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ABSTRACT

The stochastic modeling of live loads on buildings is
presented in this work. It contains two parts; the modeling
of the sustained load and the modeling of transient live
loads. The model of the sustained load treats the load in-
tensity as a random function varying continuously in space
and varying in time at discrete, random points associated
with changes in occupancy. The spatial treatment includes
continuously decaying correlation and the influence of
floor-to-floor and building-to-building effects. Inclusion
of influence surfaces permits treatment of a variety of
structural load effects (column or footing load, moment,
shear.etc.). Analysis of the model produces, first, the
approximate distributions, means and variances and covariance
of the load effects at arbitrary points in time. Second,
the approximate distributions of lifetime maximum sustained
load effects are provided. These models are fit to office
load survey data provided by G.R. Mitchell of BRS, Garston,
England, and relatively dependable results are therefore
obtained.

The second part deals with the modeling of the load
effect caused by the occurence in time and in space of
transient live loads. The distribution of the maximum
"extraordinary" load in time interval t is obtained.
Reasonable numerical estimates of parameters are substituted
to yield specific results, but data on this kind of load is
virtually nonexistent. It is anticipated that the analytical
models will stimulate collection of appropriate data in
future surveys.

Analysis is presented of the design load effects when
the sustained load acts simultaneously with the randomly
arriving transient load.

Thesis Supervisor: C. Allin Cornell
Title: Associate Professor of

Civil Engineering
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CHAPTER I

Introduction

I-0: Introduction

With the development of probability codes(,)it

becomes more and more urgent that a better knowledge about

the live load should be developed in order to achieve a safe

and economic design. We are looking not only for the value of

the design load but also for probabilistic descriptions of

the time-dependent characteristics of live loads. A number

of studies have been made of live loads. It is the purpose

of this work to summarize the previous results, and develop

a new theory to predict the design live load for different

probability levels. A set of the most recent field data(3)

will be used to verify the assumptions and to estimate the

parameters.

Some general points are discussed in Chapter I. A

brief introduction about the past studies is presented in

Section I-1. The nature of the live load is discussed in

Section 1-2 with the definition of the different kind of

loads. The remaining sections include different assumptions

and definitions which are important to the following chapters.
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I-1: Literature Review

The study of live loads includes two different parts;

data collection and theoretical modeling. The first part can

be dated back to the 19th century when Stoney (4) studied

packed crowd loads in 1869. Through the past hundred years

numerous works have been done in this area. Researchers

measured the live load in the buildings and analyzed the

data to come up with suggestions for design live loads and

their reduction factors. The second part, analytical mo-

deling, has, on the other hand, been studied by compara-

tively few. Not until recent years have people started

building statistical and probabilistic load models. With

the accumulation of knowledge the model becomes closer and

closer to the real phenomenon of the live load. As a result

a few building codes have already adopt;ed their work as the

basis for certain aspects of the design live load. It is

believed that in the near future more and more building

codes will follow this trend and adopt design live loads on

a more rational basis.

Several important works will be mentioned below.

Dunham(5) studied the survey data from two federal buildings

in Washington, D.C. and derived the live load reduction

factor which is still used in this country after more than

twenty years. Horne(6) presented a theoretical model by
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assuming independence of the load on different areas. The

standard deviation he got is inversely proportional to the

square root of the area. This conclusion led to the form

of the live load reduction factor adopted in the Mexican

and the new Canadian building code. Rosenblueth (7) intro-

duced influence surface into his model. Jauffred(8) col-

lected data from Mexican apartments and offices and related

them to Horne's model. Fader (9) considered spatial corre-

lation among live loads. Karman( 10 ) studied the load data

from 183 apartments and introduced the idea of the random

changes of occupancies. Bryson and Gross (11) of National

Bureau of Standard surveyed two federal buildings and used

statistical methods to analyze the data. Their work will be

continued and more data will be collected in the near future.

Corotis(12) and Hasofer(13) were extending sustained live

load modeling capabilities. Mitchell and Woodgate(3) have

conducted the most extensive field survey to date. For office

3use it covered 1 T million square feet with 32 buildings and

over 100 occupying organizations. They also presented their

data in such a way that it can be relatively easily used

for statistical analysis.

A more complete review of the literature is not neces-

sary here owing to the very thorough survey in Heaney's

recent thesis 4 3. He has tabulated and summarized virtually
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all the work related to live load study. In addition to the

references in his list, there are also the recent reference

by Borges(15) who provides an. excellent review, and compares

Mitchell's and Karman's work, plotting their data on extreme

value probability papers.

Even though it is conceptually a simple operation to

measure the live load content in a building, many researchers

nevertheless have encountered the difficulties ':-f how to

present the data and how to include the transient, extra-

ordinary loads that might occur during the lifetime of the

building. Therefore there are many weaknesses in the above

mentioned work. For example there are relatively arbitrarily

applied load to reflect the concentration of people (Mitchell

and Woodgate), mixed room sizes (Karman, and BrNyson and Gross),

etc. Heaney made a detailed discussion about this problem

which should be considered for any new load survey work,.
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1-2: General Behavior of the Live Load

As shown in Fig. I-la the average load (or the total

load) on any area (or room) can be plotted along time axis.

The load can be decomposed into two parts. One is the or-

dinary load (Fig. I-lb) which exists on the floor for a

fairly long time until a change occurs. The ordinary load

itself consists of furniture, safes, file cabinets, printing

machines etc. as well as the normal working personnel. The

other is the extraordinary load (Fig. I-1C). This kind of

load occurs relatively rarely but with a relatively high

intensity. It typically has the characteristics of lo-

calized concentration in space and short temporal duration. It

may be caused, for example, by people coming into the building

during a special occasion such as an "open house". The

people will concentrate in those organizations that have the

"open house" or in those areas that are open to the public.

This event in general will last only a few hours. Another

occasion that will cause the extraordinary load is the re-

modelling of rooms. It may happen that furniture from dif-

ferent rooms will be moved to one particular room and cause

a heavy load concentration.

Let us examine the ordinary load more closely. The

load keeps fairly constant until an abrupt change occurs,

e.g., at point A and B (Fig. I-lb). The reason may be

11



due to the change of the occupancy. The new tenant may have a

higher (or lower) average load. It may also be caused by

the rearrangement of the floor space. An office room may be

converted to a storage room or vice versa and the average load

may change drastically.

Even though the average load in any room under the same

occupant probably has only a small fluctuation in time, there

may be a definite trend. The load can be expected to increase

with time due to the addition of new furniture or the accumu-

lation of files etc. However the magnitude of the increase

is probably small as compared to the variation from occupant

to occupant of the basic load itself.

The ordinary load can be further divided into two groups:

the load due to normal working personnel (plus some expected

number of visitors) and the rest of the load. The latter

group is defined as long-term sustained load as opposed to

the normal personnel load. The sustained load is shown in

Fig. I-ld and the personnel load is shown in Fig. I-le on a

finer scale. The total length of time that the personnel

load presents is much shorter than that of the sustained load.

Hence the question arises whether the personnel load should

be treated the same as the sustained load in considering

the long-term effect. Karman l0 ) discussed this problem

and concluded that the load, acting at least 5% of the

12



operational time of the building may be considered permanent.

This is to justify that the combination of the above two

loads will be used to produce the long-term effect.

13



1-3: Stationary Process

The basic information we are seeking is a description

of the probabilistic behavior of the load* through the life-

time of the building on any area (Fig. I-1d, e). Direct em-

pirical observation would require the continuous monitoring

of the loads on many rooms throughout this whole period.

This procedure is both expensive and impractical. Another

way to derive the information makes use of the assumption

that the process is stationary both in time and in space.

This implies: (i) that for any area the probability distri-

butions of the loads at two points on the time axis are

identical, (ii) that for any time point the loads on any

two areas (of common characteristics) have identical pro-

bability distributions, and (iii) that these two distri-

butions (one with respect to time, the other with respect

to space) are identical.

As shown in Fig. 1-2 the figure represents three dif-

ferent bays (or rooms) with the same area but different

load history. The load survey conducted at a particular

time t0 is the measurement of the average load on the

* Either the total load or, equivalent, the load per unit
area (i.e., the spatial average load)
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different bays. It results in reporting the frequency dis-

tribution of the average load along the cross-section t0 and

not the frequency distribution along the time axis. The two

distributions may not be the same for an arbitrary process.

But, once we make the assumption. that the process is station-

ary, the above two distributions will be the same. This

stationary assumption (due originally apparently to Karman

but adopted independently by Mitchell( 16)) permits customary

multi-room load survey data to be used to infer behavior-

in-time of an individual room.
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1-4: Arbitrary-point-in-time Load versus Maximum Lifetime

Sustained Load

The arbitrary-point-in-time load is the load which

exists at any particular time, t0. Its probability distri-

bution (called the marginal or the one-dimensional distri-

bution of the process) is the same as the result from any

load survey. By the assumption of the stationary process

this probability distribution is identical at any time. The

maximum lifetime sustained load is the maximum (sustained)

load that should be expected, under a certain probability

level, during the lifetime of the structure. Its probability

distribution can be visualized by assuming that we have the

load histories of n areas and that we pick the peak sus-

tained load from each history. The frequency distribution

of those n loads is the frequency distribution of the maxi-

mum lifetime sustained load.

16



I-5: Design Load versus Performance Load

In the practice of the structural design the engineer

has to consider not only safety but also serviceability.

He has to design the structure to be safe enough to with-

stand without failure the anticipated maximum load appli.'zd

during the lifetime of the building. He has also to design

the structure strong and rigid enough to maintain the normal

service of the building. There should be few sustained

cracks or excessive deflections that mar the appearance or

function. Therefore two different load criteria have to be

chosen. The load used for the purpose of safety is defined

as the design load. The other load to be used for service-

ability purposes is defined as the performance load. The

former will be associated generally with maximum-in-time

loads that have very small probability of being exceeded;

the latter will usually be sustained loads with relatively

less conservative probability levels.
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1-6: Load Intensity, Total Load, Unit Load, Load Effect,

EUDL

Several terms will be used quite frequently in the

following chapters. They will be defined here:

Load Intensity: The value of the load per unit area on

a differential area, in pounds per

square foot.

Total Load: The sum or the integration of the load

intensity over any finite area, in

pounds.

Unit Load (average load): Total load on an area divided

by its contributing area, a spatial

average load, in pounds per square

foot.

Load Effect: The structural effect produced by the

load, such as moment, shear, deflec-

tion etc. For linear behavior this is

an integration of the product of the

load intensity and an influence surface.

EUDL (Equivalent Uniformly Distributed Load): This is

the value of the uniformly distributed

load (in pounds per square foot) that

will produce the same specific load ef-

fect as that produced by the actual

18



load intensity on the floor. For

the same floor area, the EUDL will

have a different value for different

load effects.
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CHAPTER II

Ordinary (Sustained) Load Model

II-0: Introduction

The ordinary load which was defined in Chapter I will.

be studied in this chapter. A load model will be proposed

in Section II-1 and compared with data in Section 11-2. The

influence surface will be discussed in Section 11-3 because

it will be used throughout this work for both the design

load and the performance load. The arbitrary-point-in-time

load will be discussed in Section 11-4. This load forms part

of the performance load. In the last section a method to

derive the probability distribution of the maximum lifetime

sustained load will be introduced. This load will form a

part of the design load.

20



II-1: Load Model

II-la: Model Description:

The load intensity at any location follows a stochastic

process. This process will be modeled in this section. The

model proposed below can be considered as an extension of the

work done by others. Horne(6) apparently was the first to

start the theoretical modeling of random floor loads. He

assumed spatial independence, but ignored time influence.

Hasofer( 13 ) constructed a more refined, but similar model.

Rosenblueth(7 ) used the influence surface in his work.

Fader 19 ) and Corotis (12) introduced various correlation

factors.

A correlative load model is proposed here to represent

the load in the building at an arbitrary point in time.

w(x,y) = m +Ybld+yfl+E(xy) (TI-1-1)

where w(x,y) is the load intensity at any particular hori-

zontal location (x,y) of a particular building and floor.

m is the "grand mean" of the live loads for the case under

investigation, i.e., office occupancy. Ybld' Yflr and

e(x,y) are zero mean independent random variables. Ybld

represents building effects, Yflr represents floor effects

21



and e(xy) represents load intensity variation spatially on

a given floor of a given building. This last term is a ran-

dom spatial function with non-zero spatial correlation.

cov[e(x0 ,y0 ), e(x1,y1)] 0 0

Then

E[w(xy)J = m (II-1-2)

Var[w(x,y)] = abld+aflr+a (II-1-3)

and for two loads on the same floor at locations (x0 7y0 )
and (x1 ,y1 ) (Fig. II-1)

cov[w(x0 ,y0 ),w(x1 ,y1 )] = E[w(x0,y0) w(x1 ,y)]

-E[w(x0 ,y0 )] E[w(x11y)]

2 2
bld+aflr+cov[e(x0 y0),E

(11-1-4)

(Load on different floors will be discussed in Section II-lb)

m is the "grand mean" of the live load which should be

the (ensemble) mean of the (spatial) average loads of all

buildings. As discussed below there is a systematic dif-

ference in the average load for different types of buildings;

22



therefore proper sampling techniques must be used to avoid

a biased estimation of m.

The random building effect, Ybld, represents the varia-

tion from office building to office building of the average

(over the total buildings) load. This variation could in

principle be in part systematic. The data from Mitchell and

Woodgate (3 , for example, show that the mean loads are 14.6

psf and 10.42 psf respectively for the "trade union" group

and "the trading A" group. The same explanation holds for the

floor effect, Yflr. It represents the variation from floor

to floor within a given building of the average (over the

total floor) load. Bryson and Gross"') found that within

the NBS Administration Building the average loads on the

floor 1, 5 and 9 were 5.9 psf, 10.2 psf and 12.7 psf res-

pectively. The cause is apparently that organizations ar-

range their floor spaces in such a way that different func-

tions and types of users occupy different floors, e.g., an

executive floor, a storage floor, a typist and clerical floor

etc. Even if it is an office space, the ground floor is

(3)
typically used differently from upper floors

If enough information were available, the means and

the variances of Ybld and Yflr could be estimated as func-

tions of the type of building or floor occupancy, floor

number, etc. However at the design stage the engineer

usually does not know who is going to occupy the floor of a

23



building or how it will be used, nor does he want to restrict

their future use by designing for other than a very general

office occupancy. If the model is to be used to determine

code specified loadings, then it is describing loads over

the population of future buildings and floors to which the

code will be applied. Under all such circumstances it is

appropriate to treat Ybld and Yflr as zero mean random terms.

