— ' Room 14-0551
— ~~ 77 Massachusetts Avenue

. o Cambridge, MA 02139
MITI_|brar|eS Ph: 617.253.5668 Fax: 617.253.1690
S . Email: docs@mit.edu
Document Services http://libraries.mit.edu/docs

DISCLAIMER OF QUALITY

Due to the condition of the original material, there are unavoidable
flaws in this reproduction. We have made every effort possible to
provide you with the best copy available. If you are dissatisfied with

“this product and find it unusable, please contact Document Services as

soon as possible.

Thank you.

Some pages in the original document contain coler G Ww
pictures or graphics that will not scan or reproduce well.

Implementation of a Temporal Typography
System

by Douglas Soo

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degree of Master of Engi-
neering in Electrical Engineering and Computer Science at the Massachusetts
Institute of Technology

Copyright 1997 MIT, All Rights Reserved

s

v 2 //: ,’/’_

Signatyfeof Author
Depgttient of Electrical Engineering and Computer Science
February 4, 1997

Sy mMENS—

Certified by

John Maeda

Assistant Professor of Design and Computation
MIT Media Laboratory

Thesis Supervisor

F.R. Morgenthaler » TR
Chairman, Department of Graduate Theses ‘ Gl Tl

i MAR 211997

n

G RRE S

Implementation of a Temporal Typography
System

by Douglas Soo

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degree of Master of Engi-
neering in Electrical Engineering and Computer Science at the Massachusetts
Institute of Technology

February 4, 1997

Copyright 1997 MIT, All Rights Reserved

Abstract

Temporal typography is the dynamic treatment of written language. This thesis offers an
analysis of the design and implementation of systems used for authoring temporal
typography. It presents a broad overview of the issues involved in authoring temporal
typography, and proposes solutions to improve authoring, and evaluates these solutions
through the use of experiments. Experiments are performed to evaluate the viability of
these solutions. These experiments includes experimentation with transparency and
three-dimensional graphics in a browsing system, the use of electromagnetic field
sensors as an input device and an automated design system used in a networked
messaging application. It also describes the real-time rendering temporal typography
rendering engine and scripting language implemented for use in these experiments.

Thesis Supervisor: John Maeda
Title: Assistant Professor of Design and Computation, MIT Media Lab

This work was supported in part by the MIT Media Laboratory News in the Future
Consortium

Acknowledgements

Thanks to all those at the Media Lab who have helped me in my endeavors. My thesis
advisor, John Maeda, whose energy and creativity inspire all those around him. Ron
MacNeil, who first entrusted work to me as an undergraduate researcher. Yin Yin
Wong, whose work inspired this thesis project, and whose confidence in my work gave
me the push I needed. Walter Bender, who always made sure that I had funding, even
though I saw him far too rarely. Of course, all of the other graduate students at the
Visible Language Workshop and Aesthetics and Computation Group, who created a
relaxed atmosphere, and never let me get too bogged down in my own work.

More thanks go to my family, who always encouraged me. And thanks also go to all
my various friends and roommates, who were always entertaining, who always egged
me on, but who were always supportive in times of trouble.

Table of Contents

1. Introductio.n 5

2. Background and Related Work 8

3. Design Overview 14

4. Basic Rendering Framework 17

5. Design Experiments 24

6. Conclusion 34

Appendix A. Rendering Engine Scripting Language

Appendix B. Template Language 45

37

1. Introduction

As the computer has become present everywhere in

Tempe

today’s world, from the office to the home, it has
become increasingly important as a medium for
communications. Especially with the advent of local
networks in the work environment and on-line
services at the home, an increasing amount of

communications is being done with computers.

Most of this communication is being done using
electronic mail or chat systems that use unenhanced
text as their medium. While recently, e-mail support
has started to include basic text formatting available
in word processors by using HTML and other text
formats, this kind of text is a difficult medium for in

: : . . Typograj
expressing emotion, and conveying subtleties that are Temporal
often transmitted almost subconsciously in face to
face or vocal communication. While people have
used novel and inventive ways to increase the depth
of textual conversation by using mechanisms such as
smileys [Bruckman 93], these mechanisms are often
cryptic, and often not understood universally. One
solution to this kind of problem is the use of new
technologies, such as audio and video conferencing,
which can be used to simulate a face to face

conversation,

However, this approach is not entirely satisfactory.
Audio and video are high-throughput media, and
make it difficult to attain acceptable quality except by
using high bandwidth network connections. Also, it

action
Temrﬁgral

FTypography

is unlikely that computer technology will be able to

provide a satisfactory simulation of face to face

Figure 1-1:An example of
temporal typography, viewed
Jfrom top to bottom.

conversation in the near future. An approach that

took advantage of the various abilities of the computer would be a more interesting
approach.

One approach that can be taken is the use of temporal typography as a communications
medium. Temporal typography is a dynamic treatment of written text - in essence, text
that changes its form over time.. Common examples of temporal typography include
“flying text” that is seen in commercials, and introductory sequences in films and

television.

Temporal typography is able to take advantage of the qualities of the computer that
differentiate it from paper - namely, an interactive dynamic medium, which allows for
much more expressive capability. With the increasing power and decreasing cost of
computer systems, the quality and cost of such graphics is good enough that such
experiments can be performed using reasonably inexpensive hardware. In addition,
temporal typography maintains some of the qualities of text that are advantages over
audio and video mediums, such as the ability to do off-line composition, and relatively

low bandwidth requirements.

While temporal typography addresses the issues of expressivity and off-line
composition, there is currently a major problem with using it for communications - that
of authoring. Like most other dynamic mediums, such as music and animation,
authoring is a very time consuming process because of the complexity of the medium.
Adding the dimension of time to typography greatly increases the amount of data that

needs to be dealt with.

This thesis examines the issues that are involved in the creation of tools to author
temporal typography, and outlines several possible solutions to these issues. These
solutions include improving browsers and editors by the use of transparency and three-
dimensional graphics, the use of new types of input devices such as electromagnetic field
sensors in order to make control more intuitive, and the use of automated design to
reduce the complexity that a user has to control directly.

In order to examine these issues, several tools and examples were created. These
include:

e A real-time temporal typography rendering engine, and its scripting language.

. A browser and editor to the rendering engine, which uses transparency and

three-dimensional graphics.

. Two examples of the use of electromagnetic field position sensors in the creation

of temporal typography pieces.

. Anetwork messaging system, TypoTalk, which uses a simple automated design
template language.

