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Abstract

In this paper we carry out a detailed analysis of the multiple time scale
behavior of singularly perturbed linear systems of the form:

x (t) = A(£) x (t)

where A(£) is analytic in the small parameter £. Our basic result is a uniform
asymptotic approximation to exp A(E)t that we obtain under a certain multiple
semistability condition. This asymptotic approximation gives a complete multiple
time scale decomposition of the above system and specifies a set of reduced order
models valid at each time scale.

Our contribution is threefold:

1) We do not require that the state variables be chosen so as to display the time
scale structure of the system.

2) Our formulation can handle systems with multiple (>2) time scales and we obtain
uniform asymptotic expansions for their behavior on t0,0[.
3) We give an aggregation method to produce increasingly simplified models valid
at progressively slower time scales.

*Research supported in part by the Department of Energy under grant ET-76-C-01-2295

and by the Air Force Office of Scientific Research under Grant AFOSR-82-0258. The

first author also acknowledges thankfully the continuing support of the fundacion
ITP Madrid-Spain.



Section 1. Introduction

Notions of time-scale separation are commonly used in heuristic model

reduction techniques. It is well known that these notions can be formalized using

techniques of singular perturbation theory, e.g. [1]. In this paper we carry out a

detailed analysis of the multiple time scale behavior of singularly perturbed (de-

fined in section 3) linear systems of the form:

x (t) = A(e) x (t), x (0) = xO. (1.1)

Where A(£) is analytic in the small parameter C e 10, E ]. Our analysis gives

a complete picture of the relationship between weak couplings, singular perturbations,

multiple time scale behavior and reduced order modellingi for these systems.

.Specifically, we give necessary and sufficient conditions under which (1.1)

exhibits well defined, non-trivial behavior at several fundamental time scales.

We determine these time scales and we associate a reduced order model of (1.1)

with each of its fundamental time scales. We then show that these reduced order

models can be combined to produce an asymptotic approximation to x (t) uniformly

valid on [O,c[.

In previous work it has generally been assumed that the system under con-

sideration has "fast' and 'slow' dynamics, and that by a combination of experience

and physical insight a choice of state variables is available which displays the

two time scale structure of the system. Thus, typically, the starting point for

research has been a system of the form:

!() ' [All A 21 x(t)

A . f (1.2)

F In this paper we use the terms "reduced-order models" and "aggregated models"

interchangeably. In many references (such as in the economics literature) in which

the latter expression is used what is typically menat by it is a special type of

reduced-order model resulting from a procedure which explicitly combines (e.g. adds)

groups of variables of the original system. In 141 the results we develop here are

taken as a starting point for constructing such an explicit aggregation procedure

for singularly perturbed finite state Markov processes.
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While this system is not explicitly of the form (1.1), it can be converted

into one of the form of (1.1) by rescaling time, T = t/£. The rescaling is incon-

sequential in our development since we recover all the time scales associated with

(1.1). We use the form (1.1) throughout our development with the understanding that

time has been scaled so that the fastest time-scale associated with the system is the

order 1 time scale.

Further, in almost all the available literature the behavior of the system is

studied as £40 on intervals of the form [0, T/C]. The existence of non-trivial

behavior for times of order 1/C£ or, more generally, on the infinite time interval

[0,o[ is either excluded by assumptions imposed on the matrices A. .,or not con-
13

sidered at all. An example of the former is [2] where in the context of (1.2)

-1
it is proved that if A22 and All-A 2A22A21 are stable then (1.2) exhibits only

two time scales. Two time scale systems are the only ones studied so far in the

context of control and estimation problems (see [3] for a bibliography).

Our main contribution we feel is threefold:

1) We relax the requirement that state variables be chosen so as to display the

time scale structure of the system.

2) Our formulation can handle systems with multiple (> 2) time scales and we obtain

uniform asymptotic expansions for their behavior on [0,-[.

3) We give a method of aggregation to produce increasingly simplified models valid

at progressively slower time scales. (We have applied this method to hierar-

chically aggregate finite state Markov processes with rare events. A brief

description of this application of our methods is given in section 5, the

details appear elsewhere [4].)

Systems with more than two time scales have been studied by other authors

in different settings. In [5] the authors considered the asymptotic behavior

of the quasi-linear system:

2 .F_
£ x (t) = A(t) x£(t) + £f(x£(t), t,E) (1.3)

on the time interval [0,T] and found that the asymptotic expansion of x (t)

requires three series: in t, t/£ and t/e respectively. They did not, however,
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study the behavior of (1.3) on [0,o] and so left open the possibility of additional

time scales. More recently, and with a formulation similar to ours, Campbell and

Rose ([6] - [8]', [23]) have-studied the asymptotic behavior of:

x( A ) xxWt) (1.4)n=o n

For the case N=l, they showed that a necessary and sufficient condition for

lim x (t/£)
E+0

to exist pointwise (i,e., for fixed t - not uniformly ont) is the semistability

of A . For the more general case N > 1, they give necessary and sufficient

conditions so that

lim x (t/£N)
£+0

exists pointwise and also an expression for the limit. They do not address, however,

the question of uniform asymptotic approximations to x (t) or, equivalently, the

question of how to determine the number and the time scales exhibited by (1.4)

and how to combine the different pointwise limits to construct a uniform approxi-

mation-, (if possible). Furthermore, it does not seem to be widely appreciated

that the system (.1.3) may have non-trivial behavior at time scales

t/C 2 , t/3 ,... In the context of Markov processes with rare events, several

authors [9] - 112] have used aggregated models to describe the evolution of

these processes . As in the work mentioned before, however, the connection

between a hierarchy of increasingly consolidated models and uniform approxi-

mation is absent. In this paper we address the foregoing questions within

a framework that unifies the partial results cited above. For a more detai-led



-4-

account the reader is referred to [4-] and [20].

Finally in a setting similar to oursf Hoppensteadt 121] studies uniform

asymptotic approximations for the dynamics of a system of the form of (1.1).

However, he assumes that A(S) has been decomposed in a form which explicitly dis-

plays the time scale structure. Specifically, he assumes that A(E) is given in

the form

M- r.

A(£) = S A.() + A(E) (1.5)

and then shows that the dynamics of (1.1) can be uniformly approximated under

certain stability conditions by the dynamics given by the A.i() at time scales of

ri
order t/s , i=l,...,M. As we show in this paper the transition from (1.1) to

(1.4) is neither obvious nor always possible. In fact from this perspective a major

contribution of this paper is in providing an explicit algorithm for deterimining

if a general A(S) can be put in this form and if a uniform asymptotic approximation

exists. This algorithm is constructive and thus if the answers to the questions it

answers are in the affirmative, the algorithm will produce the uniform asymptotic

approximation and in so doing will in effect produce a transformation which explicitly

displays the time scale structure as in (1.4).

The outline of the paper is as follows: In Section 2 we present the basic

mathematical machinery for our approach: perturbation theory for linear

operators. The fundamental results on perturbation of the resolvent, the

eigenvalues and the eigenprojections are stated without proof and are due

to Kato [13]. In Section 3 we define regular and singular perturbations, and

indicate the difficulties associated with uniform asymptotic approximations.

