
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2016-006 May 26, 2016

Towards Practical Theory: Bayesian
Optimization and Optimal Exploration
Kenji Kawaguchi

Towards Practical Theory: Bayesian Optimization

and Optimal Exploration

by

Kenji Kawaguchi

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2016

c© Massachusetts Institute of Technology 2016. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

January 15, 2016

Certified by. .
Leslie P. Kaelbling

Professor of Computer Science and Engineering
Thesis Supervisor

Certified by. .
Tomas Lozano-Perez

Professor of Computer Science and Engineering
Thesis Supervisor

Accepted by .
Professor Leslie A. Kolodziejski

Chair of the Committee on Graduate Students

2

Towards Practical Theory: Bayesian Optimization and

Optimal Exploration

by

Kenji Kawaguchi

Submitted to the Department of Electrical Engineering and Computer Science
on January 15, 2016, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract

This thesis discusses novel principles to improve the theoretical analyses of a class
of methods, aiming to provide theoretically driven yet practically useful methods.
The thesis focuses on a class of methods, called bound-based search, which includes
several planning algorithms (e.g., the A* algorithm and the UCT algorithm), sev-
eral optimization methods (e.g., Bayesian optimization and Lipschitz optimization),
and some learning algorithms (e.g., PAC-MDP algorithms). For Bayesian optimiza-
tion, this work solves an open problem and achieves an exponential convergence rate.
For learning algorithms, this thesis proposes a new analysis framework, called PAC-
RMDP, and improves the previous theoretical bounds. The PAC-RMDP framework
also provides a unifying view of some previous near-Bayes optimal and PAC-MDP
algorithms. All proposed algorithms derived on the basis of the new principles pro-
duced competitive results in our numerical experiments with standard benchmark
tests.

Thesis Supervisor: Leslie P. Kaelbling
Title: Professor of Computer Science and Engineering

Thesis Supervisor: Tomas Lozano-Perez
Title: Professor of Computer Science and Engineering

3

4

Acknowledgments

I would like to express my sincere gratitude to my advisors Prof. Leslie Kaelbling

and Prof. Tomás Lozano-Pérez, for all of their support and keen insights. In addition

to the technical input provided by them, my experience of their quick, flexible, and

profound thinking and discussions has been valuable, providing a sense of successful

research styles that I could learn from.

Further, I would like to thank Dr. Remi Munos for his thoughtful comments and

suggestions for my work on Bayesian optimization. Without his previous work on

optimistic optimization, this work could not have been completed.

I would also like to thank Prof. Michael Littman for his thoughtful comments on

and suggestions for my work on optimal exploration in MDP. His suggestions and

encouraging comments motivated me to complete the work.

Next, I would like to acknowledge Funai Overseas Scholarship for their very gen-

erous financial support and for providing me with a scientific community active in

universities across the world.

Finally, I would thank my wife Molly Kruko for her support and happy moments

that we share, which have been a vital source of motivation and relaxation to me

while completing this work.

5

6

Contents

1 Introduction 13

1.1 Bayesian Optimization . 15

1.2 Learning/Exploration in MDPs . 16

2 Bayesian Optimization with Exponential Convergence 19

2.1 Gaussian Process Optimization . 19

2.2 Infinite-Metric GP Optimization . 21

2.2.1 Overview . 21

2.2.2 Description of Algorithm . 22

2.2.3 Technical Detail of Algorithm 24

2.2.4 Relationship to Previous Algorithms 26

2.3 Analysis . 27

2.4 Experiments . 32

3 Bounded Optimal Exploration in MDP 35

3.1 Preliminaries . 35

3.2 Bounded Optimal Learning . 37

3.2.1 Reachability in Model Learning 37

3.2.2 PAC in Reachable MDP . 38

3.3 Discrete Domain . 40

3.3.1 Algorithm . 40

3.3.2 Analysis . 41

3.3.3 Experimental Example . 44

7

3.4 Continuous Domain . 45

3.4.1 Algorithm . 46

3.4.2 Analysis . 47

3.4.3 Experimental Examples . 48

4 Conclusion 53

A Appendix – Bayesian Optimization 55

A.1 Proofs for Family of Division Procedures 56

A.2 Proofs for a Concrete Division Procedure 61

B Appendix – Exploration in MDP 63

B.1 Proofs of Propositions 1 and 2 . 63

B.2 Relationship to Bounded Rationality and Bounded Optimality 64

B.3 Corresponding Notions of Regret and Average Loss 65

B.4 Proofs of Theoretical Results for Algorithm 3.1 66

B.5 Additional Experimental Example for Discrete Domain 72

B.6 Proofs of Theoretical Results for Algorithm 3.2 72

B.7 Experimental Settings for Continuous Domain 80

8

List of Figures

1-1 Two distinct approaches to improve the theory for bound-based search

methods: For Bayesian optimization, I have leveraged existence of un-

known yet tighter bounds. For the MDP exploration problem, I have

proposed an adjustable theoretical guarantee to accommodate practi-

cal needs. 15

2-1 An illustration of IMGPO: t is the number of iteration, n is the number

of divisions (or splits), N is the number of function evaluations. . . . 24

2-2 Performance Comparison: in the order, the digits inside of the paren-

theses [] indicate the dimensionality of each function, and the variables

ρ̄t and Ξn at the end of computation for IMGPO. 31

2-3 Sin1000: [D = 1000, ρ̄ = 3.95, Ξn = 4] 32

3-1 Average total reward per time step for the Chain Problem. The algo-

rithm parameters are shown as PAC-RMDP(h), MBIE(ε, δ), VBE(δ),

BEB(β), and BOLT(η). 45

3-2 Total reward per episode for the mountain car problem with PAC-

RMDP(h) and PAC-MDP(ε). 50

3-3 Total reward per episode for the HIV problem with PAC-RMDP(h)

and PAC-MDP(ε). 50

B-1 Average total reward per time step for the Chain Problem. The algo-

rithm parameters are shown as PAC-RMDP(h), MBIE(ε, δ), VBE(δ),

BEB(β), and BOLT(η). 73

9

B-2 Average total reward per time step for the modified Chain Problem.

The algorithm parameters are shown as PAC-RMDP(h), MBIE(ε, δ),

VBE(δ), BEB(β), and BOLT(η). 73

10

List of Tables

2.1 Average CPU time (in seconds) for the experiment with each test function 30

11

12

Chapter 1

Introduction

“In theory, there is no difference between theory and practice. But, in practice, there

is.”– Jan L. A. van de Snepscheut. One of the reasons why theory and practice can

diverge is that a set of assumptions made in theory can be invalid in practice. The

well-known spherical cow metaphor exemplifies this phenomenon (i.e., theoretical

results based on the assumptions of the spherical shape and the vacuum condition

may not be directly useful in practice for farmers). Indeed, it is well recognized that

we should carefully select a set of valid assumptions that hold in practice. However,

selecting a set of valid assumptions is often not sufficient to prevent the divergence

of theory and practice. The divergence can occur when a set of assumptions are

not sufficiently sharp (or tight) to exclude irrelevant problems or phenomena while

capturing the class of the problems at hand.

In this thesis, I first identify a class of methods that has suffered from this sharp-

ness issue at an algorithmic level, resulting in the divergence of theory and practice.

I refer to the identified method class as bound-based search, which includes the A*

search, Upper Confidence for Trees (UCT), and Forward Search Sparse Sampling

(FSSS) algorithms [50]; exploration in Markov decision processes (MDPs) with opti-

mism in the face of uncertainty [19]; Lipschitz optimization [37, 24, 7]; and Bayesian

optimization with an upper confidence bound [41, 10]. Bound-based search methods

have a common property: The tightness of the bound determines its effectiveness.

The tighter the bound is, the better is the performance. However, it is often difficult

13

to obtain a tight bound while maintaining correctness in a theoretically supported

manner. For example, in A* search, admissible heuristics maintain the correctness

of the bound, but the estimated bound with admissibility is often very loose in prac-

tice, resulting in long execution times for global search. This has seemingly lead to

the divergence of theoretically driven approaches (that focus more on global search,

maintaining theoretical guarantees yet taking a long time to converge in practice)

and practically driven ones (that focus more on local search, obtaining a reasonable

solution within a short time but with no global theoretical guarantee).

In this study, I have focused on two members of the class of bound-based search

methods—Bayesian optimization and PAC–MDP algorithms—and proposed a spe-

cific solution for each one to tighten their bounds with sharper assumptions, aiming

to provide theoretically driven algorithms that perform well in practice.

Our two high-level approaches are illustrated in Figure 1-1. For the approach

shown in Figure 1-1 (a), note that tighter yet unknown bounds exist unless the known

bound is exact. We propose a way to additionally take advantage of this simple fact

that has been overlooked in previous work. A high-level idea is the following. When

we rely on a single known bound, the set of the next evaluation candidates is totally

ordered in terms of the possible improvements with respect to the bound. In contrast,

we consider a set of unknown tighter bounds (possibly uncountable), and as a result,

the set of the next evaluation candidates can be partially ordered but not totally

ordered in terms of the improvements with respect to the set of the bounds. Thus,

we simultaneously evaluates several minimal (or maximal) elements of the partially

ordered set to account for the existence of the unknown yet tighter bounds.

Another approach, illustrated in Figure 1-1 (b), is based on two ideas. First, there

exist practical constraints that the current theory ignores. Because of that, what the

current theory guarantees (the leftmost circle in Figure 1-1 (b)) can be considerably

stronger than necessary (the red line in Figure 1-1 (b)). This has been a partial

cause of loose theoretical bounds and impractical algorithms. Thus, we reduce the

size of the practically irrelevant region in the scope of theoretical analyses. Second,

we propose a way to adjust the degree of theoretical guarantees in order to achieve

14

(a) An approach for Bayesian Optimization

Stronger Theoretical
Guarantee

Weaker Theoretical
Guarantee

Existing Theoretical Guarantee
e.g., PAC-MDP

Practically Usefully and Adjustable
Theoretical Guarantee
with Additional Constraints

Practically Strongest
Guarantee

(b) An approach for Exploration in MDP

Figure 1-1: Two distinct approaches to improve the theory for bound-based search
methods: For Bayesian optimization, I have leveraged existence of unknown yet
tighter bounds. For the MDP exploration problem, I have proposed an adjustable
theoretical guarantee to accommodate practical needs.

the practicality that we want (the right circle in Figure 1-1 (b)).

1.1 Bayesian Optimization

I consider a general constrained global optimization problem: maximize f(x) subject

to x ∈ Ω ⊂ RD, where f : Ω → R denotes a non-convex black-box deterministic

function. Such a problem arises in many real-world applications, such as parameter

tuning in machine learning [39], engineering design problems [8], and model parameter

fitting in biology [55]. For this problem, one performance measure of an algorithm is

the simple regret, rn, which is given by rn = supx∈Ω f(x)−f(x+) where x+ is the best

input vector found by the algorithm. For brevity, I use the term “regret" to mean

simple regret.

The general global optimization problem is known to be intractable if we make no

further assumptions [11]. The simplest additional assumption to restore tractability

15

is to assume the existence of a bound on the slope of f . A well-known variant of

this assumption is Lipschitz continuity with a known Lipschitz constant, and many

algorithms have been proposed in this setting [37, 28, 30]. These algorithms success-

fully guarantee certain bounds on the regret. However appealing from a theoretical

point of view, a practical concern was soon raised regarding the assumption that a

tight Lipschitz constant is known. Some researchers relaxed this somewhat strong

assumption by proposing procedures for estimating a Lipschitz constant during the

optimization process [47, 24, 7].

Bayesian optimization is an efficient way to relax this assumption of the com-

plete knowledge of the Lipschitz constant, and has become a well-recognized method

for solving global optimization problems with non-convex black-box functions. In

the machine learning community, Bayesian optimization, particularly by means of a

Gaussian process (GP), is an active research area [14, 52, 41]. With the requirement

of the access to the δ-cover sampling procedure (which samples the function uniformly

such that the density of the samples doubles in the feasible regions at each iteration),

De Freitas et al. [10] recently proposed a theoretical procedure that maintains an

exponential convergence rate (exponential regret). However, as pointed out by Wang

et al. [51], the δ-cover sampling procedure is somewhat impractical. Accordingly,

their paper states that one remaining problem is to derive a GP-based optimization

method with an exponential convergence rate without the δ-cover sampling procedure.

In this thesis, I propose a novel GP-based global optimization algorithm, which

maintains an exponential convergence rate and converges rapidly without the δ-

cover sampling procedure. These results are described in Chapter 2 and a published

paper [20].

1.2 Learning/Exploration in MDPs

The formulation of sequential decision making as an MDP has been successfully

applied to a number of real-world problems. MDPs provide the ability to design

adaptable agents that can operate effectively in uncertain environments. In many

16

situations, the environment that we wish to model has unknown aspects, and there-

fore, the agent needs to learn an MDP by interacting with the environment. In other

words, the agent has to explore the unknown aspects of the environment to learn the

MDP. A considerable amount of theoretical work on MDPs has focused on efficient

exploration, and a number of principled methods have been derived with the aim of

learning an MDP to obtain a near-optimal policy. For example, Kearns and Singh

[22] and Strehl and Littman [43] considered discrete state spaces, whereas Bernstein

and Shimkin [5] and Pazis and Parr [33] examined continuous state spaces.

In practice, however, heuristics are still commonly used [26]. This is partly be-

cause theoretically-driven methods tend to result in over-exploration. The focus of

theoretical work (learning a near-optimal policy within a polynomial but long period

of time) has apparently diverged from practical needs (learning a satisfactory policy

within a reasonable period of time). In this thesis, I have modified the prevalent theo-

retical approach to develop theoretically-driven methods that come close to practical

needs. These results are described in Chapter 2 and a published paper [18].

17

18

Chapter 2

Bayesian Optimization with

Exponential Convergence

This chapter presents a Bayesian optimization method with exponential convergence

without the need of auxiliary optimization and without the δ-cover sampling. Most

Bayesian optimization methods require auxiliary optimization: an additional non-

convex global optimization problem, which can be time-consuming and hard to im-

plement in practice. Also, the existing Bayesian optimization method with exponen-

tial convergence [10] requires access to the δ-cover sampling, which was considered to

be impractical [10, 51]. Our approach eliminates both requirements and achieves an

exponential convergence rate.

2.1 Gaussian Process Optimization

In Gaussian process optimization, we estimate the distribution over function f and

use this information to decide which point of f should be evaluated next. In a

parametric approach, we consider a parameterized function f(x; θ), with θ being

distributed according to some prior. In contrast, the nonparametric GP approach

directly puts the GP prior over f as f(∙) ∼ GP (m(∙), κ(∙, ∙)) where m(∙) is the mean

function and κ(∙, ∙) is the covariance function or the kernel. That is, m(x) = E[f(x)]

and κ(x, x′) = E[(f(x) −m(x))(f(x′) −m(x′))T]. For a finite set of points, the GP

19

model is simply a joint Gaussian: f(x1:N) ∼ N (m(x1:N),K), where Ki,j = κ(xi, xj)

and N is the number of data points. To predict the value of f at a new data point,

we first consider the joint distribution over f of the old data points and the new data

point:



f(x1:N)

f(xN+1)



 ∼ N




m(x1:N)

m(xN+1)
,




K k

kT κ(xN+1, xN+1)









where k = κ(x1:N ,xN+1) ∈ RN×1. Then, after factorizing the joint distribution using

the Schur complement for the joint Gaussian, we obtain the conditional distribution,

conditioned on observed entities DN := {x1:N , f(x1:N)} and xN+1, as:

f(xN+1)|DN , xN+1 ∼ N (μ(xN+1|DN), σ2(xN+1|DN))

where μ(xN+1|DN) = m(xN+1) + kTK−1(f(x1:N) − m(x1:N)) and σ2(xN+1|DN) =

κ(xN+1,xN+1) − kTK−1k. One advantage of GP is that this closed-form solution

simplifies both its analysis and implementation.

To use a GP, we must specify the mean function and the covariance function. The

mean function is usually set to be zero. With this zero mean function, the conditional

mean μ(xN+1|DN) can still be flexibly specified by the covariance function, as shown

in the above equation for μ. For the covariance function, there are several common

choices, including the Matern kernel and the Gaussian kernel. For example, the

Gaussian kernel is defined as κ(x, x′) = exp
(
−1

2
(x− x′)T Σ−1(x− x′)

)
where Σ−1

is the kernel parameter matrix. The kernel parameters or hyperparameters can be

estimated by empirical Bayesian methods [32]; see [35] for more information about

GP.

The flexibility and simplicity of the GP prior make it a common choice for con-

tinuous objective functions in the Bayesian optimization literature. Bayesian opti-

mization with GP selects the next query point that optimizes the acquisition function

generated by GP. Commonly used acquisition functions include the upper confidence

bound (UCB) and expected improvement (EI). For brevity, we consider Bayesian op-

20

timization with UCB, which works as follows. At each iteration, the UCB function U

is maintained as U(x|DN) = μ(x|DN) + ςσ(x|DN) where ς ∈ R is a parameter of the

algorithm. To find the next query xn+1 for the objective function f , GP-UCB solves

an additional non-convex optimization problem with U as xN+1 = arg maxx U(x|DN).

This is often carried out by other global optimization methods such as DIRECT and

CMA-ES. The justification for introducing a new optimization problem lies in the

assumption that the cost of evaluating the objective function f dominates that of

solving additional optimization problem.

