The same conclusion
was arrived at by Heaney(14) who found that the maximum load

was insensitive to n, the total number of load changes.

(c) t: the lifetime of the building
The lifetime, t, of the building was assumed to be
64 years. Following the argument presented in the previous
paragraph, it can be expected that the design load will not
be sensitive to changes in t. The results, shown in Table
V-2, of four different cases examined indicate that the

design load does not change much when t varies.

(d) Aspect Ratio: Ratio between the length and the

width.

In all previous chapters the area was treated as
a square because Mitchell and Woodgatecs) established em-
pricially that there was no consistent relationship between
the 99% probable loading intensity and the aspect ratio of
the area. Its effect on the design load and the performance
load will be examined here. The results for the mid-span mo-
ment and the axial load corresponding to an area of 576 ft2
and 5 different aspect ratios are tabulated in Table V-3. The
fact that they are almost identical lends further support

to the hypothesis that the aspect ratio does not significantly

influence the design load and the performance load. Therefore,
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Table V-2

Design Load for Different Lifetimes

Area = 900

of Building

Axial Load
Influence
Surface
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40
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vt
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vt

[

16
128

Design Load
Combination
1

55

57

58

59

Design Load
Combination
2

51

52
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Table V-3 Mean, Variance, Design Load and Performance Load for

Different Aspect Ratios

%ipecghsatio M Variance | c.o.v Design Load (EUDL) Performance
wigzﬁ) : san 106 g Combination 1{Combination 2 Load (EUDL)
Moment Influence Surface
4(48%12) 6482 14.85 59.5 71 67 35.5
2.25(36%*16) 4862 8.613 60.4 72 68 36.0
1(24%24) 3241 3.852 60.5 72 68 36.0
0.444(16*36)| 2161 1.653 59.5 71 67 35.5
0.25(12%48) 1621 0.884 58.0 70 67 34.5
Axial Load Influence Surface
4(48%12) 1699 0.9057 56.0 66 62 34.0
[2.25(36%16) | 1699 0.9354 | 56.9 67 62 34.0
1(24%24) 1699 0.9504 57.4 67 62 34.5
0,444(16%*36)] 1699 0.9354 | 56.9 67 62 34.0
0.25(12%48) 1699 0.9507 56.0 66 62 34.0




the use of a square area in all previous discussions seems

justified.

(e) Parameters in the extraordinary load model:

There are five parameters to be determined in the
extraordinary load model: mQ, cé, Mp oé and Ty All have
the same general effect on the final design load, i.e., an
increase in the value of the parameter leads to an increase
in the design load. First, consider the effect of my, the

expected number of extraordinary load cells. The assumed

value of My is (Eq. III-3-1)

my = BN = R0

Table V-4 shows the design loads respectively corresponding
to a mean value, My of one half and twice the value given
by the above expression. It is apparent that My does change
the design load. Its influence on small areas is larger
than those on large areas.

A change in the mean and the variance of the total load
of a load cell has the same effect as that of Ve This is
checked by increasing the value of my and Ué simultaneously
(increase the value of mp and Ué can achieve the same effect).
The results are tabulated in Table V-5. It is important to

note that the load due to combination 2 controls when the
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area is small but the load due to combination 1 controls

when the area becomes larger.
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Table V-4 Design Load for Different BXpected Load Cells

Design Load (EUDL)
Axial Load Area

Influence Surface Combination 1{ Combination 2

» ‘ 200 99 I 97

E[M] = J——Q—LIM 900 57 | 52

' 2500 43 38

| 200 88 | 84

_1 |JR-T61%

E[M]—2 g5 900 50 45

: 2500 40 35

200 117 ‘ 116

E[M]=2 ‘/——%I-—M 900 68 64

2500 49 45
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8ZT

Area Design Load (EUDL)
Combination 1 4) -~ Combination 2 ... ... ... .. ..
Axial Load Influence Surface
200 09 97
mQ=145 900 57 52
522900 1600 48 43
Q 2500 43 38
200 160 174
mQ=290 900 80 80
02=22500 1600 62 60
Q 2500 53 50
Moment Influence Surface
200 106 108
mQ=145 900 60 55
Ué=900 1600 49 44
2500 44 39
200 178 199
m%=290 300 80 87
0,=22500 1600 70 69
2500 56 53 .