In Section 4 we apply the theory of Section 2 to obtain, under a certain

multiple semistability condition, a uniform asymptotic approximation to

exp{A(£)t) that gives a complete multiple time scale decomposition of the system

(l.l),and specifies a set of reduced order models valid at each time scale. We

then show that our results are tight in that, when the multiple semistability

condition is not satisifed the system does not have well defined behavior at
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some time scale. A partial time scale decomposition is sometimes possible in

this instance and it is carred out in Section 4.5. In Section 5 we summarize

our results and explain briefly how they may be applied to the hierarchical

aggregation of finite state Markov processes with rare transitions.

Section 2. Mathematical Preliminaries-Perturbation Theory for Linear Operators

We survey here the notation and some results on the perturbation of the

eigenvalues, resolvent and eigenprojections of a linear operator T: Cn - Cn

(for details see [13], 122]). These are the major mathematical tools for our

development.

2.1. The resolvent

The set of all eigenvalues of T, denoted C (T) is called the spectrum of

nxn
T. The Function R(S,T): ¢ - G(T) + ¢ defined by

R(5,T) := (T- I) 1 (2.1)

:is called the resolvent of T. The resolvent of T is an analytic function with

singularities at Xk e G(T), k = 0,1,...,s. The Laurent series of R(S,T) at Sk

has the form:

mk-l

R(E,T) = - ( k) Pk -Z ( -ok) Dk

co i i+l
k k i-l k

where

-1 I~ nxn

Pk: = i i R(E,T) d e Cn n (2.3)

(with rk a [positively oriented contour enclosing Xk but no other eigenvalue

of T) is a projection (ie. P2 = Pk) called the eigenprojection of the eigen-

value kk;

mk: = dim R.(P k (2.4)

is the algebraic multiplicity of Xkk
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Dk: = 2 r ($- k) R(E,T) dE (2,5)

~k mk
is the eigen:-nilpoteftt(ie. D k = ) for the eigenvalue Xk; and

Sk = i (-xk) R(E,T) dE (.2.6)

The following relations between Pk,Sk,Dk hold

PkSk = SkPk = O0 (2.7)

PkDk =DP Dk (2.8)

PkT = TPk
(2.9)

k k

(T-kI) Sk = I-P k (2.10)

(T-k I) Pk D (2.11)

k = k Pk (2.12)

s
k-l P (2.13)
k=1 k

From (2.12) and (2.13) it follows that

c n = (P1) O . R(P

The R(Pk) is the algebraic eigenspace (or generalized eigenspace) for the

eigenvalue Ak. From (2.8) and (2.11) it follows that

TPk = PkT = P kTPk = kPk + Dk

This together with (2.13) yields the spectral representation of T:

T = Z (kPk + Dk) = - R(,T) d
k=o kk k 21T1 I,

An eigenvalue Ak is said to be semisimple if the associated eigennilpotent

Dk is zero and simple if in addition mk = 1.

Using the resolvent R(E,T) and a contour enclosing all the eigenvalues

of T in its interior we may define

exp {Tt) = - 2I exp (Et) R(U,T) dE
2,Fi r
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2.2 Semisimple and Semistable operators

An operator T is said to have seimsimple null structure (SSNS) if zero

is a semisimple eigenvalue of T. The following lemma establishes some properties

of operators with SSNS.

Lemma 2.1 The following statements are equivalent:

(i) T has SSNS

(ii) Cn = R(T) + N(T)

(iii) R(T) = R(T2 )

(iv) rank T = rank T

(v) N(T) = N(T2 )

Proof: See [14]

Comment: When T has SSNS, P the eigenprojection for the zero eigenvalue is

the projection onto N(T) along R(T). Further, it follows 1131 that if T has SSNS,

T + P is non-singular. Now, if T is defined to be (T + P ) - P , then it may
0 0 o

be verified that

TT = T, TTT - T (2.14)

and

T T = TT (2.15)

T# is thus the group generalized inverse of T (see 114]), Further, if T has

SSNS, then P and T# determine the Laurent expansion of R (,T) at zero,
0

Lemma 2.2 If T has SSNS, then for {X - IX| < IT#-1 }

P0 k k+l(2.16)R(CX,T) = -- + kO X (T) (2.16)

Proof: Using (2.14) and (2.15)

P 00

P0 co k k+l
(T- XI) ( --- + kZ X (T)

= k=l (

= (I-P0) k-0 k (T#k +Z k (T



Similarly

%k k+l)
-+ (T ) (T-XI) = I

X k=o

Also of interest in the sequel are semistable operators: T is said to

be semistable if T has SSNS and all the eigenvalues of T except the zero

o

eigenvalue lie in C (the open left half plane).

2.2 Perturbation of Eigenvalues

Before we discuss perturbation of the resolvent of an operator T, we

discuss perturbation of its eigenvalues,when T is of the form:

n (n)
T(C) = T + Z £ T C [O,£ ] (2.17)

n=l 0

Here (2.17) is assumed to be an absolutely convergent power series expansion.

The eiigenvalues of T(£) satisfy

det(T(£) - SI) = o (2.18)

This is an algebraic equation in E whose coefficients are £-analytic.

From elementary analytic function theory e.q. [151) the roots of (2.18)

are branches of analytic functions of £ with only algebraic singularities.

Hence, the number of (distinct) eigenvalues of T(£) is a constant s, in-

dependent of £, except at some isolated values of £. Without loss of gene-

rality let £ = 0 be such an exceptional point and further let it be the only

such point in [O, £ ]. In a neighborhood of the exceptional point, the

eigenvalues of T(£) can be expressed by s distinct, analytic functions.

X1(£),..., X (). These may be grouped as

{X1(E),... , (£)} } { ).. (£) ,... (2.19)

so that each group has a Puiseux series of the form (written below for the

first group)



Xh(E) = X + a Oh £1/p + 2 2h £2/p +

h=0,l,...,p-l

where X is an eigenvalue of the unperturbed operator T and W = exp{i2r/p}.

Each group is called a cycle and the number of elements its period. X is

called the center of the cycle and the group of eigenvalues having X as

center is called the X-group splitting at £ = 0 (the exceptional point).

2.3 Perturbation of the Resolvent

The resolvent of T(E) is defined on p(T) = T -G(T(£))

R(E,T(C)) = (T(e) - EI)

Lemma 2.3

If Sep(T), then for £ small enough, say e3[0,E ], IEp(T(£)) and

R(S,T(E)) = R(E,T) + n1 nn R(n) (2.20)
n=l

where

(n) 2) p
R -(E) - (-1 )P R(S,T) T R(j,T) T ... T R(5,T)

V]+ ..++ =n
1 p

Vi > 1 (2.21)

the sum being taken over all integers p and Vl1,.' ,v > 1 satisfying

V1 +...+ V = n.

The series (2.20) is uniformly convergent on compact subsets of p(T).

Proof: See [13]

2.4 Perturbation of the eigenprojections

We require first a preliminary lemma:
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Lemma 2.4 (Taken verbatim from. [13], page 34)

Let P(t) be a projection matrix depending continuously on a parameter

t varying in a connected subset of T. Then the ranges P(P(t)) for different

t are isomorphic - i.e. the dimension of R(P(t)) is constant. o

Let X be an eigenvalue of T = T(O) with (algebraic) multiplicity m.

