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ABSTRACT

This paper focuses on a fundamental input parameter for most existing
mathematical models of pandemic influenza, the ‘basic reproductive number R0,’
defined to be the mean number of new influenza infections created by a newly
infected person in a population of all susceptible people.  We argue that R0 is
limited in policy and scientific value as is any single parameter attempting to
characterize a complex probabilistic process.  In particular, we demonstrate by
simple logic that R0 does not exist as a separate ‘constant of a particular
influenza,’ but rather its value is determined by social context and behavioral
patterns as well as by the “physics’’ of the influenza virus.  To the extent that R0

is useful, it is best viewed as an output of a modeling analysis, not an input.  But
with R0 being the mean of a random variable, much more information is contained
in the entire probability distribution.  With this view, we show – again by simple
arguments – that R0 can be greater than 1.0 and still, contrary to popular belief,
the probability of an exponentially growing pandemic may be arbitrarily small.
Finally, we show that attempts to estimate R0 from data of previous pandemics is
fraught with methodological complexities, due primarily to heterogeneities in the
population that cause super-spreaders and socially active people to be the first
propagators of the disease.  Unless one is careful, statistical estimates of R0 based
on early exponential growth of reported cases may be significantly upwardly
biased.

Key words:  epidemiology, mathematical modeling, basic reproductive number,
statistical estimation, bias
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Revisiting R0 , the Basic Reproductive Number for Pandemic Influenza
Richard C. Larson

Pandemic influenza represents a credible threat to the lives of hundreds of millions of
people worldwide.  The trigger event will likely be the mutation of a flu virus presently in
birds, pigs or other animals, to become human-to-human efficiently transmittable.  From
the moment of the trigger event, current science suggests that at least six months will be
required to develop a safe and effective vaccine, and then only for a small fraction of the
planet’s inhabitants.  For six months or longer, we will all be ‘naked’ against the flu.

Much ‘flu research’, including mathematical modeling, suggests that once the flu starts, it
will simply run its course  -- implying there is not much we can do.  It’s as if the flu
imposes on us a Russian Roulette partially loaded gun, and when nature pulls her trigger
there is a given chance that we will be hit, regardless of what else we do.  But we do not
believe that to be true.  Evidence from the 2003 SARS epidemic, recent analyses of the
1918-1919 “Spanish Flu,” and our own mathematical modeling suggest that there is
much we can do to reduce the likelihood that we as individuals, our friends and family
members and our co-workers will become sickened with the flu.

There is a fundamental input constant for most existing mathematical models of the flu,
the ‘basic reproductive number R0,’ defined to be the mean number of new influenza
infections created by a newly infected person in a population of all susceptible people.
Suppose that early in the epidemic I become infected with the flu and that I infect 3 other
individuals before I am committed to bed and rest.  Suppose you are also infected and
that you infect 2 others before you are isolated in bed.  Our ‘average’ ‘R0’ in this simple
case is (3 + 2)/2 = 2.5.  With past pandemic flu’s such as in 1918-1919, a typical R0

across the entire population is estimated to be between 1.8 and 2.5.  One can see that if R0

were greater than one, the epidemic would seem to grow exponentially for a while, until
the number of remaining susceptible people drops below some critical point.  In many
existing mathematical models, after the epidemic starts, R0 is replaced by R(t), where R(t)
is defined to be the mean number of new influenza infections created by a newly infected
person at time t in the epidemic, where t is measured in days or in “generations’’ of the
disease.  Due to the fact that a smaller fraction of the population is susceptible to the
disease, as it progresses through the population, R(t) should be a decreasing function of t,
with its maximum at the start of the disease, at which time R(0) = R0.  So, for instance, if
R0 starts the infectious disease with a value R0 = 2.0, the disease multiplication factor R(t)
will only become smaller as time progresses.

What is surprising is that only a small value of R0 is needed to create a pandemic.
Intuitively, seeing the “Great Influenza” havoc caused in 1918-1919, one might think that
R0 needs to be 10 or 20!  No, averaged across the population, it is less than 3.0, often near
2.0.  (Mills et al., 2004)  That’s the ‘good news’ as it is so much easier to reduce R0 from
2.0 to one than from 10 to 1.  If one can find a sequence of simple steps to reduce R0 to be
less than 1.0, rather than exponential growth, one then enjoys geometric decay as the
disease dies away.  Evidence suggests that this is what happened with the eradication of
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SARS in Hong Kong and elsewhere in 2003.  And, as we will demonstrate, an R0 equal to
2.0 does not necessarily imply exponential growth.

The importance of R0 cannot be overstated.  It is the primary parameter in most
mathematical models of pandemic influenza, and it is central to the modeling of other
infectious diseases as well.  But from a decision and policy point of view, the dominance
of R0 frames our policy and decision space, unnecessarily narrowly in our opinion.  An
understanding of the limitations of the R0 concept as a modeling device for pandemic
influenza should open additional more insightful decision and policy alternatives.  That is
our goal in this paper.