For deterministic function, de Freitas et al. [10] recently presented a theoretical

procedure that maintains exponential convergence rate. However, their own paper

and the follow-up research [10, 51] point out that this result relies on an impractical

sampling procedure, the δ-cover sampling. To overcome this issue, Wang et al. [51]

combined GP-UCB with a hierarchical partitioning optimization method, the SOO

algorithm [31], providing a regret bound with polynomial dependence on the number

of function evaluations. They concluded that creating a GP-based algorithm with an

exponential convergence rate without the impractical sampling procedure remained

an open problem.

2.2 Infinite-Metric GP Optimization

2.2.1 Overview

The GP-UCB algorithm can be seen as a member of the class of bound-based search

methods, which includes Lipschitz optimization, A* search, and PAC-MDP algo-

rithms with optimism in the face of uncertainty. As discussed in section 1, it is often

difficult to obtain a tight bound for bound-based methods, resulting in a long period

of global search or heuristic approach with no theoretical guarantee.

The GP-UCB algorithm has the same problem. The bound in GP-UCB is rep-

resented by UCB, which has the following property: f(x) ≤ U(x|D) with some

probability. I formalize this property in the analysis of our algorithm. The prob-

lem is essentially due to the difficulty of obtaining a tight bound U(x|D) such that

21

f(x) ≤ U(x|D) and f(x) ≈ U(x|D) (with some probability). Our solution strategy

is to first admit that the bound encoded in GP prior may not be tight enough to be

useful by itself. Instead of relying on a single bound given by the GP, I leverage the

existence of an unknown bound encoded in the continuity at a global optimizer.

Assumption 2.1. (Unknown Bound) There exists a global optimizer x∗ and an

unknown semi-metric ` such that for all x ∈ Ω, f(x∗) ≤ f(x)+` (x, x∗) and ` (x, x∗) <

∞.

In other words, we do not expect the known upper bound due to GP to be tight,

but instead expect that there exists some unknown bound that might be tighter. No-

tice that in the case where the bound by GP is as tight as the unknown bound by

semi-metric ` in Assumption 2.1, our method still maintains an exponential conver-

gence rate and an advantage over GP-UCB (no need for auxiliary optimization). Our

method is expected to become relatively much better when the known bound due to

GP is less tight compared to the unknown bound by `.

As the semi-metric ` is unknown, there are infinitely many possible candidates

that we can think of for `. Accordingly, we simultaneously conduct global and local

searches based on all the candidates of the bounds. The bound estimated by GP

is used to reduce the number of candidates. Since the bound estimated by GP is

known, we can ignore the candidates of the bounds that are looser than the bound

estimated by GP. The source code of the proposed algorithm is publicly available at

http://lis.csail.mit.edu/code/imgpo.html.

2.2.2 Description of Algorithm

Figure 2-1 illustrates how the algorithm works with a simple 1-dimensional objec-

tive function. We employ hierarchical partitioning to maintain hyperintervals, as

illustrated by the line segments in the figure. We consider a hyperrectangle as our

hyperinterval, with its center being the evaluation point of f (blue points in each line

segment in Figure 2-1). For each iteration t, the algorithm performs the following

22

procedure for each interval size :

(i) Select the interval with the maximum center value among the intervals of the

same size.

(ii) Keep the interval selected by (i) if it has a center value greater than that of any

larger interval.

(iii) Keep the interval accepted by (ii) if it contains a UCB greater than the center

value of any smaller interval.

(iv) If an interval is accepted by (iii), divide it along with the longest coordinate

into three new intervals.

(v) For each new interval, if the UCB of the evaluation point is less than the best

function value found so far, skip the evaluation and use the UCB value as the

center value until the interval is accepted in step (ii) on some future iteration;

otherwise, evaluate the center value.

(vi) Repeat steps (i)–(v) until every size of intervals are considered

Then, at the end of each iteration, the algorithm updates the GP hyperparameters.

Here, the purpose of steps (i)–(iii) is to select an interval that might contain the

global optimizer. Steps (i) and (ii) select the possible intervals based on the unknown

bound by `, while Step (iii) does so based on the bound by GP.

I now explain the procedure using the example in Figure 2-1. Let n be the number

of divisions of intervals and let N be the number of function evaluations. t is the

number of iterations. Initially, there is only one interval (the center of the input region

Ω ⊂ R) and thus this interval is divided, resulting in the first diagram of Figure 2-1.

At the beginning of iteration t = 2 , step (i) selects the third interval from the left side

in the first diagram (t = 1, n = 2), as its center value is the maximum. Because there

are no intervals of different size at this point, steps (ii) and (iii) are skipped. Step (iv)

divides the third interval, and then the GP hyperparameters are updated, resulting

in the second diagram (t = 2, n = 3). At the beginning of iteration t = 3, it starts

23

Figure 2-1: An illustration of IMGPO: t is the number of iteration, n is the number
of divisions (or splits), N is the number of function evaluations.

conducting steps (i)–(v) for the largest intervals. Step (i) selects the second interval

from the left side and step (ii) is skipped. Step (iii) accepts the second interval,

because the UCB within this interval is no less than the center value of the smaller

intervals, resulting in the third diagram (t = 3, n = 4). Iteration t = 3 continues by

conducting steps (i)–(v) for the smaller intervals. Step (i) selects the second interval

from the left side, step (ii) accepts it, and step (iii) is skipped, resulting in the forth

diagram (t = 3, n = 4). The effect of the step (v) can be seen in the diagrams for

iteration t = 9. At n = 16, the far right interval is divided, but no function evaluation

occurs. Instead, UCB values given by GP are placed in the new intervals indicated by

the red asterisks. One of the temporary dummy values is resolved at n = 17 when the

interval is queried for division, as shown by the green asterisk. The effect of step (iii)

for the rejection case is illustrated in the last diagram for iteration t = 10. At n = 18,

t is increased to 10 from 9, meaning that the largest intervals are first considered for

division. However, the three largest intervals are all rejected in step (iii), resulting in

the division of a very small interval near the global optimum at n = 18.

2.2.3 Technical Detail of Algorithm

I define h to be the depth of the hierarchical partitioning tree, and ch,i to be

the center point of the ith hyperrectangle at depth h. Ngp is the number of the GP

24

Algorithm 2.1. Infinite-Metric GP Optimization (IMGPO)

Input: an objective function f , the search domain Ω, the GP kernel κ, Ξmax ∈ N+ and η ∈ (0, 1)

1: Initialize the set Th = {∅} ∀h ≥ 0
2: Set c0,0 to be the center point of Ω and T0 ← {c0,0}
3: Evaluate f at c0,0: g(c0,0)← f(c0,0)
4: f+ ← g(c0,0),D ← {(c0,0, g(c0,0))}
5: n,N ← 1, Ngp ← 0, Ξ← 1
6: for t = 1, 2, 3, ... do
7: υmax ← −∞
8: for h = 0 to depth(T) do # for-loop for steps (i)-(ii)
9: while true do
10: i∗h ← arg maxi:ch,i∈Th

g(ch,i)
11: if g(ch,i∗h

) < υmax then
12: i∗h ← ∅, break
13: else if g(ch,i∗h

) is not labeled as GP-based then
14: υmax ← g(ch,i∗h

), break
15: else
16: g(ch,i∗h

)← f(ch,i∗h
) and remove the GP-based label from g(ch,i∗h

)
17: N ← N + 1, Ngp ← Ngp − 1
18: D ← {D, (ch,i∗h

, g(ch,i∗h
))}

19: for h = 0 to depth(T) do # for-loop for step (iii)
20: if i∗h 6= ∅ then
21: ξ ← the smallest positive integer s.t. i∗h+ξ 6= ∅ and ξ ≤ min(Ξ, Ξmax) if exists, and 0

otherwise
22: z(h, i∗h) = maxk:ch+ξ,k∈T ′

h+ξ(ch,i∗
h
) U(ch+ξ,k|D)

23: if ξ 6= 0 and z(h, i∗h) < g(ch+ξ,i∗h+ξ
) then

24: i∗h ← ∅, break
25: υmax ← −∞
26: for h = 0 to depth(T) do # for-loop for steps (iv)-(v)
27: if i∗h 6= ∅ and g(ch,i∗h

) ≥ υmax then
28: n← n + 1.
29: Divide the hyperrectangle centered at ch,i∗h

along with the longest coordinate into three
new hyperrectangles with the following centers:

S = {ch+1,i(left), ch+1,i(center), ch+1,i(right)}

30: Th+1 ← {Th+1,S}
31: Th ← Th \ ch,i∗h

, g(ch+1,i(center))← g(ch,i∗h
)

32: for inew = {i(left), i(right)} do
33: if U(ch+1,inew |D) ≥ f+ then
34: g(ch+1,inew)← f(ch+1,inew)
35: D ← {D, (ch+1,inew , g(ch+1,inew))}

N ← N + 1, f+ ← max(f+, g(ch+1,inew)), υmax = max(υmax, g(ch+1,inew))
36: else
37: g(ch+1,inew)← U(ch+1,inew |D) and label g(ch+1,inew) as GP-based.

Ngp ← Ngp + 1

38: Update Ξ: if f+ was updated, Ξ← Ξ + 22 , and otherwise, Ξ← max(Ξ− 2−1, 1)
39: Update GP hyperparameters by an empirical Bayesian method

25

evaluations. Define depth(T) to be the largest integer h such that the set Th is not

empty. To compute UCB U , I use ςM =
√

2 log(π2M2/12η) where M is the number

of the calls made so far for U (i.e., each time we use U , we increment M by one).

This particular form of ςM is to maintain the property of f(x) ≤ U(x|D) during an

execution of our algorithm with probability at least 1 − η. Here, η is the parameter

of IMGPO. Ξmax is another parameter, but it is only used to limit the possibly long

computation of step (iii) (in the worst case, step (iii) computes UCBs 3Ξmax times

although it would rarely happen).

The pseudocode is shown in Algorithm 2.1. Lines 8 to 23 correspond to steps

(i)-(iii). These lines compute the index i∗h of the candidate of the rectangle that may

contain a global optimizer for each depth h. For each depth h, non-null index i∗h

at Line 24 indicates the remaining candidate of a rectangle that we want to divide.

Lines 24 to 33 correspond to steps (iv)-(v) where the remaining candidates of the

rectangles for all h are divided. To provide a simple executable division scheme (line

29), we assume Ω to be a hyperrectangle (see the last paragraph of section 4 for a

general case).

Lines 8 to 17 correspond to steps (i)-(ii). Specifically, line 10 implements step (i)

where a single candidate is selected for each depth, and lines 11 to 12 conduct step

(ii) where some candidates are screened out. Lines 13 to 17 resolve the temporary

dummy values computed by GP. Lines 18 to 23 correspond to step (iii) where the

candidates are further screened out. At line 21, T ′
h+ξ(ch,i∗h

) indicates the set of all

center points of a fully expanded tree until depth h + ξ within the region covered by

the hyperrectangle centered at ch,i∗h
. In other words, T ′

h+ξ(ch,i∗h
) contains the nodes of

the fully expanded tree rooted at ch,i∗h
with depth ξ and can be computed by dividing

the current rectangle at ch,i∗h
and recursively divide all the resulting new rectangles

until depth ξ (i.e., depth ξ from ch,i∗h
, which is depth h + ξ in the whole tree).

2.2.4 Relationship to Previous Algorithms

The most closely related algorithm is the BaMSOO algorithm [51], which combines

SOO with GP-UCB. However, it only achieves a polynomial regret bound while

26

IMGPO achieves a exponential regret bound. IMGPO can achieve exponential regret

because it utilizes the information encoded in the GP prior/posterior to reduce the

degree of the ignorance of the unknown assumption with the semi-metric `.

The idea of considering a set of infinitely many bounds was first proposed by Jones

et al. [16]. Their DIRECT algorithm has been successfully applied to real-world

problems [8, 55], but it only maintains the consistency property (i.e., convergence

in the limit) from a theoretical viewpoint. DIRECT takes an input parameter ε to

balance the global and local search efforts. This idea was generalized to the case of

an unknown semi-metric and strengthened with a theoretical support (finite regret

bound) by Munos [31] in the SOO algorithm. By limiting the depth of the search

tree with a parameter hmax, the SOO algorithm achieves a finite regret bound that

depends on the near-optimality dimension.

2.3 Analysis

In this section, I prove an exponential convergence rate of IMGPO and theoretically

discuss the reason why the novel idea underling IMGPO is beneficial. The proofs

are provided in the supplementary material. To examine the effect of considering

infinitely many possible candidates of the bounds, I introduce the following term.

Definition 2.1. (Infinite-metric exploration loss). The infinite-metric exploration

loss ρt is the number of intervals to be divided during iteration t.

The infinite-metric exploration loss ρτ can be computed as ρt =
∑depth(T)

h=1 1(i∗h 6= ∅)

at line 25. It is the cost (in terms of the number of function evaluations) incurred

by not committing to any particular upper bound. If we were to rely on a specific

bound, ρτ would be minimized to 1. For example, the DOO algorithm [31] has

ρt = 1 ∀t ≥ 1. Even if we know a particular upper bound, relying on this knowledge

and thus minimizing ρτ is not a good option unless the known bound is tight enough

compared to the unknown bound leveraged in our algorithm . This will be clarified in

our analysis. Let ρ̄t be the maximum of the averages of ρ1:t′ for t′ = 1, 2, ..., t (i.e.,

27

ρ̄t ≡ max({ 1
t′

∑t′

τ=1 ρτ ; t′ = 1, 2, ..., t}).

Assumption 2.2. For some pair of a global optimizer x∗ and an unknown semi-

metric ` that satisfies Assumption 1, both of the following, (i) shape on ` and (ii)

lower bound constant, conditions hold:

(i) there exist L > 0, α > 0 and p ≥ 1 in R such that for all x, x′ ∈ Ω, `(x′, x) ≤

L||x′ − x||αp .

(ii) there exists θ ∈ (0, 1) such that for all x ∈ Ω, f(x∗) ≥ f(x) + θ` (x, x∗).

In Theorem 2.1, I show that the exponential convergence rate O
(
λN+Ngp

)
with λ < 1

is achieved. I define Ξn ≤ Ξmax to be the largest ξ used so far with n total node

expansions. For simplicity, we assume that Ω is a square, which we satisfied in our

experiments by scaling original Ω.

Theorem 2.1. Assume Assumptions 2.1 and 2.2. Let β = supx,x′∈Ω
1
2
‖x − x′‖∞.

Let λ = 3
− α

2CDρ̄t < 1. Then, with probability at least 1 − η, the regret of IMGPO is

bounded as

rN ≤ L(3βD1/p)α exp

(

−α

[
N + Ngp

2CDρ̄t

− Ξn − 2

]

ln 3

)

= O
(
λN+Ngp

)
.

Importantly, our bound holds for the best values of the unknown L, α and p even

though these values are not given. The closest result in previous work is that of

BaMSOO [51], which obtained Õ(n− 2α
D(4−α)) with probability 1− η for α = {1, 2}. As

can be seen, I have improved the regret bound. Additionally, in our analysis, we can

see how L, p, and α affect the bound, allowing us to view the inherent difficulty of

an objective function in a theoretical perspective. Here, C is a constant in N and

is used in previous work [31, 51]. For example, if we conduct 2D or 3D − 1 function

evaluations per node-expansion and if p =∞, we have that C = 1.

We note that λ can get close to one as input dimension D increases, which suggests

that there is a remaining challenge in scalability for higher dimensionality. One

28

strategy for addressing this problem would be to leverage additional assumptions

such as those in [52, 17].

Remark 2.1. (The effect of the tightness of UCB by GP) If UCB computed by GP

is “useful” such that N/ρ̄t = Ω(N), then our regret bound becomes

O

(

exp

(

−
N + Ngp

2CD
α ln 3

))

.

If the bound due to UCB by GP is too loose (and thus useless), ρ̄t can increase

up to O(N/t) (due to ρ̄t ≤
∑t

i=1 i/t ≤ O(N/t)), resulting in the regret bound of

O
(
exp

(
− t(1+Ngp/N)

2CD
α ln 3

))
, which can be bounded by1

O

(

exp

(

−
N + Ngp

2CD
max(

1
√

N
,

t

N
)α ln 3

))

.

Our proof works with this additional mechanism, but results in the regret bound

with N being replaced by
√

N . Thus, if we assume to have at least “not useless”

UCBs such that N/ρ̄t = Ω(
√

N), this additional mechanism can be disadvantageous.

Accordingly, we do not adopt it in our experiments.. This is still better than the

known results.

Remark 2.2. (The effect of GP) Without the use of GP, our regret bound would be

as follows: rN ≤ L(3βD1/p)α exp(−α[N
2CD

1
ρ̃t
− 2] ln 3), where ρ̄t ≤ ρ̃t is the infinite-

metric exploration loss without GP. Therefore, the use of GP reduces the regret

bound by increasing Ngp and decreasing ρ̄t, but may potentially increase the bound

by increasing Ξn ≤ Ξ.

Remark 2.3. (The effect of infinite-metric optimization) To understand the effect of

considering all the possible upper bounds, we consider the case without GP. If we con-

sider all the possible bounds, we have the regret bound L(3βD1/p)α exp(−α[N
2CD

1
ρ̃t
−

2] ln 3) for the best unknown L, α and p. For standard optimization with a estimated

1This can be done by limiting the depth of search tree as depth(T) = O(
√

N).

