
ESD Working Paper Series

ESD-WP-2013-03 January 2013

Optimal Selection of Sample Weeks for Approximating the Net

Load in Generation Planning Problems 

Fernando J. de Sisternes

Engineering Systems Division
Massachusetts Institute of Technology
Cambridge, MA 02139 USA
E-mail: ferds�mit.edu

Mort D. Webster

Engineering Systems Division
Massachusetts Institute of Technology
Cambridge, MA 02139 USA
Phone: 617-253-3901
E-mail: mort�mit.edu

esd.mit.edu/wps



 
 

1 

1Abstract— The increasing presence of variable energy 
resources (VER) in power systems –most notably wind and solar 
power– demands tools capable of evaluating the flexibility needs 
to compensate for the resulting variability in the system. 
Capacity expansion models are needed that embed unit 
commitment decisions and constraints to account for the 
interaction between hourly variability and realistic operating 
constraints. However, the dimensionality of this problem grows 
proportionally with the time horizon of the load profile used to 
characterize the system, requiring massive amounts of computing 
resources. One possible solution to overcome this computational 
problem is to select a small number of representative weeks, but 
there is no consistent criterion to select these weeks, or to assess 
the validity of the approximation. This paper proposes a 
methodology to optimally select a given number of representative 
weeks that jointly characterize demand and VER output for 
capacity planning models aimed at evaluating flexibility needs. It 
also presents different measures to assess the error between the 
approximation and the complete time series. Finally, it 
demonstrates that the proposed methodology yields a valid 
approximation for unit commitment constraints embedded in 
long-term planning models. 
 

Index Terms—Flexibility, Generation capacity expansion, 
Variable energy resources, Renewables integration, Power 
system modeling, Net load. 
 

NOMENCLATURE 
𝐶𝐹𝑗𝑆𝑂𝐿𝐴𝑅  Solar PV power capacity factor level at hour j 

𝐶𝐹𝑗𝑊𝐼𝑁𝐷 Wind power capacity factor level at hour j 

𝐶𝐹𝐸𝑋 Capacity factor error of technology X 

𝐷𝑗  Demand level at hour j 
𝐸𝐶𝐸𝑋 Energy contribution error of technology X 

𝑗 ∈ 𝐽 Index for the set of hours 

𝐿𝐷𝐶 Load duration curve 

𝐿𝐷𝐶� Load duration curve approximation 

𝑁𝐿𝐷𝐶 Net load duration curve 
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𝑁𝐿𝐷𝐶�  Net load duration curve approximation 

𝑅𝑀𝑆𝐸𝜈  Root-mean-square error 

𝑁𝑅𝑀𝑆𝐸𝜈  Normalized root-mean-square error 

𝑆 Solar photovoltaic capacity installed 

𝑆𝑈𝐸𝑋 Start-up error of technology X 

𝑊 Wind power capacity installed 

𝜅 Net-load-based selection including peak hour 
week 

𝜆 Load-based selection 

𝜈 Net-load-based selection 

𝜌 Season-based selection 

𝜏 Net-load-based selection including the peak 
hour day 

 

I. INTRODUCTION 
HE ongoing large-scale introduction of variable energy 
resources (VER) in electric power systems has 

substantially increased the variability and the uncertainty of 
the net load, the difference between the actual load and the 
variable energy output, also known as residual demand [1]. 
Under this new paradigm, resources that can respond quickly 
and balance the variability of the net load throughout a 
prolonged period of time need to be deployed in the system [2] 
[3] [4]. These resources provide what is generally referred to 
as operational flexibility or, simply, flexibility (although there 
is no common definition for it) [1] [5] [6]. Quantifying the 
operational flexibility needs in a power system requires using 
long-term investment models that account for the cost of 
deploying these resources, as well as including sufficient 
operational detail to account for the cycling costs and 
operational effects resulting from the additional variability 
introduced [7] [8] [9].  

Capacity expansion problems are typically used to 
determine the optimal generation capacity mix and the level of 
reserves to supply electricity reliably to a given demand 
represented by its load duration curve (LDC). However, the 
additional fuel and O&M costs associated with a more intense 
cycling regime, induced by a greater variability in the system, 
is not captured in the classic version of the problem [10].  
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Conversely, unit commitment (UC) problems represent the 
hour-by-hour dynamics of the system solving for commitment 
states, start-up and shutting-down of plants, but not for new 
investment decisions [11]. In the past, some authors have 
introduced methods that cope with some of the uncertainties 
present in the UC problem. For instance, the uncertain 
availability of plants has been considered through probabilistic 
reserve determination [12], and uncertainty in demand [13] 
and stochastic hydro-inflows in hydro-thermal systems [14] 
through stochastic programming. More recently, stochastic 
programming approaches [3] [15] [16] and stronger 
formulations of the problem [17] have been proposed to more 
effectively and efficiently model the uncertainty posed by 
VER, given an existing capacity mix. 

Models that assess the need for flexibility for long-term 
planning in a system with VER need to simultaneously include 
capital investment decisions, operational decisions, and the 
uncertainty and variability from VER. Recently, formulations 
based on including capacity decisions within existing 
simplified UC problems have gained momentum, as a means 
to assess operational flexibility needs [7]  [8]  [9]. These 
formulations minimize the total system cost (the sum of the 
fixed and variable costs) over one year, by taking into account 
the annualized capital cost of the units and the total variable 
cost of a one-year unit commitment problem, including the 
main operational constraints (see Appendix).  

These models are computationally very difficult to solve as 
each potential unit in the system has on the order of thousands 
of binary commitment variables associated. For instance, to 
make commitment and generation decisions from a pool of 
300 generating units, one would need to solve a problem with 
over five million binary variables (counting each unit’s 
commitment and start-up decisions over the 8,760 hours of a 
year). Yet, the high dimensionality of these models cannot be 
solved with a straightforward application of stochastic 
optimization techniques, as binary commitment variables are 
part of the subproblem in the classic Benders’ decomposition 
formulation, which impedes closing the duality gap [18]. 

Morales et al. [3] point out that improving the 
computational tractability of models that assess the need for 
reserves in systems with VER might require an appropriate 
bundling of hourly wind-related values and a reduced but 
representative set of VER generation scenarios. Accordingly, 
simplified versions of such models have been proposed, all of 
which select a number of representative weeks to construct an 
approximate load profile of the system’s yearly demand [7] [8] 
[9].  

Kirschen et al. [9] based their selection of representative 
weeks on seasonality and well-known demand patterns. 
Conversely, Papavasiliou et al. [16] proposed a method that 
optimally determines the weights of a pre-selected number of 
representative wind power scenarios. However, in a system 
with a large penetration of VER, a sound method that selects a 
small number of representative weeks has to simultaneously 
provide a good account of the load duration curve while 
including potential correlations between the load and VER 
output. 

This paper proposes a method that takes into account this 
correlation by optimally selecting a number of weeks from a 
one-year-horizon hourly load series, given the hourly 
availability of VERs over the same timeframe. First, we 
describe how the complexity of the problem posed by 
selecting weeks from a one-year data series increases with the 
number of weeks selected. We propose metrics for this 
application and we argue that a small number of weeks are 
sufficient to represent the net load duration curve, with 
negligible error. Second, we explore the trade-off between the 
added complexity of including the peak net load day in the 
problem and achieving a more accurate representation of the 
hours with non-served energy (NSE), which is critical for 
determining the economic feasibility of peaking units. Third, 
we demonstrate the improvement in accuracy from accounting 
for the correlation between demand and VERs, using a 
selection based on the net load duration curve, as opposed to a 
selection based on seasons or based on the system’s load 
duration curve. Lastly, we validate the applicability of our 
methodology to power systems with a high penetration of 
VER by comparing the error values obtained in two different 
regions.  
 