1.  Historical Perspective
The concept of using R0 seems to be accepted in an unchallenged way in the
epidemiology community.  From Heesterbeek [2002], an expert of the history of R0, we
hear,

The basic reproductive ratio (or number) R0 is arguably the most important quantity on
the study of epidemics and notably in comparing population dynamical effects of control
strategies.  The quantity is defined as the expected number of new cases of an infection
caused by a typical infected individual in a population consisting of susceptibles only.  In
the last 10-15 years R0 is an ingredient in almost all papers that use some mathematical
modeling in studying the spread of infectious agents.  (emphasis added)

As described by Heesterbeek [2002], R0 was created in Germany by demographers in the
1880’s and formalized in 1925 to model the progression of a country’s population.  The
original R0 was defined to be the average number of female offspring born to one female
over her entire life.  For the year 1879, this number for Germany was estimated by
Richard Bockh to be 1.06.  The time scale was decades and the system was in
approximate equilibrium.  With an influenza epidemic, the time scale is in days and
weeks and nothing approximating equilibrium exists.  To the contrary, the system is
characterized by markedly changing parameter values as society copes daily with the
influenza’s evolution.  Over the last three decades, epidemiologists have adopted the R0

concept and applied it to a variety of diseases, some of which (e.g., malaria) exist in a
type of quasi-equilibrium similar to that of population demographics.  But the original
demographic motivation and near steady state environment supporting R0 simply do not
exist in a dynamic influenza epidemic situation.  In summary, R0 and its successor R(t) as
fixed-trajectory concepts in rapidly evolving infectious disease epidemics are of limited
value at best.

We often hear epidemiologists attach to an infectious disease a given number for R0, as if
that number characterizes some constant of nature, independent of anything else.  One
might hear, “Consider an infectious disease with R0 equal to 3.14159, etc., etc.”  One
mathematical researcher even calls R0 the “…one parameter that (almost) does it all.”
(Keeling 2001)  Such simplistic statements ignore the contextual social and physical
environments in which the disease is developing.  These disease environments play a
significant role in determining the numerical value for R0 and for subsequent values of
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R(t).  Even in demography, where quasi steady-state operation supports use of the R0

concept, human behavior demonstrates that R0 is far from an immutable constant.  In
Germany today, more than a century after the first estimate of Germany’s R0, the current
R0 is estimated to be about 0.70, a 33 percent drop from Bockh’s 1879 estimate of 1.06.
(note 1)  Worldwide, the demography interpretation of R0 today varies by a factor of
seven, from over 3.5 daughters per female (Mali and Niger) to under 0.5 (Hong Kong)
(note 2).  In demography, we see that the numerical value of R0 depends strongly on
social and environmental context.  It is not a constant of nature.  So too in infectious
disease applications we should expect R0 to depend on context.  In influenza, as in
demography, the numerical value of R0 depends strongly on the societal situation in
which it is embedded.

An excellent overview of the history and use of R0 in deterministic epidemiology
modeling is given by Heffernan et al. (2005).  We are not the first to explore the role of
stochastic behavior in modeling pandemics (see, for example, Nasell 1995) nor are we
the first to examine how population heterogeneities after disease dynamics (see, for
example, Lindholm 2007 and Diekmann et. al. 1990).  We especially appreciate those
using social network modeling to identify high-risk heterogeneous segments of the
population (e.g., school children) who when targeted with social distancing may greatly
reduce incidence of the disease (see Glass et. al. 2006 and Glass et. al. 2008).
Admittedly, ours are stylistic models but with a probability focus.  Our sense is that the
simple “thought experiment’’ arguments made herein may shed additional insights into
the complex problem area of infectious disease progression and control.

We now explore some of the mathematical properties of R0, an exploration that we hope
will demonstrate that the concept must be used with extreme care in complex decision
making situations involving epidemics and pandemics.

2.  R0 is the Mean Value of a Random Variable
The consensus definition of R0 states that it is the mean value of a random variable.  As in
all probabilistic situations, the mean of a random variable conveys some useful
information.  But expressing the mean in terms of other more fundamental quantities can
yield additional insights.

Suppose I come face to face with N people on a day that I am infectious but
asymptomatic.  Many people who become infected with the flu have one such day before
they feel and appear sick, and not being able to identify these people is what makes
eradication of the flu so difficult.  Define an ‘indicator variable’ as follows:

€ 

Xi =
1 if person i becomes sick as a result of exposure to me              
0 if person i does not become sick as a result of exposure to me 
 
 
 

Now, we let NI be defined to be the number of people I will infect on this day.  NI can be
written as simply counting the indicator variables,
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€ 

NI = X1 + X2 + X3 + ...= Xi
i=1

N

∑ (1)

Suppose for example N = 50 and that all Xi’s are 0 except for X9, X18 and X45, each being
equal to one.  In that case, I have infected 3 of the 50 individuals I have came face to face
with on this day.

Now, at any given level of intensity of face-to-face contact, there is a probability p that I
will pass the infection on to the person I am facing.  Using this fact, we can write an
expression for the mean number of people I will infect on this day.  It is simply the mean

of 

€ 

NI = X1 + X2 + X3 + ...= Xi
i=1

N

∑ , which equals Np.  We thus have a simple expression

for R0, and that is
R0 = Np.  (2)

As we stated before, for pandemic flu, R0 appears to many as some constant of nature,
such as the gravitational constant = 6.67300 (10-11)m3 kg-1 s-2.  But flu is an infectious
respiratory disease, spread by human contacts.  Reduce human contacts, and reduce
prevalence of the flu.  By writing R0 = Np, we have expressed R0 in terms of two other
parameters, each of which we can control to some extent.  We have a fighting chance of
reducing R0, perhaps a little, perhaps even to below 1.0, the critical value to assure that
the disease dies away rather than grows exponentially.  In the sense of this discussion, R0

does not exist as a separate quantity.  It is a function of both the inherent properties of the
given virus and the population’s behavioral responses to it.