V-2: Live Load Reduction Factor

Traditionally the live load reduction factor is a func-
tion of the total area only(s). However this rule is not
confirmed by the results found in the previous chapter. As
shown in Fig. IV-3 the load for A =200 and n=2 is not equal
to that corresponding to A=400 and n=1. The respective
values are 74 psf and 77.5 psf. Similar results are observed
for the pair of values A = 400 and n = 4 and A = 1600 and
n = 1 respectively; two values are 43.5 psf and 48 psf. It
appears that the reduction factor is not & function of a
single variable, nA, but of two variables, n and A. The
design load will decrease with one variable if the other 1is
kept constant. Unfortunately, no simple formula can be
found for the live load reduction factor, but one might adopt
a conservative approximation if the need for a simple code

formula demands 1it.
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V-3: Means and Variances of Design Load

As discussed in Section II-5b the derivation of the
maximum sustained load is exact only when the load is high
because it only yields the upper tail of the CDF exactly.
The complete CDF of the design load cannﬁt be obtained. Of
course, there is no way of finding the mean and the variance
of a random variable when only the tail portion of the CDF
curve is known. The procedure adopted here is to (i) as-
sume the form of the probability distribution of the design
load, (ii) determine its parameters by fitting the upper
tail, and (iii) derive the mean and the variance. For
ekample; assume that the design load follows Type II
Extreme Vaiue distribution(zs). The 98% and 99% design
loads for A = 200 are 90.5 psf and 100 psf respectively.
The mean and the variance derived from the above values
are 55.6 and 153.2 respectively. 1If, in a probabilistic
code, the load used, m+Bo, corresponds closely to the 98%
or 99% probability level, then the accuracy would be fairly
good. In fact, once the value of 8 (in m+Bo)} is determined
in the code, the assumed probability distribution should be
so chosen thatAits m+B8c falls between 98% and 99% probability
level. The mean and the variance corresponding to other
areas are plotted in Fig. V-2, again for the Type II

Extreme Value distribution.
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V-4: Load Concentration Factor

The load concentration factor is defined by Mitchell
and Woodgatecs) as the ratio between two load effects (cor-
responding to a given probability level): one is caused by
the concentrated loads as they are observed at the time of
the load survey; the other by the spatially averaged load.
It will be checked in this section how the load concentra-
tion factors obtained using the load model (Eq. II-1-1)
compare with those observed by Mitchell and Woodgate(s).
Due to difficulties encountered in determining and

evaluating influence surfaces, only one simple case will

be considered, i.e., the slab enter moment, M of a simply

supported flat slab. The influence surface 15(21)
. MTX _._ NTy
’ 4 Sin —= S1h —3 ., mT _._ nm, 2 2
I(x,y) = ) $in = sin m—(m“4vn”)

where v is the Poisson ratio for the concrete (equal to 0.18).
The mean and the variance can be calculated from Eq.

(II-5-27) and Eq. (II-5-28). To find the load effect cor-
responding to any probability level we also need the pro-
bability distribution. The results given here are based

on the assumption that the load effect is gamma distributed.
Thus we find the first load effect as discussed in the

previous paragraph by the load model. The second load
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effect is simply the product of the unit load for any
probability level and Vi the volume enclosed by the influence
surface. The ratio of the above two is the load concentra-
tion factor.

The results from the above load model and from Mitchell
and Woodgate(s) are tabulated in V-6. Both results show the
same trend, i.e.; the load effect will increase when the
randomness of the loading 1is ekplicitly considered. There
are, however, some differences in the percentage of the
increase. It will be discussed below.

