
ESD Working Paper Series

ESD-WP-2014-02 March 2014

Improving the Systems Engineering Process with Multilevel

Analysis of Interactions

Steven D. Eppinger

Professor of Management and
Engineering Systems
Sloan School of Management and
Engineering Systems Division
Massachusetts Institute of Technology
Email: eppinger�mit.edu

Nitin R. Joglekar

Associate Professor of Operations and
Technology Management
School of Management
Boston University
Email: joglekar�bu.edu

Alison Olechowski

Doctoral Student
Department of Mechanical Engineering
Massachusetts Institute of Technology
Email: alisono�mit.edu

Terence Teo

Masters Student
System Design and Management Program
Massachusetts Institute of Technology
Email: tereteo�mit.edu

esd.mit.edu/wps

1	

	

Improving the Systems Engineering Process with Multilevel Analysis of Interactions

Steven D. Eppinger 1, Nitin R. Joglekar 2, Alison Olechowski1 and Terence Teo1

1 Massachusetts Institute of Technology, Cambridge, USA
2 Boston University School of Management, Boston, USA

Abstract: The systems engineering V (SE-V) is an established process model to guide the

development of complex engineering projects (INCOSE, 2011). The SE-V process involves

decomposition and integration of system elements through a sequence of tasks that produce both

a system design and its testing specifications, followed by successive levels of build, integration,

and test activities. This paper presents a method to improve SE-V implementation by mapping

multilevel data into design structure matrix (DSM) models. DSM is a representation

methodology for identifying interactions either between components or tasks associated with a

complex engineering project (Eppinger & Browning, 2012). Multilevel refers to SE-V data on

complex interactions that are germane either at multiple levels of analysis, e.g. component versus

subsystem conducted either within a single phase or across multiple time phases, e.g. early or

late in the SE-V process. This method extends conventional DSM representation schema by

incorporating multilevel test coverage data as vectors into the off diagonal cells. These vectors

provide a richer description of potential interactions between product architecture and SE-V

integration test tasks than conventional domain mapping matrices (DMMs). We illustrate this

method with data from a complex engineering project in the offshore oil industry. Data analysis

identifies potential for unanticipated outcomes based on incomplete coverage of SE-V

interactions during integration tests. Additionally, assessment of multilevel features using

maximum and minimum function queries isolates all the interfaces that are associated with either

early or late revelations of integration risks based on the planned suite of SE-V integration tests.

Keywords: complexity, design structure matrix, design for testability, engineered systems, system

architecture, systems engineering, system integration

2	

	

1 Introduction

Complex engineering involves multiple types of data and contexts. Figure 1 presents a stylized

map of phases in a systems engineering V (SE-V) process for managing such a project. The SE-

V consists of conceptual development, preliminary system design, detailed design, construction,

integration testing and validation, startup, operations and expansion phases (Blanchard &

Fabrycky, 1990). An investment decision after the preliminary system design phase results in the

commitment of capital to execute detailed design, procurement, construction, testing, validation,

and startup activities (Halman & Braks, 1999). Hence, decision makers explore ways in which

cost, performance, and the impact of downstream integration tasks and risks (the right side of the

SE-V) can be examined early, i.e. during decomposition stage (the left side of the SE-V).

The complexity in SE-V propagates through a sequence of changes (Giffin et al., 2009). These

changes have been associated both with the large number of interactions involved within the

system, the need for learning, and the fact that these systems involve decisions at multiple levels.

Allied literature used the term “multi-scale” to capture robust design involving multiple level or

time phases of decisions (Reich, 1998; Allen et al., 2006; Zha et al., 2008). We will use the term

“multilevel” to identify decisions that involve two or more decomposition levels (e.g.

components versus subsystems) and/or differing time scales (e.g. time gaps and sequencing

needed across preliminary system design, detailed design and integration tests). Multilevel

decisions result in poorly understood interactions. These interactions can lead to negative

consequences such as cost overruns, poor startup or operational performance, and even

propagation of failures (Lewis, 2012; Papakonstantinou et al., 2012).