How do we control N and p?  One reduces N simply by reducing the number of face-to-
face contacts we have each day.  If a parent is shopping for groceries, rather than
following the European tradition of daily shopping, perhaps one switches to weekly
shopping, or, better yet, to groceries delivered to one’s door.  If you manage a team of
employees, rather than have face-to-face meetings during a flu emergency, have
conference calls instead, with many workers telecommuting.  Many companies have
already created comprehensive pandemic flu plans that include telecommuting, reduced
face-to-face encounters and even minimum desk spacing between workers.  The desk
spacing idea relates more to the parameter p, the probability that any given face-to-face
contact will result in a new infection.  How else can we reduce p?  Wash hands with hot
water and soap several times daily.  Do not shake hands during greetings with colleagues.
Cough or sneeze into your elbow, not into the open air.  Be careful not to touch surfaces
that might have recently been contaminated with flu virus.  Encourage your city’s large
employers to stagger work hours so that public transportation subways and busses are
less crowded during now-stretched-out rush hours.  Even run the subways and busses
with windows opened.  The key here is that R0 is a direct function of social context and
human behavior, behavior that can be altered to reduce the numerical value of R0.

Yes, there are limitations to this analysis.  The causal model creating infection is more
complex than just counting the numbers of face-to-face contacts.  One can touch surfaces
contaminated minutes or even hours before by individuals who we do not see face to
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face.  If contaminated hands then touch one’s mouth or eyes, infection can result.  With
SARS (Severe Acute Respiratory Syndrome), residents of a Hong Kong high-rise
apartment complex became infected by a faulty sewage system, again not ‘seeing’ the
infected person responsible for spreading the infection.  (note 3)  But we believe that a
model that counts the number of face-to-face contacts and includes the intensity of these
contacts represents a valid primary mechanism for depicting how the disease propagates
through the population.  Adding complexities such as the two just cited does not alter the
main conclusions of our arguments.  Our approach is buttressed by findings of others.
For instance, Riley at al (2003) credits reduction in the number of face-to-face contacts in
Hong Kong as the primary cause for reduction in spread of SARS.

3.  Variance of NI
The mean of a random variable contains only very aggregate information about it.  In
fact, as we will show, a very diverse set of probability distributions can give rise to the
same mean value.  Therefore, we need to look at measures of dispersion about the mean
and other properties of the entire probability distribution.

Since the random variable NI has a probability distribution, it has a variance as well as a
mean R0,defined as the squared second moment about them mean,

€ 

VAR[NI] ≡σNI
2 ≡ E[(NI − E[NI])2] = E[(NI − R0)

2].

As with all random variables, knowledge of the variance tells us much about the level of
uncertainty in the infection process.  Let us write Equation (1) again,

€ 

NI = X1 + X2 + X3 + ...= Xi
i=1

N

∑ .

In Sec. 1 above, we found the mean for the random variable NI.  Since the indicator
random variables Xi are mutually independent and identically distributed, we have

€ 

σNI
2 ≡ NσX i

2 = Np(1− p) , (3)

where 

€ 

p(1− p)  is the variance of any given indicator random variable Xi.  Notice how the
variance is small for small values of p, as would most likely be found in influenza for as
random casual face-to-face contact, but the variance builds to a maximum value as p
increases up to 50%.

4.  Mean and Variance when N is a Random Variable
In real life the number of people one has face-to-face contact with on any given day is
itself a random quantity.  This fact adds more uncertainty to the number of people an
infected person will infect.
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Let us again return to our first result, Equation (1),

€ 

NI = X1 + X2 + X3 + ...= Xi
i=1

N

∑ .

Recognizing that the number N of people we interact with on any given day is uncertain,
we wish to make this more realistic.  N too is a random variable.  Suppose N has
probability mass function

€ 

pN (n) ≡ P{N = n}, with mean 

€ 

E[N] and variance

€ 

σN
2 ≡ E[(N − E[N])2] = E[N 2]− E[N]2 .  And suppose that all the random variables Xi and

N are mutually independent.  Under these circumstances it known that

€ 

E[NI] = E[N]E[Xi] = pE[N]
σNI
2 = E[N]σX i

2 + (E[Xi])
2σN

2 = E[N]p(1− p) + p2σN
2 (4)

Here we see that the variance of NI has a term equivalent to that found in Eq. (3), namely

€ 

E[N]σX i

2 = E[N]p(1− p)  and a new, second term,

€ 

(E[Xi])
2σN

2 = p2σN
2 .  So, randomness in

the number of people that patient zero has face-to-face contact with increases the total
variance of the number of new infections he causes.  But the mean remains unchanged at

€ 

E[NI] = E[N]E[Xi] = pE[N].

5.  Extinction Probabilities
In most mathematical modeling of infectious disease pandemics, it is commonly believed
that any value for R0 greater than 1.0 will yield a pandemic (or epidemic) with near-term
exponential increase in number of infected people.  Here we show that such an
assumption is false.  Using an R0 equal to 2.0, a value commonly associated with
pandemic influenza, we provide simple examples showing how many ‘patient zeros’ may
initiate a disease that dies out rapidly in one or two generations.  That is, we can have
self-extinction of the disease, not as a rare event, but as a common one.

As a simple ‘thought experiment,’ consider that NI can take on only two possible values,
0 and 4, each with equal likelihood.  That is, patient zero will infect zero others with
probability 1/2 and exactly 4 others with probability 1/2.  Here R0 is the expected value of
NI which is easily computed, R0 = (1/2)*0 + (1/2)*4 = 2.  But with probability equal to
1/2, the disease never progresses beyond patient zero.  In other words, the probability of
self-extinction of the disease is at least 50%, even though R0 is 2.0.

We can write an equation from which we can compute the exact value for the self-
extinction probability, which we will call PE.  For our simple example, we can write

.

The logic is this: PE is equal to 1/2, due to the 50% chance that patient zero will infect no
others, plus (1/2) times the probability that each of the four people infected under the
second possibility for patient zero will themselves spawn an infection process that dies
out – each independently and each with probability PE.  The numerical solution to this
equation is PE = 0.543.  So, we have a feasible situation in which R0 is 2.0 and yet 54.3%

€ 

PE = (1/2) + (1/2)PE
4
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of the ‘epidemics’’ die out very quickly on their own.  There is no exponential growth,
obviously, for such cases.