That these variables are modeled in a simple, independent

additive way implies that no complex interactions are hypo-

thesized between floor and building effects, e.g., within-

building, floor-to-floor variability is the same for "light"

as for "heavy" buildings, and the average load on one total

floor is not influenced by its being adjacent to another

floor which is heavier (or lighter) than a typical floor in

the building. These simplifying assumptions can be dropped

if future data prove it necessary. Assigning Ybld and Yflr

each a zero mean implies that it is assumed that proper

sampling and averaging has been done. (e.g., if the model

and subsequent code is to be applied to offices on all floor

levels, the sample should contain a proper mix of floor

levels, and should not be dominated by, say, ground floors.)

For these reasons in this work only single global variances

for those two zero mean random terms need be used, and

treatment of systematic distinctions between building types,

floor numbers etc. will not be discussed further.

24



The randomness of the stochastic process e(x,y) repre-

sents the uncertainty involved in predicting the floor

loading over a particular floor. e(x0 ' 0 ) and e(x1 ,y1 ) cor-

responding to two different locations are in general corre-

lated. If the load intensity is higher than average at a

particular location then it is likely that the load at a near-

by point is high also, i.e., there exists a positive corre-

lation. It is anticipated that the correlation will decrease

with the distance between the locations considered. This

will be verified later.

II-lb: Moments of Total and Unit Loads

The model of the load intensity w(x,y) above is needed

in order to be able to deduce the characteristics of total

loads (or unit loads) and of various load effects. Most

data are available in terms of unit loads. Therefore these

data will be used to deduce estimates of the parameters of

the load intensity process. It is necessary therefore to

establish the relationships between the moments and param-

eters of unit loads and those of the load intensity process.

Let L(A) be the total load over a rectangular area A

(equal to axb) on the same floor, then

25



fa b
L(A) = 1 w(x,y)dx dy = Aybld+Ayflr

+ a JE(x,y)dx dy

the mean and the variance of L (A) are given by (see Appendix

A):

E[L(A)] = af b E[w(x,y)]dx dy = fn mdx
00f

dy = mA

(11-1-5)

Var [L (A) ] = a af bf bcov[(x0.y0),w(xj9y)]

dx 0 dxI dy0 dy1

Substitute

(11-1-6)

Eq. (11-1-4) into the equation above

Var[L(A)]= a fa b ab{bld+a fir

cov[E(x0 'y0)9:(xly1 )]}ldx0
dx1 dy0

(II-1-7)

Three different functional forms of covariance functions were

examined by Hauser . One is a discrete parameter model

26

1



and the other two are continuous. The first one is not pre-

ferred because the areas that can be considered are limited

to certain discrete values. One continuous model was derived

from a first-order autoregressive process (18) where the

parameter was spatial distance. The covariance function for

such processes will be:

2cov(x0,y0),e(xlqyl)] = as , p(r)

2 -r/d'
sp

where d' is a constant and r is the horizontal distance be-

tween two points (x 0,y 0 ) and (x1 ,yj)

r = (x 0-x1 ) 2+(y 2

The other form, which will be used here, is a slight modi-

fication of the above formula. It uses r2 to replace r,

i.e.,

cov[e(x0,y0), l',l1) = aspe-r2/d (1I-1-8)

When fit to the same data, both formulae lead to approxi-

mately the same results (17). However the second is more

convenient because the spatial variables on two perpendicular

directions, X and Y, can be uncoupled.

27



cov[E(x0 ,y0 )',e 1,y1)] = a2 e
sp

2
- sp

~ 1 2., 2]/-[(xo xi) 2 (Y0-y1) 2 id

2 2
- 0-~1) 2/d -(y0 ~y 1) 2/d

and the subsequent integration (e.g., Eq. (11-1-7)) will be

greatly simplified. Substitute Eq. (11-1-8) into Eq. (1I-1-4)

and Eq. (11-1-7).

cOV[w(x0,y0 ),w(xy1 )] = a2 +a2 a2 e -ri2/d

(II1--9)

for two points (x0,y0 ) and (xl,y,) on the same floor.

Var[L(A)] = jajabjb a d+a2 G2 e--r2/d
0 0 bld frrid)

dx0dx IdyOdy1 (1I1- -10)

When two points (x0 ,y0 ) and (x2,Y2 ) are located on dif-

ferent floors (Fig. II-1) we shall introduce a new factor

pm which represents the correlation coefficient betueen the

load intensities on two different floors, i.e.

cov[e(x 0 y0 ),eX)(x 2 y2 ) = P 2 e -rd (I- 1 - I I )

28



This correlation represents what Mitchell( 16 ) has referred

to as the "stacking effect". Areas immediately above or be-

low one another apparently have some tendency to be used in

a similar manner (e.g., cabinets may be next to interior

rather than exterior walls.) The value of the decay param-

eters d in Eq. (11-1-11) is taken equal to that in the same-

floor case for simplicity only. (Note that there is some

potential inconsistency in saying that the Yflr terms repre-

sent floor average loads when they are assumed independent and

when at the same time E(x0,y0 ) and c(xy2 ) are assumed cor-

related. The last assumption in fact implies some correlation

between floor averages. Hence the Yflr terms do not strictly

represent floor average deviations. The decay in correla-

tion, as controlled by parameters d and pm, is, however,

estimated from data to be so rapid that the correlation be-

tween the e(x,y) processes on two different floors does not

cause substantial correlation among total or unit loads on

areas as large as typical total floor areas. It is therefore

justified practically speaking to think of the Yflr terms as

representing the deviations in floor averages. In fact,

should future data analysis show substantially more cor-

relation in these floor averages, it can be included by

relaxing the independence assumption on the Yflr terms.)

Following the same derivation as Eq. (11-1-4), we have

29



cov[w(x0,y0 ),w(x2 Y2)I = a bld+Pm as e_- 2/d (II-1-12)

A priori, it is antitipated this "stacking correlation" will

decay with m, the number of floors separating the two loca-

tions. Three different forms of pm will be examined31 later

in order to fit the available data.

(i PM = hm (h <.l)

This is the formula derived directly from the simplest,

first-order autoregressive process with a discrete param-

eter, namely story number.

(ii) Pm = constant, independent of m.

(iii) Pm = f(m), a general function of m.

To gain insight into the proposed model and to fit its

parameters to commonly available data, let us now determine

the dependence of the mean and variance of the total load and

unit load as functions of the floor area and of the number of

floors involved. First, consider a square area A(a=b=4 )

on a single floor (Eq. (11-1-5) and Eq. (II-1-10)).
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E[L(A)] = f/NJ/N
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2 +a2 )A2+cr2  )(a bld afl)A S 7dA[erf (8a) (1-e-A/d) 2

where erf( ) is the error function(1 9)3,(1 7)

erf (-) = u

0

1 e -t 2/2

v '7T

Let us define the unit load or the spatial average of

load intensity as:

U(A) = L(A)/A = Ybld+yf r+
1

E:(x, y) dxdy

Its mean and variance will be

E[U(A)] = E[L A)]

Var [U (A)]

mA
7- = M

= Var[ I) -

(11-1-13)

_ Var[L(A)]
A

d fi+a2r s 2 ( r)[e fe (

(1-e-A/d 2 (11-1-14)

Let
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K(A) - a2 wd[erf -, (1-e-A/d) 2  (I1-15)

Then

Var[U(A)] = abld+aflr+ K (A) (1I-1-16)

It is apparent that when the area A is sufficiently large

compred odK (A)compared to d.K approaches zero and Var[U(A)] approaches a

2 2a constant value, abld+oflr. Therefore if A/d > "'30 *

2 ld+a2

2 2Var[U(A)] = bld +a(f1r

As discussed above this is apparently the case for A = total

floor area, when U(A) is simply the average floor load. For

intermediate-sized areas the last two terms in the parenthe-

sis of Eq. (11-1-15) are small compared to the first term and

therefore can be neglected. The first term can be further

simplified since

erf( ) 1

for intermediate area, say > 4. Hence

Var[U(A)] = abld+a a2  K(A) a2  +a2 r2 ' ddfr spXI bId f-r- sp
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Note that the dependence of the last term on A is the same as

that found for the total variance versus A when one adopts the

"independence model" used by Horne(6 ) and Rosenblueth .

For small areas (A < 110d) all terms are important.

The "nominal column load" will be considered next. This

load is defined as the sum of all loads on the conventionally

considered tributary area of the column. This is not the

real column axial force because owing to the static indeter-

minacy of a typical structure on the conventional tributary

area only part of the load on the conventional tributary area

will transfer to the column and the rest will transfer to

other surrounding columns. Similarly a portion of the loads

on the tributary areas of these columns will be transfered

to the column in question. Let L(An) be the total nominal

column load from n floors. Each floor has equal area A.

Consider the two floor case first (Fig. 11-2):

L (A2) = w (x, y) dxdy+ w(u,v)dudv
0 0

where w(x,y) and w(u,v) are load intensities on the dif-

ferent coordinate axis (x,y) and (u,v) shown in Fig. 11-2.

Then (see Appendix A)
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E[L(A2)] =

Var[L(A
2) I

Jab mdxdy+fc dmdudv

=JJJb abcov[w(x 1 y) ,w(xlpyl)]dxodxldyody1

+2f afbf cdcov[w(xY) ,w(u,v) ]dxdydudv

+J c d dcov[w(uv,0),w(ul,vl)Iduoduldvodv1

Assume that two floor plans

b = d, and substitute Eq. (

are identical,

11-1-9)

i.e. a = c and

and Eq. (11-1-12) into

the above equations:

E[L(A
2 )] = 2Am

Var[L(A
2 )] =(a 2 )A 2 fafafbfb 2 -r2/d

=[(bld+clflT)A +JJJ0cr

2 A2+dx 0dx 1dyodyll+2[abldA p
jafafbfb

dxdudydv]

= 2 (ab2d+afr)A 2+2AK(A)+ 2abdA 2+2p AK(A)
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These formulas are very easy to extend to n floors.

E[L(An) nAm

Var[L(An)] = (% d+a21r)A 2+nAK(A)+n(n-1)cTbldA2

n-i
+ 1 2(n-m) pm AK (A)

m=1
(1 1 -1-19)

In terms of unit load:

L(A n)
U(An = nA

E [U(An)] =

Var[U(A )]

nL (An nAm
E[ nA= iiA = m

L(A n) Var[L(An)]
= Var[- nA = n2A2

2Y fir + K(A) + 1 2 (n-m) P K(A)
bid n nA n =1mAn m=l

(11-1-20)

In order to determine their characteristics and to

facilitate parameter estimation, we next examine different

forms of Pm:
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h < 1(i) Pm = hm

then

rm Var[U(A ) d a
fl*oo n bid (11-1-21)

In this case all the column variances will converge to the

same limit independent of the area A on each floor.

(ii) Pm = constant = PC

then

1im Var[U(A )d+ P K (A)
n- oo n bld~~ Cr A

Since K(A) is different for different areas, the column load

in this case will approach different limits for different

areas (unless pc = 0).

(iii) pm = f(m), a general function of m

The values of Pm can be estimated individually, sequentially,

i.e., use the available data for Var[U(An)] versus A and n

to estimate p1 first and then p2 etc. Inspection of

Eq. (11-1-20) reveals that for fixed A the variance of U(An)
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will have one term independent of Pm that will decay like

1/n, and a second term which will depend on the form of pm

Assuming, following a priori judgement, that p is a positive,

decaying function of m, the forms of decay of Var[U(An)]

versus n possible are restricted to those between 1/n and

those independent of n. If another form is observed in the

data, it implies that pm does not conform to this a priori

assumption. This phenomenon was in fact observed in the

data to be considered.
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11-2: Comparison of different load models with existing data

There are some load survey data sets available but only

Mitchell and Woodgate(3) present the data in such a way that

it can be readily adopted for this study. (A brief descrip-

tion of their work is presented in Appendix B). Therefore

their results will be used to estimate all the parameters

introduced in the previous section. When new data becomes

available it can be used in the manner to be demonstrated to

re-estimate the parameters and to check further whether the

model assumptions are appropriate.

Two sets of the reduced data from the report of Mitchell

and Woodgate(3).( 20 ) are particulary useful in estimating

the value of second-moment parameters

(i) The coefficient of variation, /Var U(A)] versus

the area (Fig. 11-3) which can be used to estimate three

parameters; abld+afr a and d. (Fig. (11-3) is a slight

modification of the original data. See Appendix C).

(ii) The column load data (Fig. 11-4) which can be used

to estimate the remaining two parameters; pm and a 2m bld

The detailed estimation will be demonstrated step

Other, more direct schemes of parameter estimation are
possible if one has access to the raw data
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by step below.

(i) From Eq. (11-1-17) the variance of the unit load

on an area on a single floor will approach (a2ld+a fr) as the

area becomes large. Therefore estimate the value of

(a ld+a ) by the variance of the largest area reported
bl flr

(see Table B in Appendix C).

a2 +a2 = 20.25* ((b/ft2)2 (1-2-1)
bld flr

(ii) Eq. (11-1-18) could be used to get an estimate

of the value of the product of a2 and d in the range ofsp

the intermediate area; then Eq. (11-1-14) and a small area

could be used to solve for the individual 
values of a2

sp

and d. In short the data is fit at two points. Unfor-

tunately no pairs of values can fit the data from Mitchell

and Woodgate(3) consistantly at all points. An alternative

is to find the value of a2  and d which will produce a
sp

minimum sumt of the squared error (SSE) of the standard

The units will be in feet and pounds throughout this work.

tThe sum is taken here over the nine data points (A value)
shown in Fig. 11-3. This choice may put undue emphasis
on the smaller areas owing to the particular choices of A
adopted by Mitchell and Woodgate. Weighted least squares
could also be used.
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deviation. The results are plotted in Fig. II-5, where the

integer d value giving the minimum SSE for each of a set of

sp
a = 260. The minimum square error is at
sp

a2 = 260 (lb/ft 2)2
sp

d = 9 ft 2  (11-2-2)

Notice that we use the minimum SSE of the standard deviation

and not that of the variance because the latter will place

too much emphasis on the small areas where the variance is

high. With above parameters the results are plotted in

Fig. 11-3. The fits obtained by two other sets of parameters

are shown by dotted lines.

(iii) Use the column load data to find the form of pm

and the values of parameters.

The column data show a rather unusual trend. The

variance drops from 1 story to 2 stories by about 48% then

stays constant up to 7 to 9 stories. Beyond that the vari-

ance increases again. It is not clear why the tail went

upward. One possible explanation is that the sample of

taller buildings was too small for the statistics to be

meaningful. This part (more than 8 stories, except A = 624
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where n = 8 is not considered) will be neglected from sub-

sequent consideration.