3	

	

The design structure matrix (DSM) methodology has made many contributions towards

improving complex decisions involving choice of product, process and organizational

architectures during the decomposition of systems on the left-hand side of the SE-V (Eppinger &

Browning, 2012). The SE-V diagram in Figure 1 indicates that a complex systems engineering

process involves five levels of decomposition (concept development, system-level design,

subsystem design, detailed design and component development), specification, and integration

testing. At each level of the system, the twin outcomes of a decomposition task are selection of

the architecture for the next level of design and the specification for the corresponding

integration tasks (shown by the horizontal dashed arrows in the SE-V). The goal of our research

is to build relevant multilevel maps of DSMs involving integration tasks and corresponding

component decomposition dependencies and to examine whether analysis of such maps can

provide engineering managers with insights to improve the system integration process.

This paper presents a method to account for multilevel data in the analysis of dependencies using

DSM models. This method contributes to the DSM literature (Browning, 2001) by extending

representation schema that incorporate multilevel and multi-time-scale test coverage data as

vectors into the off diagonal DSM cells. These vectors provide a detailed mapping between the

product architecture and the SE-V integration test tasks. This mapping is richer than

conventional domain mapping matrices (DMMs, see Danilovic & Browning, 2007). We report

on the collection of a preliminary dataset and multilevel analysis of 374 interactions related to a

complex offshore oil industry project. Results indicate potential for unanticipated outcomes in

terms of incomplete coverage of SE-V integration tasks. We also show that accounting for

multilevel features using maximum and minimum function queries, readily identifies all the

design interfaces associated with early and late revelations of coverage risks based on a selected

4	

	

suite of integration test tasks. Finally, we discuss theoretical and applied implications of the

findings.

2 Formulation

2.1 Integration and Testing for System Failures

Failures, sometimes of the most glaring and consequential nature, can and do occur at the

boundaries or interfaces between elements. These failures have often been ascribed to

uncontrolled, unanticipated, and unwanted interactions between elements – in many cases

between elements thought to be entirely separate (Griffin, 2010). For instance, based on an in-

depth case study of errors in the Italian Air Force, Leveson et al. (2009) have argued that,

“emergent safety properties are controlled or enforced by a set of safety constraints related to the

behavior of the system components. Accidents result from interactions among system

components that violate these constraints – in other words, from a lack of appropriate and

effective constraints on component and system behavior.” One goal of integration is to identify

and resolve potential failures of the system. Among techniques commonly used to this end is

failure mode and effect analysis (International Electrotechnical Commission, 2006a; Stamatis,

2003). The aim of this technique is to identify not only all potential failures of the system and its

parts, but the effect and the mechanism of the failure. These failures are identified based on the

analysis of drawings or flowcharts of the system, an understanding of the function of the system

and its component, and details of the environment in which it operates. The process involves

generating solutions for how to avoid and/or mitigate the effects of these failures on the system.

Alternatively, HAZOP (Hazard and operability study) is used to identify failure risks for a given

system. The identification is directed by the use of guide words (International Electrotechnical

5	

	

Commission, 2001). The process involves the generation of solutions and treatments to address

the identified risks. Potential causes of failure can be identified and understood using a fault tree

analysis, whereby various failure factors are hierarchically organized and depicted in a tree

according to their causal relationship (International Electrotechnical Commission, 2006b). This

method is best performed when the team has a deep understanding of the system and causes of

failure. It is recommended that the team use detailed diagrams of the system as an aid in analysis.

Presented as a fundamentally different accident model with an emphasis on systems theory, the

STAMP (Systems-Theoretic Accident Modeling and Processes) model focuses on controller or

enforcement failures, not traditional component failures (Leveson, 2011). This method requires

the analyst to conceive of the system as a control problem, and is facilitated through the

generation of the process model and control structure for the system. Some methods address

failure earlier in the SE-V process, for example the function-failure design method (Stone,

Tumer, & Van Wie, 2005) which can be used during the conceptual design phase. 	

