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Abstract— this paper provides an industry case study for 

measuring the performance of software as a service (SaaS) 

product features in order to prioritize development efforts.  The 

case is based on empirical data from HubSpot and it is 
generalized to provide a framework applicable to other 
companies with large scale software offerings and distributed 

development. Firstly, relative value is measured by the impact 
that each feature has on customer acquisition and retention. 

Secondly, feature value is compared to feature cost and 
specifically development investment to determine feature 

profitability. Thirdly, feature sensitivity is measured. Feature 

sensitivity is defined as the effect a fixed amount of development 
investment has on value in a given time.  Fourthly, features are 

segmented according to their location relative to the value to cost 
trend line into: most valuable features, outperforming, 

underperforming and fledglings. Finally, results are analyzed to 
determine future action.  Maintenance and bug fixes are 
prioritized according to feature value. Product enhancements are 

prioritized according to sensitivity with special attention to 
fledglings. Underperforming features are either put on “life-
support”, terminated or overhauled. 

Keywords- Product development; performance metrics; software 

as a service; customer value 

I.  INTRODUCTION  

In the past decade, with the increase of internet bandwidth, 
decrease in hardware costs, and a paradigm shift in business 
models, software delivery has been increasingly done by 
software as a service (SaaS) model [1]. The software 
application is hosted at the vendor, licensed for a reoccurring 
subscription fee and accessed through a web browser. SaaS is 
not only a change in the business model but a change in the 
product development paradigm [2]. 

Since software typically resides on vendor’s servers, it is 
easier for them to release updates at more frequent intervals. 
Coupled with agile development practices, applications are 
updated almost continuously without traditional version 
control. This also allows the vendor to collect valuable 
information about customer usage patterns. The information 
available is unprecedented in scope and immediate in 
availability. With a continuous deployment model and 
immediate customer response the feedback loop between 
development and customers has never been faster.  

However, in order to fully leverage the fast feedback loop, 
companies must use the right performance metrics. Most 

software suites are a collection of several features or 
applications. It is important to focus development efforts on the 
features where the investment will make the most impact on 
software usage and company profitability [3, 4]. For startups, 
often with limited cash flow and high uncertainty, this focus is 
all the more important. 

In a SaaS model, much like other subscription based 
models, vendors use relationship marketing where customers 
are viewed as having a long term relationship instead of a 
series of discrete transactions [5]. Hence, the marketers’ 
objective is to acquire and keep customers [6].   

Sharing a common evaluation metric, focusing 
development efforts and communicating a shared vision is 
important in any software project. The emphasis is even greater 
in distributed development where multiple locations exacerbate 
communication problems  [7].  Former research conducted [8, 
9] proposed integrating requirement engineering techniques 
into a single framework fitted for distributed development.  
This research proposes an enhancement to this framework that 
enables requirement prioritization. 

II. METHODOLOGY 

This research was done using data collected at 
HubSpot.com, an online inbound marketing service. The 
service includes several features that help websites get found 
online by more qualified visitors, show customers how 
to convert more visitors into leads, give customers tools 
to close those leads efficiently, and provide analytics to help 
make smart marketing investments. HubSpot offers several 
products that differ in level of support. All products offer the 
same 17 features. HubSpot is an interesting case study as it has 
a diversified service with many features, a rapidly expanding 
customer base, open management and it implements the latest 
development methodologies such as lean startup [10]. HubSpot 
development and other business functions are located at one 
site. This made HubSpot an ideal case to research since people 
could be interviewed in person. However, the framework is 
extendable to other distributed development activities.  

Usage information was collected from HubSpot’s 3,000 
customers over a period of four months. For each feature the 
percentage of users that used the feature was calculated. If a 
user accessed a feature at least once in the week prior to the 
measure than it counted as an active user. In order to eliminate 
seasonal volatility the usage was based on the average of four 
measures taken at the end of four consecutive months. 



Development cost was collected from evaluating sprint logs 
(short development activities) from the earliest point available. 
In total 27 sprints were taken into account. Each sprint stands 
for a calendar month. The logs had indication of the storylines 
that were done in a given sprint and their story points which are 
the agile development measure for effort [11] [11]. The 
research involved the analysis of over a thousand storylines 
and assigned each storyline to a feature. Some storylines were 
assigned to more than one feature and others representing 
back-end work or cross functional work were not assigned. 
Story points’ scale changed over time and in between scrum 
teams. Also team sizes changed over time. In order to calculate 
the total amount of effort per feature for the entire period the 
sprint efforts were adjusted according to relative team size and 
the number of story points per team per sprint.  

For feature sensitivity the study looked at two 
measurements six months apart, from sprint 21 and 27. Value 
was calculated based on usage and early usage data without 
expert opinion. Usage was also calculated based on one month 
data and without an average of several months mainly because 
some features go back only as far as sprint 21. This also makes 
the value measurement more sensitive to changes over time.  