From the figure of the column load data where each

curve approaches a different limit it is clear that pm hm

can-not fit the data (see eq. (II-1-21)). The second form

PM = PC will be examined first. Again, there is no feasible

way to estimate the parameter separately. Least square

fitting was used again. The following values given the best

fit (Fig. 11-6).

a 2  3
bld

P C = 0.7 (11-2-3)

Next consider that Pm is an arbitrary function of m so that

the model will fit the data completely. As discussed before

the data shows the following trend;

Var[U(An)] 0.52 Var[U(Al)] for n > 2 (11-2-4)

Substituting Eq. (11-1-16) and Eq. (11-1-20) into the above

equation

0 
2 + flr + K(A)+ n 2(n-m)p K(A) 0.52( 2 2 K(A)

bld n nA ~y m=l M A bld flr A

(11-2-5)

42



Use the values of the parameters found from previous fitting,

i.e.

2
asp - 260

d = 9

2 +a2 0.25
abld 0 flr 2

2
bld =

then solve

Consider A

the value of pm sequentially from Eq. (11-2-5).

= 336 first. The results are shown in Table (II-1)

Table II-1

n 2 3 4 5 6

m 1 2 3 4

PM-0.08 1.44 0.942 0.931 0.932

The results show that any floor is practically uncorrelated

with its adjacent floor but highly correlated with the rest

of the building. (Note that p > 1 is, of course, impos-

sible. The value p2 = 1.44 is merely the solution from

Eq. (11-2-5).) There is, as yet, no reasonable explanation

for this conclusion. Similar results were found for
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A = 151 and 624 also. (A similar pattern with respect to

p and p2 will also emerge if a2  is changed from the value

found in the previous fitting.)

Another way to investigate the model is to assume pm

equals a constant, pc , and then choose Pc so that the model

fits the data for a chosen value of n. This implies finding

for some n the value of p that will satisfy Eq. (11-2-5).

The results are shown in Table 11-2 for several values of

n with A = 336. The value of Pc (=0.7) obtained above

Table 11-2

n 2 3 4 5 6 7

PC -0.08 0.427 0.597 0.682 0.732 0.769

fits the results in Table 11-2 except when n = 2. Therefore

the values in Eq. (11-2-3) will be used in the remainder of

this work.

One way to improve the fit to the column load is to in-

clude the correlation between two aflr's. This may in fact

exist. However, at the present stage we would like to keep

the model as simple as possible. Any improvement can be

introduced when new data becomes available. Estimating

correlation among the a f1r variables could best be done

by looking directly at the correlation within a building of

pairs of average floor loads spaced m floors apart.
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11-3: Influence Surface

In structural design it is not the load itself but dif-

ferent load effects, such as axial load, shear, moment etc.,

which are the factors used for the design of an individual

member. It is therefore necessary to transform the load into

the load effect in the process of the design. The first

step will transform the load from the floor to the surrounding

frame. Assuming linear behavior of the structural system,

there are several methods available (such as Navier or Levy

type solutions (21)) to represent the behavior of the floor

slab. For most purposes, however, it is believed that a

simplified influence surface(22),(23),(12) is the most

suitable procedure. Even though this method is approximate

it has the advantage of simplicity. All the related equations

will be greatly simplified, e.g., the use of a three-degree

polynomial to replace an infinite series. This method will

be explained below.

An influence surface is the two-dimension extension of

the principle of influence lines. The ordinate I(x,y) of the

influence surface at any point (x,y) is the influence on

some desired load effect due to.a unit load at (x,y). The

Muller-Breslau principle states that an influence line (or

surface) for a given load effect may be constructed by re-

moving the constraint associated with that load effect and

introducing a corresponding unit displacement. The defIected
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shape of a beam without distributed load is governed by:

iv
y =0

a fourth order differential equation. Its general solution

is a three-degree polynomial. There are four degrees of

freedom involved which can be solved by introducing four

boundary conditions. Following Ayer and Cornell's( 23 ) as-

sumption simplified influence surface may be obtained by

multiplying appropriate influence lines. This is not an

exact solution for a flat plate but is probably as accurate

as is the representation of the real structure by a flat

plate.

As an example consider the axial load on a typical in-

terior column (Fig. 11-7). The influence line along the X-X

axis approximately equals the influence line for a two span

fix end beam (Fig. 11-8) which can be constructed by assuming

a unit vertical displacement at the middle support. The

deflected shape of the beam is the influence line. Due to

the assumed symmetry only one span will be considered. Four

boundary conditions must be satisfied, i.e. zero slope at

both ends, zero displacement at one end and unit displace-

ment at the other. The above constraints lead to the fol-

lowing equation (Fig. 11-9):

z = 3x 2-2x 3 0 < x <
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where

z = deflection of the beam

x = relative location of the beam (0 < x < 1)

The influence line along Y-Y direction is the same.

The influence surface for a bay is approximately the product

of the two influence lines (23),(12), i.e. (Fig. II-10)

I(x,y) = (3x2-2x 3 )(3y 2-2y 3 ) 0 < x < 1, 0 < y < 1

A five bay six story frame is selected for the illustration

purpose in this work (Fig. II-11). For any particular force

resultant of interest the influence line along the frame

was constructed by a readily available program called

"STRUDL II,,(24) A unit deformation corresponding to the

force resultant of interest was the input and the displace-

ments and rotations for all joints were the output. The

influence line can be constructed accordingly. Along the

direction perpendicular to the frame it is assumed that only

two adjacent spans contribute. Consistent with the assump-

tion of behavior approximately like continuous one-way slabs,

the influence line perpendicular to the frame will be as-

sumed the same as that of the axial load (Fig. 11-9). This

implies that the loads on the slab are transformed to the

frame first like a column load and then produce the
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influence to the load effect interested as if they were con-

centrated loads on the frame. Part of the influence surface

for the moment at mid-span of beam A-B is shown in Fig. 11-12.

The influence surface will be used throughout this work.

It will not be mentioned explicitly but whenever we encoun-

ter load effect it should be understood that the influence

surface as described above has been used.
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11-4: Arbitrary-Point-in-Time Load:

The previous two sections dealt with the first and

second-order moments of the unit load, U(t). Next we con-

sider the shape of the (marginal) probability distribution of

U(t), that is the PDF of the unit load that exists at a point

t along the time axis (Fig. 11-13). The load comes from two

different sources: in part from the personnel in the office

and in part from the sustained load (See chapter I). Due to

the different characteristics of these loads they will be

treated separately. The sustained load in a particular office

will change from time to time, i.e., it is a stochastic pro-

cess, but under the assumption that the process is sta-

tionary in time, the marginal or one-dimensional probability

distribution will be the same along time axis, i.e.

fU(t)(u) = fU(u) for all t

where fU(t)(u) is the PDF of the unit load U(t) as discussed

above. Assuming stationarity in space and time, most histo-

gram results of the load survey conducted by many research-

ers(3),(8),(11) can be interpreted as belonging to this

category.

The probability distribution of the unit load for dif-

ferent areas can be obtained directly from load surveys
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(under the stationary assumption described in Chapter I).

The report of Mitchell and Woodgate(3) is most useful in

this regard because they presented the data in such a way

that it can be adopted for such statistical analysis directly.

As discussed in Appendix B the only discrepancy is that

their report includes both normal working people load and

allowances for loads attributed to transient concentration

of people, in addition to the directly observed or sustained

load results. Owing to the data recording technique, there

is no economical way to separate the latter loads from the

total load reported. Therefore the data will be used as it

is with the understanding that there are some additional

non-observed "loads" contained in it. The subsequent analy-

sis will at a minimum demonstrate how the model and such

data can be analyzed. At best, the additional loads may

have had little influence on means, variances and histograms.

This is a stronger possibility for the smaller areas (see

Mitchell and Woodgate(3), Table 8).

The sample frequency distributions for different areas

are plotted in Fig. 11-14. The distributions are highly

skewed to right when the area is small. The skewness gra-

dually diminishes as the area becomes large. All the distri-

butions can be approximately fitted by different gamma

distributions (Appendix D). It is anticipated that this

conclusion will remain true for other sources of data as
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well. It is therefore assumed in this work that the

(marginal or one-dimensional) probability distribution for the

unit load U(t) from any area is gamma. The mean and the

variance are given by Eq. (11-1-13) and Eq. (11-1-14).

k and X of the gamma distribution can be derived as:

2
k=m (II-4-1)

U7

where

m = mean of the unit load = E[U(t)]

a2= variance of the unit load = Var[U(t)]

with the value of k and. known the gamma distribution is

completely defined. The load associated with any desired

probability level can be derived easily(25),

The load at any arbitrary-point-in-time contributed

by the normal occupants varies widely but its intensity, with

high probability, is very small as compared to those from

stationary load 4 . Some researchers (3),(l) included the

personnel load in their survey but they did not treat it

exactly as an arbitrary-point-in-time load. They asked about

the normal working people in the room, which is sort of an

average people load, instead of recording the number of people
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they saw at the time of survey. Besides they did not report

the people load separately and there is no information about

its probability distribution. For this reason the personnel

load will be treated deterministically. Its assumed value

is set equal to the expected (average) value, which is

estimated to be about 1.5 psf (2 persons/200 ft 2).

Alternatively the above two loads, stationary and per-

sonnel load, can be lumped together as Mitchell and Karman

did. However, due to their different stochastic properties,

we think it is more appropriate to separate them. We also

suggest that any new load survey should think about this

problem and collect more pertinent data.
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11-5: Maximum Lifetime Sustained Load

II-5a: Introduction

The maximum lifetime sustained load is the maximum sus-

tained load during the lifetime of the building. The purpose

of this section is to derive its probability distribution.

Karman (1) Mitchell(16 ) and Meaney 1 4 ) used a fixed number of

changes of occupants to find the distribution of the maximum

load, but considered only simple unit loads on areas in con-

junction with these time changes. The logical extension,

which will be discussed in the following sections, is the

combination of the above idea with the more complete sus-

tained load model from Section II-la.

The general behavior of live loads was discussed in

Chapter I. Certain simplifications must be made f2r

rigorous theoretical consideration to be tractable. There-

fore it is assumed that the load is constant under the same

occupant until either a change of occupants or a re-

arrangement of the furniture by the same owner occurs

(Fig. 11-15). The small fluctuation during that period will

be neglected. A more complicated model can include the

presumed trend in this variation. As shown in Fig. II-16

the load might be increased linearly with time since the

last changes. Then the maximum load during an interval is
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L = L0+0s 0

The magnitude of the load L will not be independent of the

time to the last occurance. If, as previous authors have im-

plicitly done, we assume changes take place at regular time

intervals, so, then our interest is only in the random

variable Y = Y0 +es0 , and the analysis is unchanged, provided

information can be obtained about the random variables Y0

and e. If, on the other hand, load changes are assumed (as

will be done here) to take place at random points in time, the

time intervals S0 will be random. In this case the important

load magnitudes, Y = Y + O0S, and the number (and times) of

load occurence will not be stochastically independent. The

analysis of such a model becomes much less tractable than

that which follows. Therefore the simplified model (Fig.

11-15) will be used in this work. The second model may have

to be considered if there is any new data in the future to

show strongly that the load increase under the same occupant

is significant.

II-5b: Probability Distribution of the Maximum Lifetime

Sustained Load for a Single Area

Let

z = max L(T)
0<T<t
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where L(T) is the total load at any time T, then

F z(a) = P[z<a] = P[L(O)<a]P[no up-crossing of a from 0 to t]

(II-S-I)

The first term P[L(O)<a], which equals the CDF of L(t) at a

or FL(t)(a), can be calculated from the results of the pre-

vious sbction. In order to evaluate the second term the

results of the survey about the change of occupants must be

examined. Mitchell and Woodgate(3) used a clever way to

sample the period between the change of occupants by sear-

ching through the telephone directories. The results are

plotted in Fig. 11-17. As shown in the figure an exponen-

tial function fits the data approximately*, which suggests

that the occupants changes follow a Poisson Occurance mo-

del (25) with mean rate V. Under this assumption (and

assuming independence of the individual load values), the

up-crossings are approximately a Poisson process with ran-

dom selection(25). Then the probability of no up-crossing

in 0 to t is:

P[no up-crossing of a from 0 to t] = e (11-5-2)

* Relatively short occupancy times (0 to 2 years) may have
been missed by this data collection scheme. Also if load
changes are assumed to occur with same occupant re-
arrangements as well as with occupancy changes, the short
duration interval (0 to 2 years) will be represented.
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where V is the average rate of up-crossings of threshold le-

vel a. The approximation arises from the lack of strict indepen-

dence of the up-crossing event. (There can not be two in a

row for example.) The dependence is weak if the crossings

are relatively rare, i.e., if the threshold is not too low,

ignore this dependence. Eq. (11-5-2) is exact under the

Poisson occurance assumption. If the load changes do not

follow Poisson occurance, Eq. (11-5-2) still holds for high

load levels, i.e., if a is high and the expected number of

crossings is much less than one in 0 to t. Then

P[no up-crossing of a from 0 to t]

= I-P[l up-crossing]-P[more than 1 up-crossing]

If P[more than 1 up-crossing] is much less than P[l up-

crossing], then

P[no up-crossing of a from 0 to t]

1-P[l up-crossing]

On the other hand,

mean number of up-crossing = vat = 1*P[l up-crossing]

+2*P[2 up-crossings]+3*P[3 up-crossings]+...
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If the events are rare, then

00

Z i*P[i up-crossing] << P[l up-crossing]
i=2

therefore

mean number of up-crossing = P[l up-crossing]

and thus

P[no up-crossing of a from 0 to t] 1-mean

number of up-crossing
-v t

=-vat= e a

for vat << 1

The next step is to find va, the mean rate of up-cros-

sings. Consider an infinitesimal time interval At. Under

the Poisson process assumptions, the probability that more

than two load changes occur in At is assumed zero (strictly

speaking it is a smaller order than the probability of 1

change). Therefore the probability of more than two up-

crossings is also zero:

P[n up-crossings in At] = 0 for n > 2

va is the (expected) rate of up-crossings and the expected

number of the up-crossing in At will therefore be:
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v At = E[number of up-crossings in At]

= Xi n*P[n up-crossings in At]
n=O

P[l up-crossing in At]

An up-crossing will happen when the load at the beginning of

At is smaller than a and larger than a after At (Fig. 11-18).

Hence

v at = P[l up-crossing in At]

= P[{L(t+At) > a}fl{L(t) < a}]

It is useful here to anticipate a more general development

which will be discussed next, to follow the following lines

of development. Since L(t) changes value only at changes in

occupant we can write

VaAt =P[(there is a change of the occupant in At)n

{L(t+At)>a}f{L(t) <all
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= P[There is a change of the occupant in At]*

Pt{L(t+At)>a}f{L(t)<a}j(There is a change of

occupant in At)]

Now(2 5 )

P[There is a change of the occupant

(11-5-4)

in At] = v At

(11-5-5)

where v = average rate of the changes of a single occupant.