2.2 Hierarchical Decomposition and Composition	

The SE-V process incorporates potential failure modes as constraints on components and

subsystem integration based on hierarchical decomposition. The study of constraints on

component and system behavior is a non-trivial problem, especially as the complexity of a

system rises. Braha and Maimon (1998) have modeled the underlying design process as an

automaton and proved that the managing of such a planning problem is NP-Hard. Thus, both

theorists and practicing engineers look for tools to visualize and understand the dependencies

between components and subsystems within a system, especially when the complexity of the

system design rises. Related work draws upon managing the decomposition based on hierarchy.

For instance, Albers et al (2011) explore a “contact and channel” principle arguing that function

6	

	

and form emerge together during design, and therefore should be considered together in a design

representation. This principle is explored in a model of the system architecture of a humanoid

robot arm considering the impact of a proposed design change. Tilstra et al (2012) have

introduced a high-definition design structure matrix (HDDSM), illustrated in the context of a

screwdriver design, to quantify the degree of nesting during the development of hierarchical

product architecture.

The DSM is the representation for capturing complex networks of dependencies used in this

work (Eppinger & Browning, 2012). Groups of tasks associated in the SE-V (Figure 1) are

mapped into a stylized task DSM in Figure 2. Several properties of this task DSM are

noteworthy: 1) Owing to the logic of SE-V, there is a regular precedence pattern between task

groups as shown by “x” marks immediately below the diagonal, where each DSM mark

represents information dependency. 2) The dotted arrows depicting information flowing from the

decomposition to the integration tasks in Figure 1 result in off-diagonal marks at each level. 3)

The “?” marks represent design iterations which may occur after integration tasks. 4)

Collectively, these marks form an X-shaped set of dependencies when tasks are grouped at each

level of system decomposition. 5) The “z” marks in the component DSM represent the

component and subsystem dependencies. Mark “z” is distinct from mark “x” because

interactions in the component DSM represent interfaces between the system elements (captured

as spatial, energy etc.).

We define domain mapping matrices (DMM): aDMM, dDMM, cDMM, iDMM, and oDMM

respectively corresponding to linkages between the components and each of the task groups –

analysis, decomposition, detailed component design, integration, and operations. The focus of

this research is on the dependencies between the component architecture and the integration

7	

	

tasks. Thus, iDMM and corresponding task and component DSMs are highlighted with chain

dotted borders. Extending this representation schema, a single DSM can capture multiple types

of interaction data if each off-diagonal cell contains a vector (Browning, 2001). For instance,

these data types might be spatial, information, energy and material dimension of component

interactions (Pimmler & Eppinger, 1994). Alternatively, these vectors may capture different

types of task interactions (Yassine, 2004). Within this context, two types of gaps are evident in

the DSM literature:

1. Conventional DMMs map the elements in one domain to another. For example,

component-task DMM maps a component DSM (that captures the complex interaction in

product architecture) to a task DSM (that captures the complex interaction amongst

system integration tasks, such as subsystem validation or a subsequent system

verification test). However, such DMM mappings (Danilovic & Browning, 2007) have

not accounted for the amount of coverage available at each interface within the product

architecture based on a selected suite of integration tasks.

2. The importance of accounting for multilevel evolution of complexity has been recognized

in the complex engineering literature. For instance, the law of requisite variety (Ashby,

1956; Beer, 1975) postulates that aggregation can absorb variety, where the term variety

refers to the total number of possible states of a complex system. A simple example for

the application of this law is a patient in a hospital with temperature fluctuation, i.e.

uncertainty, associated with fever. Aggregation of some kind is needed if the doctor is not

to sit all the month staring at the thermometer. Action must be taken immediately to

isolate the patient, such that the root cause of the temperature fluctuation may be

explored and understood based on different units of analysis, e.g. either fluctuation in

8	

	

food intake or exposure to environments with different types of germs. In complex

engineered systems, analogous decisions may involve situations where subsystem tests

during a software development suite fail to reveal a bug, even if a test engineer suspects

that a bug exists based on failure history. The test team may have to resort to higher-level

integration tests, with a sufficient variety of stimuli, to replicate this failure.