More generally, suppose that the number of people NI infected by patient zero has an
arbitrary probability law,

€ 

pNI (n) ≡ P{NI = n} = pn,   n = 0,1,2,...

Then, following the logic above, we can write a general equation for the extinction
probability,

€ 

PE = p0 + p1PE + p2PE
2 + ...+ pnPE

n + ...= pnPE
n

n= 0

∞

∑ .    (5)

This turns out to be the discrete or geometric transform of the probability mass function

€ 

pNI (n) , evaluated at 

€ 

z = PE , where the transform is defined

€ 

pn
T (z) ≡ pnz

n

n= 0

∞

∑   for | z |≤1.

(The function

€ 

pn
T (z) is also called the moment generating function for

€ 

pNI (n) .)  Thus, to
solve for a numerical value for the self-extinction probability PE, we must solve the
functional equation

€ 

PE = pn
T (PE ) . (6)

A not unlikely distribution for the number of infections caused by face-to-face contacts
per day is the Poisson distribution, perhaps reflecting a situation in which the infections
are generated by a Poisson process.  As an example, retail sales clerks might fall into this
group.  For a Poisson process with mean λ, the probability mass function and associated
geometric transform are, respectively,

€ 

pn =
λn

n!
e−λ,   n = 0,1,2,...

pn
T (z) = eλ(z−1)  | z |≤1

(7)

Applying Eq.(6) in this case, we find 

€ 

PE  by solving the equation,

€ 

PE = eλ(PE −1) .

Suppose we have 

€ 

λ = 2, which corresponds to 

€ 

R0 = 2.  Then 

€ 

PE  is the solution to the
equation 

€ 

PE = e2(PE −1).  The solution is found to be 

€ 

PE ≈ 0.203.  So, with a Poisson
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distributed number of new infections in a day created by an infected and infectious
person, a process with 

€ 

R0= 2.0 yields a self-extinction probability of over 20%.  A much
larger 

€ 

R0= 3.0 yields a self-extinction probability of only about 0.06.  But a reduction
from 2.0 to 1.8 (advocated by some current researchers for pandemic influenza (note 4))
yields 

€ 

PE ≈ 0.267.

As a final example of this line of inquiry, let us consider what we believe to be the most
realistic model of infection progression early in the disease.  That is one in which the
number of contacts each day is random and each contact has a given probability p of
becoming infected.  Thus, the number who become infected from patient zero is given by
the familiar counting process of Eq. (1),

€ 

NI = X1 + X2 + X3 + ...= Xi
i=1

N

∑ .

If the random variables Xi and N are mutually independent, then it is known that the
geometric transform of the probability mass function for the random variable NI is

                     

€ 

pNI
T (z) = pN

T (pXi

T (z)) .    (8)

Suppose the number of contacts N each day is given by a Poisson random variable with
mean λ and each contact results in a new infection with probability p.  Then,

Substituting into Eq.(8), we have

€ 

pNI
T (z) = eλ([1− p+ pz ]−1) = eλp(z−1) . (9)

Comparing Eq.(9) to Eq.(7), we immediately see that NI is also Poisson-distributed, but
with mean λp.  So, for any set of values for λ and p such that there product λp=2.0, we
have a self-extinction probability of 

€ 

PE ≈ 0.203.

The mathematical modeling of self-extinction is not new.  In fact one can revert to the
classic 1875 paper by Watson and Galton, “On the Probability of the Extinction of
Families,” to see essentially the same arguments put forward here.  Watson and Galton
were concerned with the extinction of surnames in Victorian England.  With current
contemporary estimates of fertility rates, a single adult male having a unique surname has
–according to the Watson-Galton model -- a probability of about 0.89 of his surname
becoming extinct.  (Whittle 1970 and note 5).  With an infectious disease starting with a
patient zero, the situation is directly analogous to a unique surname in a population.  The
probability of self-extinction is computed in identical ways in each case.  The
demographers who introduced the R0 concept in Germany in the 1880’s, notably after the
Watson-Galton paper, did not have to be concerned with self-extinction due to the
millions of residents of Germany.  The likelihood of an entire country’s own self-
extinction is negligibly small.  Thus we see another problem carrying the demography-

€ 

pN
T(z ) = eλ (z−1)  
pXi

T (z ) = (1− p)+ pz , both requiring | z |≤ 1.
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invented R0 concept to disease propagation:  the appropriate model for disease
propagation is the small sample size model of family surname progression, not the large
sample size model of a country’s population evolution.

6.  Estimating R0
In applying models using R0, one is faced with the need to estimate numerically R0 from
data of past pandemics.  Given the existence of significant self-extinction probabilities,
our contention is that any estimate of R0 from actual non-self-extinction pandemics will
in fact be overestimates of the true R0.  As an example, our ‘thought experiment’ example
having a 50% chance of no additional infections by patient zero and a 50% chance of
exactly 4 additional infections, a statistical estimate of R0 would likely only be performed
on actual observable pandemics, not ones that die out after one or two generations.  The
quickly dying pandemics would not be called pandemics.  Statisticians may not even see
them.  Focusing on patient zero, an unbiased estimate of R0 for our thought experiment
for those pandemics that do not die out would be 4.0, not the true 2.0, an overestimate of
100%.  Such situations might correspond to patient zero being called a super-spreader,
meaning that he or she infects many more people than the average infected person.
Depending on the probability laws involved, it may be that many actual observed
pandemics require that patient zero be a super-spreader, else the pandemic dies out
quickly by self-extinction.