II. APPROXIMATING THE NET LOAD DURATION CURVE 

A. Methodology 
The methodology presented in this paper is based on 

selecting a fixed number of sample weeks from a one-year-
horizon net load series. We focus on the net load because it 
represents the combined variability of demand and VERs that 
must be balanced with dispatchable generation. By jointly 
considering demand and VER generation, we account for the 
correlation between them.   

The goal of this method is to develop useful approximations 
to be used within planning tools for systems with a very high 
penetration of VERs. To this end, we need to assume the 
hourly VER generation for a certain future penetration level as 
an input of the model. It is well-known that there is a 
smoothing effect on the variability of VER output with a 
larger geographical dispersion of the resources. However, for 
sufficiently large levels of dispersion and penetration, this 
smoothing effect reaches a saturation point above which there 
is minimal further reduction in variability [19]. In this paper, 
we assume that for the systems studied such a saturation point 
has been reached and that it is safe to upscale historical data to 
project hourly VER output for higher levels of penetration. 

Therefore, for a certain penetration level of wind (𝑊) and 
solar PV (𝑆), the hourly variable output is calculated as the 
product of each variable technology’s historic capacity factor 
(CF) and the total capacity deployed of that technology. Thus, 
the net load duration curve (NLDC) can be obtained by sorting 
the difference between the demand and the VER output in 
decreasing order:  
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𝑁𝐿𝐷𝐶𝑗 = 𝐷𝑗 − 𝐶𝐹𝑗𝑊𝐼𝑁𝐷 𝑊  − 𝐶𝐹𝑗𝑆𝑂𝐿𝐴𝑅  𝑆 

s. t. :𝑁𝐿𝐷𝐶𝑗−1 − 𝑁𝐿𝐷𝐶𝑗 ≥ 0     ∀𝑗 ∈ 𝐽 
(1) 

Similarly, the approximate net load duration curve (NLDC� ) 
can be obtained in three consecutive steps: 1) sample a given 
number of weeks from a full year of demand and VER 
generation; 2) scale up the hours contained in the sample to 
one year; and 3) sort the series in  decreasing order to form the 
approximate net load duration curve. The resulting NLDC�  is a 
discretized approximation of the NLDC. 

To choose from among all possible approximations of a 
given number of weeks, we use least square error 
minimization between the NLDC and its approximation. The 
optimal approximation is given by the solution of the 
following optimization problem: 

 𝜈∗ ∈ arg min
𝜈
�𝑁𝐿𝐷𝐶 − 𝑁𝐿𝐷𝐶� 𝜈�2 (2) 

where 𝜈 ∈ ℤ𝑛 is the set of indices of the n weeks selected; 
𝜈∗ ∈ ℤ𝑛 is the set of indices of the optimal week combination; 
and 𝑁𝐿𝐷𝐶 ,𝑁𝐿𝐷𝐶� 𝜈 ∈ ℝ8,736. 

B. Scaling the Sample  
We can assess the quality of the approximation by 

comparing each of the individual hours in the NLDC with its 
corresponding hour in the NLDC� . In order to establish this 
comparison, we need to have the same number of hours in the 
approximation as in the NLDC. To this end, each hour 
contained in the weeks sampled has to be expanded by an 
integer weight to complete the total number of hours in a year. 
For simplicity, although one year is composed of 52.14 weeks, 
we will assume that a year is formed by 52 weeks to preserve 
the integrality of the total number of weeks selected. For 
example, if a sample of four weeks is selected, the weight by 
which we have to scale each hour within the group of weeks 
selected to generate a one-year series is 52/4 = 13 (Fig. 1).  

Notice that to apply equal weight to all weeks selected, the 
possible number of weeks is limited to the divisors of 52 (i.e., 
1, 2, 4, 13, 26 and 52). 

 
C. Errory Metrics 

As mentioned earlier, the objective of the approximation is 
two-fold: first, to accurately approximate the yearly net energy 
demanded by the system; and second, to account for the 

operational detail of thermal units in the system.  Thus, we 
need metrics that assess the approximation’s performance 
from these two perspectives. The statistical metric for the error 
incurred with respect to the net energy is the root-mean-square 
error (RMSE) between the NLDC and its approximation: 

 

𝑅𝑀𝑆𝐸𝜈 = �∑ �𝑁𝐿𝐷𝐶𝑗 − 𝑁𝐿𝐷𝐶𝚥𝜈� �28,736
𝑗=1

8,736 
 (3) 

This metric can be normalized relative to the range of net 
load values in the series with the normalized-root-mean-square 
error (NRMSE): 

 
𝑁𝑅𝑀𝑆𝐸𝜈 =

𝑅𝑀𝑆𝐸𝜈

𝑁𝐿𝐷𝐶𝑚𝑎𝑥 − 𝑁𝐿𝐷𝐶𝑚𝑖𝑛
∙ 100  [%] (4) 

 Although the sample of weeks is chosen to best represent 
the net load duration curve, we are primarily interested in how 
well the sample approximates the unit commitment decisions 
from a full year. To demonstrate the value of the 
approximation, we compare the results for energy 
contribution, capacity factor, and number of cycles performed 
per year from the approximation (scaled up to a year) with the 
results from running the UC for the full year. These three 
values give an indication of how thermal units are operated in 
the system.  The difference in results between the two models 
is expressed in absolute values with their sign. We define error 
metrics for technology X as:  

 
𝐸𝐶𝐸𝑋 =

1
|𝑋|� � 𝐸𝐶�𝑖

𝐼

𝑖=1,𝑖∈𝑋

− � 𝐸𝐶𝑖

𝐼

𝑖=1,𝑖∈𝑋

�     [𝑝.𝑢. ] (5) 
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𝐼
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𝑆𝑈𝐸𝑋 =

1
|𝑋|� � 𝑆𝑈�𝑖

𝐼

𝑖=1,𝑖∈𝑋

− � 𝑆𝑈𝑖

𝐼

𝑖=1,𝑖∈𝑋

�   [
𝑠𝑡𝑎𝑟𝑡𝑢𝑝𝑠
𝑦𝑒𝑎𝑟

] (7) 

where 𝑋 ⊂ 𝐼 is the subset of indices corresponding to 
generating units of technology ‘X’; and |𝑋| is the cardinality 
of the subset. 

D. How Many Weeks to Select? 
The selection algorithm consists of an exhaustive search 

throughout all the possible combinations of weeks to 
determine which combination yields the minimum error. This 
enumeration process is implemented by a number of nested 
loops equal to the number of weeks to be selected. As a result, 
although the computation time required to choose the optimal 
sample set grows proportionally with the number of possible 
combinations, the number of possible combinations grows as 
the factorial of the number of sample weeks (Table I).  
 

 

 
 
Fig. 1.  Four-week approximate net load profile constructed with 4 weeks 
selected from the total of 52 weeks in one year. Each hour from the selected 
weeks is weighted by a factor of 13. 
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Incrementing the sample size by one week requires an 

additional nested loop in the sampling algorithm to search 
through all possible week combinations. On a standard 
desktop, the optimization procedure can be reasonably 
performed for sample sizes of up to 5 weeks (5 nested loops), 
but beyond that it becomes prohibitive. 