29

Table 2.1: Average CPU time (in seconds) for the experiment with each test function

Algorithm Sin1 Sin2 Peaks Rosenbrock2 Branin Hartmann3 Hartmann6 Shekel5
GP-PI 29.66 115.90 47.90 921.82 1124.21 573.67 657.36 611.01
GP-EI 12.74 115.79 44.94 893.04 1153.49 562.08 604.93 558.58
SOO 0.19 0.19 0.24 0.744 0.33 0.30 0.25 0.29
BaMSOO 43.80 4.61 7.83 12.09 14.86 14.14 26.68 371.36
IMGPO 1.61 3.15 4.70 11.11 5.73 6.80 13.47 15.92

bound, we have L′(3βD1/p′)α′
exp(−α′[N

2C′D
− 2] ln 3) for an estimated L′, α′, and p′.

By algebraic manipulation, considering all the possible bounds has a better regret

when

ρ̃−1
t ≥

2CD

N ln 3α
((

N

2C ′D
− 2) ln 3α′

+ 2 ln 3α − ln
L′(3βD1/p′)α′

L(3βD1/p)α
).

For an intuitive insight, we can simplify the above by assuming α′ = α and C ′ = C

as

ρ̃−1
t ≥ 1−

Cc2D

N
ln

L′Dα/p′

LDα/p
.

Because L and p are the ones that achieve the lowest bound, the logarithm on the

right-hand side is always non-negative. Hence, ρ̃t = 1 always satisfies the condition.

When L′ and p′ are not tight enough, the logarithmic term increases in magnitude,

allowing ρ̃t to increase. For example, if the second term on the right-hand side has

a magnitude of greater than 0.5, then ρ̃t = 2 satisfies the inequality. Therefore, even

if we know the upper bound of the function, we can see that it may be better not to

rely on this, but rather take the infinite many possibilities into account.

One may improve the algorithm with different division procedures than one pre-

sented in Algorithm 2.1. Accordingly, in the supplementary material, I derive an

abstract version of the regret bound for IMGPO with a family of division proce-

dures that satisfy some assumptions. This information could be used to design a new

division procedure.

30

(a) Sin1: [1, 1.92, 2] (b) Sin2: [2, 3.37, 3]

(c) Peaks: [2, 3.14, 4] (d) Rosenbrock2: [2, 3.41, 4]

(e) Branin: [2, 4.44, 2] (f) Hartmann3: [3, 4.11, 3]

(g) Hartmann6: [6, 4.39, 4] (h) Shekel5: [4, 3.95, 4]

Figure 2-2: Performance Comparison: in the order, the digits inside of the parentheses
[] indicate the dimensionality of each function, and the variables ρ̄t and Ξn at the
end of computation for IMGPO.

31

Figure 2-3: Sin1000: [D = 1000, ρ̄ = 3.95, Ξn = 4]

2.4 Experiments

In this section, I compare the IMGPO algorithm with the SOO, BaMSOO, GP-PI and

GP-EI algorithms [31, 51, 39]. In previous work, BaMSOO and GP-UCB were tested

with a pair of a handpicked good kernel and hyperparameters for each function [51]. In

our experiments, we assume that the knowledge of good kernel and hyperparameters

is unavailable, which is usually the case in practice. Thus, for IMGPO, BaMSOO,

GP-PI and GP-EI, we simply used one of the most popular kernels, the isotropic

Matern kernel with ν = 5/2. This is given by κ(x, x′) = g(
√

5||x− x′||2/l), where

g(z) = σ2(1 + z + z2/3) exp(−z). Then, I blindly initialized the hyperparameters

to σ = 1 and l = 0.25 for all the experiments; these values were updated with an

empirical Bayesian method after each iteration. To compute the UCB by GP, I used

η = 0.05 for IMGPO and BaMSOO. For IMGPO, Ξmax was fixed to be 22 (the effect

of selecting different values is discussed later). For BaMSOO and SOO, the parameter

hmax was set to
√

n, according to Corollary 4.3 in [31]. For GP-PI and GP-EI, I used

the SOO algorithm and a local optimization method using gradients to solve the

auxiliary optimization. For SOO, BaMSOO and IMGPO, I used the corresponding

deterministic division procedure (given Ω, the initial point is fixed and no randomness

exists). For GP-PI and GP-EI, I randomly initialized the first evaluation point and

report the mean and one standard deviation for 50 runs.

The experimental results for eight different objective functions are shown in Figure

32

2-2 and 2-3. The vertical axis is log10(f(x∗)−f(x+)), where f(x∗) is the global optima

and f(x+) is the best value found by the algorithm. Hence, the lower the plotted

value on the vertical axis, the better the algorithm’s performance. The last five

functions are standard benchmarks for global optimization [48]. The first two were

used in [31] to test SOO, and can be written as fsin1(x) = (sin(13x) sin +1)/2 for

Sin1 and fsin2(x) = fsin1(x1)fsin1(x2) for Sin2. The form of the third function is

given in Equation (16) and Figure 2 in [29]. The last function in Figure 2-3 is Sin2

embedded in 1000 dimension in the same manner described in Section 4.1 in [52],

which is used here to illustrate a possibility of using IMGPO as a main subroutine to

scale up to higher dimensions with additional assumptions. For this function, I used

REMBO [52] with IMGPO and BaMSOO as its Bayesian optimization subroutine.

All of these functions are multimodal, except for Rosenbrock2, with dimensionality

from 1 to 1000.

As we can see from Figure 2-2 and 2-3, IMGPO outperformed the other algorithms

in general. SOO produced the competitive results for Rosenbrock2 because our GP

prior was misleading (i.e., it did not model the objective function well and thus

the property f(x) ≤ U(x|D) did not hold many times). As can be seen in Table

2.1, IMGPO is much faster than traditional GP optimization methods although it is

slower than SOO. For Sin 1, Sin2, Branin and Hartmann3, increasing Ξmax does not

affect IMGPO because Ξn did not reach Ξmax = 22 (Figure 2-2 and 2-3). For the rest

of the test functions, we would be able to improve the performance of IMGPO by

increasing Ξmax at the cost of extra CPU time.

33

34

Chapter 3

Bounded Optimal Exploration in

MDP

In the previous chapter, we discussed a solution for the problem of having a loose

bound by taking advantage of the natural existence of tighter yet unknown bounds.

In this chapter, we consider another approach for a different member of bound-based

methods.

Within the framework of probably approximately correct Markov Decision Pro-

cesses (PAC-MDP), much theoretical work has focused on methods to attain near

optimality after a relatively long period of learning and exploration. However, prac-

tical concerns require the attainment of satisfactory behavior within a short period

of time. In this chapter, I relax the PAC-MDP conditions to reconcile theoretically

driven exploration methods and practical needs. I propose simple algorithms for dis-

crete and continuous state spaces, and illustrate the benefits of our proposed relax-

ation via theoretical analyses and numerical examples. Our algorithms also maintain

anytime error bounds and average loss bounds. Our approach accommodates both

Bayesian and non-Bayesian methods.

3.1 Preliminaries

An MDP [34] can be represented as a tuple (S, A,R, P, γ), where S is a set of states,

A is a set of actions, P is the transition probability function, R is a reward function,

35

and γ is a discount factor. The value of policy π at state s, V π(s), is the cumulative

(discounted) expected reward, which is given by

V π(s) = E

[
∞∑

i=0

γiR (si, π(si), si+1) | s0 = s, π

]

,

where the expectation is over the sequence of states si+1 ∼ P (S|si, π(si)) for all i ≥ 0.

Using Bellman’s equation, the value of the optimal policy or the optimal value, V ∗(s),

can be written as V ∗(s) = maxa
∑

s′ P (s′|s,a))[R(s, a, s′) + γV ∗(s′)].

In many situations, the transition function P and/or the reward function R are

initially unknown. Under such conditions, we often want a policy of an algorithm at

time t, At, to yield a value V At(st) that is close to the optimal value V ∗(st) after

some exploration. Here, st denotes the current state at time t. More precisely, we

may want the following: for all ε > 0 and for all δ = (0, 1), V At(st) ≥ V ∗(st)− ε, with

probability at least 1− δ when t ≥ τ , where τ is the exploration time. The algorithm

with a policyAt is said to be “probably approximately correct” for MDPs (PAC-MDP)

[42] if this condition holds with τ being at most polynomial in the relevant quantities

of MDPs. The notion of PAC-MDP has a strong theoretical basis and is widely

applicable, avoiding the need for additional assumptions, such as reachability in state

space [15], access to a reset action [13], and access to a parallel sampling oracle [21].

However, the PAC-MDP approach often results in an algorithm over-exploring the

state space, causing a low reward per unit time for a long period of time. Accordingly,

past studies that proposed PAC-MDP algorithms have rarely presented a correspond-

ing experimental result, or have done so by tuning the free parameters, which renders

the relevant algorithm no longer PAC-MDP [45, 23, 40]. This problem was noted in

[23, 6, 19]. Furthermore, in many problems, it may not even be possible to guarantee

V At close to V ∗ within the agent’s lifetime. Li [26] noted that, despite the strong

theoretical basis of the PAC-MDP approach, heuristic-based methods remain popular

in practice. This would appear to be a result of the above issues. In summary, there

seems to be a dissonance between a strong theoretical approach and practical needs.

36

3.2 Bounded Optimal Learning

The practical limitations of the PAC-MDP approach lie in their focus on correctness

without accommodating the time constraints that occur naturally in practice. To

overcome the limitation, we first define the notion of reachability in model learning,

and then relax the PAC-MDP objective based on it. For brevity, we focus on the

transition model.

3.2.1 Reachability in Model Learning

For each state-action pair (s, a), let M(s,a) be a set of all transition models and

P̂t(∙|s, a) ∈ M(s,a) be the current model at time t (i.e., P̂t(∙|s, a) : S → [0,∞)).

Define S ′
(s,a) to be a set of possible future samples as S ′

(s,a) = {s′|P (s′|s, a) > 0}. Let

f(s,a) : M(s,a) × S ′
(s,a) → M(s,a) represent the model update rule; f(s,a) maps a model

(in M(s,a)) and a new sample (in S ′
(s,a)) to a corresponding new model (in M(s,a)). We

can then write L = (M, f) to represent a learning method of an algorithm, where

M = ∪(s,a)∈(S,A)M(s,a) and f = {f(s,a)}(s,a)∈(S,A).

The set of h-reachable models, ML,t,h,(s,a), is recursively defined as ML,t,h,(s,a) =

{P̂ ′ ∈ M(s,a)|P̂ ′ = f(s,a)(P̂ , s′) for some P̂ ∈ ML,t,h−1,(s,a) and s′ ∈ S ′
(s,a)} with the

boundary conditionMt,0,(s,a) = {P̂t(∙|s, a)}.

Intuitively, the set of h-reachable models, ML,t,h,(s,a) ⊆ M(s,a), contains the tran-

sition models that can be obtained if the agent updates the current model at time t

using any combination of h additional samples s′1, s
′
2, ..., s

′
h ∼ P (S|s, a). Note that the

set of h-reachable models is defined separately for each state-action pair. For exam-

ple,ML,t,h,(s1,a1) contains only those models that are reachable using the h additional

samples drawn from P (S|s1, a1).

We define the h-reachable optimal value V d∗
L,t,h(s) with respect to a distance func-

tion d as

V d∗
L,t,h(s) = max

a

∑

s′

P̂ d∗
L,t,h(s

′|s, a)[R(s, a, s′) + γV d∗
L,t,h(s

′)],

37

where

P̂ d∗
L,t,h(∙|s, a) = arg min

P̂∈ML,t,h,(s,a)

d(P̂ (∙|s, a), P (∙|s, a)).

Intuitively, the h-reachable optimal value, V d∗
L,t,h(s), is the optimal value estimated

with the “best” model in the set of h-reachable models (here, the term “best” is in

terms of the distance function d(∙, ∙)).

3.2.2 PAC in Reachable MDP

Using the concept of reachability in model learning, we define the notion of “probably

approximately correct” in an h-reachable MDP (PAC-RMDP(h)). Let P(x1, x2, ..., xn)

be a polynomial in x1, x2, ..., xn and |MDP| be the complexity of an MDP [26].

Definition 3.1. (PAC-RMDP(h)) An algorithm with a policy At and a learning

method L is PAC-RMDP(h) with respect to a distance function d if for all ε > 0 and

for all δ = (0, 1),

1) there exists τ = O(P(1/ε, 1/δ, 1/(1− γ), |MDP|, h)) such that for all t ≥ τ ,

V At(st) ≥ V d∗
L,t,h(st)− ε

with probability at least 1− δ, and

2) there exists h∗(ε, δ) = O(P(1/ε, 1/δ, 1/(1− γ), |MDP|)) such that for all t ≥ 0,

|V ∗(st)− V d∗
L,t,h∗(ε,δ)(st)|≤ ε.

with probability at least 1− δ.

The first condition ensures that the agent efficiently learns the h-reachable models.

The second condition guarantees that the learning method L and the distance function

d are not arbitrarily poor.

38

In the following, we relate PAC-RMDP(h) to PAC-MDP and near-Bayes optimal-

ity. The proofs are given in the appendix at the end of this thesis.

Proposition 3.1. (PAC-MDP) If an algorithm is PAC-RMDP(h∗(ε, δ)), then it is

PAC-MDP, where h∗(ε, δ) is given in Definition 3.1.

Proposition 3.2. (Near-Bayes optimality) Consider model-based Bayesian rein-

forcement learning [46]. Let H be a planning horizon in the belief space b. Assume

that the Bayesian optimal value function, V ∗
b,H , converges to the H-reachable optimal

function such that, for all ε > 0, |V d∗
L,t,H(st) − V ∗

b,H(st, bt)|≤ ε for all but polynomial

time steps. Then, a PAC-RMDP(H) algorithm with a policy At obtains an expected

cumulative reward V At(st) ≥ V ∗
b,H(st, bt) − 2ε for all but polynomial time steps with

probability at least 1− δ.

Note that V At(st) is the actual expected cumulative reward with the expectation over

the true dynamics P , whereas V ∗
b,H(st, bt) is the believed expected cumulative reward

with the expectation over the current belief bt and its belief evolution. In addition,

whereas the PAC-RMDP(H) condition guarantees convergence to an H-reachable op-

timal value function, Bayesian optimality does not1. In this sense, Proposition 3.2

suggests that the theoretical guarantee of PAC-RMDP(H) would be stronger than

that of near-Bayes optimality with an H step lookahead.

Summarizing the above, PAC-RMDP(h∗(ε, δ)) implies PAC-MDP, and PAC-RMD

P(H) is related to near-Bayes optimality. Moreover, as h decreases in the range (0, h∗)

or (0, H), the theoretical guarantee of PAC-RMDP(h) becomes weaker than previous

theoretical objectives. This accommodates the practical need to improve the trade-

off between the theoretical guarantee (i.e., optimal behavior after a long period of

exploration) and practical performance (i.e., satisfactory behavior after a reasonable

period of exploration) via the concept of reachability. We discuss the relationship to

1A Bayesian estimation with random samples converges to the true value under certain assump-
tions. However, for exploration, the selection of actions can cause the Bayesian optimal agent to
ignore some state-action pairs, removing the guarantee of the convergence. This effect was well
illustrated by Li (2009, Example 9).

39

bounded rationality [38] and bounded optimality [36] as well as the corresponding

notions of regret and average loss in the appendix.

3.3 Discrete Domain

To illustrate the proposed concept, we first consider a simple case involving finite

state and action spaces with an unknown transition function P . Without loss of

generality, we assume that the reward function R is known.

3.3.1 Algorithm

Let Ṽ A(s) be the internal value function used by the algorithm to choose an action.

Let V A(s) be the actual value function according to true dynamics P . To derive

the algorithm, we use the principle of optimism in the face of uncertainty, such that

Ṽ A(s) ≥ V d∗
L,t,h(s) for all s ∈ S. This can be achieved using the following internal

value function:

Ṽ A(s) = max
a,

P̃∈ML,t,h,(s,a)

∑

s′

P̃ (s′|s, a)[R(s, a, s′) + γṼ A(s′)] (3.1)

The pseudocode is shown in Algorithm 3.1. In the following, we consider the

special case in which we use the sample mean estimator (which determines L). That

is, we use P̂t(s
′|s, a) = nt(s, a, s′)/nt(s, a), where nt(s, a) is the number of samples for

the state-action pair (s, a), and nt(s, a, s′) is the number of samples for the transition

from s to s′ given an action a. In this case, the maximum over the model in Equation

(3.1) is achieved when all future h observations are transitions to the state with the

best value. Thus, Ṽ A can be computed by Ṽ A(s) = maxa

∑
s′∈S

nt(s,a,s′)
nt(s,a)+h

[R(s, a, s′) +

γṼ A(s′)] + maxs′
h

nt(s,a)+h
[R(s, a, s′) + γṼ A(s′)].

40

Algorithm 3.1. Discrete PAC-RMDP

Input: h ≥ 0

for time step t = 1, 2, 3, ... do
Action: Take action based on Ṽ A(st) in Equation (3.1)
Observation: Save the sufficient statistics
Estimate: Update the model P̂t,0

3.3.2 Analysis

We first show that Algorithm 3.1 is PAC-RMDP(h) for all h ≥ 0 (Theorem 3.1),

maintains an anytime error bound and average loss bound (Corollary 3.1 and the

following discussion), and is related with previous algorithms (Remarks 3.1 and 3.2).