Let us consider the issue more generally.  Suppose we define

€ 

PE ( j) ≡ P{pandemic becomes extinct at generation j} .

Following usual logic, we can immediately write

€ 

PE (1) = p0
PE (2) = p1p0 + p2(p0)

2 + p3(p0)
3 + ...+ pn (p0)

n + ...= pn
T (p0) − p0

Evaluating 

€ 

PE ( j)  for values of j>2 becomes computationally complex.  But in practice
we do not need that to demonstrate our point.  Consider the realistic Poisson model for
generation-to-generation propagation of the disease, again setting λ = 2.0.  In this case,
we have

€ 

PE (1) = p0 = e−2 ≈ 0.135

€ 

PE (2) = pn
T (p0) − p0 = eλ( p0−1) − p0 ≈ e

2(0.135−1) − 0.135
= e2(0.135−1) − 0.135 = e−1.73 − 0.135 ≈ 0.177 − 0.135 = 0.042

Of the total extinction probability of 0.203, the first and second generations give a
summed extinction probability of 0.135 + 0.042 = 0.177, or about 87% of the total
extinction probability.  That is, if this Poisson process pandemic dies out by itself, 87% of
the time it will become extinct in generation 1 or generation 2.  An apparently unbiased
statistical estimate of the mean number of new infections created by patient zero (i.e.,
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generation 1) would be 

€ 

2.0 /(1− 0.135) ≈ 2.31, an overestimate of about 15% in contrast
to the true R0 value of 2.0.  This may not appear to be large, but when one is dealing with
exponential growth with a growth parameter greater than 1.0, a 15% overestimate may be
significant from both a prediction and policy point of view.

6.1.  Example:  A Three-Point Probability Mass Function for NI.
As a thought experiment, consider a situation in which the probability law for the number
of people NI that are infected by patient zero has three possibilities:  NI = 0, 2 and some
larger number, the larger number and the probabilities arranged so that R0 = 2.0.  We will
select the following:

€ 

P{NI = 0} =α(1− p)
P{NI = 2} =1−α
P{NI = 2 / p} =αp

One can easily verify that the three respective probabilities sum to one and that the
expected value of NI is 

€ 

E[NI] = 0[α(1− p)]+ 2(1−α) + (2 / p)αp = 2.0 .  This is a
probability mass function having parameters α and p.  With α =0, we have a strictly
deterministic process in which each newly infected person in a population of nearly
100% susceptibles generates precisely 2 additional infections.  Over time, this
deterministic process will generate an exponential growth curve starting at time t = 0,
with the exponential factor for generation-to-generation growth being R0 = 2.0.  As α
increases from 0 towards 1.0, another more divergent process comes into play.  This is a
process for which a fraction 

€ 

α(1− p) of newly infected persons infect zero others while
the fraction 

€ 

αp  infect 2/p others.  Here we see that for small values of the parameter p,
most people in this second process infect zero others while a very few (a fraction 

€ 

αp )
infect a large number 2/p.  This last category of persons may be called super-spreaders.
As α grows towards 1.0, this second process dominates more and more.

Invoking Eq. (5), we see that to solve for the self-extinction probability PE, we need to
solve the functional equation,

€ 

PE =α(1− p) + (1−α)PE
2 +αp(PE )

2 / p               (10)

where, formally, we require 2/p to be integer, since we are dealing with discrete random
variables taking on non-negative integer values.  Suppose, for example, α = 1/2 and p =
0.1.  Then we have 

€ 

PE = 0.45 + 0.5PE
2 + 0.05(PE )

20.  The third term on the right hand side
of the equation is essentially zero, and we are left with solving the quadratic equation

€ 

PE = 0.45 + 0.5PE
2, whose solution is 

€ 

PE ≈ 0.684 .  Here we have a plausible probability
distribution of number of people infected by a newly infected person, R0 =2.0, and yet
more than two-thirds of the “pandemics” die out quickly by self-extinction.  For these,
there is no exponential growth.  Applying Eq. (10) parametrically, a family of curves
displaying 

€ 

PE (α, p), that is PE as a function of α and p, is shown in Figure 1.  Note that as
α, the fraction of the population that is super-spreaders or non-spreaders, increases, so
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too does the self-extinction probability.  Note also that the self-extinction probabilities
increase at p decreases, meaning that fewer super-spreaders are in the highly variable
population but each one is more dangerous, as the number that each infects is equal to 2/p
– a number that grows very large as p becomes smaller.

The careful reader may question our modeling as “extreme” using super spreaders.  But
super-spreaders are known to have started some epidemics.  Among these are Mary
Mallan (AKA Typhoid Mary) who is said to have infected 47 people, Gaetan Dugas -- a
Canadian flight steward who allegedly infected many men with HIV/AIDS virus, and
Professor Liu Janlun who allegedly started the SARS epidemic in Hong Kong by
infecting people staying on the same floor of Hotel Metropole of Kowloon and his
brother-in-law (who subsequently infected up to 79 others).  These examples demonstrate
that one individual – a ‘super-spreader’ -- may infect scores of others, far from any
‘average’ disease reproductive ratio.  In fact, without a “start-up” super spreader, many
“epidemics” or “pandemics”’ may die out by self-extinction in one or two generations.
And after the initial super spreader has done his or her deed, the remainder of the disease
dynamics proceeds as if the R0 were the moderate average value, 2.0 in our examples.

