
ESD Working Paper Series

ESD-WP-2011-04 March 2011

Feature Performance Metrics for Software as a Service Offering:

The Case of HubSpot

Avi Latner
MIT, System Design and Management
Cambridge, MA, USA

Ricardo Valerdi
MIT, Lean Advancement Initiative
Cambridge, MA, US

esd.mit.edu/wps

Feature Performance Metrics for Software as a

Service Offering: The Case of HubSpot

Avi Latner

MIT, System Design and Management

Cambridge, MA, USA

Ricardo Valerdi

MIT, Lean Advancement Initiative

Cambridge, MA, USA

Abstract— this paper provides an industry case study for

measuring the performance of software as a service (SaaS)

product features in order to prioritize development efforts. The

case is based on empirical data from HubSpot and it is
generalized to provide a framework applicable to other
companies with large scale software offerings and distributed

development. Firstly, relative value is measured by the impact
that each feature has on customer acquisition and retention.

Secondly, feature value is compared to feature cost and
specifically development investment to determine feature

profitability. Thirdly, feature sensitivity is measured. Feature

sensitivity is defined as the effect a fixed amount of development
investment has on value in a given time. Fourthly, features are

segmented according to their location relative to the value to cost
trend line into: most valuable features, outperforming,

underperforming and fledglings. Finally, results are analyzed to
determine future action. Maintenance and bug fixes are
prioritized according to feature value. Product enhancements are

prioritized according to sensitivity with special attention to
fledglings. Underperforming features are either put on “life-
support”, terminated or overhauled.

Keywords- Product development; performance metrics; software

as a service; customer value

I. INTRODUCTION

In the past decade, with the increase of internet bandwidth,
decrease in hardware costs, and a paradigm shift in business
models, software delivery has been increasingly done by
software as a service (SaaS) model [1]. The software
application is hosted at the vendor, licensed for a reoccurring
subscription fee and accessed through a web browser. SaaS is
not only a change in the business model but a change in the
product development paradigm [2].

Since software typically resides on vendor’s servers, it is
easier for them to release updates at more frequent intervals.
Coupled with agile development practices, applications are
updated almost continuously without traditional version
control. This also allows the vendor to collect valuable
information about customer usage patterns. The information
available is unprecedented in scope and immediate in
availability. With a continuous deployment model and
immediate customer response the feedback loop between
development and customers has never been faster.

However, in order to fully leverage the fast feedback loop,
companies must use the right performance metrics. Most

software suites are a collection of several features or
applications. It is important to focus development efforts on the
features where the investment will make the most impact on
software usage and company profitability [3, 4]. For startups,
often with limited cash flow and high uncertainty, this focus is
all the more important.

In a SaaS model, much like other subscription based
models, vendors use relationship marketing where customers
are viewed as having a long term relationship instead of a
series of discrete transactions [5]. Hence, the marketers’
objective is to acquire and keep customers [6].

Sharing a common evaluation metric, focusing
development efforts and communicating a shared vision is
important in any software project. The emphasis is even greater
in distributed development where multiple locations exacerbate
communication problems [7]. Former research conducted [8,
9] proposed integrating requirement engineering techniques
into a single framework fitted for distributed development.
This research proposes an enhancement to this framework that
enables requirement prioritization.

II. METHODOLOGY

This research was done using data collected at
HubSpot.com, an online inbound marketing service. The
service includes several features that help websites get found
online by more qualified visitors, show customers how
to convert more visitors into leads, give customers tools
to close those leads efficiently, and provide analytics to help
make smart marketing investments. HubSpot offers several
products that differ in level of support. All products offer the
same 17 features. HubSpot is an interesting case study as it has
a diversified service with many features, a rapidly expanding
customer base, open management and it implements the latest
development methodologies such as lean startup [10]. HubSpot
development and other business functions are located at one
site. This made HubSpot an ideal case to research since people
could be interviewed in person. However, the framework is
extendable to other distributed development activities.

Usage information was collected from HubSpot’s 3,000
customers over a period of four months. For each feature the
percentage of users that used the feature was calculated. If a
user accessed a feature at least once in the week prior to the
measure than it counted as an active user. In order to eliminate
seasonal volatility the usage was based on the average of four
measures taken at the end of four consecutive months.