We then analyze its explicit exploration runtime (Definition 3.3). We assume that

Algorithm 3.1 is used with the sample mean estimator, which determines L. We fix

the distance function as d(P̂ (∙|s, a), P (∙|s, a)) = ‖P̂ (∙|s, a) − P (∙|s, a)‖1. The proofs

are given in the appendix.

Theorem 3.1. (PAC-RMDP) Let At be a policy of Algorithm 3.1. Let

z = max(h,
ln(2|S||S||A|/δ)

ε(1− γ)
).

Then, for all ε > 0, for all δ = (0, 1), and for all h ≥ 0,

1) for all but at most O
(

z|S||A|
ε2(1−γ)2

ln |S||A|
δ

)
time steps, V At(st) ≥ V d∗

L,t,h(st) − ε, with

probability at least 1− δ, and

2) there exist h∗(ε, δ) = O(P(1/ε, 1/δ, 1/(1− γ), |MDP|)) such that

|V ∗(st)− V d∗
L,t,h∗(ε,δ)(st)|≤ ε

with probability at least 1− δ.

Definition 3.2. (Anytime error) The anytime error εt,h ∈ R is the smallest value

such that V At(st) ≥ V d∗
L,t,h(st)− εt,h.

41

Corollary 3.1. (Anytime error bound) With probability at least 1 − δ, if h ≤
ln(2|S||S||A|/δ)

ε(1−γ)
,

εt,h = O

(
3

√
|S||A|

t(1− γ)3
ln
|S||A|

δ
ln

2|S||S||A|
δ

)

;

otherwise,

εt,h = O

(√
h|S||A|

t(1− γ)2
ln
|S||A|

δ

)

.

The anytime T -step average loss is equal to 1
T

∑T
t=1(1 − γT+1−t)εt,h. Moreover, in

this simple problem, we can relate Algorithm 3.1 to a particular PAC-MDP algo-

rithm and a near-Bayes optimal algorithm.

Remark 3.1. (Relation to MBIE) Let m = O(|S|
ε2(1−γ)4

+ 1
ε2(1−γ)4

ln |S||A|
ε(1−γ)δ

). Let

h∗(s, a) = n(s,a)z(s,a)
1−z(s,a)

, where z(s, a) = 2
√

2[ln(2|S| − 2)− ln(δ/(2|S||A|m))]/n(s, a).

Then, Algorithm 3.1 with the input parameter h = h∗(s, a) behaves identically to

a PAC-MDP algorithm, Model Based Interval Estimation (MBIE) [43], the sample

complexity of which is O(|S||A|
ε3(1−γ)6

(|S|+ ln |S||A|
ε(1−γ)δ

) ln 1
δ
ln 1

ε(1−γ)
)).

Remark 3.2. (Relation to BOLT) Let h = H, where H is a planning horizon in

the belief space b. Assume that Algorithm 3.1 is used with an independent Dirichlet

model for each (s, a), which determines L. Then, Algorithm 3.1 behaves identically

to a near-Bayes optimal algorithm, Bayesian Optimistic Local Transitions (BOLT)

[3], the sample complexity of which is O(H2|S||A|
ε2(1−γ)2

ln |S||A|
δ

).

As expected, the sample complexity for PAC-RMDP(h) (Theorem 3.1) is smaller

than that for PAC-MDP (Remark 3.1) (at least when h ≤ |S|(1 − γ)−3), but larger

than that for near-Bayes optimality (Remark 3.2) (at least when h ≥ H). Note that

BOLT is not necessarily PAC-RMDP(h), because misleading priors can violate both

conditions in Definition 3.1.

42

Further Discussion

An important observation is that, when h ≤ |S|
ε(1−γ)

ln |S||A|
δ
, the sample complexity of

Algorithm 3.1 is dominated by the number of samples required to refine the model,

rather than the explicit exploration of unknown aspects of the world. Recall that the

internal value function Ṽ A is designed to force the agent to explore, whereas the use of

the currently estimated value function V d∗
L,t,0(s) results in exploitation. The difference

between Ṽ A and V ∗
L,t,0(s) decreases at a rate of O(h/nt(s, a)), whereas the error

between V A and V d∗
L,t,0(s) decreases at a rate of O(1/

√
nt(s, a)). Thus, Algorithm 3.1

would stop the explicit exploration much sooner (when Ṽ A and V d∗
L,t,0(s) become close),

and begin exploiting the model, while still refining it, so that V d∗
L,t,0(s) tends to V A. In

contrast, PAC-MDP algorithms are forced to explore until the error between V A and

V ∗ becomes sufficiently small, where the error decreases at a rate of O(1/
√

nt(s, a)).

This provides some intuition to explain why a PAC-RMDP(h) algorithm with small

h may avoid over-exploration, and yet, in some cases, learn the true dynamics to a

reasonable degree, as shown in the experimental examples.

In the following, we formalize the above discussion.

Definition 3.3. (Explicit exploration runtime) The explicit exploration runtime is

the smallest integer τ such that for all t ≥ τ , |Ṽ At(st)− V d∗
L,t,0(st)|≤ ε.

Corollary 3.2. (Explicit exploration bound) With probability at least 1 − δ, the

explicit exploration runtime of Algorithm 3.1 is

O(
h|S||A|

ε(1− γ) Pr[AK]
ln
|S||A|

δ
) = O(

h|S||A|
ε2(1− γ)2

ln
|S||A|

δ
),

where AK is the escape event defined in the proof of Theorem 3.1.

If we assume Pr[AK] to stay larger than a fixed constant, or to be very small (≤ ε(1−γ)
3Rmax

)

(so that Pr[AK] does not appear in Corollary 3.2 as shown in the corresponding

case analysis for Theorem 3.1), the explicit exploration runtime can be reduced to

O(h|S||A|
ε(1−γ)

ln |S||A|
δ

). Intuitively, this happens when the given MDP does not have low

43

yet not-too low probability and high-consequence transition that is initially unknown.

Naturally, such a MDP is difficult to learn, as reflected in Corollary 3.2.

3.3.3 Experimental Example

We compare the proposed algorithm with MBIE [43], variance-based exploration

(VBE) [40], Bayesian Exploration Bonus (BEB) [23], and BOLT [3]. These algorithms

were designed to be PAC-MDP or near-Bayes optimal, but have been used with pa-

rameter settings that render them neither PAC-MDP nor near-Bayes optimal. In

contrast to the experiments in previous research, we present results with ε set to sev-

eral theoretically meaningful values2 as well as one theoretically non-meaningful value

to illustrate its property3. Because our algorithm is deterministic with no sampling

and no assumptions on the input distribution, we do not compare it with algorithms

that use sampling, or rely heavily on knowledge of the input distribution.

We consider a five-state chain problem [46], which is a standard toy problem in

the literature. In this problem, the optimal policy is to move toward the state farthest

from the initial state, but the reward structure explicitly encourages an exploitation

agent, or even an ε-greedy agent, to remain in the initial state. We use a discount

factor of γ = 0.95 and a convergence criterion for the value iteration of ε′ = 0.01.

Figure 3-1 shows the numerical results in terms of the average reward per time

step (average over 1000 runs). As can be seen from this figure, the proposed algo-

rithm worked better. MBIE and VBE work reasonably if we discard the theoretical

guarantee. As the maximum reward is Rmax = 1, the upper bound on the value

function is
∑∞

i=1 γiRmax = 1
1−γ

Rmax = 20. Thus, ε-closeness does not yield any useful

information when ε ≥ 20. A similar problem was noted by Kolter and Ng [23] and

2MBIE is PAC-MDP with the parameters δ and ε. VBE is PAC-MDP in the assumed (prior)
input distribution with the parameter δ. BEB and BOLT are near-Bayes optimal algorithms whose
parameters β and η are fully specified by their analyses, namely β = 2H2 and η = H. Following
Araya-López et al. [3], we set β and η using the ε′-approximated horizon H ≈ dlogγ(ε′(1−γ))e = 148.
We use the sample mean estimator for the PAC-MDP and PAC-RMDP(h) algorithms, and an
independent Dirichlet model for the near-Bayes optimal algorithms.

3We can interpolate their qualitative behaviors with values of ε other than those presented here.
This is because the principle behind our results is that small values of ε causes over-exploration due
to the focus on the near-optimality.

44

0.1

0.15

0.2

0.25

0.3

0.35

0 500 1000 1500 2000 2500 3000

A
ve

gr
ag

e
R

ew
ar

d
pe

r
T

im
es

te
p

Timestep

PAC-RMDP(8)
PAC-RMDP(1)

PAC-RMDP(16)

VBE(103)

BOLT(H)

BEB(2H2)

MBIE(104,0.2)

MBIE(0.01,0.1)

VBE(0.1)

Figure 3-1: Average total reward per time step for the Chain Problem. The algo-
rithm parameters are shown as PAC-RMDP(h), MBIE(ε, δ), VBE(δ), BEB(β), and
BOLT(η).

Araya-López et al. [3].

In the appendix, we present the results for a problem with low-probability high-

consequence transitions, in which PAC-RMDP(8) produced the best result.

3.4 Continuous Domain

In this section, we consider the problem of a continuous state space and discrete action

space. The transition function is possibly nonlinear, but can be linearly parameterized

as: s
(i)
t+1 = θT

(i)Φ(i)(st, at) + ζ
(i)
t , where the state st ∈ S ⊆ RnS is represented by nS

state parameters (s(i) ∈ R with i ∈ {1, ..., ns}), and at ∈ A is the action at time t. We

assume that the basis functions Φ(i) : S×A→ Rni are known, but the weights θ ∈ Rni

are unknown. ζ
(i)
t ∈ R is the noise term and given by ζ

(i)
t ∼ N (0, σ2

(i)). In other words,

P (s
(i)
t+1|st, at) = N (θT

(i)Φ(i)(st, at), σ
2
(i)). For brevity, we focus on unknown transition

dynamics, but our method is directly applicable to unknown reward functions if the

reward is represented in the above form. This problem is a slightly generalized version

of those considered by Abbeel and Ng [1], Strehl and Littman [44], and Li et al. [27].

45

3.4.1 Algorithm

We first define the variables used in our algorithm, and then explain how the algorithm

works. Let θ̂(i) be the vector of the model parameters for the ith state component. Let

Xt,i ∈ Rt×ni consist of t input vectors ΦT
(i)(s, a) ∈ R1×ni at time t. We then denote the

eigenvalue decomposition of the input matrix as XT
t,iXt,i = Ut,iDt,i(λ(1), . . . , λ(n))U

T
t,i,

where Dt,i(λ(1), ..., λ(n)) ∈ Rni×ni represents a diagonal matrix. For simplicity of

notation, we arrange the eigenvectors and eigenvalues such that the diagonal elements

of Dt,i(λ(1), ..., λ(n)) are λ(1), ..., λ(j) ≥ 1 and λ(j+1), ..., λ(n) < 1 for some 0 ≤ j ≤ n.

We now define the main variables used in our algorithm: zt,i := (XT
t,iXt,i)

−1, gt,i :=

Ut,iDt,i(
1

λ(1)
, . . . , 1

λ(j)
, 0, . . . , 0)UT

t,i, and wt,i := Ut,iDt,i(0, . . . , 0, 1(j+1), . . . , 1(n))U
T
t,i. Let

Δ(i) ≥ sups,a|(θ(i) − θ̂(i))
T Φ(i)(s, a)| be the upper bound on the model error. Define

ς(M) =
√

2 ln(π2M2nsh/(6δ)) where M is the number of calls for Ih (i.e., the number

of computing r̃ in Algorithm 3.2).

With the above variables, we define the h-reachable model interval Ih as

Ih(Φ(i)(s, a), Xt,i)/[h(Δ(i) + ς(M)σ(i))]

= |ΦT
(i)(s, a)gt,iΦ(i)(s, a)|+‖ΦT

(i)(s, a)zt,i‖‖wt,iΦ(i)(s, a)‖.

The h-reachable model interval is a function that maps a new state-action pair con-

sidered in the planning phase, Φ(i)(s, a), and the agent’s experience, Xt,i, to the upper

bound of the error in the model prediction. We define the column vector consisting of

nS h-reachable intervals as Ih(s, a, Xt) = [Ih(Φ(1)(s, a), Xt,1), ..., Ih(Φ(nS)(s, a), Xt,nS
)]T .

We also leverage the continuity of the internal value function Ṽ to avoid an ex-

pensive computation (to translate the error in the model to the error in value).

Assumption 3.1. (Continuity) There exists L ∈ R such that, for all s, s′ ∈ S,

|Ṽ ∗(s)− Ṽ ∗(s′)|≤ L‖s− s′‖.

We set the degree of optimism for a state-action pair to be proportional to the

uncertainty of the associated model. Using the h-reachable model interval, this can

be achieved by simply adding a reward bonus that is proportional to the interval.

46

Algorithm 3.2. Linear PAC-RMDP

Input: h, δ Optional: Δ(i), L

Initialize: θ̂, Δ(i), and L
for time step t = 1, 2, 3, ... do
Action: take an action based on

p̂(s′|s, a)← N (θ̂T Φ(s, a), σ2I)
r̃(s, a, s′)← R(s, a, s′) + L‖Ih(s, a, Xt−1)‖

Observation: Save the input-output pair (st+1, Φt(st, at))
Estimate: Estimate θ̂(i), Δ(i) (if not given), and L (if not given)

The pseudocode for this is shown in Algorithm 3.2.

3.4.2 Analysis

Following previous work [44, 27], we assume access to an exact planning algorithm.

This assumption would be relaxed by using a planning method that provides an error

bound. We assume that Algorithm 3.2 is used with least-squares estimation, which

determines L. We fix the distance function as d(P̂ (∙|s, a), P (∙|s, a)) = |Es′∼P̂ (∙|s,a)[s
′]−

Es′∼P (∙|s,a)[s
′]| (since the unknown aspect is the mean, this choice makes sense). In

the following, we use n̄ to represent the average value of {n(1), ..., n(nS)}. The proofs

are given in the appendix.

Lemma 3.3. (Sample complexity of PAC-MDP) For our problem setting, the PAC-

MDP algorithm proposed by Strehl and Littman [44] and Li et al. [27] has sample

complexity Õ
(

n2
S n̄2

ε5(1−γ)10

)
.

Theorem 3.2. (PAC-RMDP) Let At be the policy of Algorithm 3.2. Let

z = max(h2 ln
m2nsh

δ
,
L2nSn̄ ln2 m

ε3
ln

nS

δ
).

Then, for all ε > 0, for all δ = (0, 1), and for all h ≥ 0,

1) for all but at mostm′ = O
(

zL2nS n̄ ln2 m
ε3(1−γ)2

ln2 nS

δ

)
time steps (withm ≤ m′), V At(st) ≥

V d∗
L,t,h(st)− ε, with probability at least 1− δ, and

47

2) there exists h∗(ε, δ) = O(P(1/ε, 1/δ, 1/(1− γ), |MDP|)) such that

|V ∗(st)− V d∗
L,t,h∗(ε,δ)(st)|≤ ε

with probability at least 1− δ.

Corollary 3.3. (Anytime error bound) With probability at least 1−δ, if h2 ln m2nsh
δ
≤

L2nS n̄ ln2 m
ε3

ln nS

δ
,

εt,h = O



 5

√
L4n2

Sn̄2 ln2 m

t(1− γ)
ln3 nS

δ



 ;

otherwise,

εt,h = O

(
h2L2nSn̄ ln2 m

t(1− γ)
ln2 nS

δ

)

.

The anytime T -step average loss is equal to 1
T

∑T
t=1(1− γT+1−t)εt,h.

Corollary 3.4. (Explicit exploration runtime) With probability at least 1 − δ, the

explicit exploration runtime of Algorithm 3.2 is

O

(
h2L2nSn̄ ln m

ε2 Pr[Ak]
ln2 nS

δ
ln

m2nsh

δ

)

= O

(
h2L2nSn̄ ln m

ε3(1− γ)
ln2 nS

δ
ln

m2nsh

δ

)

where AK is the escape event defined in the proof of Theorem 3.2.

3.4.3 Experimental Examples

We consider two examples: the mountain car problem [49], which is a standard toy

problem in the literature, and the HIV problem [12], which originates from a real-

world problem. For both examples, we compare the proposed algorithm with a di-

rectly related PAC-MDP algorithm [44, 27]. For the PAC-MDP algorithm, we present

the results with ε set to several theoretically meaningful values and one theoretically

48

non-meaningful value to illustrate its property4. We used δ = 0.9 for the PAC-MDP

and PAC-RMDP algorithms5. The ε-greedy algorithm is executed with ε = 0.1. In

the planning phase, L is estimated as L← maxs,s′∈Ω|Ṽ A(s)− Ṽ A(s′)|/‖s− s′‖, where

Ω is the set of states that are visited in the planning phase (i.e., fitted value iteration

and a greedy roll-out method). For both problems, more detailed descriptions of the

experimental settings are available in the appendix.

Mountain Car

In the mountain car problem, the reward is negative everywhere except at the goal.

To reach the goal, the agent must first travel far away, and must explore the world to

learn this mechanism. Each episode consists of 2000 steps, and we conduct simulations

for 100 episodes.