Let r be a closed contour (positively oriented) in p(T) enclosing F but

no other eigenvalues of T. From Lemma 2.3 it follows that for £ small

enough R(E,T(C)) exists for E e r and hence there are no eigenvalues of T(£)

on F. Further the matrix

P(C) = - 21i R(E,T(C) dE (2.22)

is a projection which is equal to the sum of the eigenprojections for all the

eigenvalues of T(S) lying inside r. Using (2.21) and integrating term by term

(recall uniform convergence from Lemma 2.3) we have

P(C) P + n (n)
P(s) = P + Z_ _ £ P £ e [0,£ ] (2.23)

n=l 0

where

P = 2i t R(,T) dE (2.24)

and

(n) = 1 R(n) () d (2.25)
217i F

Note that P is the eigenprojection for the eigenvalue k. Further, note that

P(£) is continuous in £ e [0,£ ]. By Lemma 2.4,

dim R (P(£)) = dim R (P) = m (say) (2.26)

From (2.26) it follows that the eigenvalues of T(£) lying inside r form



the F group. Hence, P(£) is called the total projection and R(P(£)) the

total eigenspace for the ~--group. The following is a central proposition:

Proposition 2.5

Let k be an eigenvalue of T = T(O) of (algebraic) multiplicity m and

P(£) be the total projection for the X-group of T. Then,

(T(E) - RI) P(E) 1 (-) R(ET(C) dE

D n (n)
- + £n T for £ e [0,E ] (2.26)
£ n( o'

where r is a closed positive contour enclosing X and no other eigenvalues of T,

D is the eigennilpotent for X and T(n) is given by

n+l (k1 (N1) (k) (k) ( ) (k )
T zS T S S T +l

p=l V + ... +l =n+l

kl+...+k l=p-l
l"1 p+l
V.>1 k.>-m+l (2.27)

1- 3j-

with SO) = , S(k) = Dk for k > 0 and

(k) = [ ( X)-1 R(E,T) d k for k > 0. O

Although this result is in [131, the proof given there assumes 

p(T(£)), a condition violated in some of our applications. A modification

of this proof which does not require the condition is given in [20].

Of major interest in later sections is the following special case of

Proposition (2.5).

Corrolary 2.6 Let X = 0 be a semisimple eigenvalue of T (SSNS):

(2.26) then simplies to

T(£) P(£) n (n) (2.34T

£ n=0
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with

(n) n+l (k (V (V (k
pT _ (-1) p S ()(( p+l (2 35)
p=l + =n.l S T ...T S (2.35)

1 P

kl+... +kp+l=p -1

V.> 1 k. > 0

(0) (k) #k
with S = - P and S = (T ) k > 0.

Proof: The corollary is a straight forward application of Proposition 2.6

with X set to zero and D = 0 (by SSNS). Lemma 2.2 is used to obtain the

expression for T in terms of T .

Section 3. Regular and Singular Perturbations

We consider linear time invariant systems of the form

x (t) = A(£) x (t), ,x (0) = x0 (3.1)

with x (t) ER n and £ e [0,£ ]. The matrix A(£) is assumed to be semistable

for each £ G [0,6 ] and is assumed to have a convergent power series expansion

in £, i.e.,

A(£) = pZ A (3.2)
p=:: p

The positive number £ > 0 is taken small enough so that A(£) has constant

rank d for £ e ]0,£ ]*. We will refer to d as the normal rank of A(E) and we
0

will denote it by nrank.

Out objective is to analyze the behavior of x (t) as £ $ 0 for t e [0,x[.

First, it is straighforward to verify that on any time interval of the form

[0,T], the system (3,1) can be approximated by

x (t) = Ax C(t) ,x0 (0) = x (3.3)

*The results of our work go through mutatis mutandis when (3.2) is an asymptotic

series, provided this rank condition is satisfied,
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Precisely,

lim sup l1exp{A(s)t} - exp{A t}ll =o VT < o
£+0 te[O,T]°

However, as simple counterexamples will show, (3.3) is not, in general, a

good approximation of (3.1) on the infinite time interval,. i.e., (3.4)

below is not true in general.

lim sup 11exp{A(E)t} - exp{A0t}ll = 0 (3.4)

E£+0 t>o

If, on the other hand, A(S) is such that (3.4) is satisfied, we say that (3.1)

is a regularly perturbed version of (3.3). Otherwise we call (3.1) a singularly

perturbed system. In the literature, systems of the form (3.1) are said to be

singularly perturbed if A(E) has a Laurent series about £ = 0,

A(£) = Z £P A (3.5)
p=-r p

with r > 0, and regularly perturbed if r = 0. We find this characterization

deficient on two counts:

i) using this definition, a system is regularly or singularly perturbed

depending on the time scale used to write its dynamics; and

ii) the Laurent series formulation singles out from the very start a certain

time scale of interest neglecting the system's evolution at slower and

faster time scales.

With a simple normalization of the time variable, a system of the form (3.5)

can be rewritten as having a system matrix with a convergent power series as

in (3.1). By studying the evolution of the system on the infinite time interval

[0,o-[ as in (3.4), we can characterize the perturbation as regular or singular in

a more fundamental way which will depend now on the structure of the system matrix.

Further, such a study will give equal importance to all time scales present in

the system.
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In what follows we focus on the singularly perturbed case since failure

of (3.4) is symptomatic of distinct behavior at several time scales. Formally,

Definition 3.1 (Time Scale Behavior)

Consider (3.1) and let a(E) be an order function (a: [0, ] + R +; a(O) = 0.

and a -) continuous and monotone increasing), x (t) is said to have well

defined behavior at time scale t/a () if there exists a continuous matrix

Y(t) such that, for anyV 6 > 0, T < - ,

lim sup llexp{A(E)t/a(C)} - Y(t)Il = O
E+0 te[6,T]

The following proposition shows that regularly perturbed (unlike singularly

perturbed) systems have extremely simple time scale behavior.

Proposition 3.2 Let (3.1) be a regularly perturbed version of (3.3). Then,

for any order function a(c), 6 > 0, T < o

lim sup llexp{A(E)t/a (£)) - POIl = (3.6)
£+40 te[6,T]

where P0 is the eigenprojection for the zero eigenvalue of A .

Proof:

l|exp{A(£)t/a(E£)1 - Poll < llexp{A(E)t/a(E)} - exp{Aot/aC(£)}l +

I lexp{A t/ (£)} - PO (3.7)

By the definition of regular perturbation, the first term of the r.h.s. of (3.7)

converges to 0 as s + 0 uniformly in t. For the second term we write

exp{A t} = P 2 1 j eXt R(X,A ) dk (3.8)
0

where r0 is a contour enclosing all nonzero eigenvalures of AO. By the assumption

of semistability of A0, we may choose r0 to be in the left half plane bounded

away from the ja,-axis, say by the line {X: Re X = - ~). Using (3.8) we then



have:

jjexpf{At/a(£)} - P11 <K K e- /a() for t e [C6,[ (3.9)

Taking limits on both sides of (3.7) using (3.9) proves (3.6). 0

To complete our discussion of the distinction between regular and singu-

larly perturbed systems, we give a necessary and sufficient condition for (3.1)

to be a singularly perturbed version of (3.3)

Proposition 3.3 The system (3.1) is singularly perturbed if and only if rank

A K< nrank A(E:).