III. FEATURE PERFORMANCE FRAMEWORK 

This paper proposes a framework by which to prioritize 
product development efforts. By following the proposed steps a 
company can gain awareness of relative importance of product 
features and examine how well their past decision making is 
aligned with feature importance. A step beyond that would be 
for a company to make future prioritization decisions in light of 
these findings.  

Two hypotheses are examined as a base for the framework. 
The first is connection between customer feature usages is a 
predictor of customer retention. This premise is essential for 
capturing feature value. The second hypothesis explores the 
correlation between feature investment and feature value.   

Feature performance changes over time for external reasons 
such as emergent customer preferences and internal strategic 
priorities. If this methodology is followed a company’s focus 
may shift causing a change in performance assessment. 
Features that where once under invested may receive more 
investment and, as a result, may increase in value. Another 
feature may mature and exert its full potential suggesting a 
shift in investment. Therefore it is suggested that a company 
repeat this framework and re-evaluate the situation every time 
there is a significant change in the business environment (new 
competitor entering the market, new uses by customers, new 
capability available). Feature value, which mainly captures 
external shifts in the way the product is used, should be 
calculated as frequently as once a month. If the process is fully 
automated this may even be done once a week. Measures that 
are also dependent on internal shifts in investment such as 
feature profitability and sensitivity should be calculated less 
frequently, perhaps once a quarter. Since investment is based 
on cumulative data a few months have to pass before 
significant change may be observed.    

A. Usage As a Predictor of Customer Retention 

If customers that frequently use a given product are less 
likely to discontinue service we can use usage data of a given 
feature as a proxy for the impact that the feature has on 
customer retention. This connection is tested by the following 
hypothesis: 

• H0: No difference exists between retention of 
customers who use a feature and those who do not 

• H1: Customers who use a feature are more likely to 
retain service subscription 

B. Correlation Between Development Effort and Value 

It is assumed a company, even without having implemented 
this framework, would have some understanding of feature 
value and would therefore strive to align development effort to 
feature value. If this assertion is true we should see a 
correlation between development effort and feature value. This 
assumption is formulized as the following hypothesis:   

• H0: No correlation between development effort and 
feature value  

• H1: A positive correlation exists between development 
effort and feature value 

C. Measuring Feature Value 

SaaS product revenue is a function of the customer base 
and the product price. Customer base is a function of the 
number of new subscribers and the attrition rate. Therefore a 
measure of a feature value should actually be a measure of the 
impact that a feature has on these key parameters: customer 
acquisition and attrition rate. 

Studies suggest that retaining existing customers is more 
important than acquiring new ones [12, 13]. One reason for that 
is that service discontinuers create a negative word of mouth 
that is more powerful than the positive word of mouth of 
continuing customers. Another reason is that new customers 
come at high adoption cost of sales and marketing [14]. Hence 
our research gives more value to retention rate impact than to 
acquisition impact using a weighted average of 70% to 30% 
respectfully. The exact weight should be a managerial decision 
and is a way to focus a company’s priorities. A company more 
concerned with high attrition should choose a weighting such 
as this one with high preference towards retention. Whereas a 
company concerned with slow adoption should choose a more 
evenly weighted measure closer to 50% to each parameter. 

This choice of parameter is validated through the 
hypothesis articulated in section III A. Our other measure of 
feature retention value is expert opinion survey done amongst 
business development and support staff within the company. 
Surveyed employees were asked to rate the top five most 
valuable features in the product to the customers. With no 
preference to either measure they were given equal importance.   

Feature effect on customer acquisition is computed using 
two equally weighted measures. The first is the customer usage 
data in the first 30 days after subscription to the service started, 
since the usage in this early period reflects the features that 
made the customer subscribe to the service. The second is the 



expert opinion of the sales representatives. The salespeople 
were asked to rank the five most important features in closing a 
sale. The equations below summarize the measure calculations. 

 ������ = 0.7 ∙ ������� ������ +  0.3 ∙ ������� ������  (1)  

  ������� ������ = 0.5 ∙ ������ + 0.5 ∙ ������ �����  (2) 

  ������� ������ = 0.5 ∙ ����� ������ + 0.5 ∙ ���� �����  (3) 

Where i denotes a feature out of n features in a given SaaS 

offering.  

Analyzing usage data in this way is valid in cases where all 
the features are client-facing, meaning that customers utilize 
the features by actively accessing them. When a SaaS product 
contains back office features, such as a product for network 
maintenance that has an automatic remotely triggered fix 
feature, a different measure must be used. Another example is 
user-automated reports that run without user interference. For 
example, Salesforce.com found a strong connection between 
user adoption of automated reports and retention. In their case a 
feature’s value formula should also measure the amount of user 
automation. If value is calculated in weekly or monthly basis it 
is advised to repeat the value measures without surveying 
expert opinion. Expert opinion could be used to determine 
value of individual features but it should not be the primary 
basis for this analysis.  