The numerical results are shown in Figure 3-2. As in the discrete case, we can

see that the PAC-RMDP(h) algorithm worked well. The best performance, in terms

of the total reward, was achieved by PAC-RMDP(10). Since this problem required a

number of consecutive explorations, the random exploration employed by the ε-greedy

algorithm did not allow the agent to reach the goal. As a result of exploration and the

randomness in the environment, the PAC-MDP algorithm reached the goal several

times, but kept exploring the environment to ensure near-optimality. From Figure

3-2, we can see that the PAC-MDP algorithm quickly converges to good behavior if

we discard the theoretical guarantee (the difference between the values in the optimal

value function had an upper bound of 120, and the total reward had an upper bound

of 2000. Hence, ε > 2000 does not yield a useful theoretical guarantee).

Simulated HIV Treatment

This problem is described by a set of six ordinary differential equations [12]. An

action corresponds to whether the agent administers two treatments (RTIs and PIs)

to patients (thus, there are four actions). Two types of exploration are required: one

4See footnote 3 on the consideration of different values of ε.
5We considered δ = [0.5, 0.8, 0.9, 0.95], but there was no change in any qualitative behavior of

interest in our discussion.

49

-2000

-1600

-1200

-800

-400

0

0 20 40 60 80 100

To
ta

l R
ew

ar
d

Epsiodes

PAC-RMDP(1)PAC-RMDP(10)

PAC-RMDP(1000)

PAC-MDP(1)PAC-MDP(120)

PAC-MDP(2000)

PAC-MDP(5000)

-greedy

Figure 3-2: Total reward per episode for the mountain car problem with PAC-
RMDP(h) and PAC-MDP(ε).

1.E+6

1.E+7

1.E+8

1.E+9

1.E+10

1.E+11

0 10 20 30

To
ta

l
R

ew
ar

d

Episode

PAC-RMDP(1)PAC-RMDP(100)

PAC-RMDP(10)
PAC-MDP(3010)

PAC-MDP(1010)
PAC-MDP(105)

PAC-MDP(10) -greedy

Figure 3-3: Total reward per episode for the HIV problem with PAC-RMDP(h) and
PAC-MDP(ε).

to learn the effect of using treatments on viruses, and another to learn the effect of not

using treatments on immune systems. Learning the former is necessary to reduce the

population of viruses, but the latter is required to prevent the overuse of treatments,

which weakens the immune system. Each episode consists of 1000 steps (i.e., days),

and we conduct simulations for 30 episodes.

As shown in Figure 3-3, the PAC-MDP algorithm worked reasonably well with

ε = 3010. However, the best total reward did not exceed 3010, and so the PAC-MDP

guarantee with ε = 3010 does not seem to be useful. The ε-greedy algorithm did not

50

work well, as this example required sequential exploration at certain periods to learn

the effects of treatments.

Although the PAC-RMDP(h) algorithms worked well in our experimental exam-

ples with small h in this section and Section 3.3.3, it is possible to devise a problem

in which the PAC-RMDP algorithm should be used with large h as illustrated in

Appendix B.5. In extreme cases, the PAC-RMDP algorithms would reduce to PAC-

MDP. Thus, the adjustable theoretical guarantee of PAC-RMDP(h) via the concept

of reachability seems to be a reasonable objective.

51

52

Chapter 4

Conclusion

In this thesis, I have discussed two principles to tighten theoretical bounds, aiming to

bridge the gap between theory and practice. For Bayesian optimization, I have taken

advantage of tighter yet unknown bounds. As a result, I have presented the first GP-

based optimization method with an exponential convergence rate O
(
λN+Ngp

)
(λ < 1)

without the need of auxiliary optimization and the δ-cover sampling. For exploration

in MDPs, I have introduced the concept of reachability in model learning and used

this concept for re-considering the optimality criteria. As a result, I have proposed

the PAC–RMDP framework, and two algorithms for both discrete and continuous

state representations that improve the previous theoretical bounds and empirical

performance.

The two principles used in this thesis (as illustrated in Figure 1-1) are different

and not intended to be exclusive. That is, one may combine these two approaches to

improve a bound-based method. Although each principle is discussed in the consid-

eration of Bayesian optimization or exploration in MDP, it would be interesting to

see if similar approaches are applicable to other types of bound-based methods such

as planning algorithms (e.g., A* search and the UCT or FSSS algorithm [50]).

In Chapter 2, from the viewpoint of the global optimization community, I have

provided a practically oriented analysis framework, enabling us to see why not rely-

ing on a particular bound is advantageous, and how a non-tight bound can still be

useful (in Remarks 2.1, 2.2 and 2.3). In Chapter 3, from the viewpoint of optimal

53

exploration, I have provided a theoretical framework that is applicable to more prac-

tical and complex models than the existing framework. Whereas the development

of algorithms with traditional objectives (PAC-MDP or regret bounds) requires the

consideration of confidence intervals, the proposed objective, PAC-RMDP(h), con-

cerns a set of h-reachable models. For a flexible structured model, the derivation

of the confidence interval would be a difficult task, but a set of h-reachable models

can simply be computed (or approximated) via lookahead by using the model update

rule. Thus, future work includes the derivation of a PAC-RMDP algorithm with a

more structured model.

54

Appendix A

Appendix – Bayesian Optimization

In this appendix, we provide the proofs of the theoretical results presented in Chapter

2 – Bayesian Optimization with Exponential Convergence. Along the way, we also

prove regret bounds for a general class of algorithms, the result of which may be used

to design a new algorithm.

We first provide a known property of the upper confidence bound of GP.

Lemma 2.1. (Bound Estimated by GP) According to the belief encoded in the GP

prior/posterior1, for any x, f(x) ≤ U(x|D) holds during the execution of Algorithm

2.1 with probability at least 1− η.

Proof. It follows the proof of lemma 5.1 of [41]. From the property of the standard

gaussian distribution, Pr(f(x) > U(x|D)) < 1
2
e−ς2M/2. Taking union bound on the

entire execution of Algorithm 2.1, Pr(f(x) > U(x|D) ∀M ≥ 1) < 1
2

∑∞
M=1 e−ς2M /2.

Substituting ςM =
√

2 log(π2M2/12η), we obtain the statement. �

Our algorithm has a concrete division procedure in line 27 of Algorithm 2.1. How-

ever, one may improve the algorithm with different division procedures. Accordingly,

we first derive abstract version of regret bound for the IMGPO (Algorithm 2.1) under

a family of division procedures that satisfy Assumptions 2.3 and 2.4. After that, we

provide a proof for the main results in the thesis.

1Thus, the probability in this analysis should be seen as that of the subjective view. If we assume
that f is indeed a sample from the GP, we have the same result with the objective view of probability.

55

A.1 Proofs for Family of Division Procedures

In this section, we modify the result obtained by [31]. Let xh,i to be any point in the

region covered by the ith hyperinterval at depth h, and x∗
h,i be the global optimizer

that may exist in the ith hyperinterval at depth h. The previous work provided the

regret bound of the SOO algorithm with a family of division procedure that satisfies

the following two assumptions.

Assumption 2.3. (Decreasing diameter) There exists a diameter function δ(h) > 0

such that, for any hyperinterval ωh,i ⊂ Ω and its center ch,i ∈ ωh,i and any xh,i ∈ ωh,i,

we have δ(h) ≥ supxh,i
`(xh,i, ch,i) and δ(h− 1) ≥ δ(h) for all h ≥1.

Assumption 2.4. (Well-shaped cell) There exists ν > 0 such that any hyperinterval

ωh,i contains at least an `-ball of radius νδ(h) centered in ωh,i.

Thus, in this section, hyperinterval is not restricted to hyperrectangle. We now

revisit the definitions of several terms and variables used in [31]. Let the ε-optimal

space Xε be defined as Xε := {x ∈ Ω : f(x) + ε ≥ f(x∗)}. That is, the ε-optimal

space is the set of input vectors whose function value is at least ε-close to the global

optima. To bound the number of hyperintervals relevant to this ε-optimal space, we

define a near-optimality dimension as follows.

Definition 2.3. (Near-optimality dimension) The near-optimality dimension is the

smallest d > 0 such that, there exists C > 0, for all ε > 0, the maximum number of

disjoint `-balls of radius νε with center in the ε-optimal space Xε is less than Cε−d.

3

Finally, we define the set of δ-optimal hyperintervals Iδ(h) as Iδ(h) := {ωh,i 3

ch,i : f(ch,i) + δ(h) ≥ f(x∗)}. The δ-optimal hyperinterval Iδ(h) is used to relate the

hyperintervals to the ε-optimal space. Indeed, the δ-optimal hyperinterval Iδ(h) is

almost identical to the δ(h)-optimal space Xδ(h), except that Iδ(h) is focused on the

center points whereas Xδ(h) considers the whole input vector space. In the following,

56

we use |Iδ(h)| to denote the number of Iδ(h) and derive its upper bound.

Lemma 2.2. (Lemma 3.1 in [31]) Let d be the near-optimality dimension and C

denote the corresponding constant in Definition 2.1. Then, the number of δ-optimal

hyperintervals is bounded by |Iδ(h)|≤ Cδ(h)−d.

We are now ready to present the main result in this section. In the following,

we use the term optimal hyperinterval to indicate a hyperinterval that contains a

global optimizer x∗. We say a hyperinterval is dominated by other intervals when it

is rejected or not selected in step (i)-(iii). In Lemma 2.3, we bound the maximum

size of the optimal hyperinterval. From Assumption 2.1, this can be translated to the

regret bound, as we shall see in Theorem 2.2.

Lemma 2.3. Let Ξn ≤ min(Ξ, Ξmax) be the largest ξ used so far with n total node

expansions. Let h∗
n be the depth of the deepest expanded node that contains a global

optimizer x∗ after n total node expansions (i.e., h∗
n ≤ n determines the size of the

optimal hyperinterval). Then, with probability at least 1 − η, h∗
n is bounded below

by some h′ that satisfies

n ≥

∑h′+Ξ
l=0 |Il|∑

τ =1

ρτ .

Proof. Let Th denote the time at which the optimal hyperinterval is further divided.

We prove the statement by showing that the time difference Th+1−Th is bounded by

the number of δ-optimal hyperintervals. To do so, we first note that there are three

types of hyperinterval that can dominate an optimal hyperinterval ch+1,∗ during the

time [Th, Th+1 − 1], all of which belong to δ-optimal hyperintervals Iδ. The first type

has the same size (i.e., same depth h), ch+1,i. In this case,

f(ch+1,i) ≥ f(ch+1,∗) ≥ f(x∗
h+1,∗)− δ(h + 1),

where the first inequality is due to line 10 (step (i)) and the second follows Assump-

tions 2.1 and 2.2. Thus, it must be ch+1,i ∈ Ih+1. The second case is where the optimal

hyperinterval may be dominated by a hyperinterval of larger size (depth l < h + 1),

57

cl,i. In this case, similarly,

f(cl,i) ≥ f(ch+1,∗) ≥ f(x∗
h+1,∗)− δ(l),

where the first inequality is due to lines 11 to 12 (step (ii)) and thus cl,i ∈ Il. In the

final scenario, the optimal hyperinterval is dominated by a hyperinterval of smaller

size (depth h + 1 + ξ), ch+1+ξ,i. In this case,

f(ch+1+ξ,i) ≥ z(h + 1, ∗) ≥ f(x∗
h+1,∗)− δ(h + 1 + ξ)

with probability at least 1− η where z(∙, ∙) is defined in line 21 of Algorithm 2.1. The

first inequality is due to lines 19 to 23 (step (iii)) and the second inequality follows

Lemma 2.1 and Assumptions 2.1 and 2.3. Hence, we can see that ch+1+ξ,i ∈ Ih+1+ξ.

For all of the above arguments, the temporarily assigned U under GP has no

effect. This is because the algorithm still covers the above three types of δ-optimal

hyperintervals Iδ, as U ≥ f with probability at least 1 − η (Lemma 2.1). However,

these are only expanded based on f because of the temporary nature of U . Putting

these results together,

Th+1 − Th ≤

∑h+1+Ξn
l=1 |Iδ(l)|∑

τ=1

ρτ .

Since if one of the Iδ is divided during [Th, Th+1−1], it cannot be divided again during

another time period,
h∗

n∑

h=0

Th+1 − Th ≤

∑h∗
n+1+Ξn

l=1 |Il|∑

τ=1

ρτ ,

where on the right-hand side, the summation
∑h∗

n
h=0 was combined into another

∑∑h+1+Ξn
l=1 |Iδ(l)|

τ=1 , because each h in the summation refers to the same δ-optimal interval

Iδ(l) with l ≤ h∗
n + 1 + Ξn, and should not be double-counted. As

∑h∗
n

h=0 Th+1 − Th =

Th∗
n+1 − T0, T0 = 1 and |Iδ(0)|= 1,

Th∗
n+1 ≤ 1 +

∑h∗
n+1+Ξn

l=1 |Il|∑

τ=1

ρτ ≤

∑h∗
n+1+Ξn

l=0 |Il|∑

τ=1

ρτ .

58

As Th∗
n+1 > n by definition, for any h′ such that

∑∑h′+Ξn
l=0 |Il|

τ=1 ρτ ≤ n <
∑∑h∗

n+1+Ξn
l=0 |Il|

τ=1 ρτ ,

we have h∗
n > h′. �

With Lemmas 2.2 and 2.3, we are ready to present a finite regret bound with the

family of division procedures.

Theorem 2.2. Assume Assumptions 2.1, 2.3, and 2.4. Let h(n) be the smallest

integer h such that

n ≤
C
∑h+Ξn

l=0 δ(l)−d

∑

τ=1

ρτ .

Then, with probability at least 1 − η, the regret of the IMGPO with any general

division procedure is bounded as

rn ≤ δ(h(n)− 1).

Proof. Let c(n) and ch∗
n,∗ be the center point expanded at the nth expansion and

the optimal hyperinterval containing a global optimizer x∗, respectively. Then, from

Assumptions 2.1, 2.3, and 2.4, f(c(n)) ≥ f(ch∗
n,∗) ≥ f ∗− δ(h∗

n), where f ∗ is the global

optima. Hence, the regret bound is rh ≤ δ(h∗
n). To find a lower bound for the quantity

h∗
n, we first relate h(n) to Lemma 2.3 by

n >

C
∑h(n)+Ξn−1

l=0 δ(l)−d

∑

τ=1

ρτ ≥

∑h(n)+Ξn−1
l=0 |Il|∑

τ=1

ρτ ,

where the first inequality comes from the definition of h(n), and the second follows

from Lemma 2.2. Then, from Lemma 2.3, we have h∗
n ≥ h(n) − 1. Therefore,

rn ≤ δ(h∗
n) ≤ δ(h(n)− 1). �

Assumption 2.5. (Decreasing diameter revisit) The decreasing diameter defined in

Assumption 2.3 can be written as δ(h) = c1γ
h/D for some c1 > 0 and γ < 1 with a

division procedure that requires c2 function evaluations per node expansion.

59

Corollary 2.1. Assume Assumptions 2.1, 2.3, 2.4, and 2.5. Then, if d = 0, with

probability at least 1− η,

rN ≤ O

(

exp

(

−
N + Ngp

c2CDρ̄t

))

.

If d > 0, with probability at least 1− η,

rN ≤ O

((
1

N + Ngp

)1/d(

−
c2Cρ̄t

1− γd/D

)1/d

γ− 1
D

)

.

Proof. For the case d = 0, we have n ≤
∑C

∑h(n)+Ξn
l=0 δ(l)−d

τ=1 ρτ ≤
∑C(h(n)+Ξn+1)

τ=1 ρ̄t, where

the first inequality follows from the definition of h(n), and the second comes from the

definition of ρ̄t and the assumption d = 0. The second inequality holds for ρ̄t that only

considers ρτ with τ ≤ t. This is computable, because τ ≤ t by construction. Indeed,

the condition of Lemma 2.3 implies t ≥
∑h′+Ξn

l=0 |Il|. Therefore, the two inequalities

hold, and we can deduce that h(n) ≥ n
Cρ̄t
− Ξn − 1 by algebraic manipulation. By

Assumption 2.5, n = (N + Ngp)/c2. With this, substituting the lower bound of h(n)

into the statement of Theorem 2.2 with Assumption 2.5,

rN ≤ c1 exp

(

−

[
N + Ngp

c2D

1

Cρ̄t

− Ξn − 2

]

ln
1

γ

)

.

Similarly, for the case d > 0,

n ≤
C
∑h(n)+Ξn

l=0 δ(l)−d

∑

τ=1

ρτ ≤

c−dC γ−(h(n)+Ξn+1)d/D−1

γ−d/D−1∑

τ=1

ρ̄t,

and hence cγ
h(n)+Ξn

D ≤
(

n(1−γd/D)
Cρ̄t

)−1/d

by algebraic manipulation. Substituting this

into the result of Theorem 2.2, we arrive at the desired result. �

60

A.2 Proofs for a Concrete Division Procedure

In this section, we prove the main result in the thesis. In Theorem 2.1, we show that

the exponential convergence rate bound O
(
λN+Ngp

)
with λ < 1 is achieved without

Assumptions 2.3, 2.4 and 2.5 and without the assumption that d = 0.

Theorem 2.1. Assume Assumptions 2.1 and 2.2. Let β = supx,x′∈Ω
1
2
‖x − x′‖∞.