Development cost was collected from evaluating sprint logs
(short development activities) from the earliest point available.
In total 27 sprints were taken into account. Each sprint stands
for a calendar month. The logs had indication of the storylines
that were done in a given sprint and their story points which are
the agile development measure for effort [11] [11]. The
research involved the analysis of over a thousand storylines
and assigned each storyline to a feature. Some storylines were
assigned to more than one feature and others representing
back-end work or cross functional work were not assigned.
Story points’ scale changed over time and in between scrum
teams. Also team sizes changed over time. In order to calculate
the total amount of effort per feature for the entire period the
sprint efforts were adjusted according to relative team size and
the number of story points per team per sprint.

For feature sensitivity the study looked at two
measurements six months apart, from sprint 21 and 27. Value
was calculated based on usage and early usage data without
expert opinion. Usage was also calculated based on one month
data and without an average of several months mainly because
some features go back only as far as sprint 21. This also makes
the value measurement more sensitive to changes over time.

III. FEATURE PERFORMANCE FRAMEWORK

This paper proposes a framework by which to prioritize
product development efforts. By following the proposed steps a
company can gain awareness of relative importance of product
features and examine how well their past decision making is
aligned with feature importance. A step beyond that would be
for a company to make future prioritization decisions in light of
these findings.

Two hypotheses are examined as a base for the framework.
The first is connection between customer feature usages is a
predictor of customer retention. This premise is essential for
capturing feature value. The second hypothesis explores the
correlation between feature investment and feature value.

Feature performance changes over time for external reasons
such as emergent customer preferences and internal strategic
priorities. If this methodology is followed a company’s focus
may shift causing a change in performance assessment.
Features that where once under invested may receive more
investment and, as a result, may increase in value. Another
feature may mature and exert its full potential suggesting a
shift in investment. Therefore it is suggested that a company
repeat this framework and re-evaluate the situation every time
there is a significant change in the business environment (new
competitor entering the market, new uses by customers, new
capability available). Feature value, which mainly captures
external shifts in the way the product is used, should be
calculated as frequently as once a month. If the process is fully
automated this may even be done once a week. Measures that
are also dependent on internal shifts in investment such as
feature profitability and sensitivity should be calculated less
frequently, perhaps once a quarter. Since investment is based
on cumulative data a few months have to pass before
significant change may be observed.

A. Usage As a Predictor of Customer Retention

If customers that frequently use a given product are less
likely to discontinue service we can use usage data of a given
feature as a proxy for the impact that the feature has on
customer retention. This connection is tested by the following
hypothesis:

• H0: No difference exists between retention of
customers who use a feature and those who do not

• H1: Customers who use a feature are more likely to
retain service subscription

B. Correlation Between Development Effort and Value

It is assumed a company, even without having implemented
this framework, would have some understanding of feature
value and would therefore strive to align development effort to
feature value. If this assertion is true we should see a
correlation between development effort and feature value. This
assumption is formulized as the following hypothesis:

• H0: No correlation between development effort and
feature value

• H1: A positive correlation exists between development
effort and feature value

C. Measuring Feature Value

SaaS product revenue is a function of the customer base
and the product price. Customer base is a function of the
number of new subscribers and the attrition rate. Therefore a
measure of a feature value should actually be a measure of the
impact that a feature has on these key parameters: customer
acquisition and attrition rate.

Studies suggest that retaining existing customers is more
important than acquiring new ones [12, 13]. One reason for that
is that service discontinuers create a negative word of mouth
that is more powerful than the positive word of mouth of
continuing customers. Another reason is that new customers
come at high adoption cost of sales and marketing [14]. Hence
our research gives more value to retention rate impact than to
acquisition impact using a weighted average of 70% to 30%
respectfully. The exact weight should be a managerial decision
and is a way to focus a company’s priorities. A company more
concerned with high attrition should choose a weighting such
as this one with high preference towards retention. Whereas a
company concerned with slow adoption should choose a more
evenly weighted measure closer to 50% to each parameter.