E. Selecting a Large Number of Weeks 
As an alternative to optimal selection for larger sample 

sizes, there are heuristic approximations that allow increasing 
the sample size without increasing the number of nested loops. 
For instance, we could sample subsets of some certain number 
of adjoining weeks instead of individual weeks (e.g., two-
week intervals). With this heuristic we can easily expand the 
number of weeks selected, but with the limitation that 
optimality cannot be guaranteed anymore. Once these subsets 
have been selected, we can expand the sample to create a 52-
week approximation by applying different weights to each 
subset of weeks. For instance, a 16-week sample might consist 
of four subsets of multiple weeks and scaled by different 
weights to approximate a full year (Fig. 2.). 

 
This approach allows us to increase the number of weeks 

sampled while avoiding a dramatic increase in computation 
time.  

F. Number of Weeks and Net Energy Error 
We test the proposed methodology using hourly demand 

and VER generation –solar and wind power– for the 
Electricity Reliability Council of Texas (ERCOT) [20] from 
2009. In order to simulate a high penetration level of VERs, 

we upscale wind and solar outputs assuming an expected 
capacity of 30GW of wind power and 10 GW of solar PV 
[21]. 

We first describe how the errors in approximating the net 
load decrease with the number of weeks sampled. Fig.  3. 
shows graphically the results of selecting one, two and four 
weeks to characterize the NLDC. 
 

 
 

 

 
While the approximations based on one and two weeks 

produce an inaccurate representation of the NLDC with RMSE 
over 2%, the approximation using four weeks closely matches 
the shape of the original NLDC. For sample sizes larger than 
four weeks, errors are further reduced, although not 
monotonically (Table II). 

 

TABLE I 
NUMBER OF POSSIBLE COMPOSITE COMBINATIONS AND COMPUTING TIME 

AS A FUNCTION OF THE NUMBER OF WEEKS SELECTED 

Number of weeks 
selected 

Number of possible 
combinations Computing time 

1 �52
1 � = 52 0.05 secs 

2 �52
2 � = 1,326 1.5 secs 

4 �52
4 � = 270,725 10 mins 

5 �52
5 � = 2,598,960   1h 40 mins 

8 �52
8 � = 752,538,150 ~19 days 

13 �52
13� = 6.3501𝐸 + 11 ~46 years 

Computing times from running a MATLAB algorithm having as many 
nested loops as weeks selected, on a commercial 2.4 GHz Intel Core 2 Duo 
machine with 4GB of memory 
 

 

 
 
Fig. 2.  Four-week approximate net load profile constructed with 4 weeks 
selected from the total of 52 weeks in one year. Each hour from the weeks 
picked is weighed by a factor of 13. 
  

 

 
Fig. 3.  Graphical representation of the system’s LDC, NLDC and their 
respective approximations, built with one, two and four weeks, selected to fit 
the NLDC. 
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G. Commitment Results and Errors 

Despite the small errors of the four-week approximation 
representing net load, its commitment performance must be 
tested. In order to do so, we run a capacity expansion model 
with UC constraints using the one-week, two-week, four-week 
and eight-week approximation, and compare the commitment 
results from this model with those from a UC model that uses 
the full one-year data series.  The capacity expansion model 
with embedded unit commitment used in this analysis is fully 
described in the Appendix. This approach allows for 
determining capacity needs informed by the operational detail 
required to represent accurately the variability introduced by 
renewables.  

The model was run for the ERCOT system, allowing power 
curtailment of both wind and solar PV, and using standard 
thermal units whose cost parameters and technical 
characteristics can also be found in the Appendix. We used 
CPLEX 12.4 under GAMS on a 64-bit dual-socket hexcore 
(i.e. 12 physical cores, 12 virtual cores total) Intel Nehalem 
(x5650) machine. The maximum duality gap tolerance was set 
to 0.01, producing a solution in approximately 4hrs. Stricter 
duality gap tolerances did not affect the main solution 
parameters but had a significant impact on the computation 
time. The computing time with commercial machines (2.4 
GHz Intel Core 2 Duo machine with 4GB of memory) was in 
the order of 1.5 times greater than those experienced with the 
original 12-core machine. Capacity and commitment results 
obtained with the approximation are summarized in section A) 
of Tables III-VI. 

To assess the error, we run a full one-year UC model for the 
generation units selected in the solution of the capacity 
expansion model with approximate UC. This commitment 
model uses the same parameters and applies the same 
constraints as those in the capacity expansion model, but uses 
hourly demand and VER data for the full year. A critical 
assumption is that the full year UC is performed for the 
capacity mix chosen by the capacity expansion model with 
approximate UC.  Therefore, the corresponding full-year 

simulation for each approximation will have different results, 
since the capacity mixes vary.  Results from the full-year run 
and the differences from the approximation results are 
presented in section B) of Tables III-IV. 

 

 

TABLE II 
NET ENERGY ERROR RELATIVE TO THE NUMBER OF WEEKS SELECTED 

Number 
of weeks Approximation 𝜈∗ 𝑅𝑀𝑆𝐸𝜈 𝑁𝑅𝑀𝑆𝐸𝜈 [%] time 

[s] 
1 {4} 2.3 4.2  0.066 
2 {9,24} 1.233 2.3 1.52 

4 {17,31,37,46} 0.299 0.5 688 

8 {3,4,15,16,20,21, 
31,32} 0.283 0.52 1,042 

12 
{12,13,14,34,35, 
36,38,39,40,50,51,
52} 

0.68 1.24 1,368 

16 
{3,4,5,6,14,15,16,
17,31,32,33,34,38,
39,40,41} 

0.24 0.44 1,505 

Summary of the error incurred by approximations constructed with an 
increasing number of weeks. The weeks are selected based on minimizing the 
error between the approximation and the NLDC. The column 
“Approximation” shows the weeks selected; “RMSEν” is the root-mean-
square error between the NLDC and its approximation; “NRMSEν” is the 
normalized root-mean-square error between the NLDC and its approximation. 

TABLE III 
A) ONE-YEAR UNIT COMMITMENT RESULTS BASED ON THE ONE-WEEK NET-

LOAD-BASED APPROXIMATION 

Technology units 
installed 

Capacity 
Installed [GW] EC [p.u.] CF [p.u.] Startups/

year 
Nuclear 8 8 0.245 1 0 

Solar 10 10 0.043 0.141 – 

Wind 30 30 0.190 0.206 – 
Coal 13 6.5 0.188 0.943 0 

CCGT 72 28.8 0.331 0.375 102 
OCGT 18 5.4 0.003 0.017 145 

 
B) ONE-YEAR UNIT COMMITMENT RESULTS BASED ON A FULL ONE-YEAR 

DATA SERIES AND COMMITMENT ERROR 

Technology EC 
[p.u.] 

ECE 
[p.u.] 

CF 
[p.u.] 

CFE 
[p.u.] 

Startups/ 
year 

SUE 
[startups/year] 

Nuclear 0.228 + 0.017 1 + 0.000 0  + 0 
Solar 0.056 - 0.013 0.198 - 0.054 – – 
Wind 0.199 - 0.009 0.233  - 0.027 – – 
Coal 0.176 + 0.012 0.951 - 0.008 0 + 0 

CCGT 0.325 + 0.006 0.395 - 0.020 64 + 38 
OCGT 0.007 - 0.004 0.048 - 0.031 148 - 3 

Results summary from: A) a capacity expansion model with embedded unit 
commitment constraints based on a one-week sample; and B) a one-year full 
unit commitment model of the units installed, and commitment errors between 
the full run and the approximation. NSE = 7.75E-3 p.u. 
 