Let λ = 3
− α

2Cρ̄tD < 1. Then, without Assumptions 2.3, 2.4 and 2.5 and without the

assumption on d, with probability at least 1 − η, the regret of IMGPO with the

division procedure in Algorithm 2.1 is bounded as

rN ≤ L(3βD1/p)α exp

(

−α

[
N + Ngp

2Cρ̄tD
− Ξn − 2

]

ln 3

)

= O
(
λN+Ngp

)
.

Proof. To prove the statement, we show that Assumptions 3, 4, and 5 can all be

satisfied while maintaining d = 0.

From Assumption 2 (i), and based on the division procedure that the algorithm uses,

sup
x∈ωh,i

`(x, ch,i) ≤ sup
x∈ωh,i

L||x− ch,i||
α
p≤ L

(
3−bh/DcβD1/p

)α
.

This upper bound corresponds to the diagonal length of each hyperrectangle with

respect to p-norm, where 3−bh/Dcβ corresponds to the length of the longest side. We

fix the form of δ as δ(h) = L3αDα/p3−hα/Dβα ≥ L(3−bh/DcβD1/p)α, which satisfies

Assumption 3.

This form of δ(h) also satisfies Assumption 5 with γ = 3−α and c1 = L3αDα/pβα.

Every hyperrectangle contains at least one `-ball with a radius corresponding to the

length of the shortest side of the hyperrectangle. Thus, we have at least one `-

ball of radius νδ(h) = L3−αdh/De ≥ L3−α3−αh/D for every hyperrectangle with ν ≥

3−2αD−α/p. This satisfies Assumption 4.

Finally, we show that d = 0. The set of δ-optimal hyperintervals Iδ(h) is contained by

61

the δ(h)-optimal space Xδ(h) as

Iδ(h) = {c ∈ Ω : f(x∗)− f(c) ≤ δ(h), c is the center point of the interval, ωh,i, for some (h, i)}

⊆ {x ∈ Ω : f(x∗)− f(x) ≤ δ(h)} = Xδ(h)

Let θ be a value that satisfies Assumption 2 (ii) (which is nonzero). Consider an

`-ball of radius δ(h)
θ
at x∗, which is a set {x ∈ Ω | θ`(x, x∗) ≤ δ(h)}. Since θ`(x, x∗) ≤

f(x∗) − f(x) by Assumption 2 (ii), the δ(h)-optimal space Xδ(h) is covered by an

`-ball of radius δ(h)
θ
. Therefore, Iδ(h) ⊆ Xδ(h) ⊆ (an `-ball of radius δ(h)

θ
at x∗). By

Assumption 2 (i), the volume V of an `-ball of radius νδ(h) is proportional to (νδ(h))D

as V p
D(νδ(h)) = (2νδ(h)Γ(1+1/p))D/Γ(1+D/p). Thus, the number of disjoint `-balls

of radius νδ(h) that fit in Xδ(h) is at most d(
δ(h)

θνδ(h)
)De = d(θν)−De. Therefore, the

number of `-balls does not depend on δ(h) in this case, which means d = 0.

Now that we have satisfied Assumptions 3, 4, and 5 with d = 0, γ = 3−α, and

c1 = L3αDα/pβα, we follow the proof of Corollary 1 and deduce the desired state-

ment. �

62

Appendix B

Appendix – Exploration in MDP

In this appendix, we provide the proofs of the theoretical results, additional experi-

mental results and discussions that were deferred in Chapter 3 – Bounded Optimal

Exploration in MDP.

B.1 Proofs of Propositions 1 and 2

In this section, we present the proofs of Propositions 1 and 2.

Proposition 3.1. (PAC-MDP) PAC-RMDP(h∗(ε, δ)) implies PAC-MDP, where h∗(ε, δ)

is given in Definition 3.1.

Proof. For any PAC-RMDP(h∗(ε, δ)) algorithm, Definition 3.1 implies

V A(st) ≥ V ∗
h∗(st)− ε ≥ V ∗(st)− 2ε

with probability at least 1 − 2δ for all but polynomial time steps. This satisfies the

condition of the PAC-MDP. �

Proposition 3.2. (Near-Bayes optimality) Consider the model-based Bayesian rein-

forcement learning [46]. Let H be a planning horizon in the belief space b. Assume

that the Bayesian optimal value function, V ∗
b,H , converges to the H-reachable optimal

63

function such that, for all ε > 0, |V ∗
L,t,H(st) − V ∗

b,H(st, bt)|≤ ε for all but polynomial

time steps. Then, a PAC-RMDP(H) algorithm with a policy At obtains an expected

cumulative reward V At(st) ≥ V ∗
b,H(st, bt) − 2ε for all but polynomial time steps with

probability at least 1− δ.

Proof. It directly follows Definition 3.1 and the assumption. For all but polynomial

time steps, with probability at least 1− δ, V A(st) ≥ V ∗
L,t,H(st)− ε ≥ V ∗

b,H(st, bt)− 2ε.

�

B.2 Relationship to Bounded Rationality and Bounded

Optimality

As the concept of PAC-RMDP considers the inherent limitations of a decision maker,

it shares properties with the concepts of bounded rationality [38] and bounded opti-

mality [36].

Bounded rationality and bounded optimality focus on limitations in the planning

phase (e.g., computational resources). In contrast, PAC-RMDP considers limitations

in the learning phase (e.g., the agent’s lifetime). As in the case of bounded rationality,

the performance guarantee of a PAC-RMDP(h) algorithm can be arbitrary, depend-

ing on the choice of h. On the contrary, bounded optimality solves the problem of

arbitrariness, seemingly at the cost of applicability. It requires a strong notion of op-

timality, similar to instance optimality; roughly, we must find the optimal algorithm

given the available computational resources. Automated optimization over the set of

algorithms is a difficult task. Zilberstein [54] claims that bounded optimality is diffi-

cult to achieve, resulting in very few successful examples, and is not, in practice, as

promising as other bounded rational methods. However, in future research, it would

be interesting to compare PAC-RMDP with a possible relaxation of PAC-MDP based

on a concept similar to bounded optimality.

64

B.3 Corresponding Notions of Regret and Average

Loss

In the definition of PAC-RMDP(h), our focus is on learning useful models, enabling us

to obtain high rewards in a short period of time. Instead, one may wish to guarantee

the worst total reward in a given time horizon T . There are several ways to achieve

this goal. One solution is to minimize the expected T -step regret bound rA(T), given

by

rA(T) ≥ V ∗(s0, T)− V A(s0, T). (B.1)

In this case, V ∗(s0, T) = E[
∑T

i=0 γiR
(
s∗i , π

∗(si), s
∗
i+1

)
], where the sequence of states

s∗0, s
∗
1, ..., s

∗
T with s∗0 = s0 is generated when the agent follows the optimal policy π∗

from s0, and V A(s0, T) = E[
∑T

i=0 γiR (si,Ai(si), si+1)], where the sequence of states

s0, s1, ..., sT is generated when the agent follows policy Ai. Since one mistake in the

early stages may make it impossible to return to the optimal state sequence s∗i , all

the regret approaches in the literature rely on some reachability assumptions in the

state space; for example, Jaksch et al. [15] assumed that every state was reachable

from every other state within a certain (average) number of steps.

Another approach is to minimize the expected T -step average loss bound rA(T),

which obviates the need for any reachability assumptions in the state space:

`A(T) ≥
1

T

T∑

t=0

[
V ∗(st, T)− V A(st, T)

]
, (B.2)

where st is the state visited by algorithm A at time t. The value functions inside

the sum are defined as V ∗(st, T) = E[
∑T−t

i=0 γiR
(
s∗t+i, π

∗(st+i), s
∗
t+i+1

)
] with s∗t = st

and V A(s0, T) = E[
∑T−t

i=0 γiR
(
s∗t+i,At(st+i), st+i+1

)
]. By averaging the T -step regrets

(i.e., losses) of the T initial states s0, s1, ..., sT visited by A, the average loss mitigates

the effects of irreversible mistakes in the early stages that may dominate the regret.

The expected h-reachable regret bound rAh (T) and average loss bound `Ah (T) are

65

defined as

rAh (T) ≥ V ∗
L,t,h(s0, T)− V A(s0, T)

and `Ah (T) ≥ 1
T

∑T
t=1

[
V ∗
L,t,h(st, T)− V A(st, T)

]
. That is, they are the same as the

standard expected regret and average loss, respectively, with the exception that the

optimal value function V ∗ has been replaced by the h-reachable optimal value function

V ∗
L,t,h(st).

While the definition of PAC-RMDP(h) focuses on exploration, the proposed PAC-

RMDP(h) algorithms maintain anytime expected h-reachable average loss bounds and

anytime error bounds, and thus the performances of our algorithms are expected to

improve with time, rather than after some number of exploration steps.

B.4 Proofs of Theoretical Results for Algorithm 3.1

We first verify the main properties of Algorithm 3.1 and then analyze a practically

relevant property of the algorithm in the subsection of Further Discussion. We assume

that Algorithm 3.1 is used with the sample mean estimator, which determines L.

Main Properties

To compare the results with those of past studies, we assume that Rmax ≤ c for some

fixed constant c. The effect of this assumption can be seen in the proof of Theorem

3.1. Algorithm 3.1 requires no input parameter related to ε and δ. This is because the

required degree of optimism can be determined independently of the unknown aspect

of the world. This means that Theorem 3.1 holds at any time during an execution

for a pair of corresponding ε and δ.

Lemma 3.1. (Optimism) For all s ∈ S and for all t, h ≥ 0, the internal value

Ṽ At(s) used by Algorithm 3.1 is at least the h-reachable optimal value V ∗
L,t,h(s);

Ṽ At(s) ≥ V ∗
L,t,h(s).

Proof. The claim follows directly from the construction of Algorithm 3.1. It can

66

be verified by induction on each step of the value iteration or the roll-out in a plan-

ning algorithm. �

Theorem 3.1. (PAC-RMDP) Let At be a policy of Algorithm 3.1. Let

z = max(h,
ln(2|S||S||A|/δ)

ε(1− γ)
).

Then, for all ε > 0, for all δ = (0, 1), and for all h ≥ 0,

1) for all but at most O
(

z|S||A|
ε2(1−γ)2

ln |S||A|
δ

)
time steps, V At(st) ≥ V ∗

L,t,h(st)− ε, with

probability at least 1− δ, and

2) there exists h∗(ε, δ) = O(P(1/ε, 1/δ, 1/(1− γ), |MDP|)) such that

|V ∗(st)− V ∗
L,t,h∗(ε,δ)(st)|≤ ε

with probability at least 1− δ.

Proof. Let K be a set of state-action pairs where the agent has at least m samples

(this corresponds to the set of known state-action pairs described by Kearns and Singh

[22]). With the boundary condition V A(s, 0) = 0, define the mixed value function

V A(s,H) with a finite horizon H ′ = 1
1−γ

ln 6Rmax

ε(1−γ)
as

V A(s, H ′) =






∑
s′ P (s′|s,A(s))[R(s,A(s), s′) + γV A(s′, H ′ − 1)] if (s,A(s)) ∈ K

maxP̃∈ML,t,h,(s,a)

∑
s′ P̃ (s′|s,A(s))[R(s,A(s), s′) + γV A(s′, H ′ − 1)] otherwise

Let AK be the escape event in which a pair (s, a) /∈ K is generated for the first time

when starting at state st, following policy At, and transitioning based on the true

67

dynamics P for H ′ steps. Then, for all t, h ≥ 0, with probability at least 1− δ/2,

V At(st) ≥ V At(st, H
′)−

Rmax

1− γ
Pr(Ak)−

ε

6

≥ Ṽ At(st)−
Rmax

1− γ
Pr(Ak)−

ε

3
−

Rmax

1− γ

(
h

m
+

√
2 ln(2|S|+1|S||A|/δ)

m

)

≥ V ∗
L,t,h(st)−

Rmax

1− γ
Pr(Ak)−

ε

3
−

Rmax

1− γ

(
h

m
+

√
2 ln(2|S|+1|S||A|/δ)

m

)

.

The first inequality follows from the fact that V At(st) and V
At

(st) are only different

when event AK occurs, and their difference is bounded above by Rmax

1−γ
(this is the upper

bound on the value Ṽ (st)). Furthermore, the finite horizon approximation adds an

error of 1/6ε. A more detailed argument only involves algebraic manipulations that

mirror the proofs given by Strehl and Littman (2008, Lemma 3) and Kearns and

Singh (2002, Lemma 2).

The second inequality follows from the fact that V
A
is different from Ṽ A only

for the state-action pairs (s, a) ∈ K, for which Ṽ At(st) deviates from V
At

(st) by

at most Rmax
1−γ (h

m +
√

2 ln(2|S|+1|S||A|/δ)/m) with probability at least 1 − δ/2. This

is because |Ṽ At(st) − V At
L,t,0(st)|≤ Rmax

1−γ
h
m
with certainty, and |V At

L,t,0(st) − V At(st)|≤

Rmax

1−γ

√
2 ln(2|S|+1|S||A|/δ)/m with probability at least 1− δ/2 (the later is due to the

result of Weissman et al. (2003, Theorem 2.1) and the union bound for state-action

pairs).

The third inequality follows from Lemma 3.1.

Therefore, if h ≤
√

2m ln(2|S|+1|S||A|/δ),

V At(st) ≥ V ∗
L,t,h(st)−

Rmax

1− γ
Pr(Ak)−

ε

3
−

2Rmax

1− γ

√
2 ln(2|S|+1|S||A|/δ)

m
.

If h >
√

2m ln(2|S|+1|S||A|/δ),

V At(st) ≥ V ∗
L,t,h(st)−

Rmax

1− γ
Pr(Ak)−

ε

3
−

2Rmax

1− γ

h

m
.

68

Let us consider the case where h ≤
√

2m ln(2|S|+1|S||A|/δ). We fix m as

m =
72R2

max ln(2|S|+1|S||A|/δ)
ε2(1− γ)2

to give ε
3
in the last term on the right-hand side. If Pr(AK) ≤ ε(1−γ)

3Rmax
for all t,

V At(st) ≥ V ∗
L,t,h(st)−ε with probability at least 1−δ/2. For the case where Pr(AK) >

ε(1−γ)
3Rmax

for some t, we define an independent random event A′
K such that Pr(A′

K) =

ε(1−γ)
3Rmax

< Pr(AK). According to the Chernoff bound, for all k ≥ 4, with probability

at least 1− δ/2, the event AK will occur at least k times after 2k
Pr(A′

K)
ln 2

δ
time steps.

Thus, by applying the union bound on |S| and |A|, we have a probability of at

least 1 − δ/2 of event AK occurring at least m times for all state-action pairs after

O
(

m|S||A|
Pr(A′

k)
ln |S||A|

δ

)
= O

(
mRmax|S||A|

ε(1−γ)
ln |S||A|

δ

)
time steps.

Let us carefully consider what this means. Whenever AK occurs, the sample

is used to minimize the error between V A and Ṽ A by the definition of AK . Since

Ṽ (s) ≥ V ∗
L,t,h(s) holds at any time, whenever AK occurs, the sample is used to

reduce the error in V At(st) ≥ Ṽ At(st) − (error) ≥ V ∗
L,t,h(st) − (error) (note that if

Ṽ (s) ≥ V ∗
L,t,h(s) holds randomly, this event must occur concurrently with AK to

reduce the error on the right-hand side). Thus, after this number of time steps,

Pr(AK) goes to zero with probability at least 1− δ/2. Hence, from the union bound,

the above inequality becomes V A(st) ≥ V ∗
L,t,h(st)− 2

3
ε with probability at least 1− δ.

For the case where h >
√

2m ln(2|S|+1|S||A|/δ), we fix m = hRmax

6ε(1−γ)
. The rest of

the proof follows that for the case of smaller values of h. Therefore, we have proved

the first part of the statement.

Finally, we consider the second part of the statement. Let P̂t,h(∙|s, a) be the future

model obtained by updating the current model P̂(∙|s, a) with h random future samples

(h samples drawn from P (S|s, a) for each (s, a) ∈ (S,A)). Using a result given by

Weissman et al. (2003, Theorem 2.1), we know that for all s ∈ S, with probability at

69

least 1− δ,

max
s,a
‖P̂t,h(∙|s, a)− P (∙|s, a)‖1≤

√
2 ln(2|S|+1|S||A|/δ)

nt,min + h
,

where nt,min = mins,a nt(s, a). Now, if we use the distance function,

d(P̂ (∙|s, a), P (∙|s, a)) = ‖P̂ (∙|s, a)− P (∙|s, a)‖1,

to define the h-reachable optimal function,

|V ∗(st)− V d∗
L,t,h∗(ε,δ)(st)| ≤

Rmax

1− γ
max

s,a
‖P d∗

L,t,h(∙|s, a)− P (∙|s, a)‖1

=
Rmax

1− γ
max

s,a
min

P̂∈ML,t,h,(s,a)

‖P̂ (∙|s, a)− P (∙|s, a)‖1

≤
Rmax

1− γ

√
2 ln(2|S|+1|S||A|/δ)

nt,min + h
,

The last inequality follows that the models reachable with h random samples P̂t,h(∙|s, a)

are contained in a set of h-reachable models and the best h-reachable model P d∗
L,t,h(∙|s, a)

explicitly minimize the norm, resulting in that P d∗
L,t,h(∙|s, a) is at least as good as

P̂t,h(∙|s, a) in terms of the norm. The right-hand side of the above inequality becomes

less than or equal to ε when h ← h∗(ε, δ) = 2R2
max ln(2|S|+1|S||A|/δ)

ε2(1−γ)2
. Thus, we have the

second part of the statement. �

Corollary 3.1. (Anytime error bound) With probability at least 1 − δ, if h ≤
ln(2|S||S||A|/δ)

ε(1−γ)
,

εt,h = O

(
3

√
|S||A|

t(1− γ)3
ln
|S||A|

δ
ln

2|S||S||A|
δ

)

,

and otherwise,

εt,h = O

(√
h|S||A|

t(1− γ)2
ln
|S||A|

δ

)

.