This choice of parameter is validated through the
hypothesis articulated in section III A. Our other measure of
feature retention value is expert opinion survey done amongst
business development and support staff within the company.
Surveyed employees were asked to rate the top five most
valuable features in the product to the customers. With no
preference to either measure they were given equal importance.

Feature effect on customer acquisition is computed using
two equally weighted measures. The first is the customer usage
data in the first 30 days after subscription to the service started,
since the usage in this early period reflects the features that
made the customer subscribe to the service. The second is the

expert opinion of the sales representatives. The salespeople
were asked to rank the five most important features in closing a
sale. The equations below summarize the measure calculations.

 ������ = 0.7 ∙ ������� ������ + 0.3 ∙ ������� ������ (1)

 ������� ������ = 0.5 ∙ ������ + 0.5 ∙ ������ ����� (2)

 ������� ������ = 0.5 ∙ ����� ������ + 0.5 ∙ ���� ����� (3)

Where i denotes a feature out of n features in a given SaaS

offering.

Analyzing usage data in this way is valid in cases where all
the features are client-facing, meaning that customers utilize
the features by actively accessing them. When a SaaS product
contains back office features, such as a product for network
maintenance that has an automatic remotely triggered fix
feature, a different measure must be used. Another example is
user-automated reports that run without user interference. For
example, Salesforce.com found a strong connection between
user adoption of automated reports and retention. In their case a
feature’s value formula should also measure the amount of user
automation. If value is calculated in weekly or monthly basis it
is advised to repeat the value measures without surveying
expert opinion. Expert opinion could be used to determine
value of individual features but it should not be the primary
basis for this analysis.

D. Measuring Feature Profitability

Capturing cost is in principle straight forward. Many of the
costs are feature specific whereas the value of individual
feature is more difficult to quantify since the customer pays for
the service as a whole. The lion part of the cost of a feature is
development costs. Most of the development effort is spent on
building, enhancing or debugging a given feature. Other
reoccurring monthly costs are also feature-specific. These costs
of goods sold could be servers and storage. Cost is the
accumulation of investment on a feature over the product
history.

One way to have value and cost in comparable units is to
allocate all the revenue according to value and to do the same
for costs. With costs that are not feature specific a pro-ratio
allocation of costs could be used. If that is the case than
difference between total feature value and total cost value
should be the gross margin. However doing that would be a
time consuming effort. Since this paper aims at giving a
practical measure it is important that the measure be as simple
as possible without compromising accuracy. Hence, it is
advised to keep value and cost at relative terms by dividing
100% of value and cost amongst the features.

����������� = ������ − ��������� ������ (4)

 ��������� ������ = ���� ∙ (1 − !���� "�����) (5)

Where i denotes a feature out of n features in a given SaaS

offering.

IV. MEASURING FEATURE SENSITIVITY

Feature sensitivity is defined as the effect a fixed amount of
development investment has on value in a given time. It is a
measure of how effective recent development investments have
been in improving features. Sensitivity is a dynamic measure
that captures change between two time periods. One should use
two measures of value and cost that are significantly apart,
perhaps four or six months. Since feature value and cost
described in sections II A and B are measured in relative terms
the average sensitivity would be zero and many of the features
will have negative sensitivity. It is our experience that overall
zero sensitivity can be counter-intuitive to some business
managers. To prevent that, the value in a given time can be
multiplied by the growth in customer base. This way than the
average sensitivity score would be equal to the customer base
growth rate. The overall sensitivity score will than reflect the
product performance as a whole. The equation set below
summarizes the sensitivity measure.

���������� =
($)%

($)%&'
∙

(()*+,-)%.(()*+,-)%&'

(/012-)%.(/012-)%&'
 (6)

V. RESULTS

The hypothesis testing connection between customer
usages to retention was applied to five features separately and
on the product as a whole. The total number of customers
sampled in each test was 2,843. In all cases, but one, the null
hypothesis was rejected at a 90% confidence level. For the
product as a total the null hypothesis was rejected at a 99%
confidence level. Meaning, users who are not using a feature
are much more likely to discontinue service than active users.
The only feature were the null hypothesis could not be rejected
at a significant level is list manager. That is due to a very low
population of customers that use list manager. Although
features where tested separately they are not necessarily
independent variables. In fact that data implies a correlation
between feature usages.