Given that there is an occupant change in the time interval,

L(t+At) and L(t) are two (assumed independent) random vari-

ables with the same CDF, FL(t) Therefore

P[{L(t+At) > a1f{L(t)<a} I (There is a change of occu-
pant)]

= [1-FL (t) (a) ]F L (t) (a)

Substituting Eq.

v at = v At

(11-5-6)

(11-5-5) and Eq. (11-5-6) into Eq. (IH-5-4):

[1-FL(t) (a)]FL(t) ()

Since v. is independent of time, the mean number of oc-

curances in 0 to t reduced to simply
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v t =ftv At = vtI1-FL(t)(c)]FL()()
0 oaL(t t

(11-5-7)

Combining Eq. (II-S-1), Eq. (II-5-2) and Eq. (II-5-7) we

obtain

F z(a) = FL(t)(a)exp[-v at]

FL(t)(a)exp{-vt[l-FL(t)()FLt)(a)} (LI-5-8)

If we have interest in only the higher loads, then

FL(t (a) 1

and

1-Fz (a) 1-exp{-vt[l-FL(t)()}= vt[I-FL(t)(o)]

(II- 5-9)

This is of the same form that Karman(10) obtained for higher

loads when he derived the maximum load by assuming a fixed

number, n, of load changes; in Eq. (11-5-9) the expected

number of load changes, vt, takes the place of his n.

II-5c: Probability Distribution of the Maximum Lifetime Sus-

tained Load for Multiple Loadings

Consider again the load on a column pictured in Fig.
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11-19, and recognize that there are time variations in the

floor loads. Let

n
F(t) = { Li(t)

i=l1

be the sum of n total loads at time t. Note the difference

in character of any Li(t) and F(t). The latter has a higher

mean rate of jumps and the relative magnitude of the fluctua-

tions to the mean load is small. (Note the vertical scale

change in Fig. 11-19.) The same model will obviously also

treat different occupants on the same floor or any mixture

of number of occupants and number of floors.

Define the maximum column load as

Zn = max F(T)
0 < T < t

Following the same derivation as in the previous section:

P[Z n<a] = P[F(O)<a]P[no up-crossing of a from 0 to t]

and
-V t

P[no up-crossing of a from 0 to t] = e a (II-5-10)

We. have already demonstrated that the reason why the load

will jump from below a to above a is due to the load changes.
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There are n different loads in this case. Each load may in

general have different probability distribution or different

occupancy change rates vi and therefore different associated

rates of up-crossing, (va)i. Let

(Va)i = average rate of up-crossing of a-threshold due

to a change in the ith load (or occupant)

then

P[no up-crossing of a from 0 to t due to ith load
-(v ).t

changes] = e ( 1 (I-S-11)

Consider Eq. (11-5-10).

P[no up-crossing of a from 0 to t] = P[(no up-crossing

of a from 0 to t due to 1st load)U

(no up-crossing of a from 0 to t due to 2nd load)U

(no up-crossing of a from 0 to t due to nth load)]

Assume that (consistant with Poisson occurances) no two

load changes occur at the same time and that the load changes

by different occupants are independent of each other, then

all events in the above equation are independent. Then
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P[no up-crossing of a from 0 to t]

= P[no up-crossing of a from 0 to t due to 1st load]*

P[no up-crossing of a from 0 to t due to 2nd load]*

P[no up-crossing of a from 0 to t due to nth load]

=e-(Va)It e -(v,2t -(v ) t
e atn

(II-5-12)

Comparing with Eq. (11-5-10),

V= (V+(Vn

n

=1 a
(II-5-13)

Again, following the same derivation as in previous

sections up to Eq. (11-5-4),

(v) jAt = P[There is a change of the jth occupant in At]*

P[{F(t+At)>acF(t)<a}J(There is a change of the

jth occupant in At)] (II-5-14)
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P[There is a change of the jth occupant in At]=v At

(11-5-15)

in which v is the mean rate of occupancy changes in the

(or area). And

P[{F(t+At)>anF(t)<a}d(There is a change
cupant in At)]

=fP[F(t+At)>aIF(t)=x]fF(t) (x)dx
0

of the jth oc-

(11-5-16)

where fF(t)(x) is the PDF of the total load F(t).

tuting Eq. (11-5-15) and Eq. (II-5-16) into Eq. (II-5-14),

(va)jAt = v AtfP[F(t+At)>a

= v AtfP[{F(t+At)-F

Since the jth load changes,

F(t+At)-F(t)
n

i= 1
i/j

F (t) =xfF(t)(x)dx

fF(t) (x)dx

(II-5-17)

then

L (t) +L. (t+At)-
J

n
L. (t)~

(11-5-18)= L.(t+At)-L.(t)
J J
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Substituting Eq. (11-5-18) into Eq. (11-5-17),

(ValjAt = v Atf P[{L (t+At)-Lj (t)1>_-xF(t)=XIfF(t) (x)dx

(1I-5-19)

Let W. equal the random change in load on the jth floor when
J

a new load replaces an old one.

W. = L.(t+At)-L (t) (11-5-20)

Assume as before that the new load is independent of the old

one and that they have identical (gamma) probability distri-

bution. Then the distribution of W. can be derived from ele-
3

mentary probability theory. The mean of W is

E[W.] = mW = mL -mL. =0
L JL

Var[W.] = .+ U2 2a2L. L. L

The correlation between W. and F(t) will be examined

next. W. and F(t) are not strictly independent, because

JJ
they both are functions of the random variable L (t). But

their covariance is

65



cov[W.,F(t)] = E[(W -mW ) (F (t) -mF (t))

=E [W. F(t)] - mW mF (t)

=E[{L. (t+At) - L (t) }F (t)]

=E[L. (t+At)F(t)]-E[L (t)F(t)]

=E[L (t+At)

Ignoring,

loads

n

SLi -E[L(
n

L (t)]
i=l

for this argument, the correlation among floor

cov[W ,F(t)] = mL. - ( . . mL mL.+E[L 2) = -a2L - L L= 13 L

The correlation coefficient between W and F(t) is

-a
2

cov[W.,F(t)] L

W aF(t) /2 aL.F(t)
3 3

The absolute value of the correlation coefficient is

0.707 even if only a single floor, when aF(t) 2 'W.

this case will be handled by the method described in

II-5b rather than the method above. For more floors

down to

But,

Section

it will
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fall off with the rate between i//n and 1/n. Therefore the

worst case we have is when n = 2 and the correlation coef-

ficient equal to 0.707//Z = 0.5. (Note that the above argu-

ment applies only to the case where all L. 's are of the same

order of magnitude. The case where one load dominates will

be discussed later). The conclusion is that W and F(t) are

not highly correlated, therefore they will be assumed indepen-

dent.* The conditional probability in Eq. (II-5-19) can then

be replaced by a marginal value.

P[{L (t+At)-L (t)}>a-xIF(t)=x] = PUL (t+At)-L.(t)>a-x]

= l-Fw (a-x)

where Fw (x) is the CDF of W .

If n or A is large F(t) is at least approximately nor-

mal. This approximation is also checked numerically in

Appendix B and found satisfactory for practical bay sizes.

Then

f F(t) 1 exp[- aF(t)2

F(t)

*This assumption is checked numerically against an exact
result in Appendix E for the special case when the Li(t)ts
are independent.
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where

mF(t) = mean of F(t)

aF (t) = standard deviation of F(t)

(See, for example, Eq. (11-1-19) for values of two moments

for simple nominal column loads.) Substitute into Eq. (11-5-19)

(va)jAt = v At[1-F (a-x)] exp[-2( (t) 2
Sa F(t)

dx

Since (v ) is independent of t

(va) t = jt a)jo t[-FW (a-x)] F t)

exp[- x-FF(t) I dx
F*\ (t)

(11-5-21)

All (v a)'s can be found from Eq. (11-5-21) and

n
v(t = (va)i
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Then, combining results

Fz n(a) = FF(t)(a)exp[-vatI

= 1-va t (for large threshold a)

(11-5-22)

If all loads have identical distributions and common v 's,

then

V = v for all j

(va i = (va)j for all i and j

vat = n(v )aj

fnt[-F1 (a-x)] exp[- (x-mF(t) 2dx
0 j F (t)V 7F( 7Ft)

(11-5-23)

Next, the probability distribution of W will be derived.

Recall that

W = L (t+At)-Lj(t)

and the probability distribution of L (t) is assumed gamma.
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Consider the case that the parameter k is integer, then

k k-i e Xx
fL (x) Xx e.

L )(k-)!

The distribution of W. is obtained by simple convolution(25)

Several derived distribution of W. are presented below. The

distributions are symmetrical about zero; only the results

for positive argument W or (a-x) are shown.

FW (a-x) = 1 - 1- (-x) for k=l

FW (a-x) = 1-e-(-x)[T + (a-x)+ X2 (a-x)2

for k=3

Fw (a-x) = l-e(a [XI + 9 x(a-x)+ 29 X 2 (_-x) 2

+ . X3 (a-x)3 + = X4 (a-x) for k=5

(11-5-24)

Note that F( (a-x) is a function of X(a-x) only. It is
J

shown in the Appendix F that we can also use the unit

load to replace total load in the Eq. (11-5-21) and Eq.

(11-5-22).

There is no guarantee, of course, that the distribution

of L.(t) will have an integer k. In most cases they will
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not. There is apparently no closed form solution for Fw (a.-x)

when k is not integer. Two approaches can solve this prob-

lem; first, solve Eq. (11-5-21) numerically or second, solve

Eq. (11-5-21) twice with two integer k and then interpolate

the results to the desired k value. e.g., x(k 2 .6)

0.4*x(k3 )+0.6*x(k2) where x(k2. 6) is the load due to k = 2.6,

etc.

The second approach is much preferred because of its

simplicity and it will be used in this work. Its accuracy

will be examined next. Assume an arbitrary case of column

load with 150 sq. ft. area and a unit influence surface.

The maximum lifetime sustained load corresponding to a pro-

bability 0.99 of not being exceeded was calculated from Eq.

(11-5-22) for different integer k values. (Note that the

values of X are so chosen that they all have the same mean.)

The results are plotted in Fig. 11-20. The figures show

that the results for any two adjacent k values are so close

that simple interpolation will have a high accuracy. The

only exception is when k lies between 1 and 2. The gap is

larger for smaller n and smaller k. However the interpola-

tion still can be used because the load is higher for smaller

k and the error will remain small in percentage basis. Also

2 (3)
k is greater than 2 when the area is greater than 150 ft .

Most cases that we are interested in will have k greater than
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2. Another case with a more typical area, 624 ft.2 , was

examined also. The results (Fig. 11-21) are the same as

the previous one.

A closed form approximation for va and hence Fz (a) is

derived in Appendix G. The range of its application is rather

limited, therefore it will not be discussed here.

The independence between W and F(t) will be re-examined.

Recall Eq. (11-5-19):

(vQ At = v Atf P[{Lj(t+At)-L (t)>a-xF(t)=x]fF(t)(x)dx

(11-5-19)

If all L (t)'s are of the same order of magnitude (like the

column axial load where L.(t) is the contribution due to the

jth floor) W = [L (t+At)-L (t)] and F(t) are approximately

independent. This was discussed before. However in a situa-

tion where one load component, say L,(t), dominates, i.e.,

2 2
Li(t) ~ cF(t)

then the correlation coefficient between W. and F(t) will be

as high as 0.7 and will not fall off with n. The indepen-

dent assumption is not very appropriate. Let us examine

the correlation between Li(t) and F(t). Since
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n
F(t) = L (t)+L.(t) = (SL)n-l+Lj(t)

j1
joi

The correlation coefficient between F(t) and Li(t) will be

i~)+(SL)n-, ()L(t S~-

PF(t),Li(t) =L1(t) n- 1 i n-i
1 F(t) aL.(t)

where P(SL)n-l,Li(t) is the correlation coefficient between

(SL)n-1 and Li(t). There is no reason to believe that

P(SL)n-lLi(t) will be negative. (The negative correlation

coefficient under the linearity assumption means that the

larger the Li(t), the smaller the (SL)n-, and vice versa.)

Assume that P(SL)n-l,Li(t) is positive, then

2
Li(t)

PF(t),Li(t) aF(t)'Limt

This shows that F(t) and Li(t) are almost perfectly correla-

ted. Assume that the above relation is true, i.e., F(t) and

L (t) are perfectly correlated, then
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P[{L.(t+At)-Li(t)}>t-x|F(t)=x] = P[Li(t+At)>a.]

=1-FLim ()

Substitute the above equation into Eq. (II-5-19):

(va iAt =
f a

viA tJ [i-F Li()()]fFt)x)d

= viAt[l-FL (t)(a)]FF(t)(a) (11-5-25)

Thus (va )i corresponding to the dominating load Li(t) can

be evaluated from Eq. (11-5-25). The load other than Li(t)

will be treated the same as before. A numerical example

will be used to check the above assumptions in Chapter IV.

II-5d: Probability Distribution of the Maximum LIfetime

Sustained Load Effect

Let G(A) be the total load effect of any kind from area

A, then

G(A) = I(x,y)w(x,y)dxdy

0

(11-5-26)
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where w(x,y) is defined in Section 11-2 and I(x,y) is the

coordinate of the influence surface at point (x,y). Its

mean and variance are (see Appendix A):

E[G(A)] = E[I (x,y)w(x,y)]dxdy

0

Smff I(x,y)dxdy

0

= M*V (11-5-27)

where VI is the volume enclosed by the influence surface.

Var[G(A)] =ffff I(x,y)I(x1 ,y1 )cov[w(x,y),W(Xyy)]

0

dxdx1dydy1  (11-5-28)

This last equation reduces to Rosenblurth's(7 ) if the w(x,y)

process is assumed to be "white noise", i.e., lacking spa-

tial correlation. The equation is identical to that con-

(9)sidered by Fader
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Recall that in Section II-5b and Section II-Sc, where

we derive the maximum lifetime sustained load, there was no

restriction on the total load, Li(t). If we replace it with

total load effect, Gi(t), we will end in the same

Eq. (11-5-7) and Eq. (11-5-21). That is, for one

Vat = vt[-FG(t) (a)]FG(t) (a)

result as

occupant,

(11-5-29)

and for several occupants

(valjt = f V t[-F (a-x) a
0 3 aF(t) 2

1 /xmF (t) 2
exp[- - CF (t ) ] dx (II-5-30)

W = G (t+At)-G (t)

n
F(t) = Gi(t)

1

n
Vat = t(v )jt (II-5-31)

This is the equation needed to evaluate the probability
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distribution of the maximum lifetime sustained load effect,

Eq. (11-5-22). If we make the same assumption that the

probability distribution of Gi(t) is gamma, Eq. (11-5-24)

can be used in the evaluation of Eq. (11-5-30). This assump-

tion will be adopted in the subsequent chapters.

After the maximum load effect is found for a prescribed

probability level, the corresponding EUDL, that will produce

the same load effect when it is put on the structure, is

equal to the load effect divided by VI, the volume of

influence surface.