Organization of this thesis

This thesis is organized into several sections. Chapter two contains background
information, including previous research into temporal typography and automated
design, as well as examples of expressive typography. Chapter 3 offers a broad
overview of the general design issues involved in temporal typography authoring tools.
Chapter 4 covers the design of the rendering framework and scripting language that
were used to render temporal typography in the design experiments. Chapter 5
'describes the various design experiments - the browser/editor interface, alternative input
devices, the template language and the TypoTalk temporal typography chat system.
Chapter 6 draws conclusions from the research done, and provides insight into future
research in the area. The appendices include more detailed technical descriptions of the
tools used in the design examples, primarily the syntax of the scripting language and
template language.

2. Background and Related Work

Traditional typography is the form of static text on a page of paper. There have been
many experiments in the past with the use of typography to convey emotion and
meaning. This area of typography is called “Concrete Poetry”. One example of this is
the work “The Bald Soprano” (Figure 2-1), where type is used to communicate the
emotion and nature of communication between characters in a play [Massin 1956].

The study of typography and graphic
design has resulted in a formalized
language, which makes it easier to
describe a piece, and what elements
lend it its appearance. However,
because dynamic typography has not
until recently been a medium in which

formal research has been done, there

has not been a similar language in

which to describe temporal
: Figure 2-1: An example of expressive typography
typography. taken from “The Bald Soprano” [Massin 1956]

This is the area which Yin Yin Wong, in her thesis entitled Temporal Typography:
Characterization of time-varying typographic forms [Wong, Y. 1995] researched.
In it, she describes a formal structure for the characterization of temporal forms of
typography. The characterization that she developed is based on the notion of
dimension. Dimensions are attributes of form that can be changed over time, such as

position, size and color.

The description of a temporal form is done by describing the modifications of the
dimensions of an object. She describes a hierarchical structure, starting at the lowest
level with avisual technique. She defines a visual technique as “a primitive unit which
describes how a specific typographic dimension changes over a period of time.” Each
conceptual layer is composed of elements of the layer below it. For example, avisual
action is a group of visual techniques that is combined together to form a complex
expressive behavior, and anexpression is composed of a sequence of several visual
actions. At the highest level is apresentation, which is “a composition of expressions
presented in an integrated manner for the purpose of visual communication.” [Wong, Y.

|presentation

i

expression | expression |
I 1 I L
gtion | leu:tion | |action |
ItechmgueI =techmques iy |

P

Figure 2-2: A diagram showing a sample hierarchy of a visual presentation.

1995] This hierarchical structure is the basis for the temporal typography tool that is
described in Chapter 4.

Automated design is an important approach in improving any kind of authoring system.
In particular, automated design which is able to adapt to changing information and visual
spaces is important. In Louis Weitzman’s thesis, The Architecture of Information
[Weitzman 95], a large part of his thesis revolved around the use of grammatical

systems in order to create automated visual design that adjusts itself to different forms.

An important concept that he uses is that of “meta-design”, where flexible descriptions
of designs are made. These descriptions are capable of responding to the environment
and the information being represented. Meta-design is an extension of the use of design
templates and rules, allowing an increased amount of flexibility in relation to both the

information being presented, as well as the medium being used to present it.

Weitzman implements meta-design through the use of Relational Grammars, which are
- able to describe the visual relationship between objects, and which describe the design
of the system in a manner that allows for changes in the medium that the information is

SCEENTIFEC
AMERICAN

g Hnde) o

SCIENTIFIC
AMERICAN

Figure 2-3: Weitzman's VIA system automatically redesigned information to fit different styles

using Relational Grammars.

being displayed in. Relational grammars are an extension to traditional string languages,

and function by specifying constraints between the different members.

Another related approach is taken by Suguru Ishizaki, in his thesis ipographic
Performance [Ishizaki 1995]. Ishizaki also examines the ability to create designs that
are able to deal with changing information content. However, instead of approaching

this with the use of relational grammars, Ishizaki proposes a model of dynamic design

with multiple agents, which a visual designer uses in order to create designs that

continuously change over time.

He uses a decentralized theory of design that
is based on temporally based performing arts
such as dance and music, as well as on
multiagent systems. In his model, each
particular segment of the design is
represented by a design agent, which
communicates with the other agents in order

to create a design solution.

One example that was implemented using his
agent system was that of an electronic mail
reader. As anew piece of electronic mail

. Theee wlt bo s lesture by Prot, G
Ovaifton, i‘ar wtw ghxle Eqwmmaé

Figure 2-4: Ishizaki's e-mail example uses
design agents to automatically redesign
itself whenever a new piece of mail
arrives.

10

arrives, various agents are told of the mail’s arrival, and the
Sender agent positions the piece of mail. Ifthe user clicks
on a piece of mail, the sender agent informs a message
agent, and the message agent brings the message to the
foreground, while other agents defocus their text or render
their text translucent in order to make it easier to read the
message. The ability of the various elements of the design
to react to each other based on the information that is
presented to them allows the system to adapt to different
circumstances, making it much more flexible, and
maintaining the quality of the design.

Examples of Temporal Typography

Before the advent of computer technology, temporal
typography was primarily used in the film and television
industry. Temporal typography was most often used in title
sequences to make the name of the movie as memorable as
possible. Several good examples of temporal typography
have been done by Saul Bass - who used temporal
typography extensively in the title sequence in the Alfred
Hitchcock movie Psycho (Figure 2-5), as well as in North
By Northwest. In the introduction to Psycho, the text
entering as the horizontal lines crossed the screen gave the
words ajarring feel, that caused the viewer to feel the
unease associated with the word “psycho” [Bass 1960].

Interactive temporal typography pieces are not as common,

because the technology necessary to create these pieces did
not exist until recently. In Flying Letters, John Maeda uses
dynamic typographic experiments in an attempt to amuse P EYEHO
the user, and inspire new ways of thinking about the use of

text on computers [Maeda 1996].

Other interactive work includes that by Peter Cho, in which ~ figure 2-5: Sequence from

. . . credits of Hitchcocks
he takes the letterform of a single letter - A - and distortsit ~ p sycho

11

in a playful and interactive way [Cho 96]. By moving
the mouse around the screen, it appears almost as if
the letter is dancing and smiling at you, because of
the way the crossbar bends into a curve. His work is
an excellent example of work where the letterform
itselfis distorted in order to give a sense of life to the
letter.

Another area where temporal typography has been
used is in video and computer games. One example
of a computer game that uses temporal typography is
You Don 't Know Jack, atrivia game [Berkeley
Systems 1996]. Temporal typography is used within
the game to introduce questions, and impart a sense
of excitement. While the quality of the temporal
typography is reasonably good - anti-aliased and ata
reasonable frame rate - it is non-interactive. The
temporal typography is played back in movie form.
Incorporating interactive temporal typography that
would interact with the user, and work with not only
the introductory sequences but with all the text
throughout the game would help a great deal with the
- atmosphere of the game.