Proof: Necessity is established by contradiction. Let nTank A(£) = rank A

Since the set of eigenvalues of A(E) is a continous function

of £, the zero eigenvalue of A(E) doesnot split. Hence, for E small a contour

YO enclosing the origin can be found such that it only encloses the zero eigenvalue

of A(E). Since A(E) is assumed to be semistable, the only singularity of the

resolvent R(X,A(E)) within y0 is a pole at X = 0 with residue P (£) and we obtain

17Ti Ie Xt ,(3.10)
1 i e R(X,A(E)) dX = PO(cE) (3.10)

0

From section 2, we have that P(E) +- P0 as £ + 0, where P0 is the eigenprojection

for the zero eigenvalue of AO,

p1 eXt R(X,A ) d (3.11)
2ri J '

0

Using (3.10), (3.11) we have

Ilexp{A()t -lexp{A(£)t} - exp{At} < R(A()) - R(X,A 0)I e d

+ I lP0C () P01

where P0 is a positive contour enclosing all nonzero eigenvalues of A (E) for

E small. Since R(X,Ao(E)) converges uniformly to R(X,Ao) on rO and rO, can be
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chosen to lie in C_ bounded away from the j0-axis (by semistability of AO), we

have

lim sup llexp{A(E)t} - exp{A0 t}lI = (3.12)
6+0 t>Q

which establishes the contradiction.

Sufficiency is also established by contradiction. If (3.1) is a regularly

perturbed version of (3.3), then

lim P(S) A lim lim exp{A(£)tl = lim exp{A t} = P
A+0 -+ 0 t-*o t-o (

But P(S), PO are the eigenprojections for the zero eigenvalue of A(S), A0

respectively; and, by Proposition 2.6, rank P(£) = rank P0 thus establishing

a contradiction because rank P(£) = null A(S) and rank PO = null A O.

Remarks:

1) If A0 is asymptotically stable, then any perturbation is regular.

2) There is a heuristic connection between the time scale evolution of (3.1)

and the eigenvalues of A(S). In particular, eigenvalues of order £ are

symptomatic of system behavior at time scale t/S . However, there are several

detailed assumptions and delicate analysis to be performed to validate this

heuristic reasoning. This is the focus of our attention in the following

sections.

Section 4. Complete Time Scale Decomposition

4.1 Spatial and Temporal Decomposition of exp{A(£)tl. The Multiple
Semisimple Null Structure Condition

To facilitate the notation in the development that follows, we choose

for the perturbed system (3.1) the notation:

(t)= A 0 () x (t) ,x (0) = x (4.1)

with

0O O

A (5) = Z AP (4.2)
0 P= G
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Of obvious interest here is when (4.1) is singularly perturbed -time scale

behavior is trivial when the perturbation is regular as shown by Proposition

3.2. We thus restrict our attention to the case rank A0 < nrank A (E). For
0 0

our development we need to construct a sequence of matrices Ak(E), k=l,,..,m

obtained recursively from A0 (£) as indicated below.

Recall the notation of Section 2. Let P (e) denote the total projection

for the zero group of eigenvalues of A 0(). From Corollary 2.8 it follows

that if A00 has semisimple null structure (SSNS) then the matrix

PO (E)A0() A0 ()P (£) P0 ()A0(£)P ( £ )

A1 (£) A = =

has a series expansion of the form

co

A1 () = p PAlp

If the first term in the series (4.3), namely A10 , has SSNS it follows that

Pl(£)Al(E) P1 ()PO(£)A0 (C)
A2 () A = 2

where P1(£) is the total projection for the zero group of eigenvalues of A1(C),

has series expansion

00

A s)=Z JA (4.4)
A2(E ) = p=O 2p

The recursion ends at step m, i.e., at

P ()A -1 () P ()P () .... P (£)A ( )
A s) m-l m-l m-l m-2 0 0
m E m

00

= Y PA (4.5)
p=0 mp

if the matrix A does not have SSNS. The following proposition establishes
mo

several properties of the matrices Ak(£), Pk(£). Define Qk(£) = I - Pk(E);

note that Qk(E) is also a projection (onto the eigenspaces of the nonzero

groups of eigenvalues of Ak(£)).



Proposition 4.1 For £ small enough, including zero, and k=l,...,m

(i) P. i() P. (E) = P. (E) P.i() i,j = O,1,...,m

(ii) Qi(c) Qj () = 0 i i j, i,j = 0,1,...,m

(iii) ¢:n = R(Q0(E)) ... R(Qk(E)) ®R(PO(c) ... Pk(£))

(iv) rank Qk(E) = rank AkO

and for £ small enough but not zero,

(v) n O(C) A)= k Q() AA (£) Qk (E) = A (C) Qk () 0
k Qk) K) k k k

The proof of this result is a modification of results in 11]. See [201

for details.

The following proposition establishes that the sequence Ak(E) always

terminates at some finite m.

Proposition 4.2 Let Ak(E), k=0,1,..., be the sequence of matrices defined

recursively by (4.5). At least one of the following two conditions (possibly

both) are satisfied at some m < a:

(i) A does not have SSNS
mo

(ii) Am+ (E) = 0 or, equivalently,

m

(ii') kZ= rank Ako = d

Proof; It only needs to be shown that (ii) occurs for m < O if (i) does not.

From Proposition 4.1, for all j > 0,



C = R )) R(Qj (£)) R (P () ... Pj ()) (4.. 6)

Since rank Qk (£ = rank Ako, only a finite number of AkO's can be nonzero.

Let m be such that AmO 3 0 and AkO = 0 for k > m. If AkO = , Pk( £) = I.

Hence, AX0 = 0 for k > m implies that A+l (C) = 0.

To show the equivalence of (ii) and (ii'), note that

A (£) P (C) ... P E:)
A (S) = m
m+l m

Hence, if Am 1 (6) = 0 implies that 1R(P0 () ... P ( £)) C N(A 0 ()). On the

other hand, if x e N(A 0()), then x e N(Ak(s)) and therefore Pk(c)x = x.

Thus, N(A (£)) = R(P (£) ... P (£)). Using this in (4.6) yields that

(ii)--> (ii'). The proof of the converse is similar. 0

Definition 4.3 An analytic matrix function A (£) of £ satisfies the multiple
0

semisimple null structure (MSSNS) condition if the sequence of matrices Ak(£)

can be constructed until the stopping condition (ii') of Proposition 4.2 has

been met with all the matrices

Pk-l (C) ... PC) AC S-)
Ak= lim ) Ak = 0,1,...,m

having semisimple null structure (SSNS).

Proposition 4.4 If A (S) satisfies the MSSNS condition then, for some

E1 > 0,

(i) Ak(s) has SSNS for S G [0,E 1], k=0,...,m

(ii) For E e ]o0, 1 ]

R ((AkC)) = R(Qk()) ... R(Q m(£)) k=O,...,m (4.7)3



N(Ak(c)) R(Qo ()) ... R(Qkl()) N(AO ()) k=l,.,m (4.8)

N(A (£)) = R (P0() ... ) (4,9)

(iii) If 2(5) is an eigenvalue of Ak(S) not belonging to its zero group

then s Xk(s) is an eigenvalue of A (£) in R(Q k()). Conversely, if i(£)

-k
is an eigenvalue of A (£) in R(Qk(£)) then £ k (£) is an eigenvalue of Ak(s)

not belonging to- its zero-group.