The distribution of the unit load (or total load) was
assumed gamma in section II-4 and was confirmed by Mitchell
and Woodgate's data. The distribution of the load effect
is assumed gamma also because of the reasoning that the
load effect might be considered as the sum of several unit
loads multiplied by its influence value. Since the unit
load is gamma distributed, the summation is approximately
~gamma. However, from the results of Table V-6 the gamma
distribution predicts the results a little higher for that
particular load effect at the particular probability level.
Apparently more data are needed about the distribution of
the load effect in order to establish its probability

distribution, expecially at such high levels (99.9%).
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V-6 Load Concentration Factors for Slab
Center Moment; (Mx (at 99.9% Probability

Level).

Area 56 151 336 624 1197 20069

Results from| 1.22 1.39 1.24 1.33 1.50 1.25
Mitchell and

Woodgate

Area 144 576 1156
Results from 1.65 1.5 1.46
Load Model
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V-5: Coefficient of Variation (c.o.v.) of the Sustained

Load versus EUDL

There is a close relation between the c.o.v. of the
sustained load and the EUDL. As shown in Table IV-3 and
Table V-3, when the influence surface and the extraordinary
load are known, the EUDL is approximately an increasing
function of the c.o.v. of the sustained load. Otherwise,
as shown in Table V-5, there can be a large difference be-
tween two EUDL's though the c.o.v.'s for the sustained
load are the same. This is due to the change in the con-
tribution from the extraordinary load. For a given in-
fluence surface and the extraordinary load, the EUDL will

be the same if the c.o.v. is the same.
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VI-1:

(1)

CHAPTER VI

Conclusions and Suggestions

Conclusions

Load models and methods to represent time and space
variability of the extreme loads and sustained live
loads on office buildings are presented in this work.
The results include '"design load" values associated

with small probability of being exceeded. The models -

are flexible enough to handle different cases ranging

(2)

from a multiple number of tenants on ecach of a number
of floors to a single occupier of all floors. In-
fluence surfaces are introduced to produce moments and
distributions of structural lcad cffects (e.g. axial

forces, shears etc.).

Owing to observed differences in the nature of the
spatial correlation vertically and horizontally; the
live load reduction factor is not a function of simply
the total area alone, but rather a function of both n,
the number of floors, and A, the floor area. Though
the difference between two cases with the same area but
different combinations of n and A is not very substan-
tial for the particular chosen values of parameters of

the extraordinary load and of the occupancy pattern, it
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(3)

(4)

(s)

(6)

might be expected, however, that, if future data suggest
different values for the parameter and different oc-

cupancy patterns, the difference may be significant.

Comparing the design loads from two potentially cri-
tical combinations, the load obtained from Combination

2 (ektraordinary load control) increases faster with

the decrease of the area than that from combination 1
(makimum sustained load control). In some cases the
first combination governs for larger areas and the
second one governs for small areas. (These combinations

are defined on page

The design load will increase with the lifetime of the
building, but the magnitude of the increase is very
small. Therefore a rough estimate of the economic
lifetime of the building will not introduce a signi-

ficant error in finding the design load.

Both the '"design load" and the "performance load" are
insensitive to the rate of change of occupancy and the

aspect ratio of the area.

The values of the design load and performance load that
might be specified in a building code are evaluated for
different load effects (moment, shear and axial load)
and forvdifferent areas {(on the same floor or on dif-

ferent floors).
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(7) Present load surveys (Mitchell's survey was used here)
may provide information adequate to provide reasonable
estimates of the parameters of the sustained and maxi-

‘mum sustained load and load effect models. But addi-
tional information is needed to estimate parameters

and to verify the extraordinary load model. It is
believed that providing a tentative model in the absence
of data can provide a valuable service to engineers
responsible for deciding what information should be

collected in a live load survey.

137



VI-2:

(1)

(2)

(3)

Suggestions

The correlation model (Eq. II-1-1) can be expanded

to involve other effects such as the age of the building,
the use of the room etc., if future data suggest that
those effects are important.

More extensive work should be done to find a simple
systematic way of defining the design load, the

loading pattern and the load reduction factor for dif-
ferent load effects.