The above model can be used in a more general way. For

example in a column load case (Fig. 11-22) we can assume that

each floor has different tenants. The load changes on each

floor will be independent of each other. We can also assume

that the same tenant occupies both floor A and B. Then the

load on those two floors will change simultaneously. Under

this circumstance we can combine the load on floors A and B

as a single load and proceed as before to find the maximum

lifetime sustained load. Any other combination can be

treated in the same way. Thus the model can handle cases

ranging from a multiple number of tenants on each of a number

of floors through a single occupier of all floors.
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CHAPTER III

Extraordinary (Transient) Load Model

III-0: Introduction

The general characteristics of extraordinary transient

loads were discussed in Chapter 1. We seek in this section

the effect of a single event. The load model proposed below

can be best thought of by considering the load caused by

crowds of people but it is not limited to this source. Any

other extraordinary load that has the same characteristics

can be represented by this model also. Lacking other infor-

mation, it will be assumed here to represent all sources of

transient loads, including re-modeling loads.

There has been virtually no stochastic modeling of

these transient loads in the literature. (See Heaney (14) and

Karman(10 ).) The model proposed here assumes random oc-

curances in time of events which are characterized in space

by randomly located load "cells". This latter aspect of

the model is somewhat similar to the sustained load models

proposed by Corotis(12) and independently by Hasofer(1 3)

This chapter will develop the model and its analysis.

First the random load effect associated with a particular

event will be modeled and analyzed. Then, the random oc-

curance in time of these events will be considered, and the
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behavior of their maximum effect will be sought. The com-

bination of this extraordinary load with the ordinary (sus-

tained) load will be treated in Chapter IV.
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III-1: Load Model for a Particular Event

A distinguishing characteristic of the behavior of a

group of people that get together is that they tend to gather

in small groups. The number of groups (or load cells) depends

upon the area of the floor and the number of people in the

building. Each cell contains an uncertain number of per-

sons which may vary from cell to cell. Therefore the first

assumption is that the loads are grouped into N load cells

and each cell contains R items (Fig. III-1). Both N and R

are random numbers.

Consider a single load cell first. Let

Sr = Ql+Q 2 + ... +Q (ITT--i)

where

Qi = weight of the ith item, a random variable

Sr = weight of the sum of r items

Assuming that the weights of all items are independent and

identically distributed, the probability distribution of S
r

can be derived by convolution integration. Let

S = the weight of the sum of R items where R

is a random variable.
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Its cumulative distribution will be:

P[S<s] = F%(s) = I P[S_<stR=r]P[R=r] (III-1-2)
r

For situations other than such crowds (e.g. remodeling loads)

a cell and its weight S may represent a particular heavy item

or a cluster of items.

The area occupied by a load cell is assumed to be small

as compared to the whole contributing area. Therefore the

change in the value of the influence surface over the area

of the cell will be small. This difference will be neglected,

i.e., the influence surface will be assumed uniform over a

load cell. The load effect, P, due to a load cell is then

P = S*I (III-1-3)

where I is the value of the influence surface at the center

of the load cell.

P[P<p] = FP(p) = P[S*I<p]

= s [I< |15s]fs(s)ds
0

If, at the instant of maximum load effect, the loca-

tion of a load cell is assumed to be equally likely to occur
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at any point over the whole area under consideration, then

I, its influence value is a random variable and

P[I< JS=s] =
area with I< .

total area (111-1-4)

Hm =P 1+P2+...+Pm (111-1-5)

where Hm is the total load effect of m load cells. Its pro-

bability distribution can be derived in the same way as Sr

if all Pi's are assumed independent. Let

H = total load effect due to M load cells

where M is a random number

Then the CDF of H is

FH(h) = P[H<h] = Y P[HM<hIM=m]P[M=m]
M

= CDF of the extraordinary load effect

Theoretically the probability distribution of the

extraordinary load effect H can be derived following the

above steps. However there are some difficulties. First
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the probability distributions of Q, R and M are not known;

second no closed-form solution can be obtained because some

of the integrations may not be tractable analytically. There

are two approaches that can be employed to resolve this

problem; one is making some particular distribution assump-

tions so that all the analytical difficulties can be avoided

or solved by numerical integration; the other is an approxi-

mate method. The first approach is not preferred because our

knowledge about the extraordinary load is so limited that any

sophisticated assumption is not justified. Therefore the

second approach will be used and is described below.

The only distribution assumption required ultimately is

the shape of the distribution of H. It will be demonstrated

in the next section by a numerical example that the probability

distribution of P is "exponential-like" and that the distri-

bution of H is close to gamma. Therefore H is assumed to

be gamma distributed. Only its parameters are now required.

Assuming independence of R and the Qi, and of S and I,

the mean and variance of S and P are( 2 5):

E[SJ = mQ mR

Var(S] = m a2 + 2R Q Q R

E[P] = m m

Var[P] = m2 a2 +m2a+2a
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Assuming independence of M and the Pi, the equation of H has

the same form as that of S and therefore the formulas for

the mean and the variance are the same also:

E[H] = mPmM

Var[H] = mMaP + mP22

Once the mean and the variance are known, the gamma distri-

bution of H is completely defined.

In the above derivation only the means and the variances

of Q, R and M are used. It is much easier to make a rea-

sonable assumptions or estimations about their two moments

than about the complete distributions.
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111-2: Maximum Extraordinary Load .

The probability distribution of a single occurance of

the extraordinary load is discussed in the previous section.

Next we want to find the probability distribution of the

maximum extraordinary load. There is as yet no data about

the occurances in time of the extraordinary load available.

Assume that they follow a Poisson process with mean rate

Ve, then the CDF of the maximum extraordinary load in the

time interval 0 to t is( 25):

FL2)t(x) = exp[-v e(1-FH(x)t] (1II-2-1)

where L2  the maximum extraordinary load during the period

of 0 to t.

If we set t equal to the lifetime of the building, Eq.

(111-2-1) gives the CDF of the maximum lifetime extraordinary

load.

Because of the short duration and low mean arrival rate

of extraordinary events, if there is more than one occupant

involved, it is unlikely that they will have transient extra-

ordinary loads at the same time. (Neglecting this possibility

is exact if these loads are assumed to be instantaneous.)

Assume that the occurances of the extraordinary loads on the

no different occupants are mutually independent with average
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rates of occurance, ve., for i = l,2,...n0 , then
1

P[maximum extraordinary load effect from 0 to t < x]

=P[(maximum extraordinary load effect due to occupant 1 from

0 to t < x)U

(maximum extraordinary load effect due to occupant 2 from

0 to t < x)U

(maximum extraordinary load effect due to occupant n0
from 0 to t < x)J

=P[maximum extraordinary load effect due to occupant 1 from

0 to t < x]*

P[maximum extraordinary load effect due to occupant 2 from

0 to t < x]*

P[maximum extraordinary load effect due to occupant n0 from

0 to t < x] (111-2-2)

Substitute Eq. (111-2-1) into above equation:
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total noMF L(x) = JF t(X)

no
= 11 [exp{-v (H-F ( (x))t }]

1

no
= exp[-t ( F (x))] (II-2-3)

1 1

where

Ft (x) = CDF of the (total) L2 from 0 to t

F('t = CDF of L2 from 0 to t due to occupant i

alone

The term "occupant" can be broadly interpreted here.

It can represent the personnel of an individual room or a

set of rooms (in which case the mean number of load cells,

mM, would be relatively small). On the other hand, each

"occupant" might represent a firm occupying several floors

and the events their individual open house. Finally the

"occupant" might be associated with a building-wide event

(opening day, passing parades, etc.), in which mM, the mean

number of load cells, should perhaps be associated with the

total (public) area of the building. Finally it might be
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important to consider the possibility that all of the various

kinds of events can occur (some might be more important for

small members and some for larger). Then assuming indepen-

dence, the CDF, Ftotal, of each individual kind of occupant

can be found and their product (see the derivation of Eq.

(111-2-3)) is the CDF for all types of events. A general

equation of the CDF of the maximum load due to q different

independent events is:

F (x) = Fz (x)Fz (x).. .F z
max 1 max 2 max q max

(111-2-4)

where Fz (x) is the CDF of the maximum load Z . (Zi

itself may be a combination of different events like Eq.

(III-2-3).)

It is assumed above that the extraordinary load follows

Poisson occurance. This is not appropriate for people load

from seasonal parties, e.g., a Christmas party or a birth-

day party where the event will take place at a fixed interval

of time (one year). Under this circumstance the probability

distribution of L2 will be:

V t
FL21t(x) = [1-FH(x)] e (111-2-5)
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Eq. (111-2-5) can be combined with other types of load

(Eq. (111-2-1)) as part of Eq. (111-2-4).
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III-3: Example: The Extraordinary Load for a Column

The probability distribution of the extraordinary axial

load will be determined here to demonstrate the model and to

show that the results from the approximate approach are about

the same as those from exact numerical integration. Assume

that a column with a single floor is considered (Fig. III-1).

The exact integration will be discussed in Section III-3a and

the approximate approach will be discussed in Section III-3b.

III-3a: Exact Solution

Assume that all Q's (the weight of items) have the same

normal distribution and that they are independent of each

other with:

m = 145 lbs

a = 30 lbs

Then Sr is also normal.

Sr = N(r*145, vr*30)

The discrete distribution of R is assumed as shown in Fig.

111-2. The CDF of S can be numerically integrated according
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to Eq. (111-1-2). The results are shown in Fig. 111-3.

The influence surface for a column axial load is shown

in Fig. II-10. The results of the numerical integration from

Eq. (111-1-4) are shown in Fig. 111-4. Assume also that the

number of load cells has a Poisson distribution and that the

expected number is a function of the area:

Xm e- M
fM(m) = P[M=m] = M

E[M] = A-164 for A > 200 (111-3-1)M T

The last expression is simply unsubstantiated judgement, but

it is designed to reflect the fact that the number of people

per square foot will be (on the average) smaller during an

extraordinary event in a larger area. The particular numbers

were chosen to give an extraordinary event an expected total

load per square foot of about 7.25 psf at A=200 and about

3.74 psf at A = 4000.

Consider two cases with different areas, 1208 ft 2 and

604 ft2. The numerical integration results for the CDF of

P and H are plotted in Fig. III-5 and Fig. 111-6. The pro-

bability distribution of P is "exponential-like" and the

probability distribution of H is very close to gamma. The

91



former conclusion is apparently dominated by the character of

the distribution of I which is in turn related to the nature

of the influence surface. It is anticipated that most other

surfaces, which are typically equally or more peaked than

that of Fig. II-10, will give a similar conclusion. That V

has a gamma distribution would follow directly from the assump-
M

tion that the Pi's in H = P have (common) exponential

(25)
distributions, if M were not random but deterministic

The assumed randomness of M makes the gamma distribution only

an approximation.

III-3b: Approximate Solution

For the same assumptions as above, the mean and the vari-

ance of the weight of a load cell are:

E[S] = mQ mR = 725 lbs.

Var[S] = a 2 + m2a2 = 46550 (lbs) 2

The mean and the variance of I can be found analytically or

numerically and tabulated for various load effects and aspect

ratios. a/b.
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m. = a I(x,y)dxdy

r= 2 1 a 12(x,y)dxdy-m (III-3-3)

For this example of the column with the influence surface of

Fig. II-10:

my

a 2I1

= 0.254

= 0.0745

for any area A and any aspect ratio. Then

E[P] = m mI = 184 lbs.

Var[P] = m2 a2+m2 a2 +a2a 2 = 46270 (lbs) 2
FoI IS SI

From Eq. (111-3-1) for A = 604 ft 2

E[M] = XM = 6.99

Var[M] = XM = 6.99
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and

E[H] = mpmM = 1288

Var[H] = mMP+mpaM = 560,000

Since the distribution of H is assumed gamma, its parameters

can be estimated as:

m2
kH H = 2.96

aH

=kH

H H= 0.0023H mH

The results are plotted in Fig. 111-7, which is almost iden-

tical to the curve in Fig. 111-6. It is therefore concluded

that the assumption of the gamma distribution of H is appro-

priate. The results for A = 1208 are also plotted in Fig.

111-7. Clearly more examples should be considered to con-

firm this assumption or to determine the range of its validity.

On the other hand, given the difficulty of obtaining informa-

tion on the subject of transient live loads, it may be just

as appropriate simply to assume H is gamma distributed as

to make and justify the intermediate distribution assumptions

on Q, R and M.
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CHAPTER IV

Load Combinations, Design Load and Performance Load

IV-0: Introduction

Due to the complexity of the live load it has been de-

composed into several components (sustained, normal personnel

and extraordinary load). Each component was discussed in a

previous chapter. It is the purpose of this chapter to develop

logical ways to combine the above load components for various

design conditions. Several load combinations will be con-

sidered and their probability distributions determined.

Throughout this chapter reference will be made to "loads"

but one can equally well read "load effect", because they

have been assumed in previous chapters to follow the same

probability laws (with different parameters).
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IV-1: Load Combination for the Design Load

Recall that in Chapter I we discussed three different

kinds of loads: extraordinary loads, sustained loads and

normal personnel loads (Fig. I-1). The combination of the

above loads is shown in Fig. IV-1. For design with respect

to safety, it is the maximum of this process that represents

the extreme combined load. The direct determination of the

distribution of the maximum of the sum of two random processes

is a difficult problem. Here we shall assume that this maxi-

mum of the total coincides with one or the other of two ex-

treme events defined below and shown in Fig. IV-1.

i) Lt = L1+L 2 +L3

where

Lt = the total load

L = the maximum lifetime sustained load

L2= the maximum extraordinary load during the

period of L1

L3= the arbitrary-point-in-time people load.
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ii) Lt = L3 + L4 + LI5

where

Lt and L3 are defined above.

L4 = the maximum extraordinary load during the

lifetime of the building

L5 = the arbitrary-point-in-time sustained load

There is a high probability that one or the other of the

above combinations will include the maximum combined load

during the lifetime of the building, but this may not always

be true. For some load histories a moderate (or less than

maximum) stationary load plus a moderate (or less than

maximum) extraordinary load will be higher than either of

the above load combinations. The probability of such an

event causing the maximum combined load will be ignored.

The probability distribution of each of these potential

maximum combined loads will be derived below. Several alter-

native applications are possible. First, conslistant with

modern "load-factor" and "limit-state" design philosophies,

the "design loads" (i.e., the loads associated with selected

high probabilities of not being exceeded) for each combina-

tion can be computed. These are then treated as two of the
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several load combinations that are considered in design.

Second, one could use each of these distributions for more

complex structural reliability studies involving uncertain

resistances, etc. Third, one can estimate the CDF of the

maximum combined load by assuming it is the product of the

CDF's of each of the two potential maxima (25) (i.e., by

assuming one or the other causes the maximum combined load

and by assuming the two loads are independent.). With this

probability distribution of the maximum (combined) live load,

one can either set a single "design load" or work with the

probability distribution in conjunction with more complex

reliability analysis. In this work emphasis will be on the

separate treatment of the two loads and their individual

design values.