Proof: Equation (.4,9) has been established in the proof of Proposition 4.2.

Further, if y e R(AO(£)) then y = AO(-£)x for some x. Now, using (iii) of

Proposition 4.1, and (4.9) above

m m

=) Q) x = k ) A() Qk) x

so that R(AO(s)) C R(QO(6)) ... GR(Qm(C)). Equality of the subspaces follows

from counting dimensions. Check that this finishes the proof of (i) - (iii)

for k = 0.

Consider N(Ak(C)). By definition of Ak(£) we have, for £ small enough

but nonzero,

N (c(£)) D N(A0(A)) R (o (s)) .. @ R (Qk1()) (4.10)

Establish inclusion in the other direction by contradiction. Let x e N(Ak ())

but not the right hand side of (4.10). From (iii) of Proposition 4.1,

¢ = R( Q,(6)) 0 ... R(Qm ()) Q N(A (C))
0
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Hence, write x = xl + x with xl e R(QO (£ ) ) ... D R(Qkl (C)) G N(A 0 ( ))

and 0 5 x2 e R(Qk(£)) ... R(Qm ()) with P, (£)x = x if 1 < k. Now

x e N(Ak(e)) implies that

AO(£) P0 ( £ ) ki Pk-1 (£ )

0 = Ak() x =x

k x2

AO(C)A0 (e)

k X2

i.e., x2 e N(A (e)) thereby yielding a contradiction. This establishes (4.8).

To prove (4.7), note that by definition of Ak(E)

R(Ak(S)) C R(PO(£) ... Pkl(£)) RC(AO(E))

and, it follows from Proposition 4.1, and the SSNS of Ao (£) that

R(PO(E) ... Pk (£)) n R1(A0 (£)) = R(Qk(E)) G ... R(Q m(£))

Equality (4.7) follows now from counting dimensions. To prove (iii) notice

that if Ak(S)u = X(e)u and X(£) does not belong to the zero group of eigen-

values of Ak(E) then Qk(E)u = u and therefore it follows from Proposition

4.1- (v) that:

AO(£)u = A0(C) Qk(C)u = c Ak(£)u = kX(()u

Conversely, let A (s)u = p(£)u with u e R(Qk(C)) then,

-k -k
E p(£)u = E A0(£) Q0(£)u = A(£)u
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Proposition 4.4 establishes that if A (£) has MSSNS, then it may be

decomposed as

m k
AO(S) = kC0 ) Ak(4 ) (4.10)

and that the eigenvalues of A (£) may be divided into (r+l) groups corresponding

to eigenvalues of order , j=0 ,...,m, in the invariant subspaces R(Qj ()))

Further, the eigenvalues of order e coincide with k times the order one

eigenvalues of Ak(£). The ranges and nullspaces of Ak(E) are shown in Fig. !;

in addition to N(AO(s)) N(Ak(£)) includes the eigenspaces of A (C) corresponding

k-i
to eigenvalues of order 1, E,.,.,E ; R(Ak(E)), on the other hand, includes

k
the eigenspaces of A0(C) corresponding to all eigenvalues of order .

The following theorem (one of two central results) illustrates the

consequences of MSSNS for the time scales behavior of exp{A0 (E)t}.

Theorem 4,5 If A (C) satisfies the MSSNS condition, then:

m
exp{A (S)t= ko_ Qk(£) exp{Ak(E)£ktl+ P (£) ... P 6 (£)4.11)

= kZ0 exp{Qk(e) Ak(e)ekt} - mI (4f12)

m

= kH0 exp{Qk() Ak(C) t} (4.3)

Proof: Write

exp{A 0 ()t} = P0 () exp{A (E)t} + Q0 (e) exp{A 0 ()t}

= exp{A1 ( E)Et} - Q0(e) + Q0(E) exp{A 0(£)t)

Repeating this manipulation for exp{A (E)Et} we have

exp{A 0( e)t} = exp{A 2(e) t} + Q1
( £) exp{A1(e)et}

+ QO(£) exp{A 0 (E) t} - Q1 () - Q0(Ce)
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Repeating this procedure m times yields

exp{A0 ()t} = exp{A +1 () m +lt} - k=Q k

+ o Q(£) eXp{Ak() A (4.14)

m
But () and I ki Qk(£) = P0(S) ... P (£) so that (4.14) yields

m+1 0_Q(- = in) m

(4.11). Use the identity

Qk () exp{Ak( £) £kt} = exp{Qk(6) Ak(s)£kt} - I + Qk(£ )

in (4.16) to obtain (4.17). Equation (4.18) follows directly from (4.10),

the property (v) of propdsition 4.1 and the:fact that:

Qk( k() A Qj() A.j(£) = 0 ji k

Remark:

Under the MSSNS condition, equation (4.11) of Theorem 4.5 gives a spatial and

temporal decomposition of exp{A 0(st} -e.g. Qk 
( ) exp{Ak()£ kt} does not

change significantly in time until t is of order 1/k . This decomposition is

of crucial importance in studying multiple time scale behavior, uniform

asymptotic approximations and reduced order models for the system (4.1).

4.2 Uniform Asymptotic Approximation of exp{A (E5)t}: The Multiple

Semistability Assumption.

As stated in the previous section, exp{A0(O)t) is a uniform approximation

to exp{A 0 (£!)-t} on any compact time interval [0,T]. To capture all the multiple

time scale behavior, however, it is necessary to have a uniform asymptotic

approximation on [0,o[. For this we need the following condition:
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Definition 4,6 A O() satisfies the multiple semistability (MSST) condition if:

(i) A (£) satisfies the MSSNS condition, and

(ii) the matrices

Pk ()... Pk(E) A(£)
Ab lim k
k0 £+0 £

for k=O,l,...,m are semistable.

The following is a central result in uniform approximation:

Theorem 4.7 Let A (E) satisfy the MSST condition. Then,

lim sup |lexp{A (£)t} - P (t,E) i = 0 (4.15)
-+0C t>0

where (t,c) is any of the following expressions:

m k

(t = k= Qk exp CAk£ t + P p (4.16)
' m

= Z exp{A F- t-mI (4.17)

k:C exp{AnkCkt (4 18)

m k

= exp{k_ Ak0 t}

where Ak lim A k(), Pk = lim Pk(£) and Qk = lim Qk(). Furthermore,
EnR E+0 O E+0

=R(A (0)A ... * R(Am0) ° (k- N(A) (4 )

Proof: We first establish (4.15) with f(t,£) as in (4.16). Using (4.11)

from Theorem 4.5 for exp{AO ()t)C 
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exp{A ()t} -(t , ) = (P (£)...P (C) - P ... Pm) +
0 m 'm

E (Qk(E) exp{Ak( 0) £ t } - Qk exp{A 0k£kt})
k=0

The first term in the above equation tends to zero as £ + 0 independently

of t. For the second term write

~k(t£E) A Qk(£) exp{Ak()Ek t} - Qk exp{Ak0kt} =

27li r e (R(k,Ak(£)) - R(X,Ako)) d

where rk is a contour enclosing all nonzero eigenvalues of Ak. By

semistability of AkG, rk can be chosen to lie in the left half plane

bounded away from the jo-axis, Hence, we have for some a < 0

kR( RX||(,Ak(E)) - R(-,A )| dX <

-k

Since R(X,Ak(E)) converges uniformly to R(X,Ako) on compact subsets of C

(by Lemma 2.5), we have that j IIk(t,) II tends to zero as E + o (uniformly

in t). Equality between the different expressions of 4(t,e) is established as

in Theorem 4.5.