More data, to be obtained from load surveys, and im-
proved analytical models are needed in the area of

extraordinary loads.
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APPENDIX A

As shown in Fig. II-2 the mean and the variance of the

sum of the load from two floors will be derived below. Let

L(AZ) = fﬁ)(x,y)dxdy+ffw(u,v)dudv

Then

E[L(A,)]

E[/fw(x,y)dxdy+ffw(u,v)dudv]

B[R, 1 ] wix,y)txdy+ 3270 7 Ju(u,v)suav]
Ay XY AV-0

E[ii’ioi ) w(X,Y)AXAY]*“EI}A"i]iO y Juw(u,v)aubv]

Ay-0 X7 AV-0
Hm Y IB[e(x,y)axay+ ;im0 T TE[w(u,v)]Auav]
Ay~>0 Xy Aav>0 BV ‘

ffmw(x’y)dxdy+ffmw(u’v)dudv

Var[L(A,)] = E[LZ(A))] - E[L(A;)]?
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E[L2(A)] = EI (fﬁ»(x.y)dxdy+ffw(ﬁ,v)dudv)21

i . i 2
B (3% T 1 lx,y) Axty+pm 1 Jutu,v) utv)®]
ays0 XY AV 0

)Z )}r: w(x,y) (D(Xl ,Yl) AXAXlAYAYI

*L X
Ay,Ay1+O 1 1
2 lim Y)Y T Ju(x,y)w(u,v) AxAyAuAv
Ax, Ay 0 24 ’ y
Mu,Avg XV BV

lim
+ Au, Au,+0 g g g g w(u,v)w(uy,v,)sudu; AvAV, ]
AV,AV1+O 1 1

Folowing the same steps as before, then

12 (a1 = [fffrrocoyreee,yy)1axax ayay

+2ffffE[w(x,y)w(u,v)]dxdydudv
+jgg(/.E[w(u,v)m(ul,vl)]duduldvdv1

=ffff{COV[w(x,y),w(x1,yl)]+E[w(x,y)]}3[w(x1,y1)]

dxdxldydy1
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v 2ffff tcovtote,yy, uw, I 1+BL0Gx, ) IE[6C, V) 1T}

dxdydudv

+

fff {cov[w(u,v) ,w(ul,vl)]+E[w(u,v)]E{m(u1,v1)] }

duduldvdv1

jOCZy.cov[w(x,Y),w(xl,yl)]dxdxldydyl
Z fff/COV[N(X,Y) ,w(u,v)]dxdydudyv

+ JO[Zy.cov[w(u,v),w(ul,vl)]duduldvdv1+E[L(A2)]2

+

Therefore

Var[L(A,)] = E[LZ(AZ)] - E[L(Az)]2

=.[]Jgfcov[w(x,y),w(xl,yl)]dxdxldydyl

+2.[]ygéov[w(x,y),w(u,v)}dxdydudv
+.[[[[cov[w(u,v),w(ul,vl)]duduldvdv1
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The formulas can also be extended to include the influence

surface. Let

H =ff1 (x,y)u(x,y)dxdy

E[H] =,[7}(x,y)mw(x’y)dxdy

then

varta] =f [ 16,16,y eoviutx,y) 0 0xp, ;) 1dxdx, dydy,

whre I(x,y) is the coordinate of the influence surface at

location (x,y).
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Appendix B

A brief description of the live load survey conducted
by the Building Research Station at Garston, is presented
below in order to add to the understanding of the load re-
sults used in this work.

During the period of 1965-1967, an extensive office
load survey work was carried out by BRS. About thirty modern
office buildings involving over 100 occupying organizations
and having a total area of 1 % million square feet, were
surveyed, and the positions, magnitudes and character of the
loads present were recorded using a rectangular coordinate
system. In addition to the load observed directly, a 3 psf
people concentration load and 50 psf fire load were added.

Each building floor was then divided into a number of
zones. All loads that happened to be on the dividing line
were added to both adjacent zones. The coordinates of the
zones and the location of the loads were then fed into the
computer which made further subdivisions. Histograms were
produced for each of a number of bay sizes.