Based on the requisite variety law, Bar-Yam (2003) argues that “Modularity and abstraction are

generalized by various forms of hierarchical and layered specification … these two approaches

either incorrectly portray performance or behavioral relationships between the system parts or

assume details can be provided at a later stage.” This builds the case for taking a multilevel view

of potential integration problems. Multilevel methods, such as logarithmic transformation and

filtering of data, enable system design teams to understand patterns of emergent behavior as the

complexity of their system rises (Simoncelli et al., 1992). For example, data analysis on system-

level tests may reveal unique insights about coverage on certain components that may be missing

in subsystem-level test data. Conventional DSM models have typically not aggregated, or

disaggregated, product architecture and process dependency data based on their levels of

decomposition.

Our premise is that both these gaps can be addressed by appropriate data mapping and analysis at

each and every interface within the product architecture DSM based on multilevel views of the

SE-V process. Hence, we develop a method for data collection, query, and aggregation that

accounts for differing levels of testing to examine if different types of integration risks may be

evident at different times during the integration process. Integration risk in this instance refers to

the potential that any interface covered by a suite of tests during the SE-V integration process

may reveal a failure mode within a system design. Data associated with this method grow

9	

	

quickly with increase in the rank of the system DSM, the number of measurement dimensions,

and size of the integration test suite.

We have developed a vector representation scheme to capture all interactions from a suite of

integration tests which are relevant to a particular DSM cell. Further, in order to isolate the

contributions of multilevel analysis, we assign the interactions associated with different interface

dimensions (e.g. structural versus information interactions) at relevant levels (e.g. component

versus subsystem) with unique codes. Thus, the relevant interaction at any level can be queried,

analyzed and displayed as a DSM map. A number of multilevel data aggregation and analysis

techniques, ranging from re-normalization using finite element analysis to optimal control, have

been reported in the literature (Bar-Yam, 2006; Weinan et al., 2007; Hartmann et al., 2013).

Many of these multilevel implementations have been limited either to stylized data or small-scale

problems. In our case, we have implemented multilevel analysis in a complex DSM context

using maximum and minimum value filters in section 4.

3 Research Context and Data

We are working with a research sponsor in the offshore petroleum industry to study a deepwater

development project, with focus on the blowout preventer (BOP). The primary function of the

BOP is to manage well pressure during drilling by completely sealing off the well bore and

circulating out the influx in the event of high-pressure hydrocarbons entering the drill hole. Data

collection was performed in three stages. First, we assembled data to create the system

architecture DSM. Second, we collected data regarding integration testing. Third, we

documented interactions in the system architecture DSM that were tested in each type of

integration test. Data were collected over a period of three months based on review of

10	

	

engineering documentation and onsite interviews with subject matter experts. These onsite

interviews were conducted during two week-long visits. These interviews were followed by

email and phone conversations to clarify open issues. Each interface included in the dataset was

reviewed through this process. Our experience with this data collection process, and allied

literature (Whitney et al 1999), indicates that DSMs are sparsely populated and the size of the

data collection scales linearly with the rank of the DSM. In order to manage the data collection

effort, some of the subcomponents were grouped into a single component, based on inputs from

this review.

3.1 System Architecture

The BOP system architecture describes its decomposition into subsystems and components. We

placed our focus on including those primary components that affect system functions and are

critical for system reliability. Ancillary parts (for example shuttle valves, piping, and hoses) were

grouped with their corresponding components. An initial list of 93 components was created

based upon company and industry documentation. These 93 components were classified into 8

subsystems. The component list and subsystem boundaries were reviewed with company subject

matter experts. The list was refined to 67 components in the following 6 subsystems:

• Lower Marine Riser Package (LMRP)

• Blowout Preventer (BOP)

• Auxiliary Lines (Aux Lines)

• Choke and Kill System (C&K)

• Hydraulic Power Unit (HPU)

• Surface Control System

11	

	

In the integration stage, the BOP and LMRP are treated as one combined subsystem (known as

“the stack”); thus for the analysis in this paper, we will consider these two subsystems to be

combined. Furthermore, since the surface control system has minimal interactions in the types of

DSMs we will show, we omit this subsystem for clarity, resulting in four subsystems in our

analysis here.