To establish (4.19) we have from (iii) of Proposition 4.1 that

n = R(Q0 (£)) .. .R(o (c)£)) R(Po (E) ... P (£))0 Ili 0 m

and by continuity of the projections Qk(e), Pk(E),

n = R(QQ) f - R(Qm) R(PO Pm)

The direct sum decomposition (4.I9) follows now from the fact that, by

construction, Qk is the projection on R(AkO) along N(AkO) . O



-26-

In the next section we use the result of Theorem 4.7 to determine

the complete multiple time scale behavior for (4.1) and obtain a set

of reduced order models.

4.3 Multiple Time Scale Behavior and Reduced Order Models.

Multiple time scale behavior is explicated by the following corollary

to Theorem 4.7.

Corollary 4.8 Let A (E) satisfy the MSST condition. Then,

(i)

lim sup I exp{A0(£)t/kk } - Ck(t)ll = 0 (4.20)
£+0 8<t<T 

V6 > 0, T < a; k=0,1,...,m-1

(ii)

lim sup i expA 0(E)t/c
m } - ~ (t) II = 0 v3 > 0 (4.21)

E+ 0 8<t<-

where Ok(t) is given by:

Ok(t) = Qk exp{Ak0 t} + P ''' k (4.22)

=0 ... Pk-l exp{A 0O t} k=0,1,...,m (4.23)

Proof: From Theorem 4.7 we have that

k=l t

exp{A0 (e)t/Ek } = _ Q exp{Ao t/ k- + Qk exp{Akot } +

i=o

m

Z Q exp{A 0 t £-k} + . P + o(l) (4.24)
Z=k+l

uniformly for t e [0,c[. Now, by the semistability of Ago,

O exp {A t = 1 f eX R(XAQ ) dX
9,0 27f1~
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for some ri in C_ bounded away from the jW-axis. By the boundedness of

R(X,AkO) on rl,

I IQQ exp{A 0o t}11 
< MR e with al > O

This yields

k-l k-
lim sup Y Qk exp{A 0o t/E = (4.25)
E+0 6<t<o Z=o

On the other hand, it is clear that

lim sup llexp{A 0 -k t} - iIl = 0 V >k, T < (4.26)
6+0 O<t<T

Using (4.25), (4.26) in (4.24) yields (4.20) and (4.21) with

m

Ik(t) = Qk exp{Ako t}+ + P ... P (4.27)

equality of expressions (4.22) and (4.23) follows from (4.27). 0

Remarks:

1) From (4.22) of Corollary 4.8 and (4.16) of Theorem 4.7 it follows that:

m mrl
exp{A (E)t} = kO ((£ t) - P Pk + (1) (4.28)

uniformly for t > 0. Thus, only the behavior at time scales t/Ek , k=O,...,m

is needed to capture the evolution of exp{A (E)t} on [0,-[. From the proof

of Corollary 4.8 it is clear that

lim exp {AO(E)t/a (s)

+0 -

exists for any order function a(E). Indeed if ak() = O() = o( ) and £ =k+l O(k())
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then

lim exp{AO(E)t/a0k(£ ) ) = P ... Pk (4.29)

and for a(E) = o(m)

lim exp{A ( £)t/l (£ )) = P '... m (4. 30)

Thus, the system has well defined behavior at all time scales, even though

k
only a finite number of them (t/s , k=0,l,...,m), called the fundamental or

natural time scales, are required to capture the system evolution (strictly

speaking only those for which Ak0 f 0).

2) The behavior of the system as given by (4.23) is canonic in the following

sense: at a given time scale, say t/E , all faster time scales t/E for Z < k

have come to their equilibria (respectively P9 ); and all slower time scales

t/E9 for Z > k have yet to evolve. 0

To interpret the matrices Ako as reduced order models of (4.1), notice

that the uniform asymptotic approximation

exp{At ()t} = m Q exp{A £kt} + PO ... P + o(l)
0xp~Ag(E~t k=0, Qk kO 0 m

together with (4.19) imply that the subspaces R(Qk), k=O,...,m, are almost

invariant subspaces (or £- invariant subspaces, as defined in [16]) of (4.1).

The parts of x (t) that evolve in different subspaces do so at different time

scales.

Corollary 4.9 Consider the linear systems

=k Ako Yk "'Yk(° ) = Qk xO ,k=O,l,...,m (4.31)

Then,

Qk x (t) = Yk (£ k t) + o(l) ,k=0,l,...,m
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and

£ k
x W = o Y (E.t) P mP x0 + o(1) (4.3.2)x (t) = k__l Yk( ck t) + P 0 m 0

Proof: A straightforward modification of Corollary 4.8. 0

Remarks:

1) The linear systems (4.31) though written as equations on IR are

really reduced order models since each evolves in R(Qk)' k=O,l,...,m

and

m
kO dim R (Qk) = nrank A,(E)

2) In particular, choosing a basis adapted to the direct sum decomposition

(4.19) it is possible to asymptotically decouple (4.1) into a set of lower

dimensional systems each evolving at a different time scale as follows:

Let V be the. (E-independent) change of basis mentioned above. then Theorem

4.7 can be written as:

exp{Ao (£)t} = V l-exp k
=eVp{exp kf = 'V Aeo V £ ti V +o(l)

At A1 t A £-t
= V- diag {e , e ,...,e , } V + o()

where the matrices Ak are full rank square matrices with dimension equal to

rank Ak0 corresponding to the nonzero part of AkO0 in the new basis. O

In the next section we show that such a complete decomposition and

simplification as has been elaborated here is possible only if Ao ()

satisfies the MSST condition.
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4.4 Necessity of the Multiple Semistability Condition

We have shown in Sections 4.2 and 4.3 the existence of well defined

behavior at several time scales under the MSST condition. If MSST is

not satisfied then, at least for some order function a(6), the limit

lim exp{Aa (6) t/a () }

does not exist. To illustrate this, consider the following examples:

Example 4.9 (Ak not SSNS) Consider the matrix

6 O -2E

Aa (s) =
£) 1 1 -2

semistable fors E [0,1] with eigenvlaues o. = O, A1 = -2 + o(l) and

X2 = - £2 + o(c2). This matrix does not satisfy the MSSNS condition;
2,

as may be verified (for a systematic procedure to do this calculation

see section 4.5) that:

O -1 0

A10 = 0 

_ O -1/2 O

is nilpotent. Also, by direct computation, it is found that

i AtL -~ ~ (-1) i
2 1 ( (XX -E)(e -1)

expfg ,(E)t} - (X0 Ck (X k( +2) e (_ ) 26e

. .t Xt
0 (-1) ei i e I

with t(-1) e scale behavior

with the following time scale behavior
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1 0 0

lim exp{A (C)t} = exp{A 0t} = O 1 

(1-e
-2t)/2 e 2 t

and

1 t/2 0

lim exp{A (E)t/E} =PO exp{A1 0 t} = 0 1 0
E:+0

0 1/2 o

To see that the limit

lim exp{A (6)t/ 2 }
S£+ 0

does not exist, consider the (1,2) entry of exp{A (£)t/e }:
0

2 t2t/6
2

1) (e -1 (4.33)
2X 2 2

Since 22 -- 2 + o(£2 ), the first term in equation (4.33) is of order 1/s

as £ + 0. Thus, the system does not have well defined behavior at time

scale t/s even though it has a negative real eigenvalue of order s .