There are those who recommend splitting R0 into two components, one due to super
spreaders and the other representing the remainder of the population (see, for example,
Riley 2003).  But we have shown that in a highly diverse population containing both
super spreaders and the great majority who are not super spreaders, once the disease has
taken hold with a first “patient zero” super spreader, the chance of subsequent self-
extinction is small.  And the population will very likely have other super spreaders who
will play a key role in subsequent exponential increase of incidence of the disease.
Removing the super spreaders from computations may result in finding that R0 for the
non-super-spreaders is less than one, perhaps dramatically so.  So, both super spreaders
and others must be considered in estimating growth parameters of the disease.  But policy
and decision options should rightly be focused differently for each group.  Ideally, one
would like to identify before-the-fact likely super spreaders and reduce or even eliminate
their possible contribution to propagation of the disease.  If a cause of super spreading is
related to large numbers of daily face-to-face intense contacts, that cause can usually be
addressed.

6.2.  Biasing Effects on Estimates of R0 Due to Self-Extinction
The effect of self-extinguishing pandemics on statistical estimation of R0 can be dramatic.
Again to illustrate, we use a “thought experiment.”  Suppose we consider pandemics
characterized by Eq. (10) with α = 1.0, that is, no newly infected people subsequently
infect only two people; they either infect zero additional people or they infect a large
number, namely 2/p.  For values of p less than about 0.25, self-extinction only occurs at
the first generation.  That is, either the pandemic dies immediately with patient zero who
infects nobody else, or patient zero is a super-spreader who infects 2/p others.  If patient
zero is a super-spreader, then the likelihood of self-extinction – once 2/p people are
infected at generation 1 --  is small enough to ignore.  After the super-spreader infects 2/p
additional individuals, the mean value function of the number newly infected people over
time grows exponentially, doubling at every generation – due to R0 being equal to 2.0.
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While the variance of the number infected at each generation will be large due to the
highly dispersed nature of the probability law for NI, the eventual doubling of cases per
generation should be seen in the data, perhaps with large deviations from the mean along
the way.

Figure 1.  Self-Extinction Probability vs. Alpha
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We now consider how this affects biasing in the estimates of R0.  Illustrative numerical
results are shown in Table 1.  Each row of the table represents a generation of the
influenza, starting at generation zero and building down the table to generation 10.  The
generation numbers are shown in the left-most column.  In practice, each generation
requires roughly three or four days from initial infection until asymptomatic infectivity to
isolation, so the table covers the first month or so of the observed (non-self-extinguished)
pandemic.  The second column depicts deterministic exponential growth in the numbers
infected at each generation, assuming that R0 equals 2.0 and no super-spreaders.  This
simple exponential growth is often portrayed in epidemiological differential equation
models and other strictly deterministic epidemiological models.  Columns 3, 5 and 7
depict the mean number of new cases per generation, assuming that generation 1 (after
“patient zero” in generation zero) is launched by a super-spreader where the three
columns depict super-spreaders infecting 2/p = 8, 16 and 32 people, respectively, for
columns 3, 5 and 7.  For these cases, the corresponding values of p are p = 0.25, 0.125
and 0.0625, respectively.  The most relevant columns are columns 4, 6 and 8.  Each of
these columns contains estimates of R0, where the estimate is based on fitting an
exponentially increasing curve from 1 (at generation zero) to the number observed
infected in generation i, i = 1, 2, …, 10.  As an example of the calculations, let us
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consider column 6, generation 3.  The entry in that cell is 4.00.  That would be the
estimate of R0 if one attempted to fit an exponentially increasing curve from generation
zero to generation 3, where at generation 3 the mean number of newly infected persons is
64 (column 5, generation 3).  In order to climb from 1 infected individual to 64 in 3
generations, one needs the exponential sequence 1, 4, 16, 64, where 64 = 43.  Thus the
generation-to-generation growth factor, otherwise known as R0, is imputed to be 4.0 in
this case.  But we know that the underlying value for R0 is not 4.0, but rather 2.0.  If we
tried to fit our curve up through the 10th generation, our error would be less, this time
estimating R0 to be 2.46, still a positive biasing error of 23 percent.  Note that the smallest
bias error in the table is 15 percent (column 4, generation 10).  Also note that the biasing
error becomes larger as the size of the super-spreader “cohort” becomes greater.

While it is unlikely that any given pandemic will exhibit probabilistic behavior this
extreme, the general message remains valid in our opinion.  That is (1) pandemics can
self-extinguish in the first or second generation; (2) only non-self-extinguishing
pandemics are recorded for later statistical analysis; (3) the non-self-extinguishing
pandemics are likely to be initiated by one or more super-spreaders or other similar non-
representative phenomena, thereby accelerating the growth of the curve of those infected
beyond the simple deterministic exponential curve.  This early, accelerated growth makes
estimating the numerical value of R0 exceedingly complex.  If one is not careful, the early
accelerations may result in an estimate of R0 that is biased towards higher values than that
of the true underlying R0.

Estimates of R0 as a Function of Size of Super-Spreader 1st Generation and

Number of Generations Used for Estimate

Gen. E[NI(t)],E[NI(t)],Est. R0E[NI(t)], Est. R0 E[NI(t)], Est. R0
#, t Determ. p=.25 p=.25 p=.125 p=.125p=.0625p=.0625

0 1 1 - 1 - 1 -
1 2 8 8.00 16 16.00 32 32.00
2 4 16 4.00 32 5.66 64 8.00
3 8 32 3.17 64 4.00 128 5.04
4 16 64 2.83 128 3.36 256 4.00
5 32 128 2.64 256 3.03 512 3.48
6 64 256 2.52 512 2.83 1024 3.17
7 128 512 2.44 1024 2.69 2048 2.97
8 256 1024 2.38 2048 2.59 4096 2.83
9 512 2048 2.33 4096 2.52 8192 2.72

10 1024 4096 2.30 8192 2.46 16384 2.64
11 Table 1

6.3.  A Heterogeneous Population Mixing Model
Many mathematical models of infectious disease progression assume a homogeneous
population, in which essentially we all act statistically as identical clones.  But real
societies are quite heterogeneous, in many ways.  Here we focus on one source of
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variability across the population, a source that affects directly the spread of infectious
diseases, and ultimately can cause troubles again in estimating R0.