The next step in data collection was to identify interactions between pairs of components. We

were interested in interactions in five dimensions critical to reliability and function, as advised

by the subject matter experts. These dimensions are:

• spatial, involving the physical connection or adjacency of two components

• structural, involving a load or pressure-transferring interaction between two components

• energy, involving the transfer of hydraulic or electrical energy between two components

• information, involving the transfer of information between components by means of

electrical signals or hydraulic pilot signals

• materials, involving the transfer of material (principally drilling mud, but also gas and

other wellbore fluids) from one component to another

All possible pairs of interacting components were first identified using engineering

documentation. These data were then reviewed with the subject matter experts. The presence of

an interaction in any of the five dimensions was recorded. Interaction data are recorded on a

binary scale, “0” (no interaction) or “1” (required interaction). These interaction data for each

pair of components form a 67x67 system architecture DSM. We considered the 5 interaction

dimensions separately and created a distinct DSM in each dimension. An entry of “1” indicates

12	

	

the presence of an interaction between the component pair while a blank indicates a lack of

interaction. Figure 3 shows the system architecture DSM for the structural dimension, including

56 of the 67 components and their interfaces. (For clarity, we omit the remaining 11 components

having no interfaces in the structural dimension. DSM data showing the other four dimensions

are also excluded here, for brevity). The DSM is symmetric, as the interactions are non-

directional.

It is possible for interactions to occur within a subsystem or across subsystems. The four areas of

possible intra-subsystem interactions, occurring in blocks along the diagonal, have been shaded

grey for visual clarity. In Figure 3, we see that a within-subsystem (intra-stack) interaction exists

between components 25 and 26 (i.e. top receiver plate and BOP frame). Illustration of a cross-

subsystem interaction is evident between components 9 and 39 (i.e. the conduit valve package

and hydraulic umbilical). Some subsystems have more interactions associated with them than

others. In general, there are more interactions within a subsystem (in the grey areas along the

diagonal) than across subsystems. In the full dataset, 331 interactions (in all the five dimensions)

are within subsystems, and only 43 are across subsystems.

3.2 Integration Tests

The second stage of data collection focused on integration test data. Company documentation

was first consulted to assemble a list of 57 integration tests. Given that our design structure

matrix analysis focuses on interactions, only tests of interactions and interfaces were considered,

and therefore tests of isolated components were excluded from the list.

Upon consultation with the company subject matter experts, this list was reduced to 25 tests

important to system function and reliability, as presented in Table 1. It is worth noting that the

13	

	

data shown here are representative and not exhaustive. Thus, it is possible that a test suite in the

current analysis might show that an interface is not tested, while it might be tested later through a

test that is not discussed here. Each test included in this analysis falls into one of three test levels.

1) Intra-subsystem component-to-component interaction tests are classified as “subsystem” level

tests. 2) Inter-subsystem tests performed before subsea implementation are classified as “dock”

level tests. 3) Finally, tests of the assembled system performed subsea in the final deployed

environment are classified as “subsea” level tests. These tests are sequenced within each level

and are temporally separated.

3.3 Interactions Addressed by Integration Tests

The third stage of data collection sought to identify which interactions, and which dimensions,

were tested in each of the integration tests. Each interaction-test combination was reviewed with

the subject matter experts in order to identify these data.

Given that there are 25 tests, and 374 total interactions across the 5 dimensions in the full data

set, there was a challenging number of combinations to review. To facilitate the subject matter

expert consultation process, we developed a data table where the integration tests could be

mapped to the component-component interactions in an efficient manner. An example of this

data input is shown in Table 2. Each test-component-pair combination was assigned its own row

in the table. There is an entry in the row corresponding to an interaction in each of the five

dimensions. If no interaction exists in the corresponding dimension, the cell is shaded grey and

the combination does not need to be reviewed. If the interaction does exist, the cell is white and

the subject matter expert identifies whether that interaction is tested by the test under review. If it

is included in the test, an “x” is marked and if it is not, the cell is marked with an “o”. For

14	

	

example in Table 2, test T2, the function verification test, is a subsystem-level test of the LMRP-

BOP stack subsystem. For this test, the spatial and structural interactions (shown by “x” marks in

Table 2) between the LMRP connector and the pod hydraulic section are tested and verified.