TABLE IV 
A) ONE-YEAR UNIT COMMITMENT RESULTS BASED ON THE TWO-WEEK NET-

LOAD-BASED APPROXIMATION 

Technology units 
installed 

Capacity 
Installed [GW] EC [p.u.] CF [p.u.] Startups/

year 
Nuclear 9 9 0.243 1 0 

Solar 10 10 0.058 0.215 – 

Wind 30 30 0.226 0.279 – 
Coal 12 6 0.154 0.950 0 

CCGT 87 34.8 0.317 0.338 74 
OCGT 18 5.4 0.002 0.014 97 

 
B) ONE-YEAR UNIT COMMITMENT RESULTS BASED ON A FULL ONE-YEAR 

DATA SERIES AND COMMITMENT ERROR 

Technology EC 
[p.u.] 

ECE 
[p.u.] 

CF 
[p.u.] 

CFE 
[p.u.] 

Startups/ 
year 

SUE 
[startups/year] 

Nuclear 0.257 - 0.014 1 + 0.000 0  + 0 
Solar 0.057 + 0.001 0.198 + 0.017 – – 
Wind 0.196 + 0.030 0.229 + 0.050 – – 
Coal 0.162 - 0.008 0.950 + 0.000 0 + 0 

CCGT 0.325 - 0.008 0.327 + 0.011 57 + 17 
OCGT 0.003 - 0.001 0.019 - 0.005 97 + 0 

Results summary from: A) a capacity expansion model with embedded unit 
commitment constraints based on a two-week sample; and B) a one-year full 
unit commitment model of the units installed, and commitment errors between 
the full run and the approximation. NSE = 1.01E-3 p.u. 
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Comparing the errors from the different sample sizes, it can 

be observed that the errors corresponding to the one-week and 
two-week sample runs are greater than those found in the four-
week and eight-week sample runs. Both energy contribution 
errors and capacity factor errors are at least twice as large in 
the first two cases as in the last two. Also, start-up errors in the 
first two cases are close to or well over 20 cycles per year, 
indicating that they represent poorly the cycling behavior of 
the thermal units, a main concern of flexibility studies. On the 
other hand, the average start-ups per year in the four-week and 
eight-week sample are very similar to those found in the full-
year UC simulation.  

Additionally, the values of NSE in the four-week and eight-
week cases are one order of magnitude below those produced 
by the one-week and the two-week sample. This difference 
shows how the last two samples produce a more adequate 
capacity mix than the first two as net load is better 
represented. Errors are not appreciably reduced by using a 
sample size of eight weeks. 

Based on these results, an approximation of the net load 
from four-weeks of data using this approach appears to 
represent well the full one-year data series.  The optimal four-
week approximation of net load will be used for the remainder 
of this paper. 

III. REPRESENTING THE PEAK NET LOAD 
One of the critical parameters for determining adequacy in 

capacity expansion and flexibility assessment studies is the 
value-of-lost-load (VOLL) [22]. An adequate system typically 
has less than one day with non-served energy (NSE) every 10 
years (or less than 2.4 hours every year), although it varies 
from one system to another. In the model used, the VOLL is 
assumed to be fixed, and the amount of NSE is derived 
endogenously from the cost minimization model (see 
Appendix). Nevertheless, the amount of NSE does not depend 
exclusively on the VOLL. It is also determined by the 
system’s peak load or, in situations with a high penetration of 
VER, the peak net load. Hence, it is important to examine how 
the inclusion of the peak net load in the sample affects the 
final solution of the problem. 

Comparing the four-week approximation 𝜈∗ with the NLDC 
(Fig. 4.), the approximation underestimates the peak hour by 
4.5%. If embedded within a capacity expansion model, this 
underestimate would lead to insufficient investment in 
generation capacity.  

 
One possible solution to this issue is to require the inclusion 

of the week containing the peak net load as one of the weeks 
in the sample. We denote this approximation by 𝜅∗. The 
𝜅∗approximation will be constructed with the week containing 
the peak net load plus an optimal selection of three weeks, 
conditional on having the peak net load week in the 
approximation.  

TABLE V 
A) ONE-YEAR UNIT COMMITMENT RESULTS BASED ON THE FOUR-WEEK 

NET-LOAD-BASED APPROXIMATION 

Technology units 
installed 

Capacity 
Installed [GW] EC [p.u.] CF [p.u.] Startups/

year 
Nuclear 8 8 0.226 1 0 

Solar 10 10 0.063 0.223 – 

Wind 30 30 0.198 0.233 – 
Coal 15 7.5 0.199 0.939 0 

CCGT 87 34.8 0.31 0.315 54 
OCGT 30 9 0.003 0.012 61 

 
B) ONE-YEAR UNIT COMMITMENT RESULTS BASED ON A FULL ONE-YEAR 

DATA SERIES AND COMMITMENT ERROR 

Technology EC 
[p.u.] 

ECE 
[p.u.] 

CF 
[p.u.] 

CFE 
[p.u.] 

Startups/ 
year 

SUE 
[startups/year] 

Nuclear 0.228 - 0.002 1 + 0.000 0  + 0 
Solar 0.057 + 0.007 0.199 + 0.024 – – 
Wind 0.199 - 0.001 0.233  + 0.000 – – 
Coal 0.199 + 0.000 0.933 + 0.006 0 + 0 

CCGT 0.313 - 0.003 0.316 - 0.001 59 - 5 
OCGT 0.003 + 0.000 0.012 + 0.000 65 - 4 

Results summary from: A) a capacity expansion model with embedded unit 
commitment constraints based on a four-week sample; and B) a one-year full 
unit commitment model of the units installed, and commitment errors between 
the full run and the approximation. NSE = 1.17E-4 p.u. 
 

TABLE VI 
A) ONE-YEAR UNIT COMMITMENT RESULTS BASED ON THE EIGHT-WEEK 

NET-LOAD-BASED APPROXIMATION 

Technology units 
installed 

Capacity 
Installed [GW] EC [p.u.] CF [p.u.] Startups/

year 
Nuclear 10 10 0.284 1 0 

Solar 10 10 0.063 0.220 – 

Wind 30 30 0.186 0.219 – 
Coal 11 5.5 0.148 0.950 0 

CCGT 89 35.6 0.316 0.312 66 
OCGT 26 7.8 0.003 0.012 71 

 
B) ONE-YEAR UNIT COMMITMENT RESULTS BASED ON A FULL ONE-YEAR 

DATA SERIES AND COMMITMENT ERROR 

Technology EC 
[p.u.] 

ECE 
[p.u.] 

CF 
[p.u.] 

CFE 
[p.u.] 

Startups/ 
year 

SUE 
[startups/year] 

Nuclear 0.285 - 0.001 1 + 0.000 0  + 0 
Solar 0.056 + 0.007 0.197 + 0.023 – – 
Wind 0.192 - 0.006 0.225  - 0.006 – – 
Coal 0.149 - 0.001 0.950 + 0.000 0 + 0 

CCGT 0.315 + 0.001 0.310 + 0.002 57 + 9 
OCGT 0.002 + 0.001 0.011 + 0.001 67 + 4 

Results summary from: A) a capacity expansion model with embedded unit 
commitment constraints based on an eight-week sample; and B) a one-year 
full unit commitment model of the units installed, and commitment errors 
between the full run and the approximation. NSE = 1.29E-4 p.u. 
 