Information about the change of occupancy was obtained

by searching through telephone directories.
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Appendix C
(3)

The mean and the variance from Mitchell and Woodgate

were reproduced in Table A.

Table A.

Areal11.7 | 14.6 | 25.3 | 56 : 151 [ 336 - {624 1197 | 2069

Mean| 14.5 | 14.5 | 13.8 13.4 [13.0 |12.8 [12.3 {12.2 {11.8

Var.| 324.3| 256.0{ 182.3/121.0|79.2 |51.8 [39.07{30.25 20.25

cov. |1.2751.1 |0.978/0.82 [0.685{0.562({0.512{0.45 |[0.382

Since the data come from the same buildings the mean load
should be the same for all area groups. However the report
shows otherwise. The reason is when they divided the floor
into small areas they put the load on dividing line into
both adjacent ares. That simply added an imaginary load
into the small area. That is why the smaller the area the
higher the mean load. There is no way to go back to the
original survey data. Table A has to be changed by other
methods. One reasonable way to do it is to adjust the
mean load and maintain the same coefficient of variation.

The results are shown in Table B.
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Table B

| Area| 11.7 | 14.6] 25.3 | 56 151 | 336 624 1197} 2069

{Mean} 11.8 [ 11.8 11.8 11f8v11.8 11.8 11.8 11.8111.8

| var.{ 226 | 168 [ 133 93.5{65.2 | 43.9 [36.5 |28.1{20.25
cov. | 1.275{1.1 [0.978/ 0.82]0.685 0.562 0.512{0.45{0.382

191




Appendix D
The gamma distribution derived from Eq. (II-3-1) are
plotted in Fig. II-14. The curves fit the data generally
well eXcept for smaller areas where the curves show more
probability in the 0 to 5 psf interval than the data have.
However this discrepancy does not influence many results.
The smaller areas seldom participate in a multiple loading

case. It is very unlikely that a column has several 20 ft2

or 40 ftz

contributing occupants or floors or that a beam
has several small contributing spans. Smaller areas will
be used only in the local load effect cases such as shears

or moments in the slab. In these cases Eq. (II-5-8) applies.
Fy(a) = FL(t)(a)exp{-vt[l-FL(t)(a)]FL(t)(@)}

It is apparent from this equation that only the upper tail
part will be used instead of the whole distribution, when
we want to find the load of the high probability level.
Since the assumed gamma distributions fit the upper tails
very well, it follows that the gamma distribution is

suitable for smaller areas also.
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Appendix E

As mentioned in Section II-5c an exact method to
evaluate ‘the probability of up-crossing of a. certain
threshold is derived below. The use of this method is 1i-
mited to the independent loading case which is not really
true for buildings because as the load model described in
Section II-1 suggests, all loadings in a building are cor-
related. However this method can still be used to check the
approximation adopted during the derivation in Section
IT-5¢c for the extreme case, i.e. when all loadings are as-

sumed independent. Let

n
F(t) = ] 1;(t)
i=1

Starting with Eq. (II-5-14) and following a derivation

similar to that presented in Section II-5¢, one obtains:
(va)jAt = P[There is a change of the jth occupant in At]*
P[{F(t+At)>a " F(t)<a} |(There is a change of

the jth occupant in At)] (II1-5-14)

Assume a simple case, with i = 3 and j = 2, then
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P[{F(t+At)>alF(t)<a}| (There is a change of the 2nd

occupant in At)]

P[{L; (t)+L, (t+At)+Ly (t) }2a I {Ly () +L, (t)*Lg(t) }<a]

1]

41
j(; P[{Ll(t)+L2(t+At)3a-x3} ﬁ{L1 (t)+L,(t) <a-x3} §L3(t)=x3]

fLstx)(XSJdXS

o
=./(; P[{Ll(t)+L2(t+At)3a-x3}F){Ll(t)+L2(t)<rx—x3]fL3(t)(x3)

dx (E-1)