For illustrative purposes, we allow for two types of persons in the susceptible population:
Highly socially active persons and persons whose social activity is Low.  We assume that
‘social activity’ refers to frequency of human contacts, not necessarily in purely social
situations but often in professional and day-to-day living situations.  A retail store clerk
has many human contacts per day and is thus socially active.  A novelist working from an
office at home has many fewer social contacts on a typical day and is thus characterized
by a Low level of social activity.  We assume that social contacts occur as a homogenous
Poisson process, with rate parameters defining the level of social activity.  In particular,
define

λH  = Poisson rate of social contacts per day of a High Activity person
λL  = Poisson rate of social contacts per day of a Low Activity person
nH = initial population of High Activity persons
nL  = initial population of Low Activity persons
nH +nL = total population

We like to think of human interactions, generated by Poisson processes, in terms of some
physical model that we can visualize.  Suppose that each time a person interacts with
another she leaves a slip on the ground, labeled H or L, depending on whether she is High
Activity or Low Activity, respectively.  Each interaction provides 2 slips, one from each
of the two people who interacted.  In this simple example, we ignore higher-level
interactions of three of more people simultaneously (the ‘three body problem”!)  At the
end of day we can sample interactions by randomly ‘picking up pairs of slips.’  As
perceived by those who are interacting, there are on average nHλH interactions of High
Activity people during the day and nLλL interactions of Low Activity people during the
day.  But just as in the clinking of wine glasses, one must divide by two to count the
number of clinks – since it takes two to clink, and it takes two to interact.  Thus the mean
total number of person-to-person interactions during a day is (nHλH  +  nLλL)/2.  This result
clearly generalizes to any number of activity-level categories.

To obtain some comfort and familiarity with this heterogeneous mixing model, consider a
random person, G, High Activity or Low Activity.  The next interaction of G with
another will be with a High Activity person with probability nHλH/(nHλH + nLλL).  That is
simply because the fraction of interactions that represent High Activity interactions is
nHλH/(nHλH + nLλL).  If High Activity interactions comprise 90 percent of all interactions,
then G’s next interaction will be with a high activity person with probability 0.90.  The
next interaction of G will be with a Low Activity person with probability nLλL /(nHλH +
nLλL).  Now consider a randomly selected interaction pair, with persons G1 and G2.  The
next G1-G2 interaction is likely to be High Activity with another High Activity with
probability [nHλH/(nHλH + nLλL)]2.  Recall that each person who interacts with another
figuratively leaves a slip of paper on the ground at the point of interaction.  Think of this
result as picking up two paired slips of paper from the ground.  An interaction between an
inactive person and another inactive person occurs with probability [nLλL /(nH λH +
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nLλL)]2.  The fraction of interactions that involve both a High Activity person and a
person of Low Activity is 2[nHλH/(nHλH + nLλL)] [nLλL /(nHλH + nLλL)].  These results also
generalize to more than two activity-level categories.

Now let’s examine R0 in this context of heterogeneous activity levels.  We can write R0 as
follows:

€ 

R0 ≡ E[NI] = Expected number of new infections generated by a person randomly selected 
         from the population and who is infectious, assuming a population of all susceptables.

That is, R0 is the basic reproductive number when averaged over all people in the
population, those Highly Active and those with Low Activity.  We can express R0 as
conditional expectations, conditioned on activity level,

€ 

R0 = E[NI | High Activity Person](nH /{nH + nL}) +

        E[NI | Low Activity Person](nL /{nH + nL})
    = [R0 | High Activity](nH /{nH + nL}) + [R0 | Low Activity](nL /{nH + nL}).

If each interaction yields infection with probability p, then we can write,

€ 

R0 = pλH (nH /{nH + nL}) + pλL (nL /{nH + nL}).

As an example, suppose 

€ 

p = 0.04, λH =100, λL =10, nH = nL .  Then we have

€ 

R0 = 0.04(100)(1/2) + 0.04(10)(1/2) = 2.0 + 0.20 = 2.2 .  Yet the R0 for High Activity
people is 4.0 and the R0 for Low Activity people is 0.40.  In the initial days and perhaps
weeks of the pandemic, the huge majority of new infections will be caused by High
Activity people, and the exponential growth rate of the disease will be seen as close to 4.0
new infections per generation, not 2.2.  Eventually, due to their becoming infected early
in the pandemic, the High Activity people will leave the population of susceptibles much
faster than the Low Activity people, and R0 will soon and very naturally drop to a value
less than 1.0, meaning geometric dying out of the infectious disease.  Any statistical
estimate of R0 based on curve fitting to the exponential growth during the early days and
weeks of the pandemic will most likely result in significant upward biasing of the
estimate of R0.

This potentially significant upward biasing is not limited to one type of heterogeneity.  In
addition to heterogeneity in social activity, there are multiple other sources of
heterogeneity, including a person’s susceptibility to becoming infected and an infected
person’s level of infectivity.  The consequences of these additional sources of
heterogeneity are explored with simple spreadsheet models in Larson (2007) and its
appendix.  Each type of heterogeneity adds complexity to estimating R0 from data of past
pandemics, and each causes the early days of the pandemic to be uncharacteristically
influenced by extremes in the distributions, extremes in levels of social contacts, in
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propensity to become infected and in level of infectivity to others.  These same models
are extended to include spatial heterogeneities in Nigmatulina and Larson (2007).