 

 
Fig. 4.  Detail of the system’s NLDC peak and its respective four-week-
based approximation. The peak value in both series is 58.5GW and 56 GW 
respectively. Note that since the number of weeks selected is four, the step-
size of the 𝑁𝐿𝐷𝐶�  is 13. 
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Alternatively, we can revisit the initial assumption that the 
year is composed of 52 weeks (in reality it is composed of 52 
weeks and one day), and add the peak net load day to one 
four-week approximation, to make a total of 8,760 hours in 
one year. This approximation will be denoted by 𝜏∗. Fig. 5. 
shows the detail of the peak net load as achieved by these two 
alternative approximations that contain the peak net load day.  

 
 The accuracy of each approximation can be assessed by the 
NRMSE metric and by the results obtained from running the 
capacity expansion model (see Appendix) using the three 
different approximations: 

 
The results show that approximations 𝜏∗ and 𝜅∗, with 

greater peak capacities and lower NSE, represent the peak net 
load more precisely than the 𝜈∗ approximation. However, the 
NRMSE is greater for the approximation 𝜅∗ as it is forcing a 
suboptimal week in the sample. This error is reduced with 
approximation 𝜏∗ as the optimal selection is done conditional 
on having introduced the peak net load day. As a result of 
better resolution in the peak of the NLDC, approximations that 
consider the peak net load yield a higher system capacity and 
lower NSE. Although the impact on the overall approximation 
of the NLDC is small, including the peak net load day in the 
approximation increases the accuracy in the peak hours. 

IV. COMPARISON TO OTHER APPROACHES 
Here we demonstrate the advantages of our approach by 

comparing our results to those from using other sample week 
selection methods found in the literature.  

A. Results from Using a Season-based Selection 

The most common approach to selecting a sample of weeks 
to approximate a year is to identify seasonal demand patterns, 
and sampling one week from each of the seasons [9]. For 
example, the maximum, average and minimum demand from 
each week can be plotted (Fig. 6.) to identify the four seasons. 
One week from each season is then chosen randomly to make 
up a sample of four weeks. 
 

 
Here we demonstrate on an example approximation. We 

sample one week from each season randomly, and scale up the 
data to a full year to construct a season-based approximation 
𝜌∗. For this example, the sample 𝜌∗ = {14,27,40,49} has a 
NRMSE between the NLDC and its approximation of 2.78, as 
compared with 0.5 from our four-week approximation.  

 
Table VIII shows the capacity and commitment results 

using the approximation, and commitment results with their 
errors. 

 
Fig. 5.  Detail of the system’s NLDC peak and its 𝜅∗ and 𝜏∗four-week-based 
approximations. The peak value in both series is 58.5GW and 56 GW 
respectively. Note that since the number of weeks selected is four, the step-
size of the NLDC�  is 13. 
 
  

TABLE VII 
STANDARD ERROR RELATIVE TO THE NUMBER OF WEEKS SELECTED 

Approximation No Peak (𝜈∗) Peak Week (𝜅∗) Peak Day (𝜏∗) 

Weeks selected {17,31,37, 46} {29,41, 46,48} 
{17,21,31,45} + 

peak net load 
day (day #197) 

NRMSE [%] 0.546 0.821 0.537 
Total Capacity 
Installed [GW] 99.3 102.3 99.4 

NSE [p.u.] 3.79E-4 9.74E-5 1.24E-4 

System cost [%] – -0.54 -1.86 

Summary of the error sum of squares incurred by three approximations: 1) 
neglecting the peak net load; 2) including the week containing the peak net 
load hour (52 weeks); and 3) including the day containing the peak net load 
hour (52 weeks + 1 day). The peak net load hour is in day #197, in week #29 

 
Fig. 6.  Graphical representation of the maximum, average and minimum 
weekly demand for the ERCOT system throughout 2008. 
  

 
Fig. 7.  Graphical representation of the system’s LDC, NLDC and their 
respective four-week approximations selected through seasonality criteria. 
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B. Results of Ignoring the Correlation between Load and 
VERs 

The season-based approach above has two sources of error. 
First, it randomly chooses a week from each season rather than 
minimizing error. Second, this approach usually focuses on 
load rather than net load, which ignores the correlation 
between demand and VER.  

To differentiate between these two sources of error, we 
demonstrate the errors from using an optimal selection 
procedure, but aimed at approximating the LDC, which 
ignores the correlation between the load and VERs. Analogous 
to the objective in Section II, the objective now is to find the 
combination that yields the least square error between the 
LDC and its approximation, 𝐿𝐷𝐶�: 

 𝜆∗ ∈ 𝑎𝑟𝑔𝑚𝑖𝑛
𝜆
�𝐿𝐷𝐶 − 𝐿𝐷𝐶�𝜆�2 (8) 

where 𝜆 ∈ ℤ𝑛 is the set of indices of the n weeks selected; 
𝜆∗ ∈ ℤ𝑛 is the set of indices of the optimal week combination; 
and 𝐿𝐷𝐶 , 𝐿𝐷𝐶�𝜆 ∈ ℝ8,736. 

 We repeat the enumeration process required for optimal 
selection, by constructing all possible approximations for a 
certain number of weeks, selecting now the combination that 
best represents the LDC. Accordingly, the 𝑁𝐿𝐷𝐶� 𝜆 is built with 
the net load associated with the weeks selected through this 
process. Fig 8. shows the approximations to both the LDC and 
the NLDC obtained for the 4-week case. 

 
For all the cases explored (one, two, four, eight, twelve and 

sixteen week samples), the resulting error metrics are 
summarized in Table IX.  
 

 
The errors corresponding to the different approximations 

are significantly greater when the selection is based on the 
LDC (𝜆∗) than when the selection is based on approximating 
the NLDC (𝜈∗). By fitting the LDC, we do not necessarily 
select the weeks that characterize best the NLDC or, in other 
words, a selection based on the LDC is suboptimal relative to 
how well it characterizes the NLDC.  

More importantly, the errors in the approximate capacity, 
commitment, and startup results obtained with 𝜆∗ are larger 
when the sample is based on the LDC (Table X). As the level 
of penetration of VER increases, so does the importance of 
accounting for the correlation between load and VERs. 

TABLE VIII 
A) ONE-YEAR UNIT COMMITMENT RESULTS BASED ON THE FOUR-WEEK 

SEASON-BASED APPROXIMATION 

Technology units 
installed 

Capacity 
Installed [GW] EC [p.u.] CF [p.u.] Startups/

year 
Nuclear 11 11 0.294 1 0 

Solar 10 10 0.046 0.171 – 

Wind 30 30 0.209 0.260 – 
Coal 14 7 0.173 0.924 0 

CCGT 88 35.2 0.276 0.293 76 
OCGT 29 8.7 0.003 0.014 80 

 
B) ONE-YEAR UNIT COMMITMENT RESULTS BASED ON A FULL ONE-YEAR 

DATA SERIES AND COMMITMENT ERROR 

Technology EC 
[p.u.] 

ECE 
[p.u.] 

CF 
[p.u.] 

CFE 
[p.u.] 

Startups/ 
year 

SUE 
[startups/year] 

Nuclear 0.314 - 0.020 1 + 0.000 0  + 0 
Solar 0.056 - 0.010 0.196 - 0.025 – – 
Wind 0.189 + 0.020 0.221  + 0.039 – – 
Coal 0.180 - 0.007 0.900 + 0.024 0 + 0 

CCGT 0.260 + 0.017 0.259 + 0.034 68 + 8 
OCGT 0.002 + 0.001 0.006 + 0.008 53 + 27 

Results summary from: A) a capacity expansion model with embedded unit 
commitment constraints based on a four-week sample; and B) a one-year full 
unit commitment model of the units installed, and commitment errors between 
the full run and the approximation.  NSE = 3.65E-4 p.u. 
 