Existing Temporal Typography
Tools

There are currently few tools which are designed to
explicitly work with temporal typography. The ones
that do exist tend to be high end tools used for video
and movie production, '

Figure 2-6: You Don’t Know Jack
‘uses temporal typography to
introduce its questions.

One of the biggest problems with these tools is that they are unable to render their

output in real time - in other words, it is not possible to view the temporal typography in

its final form as it is created - there is usually a rendering stage that is necessary, in order

to see the results of manipulation. Thus, none of these tools are suited to any kind of

1

[\

system where content is generated in real time - a chat system, for example, would be

impossible to implement.

In addition to these high end typography tools, tools for use in multimedia productions
such as Macromedia Director can be used to create temporal typography. However,
these tools are not easy to use in such a manner because they were not designed to be
used for temporal typography, but for other authoring purposes. Adapting them to
produce high quality temporal typography output has been difficult. Again, it would be
difficult, if not impossible, to use these tools to create a high quality real time temporal

typography tool.

13

v

3. Design Overview
Temporal Typography Authoring Issues

Temporal typography suffers from the difficulty of representing time (and rhythm), like
all other mediums that have time as one of their primary dimensions, such as music,
dance, and cel-based animation. Inaddition to the traditional properties of text (size,
rotation, font, etc.), the addition of mutability of change over time significantly increases
complexity. Thus, one of the primary problems involved in authoring is attempting to
find a representation for a multidimensional space that is easy to comprehend and

manipulate.

The design experiments that are described in this thesis attempt to address the problems
of temporal typography authoring by using three different approaches - improved editing
tools, input devices/methods and automated design. These approaches try to improve
authoring by focusing on two different problems - by visualizing large amounts of

information, and by reducing the amount of information needed to author a temporal

typography piece.

Designing improved temporal typography editing tools that can enhance the
presentation of all the information needed to edit a temporal typography piece is at most
the simplest, but most difficult approach. This approach requires the least technological
development, but requires a good understanding of the way that people can visual large
quantities of data and not become overwhelmed. In this thesis, an attempt is made to
improve the presentation of information by taking advantage of high quality transparency
and three-dimensional graphics.

The second approach is the use of nontraditional input devices and methods in order to
make authoring more intuitive. The use of a keyboard and mouse is a very limiting
method of creating a temporal typography piece, especially when the use of a mouse is
generally reduced to pointing at a certain location and clicking. In face-to-face human
communication, much of the information is being conveyed not in the words, but in the
gestures that are being used by the hands of the person that is communicating. In the
experiments outlined in this thesis, input devices that are able to track hand position in a
much less limiting fashion are used to examine the viability of such an approach.

14

A third approach to improving temporal typography authoring is that of automated
design. By reducing the amount of information that needs to be handled in a temporal
typography piece, it would be easier to deal with the scope of a large temporal
typography piece. One way to do this would be by simply using higher level temporal
typography styles, and not editing low-level techniques - in other words, using dumb
templates. However, this approach has problems. Much of the time spent in creating a
temporal typography piece comes not at the high level design of general expressions and
motions, but from the low level tweaking - making words appear at the proper rhythm,
at the proper place, making a smooth flow. A dumb template language would be fast,
but would be unable to do the tweaking necessary, resulting in a much lower quality
design. By using much more “intelligent” automated design that was able to properly
deal with these low level details, the high quality that is important in temporal typography

would be maintained.
Description of Experiments

Initial work done to improve temporal typography authoring involved the development
of an experimental browser which attempted to take advantage of high quality three-
dimensional graphics in order to make it easier to browse an object hierarchy
representing a temporal typography piece. This system was used on top of the
temporal typography rendering framework and scripting language which is described in

the next chapter.

Another set of systems experimented with using different input devices. These
experiments (TTT Poem and Fable Table) both incorporate electric field sensors, which
are able to determine the position of a user’s hand in space. TTT Poem involved using
sensors which were placed underneath the surface of a desk, while the Fable Table
used sensors embedded into a wooden table, with a projector displaying images on the
surface of the table.

The last experiment, TypoTalk, was done in order to test the use of an intelligent
template system to automatically generate temporal typography. The TypoTalk system
is a networked intercomputer messaging system, where the user selects a style for the
temporal typography piece. The template system also includes a dictionary, which can
parses the text looking for words with associated styles, and render the text using those
styles.

15

Chronology of Research

All of the experiments were done over a period of two years. The initial work was
done as an undergraduate researcher at the Visible Language Workshop under Yin Yin

‘ Wong, for her thesis on creating a formal characterization of temporal typography.
Work then continued on independently.

Initial design and implementation of the temporal typography rendering system was done
during January of 1995. Further development of the scripting language occurred during
the spring and summer of that year, and development of the editing tools occurred at
that time began to occur at that time as well. Development of the template language
began during the spring of 1996, and in the fall of 1996 work on input devices and the
TypoTalk system was done.

16

4. Basic Rendering Framework

In order to perform experiments on temporal typography authoring, it was first
necessary to develop a system that would be able to render real time temporal
typography. In addition, this rendering tool needed to have a scripting language to
control it that would be simple, but flexible enough. This chapter contains a description
of the tool that was originally designed for Yin Yin Wong’s experiments with temporal
typography, but was adapted for use in experimenting with authoring.

Scripting Language Design

In designing a temporal typography scripting language, there were two key design goals:
simplicity and flexibility. This was necessary because the goal was to have a simple
language that could be used for the creation of multiple different sample temporal
typography pieces and experiments, each of which could be vastly different.

The scripting language and system that were designed closely parallel the
characterization of temporal form that was developed by Yin Yin Wong [Wong, Y.
1995]. The two main
concepts behind this

language are its use of visual
techniques and key

variables.

A visual technique is

essentially an action which
affects one or more of the

properties of an object

rotation

(called aplan). For

A\

.) key variable
example, a visual technique

could rotate a piece of text

&£ el

X9l

around its center, or change text =N

itscolor. A visual technique’s

behavior is controlled by that

Figure 4-1: A diagram showing the relationship between a
key variable and the parameter of a visual technique

17

text text ’ text

@ text C

text

+

1X3}

P

$ text

%

v text 1X9)

Figure 4-2: The effect of composing multiple visual techniques on a single item.

the key variable that it is associated with.

A key variable is a parameter that affects the behavior of objects. It can be time,
mouse position, strength of an electromagnetic field sensor, or any other property that
can be characterized as a numeric value. Key variables allow for flexibility in the design
of pieces - in this way, a piece can be designed for a conventional time-based playback,

or playback based on the position of the user in a three-dimensional space.