70

Proof. From Theorem 3.1, if t = c z|S||A|
ε2(1−γ)2

ln |S||A|
δ

with c being some fixed constant,

V A(st) ≥ V ∗
L,t,h(st)− ε with probability at least 1 − δ. Since this holds for all t ≥ 0

with corresponding ε and δ, it implies that ε2 ≤ A z|S||A|
t(1−γ)2

ln |S||A|
δ

with probability at

least 1− δ. Substituting z = max(h, ln(2|S||S||A|/δ)
ε(1−γ)

) yields the statement. �

The anytime T -step average loss is equal to 1
T

∑T
t=1(1−γT+1−t)εt,h,δ. Since the errors

considered in Theorem 3.1 and Corollary 3.3 are for an infinite horizon, the factor

(1 − γT+1−t) translates the infinite horizon error to the T -step finite horizon error

(this can be seen when we modify the proof of Theorem 3.1 by replacing 1
1−γ

with
1−γT+1−t

1−γ
).

Corollary 3.2. (Explicit exploration runtime) With probability at least 1 − δ, the

explicit exploration runtime of Algorithm 3.1 is

O(
h|S||A|

ε(1− γ) Pr[AK]
ln
|S||A|

δ
) = O(

h|S||A|
ε2(1− γ)2

ln
|S||A|

δ
),

where AK is the escape event defined in the proof of Theorem 3.1.

Proof. The proof directly follows that of Theorem 3.1 with z. Compared to the

sample complexity of Algorithm 3.1, z is replaced by h based on the proof of Theo-

rem 3.1. �

71

B.5 Additional Experimental Example for Discrete

Domain

Figure B-1 shows the results in the main part of the thesis along with 10% and 90%

values.Aside from the proposed algorithm, only BOLT gathered better rewards than

a greedy algorithm while maintaining the claimed theoretical guarantee.

In this example, our proposed algorithm worked well and maintained its theoretical

guarantee. One might consider the theoretical guarantee of PAC-RMDP, especially

PAC-RMDP(1), to be too weak. Two things should be noted. First, the 1-reachable

value function is not the value function that can be obtained with just one additional

sample, but requires an additional sample for all |S||A| state-action pairs. Second, in

contrast to Bayesian optimality, the 1-reachable value function is not the value func-

tion believed to be obtained with |S||A| additional samples, but is possibly reachable

in terms of the unknown true world dynamics with the new samples.

However, it is certainly possible to devise a problem such that PAC-RMDP(1)

is not guaranteed to conduct sufficient exploration. As an example, we consider a

modified version of the five-state chain problem, where the probability of success-

fully moving away from the initial state is very small (= 0.05), thus requiring more

extensive exploration. We modified the transition model as follows: Let a1 be the

optimal action that moves the agent away from the initial state. For i = {2, 3, 4, 5},

Pr(si, a1, smin(i+1,5)) = 0.99 and Pr(si, a1, s1) = 0.01. For i = 1, Pr(si, a1, si+1)) = 0.05

and Pr(si, a1, s1) = 0.95. For action a2 and any si, Pr(si, a2, s1) = 1. The numerical

results for this example are shown in Figure B-2.2 As expected, the PAC-RMDP(1)

algorithm often became stuck in the initial state.

B.6 Proofs of Theoretical Results for Algorithm 3.2

We assume that Algorithm 3.2 is used with the least square estimation, which deter-

mines L. Because the true world dynamics are assumed to have the parametric form

P (s′|s, a) = N (θT Φ(s, a), σ2I) with a known σ, their unknown aspect is attributed

72

0.1

0.15

0.2

0.25

0.3

0.35

0 500 1000 1500 2000 2500 3000

A
ve

gr
ag

e
R

ew
ar

d
pe

r
T

im
es

te
p

Timestep

PAC-RMDP(1) PAC-RMDP(8) PAC-RMDP(16)
MBIE(0.01, 0.1) MBIE(10^4, 0.2) VBE(0.1)
VBE(10^3) BEB(2H2) BOLT(H)

(a) Average of 1000 runs over all time steps

Algorithm Average 10% 90%
PAC-RMDP(1) 0.357 0.332 0.378
PAC-RMDP(8) 0.343 0.321 0.365
PAC-RMDP(16) 0.328 0.305 0.321
MBIE(0.01, 0.1) 0.160 0.158 0.162
MBIE(20, 0.9) 0.160 0.158 0.162
MBIE(104, 0.2) 0.267 0.250 0.285
VBE(0.1) 0.155 0.152 0.158
VBE(0.99) 0.156 0.153 0.158
VBE(103) 0.220 0.207 0.232
BEB(2×1482) 0.148 0.142 0.154
BOLT(148) 0.240 0.221 0.256

(b) Results for 1000 runs at time step 3000

Figure B-1: Average total reward per time step for the Chain Problem. The algo-
rithm parameters are shown as PAC-RMDP(h), MBIE(ε, δ), VBE(δ), BEB(β), and
BOLT(η).

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 500 1000 1500 2000 2500 3000

A
ve

gr
ag

e
R

ew
ar

d
pe

r
T

im
es

te
p

Timestep

PAC-RMDP(1) PAC-RMDP(8) PAC-RMDP(16)
MBIE(0.01, 0.1) MBIE(10^4, 0.2) VBE(0.1)
VBE(10^3) BEB(2H2) BOLT(H)

(a) Average for 1000 runs over all time steps

Algorithm Average 10% 90%
PAC-RMDP(1) 0.339 0.196 0.772
PAC-RMDP(8) 0.715 0.650 0.784
PAC-RMDP(16) 0.678 0.612 0.747
MBIE(0.01, 0.1) 0.270 0.260 0.279
MBIE(20, 0.9) 0.327 0.313 0.340
MBIE(104, 0.2) 0.697 0.634 0.752
VBE(0.1) 0.090 0.060 0.122
VBE(0.99) 0.094 0.061 0.126
VBE(103) 0.334 0.306 0.360
BEB(2×1482) 0.108 0.103 0.113
BOLT(148) 0.377 0.314 0.441

(b) Results for 1000 runs at time step 3000

Figure B-2: Average total reward per time step for the modified Chain Problem. The
algorithm parameters are shown as PAC-RMDP(h), MBIE(ε, δ), VBE(δ), BEB(β),
and BOLT(η).

to the weight vector θ. Therefore, we discuss h-reachability in terms of θ̂ instead of

P̂ . For each ith component, Let θ̂∗(i),h,(s,a) be the best h-reachable model parameter

corresponding to the best h-reachable models, P̂ ∗
L,t,h (we drop the index L, t and d

for brevity); using the set θ̂∗(i),h,(s,a) for every (s, a) pair results in the h-reachable

value function V d∗
L,t,h. Note that θ̂(i) is the current model parameter. In the follow-

ing, we make a relatively strict assumption to simplify the analysis: when they are

73

not provided as inputs, the estimated values of L and Δ(i) are correct in that they

satisfy Assumption 3.2 and Δ(i) ≥ sups,a|(θ(i)− θ̂(i))
T Φ(i)(s, a)|. This assumption can

be relaxed by allowing the correctness to be violated with a constant probability. In

such a case, we must force the random event to occur concurrently with the escape

event, as discussed in the proof of Theorem 3.1 (the easiest way to do so is to take a

union bound over the time steps until convergence). Furthermore, if we can specify

the inputs L and Δ(i), there is no need for this assumption.

Lemma 3.2. (Correctness of the h-reachable model interval) For the entire exe-

cution of Algorithm 3.2, for all state components 1 ≤ i ≤ ns, for all t, h ≥ 0, and for

all (s, a) ∈ (S, A), the following inequality holds with probability at least 1− δ/2:

∣
∣
∣[θ̂(i) − θ̂∗(i),h,(s,a)]

T Φ(i)(s, a)
∣
∣
∣ ≤ Ih(Φ(i)(s, a), Xt).

Proof. Let s∗1 ∈ S ′
(s,a) be the future possible observation from which the current

model parameter θ̂(i) is updated to θ̂∗(i),1,(s,a). Then,

∣
∣
∣[θ̂∗(i),1,(s,a) − θ̂(i)]

T Φ(i)(s, a)
∣
∣
∣ =

∣
∣
∣ΦT

(i)(s, a)(XT
t Xt)

−1Φ(i)(s, a)[s∗1 − θ̂∗T(i),1,(s,a)Φ(i)(s, a)]
∣
∣
∣

≤

∣
∣
∣
∣Φ

T
(i)(s, a)Dt(

1
λ(1)

, . . . ,
1

λ(n)
)Ut

T Φ(i)(s, a)(Δ(i) + ς(M)σ(i))

∣
∣
∣
∣ .

The first line follows directly from a result given by Cook (1977, Equation (5)). The

second line is due to the following: with probability at least 1− 1
2
e−ς2(M)/2,

s∗1 − θ̂∗T(i),1,(s,a)Φ(i)(s, a) ≤ θT
(i)Φ(i)(s, a)− θ̂∗T(i),1,(s,a)Φ(i) + ς(M)σ(i)

≤ |θT
(i)Φ(i)(s, a)− θ̂∗T(i),1,(s,a)Φ(i)(s, a)|+ς(M)σ(i)

≤ |θT
(i)Φ(i)(s, a)− θ̂T

(i)Φ(i)(s, a)|+ς(M)σ(i)

≤ Δ(i) + ς(M)σ(i)

74

where the first inequality follows that Pr(st+1 > θT
(i)Φ(i)(s, a)+ ς(M)σ(i)) < 1

2
e−ς2(M)/2

and the third inequality follows the choice of the distance function d (i.e., the mean

prediction with the best h reachable model is at least as good as that of the best h−1

model). We then separate the above into two terms with large and small eigenvalues:

with probability at least 1− 1
2
e−ς2(M)/2,

∣
∣
∣[θ̂∗(i),1(s,a) − θ̂(i)]

T Φ(i)(s, a)
∣
∣
∣ ≤|ΦT

(i)(s, a)UtDt(
1

λ(1)
, . . . ,

1

λ(j)
, 0, . . . , 0)Ut

T Φ(i)(s, a)(Δ(i) + ς(M)σ(i))

+ ΦT
(i)(s, a)UtDt(0, . . . , 0,

1

λ(j+1)
, . . . ,

1

λ(n)
)Ut

T Φ(i)(s, a)(Δ(i) + ς(M)σ(i))|.

With wt, we can rewrite part of the second term as UD(0, . . . , 0, 1
λ(j+1)

, . . . , 1
λ(n)

)UT =

UD(1
λ(1)

, . . . , 1
λ(n)

)UT wt. Then, with gt and zt, with probability at least 1− 1
2
e−ς2(M)/2,

∣
∣
∣[θ̂∗(i),1,(s,a) − θ̂(i)]

T Φ(i)(s, a)
∣
∣
∣ ≤ (Δ(i) + ς(M)σ(i))

∣
∣
∣ΦT

(i)(s, a)gtΦ(i)(s, a) + ΦT
(i)(s, a)ztwtΦ(i)(s, a)

∣
∣
∣ .

Thus, by applying the union bound for h, with probability at least 1− h
2
e−ς2(M)/2,

∣
∣
∣[θ̂∗(i),h,(s,a) − θ̂(i)]

T Φ(i)(s, a)
∣
∣
∣ ≤ h

∣
∣
∣[θ̂∗(i),1,(s,a) − θ̂(i)]

T Φ(i)(s, a)
∣
∣
∣

≤ h(Δ(i) + ς(M)σ(i))
∣
∣
∣ΦT

(i)(s, a)gtΦ(i)(s, a) + ΦT
(i)(s, a)ztwtΦ(i)(s, a)

∣
∣
∣

≤ Ih(Φ(i)(s, a), Xt).

For ns components, the above inequality holds with probability at least 1 − nsh
2 e−ς2(M)/2 (union

bound). For all M ≥ 1, the above inequality holds with probability at least 1− nsh
2

∑∞
M=1 e−ς2(M)/2

(union bound). Substituting ς(M) =
√

2 ln(π2M2nsh/(6δ)), we obtain the statement. �

In Lemma 3.3 and Theorem 3.2, following previous work [44, 27], we assume that

an exact planning algorithm is accessible. This assumption will be relaxed by using

a planning method that provides an error bound. We also assume that Rmax ≤ c1,

Δ(i) ≤ c2, and ‖θ‖≤ c3 for some fixed constants c1, c2, and c3. Removing this assump-

tion results in these quantities appearing in the sample complexity, but produces no

exponential dependence (thus, the sample complexity remains polynomial). We as-

sume that M = O(the number of samples), meaning that a planing algorithm calls

Ih every iteration at most for a constant number of times. In the following, we use

75

n̄ to represent the average value of {n(1), ..., n(nS)}. Before analyzing the proposed

algorithm, we re-derive the sample complexity of an existing PAC-MDP algorithm

[44, 27] for our problem setting.

Lemma 3.3. (Sample complexity of PAC-MDP) With an appropriate parameter

setting, the PAC-MDP algorithm proposed by Strehl and Littman [44] and Li et al.

[27] has the following sample complexity:

Õ

(
n2

Sn̄2

ε5(1− γ)10

)

.

Proof. The proof follows directly from Theorems 3.1 and 3.3 in the previous work of

Li et al. [27]. The only difference is that we need to take a union bound of different

components Φ(i) with varying domains, codomains and dimensions n(s). �

Theorem 3.2. (PAC-RMDP) Let At be a policy of Algorithm 3.2. Let

z = max(h2 ln
m2nsh

δ
,
L2nSn̄ ln2 m

ε3
ln

nS

δ
).

Then, for all ε > 0, for all δ = (0, 1), and for all h ≥ 0,

1) for all but at most m′ = O
(

zL2nS n̄ ln2 m
ε3(1−γ)2

ln2 nS

δ

)
time steps (with m ≤ m′),

V At(st) ≥ V ∗
L,t,h(st)− ε,

with probability at least 1− δ, and

2) there exists h∗(ε, δ) = O(P(1/ε, 1/δ, 1/(1− γ), |MDP|)) such that

|V ∗(st)− V ∗
L,t,h∗(ε,δ)(st)|≤ ε

76

with probability at least 1− δ.

Proof. Let Ṽ A be the internal value function used in Algorithm 3.2. We prove the

statement by following the structure of the proof of Theorem 3.1. Define K,m, AK , V ,

andH in the same manner as in the proof of Theorem 3.1, and let the vector consisting

of nS estimation error intervals be ER(s, a) = (|(θ(1) − θ̂(1))
T Φ(1)(s, a)|, ..., |(θ(ns) −

θ̂(ns))
T Φ(ns)(s, a)|. By following the proof of Theorem 3.1, with probability at least

1− δ/2 (due to Lemma 3.2),

V A(st) ≥ Ṽ A(st)−
Rmax

1− γ
Pr(Ak)−

ε

3
− L

(

max
s,a
‖Ih(s, a,Xm′)‖+max

s,a
‖ER(s, a)‖

)

≥ V ∗
L,t,h(st)−

c1

1− γ
Pr(Ak)−

ε

3
− L

(

max
s,a
‖Ih(s, a,Xm′)‖+max

s,a
‖ER(s, a)‖

)

.

In the second line, we used the assumption Rmax ≤ c1. In the first line, maxs,a L‖Ih(s

, a,Xt)‖ is the difference between Ṽ A(st) and V ∗
L,t,0(st), and maxs,a L‖ER(s, a)‖ is the

difference between V ∗
L,t,0(st) and V A. The second line follows from the fact that Ṽ A ≥

V ∗
L,t,h(st) because of the correctness of Ih shown in Lemma 3.2 and the assignment of

the most optimistic value within the interval Ih (based on Assumptions 3.1 and 3.2).

We now impose an upper bound on ‖Ih(s, a,Xt)‖ and ‖ER(s, a)‖. Following a proof

given by Li et al. (2011, Theorem 1) with the assumption Δ(i) ≤ c2 and ‖θ‖≤ c3, with

probability at least 1− δ
4nS
,

|(θ(i) − θ̂(i))
T Φ(i)(s, a)|≤ ‖q̄‖ΔE(θ̂) + ‖ū‖

≤
2c3

√
n(i) ln m

m1/4
(24c2 ln

8nS

δ
)1/4 +

(2c3

√
ln m + 5)

√
n(i)

√
m

≤ O

(
(n(i) ln m)1/2(ln(nS/δ))1/4

m1/4

)

,

where ‖q̄‖, ‖ū‖ and ΔE(θ̂) are as defined by Li et al. [27]. Since ΦT
(i)zt(st+1 −

θ̂T
t+1Φ(i)) = θ̂t+1 − θ̂t, there exist θ̂ and θ̂′ such that

∥
∥
∥ΦT

(i)(s, a)zt(Δ
(i) + ς(M)σ(i))

∥
∥
∥ ≤

‖θ̂− θ̂′‖≤ ‖θ̂‖+‖θ̂′‖≤ 2c3, where we use the assumption ‖θ‖≤ c3. Then, following the

77

proofs of Lemmas 11, 12, and 13 given by Auer [4],

Ih(Φ(i)(s, a), Xt)

h
≤ (Δ(i) + ς(M)σ(i))

∑

j:λj≥1

Φ2
j

λj

+ ‖θ̂ − θ̂′‖
√∑

j:λj<1

Φ2
j

≤
20(c2 +

√
2 ln(π2M2nsh/(6δ))σ(i))n ln(m)

m
+ 2c3

√
20n(i)

m

≤ O

(√
n(i)
√

m
ln m

√
ln(m2nsh/(6δ))

)

.