IV-la: Combination 1: L1+L2+L3

The probability distribution of L2 is derived in pre-

vious chapter.

FL2|t(x) = exp[-ve(1-FH(x))t]

The probability distribution of T, the duration of the oc-

cupant in a building, is exponential with parameter v as
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discussed in Section II-S. L2 is the maximum extraordinary

load during the random duration of the maximum sustained load.

(Fig. IV-1). Its probability distribution is:

FL2 (x) = FL t x)fT(t)dt

=f exp[-ve (1-FH(x))t]v e-vtdt
0

V 
(IV-1-3)

If there is more than one occupant involved, Eq. (111-2-2)

should be used instead of Eq. (111-2-1). Then

FL2 (x) V (IV--4)

v+ [v (1-F( (x))]
e 1

The fixed interval event which led to Eq. (111-2-4) will

not be considered here because generally a party is held at

a particular room where either there are very few items of

furniture and equipment or where the furniture has been re-

moved. It is not clear at this time what the interaction

will be and what is the influence on the combination of loads.
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The probability distribution of L is found in Section

11-5. L3 is assumed as a constant, 23, in Section 11-4.

The probability distribution of the total load, Lt, can be

evaluated by a simple straight-forward (but numerical) con-

volution integration:

FL 3~~) =~Ftotal (x L
t ( 2 (1-x-2 3)fL

f 3L 3F3f total (x)dx (IV-1-5)
0 1 2

IV-lb: Combination 2: L3+L4+L5

The probability distribution of L4 is given by Eq.

(111-2-1) or Eq. (111-2-2) where t equals the lifetime of

the building. L5 is discussed in Section 11-4. The com-

bined load can be obtained by the same way as above.

It should be pointed out that the model can be used

to treat a.variety of mixtures of conditions. As discussed

in Section II-5d the maximum sustained load (or load effects)

model can represent a variety of different assumptions about

the nature of occupancy (or re-modeling) changes. Similarly,
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as discussed in Section 111-2, the maximum extraordinary

load model can represent a variety of assumptions about the

types and combinations of types of "occupants" associated

with the events causing extraordinary loads. There is no

reason why the "occupants' need be the same in the analyses

of the two loads. For example, for a single owner-user

building, the sustained loads might change everywhere vir-

tually simultaneously whereas the extraordinary loads might

be considered to be those associated with many independent

local events associated with individual rooms within the

building. The model has all these capabilities. How they

should be excercised for any particular building or for a

general code study is a difficult question requiring further

study.
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IV-2: Load Combination for Performance Load

The performance load, Lp, is simply the sum of L5 and

L3, the arbitrary-point-in-time sustained load plus the

arbitrary-point-in-time people load respectively. Since the

second load is assumed constant, Z3 (Section 11-4), the

probability distribution of the performance load will be

virtually the same as the first load (see Section 11-4).

FL (x) = FL (x- 3)
p 5
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IV-3: Loading Pattern

No specific loading pattern is assumed in the above

derivations. All loadings are modeled as close to reality as

possible. L and L5 are the sustained loads which exist on

the building all the time to a greater or lesser extent. Con-

trary to the conventional, conservative checkerboard loading

pattern we load L1 and L5 on all floors and bays. Since we

integrate over the whole distribution of the load, we have

considered all possible combinations of low and high values

already, i.e., the distribution of Lt represents the sum of

different combinations each weighted by its joint probability.

Nothing artificial has entered into this scheme. The extra-

ordinary loads are modeled in the same way, but it results

that they will contribute to the distribution of the load

effect Lt only when they occur on its positive influence

contribution areas. Examine Eq. (111-2-2). For positive x

P[maximum extraordinary load due to occupant i<x] = 1

if the ith occupant is located in the negative influence area

because it can never produce a load effect greater than zero.

This conclusion is in essence saying that we load the extra-

ordinary load in checkerboard pattern (or; in general, on
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the positive influence portions of the influence surface).

We come to this conclusion through the model itself and not

from the reasoning of "conservatism". For example, an

influence line for the mid-span moment is shown in Fig. IV-2.

Spans 1, 3 and 5 have positive contribution and spans 2 and

4 have negative contribution. The sustained load is applied

on all spans. Though the mean of the load effect will be

smaller as compared to the checkerboard loading pattern, the

variance will be larger because all spans contribute posi-

tive variance. Actually it is not immediately clear which

approach is more conservative when we compare the performance

load, say at 99%. Span 2 and 4 contribute not only to the

variance but also to the v., the average rate of up-crossing

of a threshold. The event that the total load effect changes

from below a to above a happens in two different ways:

the positive load effect changes from a small value to a large

one or the negative load effect changes from a large value

to a small one. Therefore even though the load effect itself

is negative, it will effectively contribute to the maximum

lifetime sustained load.

The extraordinary load is applied to all spans also,

but spans 2 and 4 contribute nothing to the maximum extra-

ordinary load (i.e., they contribute nothing to the proba-

bility of exceeding a given design load). The results will
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be the same as if we only load spans 1, 3, and 5. This is

the same as if we used the checkerboard loading pattern for

extraordinary loads.
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IV-4: Design Load and Performance Load

The EUDL for different areas and different floors will

be evaluated in this section for different load effects.

Under the present code formats this is the design (or per-

formance) load that should be specified for a consistent

probability of not being exceeded. The values of the load

that will be evaluated in the following sections are the

99% load which implies that there are 1% probability of

being exceeded in the lifetime* of the building.

In order to have numerical results for the design load

and the performance load we need numerical estimates of all

parameters. The values obtained in Section 11-2 will be used

for sustained loads and the values estimated in Section 111-3

will be applied to extraordinary load. We also estimate that

.1
v, the expected number of the occupant change, is

changes/year and vt equals 8, the total changes during the

lifetime of the building. The value of ve, the average rate

of occurance of the extraordinary load, is set arbitrarily

to 1. There are many parameters involved (e.g. ve, Q, R and

M), and the effects of the parameter are not independent of

each other, because there is a continuous spectrum of "unusual"

The lifetime is assumed 64 years. Its sentivity will be
examined.
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events. For example, mM, the expected number of load cells,

will be different (smaller) if we set ve = 1 than if we set

Ve = 0.1 (occurances/year). We can expect that there are

fewer load cells associated with the event which happened, on

the average, once ayear than that associated with therevent

which happened, on the average,' once in ten years. Therefore we

just set the value of one parameter, and estimate the others.

Thus, here, extraordinary loads are by definition those which

occur once a year on the average.

A sensitivity analysis will be carried out in the next

chapter to identify the important parameters and to study the

effect of its changes.

IV-4a: EUDL for Axial Load

The EUDL's for two design combinations and performance

column load are evaluated. Here, each floor is assumed to

be occupied by a different occupant and therefore the change

of occupancy on any floor is independent to that of other

floors. The extraordinary load is also assumed to take place

on each floor independently. The results are plotted in

Fig. IV-3, Fig. IV-4, and Fig. IV-5. Since the influence

surface for column axial load is assumed independent of the

building frames, the results in those figures is suitable

107



for any frame. The 99% maximum lifetime load is shown in

Fig. IV-6 and the design load of different probabilities is

plotted in Fig. IV-7.

IV-4b: EUDL for Beam Moment

The influence line for the moment at mid-span RS (Fig.

II-11) was constructed by STRUDL II. The joint rotations of

the nine most influential spans are tabulated in Table IV-1

Table IV-1 Joint Rotation for the Influence Line

at Mid-span RS

Joint Rotation

J 0.00183

K -0.01003

L 0.01002

M -0.00186

Q -0.00419

R 0.0495

S -0.0495

T 0.00409

X 0.00126

Y -0.00831

Z 0.00831

a -0.00127
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(The joint displacements are of small order and neglected).

The means and the variances of the load effect are tabulated

in Table IV-2. It is apparent that the contribution from span

RS dominates. Let us check the assumption made in Section

II-Sc that F(t) and L.(t) are almost perfectly correlated

for this case. Since

n n
F(t) = Li(t) = Li(t) + L (t) = (SL) n-l+L. (

1 i=1
i/j

Var[F(t)] = Var[(SL)n-11+Var[L (t)+

+2p(SLn-1,L (t)a(SL)n-1 j(t)
Therefore

Var [F (t) ] -Var [ (SL n-1] -Var [ L 3 (t)]
________________--M-=0. 555
2O(SL)n-1 jL (t)S(SL)n- 1, L (t)

PF(t),.L.i(t) =

Var[L. (t) ]+P(SL)n-lL (t)(SL)n-l L (t)

aF(t)antL (t)
=0.993

Its correlation coefficient is as high as .993 so the as-

sumption made before seems justified.

The occupancy pattern is assumed different from that
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Table IV-2 Means and Variances of the Moment at

Mid-span RS due to Loads on Other Spans

110

Span Mean Variance (105) Total Variance (105)

QR -713.3 1.292 1.292

ST -711.9 1.288 2.802

KL -266.2 0.173 3.142

JK 157.4 0.062 3.488

LM 157.7 0.062 3.846

YZ -220.6 0.119 4.241

XY 127.0 0.041 4.571

Za 127.2 0.041 4.909

RS 7649.0 164.9 201.3

E6307.0



of the column load. Here, each single bay is assumed to be

occupied by a different tenant. The occupancy change and the

extraordinary load from any bay are assumed independent of

each other. The 99% design load for combinations 1 and 2

are calculated to be 70 psf and 61 psf respectly. The 99%

performance load is 32 psf.

The procedures to find the design and the performance

load are the same for the moment as for the column axial load,

but there are two additional problems. First, the influence

lines for moments depend upon the relative stiffness of the

structural frame. We can not possibly make an exhaustive

examination of all different frames. Second, the EUDL depends

upon the assigned loading pattern. This will be discussed

later.

Since the moment is dominated by span RS, it will be

helpful to examine the change of the design load etc. due to

the change of the influence line which is caused by the

change of the frame stiffness. Three different influence

lines on a single span were examined (See Fig. IV-8). Beam

A shows exactly the same influence line as that from the

whole frame. Beam B has a more rigid end while Beam C a

more flexible end. It is belived that in a real frame the

influence line for span RS will lie between the above two.

Means, variances, design loads and performance loads for

the above three beams are calculated and tabulated in Table
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IV-3. The results for different beams are surprisingly close

to each other. Results from different areas are also given

in Table IV-3. The same conclusion still holds, i.e., the

results are very close to each other for different end condi-

tions.

Next, compare two results; one is calculated by consi-

dering the whole frame, the other by considering only the

dominating span. In the first case, we considered nine bays

and each bay had its own tenant and extraordinary load. In

the second case only one bay and one tenant was involved.

The EUDL's for the combination 1 of the design load are 70

psf and 57 psf respectively. The difference between the two

EUDL design load is due partly to the fact that we use dif-

ferent loading patterns for the two cases. In the first

case we load all nine spans uniformly with 70 psf; it

will produce the moment at mid-span of RS equal

70*6307/11.8 = 37400 lb-ft

(Note that 6307 (sum of the mean from 9 spans) is the moment

produced by a uniform 11.8 psf load (mean sustained load).)

In the second case we only load span RS with 57 psf which

will produce moment at mid-span equal

57*7649/11.8 = 3 700 01b-ft
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Table IV-3 EUDL for the Moment at Mid-span due to Different End Rotations

k = 15 A = 900

Beam Mean. Variance(0 7  c.o.v Design Load (EUDL Performance
(%) Load (EUDL)

Combination 1 Combination 2 a

A 7649.3 1.649 53 57 53 31

B 6330.2 1.176 54 59 54 31.5

C 8987.4 2.215 52.5 56 52 31

= 10 A = 400

A 2269.0 0.2195 65.3 80 77 36.5

B 1875.6 0.1576 66.9 83 80 37.5

C 2662.9 0.2924 64.2 78 74 36

20 A = 1600

A 18152 7.406 47.4 48 43 28.5

B 15005 5.222 48.2 49 44 29.0

C 21303 9.993 47 47 42 28.5



After translating from EUDL to the load effect, we find that

two different considerations give- almost the same results.

Therefore we can draw the conclusion that in order to find the

design load and the performance load for the mid-span moment,

only the dominating span need be considered. The corresponding

EUDL will depend upon the assumed loading pattern.

As discussed in the previous paragraph the fixed end beam

(Beam B in Fig. IV-8) will produce about the same design load

etc. as the other two beams. Since Beam B gives about the

same results as the whole frame, we can conclude that the

design load and the performance load for the mid-span moment

of any beam in a structural frame is approximately the same

as that of a fixed end beam with the same span and area.

An influence line is also constructed for the mid-span

moment on the exterior span TU(Fig. II-11). Only six spans

are considered in this case and the results are tabulated in

Table IV-4. The design loads are 67 psf and 58 psf for com-

bination 1 and 2 respectively. The performance load is 31

psf. The load effect produced by 67 psf is

67*6774/11.8 = 38 400 lb-ft

which is about the same as before.

In all three cases discussed above, the interior span,

the exterior span and a single span fixed end beam, we got
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Table IV-4 Means and Variances of the Moment at

Mid-span TU due to Loads on Other Spans

Span Mean Variance (105) Total Variance (105)

TU 7816.0 175.2 175.2

ST -725.7 1.334 179.0

MN -339.9 0.283 184.7

LM 167.9 0.071 185.6

Za 132.7 0.044 186.4

ab -276.6 0.187 191.2

Z6774.0
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the same load effect (mid-span moment) for design, but

its EUDL is different due to the loading pattern we chose,

i.e., apply the uniform load to all spans or to one span.

If we define a different loading pattern in which case we

only apply the uniform load to the beam in consideration,

then the EUDL will be a function of the span length only

and independent of the frame. Even though this is not the

traditionally used loading pattern, yet it has the advantage

that the EUDL derived from it is independent of the location

of the beam. Other loading patterns such as checkerboard or

uniform pattern will produce different EUDL for interior

span than exterior span. The design load and the performance

load under the specified load pattern is given in Fig. TV-9

.for different areas.

For negative moment at the end of the beam, the influence

from an adjacent span becomes important. Following the con-

clusion from previous paragraph we can use a two-span

fixed-end, continuous beam (Fig. IV-10) to find the design

load and the performance load for the negative moment. Results

for different areas are plotted in Fig. IV-11.

IV-4c: EUDL for Shear in Beams

The design load, the performance load and the total

load effect for shear are computed for four different loca-

tions on a beam (Fig. IV-12). The results are tabulated in
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Table V-5. As can be expected, the mean load effect decreases

to zero as the location moves closer to mid-span. The cor-

responding c.o.v. and EUDL increase. When the mean load

effect becomes zero, both c.o.v. and EUDL approach infinity.

The total load effect to be designed for, however, is

decreasing with the mean load effect; it does not approach

zero, of course, because the variance of the load effect is

not zero. The assumed loading pattern, i.e. the entire span

loaded uniformly, is apparently not suitable for this case

because the EUDL will approach infinity. A different loading

pattern has to be developed. (It may not be in EUDL form.)