Each visual technique is associated with a single key variable. Depending on the value
of the key variable, the parameter that is being affected by the visual technique will be
interpolated. For example, if the key variable is time, the parameter being affected by
the visual technique will transition smoothly with the passage of time over the range in

which itis active.

An important property to note about visual techniques is that they have a cumulative
effect on the plan that they are associated with. Thus, multiple visual techniques can
overlap, and affect the same property of the object. Also, visual techniques have
different interpolation methods. These interpolations are used to modify the behavior of

18

parameter

key variab]é
linear

parameter
parameter
parameter

» -
Ll —

key variable key variable key variable
cosine quadratic grow quadratic decay

Figure 4-3: Examples of different types of interpolation methods.

the visual technique over the range in which they take place - for example, a cosine
technique could be used to stop and start an action smoothly, resulting in an action that
appears to ease in and ease out. There are currently four types of interpolation methods
(Figure 4-3), with the possibility of adding more.

However, while the scripting language and renderer function worked, it suffered from
several limitations. The largest limitation was the fact that their was no way of organizing
either the visual techniques or the plans into any form of hierarchical structure. Thus, as
the complexity of a presentation grew, it became very difficult to organize the structure.
Also, since there was no way of grouping visual techniques, there was no easy way of
reusing techniques that had been used before.

Thus, another version of the scripting language was designed, in which there was a
hierarchical structure. Each visual technique was allowed to have multiple visual
techniques as its children, and each plan was allowed to have multiple plans and visual
techniques as well. In addition, each of these objects was given the ability to have a
names, so each item could be copied and reused.

19

Figure 4-4: Example of hierarchical presentation structure.

Another problem which hindered the original scripting language was that there was no

local scope. Composing visual techniques in a global scope would be very difficult, as it

would be necessary to determine when in global time each individual action was

occurring, and then whenever you wanted to change when an action was occurring, it
would be necessary to edit the values of each of the individual element. Also, in order

to change the duration of a complex visual action, it would be necessary to manipulate

all of the children composing the visual action. -

planA

AN

planB

planC

node hierarchy

‘7
B C

no inheritance

mheritance

Figure 4-5: Example of the effects of inheritance of visual techniques

20

In order to solve the scoping problems, key offsets and key scales were added to
every visual technique and plan. Akey offset shifts the value of each of the key
variables, so it is possible to move a visual technique by just changing the offset. This
makes it simpler to move complex actions. Akey scale expands or shrinks the value of
the key variables. For example, akey scale of 2 would multiply the value of the key
variable by 2, so if the key variable were time, things would happen twice as fast.

The hierarchical structure also resulted in another concept that was added to the
scripting language - that of inheritance. Since it was now possible to have nested plans,
there was an issue of whether the visual techniques of the parent plan should affect the
child plan. It was decided to have a flag in the visual technique that would toggle if it
was inherited or not. This is a useful capability, as it makes it simpler for different items
which have a common visual technique (such as text which all have the same font) to
share it, by simply including them under a common plan with an inherited visual

technique.
Rendering Engine

Designing the scripting language and the functionality of the rendering engine took place
simultaneously, by necessity. The basic rendering framework used in the experiments
described in this thesis needed certain important functionality beyond that determined by
the scripting language. It was important that animation of the temporal typography
occur in real-time. In addition, the spacial quality of the text had to be high,
necessitating the use of anti-aliased text, and the use of three-dimensional graphics.

In addition to maintaining the quality of the text, there were other issues that had to be
addressed in the system. The system needed to be flexible, but simple. In order to be
able to accommodate the various different experiments, it was necessary that it be
relatively simple to add functionality such as new input devices, new types of visual
techniques, and other things of a similar nature. The time required for implementation of
these new pieces had to be relatively short. Thus, it was necessary for the system to be
extremely modular in nature, with as little interdependency on various types of software

and hardware.

In addition, there was a desire to make the system fairly easy to port from one graphics
technology to another. This was important because of the desire to possibly use the

21

system for communications on multiple different platforms. Again, modularization
simplified this goal. Platform specific parts of the system were abstracted away into a
core which could be easily and quickly replaced, surrounded by platform independent

code.
Implementation

Initial implementation of the rendering framework occurred in January of 1995,
concurrent with the development of the scripting language. It was done using Silicon
Graphics hardware, using C++ and the Iris Performer graphics toolkit, as well as an
anti-aliased bitmapped font library. This allowed for the manipulation of text in three-
dimensional space in real-time, as well as the use of important features such as

transparency.

The new version of the renderer and scripting language was then developed, again in
Performer and C++. Later this was ported to the Open Inventor toolkit, but the basic
framework (with the exception of the specific graphics toolkit commands) remained

essentially the same. Itis this version that will be discussed in depth here.

Inrendering a single frame of a temporal typography presentation, the rendering engine

takes the following steps:

1. The values of all of the key variables are determined. This is done either by
polling system calls, such as in getting the current time or mouse position, or by

getting the state of a device, such as the fish sensor.

2. The values of the key variables are then passed to the base plan of the node
hierarchy. Atthis point, the program begins a traversal of the node hierarchy,
starting with the plan at the base.

2a. Ifthe node is a plan, the first thing that is done is to modify the key variables by
their offset and scales. This is done in order to place the key variables in the
local context of the plan. Then, the plan calls the update methods for each of
the child visual techniques, which results in a stack of currently active visual
techniques. Then, it initializes the state of each of its child items, returningitto a
default state (translation, rotation, scale, etc.). The visual techniques in the stack

22

are then applied to each item, modifying its state. It then removes visual
techniques that are not to be inherited by its child plans, and then calls the
update methods for each of its children. Afterwards, it removes its visual
techniques from the stack.

2b. If the node is a visual technique, as with plans, the key variables are modified by
their offsets and scales. Then, the visual technique determines ifit is active by
checking the persistence properties and the value of the key variables.. Ifit
isn’t, it stops traversing the tree. Ifit is, it adds itself to the stack of visual
techniques, and then does an interpolation to determine what its behavior should _

be.
3. The frame is rendered.
T set key
initialize variables
recursively

[traverse node
hierarchy, setting
item parameters
based on key
variables and
visual techniques

render items

Figure 4-6: Rendering engine flow chart.

23

5. Design Experiments
5.1 Browser/Editor

Browser/Editor Design

One of the problems with the
scripting language was that by just
reading the scripting language in text

form it was very difficult to
determine what a particular script
would do and what effect changes
to it would have. In orderto be

able to edit and manage a

presentation well, it was necessary

to have some sort of browsing and/
Figure 5-1: An example of a typical Macromedia

or editing system that would make it
5y ' Director editing screen, courtesy of Reed Kram

easy to visualize the structure of a
temporal typography.