 
Fig. 8.  Graphical representation of the system’s LDC, NLDC and their 
respective four-week approximations, selected to fit the LDC. 
  

TABLE IX 
STANDARD ERROR RELATIVE TO THE NUMBER OF WEEKS SELECTED 

Number 
of weeks Approximation 𝜆∗ 𝑅𝑀𝑆𝐸𝜆 𝑁𝑅𝑀𝑆𝐸𝜆 [%] time [s] 

1 {38} 3.953 7.22 0.06 
2 {10,23} 2.311 4.22 1.61 

4 {11,16,27,40} 1.271 2.32 694 

8 {5,6,16,17,24,25, 
39,40} 1.242 2.27 992 

12 {4,5,6,24,25,26,39
,40,41,42,43,44} 0.627 1.14 1,419 

16 
{3,4,5,6,15,16,17,
18,24,25,26,27,39,
40,41,42} 

0.583 1.07 1,542 

Summary of the error incurred by approximations constructed with an 
increasing number of weeks. The weeks are selected based on minimizing the 
error between the approximation and the LDC. The column “Approximation” 
shows the weeks selected; “𝑅𝑀𝑆𝐸𝜆” is the root-mean-square error between the 
NLDC and its approximation; “NRMSEλ” is the normalized root-mean-square 
error between the NLDC and its approximation. 
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V. VALIDITY ASSESSMENT 
In this section we demonstrate the application of the method 

to another example system. We use load, wind CF and solar 
CF data corresponding to Germany in 2008 and repeat the 
four-week sampling method described in Section II. The 
sample is then used as an approximation of the net load in a 
capacity expansion model, and the resulting generating 
capacity serves as an input to a full-year UC model. Results 
are shown in Table XI using the same format as in previous 
simulations. 

 

 
The magnitude of the commitment errors is the same as that 

in the errors obtained with the ERCOT 2009 system. This 
result gives additional confidence in the applicability of the 
approximation method to power systems with a high 
penetration of VER. Although not a formal proof, the results 
presented here taken together suggest that our approximation 
method will exhibit improved performance for a range of 
systems. 

VI. CONCLUSION 
This paper introduced a methodology to sample weeks 

based on historical demand and VER generation that can be 
used in capacity expansion models with unit commitment 
constraints.   

We have explored how the error of the approximation 
depends on the number of weeks and conclude that the error 
incurred with a four-week approximation is small with respect 
to both net energy and commitment error metrics. 

We argue that in order to best reflect the possible 
correlation between demand and VER, the selection should be 
based on the net load instead of attending to other aspects such 
as demand’s seasonal patterns. We demonstrate that errors are 
smaller with the proposed method than with other methods 
found in the literature. We also apply the method to another 
power system to demonstrate the consistency of the results. 

Our method provides an effective approach for reducing the 
computation time for capacity expansion with embedded unit 
commitment constraints, while still capturing the relevant 
characteristics of a system with VER. Given the increased 
concern about flexibility in future generation planning, this 
approach provides a means to evaluate the flexibility of 
alternative future generation mixes. 

APPENDIX 
FORMULATION OF THE CAPACITY EXPANSION PROBLEM 

WITH UNIT COMMITMENT CONSTRAINTS 
We formulate a model to represent the capacity expansion 

problem with embedded unit commitment constraints where 
investment, unit commitment and energy dispatch decisions 
are made jointly by solving a unique problem. 

A. Indices and Variables 
Two indices will be used in this model: 𝑖 ∈ 𝐼, where I 

denotes the set of generating units that can be potentially built; 
and, 𝑗 ∈ 𝐽, where 𝐽 denotes the set of hours in a year (or, 
alternatively, the total number of hours contained in the weeks 
sampled). In addition, 𝑊 ⊂ 𝐼, is the subset of wind units; 
𝑆 ⊂ 𝐼, is the subset of solar units, where 𝑠 ∈ 𝑆; 𝑇 ⊂ 𝐼, is the 
subset of thermal power units (nuclear, coal, CCGTs and 
OCGTs); and 𝐺 ⊂ 𝐼, is the subset of gas-fired power plants –
combined cycle gas turbines and combustion turbines (CCGTs 
and OCGTs)–. 

Building decisions are modeled using binary variables 
𝑦𝑖 ∈ {0,1}; commitment states are 𝑢𝑖𝑗 ∈ {0,1}; start-up 
decisions are 𝑧𝑖𝑗 ∈ {0,1}; shut-down decisions are 𝑣𝑖𝑗 ∈ ℝ+; 
and power output decisions are represented by 𝑥𝑖𝑗 ∈ ℝ+. An 
extra variable 𝑤𝑖𝑗 ∈ ℝ+ (where 𝑤𝑖𝑗 = 𝑥𝑖𝑗 − 𝑢𝑖𝑗  𝑃𝑖), has been 

TABLE X 
A) ONE-YEAR UNIT COMMITMENT RESULTS BASED ON THE FOUR-WEEK 

LOAD-BASED APPROXIMATION 

Technology units 
installed 

Capacity 
Installed [GW] EC [p.u.] CF [p.u.] Startups/

year 
Nuclear 10 10 0.285 1 0 

Solar 10 10 0.062 0.218 – 

Wind 30 30 0.162 0.190 – 
Coal 14 7 0.185 0.928 0 

CCGT 86 34.4 0.303 0.309 55 
OCGT 21 6.3 0.002 0.012 69 

 
B) ONE-YEAR UNIT COMMITMENT RESULTS BASED ON A FULL ONE-YEAR 

DATA SERIES AND COMMITMENT ERROR 

Technology EC 
[p.u.] 

ECE 
[p.u.] 

CF 
[p.u.] 

CFE 
[p.u.] 

Startups/ 
year 

SUE 
[startups/year] 

Nuclear 0.285 +0.000 1 + 0.000 0  + 0 
Solar 0.056 + 0.006 0.197 + 0.021 – – 
Wind 0.193 - 0.031 0.225  - 0.035 – – 
Coal 0.183 + 0.002 0.915 + 0.013 0 + 0 

CCGT 0.281 - 0.022 0.286 + 0.023 65 - 10 
OCGT 0.002 + 0.000 0.012 + 0.000 81 - 12 

Results summary from: A) a capacity expansion model with embedded unit 
commitment constraints based on a four-week sample; and B) a one-year full 
unit commitment model of the units installed, and commitment errors between 
the full run and the approximation.  NSE = 3.98E-4 p.u. 
 

TABLE XI 
A) ONE-YEAR UNIT COMMITMENT RESULTS BASED ON THE FOUR-WEEK 

NET-LOAD-BASED APPROXIMATION 

Technology units 
installed 

Capacity 
Installed [GW] EC [p.u.] CF [p.u.] Startups/

year 
Nuclear 30 30 0.530 1 0 

Solar 10 10 0.019 0.106 – 

Wind 30 30 0.105 0.198 – 
Coal 16 8 0.130 0.924 0 

CCGT 78 31.2 0.215 0.390 68 
OCGT 17 5.1 0.001 0.015 97 

 
B) ONE-YEAR UNIT COMMITMENT RESULTS BASED ON A FULL ONE-YEAR 

DATA SERIES AND COMMITMENT ERROR 

Technology EC 
[p.u.] 

ECE 
[p.u.] 

CF 
[p.u.] 

CFE 
[p.u.] 