Example 4.10 (Ako not MSST). Consider the matrix
ko

-2 0 02

Ao(6) = [ ::2 2

O -S --

This matrix is semistable for S > o and it has the three eigenvalues X0 - 2,

2 2
X1 -s + is and =- iS. Also,
1 2
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A00
0 O O O -1 

MSST is violated since A10 has purely imaginary eigenvalues. Calculation

yields

-2t 0 0

2 2
-Ct -E t sin Et

expfA O0 (c)t} = 0 e os t -e

2 2
-C t -C t

0 e sin et e cos E

The system has well defined behavior at time scales t and t/C but

exp{A (C)t/C2 } does not have a limit as C % 0 because of the presence of

terms of the form e sin t/C. (The attenuation is slower than the frequency

of oscillation.)

In fact, the MSST condition is a necessary and sufficient condition

for the existence of multiple time scale behavior.

Theorem 4.11 Let Ao () be semistable for £C [0, O] and let AkG, k > 0

be the sequence of matrices constructed in Section 4.1. If A0 0, Ao1 0 ,...

A 1,0 are semistable but AR0 is not, then the limit as +- 0 of

exp{A 0o()t/£ (4.34+)

does not exist for any Q < q < Z + 1. Further, if A90 has a pole on the

imaginary axis (including zero) which is not semisimple, then

lim sup !lexp{A (C)t}II = o
CS0o t>O 0

Proof: We construct the proof for Z = 0 by contradiction. Assume that

the limit
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lim exp{A0 ()t/E q }

exists for t > 0 and some q e ] 0,1]. If this limit exists, then so does

the limit of exp{P (C)A( 5))t/ £q} as £ + 0 because;

0 +0 0lim P (£) exp{A(£)t/ } lfCm pt/ rex { )

Define,

P (£) A0(c)

The next step is to prove that a(F (S)) remains bounded as £ + 0. Take

0 3 X(£) e C(P (E)A0(C)) and let 4(s) be a corresponding eigenvector with

|I |(£)j | = 1. Then,

exp{P0( £) AO(E )t/E
q } (s) = exp{ReX(£)t/sq}. exp{i Imk(E)t/£q} $(£)

and if E + 0 is a sequence for which c(sm) converges,

exp{Re X(E ) t/} - exp{i ImrX( ) t/cs} (.4.35)

must also converge as m + Now, since the trace of A0 (£) has a series

expansion in integer powers of s and the eigenvalues in the zero group of

A (£), }I(e), have non-positive real parts,

Re p(s)/Ck - P as £ + 0

for some integer k > 1 and some constant p. We thus conclude that ReX(£ )/E5qrm m

must converge as m + o. Further, by the convergence of equation (4.35),

Im %(6 )/£q must also converge as £ + 0. Because (F0 (s)) remains bounded
m m 
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as £ + 0 we can choose tl such that

Im 0(F (E)t l ) I < '

for £ small enough. Hence, if Ln denotes the principal branch of the

logarithmic function, we obtain:

Ln exp{F (£)t} = FO(£)tl = + GO ()t (4.36)

where the last equality follows from Proposition 2.7 with Do being the

eigennilpotent for the zero eigenvalue of A00 and Go (E) a continuous function

of E. The limit

lim Ln{exp F (E)'tl} A B(t1 )

C+0

is well defined by the boundedness of C(F (E))and therefore, by (4.36),

Do = 0, i.e., if the limit of (4.34) exists then A must be SSNS.
00

Suppose now that A00 has some purely imaginary eigenvalue V. Then

there exists at least one eigenvalue p(E) of AO (£) such that p (c) - P

as £ + 0. Let f(E) be a corresponding eigenvector with I El(£ij = 1 and

£ + O a sequence for which (ls ) converges. Then, if (4.34) has a limit

so does

TP(m )t/£ 

m ~0 m m m

which is a contradiction. We have thus shown that if A is not semistable,
Q00

(4.34) cannot have a limit as E + 0.

To prove the theorem for an arbitrary Q, notice that using the same

algebraic manipulation as in the proof of Theorem 4.5, we can write



expA(t/q} = exp )t/ } k k ( +

expjA 0(C) t/F= expfA 9Q (6) t/C9 k-Zo Pk (c(E o

k--oQk (E) expfAk ( o)t/£q- k j (4 37)

By semistability of A00,.,- A_ 1i0 the second and third sums in the right

hand side of (4.37) have well defined limits as £ + 0. Thus, assuming that

exp{A0 (£)t/eq }

has a limit as E + 0 so does

exp{A (£E)t/ q-kI} k < q < k + 1

implying, as proved previously for Z = 0, that AiO is semistable, a

contradiction.

To prove the second part of the theorem, suppose that AgO has as

eigenvalue on the imaginary axis which is not semisimple. The V M < K

there exists a T < X such that

Ilexp({Ao T)ll > M

and because exp{A (£)T} converges to exp{AgOT} as £ + 0, we conclude that

lim sup 11exp{A9 (£)t}Il = 
£+0 t>0

The desired result follows now from (4.37). 0

The above theorem can be interpreted as saying that if a system has

well defined behavior at all time scales then its system matrix must be MSST.

As we will discuss in Section 5, there are systems for which this condition is

always satisfied. In general, however, the sequence of matrices Ak0 will have

to be computed to check for semistability.
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Section 4.5 Computation of the Multiple Time Scale Behavior

Theorem 4.7 reveals that the matrices Ak0 play a fundamental role in the

asymptotic analysis of singularly perturbed systems. These are the leading

terms in the-series expansions of the matrices

Pk-l () ... Po (E) A0 (£)

Ak (k) k
£

for k = 0,1,...,m. The matrices in the series expansion of Ak(£) are shown

in Figure 3. The (i+l)th row of Figure 2 is computed from the ith row using

Corollary 2.8, i.e.,

j+ P (k (k) (kp+l
A. S .I (1 ) S. 2l.... S. (4.38)

, p 1 p

kl+. .+k+l=P-l

Vi>_, kl > O

i = 0,1,..,m

j >0

where

(.0)
S. P.