Thus, one of the ideas that was developed was that of a browser or editor system for
temporal typography, similar to those used to look at the class hierarchies in an object
oriented language, or that of a system for scoring music. This system would make it
possible to perform real-time editing of temporal typography: As parameters of the
temporal typography piece were changed, the effects would be displayed 1mmed1ate1y,
instead of having to restart the renderer.

- However, the approach that commercial tools use approaches for browsing and editing
that are not well suited for the development of temporal typography. In order to
understand the limitations of these systems, the interfaces used by two different sets of
tools will be discussed - the approach used by three-dimensional modeling tools, and
the approach taken by multimedia development tools such as Macromedia Director
[Macromediay.

24

Three-dimensional modeling
programs often use a combination of
a scene graph and key frames in
order to represent the movement of
an object through space and time.
The scene graph is a hierarchical tree
which represents the relationships
between objects in the scene, usually
with orthogonal matrices to represent
the position, orientation, and scaling
of the object. However, sucha
structure does not easily lend itself to
representing what changes are
occurring to an object over time, but
only the fact that such a change is
occurring. These tools are unable to
-generate temporal typography ina

' nonlinear, dynamic manner.

The second group of tools are tools
that are used for the development of
multimedia programs - programs that
incorporate video, sound, and
computer animation in a nonlinear
way. One such program is
Macromedia Director. Director’s
approach to authoring is taken from
that of a movie as well, with cast
members and actors performing
various actions, where the

workspace is called a stage.

Director uses a timeline approach,
where there is a timeline window
with different frames on the
horizontal axis, and the different

Figure 5-2: Sample screenshots from the
experimental browser. Note the superposition of the
browser on the presentation being edited, as well as
the child nodes inside of the parent nodes.

25

members of the presentation on the vertical axis. One problem with this approach is
that the timeline window takes up a great deal of screen real estate, making working in
the space an act of juggling windows. Another problem is that it is very difficult to see
what the effect of different actions are, and it is generally not possible to edit effects
without having to use some sort of dialog box.

There are also several problems that are not related to the editing environment itself, but
with the underlying structure of the program.. One limitation of Director is that the
number of objects that are allowed in a presentation is limited - this makes it much more
difficult to create temporal typography. This makes it necessary to do some complex
programming in Lingo in order to create temporal typography. Unfortunately, as soon
as you do this kind of programming, it is no longer possible to display the temporal
typography piece on the timeline,

resulting in a scripting language
which cannot be edited using the
timeline.

Another example of a system that
can be used for temporal
typography is Adobe AfterEffects.
AfterEffects is atool that is used for
the creation of effects on digital

video - effects such as lens flare,
rotation, and scaling. While Figure 4-7: A sample screen from Adobe AfterEffects.
AfterEffects has the capability of doing almost all of the temporal typography effects
necessary, it suffers from a workspace that is too complicated, like Director’s. The
main window which shows the effects over time cannot easily display the information for
the manipulation of a single item of text: With multiple pleces of text, it becomes far too
unwieldy and cumbersome [Adobe].

Thus, in general, there are two major problems with current browsing and editing tools.
One of these is the need to switch back and forth between an editing context and a
viewing context, generally by having them in two different windows, often making it
impossible to work on the piece at the same size that it will appear in the presentation.
The other is that there needs to be a good way of simultaneously representing both the
georhetric and computational structure of the presentation and the time structure.

26

The approach taken in attempting to resolve these problems was to try to take
advantage of the technology that was available, namely fast three-dimensional graphics,
and the ability to do high quality transparency. By taking advantage of the ability to see
through multiple layers of the hierarchical structure at once, it makes it easier to maintain
context. Inaddition, it is possible to manipulate the presentation while being able see
the effect, unobscured By dialog boxes or other windows.

The basic design of the editor uses the horizontal axis of the screen to represent time in
arelatively conventional manner. However, the vertical axis as well as the axis that
enters the screen are used to represent the hierarchy of nodes in the presentation.
While traditionally this would result in objects blocking each other, transparency was
used to help alleviate this problem, as well as other problems.

Transparency was used to reduce the problem of obscuring in two ways. The first way
that transparency was used was to superimpose the editor on top of the presentation
being worked on, much like the heads up displays that are used in military aircraft. This
makes it possible to see both the presentation and its representation at the same time,
saving both screen real estate. Italso avoids the idea of having different editing and
viewing contexts, making it easier to keep track of what is happening.

Transparency was also used was in making it possible to see multiple layers of the
browser representing different layers of hierarchy at the same time. Each plan or visual
technique is represented as a translucent rectangle - tinted blue if it is a plan, tinted red if
itis a visual technique. Each plan or visual technique is represented at a different hei ght
on the vertical axis. Ifa plan or visual technique has children, the children are placed
“behind” the parent - in other words, further away from the camera. Since the
rectangles are transparent, it is possible to see through many levels of the hierarchy - at
once seeing the individual leaf nodes, and the top-level structure.

One problem with this representation is that plans and visual techniques do not
necessarily have a time or duration - their duration is based on that of their children. So
when determining the representation of an object, it depends both on the object’s own
duration, but also those of its children. This requires the implementation of a tree
traversal in order to express the values of the all the nodes in the global time scale.

27

The representation allows the user to move the camera in and out of the presentation,
and pan the camera left and right, or up and down. By zooming in, the user can take a
more detailed look at an individual plan or visual technique. It is also possible to turn off
layers of the view, so it is possible to view the lower levels of the hierarchy without
having to view the higher layers.

When anode is selected by clicking on it, the vertical axis serves a double purpose.
Vertical lines appear marking the beginning and end of the visual technique, and
horizontal markers appear on these lines which represent the beginning and end value of
the property being manipulated. Thus, the vertical axis is transformed to represent the
dimension that is manipulated by the particular visual techniqué selected. By dragging
the time markers back and forth, it is possible to change the duration and time of the
visual technique, and by dragging the
value markers up and down, it is
possible to change the effect that the
visual technique has.

In sum, the editor design was able to
make it much easier to determine
what was going on in a specific

presentation. However, there was

still an overwhelming amount of data,
which still eventually would grow out
of hand. In addition, it was still not
very intuitive to edit temporal
typography presentations. The next
set of experiments attempted to
resolve that problem.

5.2 Input Devices

TTT Poem

The TTT Poem was a piece that

examined the possibility of using Figure 5-3: Sample screenshots from the TTT Poem.
' As the user moves their hands over the desk, the

electromagnetic field sensors as an properties of the text change.

28

input device. The design consisted of a set of four receivers for the electromagnetic
field sensors on the underside of the table, and a transmitter that the user sat on. As the
user moved their hands over the table, each sensor detects the strength of the field
emanating from their hands, and thus how far away a hand is from the sensor. For |

example, as a user moves their hand over the sensor, the different letters in the word

“things” fades in and out.