TABLE I. USAGE CONNECTION TO RETENTION

Feature Attrition

Rate Active

Users

Attrition Rate

Non-Active

Users

%

Usage

P Value

Blog 0.47x 2.89x 30.53% ~0

Content

Management 1.3x 2.51x 39.71% 0.0376

Leads 2.03x 3.53x 44.50% ~0

Landing Page 0.76x 2.9x 23.41% ~0

Lead
Nurturing 0.77x 2.22x 10.15% 0.054

List Manager 0.97x 2.58x 2.29% 0.356

Product x 2.69x 82.35% 0.0003

Table I provides the results of the statistical tests of the
hypotheses. To protect sensitive business information retention
is stated in relative term to ‘x’ the attrition rate for active users
of the product as a whole.

Value was computed using the formulas presented in
section III C. Around 60 support and sale personal were polled
to compute the scores. The components of the value score and
the derived value are presented in table II. The table also shows
value and development effort for each feature. The value and

development effort scores in table II are used to test the second
hypothesis of correlation between development effort and
value. The relation between value and cost is
value=0.64*development effort + 0.021; R

2
=0.44. The null

hypothesis is rejected at a 90% confidence level showing that
there is a positive relationship between value and development
effort.

TABLE II. VALUE AND COST SCORE FOR 17 FEATURES

Feature

Usage

Score

Support

Poll

Score

Early

Usage

Score

Sale

Poll

Score

Value

Score

Cost

Score

Leads

10.82

21.09

6.81

15.36

14.49

17.08

Sources

9.06

17.68

12.05

21.82

14.44

8.72

Content

Management

9.96

9.41

17.14

2.54

9.73

8.63

Landing Page

5.91

14.78

5.58

9.25

9.47

2.22

Keyword

Grader

6.80

9.19

9.67

14.87

9.28

7.96

Blog

8.17

5.37

9.89

8.91

7.56

4.21

Social Media

6.15

2.21

11.09

3.63

5.14

8.07

Competitors

6.72

2.50

1.14

9.41

4.81

10.03

Page Grader

4.52

1.98

7.23

3.66

3.91

6.89

Lead

Nurturing

2.93

4.92

3.18

2.61

3.62

9.75

Blog Grader

6.45

0.92

4.21

0.59

3.30

3.66

Prospects

4.56

2.94

2.22

0.93

3.10

1.86

Link Grader

5.84

0.96

2.26

1.11

2.88

1.96

Visits by Page

5.71

0.39

3.29

1.01

2.78

1.36

Reach

4.36

0.40

3.37

0.40

2.23

1.60

Email

0.96

3.44

0.42

2.48

1.98

3.74

List Manager

1.06

1.80

0.45

1.41

1.28

2.26

Total

100 100 100 100 100

100

Finally we compute feature profitability and feature
sensitivity in table III. As you can see the total profitability is
60% and is equal to the company’s gross margin at the time.
The sum of all sensitivity scores is 0.24 which is the growth of
customer base between the two sensitivity measurements.

TABLE III. FEATURE PROFITABILITY AND SENSITIVITY

Feature Profitably Sensitivity

Sources 11% 0.29

Landing Page 9% 0.80

Leads 8% 0.25

Content
Management

6% 0.21

Keyword Grader 6% 0.03

Blog 6% 1.11

Prospects 2% (0.06)

Visits by Page 2% 0.28

Link Grader 2% 0.48

Social Media 2% (0.05)

Blog Grader 2% 0.21

Reach 2% 0.18

Page Grader 1% (0.06)

Competitors 1% 0.09

Email 0% 0.14

List Manager 0% 0.24

Lead Nurturing 0% (0.13)

Total 60% 0.24

VI. CONCLUSIONS

Based on the results we segment the features. This is most
easily done by looking at a scatter plot, as seen in figure I, of
cost on the horizontal axis and value on the vertical axis. The
scatter plot should also have a line representing the gross
margin and the linear regression line.