Since the total design load effect can be calculated, the

artificial EUDL can easily be obtained once the loading

pattern is decided upon.
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Table IV-5 Design Load and Performance Load for Shear

at Different Locations on a Beam

Mean Variance c.o.v. Design Load EUDL (Total Load Performance Load
5 Effect) - EUDL (Total Load(10 M)-(%) Combination 1 Combination 2 Effect)

Beam A 0 1.52

(2295 lb.) (2070 lb.) (900 lb.)

Beam B 986.1 4.11 65.0 78 psf 75 psf 38 psf

(6510 lb.) (6270 lb.) (3180 lb.)

Beam C 1239.0 5.48 59.7 80 psf 66 psf 35.5

(7350 lb.) (6930 lb.) (3520 lb.)

Beam D 2655.0 18.4 51.0 56 psf 52 psf 31.5 psf

(12600 lb.) (11700 lb.) (7090 lb.)



CHAPTER V

Discussion and Applications

V-0: Introduction

Due to the lack of data many parameters in previous

chapters were estimated using the incomplete information

available or by judgement. Their sensitivity to the final

results is studied in Section V-1. The live load reduction

factor is discussed in Section~V-2. In many probabilistic

code formats(1) the analysis requires the mean and the

variance of the live load, which are studied in Section V-3.

In Section V-4 the load concentration factor, as defined by

Mitchell and Woodgate(3) are evaluated as a check on the

model. Finally the relation between coefficient of varia-

tion of the sustained load and the EUDL is discussed in

Section V-5.
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V-1: Sensitivity Analysis

Different parameters are analyzed below:

(a) d: the constant in the correlation equation (Eq.

11-1-8).

The square root of d is a measure of the "correla-

tion distance". For example, if r /d, then the correla-

tion has decreased to e- = 0.368. An increase in d has the

effect of increasing the area over which important local

correlation exists, and thus of causing a slower decay in

variance with the area. Three curves for different d values

are shown in Fig. V-1.

(b) v: the average rate of change of occupancy.

Increasing v tends to have the effect of increasing

the maximum lifetime sustained load because the number of

load changes during the lifetime is increased. On the con-

trary, the maximum extraordinary load during the (random)

period associated with the maximum sustained load is likely

to decrease because the expected duration of the maximum

sustained load decreases. Both effects are small and compen-

sate each other so the resulting change in the design load

due to the change of v is practically negligible. This

conclusion is supported by the results in Table V-1 where

three different values of v are used to find the design load
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Table V-1 Design Load for Different Values of v

Area = 900 v = 0.125 v = 0.1875 v = 0.25

vt= 8 vt= 12 vt= 16

Design Load (EUDL) Design Load (EUDL) Design Load (EUDL)

Combina- Combina- Combina- Combina- Combina- Combina-

tion 1 tion 2 tion 1 tion 2 tion 1 tion 2

Moment 60 55 60 55 61 55

Influence
Surface

Axial Load 57 52 57 52 57 52
Influence
Surface



for two different influence surfaces. (Note that the per-

formance load is independent of v.) The same conclusion

was arrived at by Heaney (14) who found that the maximum load

was insensitive to n, the total number of load changes.

(c) t: the lifetime of the building

The lifetime, t, of the building was assumed to be

64 years. Following the argument presented in the previous

paragraph, it can be expected that the design load will not

be sensitive to changes in t. The results, shown in Table

V-2, of four different cases examined indicate that the

design load does not change much when t varies.

(d) Aspect Ratio: Ratio between the length and the

width.

In all previous chapters the area was treated as

a square because Mitchell and Woodgate(3) established em-

pricially that there was no consistent relationship between

the 99% probable loading intensity and the aspect ratio of

the area. Its effect on the design load and the performance

load will be examined here. The results for the mid-span mo-

ment and the axial load corresponding to an area of 576 ft
2

and 5 different aspect ratios are tabulated in Table V-3. The

fact that they are almost identical lends further support

to the hypothesis that the aspect ratio does not significantly

influence the design load and the performance load. Therefore,
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Table V-2 Design Load for Different Lifetimes of Building

Area = 900

Axial Load vt = 5 vt = 8 vt = 12 vt = 16
Influence t = 40 t = 64 t = 96 t = 128
Surface

Design Load 55 57 58 59
Combination

Design Load 51 52 53 54
Combination
2



Table V-3 Mean, Variance, Design Load and Performance Load for

Different Aspect Ratios

Aspect Ratio Variance c.o.v Design Load (EUDL) Performance
(length/ Mean 6 % Load (EUDL)width) 10 Combination 1 Combination 2

Moment Influence Surface

4(48*12) 6482 14.85 59.5 71 67 35.5

2.25(36*16) 4862 8.613 60.4 72 68 36.0

1(24*24) 3241 3.852 60.5 72 68 36.0

0.444(16*36) 2161 1.653 59.5 71 67 35.5

0.25(12*48) 1621 0.884 58.0 70 67 34.5

Axial Load Influence Surface

4(48*12) 1699 0.9057 56.0 66 62 34.0

2.25(36*16) 1699 0.9354 56.9 67 62 34.0

1(24*24) 1699 0.9504 57.4 67 62 34.5

0.444(16*36) 1699 0.9354 56.9 67 62 34.0

10.25(12*48) 1699 0.9507 56.0 66 62 34.0

N)



the use of a square area in all previous discussions seems

justified.

(e) Parameters in the extraordinary load model:

There are five parameters to be determined in the

? 2
extraordinary load model: mQ, aQ mR, CR and mM. All have

the same general effect on the final design load, i.e., an

increase in the value of the parameter leads to an increase

in the design load. First, consider the effect of mM, the

expected number of extraordinary load cells. The assumed

value of mM is (Eq. 111-3-1)

mM = E[M] A-164

Table V-4 shows the design loads respectively corresponding

to a mean value, mM, of one half and twice the value given

by the above expression. It is apparent that m does change

the design load. Its influence on small areas is larger

than those on large areas.

A change in the mean and the variance of the total load

of a load cell has the same effect as that of mM. This is

2
checked by increasing the value of mq and a 2simultaneouslyQ Q
(increase the value of mR and 2 can achieve the same effect)

The results are tabulated in Table V-5. It is important to

note that the load due to combination 2 controls when the
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area is small but the load due to combination 1 controls

when the area becomes larger.
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Table V-4 Design Load for Different Expected Load Cells

Design Load (EUDL)
Axial Load
Influence Surface Area Combination 1 Combination 2

200 99 97

E[M] 900 57 52

2500 43 38

200 88 84

E[M]=1 J2 N 900 s0 45

2500 40 35

200 117 116

E[M]=2 900 68 64

2500 49 45
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Design Load for Different Mean and Variance of a Load

Area Design Load (EUDL)

Combination 1 Combination 2

Axial Load Influence Surface

200 99 97

mQ=145 900 57 52

2=900 1600 48 43

Q 2500 43 38

200 160 174

mQ=290 900 80 80

2=22500 1600 62 60

Q 2500 53 50

Moment Influence Surface

200 109 108

mQ=145 900 60 55

2=900 1600 49 44

Q 2500 44 39

200 178 199

m=290 900 86 87

a =22500 1600 70 69
Q

2500 56 .53

003

-1-1 1 1-,-,--"- --. - , '. - 1, 0-: I -W -

Table V-5 Cell



V-2: Live Load Reduction Factor

Traditionally the live load reduction factor is a func-

tion of the total area only(5). However this rule is not

confirmed by the results found in the previous chapter. As

shown in Fig. IV-3 the load for A =200 and n=2 is not equal

to that corresponding to A=400 and n=l. The respective

values are 74 psf and 77.5 psf. Similar results are observed

for the pair of values A = 400 and n = 4 and A = 1600 and

n = 1 respectively; two values are 43.5 psf and 48 psf. It

appears that the reduction factor is not a function of a

single variable, nA, but of two variables, n and A. The

design load will decrease with one variable if the other is

kept constant. Unfortunately, no simple formula can be

found for the live load reduction factor, but one might adopt

a conservative approximation if the need for a simple code

formula demands it.

129



V-3: Means and Variances of Design Load

As discussed in Section II-5b the derivation of the

maximum sustained load is exact only when the load is high

because it only yields the upper tail of the CDF exactly.

The complete CDF of the design load cannot be obtained. Of

course, there is no way of finding the mean and the variance

of a random variable when only the tail portion of the CDF

curve is known. The procedure adopted here is to (i) as-

sume the form of the probability distribution of the design

load, (ii) determine its parameters by fitting the upper

tail, and (iii) derive the mean and the variance. For

example, assume that the design load follows Type II

Extreme Value distribution (25). The 98% and 99% design

loads for A = 200 are 90.5 psf and 100 psf respectively.

The mean and the variance derived from the above values

are 55.6 and 153.2 respectively. If, in a probabilistic

code, the load used, m+ a, corresponds closely to the 98%

or 99% probability level, then the accuracy would be fairly

good. In fact, once the value of 3 (in m+Sa) is determined

in the code, the assumed probability distribution should be

so chosen that its m+ a falls between 98% and 99% probability

level. The mean and the variance corresponding to other

areas are plotted in Fig. V-2, again for the Type II

Extreme Value distribution.
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V-4: Load Concentration Factor

The load concentration factor is defined by Mitchell

and Woodgate(3) as the ratio between two load effects (cor-

responding to a given probability level): one is caused by

the concentrated loads as they are observed at the time of

the load survey, the other by the spatially averaged load.

It will be checked in this section how the load concentra-

tion factors obtained using the load model (Eq. II-1-1)

compare with those observed by Mitchell and Woodgate(
3 )

Due to difficulties encountered in determining and

evaluating influence surfaces, only one simple case will

be considered, i.e., the slab enter moment, M of a simply

supported flat slab. The influence surface is (21)

sin M7Xsin nrfy

I(x,y) =- s 2 a sin Z sin -(m 2
r m n (m +n )

where v is the Poisson ratio for the concrete (equal to 0.18).

The mean and the variance can be calculated from Eq.

(11-5-27) and Eq. (11-5-28). To find the load effect cor-

responding to any probability level we also need the pro-

bability distribution. The results given here are based

on the assumption that the load effect is gamma distributed.

Thus we find the first load effect as discussed in the

previous paragraph by the load model. The second load

131



effect is simply the product of the unit load for any

probability level and v1 , the volume enclosed by the influence

surface. The ratio of the above two is the load concentra-

tion factor.

The results from the above load model and from Mitchell

and Woodgate(3) are tabulated in V-6. Both results show the

same trend, i.e., the load effect will increase when the

randomness of the loading is explicitly considered. There

are, however, some differences in the percentage of the

increase. It will be discussed below.

The distribution of the unit load (or total load) was

assumed gamma in section 11-4 and was confirmed by Mitchell

and Woodgate's data. The distribution of the load effect

is assumed gamma also because of the reasoning that the

load effect might be considered as the sum of several unit

loads multiplied by its influence value. Since the unit

load is gamma distributed, the summation is approximately

gamma. However, from the results of Table V-6 the gamma

distribution predicts the results a little higher for that

particular load effect at the particular probability level.

Apparently more data are needed about the distribution of

the load effect in order to establish its probability

distribution, expecially at such high levels (99.9%).
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V-6 Load Concentration Factors for Slab

Center Moment, (M. (at 99.9% Probability

Level).

133

Area 56 151 336 624 1197 2069

Results from 1.22 1.39 1.24 1.33 1.50 1.25
Mitchell and
Woodgate

Area 144 576 1156

Results from 1.65 1.5 1.46
Load Model



V-5: Coefficient of Variation (c.o.v.) of the Sustained

Load versus EUDL

There is a close relation between the c.o.v. of the

sustained load and the EUDL. As shown in Table IV-3 and

Table V-3, when the influence surface and the extraordinary

load are known, the EUDL is approximately an increasing

function of the c.o.v. of the sustained load. Otherwise,

as shown in Table V-5, there can be a large difference be-

tween two EUDL's though the c.o.v.'s for the sustained

load are the same. This is due to the change in the con-

tribution from the extraordinary load. For a given in-

fluence surface and the extraordinary load, the EUDL will

be the same if the c.o.v. is the same.
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CHAPTER VI

Conclusions and Suggestions

VI-1: Conclusions

(1) Load models and methods to represent time and space

variability of the extreme loads and sustained live

loads on office buildings are presented in this work.

The results include "design load" values associated

with small probability of being exceeded. The models

are flexible enough to handle different cases ranging

from a multiple number of tenants on each of a number

of floors to a single occupier of all floors. In-

fluence surfaces are introduced to produce moments and

distributions of structural load effects (e.g. axial

forces, shears etc.).

(2) Owing to observed differences in the nature of the

spatial correlation vertically and horizontally, the

live load reduction factor is not a function of simply

the total area alone, but rather a function of both n,

the number of floors, and A, the floor area. Though

the difference between two cases with the same area but

different combinations of n and A is not very substan-

tial for the particular chosen values of parameters of

the extraordinary load and of the occupancy pattern, it
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might be expected, however, that, if future data suggest

different values for the parameter and different oc-

cupancy patterns, the difference may be significant.

(3) Comparing the design loads from two potentially cri-

tical combinations, the load obtained from Combination

2 (extraordinary load control) increases faster with

the decrease of the area than that from combination 1

(maximum sustained load control). In some cases the

first combination governs for larger areas and the

second one governs for small areas. (These combinations

are defined on page

(4) The design load will increase with the lifetime of the

building, but the magnitude of the increase is very

small. Therefore a rough estimate of the economic

lifetime of the building will not introduce a signi-

ficant error in finding the design load.

(5) Both the "design load" and the "performance load" are

insensitive to the rate of change of occupancy and the

aspect ratio of the area.

(6) The values of the design load and performance load that

might be specified in a building code are evaluated for

different load effects (moment, shear and axial load)

and for different areas (on the same floor or on dif-

ferent floors).
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(7) Present load surveys (Mitchell's survey was used here)

may provide information adequate to provide reasonable

estimates of the parameters of the sustained and maxi-

mum sustained load and load effect models. But addi-

tional information is needed to estimate parameters

and to verify the extraordinary load model. It is

believed that providing a tentative model in the absence

of data can provide a valuable service to engineers

responsible for deciding what information should be

collected in a live load survey.
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VI-2: Suggestions

(1) The correlation model (Eq. II-1-1) can be expanded

to involve other effects such as the age of the building,

the use of the room etc., if future data suggest that

those effects are important.

(2) More extensive work should be done to find a simple

systematic way of defining the design load, the

loading pattern and the load reduction factor for dif-

ferent load effects.