By making the relationship between hand motion and the behavior of the object on the

screen much more direct, users were able to have a much more intuitive feel over what

changes they‘are making to the presentation. Instead of setting beginning and end

points, and then viewing playback, the user was able to almost directly manipulate what

is happening.
Fable Table

The Fable Table, a collaborative
work with Sawad Brooks, uses
technology similar to the TTT Poem,
in that it uses electromagnetic field
sensors as the primary input device.
However, while the TTT Poem
essentially keeps the traditional
monitor-keyboard/mouse paradigm,
except by substituting field sensors
for the keyboard and the mouse, the
Fable Table attempts to break that

paradigm.

The Fable Table is a wood table,
approximately two and a half feet
square, which has a projector
suspended above it, projecting an
image onto the surface of the table.
In addition to the projector there is
also a small display that is
embedded into the surface of the

Figure 5-4. As the user places their hand over areas
of the Fable Table, actions occur in those areas of the
table

29

table. Electromagnetic field sensors are embedded in the table, and are able to ‘sense
the position of a hand in a three by three grid. The longer a person leaves their hand in
aposition, the higher the value of the variable associated with that space.

As different areas of the table are activated, different things happen. Objects that are
on the table are displayed, and fade in and out. Sounds are played. Also, on the small
display, words that are associated with the area appear, scrolling across the display. By
moving their hands over the table, the user is able to compose a temporal typography

piece.

The Fable Table, by placing the display surface on top of the surface used for control,
gives a much more immediate sense of control, more so than even the TTT Poem.
Also, because of the quality of the wood, and the projection, it appears as if the table
itselfis glowing, giving the piece a very different feel from any conventional display. By
breaking away from the traditional user interface, usability is greatly enhanced.

Template Language/Design Automation

One of the largest problems with temporal typography authoring currently is the issue of
dealing with the details of the temporal typography piece. In order to have a temporal
typography piece appear right, it is necessary to tweak the timing, position, and all the
other attributes. One way to approach the problem, as described earlier, is to make it
easier to visualize all of the information. Another approach, however, is to reduce the

amount of information, by automating low level design.

However, such automation is not a simple task. While it is very simple to just break
things up into different visual expressions, and then allow the user to simply pick
different expressions for each word, that would not create a satisfactory design. Each
element of the design is affected by what precedes it and what follows it. In order for
the design to work, each element must be able to adjust itself based on the surrounding
elements.

Inorder to solve these problems, a template-based language was implemented. This
system uses the idea of “intelligent” template that, based on information about the
presentation and the other templates around them, adjust themselves in order to provide
the best design.

30

The template language does this by using fields and links. Fields are values that
represent either a property of the presentation, or a value that is set by either the user or
another template in the presentation. This allows for information to be communicated

between different templates.

Fields are complemented by links, which connect a field to the value of a specific
property in the presentation. For example, a field called “angriness” could be

connected to color and size. As a user increased the angriness field, the object the

template is attached to could turn red and grow larger.

By building templates which contain links to fields in other template in the presentation

that store information about the
various properties and qualities of
the those templates, the templates
are able to adjust to the templates
around them, and perform the
tweaking that is necessary to
produce a seamless presentation

TypoTalk

The TypoTalk system uses temporal
typography as the communications
medium for intercomputer messaging
between multiple users, similar to a
chat system. Because of its need to
function in nearly real-time, it was a
good test bed for the template-

based automated design system.

TypoTalk is used by typing a
message in the text window, and
selecting a template from a list of
predetermined general templates.
Then, the text that is typed is broken

Figure 5-5: Sample screenshots from the TypoTalk
system. Messages to be sent are typed into the dialog
box, and when they are received, are displayed in
pop-up windows by the server

31

up into words, and each word has the

general template style applied to it. .
message | | template | { rendering
creator translator engine
In addition to using the generic
templates, a dictionary feature was /
added to TypoTalk. Each word in the
.) . template
message is checked in a dictionary to
creator
see if there is a more specific temporal

typography template associated with

it. For example, the word “blue” has

. Figure 5-6. A diagram showing the major
atemplate that automatically turns that components of the TypoTalk architecture.
word the color blue. Once these
templates are gathered for each word, the templates are translated into lower level
scripts and sent across the network to a server on the target machine, which then
displays itin a window. The use of a feature such as this dictionary feature is a prelude
to the possibility of using some kind of automatic language parser, which would be able
to automatically understand the meaning of text and apply a temporal typography style

accordingly (see Appendix B).
Implementation
The framework of the TypoTalk system is comprised of four major segments:

. The rendering engine draws the text at the receiving end of the message. This
was implemented using the rendering framework described in Chapter 4,
modified to include a socket interface that allowed clients to connect to the

machine.

. The template translator is responsible for taking a template script generated by
the user and a template file generated by a template creator, and generating
output that is used by the rendering engine. The translator is implemented in
Java, and connects to the renderer via a network socket.

. The message creator is the interface that is used to create the temporal
typography message to be sent to other users. The user types in a piece of text

32

that they wish to send, and then picks a template that they wish to use with the
text. The message is then sent to the template translator.

The template creator is used to create templates that are used in the template
translator and message creator to generate text. Currently, this is not
implemented - templates must be created manually...

In order to deliver a message, the following sequence of events occurs:

1.

The user picks a template style, and types in a message to be sent, and presses
the send button.

The template translator breaks up the message into words. For each word, it
uses the template style picked by the user. In addition, the translator checks to
see if any of the words are in its dictionary. If they are, the translator adds the

styles associated with them to the list of styles being used by the template.

The translator takes the list of styles, and generates a script file. It connects to
the rendering engine, and sends it the file.

The rendering engine parses the file and displays the message.

33

6. Conclusion

Temporal typography has great potential as a new expressive medium, allowing a level
of interactivity and feeling that has only been possible in spoken communications. This
thesis has demonstrated various different methods that can make temporal typo graphy
authoring a much simpler process. Hopefully, this will result in temporal typography
becoming less of an experimental curiosity. As the practicality of using temporal
typography increases, the difficulty of creating expressive, clear messages using the
computer will hopefully disappear.

By performing the experiments and creating the tools outlined in this thesis, the research
attempted to outline the difficulties involved in temporal typography authoring, and
suggest ways in which these difficulties could be solved. In particular, two major
approaches were conceived - those of improved interfaces, and those of automated
design. Most approaches towards improving temporal typography can be categorized

as one of these two broad approaches.

The experiments with an improved browser/editor interface attempted to take
advantage of high quality graphics in order to improve the traditional class browser/
scoring interface. The use of transparency and three-dimensional graphics proved to be
able to show a greater amount of information, as well as being able to see local
information while viewing from a global context.