D. Measuring Feature Profitability 

Capturing cost is in principle straight forward. Many of the 
costs are feature specific whereas the value of individual 
feature is more difficult to quantify since the customer pays for 
the service as a whole. The lion part of the cost of a feature is 
development costs. Most of the development effort is spent on 
building, enhancing or debugging a given feature. Other 
reoccurring monthly costs are also feature-specific. These costs 
of goods sold could be servers and storage. Cost is the 
accumulation of investment on a feature over the product 
history. 

One way to have value and cost in comparable units is to 
allocate all the revenue according to value and to do the same 
for costs. With costs that are not feature specific a pro-ratio 
allocation of costs could be used. If that is the case than 
difference between total feature value and total cost value 
should be the gross margin. However doing that would be a 
time consuming effort. Since this paper aims at giving a 
practical measure it is important that the measure be as simple 
as possible without compromising accuracy. Hence, it is 
advised to keep value and cost at relative terms by dividing 
100% of value and cost amongst the features. 

  
����������� =  ������ − ��������� ������  (4) 

 ��������� ������ = ���� ∙ (1 − !���� "�����)  (5) 

 

Where i denotes a feature out of n features in a given SaaS 

offering. 

IV. MEASURING FEATURE SENSITIVITY 

Feature sensitivity is defined as the effect a fixed amount of 
development investment has on value in a given time.  It is a 
measure of how effective recent development investments have 
been in improving features. Sensitivity is a dynamic measure 
that captures change between two time periods. One should use 
two measures of value and cost that are significantly apart, 
perhaps four or six months. Since feature value and cost 
described in sections II A and B are measured in relative terms 
the average sensitivity would be zero and many of the features 
will have negative sensitivity.  It is our experience that overall 
zero sensitivity can be counter-intuitive to some business 
managers. To prevent that, the value in a given time can be 
multiplied by the growth in customer base. This way than the 
average sensitivity score would be equal to the customer base 
growth rate. The overall sensitivity score will than reflect the 
product performance as a whole. The equation set below 
summarizes the sensitivity measure. 
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∙

(()*+,-)%.(()*+,-)%&' 
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     (6) 

V. RESULTS 

The hypothesis testing connection between customer 
usages to retention was applied to five features separately and 
on the product as a whole. The total number of customers 
sampled in each test was 2,843. In all cases, but one, the null 
hypothesis was rejected at a 90% confidence level. For the 
product as a total the null hypothesis was rejected at a 99% 
confidence level. Meaning, users who are not using a feature 
are much more likely to discontinue service than active users. 
The only feature were the null hypothesis could not be rejected 
at a significant level is list manager. That is due to a very low 
population of customers that use list manager. Although 
features where tested separately they are not necessarily 
independent variables. In fact that data implies a correlation 
between feature usages.   

TABLE I.  USAGE CONNECTION TO RETENTION 

Feature Attrition 

Rate Active 

Users 

Attrition Rate 

Non-Active 

Users 

% 

Usage 

P Value 

Blog 0.47x 2.89x 30.53% ~0 

Content 

Management 1.3x 2.51x 39.71% 0.0376 

Leads  2.03x 3.53x 44.50% ~0 

Landing Page 0.76x 2.9x 23.41% ~0 

Lead 
Nurturing  0.77x 2.22x 10.15% 0.054 

List Manager 0.97x 2.58x 2.29% 0.356 

Product x 2.69x 82.35% 0.0003 

Table I provides the results of the statistical tests of the 
hypotheses. To protect sensitive business information retention 
is stated in relative term to ‘x’ the attrition rate for active users 
of the product as a whole. 

Value was computed using the formulas presented in 
section III C. Around 60 support and sale personal were polled 
to compute the scores. The components of the value score and 
the derived value are presented in table II. The table also shows 
value and development effort for each feature. The value and 



development effort scores in table II are used to test the second 
hypothesis of correlation between development effort and 
value. The relation between value and cost is 
value=0.64*development effort + 0.021; R

2
=0.44. The null 

hypothesis is rejected at a 90% confidence level showing that 
there is a positive relationship between value and development 
effort. 