Startups/ 
year 

SUE 
[startups/year] 

Nuclear 0.532 - 0.002 1 + 0.000 0  + 0 
Solar 0.017 + 0.002 0.096 + 0.010 – – 
Wind 0.102 + 0.003 0.192  + 0.006 – – 
Coal 0.131 - 0.001 0.926 - 0.002 0 + 0 

CCGT 0.216 - 0.001 0.391 - 0.001 76 - 8 
OCGT 0.001 + 0.000 0.013 + 0.002 99 - 2 

Results summary for Germany from: A) a capacity expansion model with 
embedded unit commitment constraints based on a four-week sample; and B) 
a one-year full unit commitment model of the units installed, and commitment 
errors between the full run and the approximation. NSE = 3.92E-5 p.u. 
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introduced to separate the total output of each generator 
between its minimum stable level and the remainder output 
level to facilitate the formulation of ramping rate constraints. 

B. Objective Function 
The objective function of our model minimizes the total 

cost of the system, which is the sum of fixed costs (𝐶𝑖𝐹𝐼𝑋), 
variable costs (𝐶𝑖𝑉𝐴𝑅) and start-up costs (𝐶𝑖𝑆𝑇𝑈𝑃). It is 
formulated as a two-stage decision problem, in which the first 
stage problem is to choose the investment (capacity) in 
individual power plants; and the second stage solves for 
operation (start-up, commitment and energy dispatch) 
decisions: 

 min
𝑢,𝑣,𝑥,𝑦,𝑧

��𝐶𝑖𝐹𝐼𝑋𝑦𝑖 + ��𝐶𝑖𝑉𝐴𝑅𝑥𝑖,𝑗 + 𝐶𝑖𝑆𝑇𝑈𝑃𝑧𝑖,𝑗�
𝑗

�
𝑖

 (9) 

C. Operational Constraints 
The model is subject to the classic constraints included in a 

unit commitment model: demand constraints, commitment 
state constraints, minimum and maximum output constraints 
(introducing the new variable 𝑤𝑖𝑗 = 𝑥𝑖𝑗 − 𝑢𝑖𝑗𝑃𝑖), ramping 
rates constraints and minimum up and down time constraints. 
These constraints are explained in further detail below. 

The demand constraints guarantee that the demand level (𝐷𝑗) 
is met by the aggregate power output of all generators that are 
built in the system, including both thermal plants and 
renewables: 

 �𝑥𝑖,𝑗
𝑖

≥ 𝐷𝑗         ∀𝑗 ∈ 𝐽 (10) 

State constraints link commitment states with start-up and 
shut-down decisions. Note that even if 𝑣𝑖𝑗  has been defined in 
the positive real domain, it will only adopt binary values as the 
commitment states and start-up decisions are all binary. 

 𝑢𝑖,𝑗 − 𝑢𝑖,𝑗−1 = 𝑧𝑖𝑗 − 𝑣𝑖𝑗         ∀𝑖 ∈ 𝑇,∀𝑗 ∈ 𝐽 (11) 

Ramping limit constraints account for the physical 
limitations imposed by power plants’ thermal and mechanical 
inertias. These equations are constructed using the 𝑤𝑖,𝑗 
auxiliary variable to avoid the constraint becoming active 
when off-line power plants start-up and jump from zero to the 
minimum output. 

 
𝑤𝑖 ,𝑗 − 𝑤𝑖,𝑗−1 ≤ 𝑅𝑖

𝑈
      ∀𝑖 ∈ 𝑇,∀𝑗 ∈ 𝐽 (12) 

 
𝑤𝑖,𝑗−1 − 𝑤𝑖,𝑗 ≤ 𝑅𝑖

𝐷
      ∀𝑖 ∈ 𝑇,∀𝑗 ∈ 𝐽 (13) 

Unit minimum and maximum output constraints are defined 
in terms of the interval between each unit’s minimum and 
maximum output levels: 

 𝑤𝑖 ,𝑗 ≤ 𝑢𝑖,𝑗�𝑃𝑖 − 𝑃𝑖�        ∀𝑖 ∈ 𝑇,∀𝑗 ∈ 𝐽 (14) 

Minimum up and down times are implemented following 
the formulation in [23]. In this formulation 𝑀𝑖

𝑈
 and 𝑀𝑖

𝐷
 

represent the minimum time that a power plant has to remain 
on or off after a start-up or shut-down respectively, and 𝑗𝑗 is 
an index for the hours in the time series. 

 𝑢𝑡,𝑗 ≥ � 𝑧𝑡,𝑗𝑗

𝑗

𝑗𝑗>𝑗−𝑀𝑖
𝑈

      ∀𝑖 ∈ 𝑇,∀𝑗 ∈ 𝐽 (15) 

 1 − 𝑢𝑡,𝑗 ≥ � 𝑣𝑡,𝑗𝑗

𝑗

𝑗𝑗>𝑗−𝑀𝑖
𝐷

      ∀𝑖 ∈ 𝑇,∀𝑗 ∈ 𝐽 (16) 

 
Lastly, our model includes a coupling constraint that links 

the two decision stages –building and operating – to ensure 
that only units that have been built generate: 

 𝑥𝑖,𝑗 ≤ 𝑃𝑖𝑦𝑖        ∀𝑖 ∈ 𝐼,∀𝑗 ∈ 𝐽 (17) 

D. Treatment of Renewables 
Wind and solar PV energy outputs are treated in the 

model as functions of each technology’s capacity factor (CF). 
Capacity factors reflect the availability of wind or solar 
resources for a specific hour at a certain location. Hence, for a 
particular hour of the year, the output of the total wind or solar 
power in our system will be determined by the product of each 
technology’s total capacity installed and its respective CF. 

 𝑥𝑖,𝑗 = 𝑃𝑖  𝐶𝐹𝑗𝑊𝐼𝑁𝐷       ∀𝑖 ∈ 𝑊,∀𝑗 ∈ 𝐽 (18) 

 𝑥𝑖,𝑗 = 𝑃𝑖  𝐶𝐹𝑗𝑆𝑂𝐿𝐴𝑅        ∀𝑖 ∈ 𝑆,∀𝑗 ∈ 𝐽 (19) 

where 𝑃𝑤 and 𝑃𝑠 are the maximum capacities of a unit wind 
farm and a unit solar farm respectively (in this model, for 
instance, 1GW). Note that in this model the unit size of 
renewable power plants –wind and solar PV– does not affect 
the outcomes of the model, as long as the sum of the capacity 
of individual wind and solar plants in the system adds up 
separately to the total wind and solar capacity in place for 
some certain scenario. 

The model also offers the possibility of introducing 
curtailment as an extra degree of freedom to ensure that hourly 
demand is met by generation. For wind and solar power, this 
feature is implemented through substituting the equality 
constraints by inequality constraints: 

 𝑥𝑖,𝑗 ≤ 𝑃𝑖  𝐶𝐹𝑗𝑊𝐼𝑁𝐷       ∀𝑖 ∈ 𝑊,∀𝑗 ∈ 𝐽 (20) 

 𝑥𝑖,𝑗 ≤ 𝑃𝑖 𝐶𝐹𝑗𝑆𝑂𝐿𝐴𝑅        ∀𝑖 ∈ 𝑆,∀𝑗 ∈ 𝐽 (21) 

Allowing VER curtailment also has a direct impact on the 
computational performance of the model. Substituting for the 
equality with an inequality increases the number of feasible 
solutions, reducing the time taken by the solver to find feasible 
integer solutions from which to start the optimization 
algorithm. Moreover, it also reflects the actual behavior of 
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some ISOs for whom curtailment is an additional resource at 
their disposal to help secure the safe operation of the system. 