Using electromagnetic field sensors demonstrated the possibilities of using hand position
and gestures as a way of creating temporal typography. Systems usihg such controls
provide the user with a much higher degree of control over the output of a system, with
more intuitive feel. They make using a temporal typography tool more like playing an
instrument than programming.

Automatic design is a powerful way of creating temporal typography pieces that need to
be created in nearly real time, such as in the TypoTalk system that was developed. It
significantly reduces the amount of time necessary to create a piece, while

simultaneously maintaining most of the visual quality.

Future work

34

Due to the scope of the issues involved, it was only possible to perform a very broad
investigation. There is need for deeper research into the different approaches, as well

as looking at approaches that were not examined.

For example, because of complexity and time constraints, it was not possible to develop
a fully functional browser and editor based on the research performed. In order to fully
evaluate a design of this nature, it is necessary for it to be used in practice. While the
use of transparency and three-dimensional graphics in order to increase the amount of
information which could be visualized should prove to be a useful approach, there has
not been any kind of evaluation of exactly how much benefit would be obtained. The
human mind has some limitations on exactly how much information it can absorb at one
time, and it may be that limits in how much information can be comprehended at one

time have nearly been reached.

In experimenting with input devices, the extent of the research performed in this thesis
was only to show that such an approach was viable, and was much more intuitive than
using conventional approaches. There is still much more research to be conducted. In
particular, much werk has been done with examining the use of gesture in human
communication. If that research could be combined with that of temporal typography, a
system could be envisioned in which a user would not have to consciously create
temporal typography actions, but the computer could automatically recognize gestures
and associate them with temporal typography.

Design automation is at the same time the most obvious solution to authoring problems,
as well as the most difficult solution. The template system developed in this thesis
represents only a crude example of what could be done by using design automation.
Approaches using much more complex grammatical, or multi-agent systems would
almost certainly be much more flexible, and have much better results, in terms of the

quality of output and ease of use.

Of course, these different approaches need not be applied exclusively. A very powerful
system could be envisioned that combined some form of gesture recognition and
language recognition along with agents. In it, a user could speak a message, and
temporal typography would automatically appear, formatted properly.

35

While the research in this thesis deal only with temporal typography, the results can be
applied to a much broader variety of applications. In the process of understanding how
to author expressive temporal typography, insight is reached into ways of making the
computer perceive human emotion and language. Temporal typography authoring can
be seen as just one piece of the larger problem of computers expressing emotion.

36

Appendix A. Rendering Engine Scripting
Language

Basic structure

The structure of the scripting language is basically a hierarchial tree, consisting of three
types of nodes - plans, items, and visual techniques.

Items are the simplest objects - they are simply the graphical object that is to be
manipulated by the plans and visual techniques. Each of them provides a set of
functions that can be used to manipulate various attributes (such as translation, rotation,
scale) by the visual techniques.

A plan is a container for items that are to be acted on. So, for example, a plan usually
contains several items such text or images. The reason that the plan is not the graphical

item itselfis so the plan can be used as a container for other objects without having its

own graphical form.

A plan has four basic parts:

. The item that it contains (if any)

. A list of visual techniques that modify the attributes of the item.

. A list of subplans that can inherit attributes from the plan

. Several variable that affect the timing and time scale of a plan and its children

(both visual techniques and subplans).

A visual techniques is basically an action that is performed on the plan. Based on some
sort of key variable, such as time, or the volume of sound, it manipulates the attributes
ofanitem. Each visual technique can have subordinate techniques, which inherit the
scaling and timing of it’s parent.

37

The actual structure of the program is very simple. Each frame, the program gathers the
values of the key variable. It then does a recursive search through the various plans and
visual techniques, finds which ones are active, executes the transformations, and

redraws the screen.
The lIvshell Scripter

This section describes the usage of the rendering engine, called /vshell. This program
can be run on an SGI, running IRIX 5.3 or 6.2

Ivshell [-sound] [-pos <x> <y> <w> <h>] <filename>

<filename> This is the script file to be used (usually .prs)
While running the program, there are various keyboard commands you can use.

p pauses and unpauses the program.
rresets the presentation (not always reliable!).

Script File Syntax

The script files that are used by the program are simple ASCII text files. The preferred
extension for the names of these files is .prs, because there is an emacs editing mode

automatically detects the extension.

The syntax of the script file is fairly simple. It is primarily based on the use of several
key words. Basically, each plan must begin with the keyword Plan, and end with the
keyword EndPlan. Similarly, each visual technique must begin with the keyword Vis,
and end with the keyword EndVis.

To create a piece of text saying “Hello”, you would type:

Plan
Item: Text
“Hello
EndPlan

38

This creates a new plan, places a text item in the plan, with the string “Hello”, and ends

the plan.

Suppose you wanted to rotate the object around the Z axis. You would then type:

Plan
Item: Text
“Hello '
Vis
Type: Rotate
Keys: 0.0 10.0
Vals: 0.0 360.0
Axis: 2
EndType
EndVis
EndPlan

Plans

The syntax of a plan is very simple. It consists of the following format

Plan
Ttem: <type>
ID: <id>
Offset: <offset>
Scale: <scale>
<subplans and visual techniques>
EndPlan

All arguments are optional except for the keywords Plan and EndPlan. Also, the
arguments do not have to be in order. Offset shifts the timescale of the object, and
scale scales the time for the presentation by a factor. (Note: the time is first multiplied
by the scale, and then the offset is added to it)

39

Cufrently, there are 4 kinds of items: text, rectangles, images, and cameras. Here is the

syntax for those items:

Text Item:

Item: Text
“Put what you want to say here

Rectangle Item:

Item: Rect
<width> <height>

Image Item:

Item: Image
<width> <height>
<filename>

The image file should be in SGI Iris format(.rgb).

A cameraitem:

Item: Camera

There should only be one of these in a presentation. Consistent results are not

guaranteed otherwise!
Visual techniques

Here 1s the syntax for a basic visual technique:

Vis
<type>
ID: <id>
Offset: <offset>
Scale: <scale>
<subordinate visual techniques>
Persist: <persistence mode>
Inter: <interpolation mode>
Keytype: <key variable type>
Endvis

As you can see, the syntax for a visual technique is very similar to the syntax for a plan.
The only important thing is that ID must be set after type, due to the method of parsing.
Persistence mode refers to the effect of the visual technique if it is not in the range
specified by the keys:

always The visual technique always takes effect, with the beginning value

n No persistence. The visual technique has no effect outside of the key value

range

p+ The visual technique persists afterwards, using the value begin val + deltaval.

This is the default setting for most visual techniques.

+p Same as previous, except for key values lower than the range, and with the

begin value.