(3) More data, to be obtained from load surveys, and im-

proved analytical models are needed in the area of

extraordinary loads.
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APPENDIX A

As shown in Fig.

sum of the

L (A2)

Then

11-2 the mean and the variance of the

load from two floors will be derived below. Let

ffw(xy)dxdy+ ffw(u,v) dudv

= E[ff

= E[ m

Ay+*O

Ay+*O

w(x,y)dxdy+

I

x

y

yI

y

/1 w(u,v) dudv]

W(x, y) Ax Ay+

W(xy) AxAy]+

lir +

Av+O

E[Au +O

Av+0O

Yw(u,v) AuAv]
v

Iu
Xw(u,v) AuAv]
v

E [ u (x, y) ] Ax Ay+ AUi+
y Av+0O

Y EH(u,v)]AuAv]
u v

SffmW (xY)dxdy+ffmw(u,v) dudv

Var[L(A
2 )] = E[L 2(A 2 )]

- E[L(A 2)]
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E[L2 (A2)] = E[(ffr(xy)dxdy+ff w(u,v)dudv)2I

=E[(

Ay ->O
x
x y

w(.y)Ax Ay+ Au _0
Av-*O U

Xw(u,v) AuAv)2
v

=E[ limAxAx 1. A

Ay Ay1+0

+2 rmn
Ax, Ay-N)
Au, Av-+O

+ urn
Au Au +*0

Av, Av-+0

Folowing the same steps a

x x

x

u

x
y

y
u I

I w(x,y) w(x1 ,y 1 ) AxAx1AyAy 1
I Y Y1

Y Zw(x,y)w(u,v)AxAyAuAv
u v

Y X W(u,v)W(u1 ,v1 )AuAuAvAvl]
v v

I I

s before, then

E[L 2 (A2)] = ffffE[w(x,y)w(xl,yl)]dxdxldydy
1

+2ffffE[ w (x,y) w (u,v) ]dxdydudv

+ ffffE[w(u,v)w(ul,vl)]duduldvdvi

= fff{cov[w(x,y),w(x 1 ,yl)]+E[w(x

dxdx dydy1
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+ 2ffff{cov[w(xy), w(u,v)]+E[w(xy)]E[w(uv)]}

dxdydudv

+ {cov[W(uV),W(ujvl)]+E[w(u,v)]E[w(ul,V)]}

dudu1dvdv1

=ffff
+ 2 flff

+ffff

cov[w(x,y),W(xl,yl)]dxdxidydy
1

cov[lw(x,y) ,w(u,v) ]dxdydudv

COVbW(u,V),W(U1,svi)Iduduidvdv1 +E[L( A2)I 2

Therefore

Var[L(A
2 )] = E[L2 (A2)]

ffffcov[w(x,y),w (xl,yl)]dxdxldydy1

+2ffff ov [ (x, y) , w (u, v) ] dxdydudv

+ ffffcov[w(u,v),w(u,vl)IduduldvdvI
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The formulas can also be extended to include the influence

surface. Let

H =ffI(x,y)w(x,y)dxdy

then

E[H] =ff I(xy)mw(xY) dxdy

Var[H] =ffff I(x,y)I(xl,yl)cov[o(x,y),w(xl,yl)]dxdxldydy
1

whre I(x,y) is the coordinate of the influence surface at

location (x,y).
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Appendix B

A brief description of the live load survey conducted

by the Building Research Station at Garston, is presented

below in order to add to the understanding of the load re-

sults used in this work.

During the period of 1965-1967, an extensive office

load survey work was carried out by BRS. About thirty modern

office buildings involving over 100 occupying organizations

and having a total area of 1 million square feet, were

surveyed, and the positions, magnitudes and character of the

loads present were recorded using a rectangular coordinate

system. In addition to the load observed directly, a 3 psf

people concentration load and 50 psf fire load were added.

Each building floor was then divided into a number of

zones. All loads that happened to be on the dividing line

were added to both adjacent zones. The coordinates of the

zones and the location of the loads were then fed into the

computer which made further subdivisions. Histograms were

produced for each of a number of bay sizes.

Information about the change of occupancy was obtained

by searching through telephone directories.
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Appendix C

The mean and the variance from Mitchell and Woodgate(3)

were reproduced in Table A.

Table A.

Area 11.7 14.6 25.3 56 151 336 624 1197 2069

Mean 14.5 14.5 13.8 13.4 13.0 12.8 12.3 12.2 11.8

Var. 324.3 256.0 182.3 121.0 79.2 51.8 39.07 30.25 20.25

C..v. 1.275 1.1 0.978 0.82 0.685 0.562 0.512 0.45 0.382

Since the data come from the same buildings the mean load

should be the same for all area groups. However the report

shows otherwise. The reason is when they divided the floor

into small areas they put the load on dividing line into

both adjacent ares. That simply added an imaginary load

into the small area. That is why the smaller the area the

higher the mean load. There is no way to go back to the

original survey data. Table A has to be changed by other

methods. One reasonable way to do it is to adjust the

mean load and maintain the same coefficient of variation.

The results are shown in Table B.
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Table B

191

Area 11.7 14.6 25.3 56 151 336 624 1197 2069

Mean 11.8 11.8 11.8 11.8 11.8 11.8 11.8 11.8 11.8

Var. 226 168 133 93.5 65.2 43.9 36.5 28.1 20.25

c.oy. 1.275 1.1 0.978 0.82 0.685 0.562 0.512 0.45 0.382



Appendix D

The gamma distribution derived from Eq. (11-3-1) are

plotted in Fig. 11-14. The curves fit the data generally

well except for smaller areas where the curves show more

probability in the 0 to 5 psf interval than the data have.

However this discrepancy does not influence many results.

The smaller areas seldom participate in a multiple loading

case. It is very unlikely that a column has several 20 ft2

or 40 ft 2 contributing occupants or floors or that a beam

has several small contributing spans. Smaller areas will

be used only in the local load effect cases such as shears

or moments in the slab. In these cases Eq. (11-5-8) applies.

FZ(a) = FL(t)(a)exp{-vt[l-FL(t)(a)]FL(t)(a)

It is apparent from this equation that only the upper tail

part will be used instead of the whole distribution, when

we want to find the load of the high probability level.

Since the assumed gamma distributions fit the upper tails

very well, it follows that the gamma distribution is

suitable for smaller areas also.
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Appendix E

As mentioned in Section II-5c an exact method to

evaluate -the probability of up-crossing of a. certain

threshold is derived below. The use of this method is li-

mited to the independent loading case which is not really

true for buildings because as the load model described in

Section II-1 suggests, all loadings in a building are cor-

related. However this method can still be used to check the

approximation adopted during the derivation in Section

II-Sc for the extreme case, i.e. when all loadings are as-

sumed independent. Let

n
F(t) = { Li(t)

i=l1

Starting with Eq. (11-5-14) and following a derivation

similar to that presented in Section II-5c, one obtains:

(v At = P[There is a change of the jth occupant in At]*

P[{F(t+At)>acrF(t)<a} |(There is a change of

the jth occupant in At)] (II-5-14)

Assume a simple case, with i = 3 and j = 2, then
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P[{F(t+At)>ariF(t)<a} (There

occupant in At)]

= P[{L,(t)+L2 (t+At)+L3 (t) }>a

fP[fL,(t)+L2 (t+t)>a-x31
0

fl{Ll (t)+L 2 (t)+L 3 ( t)}<a]

n{L,.(t)+L 2(t) <a-x3} IL 3(t)=x3]

L3 (x) 3 )dx 3

= P[{L1 (t)+L 2 (t+At)>a-x 3 } l{L1

dx
3

(E-1)

Since L3 (t) is independent of LI(t) and L2(t), the condi-

tional probability can be replaced by a marginal probability.

Substitution of Eq. (11-5-15) and Eq. (E-1) into Eq. (11-5-14)

yields:

(va)3At = v3Atf" P[{Ll(t)+L2 (t+At)>a-x3} n

fL 3 (t) (x3)dx3

{Ll(t)+L 2 (t)<a-x 3 1]

(E-2)
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Now,

P[{L 1 (t)+L 2 (t+At) >a-x 3 } f{L (t)+L2 (t)<a-x 3 l]

f a-X 3 P[L 2 (t+At)>a-x 3 -x 1 L 2 (t)<a-x 3 x1 IL 1(t)=xl]
0

f 3
f a-x
=0

P[L 2 (t+At)>a-x 3 -xl n L,(t) <-x3 -

(E-3)

and

n L2 (t) <a-x 3 -xl]

=f a-x3-xlp[ t A )
1 L2 >a 3 -xl

0
IL 2 (t)=x 2 f L (t) (x2)dx 2

a-x3~-x

= 0 P[L 2 (t+At)>a-x3~ fL 2 2

fa-x3 
-x 

L

=f0 2 (t)(c-x 3 ~-x

= [i-FL 2 (c-x 3 -xl)]FL2(t)

)]F L2 (t) (x 2 )dx 2

(a-x 3 - x1 )
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This follows from the fact that the load after the change

is assumed to be

Substituting Eq.

independent of that

(E-4) into Eq. (E-3

before the change.

) and then into Eq.

(E-2):

(va)3At = v3 tf fL3(t) (X 3)

FL 2 (t) (a-x 3 ~ X fL

Following the

1

foa-x 3

(t) (x 1 ) dx1ldx 3

same argument as in Section II-5c:

(vaQ 3 t = v3 tf fL3 (t)(3~ 3a-x

The above equation can be extended to the case when there

are n loadings.

(va )nt = f- L,(t) (X2)"'ntf L (t) 1 

f a-x1-x 2 ''n-2
0

FL (t) (a-x 1-x 2 '. 'X)n-
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[1-FL 2 (t )(a-x3~ l)]

}dx
3

(E-5)

[1-F L2(t) (a-x 3~-Xl1

F L2 (t) (a-x 3~ 1) L, (t) 1x) dxl

fLn- 1(t) (Xn- 1*



[1-FL n(t)(a-x-x2 '-xn-1) dxidx2 ...dxn-I

(E-6)

The CDF of the maximum lifetime load can be found by using

Eq. (11-5-13) and Eq. (11-5-1), i.e.

n

and

F Z(a) = FF(t)(a)exp[-vat]

All Li(t)'s are assumed to be gamma distributed. If

the parameter k of the gamma distribution is an integer, then

the Eq. (E-6) can be integrated exactly. A special case,

studied below, is that when all Li(t)ls are assumed to be

independent to each other, and have a value k = 4 (Note

that k = 4 corresponding to A 700 ft 2, from the Mitchell

and Woodgate(3) data). The results are tabulated in Table

E-1. Since the two sets of results are so close, the in-

dependence and normality assumptions made before seem

justified for this special case.
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Table E-1 Comparison of the Exact and the Approximate Analysis

Numberof 2 3 4 5 6 7 8 9 10 11Stories

Results
from Exact 29.9 26.5 24.6 23.2 22.2 21.3 20.8 20.3 19.8 19.4
Analysis

Results
from 31.0 27.6 24.5 22.9 21.9 20.9 20.3 19.7 19.3 18.9
Approximate
Analy sis....._._._..._...

Go~



Appendix F

As mentioned in Section II-Sc the unit load can be

used to replace the total load in evaluating Eq. (11-5-21).

(va)jt = fv t[1-F (a-x)] 
SF(t)

exp[- 1( x-mF(t) ) 2]dx (II-5-21)
2 a rF(t)

even though all the variables in the original derivation

represent the total load (or load effect). If the real

value of these variables were used in the calculation, there

would be quite a wide range of numbers. Special attention

has to be paid to the accuracy of the numerical integration.

It would be much preferred to use the unit load instead of

the total load. The validity of the procedure is proved

below. Recall (Section II-5c) that: [1-FW(a-x)] is a

function of X(a-x). For unit load, we have

mean = mU

standard deviation = a U
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2

mUkU -T~~
a U

mU
U 773

a U

And for the total load L = U*A

mean = mL = mU-A

Standard deviation = aL = aUA

k= M202=kkL ifL/L = u

xL = m /a2 = XU/A
AL = mL U/

Let Y represent the unit load, then

x

Changing the variable in Eq. (11-5-21) from X to Y, one can

write:

200



a/A
(v) jt = fA

ep yA--ML 2
exp[-2 ( CFL -- ) ] dy

aJ /A= vt[fpXL A (T - y))]exp[-

mL

7 2]dy

v -t[f(XU 
-

y)] exp[ -2 v-) 2]dy
U

This result is identical to that one would obtain if the unit

load were used to compute (v, )t.
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Appendix G

A closed form sofution for Eq.

below for the integer value

(11-5-23) is derived

of the parameter k.

equation below:

v t = f nvt[l-Fw (a-x)] 1 exp

'0 j aF (t)

x-mF(t) 
2 ]dx

aF (t)

(11-5-23)

For integer k, there is a closed form solution for

(a-x)] (Eq. 11-5-24). For illustrative purposes

assume k = 4.

1-Fy I~
(a-x)=e - (a-x)[ + 11

Substituting Eq.

+ 1 3 (a-x)3 3

(G-1) into Eq.

(a-x) + 3 2 (a-x)2

(G-1)

(11-5-23)

2(a-x) 2+1

1 exp[-1

aF (t) 2g 2

X 3 (a-x)3 e

x-MF(t)) 2 ]dx
aF(t)
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[1-F W

vt = nvt[ + -(a-x)+ -X(a-x)

(G-2)



the two exponential terms in the above 
equation

= nvt exp[-(Xa-
VWF aF(t)

22

7 aF(t)
XmF(t))I

[7 11 3 2 2 1 3 xX O c- X) (ax

exp [ - 2
2aF(t)

(x-mF (t) -
Xc2(t) 2] dx

U = x-m (t)~ F (t)

and change the variable in the above equation.

nvt exp[-(Xa-
Vyi a F(t)

( 'a 2
(mF (t)+ cF (t)

1 11 -U)+3 X2(W-U)2

3 (at -u) 31 exp u 2a F(t)
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fo a

Le t

v t
2
F(t)

+ 1 du (C-3)

Comb ine



where

22

If (mF(tjXaF(t)) is very large and close to a, then we can

make the following approximation:

a' = 0

2 (G-4)

The integration limits of Eq. (G-3) can be changed from

-o to 0. Since

/ 0 u22n = 1-3-5....(2n-1) 
7T

-0 2 n+ an

f 0 u2n+le - au2du - nn+1. (G-5)

Using Eq. (G-5) we can find a closed form solution for

Eq. (G-3).
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Vt exp[- '- '( Ll+aF(t)L2

a 2Ftt)3

+ 3+ (t) 4+ 2 F(t)L3

F(t)L4)a'+(-T- L3+3aF(t)L 4)'

+ /7Lca']

where

1L =

2

(G-6)

L3 3 x2

1 3
L4 = 9~4 DT.

2
Eq. (G-6) gives good results when a is close to (pF t)Cy 2(t)

Otherwise the results are not good because the solution for

[1-F w(a-x)] can not be used when a-x is negative. Therefore

the use of Eq. (G-6) is limited.
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