3

Since L3(t) is independent of Ll(t) and Lz(t), the condi-
tional probability can be replaced by a marginal probability.
Substitution of Eq. (II-5-15) and Eq. (E-1) into Eq. (II-5-14)

yields:
o :
(Va)sAt = vSAt[) P[{Ll(t)+L2(t+At)_>_a-x3}ﬂ{Ll(t)+L2(t)<on—x3}]

fLS(t) (x3)dx3 (E-2)
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Now,

P[{Ll(t)+L2(t+At)za-x3}fW{Ll(t)+L2(t)<a-x3}]

a-x
3
= j; P[L, (t+At)>a-x5-Xq MLy (t) <a-Xxz-Xq |Lg (t)=x4]

le(t)(xl)dxl

o-X
3
P[Lz(t+At)za-x3—x1F\Lz(t)<a—x3~x1]fLi(t)(xl)dxl

Y

0

(E-3)

and

P[Lz(t+At)3u-x3-x1f1Lz(t)<a-x3—x1]

=fa-x3-le[L (t+At)>a-X,-X, |L,(t)=x,]1f (x,)dx
0 2 - 3 %172 2 Lz(t) 2 2

a-Xg-Xy
=./. P[Lz(t+At)3a-x3~x1]fLZCt)(xz)dxz

J

[1~FL2(a-x3—x1)]FL2(t)(a-xs-xl) (E-4)

OL‘XS'Xl

0 [l-FLz(t)(a-xsvxl)]FLz(t){xz)dxz
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This follows from the fact that the load after the change
is assumed to be independent of that before the change.

Substituting Eq. (E-4) into Eq. (E-3) and then into Eq.
(E-2):

o 0=Xs
(va)SAt = VAt A fL3(t)(x3){J£ [1-FL2(t)(a-x3-xl)]

FLz(t)(a'XS'xl)le(t)(xl)dxl}dXS

Following the same argument as in Section II-5c:

a =Xz
(Va)st = vsgjg fLs(t)(XS)ijg [1—FL2(t)(a-x3-x1)]

FLz(t)(a-xs-xl)le(t)(xljdxl}dx3 (E-5)

The above equation can be extended to the case when there

are n loadings.

a %=Xy
(va)nt = vnt 0 le(t)(xll/; sz(t)(xz)...

foa—xl—xz. S
£ (x__.)*
0 Ln_l(t) n-1

ox . - - %
FLn(t)(a X1 Xpe oo xn_l)
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[1-FLn(t)(u-xl-xz...—xn_l)] dxldxz...dxn_1

(E-6)

The CDF of the maximum lifetime load can be found by using

Eq. (II-5-13) and Eq. (II-5-1), i.e.

and

F (@) = FF(t)(d)exp[nvat]

A1l L, (t)'s are assumed to be gamma distributed. If

the parameter k of the gamma distribution is an integer, then

the Eq. (E-6) can be integrated exactly. A special case,

studied below, is that when all L;(t)'s are assumed to be

independent to each other, and have
that k = 4 corresponding to A ¥ 700
and Woodgate(B) data). The results

E-1. Since the two sets of results

a value kX = 4 (Note
ftz, from the Mitchell
are tabulated in Table

are so close, the in-

dependence and normality assumptions made betfore seem

justified for this special case.
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Table E-1 Comparison of the Exact and the Approximate Analysis

Number of
Stories

10

11

Results
from Exact
Analysis

29.9

26.5

24,

6

23.2

22.

2

21.

20.

8

20.3

19.

19.4

Results
from .
Approximate
Analysis

31.0

27.6

24.

5

22.9

21.

9

20

.9

20.

3

19.7

19.