+p+ Combination of the two previous persistence modes.

Interpolation mode refers to the method in which the key values are translated to the

values used by the visual techniques.
linear A one to one correspondence

cos Followsacurve shaped like an inverse cosine curve - i.e. slow at the beginning,

slow at the end.
quaddec Quadratic decay. Fast at first, then slower later.
quadgrow Quadratic growth. Slow at first, then faster later.
Key variable type refers to the type of variable that the visual technique is keyed to.

time - keyed to the time, in seconds, of the presentation

41

mousex - keyed to the mouse’s x position, in pixels from the bottom left.
mousey - keyed to the mouse’s y position, in pixels from the bottom right.

Syntax for different types of visual techniques:

Type: Translate
Axis: <0 1 2>
Keys: <begin> <delta>
Vals: <begin> <delta>
EndType

Type: Rotate
Axis: <0 1 2>
Keys: <begin> <delta>
Vals: <begin> <delta>
EndType

Type: Alpha
Keys: <begin> <delta>
Vals: <begin> <delta>
EndType

Type: Scale
Keys: <begin> <delta>
Vals: <begin> <delta>
EndType

Type: TransAll
Keys: <begin> <delta>
Begin: <x> <y> <z>
Delta: <x> <y> <z>
EndType

Type: Stretch
Axis: <0 1 2>
Keys: <begin> <delta>
Vals: <begin> <delta>
EndType

Type: Color
Keys: <begin> <delta>
Begin: <r> <g>
End: <r> <g>
'EndType

Type: Switch
Key: <time>
Dir: <0 1>
EndType

Type: Bounce
Keys: <begin> <delta>
Floor: <height> <constant>
Gravity: <gravity>
Drag: <alr resistance>
EndType

Type: Align
Key: <time>
Align: <0 1 2 3>
EndType

Type: Font
Key: <time>
Font:
EndType

In addition to these plans and visual techniques, there are a few other different

keywords:

Include: <filename> - Includes another presentation file at that location. Not fully

tested...

Script file overall format

There is a sample file in ../Data/test.pres
Textin <> are arguments.

All segments are optional except where noted.

Plan
Item: <type of item: Text, etc.>
ID: <id string - no spaces allowed>
Plan
<args for subplan>

CopyPlan: <id string> // add a subplan that is a copy of

// a prev. plan
Offset: <key offset>
Scale: <key scale>

Vis // Indicates the start of a visual technique
Type: <type of vis> // Optional, but put first

<args for type>

EndType
KeyType: <type of key: time, etc.>
Persist: <type of persistence: always, p+,
Inter: <type of inter: lin, cos, gquaddec,
Offset: <amount of key offset>

quadgrow>

Scale: <amount of key scaling>
ID: <id string>
Vis // subordinate vis. tech.
<args for vis>
CopyVis: <id string> // Copy of prev. vis. tech.
EndVis // Required!
EndPlan // Required!

// Anything after // is a comment. Can be put at ends of
// lines, or on their own lines.

Script File Emacs Mode

To use the editing mode put it into your .emacs file. It will automatically indent your file,

to make it easier to detect syntax errors. Commands in pres-mode:

Esc Ctrl-X
Reindents the entire file

Tab
Reindents the current line.

Ctrl-C Ctrl-C
Comments out the marked area.

Ctrl-C Ctrl-U
- Uncomments the marked area.

44

Appendix B. Template Language

A template consists of lists of two different types of objects: fields and visual
templates. Afield is a variable that can be set either by the user or by a controlling
program.

Visual templates consist of three different types of elements: /inks, which connect fields
to values in the visual technique, parameters, which set generic visual technique options
(such as persistence, etc.), and values, which set properties specific to a particular type
of visual technique. The syntax of the types of fields is as follows:

Template:
<name of template>

Must be followed by an EndTemplate.

Field:
<name of field> <min> <max> <default>

Min s the minimum value of the field, max is the maximum value of the field, default is

the value that it is normally initialized to.

VisTemplate:
<Name of wvisual technique>

Must be followed by an EndvisTemplate.

Link:
<Visual technique field> <field> <scale> <offset>

Visual technique field refers to the name of a variable in the visual technique, field
refers to the name of a field in its parent template, scale is the value the field’s value will
be multiplied, offset is the value that will be added to the field value.

Value:
<Line to include in visual technique "Type" section>

This paremeter essentially causes the same line to be directly inserted into the script

being output by the template translator.

Param:
<Line to include in visual technique section after "EndType">

45

This paremeter essentially causes the same line to be directly inserted into the script

being output by the template translator.

This is a typical template file that defines a single template called spin.

Template:

Spin

Field:

Speed -100 100 O

Field:
Begin 0 100 0O

Field:
Delta O 100 0O

VisTemplate:

Translate

Link:

BeginKey Begin 1.0 0.0

Link:
DeltaKey Delta 1.0 0.0

Link:
BeginvVal Begin 0.0 0.0

Link:
DeltaVal Delta 1.0 0.0

EndVisTemplate

VisTemplate:

Rotate

Link:

BeginKey Begin 1.0 0.0

Link:
DeltaKey Delta 1.0 0.0

Link:

BeginvVal Begin 0.0 0.0
Link:

DeltaVal Speed 360.0 0.0
EndvisTemplate

EndTemplate

References

Bass, S. Title sequence for the film Psycho. 1960.
Berkeley Systems. You Don’t Know Jack. 1995.

Bruckman,A., Resnick, M. 1993. Virtual Professional Community: Results from
the MediaMOO Project. Presented at the Third International Conference on
Cyberspace in Austin, Texas.

Cho, P. Dancing Letters: Movement and expression in typographic elements.
1996. ACG Memo.

Cooper, M., et al. Information Landscapes. Frames. 1994
Ionesco, E., Massin, and Cohen. The Bald Soprano. Grove Press. 1956.

Ishizaki, S. Typographic Performance: Continuous design solutions as emergent
behaviors of active agents. Ph.D. Thesis, Massachusetts Institute of Technology.
1996.

Maeda, John. Flying Letters. Digitalogue, Tokyo. 1996.

Thomas, F. Johnston, O. Disney Animation: The Illusion of Life. New York,
Abbeville Press. 1981.

Tufte, E. R. Envisioning Information. Cheshire, Connecticut. Graphics Press.
1990.

Weitzman, L. The Architecture of Information: Interpretation and presentation
of information in dynamic environments. Ph.D. Thesis, Massachusetts Institute of
Technology. 1995.

Wong, W. Principles of Form and Design. New York, Van Nostrand Reinhold.
1993.

Wong, Y. Temporal Typography: Characterization of time-varying typographic
forms. M.S.V.S. Thesis. Massachusetts Institute of Technology. 1995.

47