TABLE II.  VALUE AND COST SCORE FOR 17 FEATURES 

Feature 

Usage 

Score 

Support 

Poll 

Score 

Early 

Usage 

Score 

Sale 

Poll 

Score 

Value 

Score 

Cost 

Score 

Leads 

        

10.82  

        

21.09  

          

6.81  

        

15.36  

        

14.49  

 

17.08 

Sources 

          

9.06  

        

17.68  

        

12.05  

        

21.82  

        

14.44  

 

8.72 

Content 

Management 

          

9.96  

          

9.41  

        

17.14  

          

2.54  

          

9.73  

 

8.63 

Landing Page 
          
5.91  

        
14.78  

          
5.58  

          
9.25  

          
9.47  

 
2.22 

Keyword 

Grader 

          

6.80  

          

9.19  

          

9.67  

        

14.87  

          

9.28  

 

7.96 

Blog 

          

8.17  

          

5.37  

          

9.89  

          

8.91  

         

7.56  

 

4.21 

Social Media 

          

6.15  

          

2.21  

        

11.09  

          

3.63  

          

5.14  

 

8.07 

Competitors 

          

6.72  

          

2.50  

          

1.14  

          

9.41  

          

4.81  

 

10.03 

Page Grader 

          

4.52  

          

1.98  

          

7.23  

          

3.66  

          

3.91  

 

6.89 

Lead 

Nurturing 

          

2.93  

          

4.92  

          

3.18  

          

2.61  

          

3.62  

 

9.75 

Blog Grader 
          
6.45  

          
0.92  

          
4.21  

          
0.59  

          
3.30  

 
3.66 

Prospects 

          

4.56  

          

2.94  

          

2.22  

          

0.93  

          

3.10  

 

1.86 

Link Grader 

          

5.84  

          

0.96  

          

2.26  

          

1.11  

          

2.88  

 

1.96 

Visits by Page 

          

5.71  

          

0.39  

          

3.29  

          

1.01  

          

2.78  

 

1.36 

Reach 
          
4.36  

          
0.40  

          
3.37  

          
0.40  

          
2.23  

 
1.60 

Email 

          

0.96  

          

3.44  

          

0.42  

          

2.48  

          

1.98  

 

3.74 

List Manager 

          

1.06  

          

1.80  

          

0.45  

          

1.41  

          

1.28  

 

2.26 

Total 

 

100 100 100 100 100 

 
100 

Finally we compute feature profitability and feature 
sensitivity in table III. As you can see the total profitability is 
60% and is equal to the company’s gross margin at the time. 
The sum of all sensitivity scores is 0.24 which is the growth of 
customer base between the two sensitivity measurements. 

TABLE III.   FEATURE PROFITABILITY AND SENSITIVITY 

Feature Profitably Sensitivity 

Sources 11% 0.29 

Landing Page 9% 0.80 

Leads 8% 0.25 

Content 
Management 

6% 0.21 

Keyword Grader 6% 0.03 

Blog 6% 1.11 

Prospects 2% (0.06) 

Visits by Page 2% 0.28 

Link Grader 2% 0.48 

Social Media 2% (0.05) 

Blog Grader 2% 0.21 

Reach 2% 0.18 

Page Grader 1% (0.06) 

Competitors 1% 0.09 

Email 0% 0.14 

List Manager 0% 0.24 

Lead Nurturing 0% (0.13) 

Total 60% 0.24 

VI. CONCLUSIONS 

Based on the results we segment the features. This is most 
easily done by looking at a scatter plot, as seen in figure I, of 
cost on the horizontal axis and value on the vertical axis. The 
scatter plot should also have a line representing the gross 
margin and the linear regression line.  

The most valuable features are a segment of features that 
are high in value and investment. These features are recognized 
as important by the company. In our case these are leads and 
sources. This group should be the highest in priority for bug 
fixes and regular up-keep. As long as the sensitivity is positive 
they should also be considered for enhancements.   

Outperformers are a segment of features that are doing very 
well relative to the investment in them. In a scatter plot 
described above they will they appear closest to the top left 
corner. In this case they are blog, content management and 
landing page.  By contrast underperforming is a segment 
containing features that in retrospect do not justify their 
investment. In this research they are lead nurturing, social 
media, competitors and page grader. Out of this group the 
features with zero or negative profitability need re-
examination. If value covers the cost of goods sold and there is 
little maintenance development anticipated the feature could be 
kept on ‘life support’; that is kept alive while avoiding 
investment as much as possible. Otherwise the feature should 
either be terminated or overhauled.  

In the fourth segment, fledglings are features that have had 
little investment and provide little value. They include link 
grader, landing page, blog grader, visits per page, prospects and 
reach. It is interesting to note the existence of a long tail effect; 
most of the value derives from a few of the features and the 
fledgling group is the largest one. However this group also 
holds the most potential as it may include promising features 
that are yet to mature. For example, link grader and visits by  

 



 

Figure 1.  Scatter Plot of Value and Development

page have an above average sensitivity and therefore they are 

ideal candidates for future investment.  

The framework provided in this paper is applicaple to other 
industry cases. It could benefit a software product if these 
conditions apply: (1) the prodcut is provided as SaaS, (2) the 
product has a defined set of features and (3) have a large 
enough number of features to justify a quantitative 
measurement system. 
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