3

18.9




Appendix F

As mentioned in Section II-5¢ the unit load can be

used to replace the total load in evaluating Eq. (II-5-21).

o
(v):t =f v t[1-F (a-x)] 1
J o J j oF(t)JZE
X-m 2
expl- 3 (5t qax (11-5-21)
F(t)

even though all the variables in the original derivation
represent the total load (or load effect). If the real
value of these variables were used in the calculation, there
would be quite a wide range of numbers. Special attention
has to be paid to the accuracy of the numerical integration.
It would be much preferred to use the unit load instead of
the total load. The validity of the procedure is proved
below. Recall (Section II-5c) that: [I—FW(&-X)] is a

function of A(a-x). For unit load, we have
mean = my;

standard deviation = GU
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c
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And for the total load L = U*A

mean = m; = mU-A

Standard deviation = oL =_0UA

_ 2,2
kL = mL/oL = kU
A = m /a2 = A /A
A = mp/op = Xy

Let Y represent the unit load, then
_ X
T=Xx

Changing the variable in Eq. (II-5-21) from X to Y, one can

write:
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o/A YA-m
(ved5t fo v t[E(Ay (a-y*A))] expl-; (———C-,—i-l‘—-)z]dy

m
= fa/A a LY R
B 0 vjt[f()‘LA(]( - Y))]exp['é (5—17](—‘) 1dy
a/A y-m
=]; vjt[f(}\U(% - )] expl-3 (Bgﬂ)zldy

This result is identical to that one would obtain if the unit

load were used to compute (vu)jt'
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Appendix G

A closed form solution for Eq. (II-5-23) is derived
below for the integer value of the parameter k. Rewrite the

equation below:

m
vt =lj[unvt[1-FW (a-x)]———l-—— exp (x F(t)) 1dx
0 j OF(t) F( )

(II-5-23)
For integer k, there is a closed form solution for

[1—FW.(a—x)] (Eq. II-5-24). For illustrative purposes

assume k = 4,

1—ij(a—x)=e-x(a'x)[% + %% A(a-x)+ %7 kz(a—x)z
+ 35 2°(a-x)7] (G-1)

Substituting Eq. (G-1) into Eq. (II-5-23)

vt i}ganvt[l 11 A(a- x)+ Az(a-x)2+%3 As(a-x)s]e'x(a'x)
X-m
1 eXP[-% 5 —_E(t)y2y4x (G-2)
oF(t)/TF F(t)
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Combine the two exponential terms in the above equation

v t = ot exp[- (Aa- kz 02 -Am )1*
o ‘/‘2—1? O.F(t) -2—— F(t) F(t)

@1 11 3 .2, 201 13, .3
[5 * A(a-X)*+xy A (a-x)7F A (a-x)7]
foifr‘“‘?z 96

exp[-_l._.z____ (x-mF(t)fkclzz,(t))z]dx
ZGF(t)

Let

2
u = x-mF(t)fon(t)

and change the variable in the above equation.

vt = nvt exp[-(w-'xz % y-Am )1*
« " 7% op ey | 7 9p(t) "R (L)
u'
, [+ 1 a(ar-u)+iy A2 (ot -u)
- (Mg () *A9E (1)

+ %3-AS(a'-u)3]exp[-——l7-— u?] du (G-3)
ZOF(t)
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where

— 2
a' = a'mF(t)'AGF(t)

If (mF(tjkcé(t)) is very large and close to a, then we can

make the following approximation:

o' =0

2 ~

Mg ey * AGF(t) g (G-4)

The integration limits of Eq. (G-3) can be changed from

- to 0. Since

0 2 —
/ w2ngraulyy o 135, (2ncl) T

ZniTén
0 2
Jf u2n+1e-au du = - BLHTT (G-5)
- 2a :

Using Eq. (G-5) we can find a closed form solution for

Eq. (G-3).
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nvt Az 2

vat = 75% exp[-ia’ e GP(t)][_f_ L +0F(t)L2
3 i
* VI Of 0y L5t 205 ey Lt CFT Lg* 208 ()13
2
+ 3/2m OF(t) Ly)a’ +(—7— L +30F(t)L4)a'
LSS (G-6)
where
1
L1 =72
_ 11
L2 =z A
_ 3 2
_ 1 3

Eq. (G-6) gives good results when o is close to (mF(t)+A0§(tj}'

Otherwise the results are not good because the solution for
[1-FW (c-x)] can not be used when o-x is negative. Therefore

J
the use of Eq. (G-6) is limited.
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