(p) (Ai# ) P > 0

The formula (4.38) enables the array of matrices A.. to be computed triangularly,
1I

so that computation of Ako requires only the computation of Aij for i = 0,...,

k-l and j = 0,...,k-i. Thus, the algorithm contained in equation (4.38) may

be implemented recursively. In the following proposition we illustrate the

complexity of the expressions for the AkO in terms of the given data AO0,

A0 1il... (i.e. A0 (E)). We note also from (4.34) that the computation of the AkO's



and hence the asymptotic limit of exp{A (£)t} involves only A,...,Am (only

finitely many matrices in the asymptotic expansion of A (£)),

Proposition 4.12 The matrices AkO for k = 0,1,2 and 3 are given by:

A0 0

10 = P0 01 .0

A20 = P1P0 (A02 A01 A08 A01) PoP1

30 P P - A01 A# A Ao Ag#o Ao0 + A A# A A# A

A02 (P A01 P) A2 + A02 (PA A01 P) A# A
02 0 01 0) 02 02 01 0 01 00 01

A01 A A01 (P A01 P) A2 - Aol A# A0 (P A01 P)#

A0 1A0 A01) PG P1 P2

Proof: By somewhat laborious calculation. 0

Remarks:

1) If A(£) is of the form A + £B, then we have

A A

A P BP
10 o o

A20 = - P P B AM B P P1

A30 = P2 P1 PO (BA BA B - BA B(PO B P ) B A B) P0 P1 P2

Thus, a system of the form

x (t) = (A + £B) x (t)

may exhibit time scale behavior at time scales of order 1/g, 1/ 2,...1/ m ,



a fact that is not widely appretiated in the literature. As examination of

the characteristic polynomial of A + EB will show, no eigenvalue of A + CB

can be of o(,n ) so that at most m = n. Similar reasoning leads us to the

conclusion that for

p k
A (L) = k L A

m can at most be np.

2) For the classical two time scale .formulation of (1.2), normalized to the

form (1.1), we have

A = A0 0 and B = A [ 1 o 

If A22 is stable then A is semistable with

| I O0

- 2 2 A2 1 0

so that

All -A12A A22 A21 0

-10 -1
-A22 A21 (A11 12 A22 A 21)

From this, we see that the model at the fast time scale is

X2 = A22 X2 + A21 X1

Xl =0

and the reduced order model for the slower dynamics is

= (A - A22 A1) X
11 12 22 21 1

-1
x2 = -A22 A21 x1
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-1
If, as is usually assumed, All -A1 2 A22 A21 is also stable then rank A22

-1
+ rank (All -A A12 A 21) = rank (A + SB) so that the system (1.2) has only

two time scales.

3) If Ao () is a rational function of £, with Taylor series about £ = 0 given by

k

Ao () = k- £ A0k

Then it is well known (e.g. [17], [18], [19],) that m is the order of the

Smith McMillan zero of Ao (£) at m = 0. It may also be established that the

matrices Ako defined above are related to block Toeplitz matrices of the form

A0 1 A 0 0 A 0 000 1 A00 · A00 

A A I A A 0 A
A01 A00 A01 A00 0x

A0 A1 A A A. A
02 01 00 Om 01 00

The details of this connection will be presented elsewhere, since it is not

in the mainstream of our development here.

4.6 Partial Time Scale Decomposition

We discuss here the multiple time scale behavior of systems that do

not satisfy the MSST condition of Section 4.2. Such systems have well defined

behavior at some, but not all time-scales, and it may be useful to be able to

isolate the time scales at which they have well defined behavior. Consider,

m
for example, the case when time {Ako} have SST, but Ato for some Z < m

k0O
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violates the :semistability condition - i.e., it has at least one non-zero eigen-

value k, with Re - > 0. Then, we have

Proposition 4.13

Let the -matrix A (£) satisfy the MSSNS condition and let the matrices

AkO, k = 0,l,..,,m for k 4 2 be semistable, Then, V. > 0, T <

lim sup llexp{A0 () t/ECk k (t) I= 0 for k=l,...,Q (4.39)
C+0 t&<t<T

where

Ok(t) = . P k-l expI{Akt}

= Qk exp{Akt} + P ... Pk (4.40)

Proof: Follows readily from the proof of Theorem 4.7. °

Remarks: (i) Equation (4.39) does not hold for k > 2 . For these values of

k we however have

lim sup IIPz(_) exp{A 7(C)t/ck} - k(t) I= 0 (4.41)
E+0 6<t<T

Note that in equation (4.41) the projection matrix P (E) annihilates behavior

at time scale t/E involving unstable or oscillatory modes. In general, however,

P(£E) in (4,41)i cannot be replaced by PZ(O) so that (4.41) is of limited use

in obtaining a uniform asymptotic series for exp{A (£)t}.

ii) Sometimes in applications, A (6) satisfies a uniform stability condition,

viz

lexp{A (E)t}1 <- K Vt > 0, £ e[0o, ] (4.42)0~~~~~~ o 



-41-

Although (4.42) guarantees that A0 () satisfies the MSSNS condition and that

any purely imaginary eigenvalue of the matrices AkO is semisimple, it is not

enough to guarantee MSST, A uniformly stable system may not have well defined

behavior at some time scales because of the presence of slightly attenuated

oscillations that when seen at slower time scales present infinite frequency.

For uniformly stable systems, however, Proposition 4.13 can be strengthened.

Proposition 4,14

Let the matrix A (£) satisfy (4.42) and let the matrices Ako, k = O,l,...,m,

be semistable for k # Q. Then V6 > 0, T < 0

lim sup Ilexpf{AO ()t/sk} -k k( t )fI = 0 k =
£+0 6<t<T

lim sup IPQ exp{A(E6)t/sk} -k (t) II = Q k = Q+l,...,m

£+0 6<t<T

where Ok(t) is as in (4.40) and T can be taken equal to 0 for k=m.

Proof Follows readily from Theorem 4.7 and the properties of uniformly stable

systems mentioned above.

Section 5. Conclusions and Application of our results to the Hierarchical

Aggregation of Finite State Markov Processes

We have studied the asymptotic behavior of exp{A0 (E)t} over the time

interval 10,0). We have formalized the notions of multiple time scales and

reduced order models valid at different time scales. The most important

conclusion is that a certain multiple stability condition referred to as the

MSST condition is necessary and sufficient for exp{A (E)t} to have well defined

multiple time scales behavior. We feel that our results will have important
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computational consequences for the simulation of large-scale linear systems

with weak couplings, but this has yet to be explored.

An application of particular interest to us is the hierarchical aggre-

gation of finite state Markov processes (FSMP) with some rare events. The

presence of rare events in a FSMP is modelled by a small parameter £ in its

matrix of transition rates, e.g. Ao () = A0 + CB. The matrix of transition

probabilities for the FSMP, C (t), is then given by

P (t) = exp{A (£)t} (5.1)

It is shown by us in [4] that when Ao () is a matrix of transition rates then

A (E) satisfies the MSST condition so that P (t) always has well defined
0

multiple time scale behavior. The reduced order models that describe the

evolution of P (t) at each of its fundamental time scales are then interpreted

as increasingly simplified aggregated models of C(t) obtained by collapsing

several states of (Ct) into single states of the reduced order model. The

aggregation is hierarchical so that the model at a time scale, say, t/£ can

be obtained by coalescing some states of the (already simplified) model valid

at time scale t/E

This problem has also been studied in detail in [12] where a sequence

of aggregation models is also obtained. However, the question of a uniform

asymptotic approximation to (5.1) was not studied in [12]. In [4], we develop

the hierarchy of approximations as a uniform asymptotic expansion to (5.1) and

relate our results to those of [12].
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Fig. 1 Geometric Content of Proposition 4.4
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