Other researchers are now noticing the many limitations of R0 as well.  M. Lipsitch, et.
al.(2003), in analyzing SARS, stated, “Future work should certainly focus on quantifying
transmission and other epidemiological parameters in a variety of circumstances… to
construct more detailed models of transmission that realistically incorporate the effects
of heterogeneities in specific settings.”  (emphasis added)   Both he and Riley (2003)
went far beyond the usual R0 concept to explain what was happening in the Hong Kong
population.

At time of this writing we have not explored in detail the statistical estimates of others
when attempting to estimate a numerical value for R0 from past pandemics.  (Note 6.)
But, interestingly, if upward biasing is found due to insufficient consideration of the
effects of heterogeneity, than the oft-quoted estimated low values for R0 for the Great
Influenza of 1918-1919 may in fact be overestimates, and the true value of R0 may be
less, perhaps significantly less, perhaps quite close to 1.0.  That question is the subject of
on-going research.

7. Why a Constant?
One might ask why epidemiologists and health policy analysts enjoy treating R0 as a
given constant, a type of constant of nature, rather than considering its entire probability
distribution and its emergent evolution over the course of a pandemic.  At this time, we
can only speculate on the answer.  We list here our hypotheses:

1) Simplicity.  Dealing only with the mean of a random variable is considerably
simpler than dealing with its entire probability law.

2) Tipping Point.  Treated as a constant, a value of R0 greater than 1.0 will yield an
exponentially growing disease, whereas any value less than 1.0 suggests
geometric decay of the disease.  Thus, with elegant simplicity, one has an intuitive
tipping point that is easy to understand.

3) Analytical Tractability.  A constant unchanging R0 is a convenient parameter to
insert into (what appear to be) fancy coupled, differential equations with constant
coefficients.  These equations are used to project the time evolution of the disease.
Those who are mathematically inclined can prove theorems about these equations,
but similar theorems are very difficult and sometimes impossible to prove with
more complicated, more realistic models.  The reader may rightfully ask, “Which
is better?  …proving theorems about highly stylized and unrealistic models or
gaining decision insights by reviewing numerical results from more complex
models?”

4) Fixed Value Makes it a Medical Concern.  If R0 is considered to have a given
fixed value, say R0=2.00, then the time-evolution of the disease is certain and all
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decisions deal with health care system responses to those who become ill.  It’s as
if the citizenry, members of the susceptible class, are totally helpless.  The
medical issues are numerous:  surge capacity of hospitals, distribution of anti-
virals, stocking of respirators, delaying elective surgeries, etc.  If R0 were treated
as the movable quantity that it truly is, then the importance of human behavioral
patterns involving social distancing and hygienic activities would come into play.
These non-pharmaceutical interventions (NPI’s) are not the focus of the medical
industry and establishment.  They are rooted in other disciplines and industries.

One of our key points is that treating R0 as the total definition of the problem sharply
delimits the policies available to treat the threat of the disease.

8.  Summary.
We have focused on R0, the ‘basic reproductive number,’ a fundamental input
constant for most existing mathematical models of pandemic influenza as well as
many other infectious diseases.  R0 is the mean of a random variable, defined as the
mean number of new influenza infections created by a newly infected person in a
population of all susceptible people.  In many circles R0 has taken on almost sacred
significance.

We have argued that R0 is limited in policy and scientific value as is any single
parameter attempting to characterize a complex probabilistic process.  If one accepts
the assumption that the act of becoming infected is related directly to the number and
intensity of daily human contacts, we demonstrated by simple logic that R0 does not
exist as a separate ‘constant of a particular influenza,’ but rather its value is
determined by social context and behavioral patterns as well as by the “physics’’ of
the influenza virus.  For an infected individual circulating among a population of
susceptibles, R0 can be expressed as the product of the mean number of human
contacts per day and the probability that any random human contact will result in
infection.  Since both of these quantities are under our control to a limited extent, R0

is best viewed as an output of a modeling analysis, not an input.

Much useful information is contained in the entire probability distribution that has R0

as its mean.  With this view, we showed by simple arguments that R0 can be greater
than 1.0 and still, contrary to popular belief, the probability of an exponentially
growing pandemic may be arbitrarily small.  This counterintuitive result is a direct
consequence of the stochasticity of the system.  Finally, we showed that attempts to
estimate R0 from data of previous pandemics is fraught with methodological
complexities, due primarily to heterogeneities in the population that cause super-
spreaders and/or socially active people to be the first propagators of the disease.
Unless one is careful, statistical estimates of R0 based on early exponential growth of
reported cases may be significantly upwardly biased.
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Notes:

1. http://www.eu-cu.com/germany.htm, accessed July 29, 2006.
2. People Statistics> Total fertility rate (most recent) by country

http://www.nationmaster.com/graph/peo_tot_fer_rat-people-total-fertility-rate,
accessed December 2, 2007.

3. “Hong Kong's health secretary, Dr. Yeoh Eng-kiong, said … that sewage is
responsible for SARS infecting 321 people at the Amoy Gardens high-rise
apartment complex in Hong Kong.  She said ventilation fans sucked particles
of the virus out of a faulty sewage system and spread it throughout the
building.” http://www.wired.com/medtech/health/news/2003/04/58534
1/26/08.

4. Hollingsworth TD, Ferguson NM, Anderson RM. Frequent travelers and rate
of spread of epidemics. Emerg Infect Dis [serial on the Internet]. 2007 Sep
[9]. Available from http://www.cdc.gov/EID/content/13/9/1288.htm

5. See also
http://homepages.newnet.co.uk/dance/webpjd/offstats/profiling.htm
1/26/08.

6. Lipsitch, et.al. estimate R0 for the 1918 influenza pandemic not with curve
fitting but by using ‘excess deaths’ and then inserting the data into standard S-
I-R models for disease progression.
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