The most valuable features are a segment of features that
are high in value and investment. These features are recognized
as important by the company. In our case these are leads and
sources. This group should be the highest in priority for bug
fixes and regular up-keep. As long as the sensitivity is positive
they should also be considered for enhancements.

Outperformers are a segment of features that are doing very
well relative to the investment in them. In a scatter plot
described above they will they appear closest to the top left
corner. In this case they are blog, content management and
landing page. By contrast underperforming is a segment
containing features that in retrospect do not justify their
investment. In this research they are lead nurturing, social
media, competitors and page grader. Out of this group the
features with zero or negative profitability need re-
examination. If value covers the cost of goods sold and there is
little maintenance development anticipated the feature could be
kept on ‘life support’; that is kept alive while avoiding
investment as much as possible. Otherwise the feature should
either be terminated or overhauled.

In the fourth segment, fledglings are features that have had
little investment and provide little value. They include link
grader, landing page, blog grader, visits per page, prospects and
reach. It is interesting to note the existence of a long tail effect;
most of the value derives from a few of the features and the
fledgling group is the largest one. However this group also
holds the most potential as it may include promising features
that are yet to mature. For example, link grader and visits by

Figure 1. Scatter Plot of Value and Development

page have an above average sensitivity and therefore they are

ideal candidates for future investment.

The framework provided in this paper is applicaple to other
industry cases. It could benefit a software product if these
conditions apply: (1) the prodcut is provided as SaaS, (2) the
product has a defined set of features and (3) have a large
enough number of features to justify a quantitative
measurement system.

ACKNOWLEDGMENT

The authors gratefully acknowledge contributions made by
collaborators at HubSpot: Yoav Shapira, Bradford Coffee, Dan
Dun and Joss Poulton.

REFERENCES

[1] A. Dubey and D.Wagle, “Delivering Software as a Service”, The
McKinsey Quarterly, May, 2007.

[2] C. Vidyanand, “Software as a service: implications for investment in
software development”, Proceedings of the 40th Hawaii International

Conference on System Sciences (HICSS), Waikoloa, Hawaii, January,
2007.

[3] D. Hubbard, How to measure anything: finding the value of intangibles

in business, Hoboken New-Jersey: John Wiley and Sons, Inc., 1962, pp.
119-136.

[4] J. McGarry, D. Card, B. Layman, E. Clarck, J. Dean et al., Practical

software management: objective information for decision makers,
Indianapolis Indiana, Addison-Wesley, 2001, pp. 13-26.

[5] D. Berger and N. Nasr, “Customer lifetime value: marketing models and

applications,” Journal of Interactive Marketing, vol. 12, pp. 17-30,
1998.

[6] P. Kotler and G. Armstrong, Principles of marketing, 7th ed.,

Englewood Cliffs New-Jersey: Prenlice-Hall, 1996.

[7] A. Taweel, B. Delaney, T. Arvanitis and L. Zhao, “Communication,
knowledge and co-ordination management in globally distributed
software development: informed by a scientific software engineering
case study”, IEEE ICSGE, pp. 370-375, July 2009.

[8] B. Berenbach and M. Gall, “Toward a unified model for requirements
engineering”, IEEE ICSGE, pp. 237-238, October 2006.

[9] B. Berenbach and T. Wolf, “A unified requirements model; Integrating

features, use cases, requirements, requirements analysis and hazard
analysis”, IEEE ICSGE, pp. 197-203, August 2007.

[10] E. Ries, Lessons learned: what is lean about the lean startup? available
at: < http://www.startuplessonslearned.com/2009/12/what-is-lean-about-
lean-startup.html>, accessed on: Feb 16, 2011.

[11] M. Cohn, User stories applied for Agile software development, Boston

MA. Addison Wesley, 2004, pp. 87-96.

[12] L. Oliver, Satisfaction: a behavioral perspective on the consumer, New
York. McGraw-Hill, 1997.

[13] M. Mahajan, E. Muller and R. Kerin, “Introduction strategies for new

products with positive and negative word-of-mouth”, Management
Science, vol.30, December 1984.

[14] P. Madhavan and A. Bhattacherjee, “Understanding post-adoption
behavior in the context of online services”, Information System

Research, vol. 9, no. 4, December 1998.