If h ≤ O(m1/2(ln nS/δ)1/4

(ln m)1/2(ln(m2nsh/(6δ)))1/2), with probability at least 1− ns
δ

4ns
− δ/2,

V A(st) ≥ V ∗
L,t,h(st)−

c1 Pr(Ak)

1− γ
−

ε

3
−O

(
Ln

1/2
S n̄1/2(ln m)1/2(ln(nS/δ))1/4

m1/4

)

.

If h > O(m1/2(ln nS/δ)1/4

(ln m)1/2(ln(m2nsh/(6δ)))1/2), with probability at least 1− ns
δ

4ns
− δ/2,

V A(st) ≥ V ∗
L,t,h(st)−

c1 Pr(Ak)

1− γ
−

ε

3
−O

(
Lhn

1/2
S n̄1/2

√
m

ln m
√

ln(m2nsh/(6δ))

)

.

To have ε/3 in the last term, we fix m = O(
L4n2

S n̄2 ln4 m

ε4
ln nS

δ
) for the former case,

and m = O(
L2h2nS n̄ ln2 m ln(m2nsh/(6δ))

ε2
) for the latter case. Then, the rest of the first

part of the statement follows from the proof of Theorem 1. That is, we can show

that by applying the Chernoff bound, the escape event happens no more than the

sample complexity in the statement with probability 1− δ/2 unless the term c1 Pr(Ak)
1−γ

is negligible. Taking union bound on the failure probability, we obtain the sample

complexity in the statement with probability at leat 1− δ.

Finally, we consider the second part of the statement, following the proof in The-

orem 3.1. Let θ̂(i),h,(s,a) be the future model parameter obtained by updating the

current model θ̂(i) with h random future samples (h samples drawn from P (S|s, a)

for each (s, a) ∈ (S, A)). Based on the first part of the proof, |(θ(i) − θ̂(i),h,(s,a))^T

Φ(i)(s, a)|≤ O
(

(n(i) ln(nmin+h))1/2(ln(nS/δ))1/4

(nmin+h)1/4

)
with probability at least 1 − δ. Since

|(θ(i) − θ̂∗(i),h,(s,a))
T Φ(i)(s, a)|≤ |(θ(i) − θ̂(i),h,(s,a))

T Φ(i)(s, a)| (this directly follows the

definition of θ̂∗(i),h,(s,a) and the choice of the distance function d), this implies that

78

h∗(ε, δ) = O(
L4n2

S n̄2 ln2 m

ε4
ln nS

δ
) is sufficient. �

Corollary 3.3. (Anytime error bound) With probability at least 1−δ, if h2 ln m2nsh
δ
≤

L2nS n̄ ln2 m
ε3

ln nS

δ
,

εt,h = O



 5

√
L4n2

Sn̄2 ln2 m

t(1− γ)
ln3 nS

δ



 ,

and otherwise,

εt,h = O

(
h2L2nSn̄ ln2 m

t(1− γ)
ln2 nS

δ

)

.

Proof. The proof follows directly from Theorem 3.2 and the proof of Corollary 3.1. �

As in the discrete case, the anytime T -step average loss can be computed by sum-

ming the anytime errors as 1
T

∑T
t=1(1 − γT+1−t)εt,h,δ. In addition, we can derive the

explicit exploration runtime.

Corollary 3.6. (Explicit exploration runtime) With probability at least 1 − δ, the

explicit exploration runtime of Algorithm 3.2 is

O

(
h2L2nSn̄ ln m

ε2 Pr[Ak]
ln2 nS

δ
ln

m2nsh

δ

)

= O

(
h2L2nSn̄ ln m

ε3(1− γ)
ln2 nS

δ
ln

m2nsh

δ

)

,

where AK is the escape event defined in the proof of Theorem 3.2.

Proof. The proof follows that of Theorem 3.2. Compared to the sample complex-

ity of Algorithm 3.2, z is replaced by h based on the proof of Theorem 3.2. �

79

B.7 Experimental Settings for Continuous Domain

For each problem used in the main part of the thesis, we present more detailed

descriptions of the experimental settings.

Mountain Car

In the mountain car problem, the reward is negative everywhere except at the goal.

To reach the goal, the agent must first travel far away, and must explore the world

to learn this mechanism. To require a greater degree of exploration, we modify the

original problem as follows: The agent obtains a reward equal to -0.9 around the

initial position (position = [-0.6, 0.4]), and -1.0 everywhere else but at the goal. At

the start of each episode, the agent is always at the bottom of the valley (position =

-0.5) with zero velocity. Moreover, a small amount of Gaussian noise with standard

deviation 0.001 is added to the velocity. Our model uses 10 grids of residual basis

functions over the control signal and velocity as features. For the planning phase, we

use a fitted value iteration with a 30× 30 grid of residual basis functions. We set Δ(i)

and the corresponding parameter in the PAC-MDP algorithm to be 0.14, because

the velocity is bounded in [−0.07, 0.07]. Each episode consists of 2000 steps, and we

conduct simulations for 100 episodes.

Simulated HIV treatment

This problem is described by a set of six ordinary differential equations [12]. An

action corresponds to whether the agent administers two treatments (RTIs and PIs)

to patients (thus, there are four actions). Two types of exploration are required: one

to learn the effect of using treatments on viruses, and another to learn the effect

of not using treatments on immune systems. Learning the former is necessary to

reduce the population of viruses, but the latter is required to prevent the overuse

of treatments, which weakens the immune system. We select the initial state to be

unhealthy, following Ernst et al. [12] and Pazis and Parr [33]. As in previous work,

we assume that noise-free data can be obtained every five days. Unlike past studies,

80

we assume that noisy data can be obtained a day after each instance of noise-free

data is collected, with the noise term being ζ ′ ∼ N (0, 0.1). We add another noise

term to represent the model error with ζ ∼ N (0, 0.01) for each dynamic state. For

the model, we use the six states and the multiple of any two of these six states as

features (i.e., the number of features is 6 +
(
6
2

)
). For planning, we use a greedy roll-

out method, as described by Adams et al. (2004, Section 5). We set Δ(i) and the

corresponding parameter in the PAC-MDP algorithm to be the average error among

all the predictions and observations. Each episode consists of 1000 days, and we

conduct simulations for 30 episodes.

81

82

Bibliography

[1] Pieter Abbeel and Andrew Y Ng. Exploration and apprenticeship learning in
reinforcement learning. In Proceedings of the 22nd international conference on
Machine learning (ICML), 2005.

[2] BM Adams, HT Banks, Hee-Dae Kwon, and Hien T Tran. Dynamic multidrug
therapies for HIV: Optimal and STI control approaches. Mathematical Bio-
sciences and Engineering, 1(2):223–241, 2004.

[3] Mauricio Araya-López, Vincent Thomas, and Olivier Buffet. Near-optimal BRL
using optimistic local transitions. In Proceedings of the 29th International Con-
ference on Machine Learning (ICML), 2012.

[4] Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. The
Journal of Machine Learning Research (JMLR), 3:397–422, 2002.

[5] Andrey Bernstein and Nahum Shimkin. Adaptive-resolution reinforcement learn-
ing with polynomial exploration in deterministic domains. Machine learning, 81
(3):359–397, 2010.

[6] Emma Brunskill. Bayes-optimal reinforcement learning for discrete uncertainty
domains. In Proceedings of the 11th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS), 2012.

[7] S. Bubeck, G. Stoltz, and J. Y. Yu. Lipschitz bandits without the Lipschitz
constant. In Algorithmic Learning Theory, pages 144–158. Springer, 2011.

[8] R. G. Carter, J. M. Gablonsky, A. Patrick, C. T. Kelley, and O. J. Eslinger.
Algorithms for noisy problems in gas transmission pipeline optimization. Opti-
mization and engineering, 2(2):139–157, 2001.

[9] R Dennis Cook. Detection of influential observation in linear regression. Tech-
nometrics, pages 15–18, 1977.

[10] N. De Freitas, A. J. Smola, and M. Zoghi. Exponential regret bounds for Gaus-
sian process bandits with deterministic observations. In Proceedings of the 29th
International Conference on Machine Learning (ICML) , 2012.

[11] L. C. W. Dixon. Global optima without convexity. Numerical Optimisation
Centre, Hatfield Polytechnic, 1977.

83

[12] Damien Ernst, Guy-Bart Stan, Jorge Goncalves, and Louis Wehenkel. Clinical
data based optimal STI strategies for HIV: a reinforcement learning approach.
In Proceedings of the 45th IEEE Conference on Decision and Control , 2006.

[13] Claude-Nicolas Fiechter. Efficient reinforcement learning. In Proceedings of
the seventh annual ACM conference on Computational learning theory (COLT) ,
1994.

[14] J. Gardner, M. Kusner, K. Weinberger, and J. Cunningham. Bayesian Opti-
mization with Inequality Constraints. In Proceedings of The 31st International
Conference on Machine Learning (ICML), pages 937–945, 2014.

[15] Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret bounds
for reinforcement learning. The Journal of Machine Learning Research (JMLR),
11:1563–1600, 2010.

[16] D. R. Jones, C. D. Perttunen, and B. E. Stuckman. Lipschitzian optimization
without the Lipschitz constant. Journal of Optimization Theory and Applica-
tions, 79(1):157–181, 1993.

[17] Kirthevasan Kandasamy, Jeff Schneider, and Barnabas Poczos. High dimen-
sional Bayesian optimisation and bandits via additive models. arXiv preprint
arXiv:1503.01673, 2015.

[18] Kenji Kawaguchi. Bounded optimal exploration in MDP. In In Proceedings of
the 30th AAAI Conference on Artificial Intelligence (AAAI) , 2016.

[19] Kenji Kawaguchi and Mauricio Araya. A greedy approximation of Bayesian
reinforcement learning with probably optimistic transition model. In Proceedings
of AAMAS 2013 workshop on adaptive learning agents , pages 53–60, 2013.

[20] Kenji Kawaguchi, Leslie Pack Kaelbling, and Tomás Lozano-Pérez. Bayesian op-
timization with exponential convergence. In In Advances in Neural Information
Processing (NIPS), 2015. To Appear.

[21] Michael Kearns and Satinder Singh. Finite-sample convergence rates for Q-
learning and indirect algorithms. In Proceedings of Advances in neural informa-
tion processing systems (NIPS), 1999.

[22] Michael Kearns and Satinder Singh. Near-optimal reinforcement learning in
polynomial time. Machine Learning, 49(2-3):209–232, 2002.

[23] J Zico Kolter and Andrew Y Ng. Near-Bayesian exploration in polynomial time.
In Proceedings of the 26th Annual International Conference on Machine Learning
(ICML), 2009.

[24] D. E. Kvasov, C. Pizzuti, and Y. D. Sergeyev. Local tuning and partition strate-
gies for diagonal GO methods. Numerische Mathematik, 94(1):93–106, 2003.

84

[25] Lihong Li. A unifying framework for computational reinforcement learning the-
ory. PhD thesis, Rutgers, The State University of New Jersey, 2009.

[26] Lihong Li. Sample complexity bounds of exploration. In Reinforcement Learning,
pages 175–204. Springer, 2012.

[27] Lihong Li, Michael L Littman, Thomas J Walsh, and Alexander L Strehl. Knows
what it knows: a framework for self-aware learning. Machine learning, 82(3):399–
443, 2011.

[28] D. Q. Mayne and E. Polak. Outer approximation algorithm for nondifferentiable
optimization problems. Journal of Optimization Theory and Applications, 42(1):
19–30, 1984.

[29] D. B. McDonald, W. J. Grantham, W. L. Tabor, and M. J. Murphy. Global and
local optimization using radial basis function response surface models. Applied
Mathematical Modelling, 31(10):2095–2110, 2007.

[30] R. H. Mladineo. An algorithm for finding the global maximum of a multimodal,
multivariate function. Mathematical Programming, 34(2):188–200, 1986.

[31] R. Munos. Optimistic optimization of deterministic functions without the knowl-
edge of its smoothness. In Proceedings of Advances in neural information pro-
cessing systems (NIPS), 2011.

[32] K. P. Murphy. Machine learning: a probabilistic perspective. MIT press, page
521, 2012.

[33] Jason Pazis and Ronald Parr. PAC Optimal Exploration in Continuous Space
Markov Decision Processes. In Proceedings of the 27th AAAI conference on
Artificial Intelligence (AAAI), 2013.

[34] Martin L Puterman. Markov decision processes: discrete stochastic dynamic
programming. John Wiley & Sons, 2004.

[35] C. E. Rasmussen and C. Williams. Gaussian Processes for Machine Learning.
MIT Press, 2006.

[36] Stuart J Russell and Devika Subramanian. Provably bounded-optimal agents.
Journal of Artificial Intelligence Research (JAIR), pages 575–609, 1995.

[37] B. O. Shubert. A sequential method seeking the global maximum of a function.
SIAM Journal on Numerical Analysis, 9(3):379–388, 1972.

[38] Herbert A Simon. Models of bounded rationality, volumes 1 and 2. MIT press,
1982.

[39] J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian optimization of
machine learning algorithms. In Proceedings of Advances in Neural Information
Processing Systems (NIPS), pages 2951–2959, 2012.

85

[40] Jonathan Sorg, Satinder Singh, and Richard L Lewis. Variance-based rewards
for approximate Bayesian reinforcement learning. In Proceedings of the 26th
Conference on Uncertainty in Artificial Intelligence (UAI) , 2010.

[41] N. Srinivas, A. Krause, M. Seeger, and S. M. Kakade. Gaussian Process Opti-
mization in the Bandit Setting: No Regret and Experimental Design. In Proceed-
ings of the 27th International Conference on Machine Learning (ICML) , pages
1015–1022, 2010.

[42] Alexander L Strehl. Probably approximately correct (PAC) exploration in rein-
forcement learning. PhD thesis, Rutgers University, 2007.

[43] Alexander L Strehl and Michael L Littman. An analysis of model-based inter-
val estimation for Markov decision processes. Journal of Computer and System
Sciences, 74(8):1309–1331, 2008.

[44] Alexander L Strehl and Michael L Littman. Online linear regression and its
application to model-based reinforcement learning. In Proceedings of Advances
in Neural Information Processing Systems (NIPS), pages 1417–1424, 2008.

[45] Alexander L Strehl, Lihong Li, and Michael L Littman. Incremental model-
based learners with formal learning-time guarantees. In Proceedings of the 22th
Conference on Uncertainty in Artificial Intelligence (UAI) , 2006.

[46] Malcolm Strens. A Bayesian framework for reinforcement learning. In Proceedings
of the 16th International Conference on Machine Learning (ICML) , 2000.

[47] R. G. Strongin. Convergence of an algorithm for finding a global extremum.
Engineering Cybernetics, 11(4):549–555, 1973.

[48] S. Surjanovic and D. Bingham. Virtual library of simulation experiments: Test
functions and datasets. Retrieved November 30, 2014, from http://www.sfu.
ca/~ssurjano, 2014.

[49] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
MIT press Cambridge, 1998.

[50] Thomas J Walsh, Sergiu Goschin, and Michael L Littman. Integrating Sample-
Based Planning and Model-Based Reinforcement Learning. In Proceedings of the
24th AAAI conference on Artificial Intelligence (AAAI) , 2010.

[51] Z. Wang, B. Shakibi, L. Jin, and N. de Freitas. Bayesian Multi-Scale Optimistic
Optimization. In Proceedings of the 17th International Conference on Artificial
Intelligence and Statistics (AISTAT), pages 1005–1014, 2014.

[52] Ziyu Wang, Masrour Zoghi, Frank Hutter, David Matheson, and Nando De Fre-
itas. Bayesian optimization in high dimensions via random embeddings. In
Proceedings of the Twenty-Third international joint conference on Artificial In-
telligence, pages 1778–1784. AAAI Press, 2013.

86

[53] Tsachy Weissman, Erik Ordentlich, Gadiel Seroussi, Sergio Verdu, and Marcelo J
Weinberger. Inequalities for the L1 deviation of the empirical distribution.
Hewlett-Packard Labs, Tech. Rep, 2003.

[54] Shlomo Zilberstein. Metareasoning and bounded rationality. In Proceedings of
the AAAI workshop on Metareasoning: Thinking about Thinking , 2008.

[55] J. W. Zwolak, J. J. Tyson, and L. T. Watson. Globally optimised parameters
for a model of mitotic control in frog egg extracts. IEEE Proceedings-Systems
Biology, 152(2):81–92, 2005.

87