E. Operating Reserves 
Power systems need to secure a certain amount of 

spinning and non-spinning capacity to guarantee that 
generation constantly meets demand and that the frequency of 
the system lies within the reference values. These frequency 
boundaries are set to protect the system from going unstable. 
Reserves are typically categorized according to their response 
time and the duration of the event they are required to 
mitigate. However, these categories differ from one power 
system to the next. Milligan et al. [2] surveys how reserves are 
used in a number of power systems and proposes a general 
classification of reserve types. In this paper we use the same 
classification, but using the European naming convention 
(primary, secondary and tertiary reserves). 

Operating reserves are modeled by requiring the system 
to have a certain amount of spinning and non-spinning 
reserves ready to be deployed at every hour. These reserves 
will cope with random and non-random fluctuations as well as 
with contingencies that may occur in the system.  

In addition to the conventional deployment of reserves, 
power systems with a significant amount of renewables 
require an extra reserve capacity to compensate for the 
difference between the renewable generation forecast and the 
actual power generated. Also, similarly to reserves designated 
to meet demand when thermal power plants fail, reserves 
require also to contemplate the possibility of VER failing. 
This type of reserve is included by requiring the system to 
have a total positive and negative regulation capacity 
proportional to the amount of wind and solar power installed. 
Accordingly, we can define the operating reserves included in 
the model as follows: 
• Primary reserves (𝑟𝑗

𝑃𝑅𝐼_𝑈 and 𝑟𝑗
𝑃𝑅𝐼_𝐷): up and down 

spinning reserves that can respond in seconds to 
frequency disturbances originated by contingency events. 
These events can be due to unpredicted demand shifts or 
the failure of a thermal or renewable power plant.  

 𝑟𝑗
𝑃𝑅𝐼_𝑈 ≥ 𝛼𝐷𝑗 + max

𝑖
�𝑃𝑖�         ∀𝑗 ∈ 𝐽 (22) 

 𝑟𝑗
𝑃𝑅𝐼_𝐷 ≥ 𝛽𝐷𝑗         ∀𝑗 ∈ 𝐽 (23) 

• Secondary reserves (𝑟𝑗
𝑆𝐸𝐶_𝑈 and 𝑟𝑗

𝑆𝐸𝐶_𝐷): spinning 
reserves used mainly to reduce the area control error due 
to random oscillations like those coming from VER 
forecast errors.  Hence, in this model secondary reserves 
are proportional to the forecasted VER output. These 
reserves can be up and down reserves. 

 

𝑟𝑗
𝑆𝐸𝐶𝑈 ≥ 𝛾 �𝐶𝐹𝑗𝑊𝐼𝑁𝐷�𝑦𝑖  𝑃𝑖

𝑖∈𝑊

� 

+𝛿 �𝐶𝐹𝑗𝑆𝑂𝐿𝐴𝑅�𝑦𝑖 ∙ 𝑃𝑖
𝑖∈𝑆

�      ∀𝑗 ∈ 𝐽 

(24) 

 

𝑟𝑗
𝑆𝐸𝐶𝐷 ≥ 𝜀 �𝐶𝐹𝑗𝑊𝐼𝑁𝐷 �𝑦𝑖  𝑃𝑖

𝑖∈𝑊

� 

+𝜃 �𝐶𝐹𝑗𝑆𝑂𝐿𝐴𝑅�𝑦𝑖  𝑃𝑖
𝑖∈𝑆

�        ∀𝑗 ∈ 𝐽 

(25) 

• Tertiary reserves (𝑟𝑗𝑇𝐸𝑅): non-spinning reserves that 
maintain area control error and frequency due to 
contingencies. These reserves have a slower time 
response than other reserves and they are typically used 
for load following purposes and to substitute faster 
reserves that have to be restored to pre-event levels. 

 
𝑟𝑗𝑇𝐸𝑅 ≥ 𝜁�𝑦𝑖  𝑃𝑖

𝑖∈𝑊

 

+𝜂�𝑦𝑖  𝑃𝑖
𝑖∈𝑆

      ∀𝑗 ∈ 𝐽 

(26) 

According to these definitions, positive (27) and negative (28) 
spinning reserve constraints are formulated as follows: 

 ��𝑢𝑖,𝑗 𝑃𝑖 − 𝑥𝑖,𝑗�
𝑖

≥ 𝑟𝑗
𝑃𝑅𝐼_𝑈 + 𝑟𝑗

𝑆𝐸𝐶_𝑈      ∀𝑗 ∈ 𝐽 (27) 

 ��𝑥𝑖,𝑗 − 𝑢𝑖,𝑗 𝑃𝑖�
𝑖

≥ 𝑟𝑗
𝑃𝑅𝐼_𝐷 + 𝑟𝑗

𝑆𝐸𝐶_𝐷       ∀𝑗 ∈ 𝐽 (28) 

Likewise, non-spinning reserves will be provided by the 
available off-line capacity: 

 ��𝑦𝑖 − 𝑢𝑖,𝑗�𝑃𝑖
𝑖

≥ 𝑟𝑗𝑇𝐸𝑅       ∀𝑗 ∈ 𝐽 (29) 

The reserves coefficients 𝛼, 𝛽, 𝛾, 𝛿, 𝜀, 𝜃, 𝜁 and 𝜂 are all 
positive real numbers that take values within the interval [0,1]. 
The values of these coefficients are specified by each system’s 
ISO attending to the system’s reserves needs, which are 
dependent on the interconnection capacity with other systems 
and the accuracy of VER forecasts among other factors.  

F. Model data 
Cost parameters and technical characteristics of the thermal 

power plants used in the analysis are shown in Tables XII – 
XIV: 
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TABLE XII 
FIXED COSTS OF THERMAL POWER PLANTS 

Technology 
Capital 

cost 
[k$/MW] 

Life 
[years] 

WACC 
[%] 

Fixed O&M 
[$/MW-year] 

Annualized 
capital cost 

[k$/MW year] 
Nuclear2 5,335 40 7 88,750 489 

Coal1 3,167 40 10 35,970 360 
CCGT1 978 20 10 14,390 129 
OCGT1 974 40 10 6,980 106 

1 [24]  
2 Fixed costs of Nuclear: [25] 
 TABLE XIII 

VARIABLE COSTS OF THERMAL POWER PLANTS 

Technology Variable O&M 
[$/MWh] 

Heat rate 
[MBTU/MWh] 

Fuel price 
[$/MBTU] 

Variable cost 
[$/MWh] 

Nuclear1 2.04 10.49 0.43 6.5 
Coal1 4.25 8.8 2.22 23.8 

CCGT1 3.43 7.05 7.81 58.5 
OCGT1 14.7 10.85 7.81 99.4 

1 [24]  
 TABLE XIV 

TECHNICAL PARAMETERS OF THERMAL POWER PLANTS 

Technology 𝑃𝑖[GW] 𝑃𝑖[GW] 
Maximum 

ramp 
[GW/h]1 

Start-up costs 
[M$/start-up] 

Minimum 
down time 

[hrs] 

Minimum 
up time 

[hrs] 
Nuclear 1 0.9 0.03 1 20 20 

Coal 0.5 0.1 0.21 0.05 6 6 
CCGT 0.4 0.1 0.32 0.02 3 3 
OCGT 0.3 0.15 0.36 0.004 0 0 

1 [5] 
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