However, T2 does not test the integrity of the connection between the LMRP and BOP; the BOP

mandrel’s spatial, structural and material interactions with the LMRP connector are not tested in

T2 (as shown by “o” marks in Table 2).

3.4. Vector Representation

An effective way to represent the dataset is to envision a vector of 25 tests associated with each

of the off-diagonal entries in the 67x67 DSM. Abstracting to a higher level, and given that each

test is classified into one of three levels (subsystem, dock or subsea), we set a 3-dimensional

vector behind each interaction in the DSM. We label each test level numerically; subsystem is

level 1, dock is level 2 and subsea is level 3. We further add details so that a vector in each DSM

cell captures the integration test sequence coverage (i.e. for individual interaction, for each of 25

integration tests spread across three levels), for 5 types of dependency dimensions (spatial,

structural, energy, information and flow). This yields an augmented 67 x 66 x 25 x 5 (i.e.

552,750 potential interactions in the full data set, most of which are null because the matrices are

sparse) vector dataset that captures the multilevel complexity associated with the system

development and integration test architecture.

4. Results

We have explored several alternative data aggregation mechanisms to visualize these data

vectors. In order to improve the ease of visualization during multilevel information comparison,

we first present these data by levels, and then use the maximum and minimum filters to construct

15	

	

maximum and minimum integration level DSMs for each of the five dimensions in our dataset.

For ease of exposition, we present the results on only one dimension (structural) out of the five

dimensions of interactions. As explained in section 3.1, these structural interactions are only

presented for a subset of the data (that form a DSM with rank 56) instead of the full data set

(with rank 67).

4.1 Interactions by Levels

Figures 4 through 6 depict the results of queries by different levels in DSMs. For instance the

marks “1” (and “0”) in Figure 4 show the structural interfaces that are (or are not) addressed by

subsystem-level tests. Similarly, the marks “2” (and “0”) in Figure 5 show the interfaces that are

(or are not) addressed by set of dock system-level tests. Finally, Figure 6 uses marks “3” and “0”

to identify the interfaces tested in the subsea system-level tests. In principle, every interface can

be tested at the subsea level since the BOP system is installed in its operational condition. It is

clear that not all tests are relevant to each interface. It is also evident that the test suite we

analyzed has very different distribution of coverage at the subsystem, dock, and subsea levels of

tests.

4.2 Multilevel Output: Maximum Integration Level

Figures 7 and 8 combine interaction marks from multiple test levels. The off-diagonal terms in

the DSM can be filtered out of the data across multiple levels to reveal the highest test level at

which each interaction is tested, per dimension. We map the largest index of a positive test level

in the vector corresponding to each of the interactions onto the system architecture DSM. The

maximum integration level DSM for the structural dimension is presented in Figure 7. For

example, a “1” mark in the maximum integration level DSM indicates that that particular

16	

	

interaction is last tested at the subsystem level, and is not at all tested at the dock level or subsea

level.

Given no constraints on resources, an ideal system validation procedure would have all

interactions tested at the final test level in the sequence. In this way, all interactions are tested in

the most completely assembled configuration, and in the most realistic setting to actual

operational conditions. A system that is fully tested at the subsea level would lead to a maximum

integration level DSM in Figure 7 with every interaction entry a dark green “3”. A red entry of

“0” indicates that the interaction does exist but is not tested in any of the integration tests in this

dataset.

4.3 Multilevel Output: Minimum Integration Level

A second useful way to present the integration test data is the minimum integration level DSM.

Such a DSM shows the first level at which each interaction is tested in each dimension. The

minimum integration level DSM for the structural dimension is presented in Figure 8. The data

displayed in the DSM are the result of a minimum search of the test-level vector for each

interaction. A red entry of “0” in the DSM indicates that the interaction is not tested in the

integration test sequence in any assembled configuration.

From the minimum integration level DSM, we would ideally see that each interaction within a

subsystem would be first tested at the subsystem level. This area is shaded grey for clarity of

visualization. Therefore all of the entries in the grey shaded area along the diagonal should

ideally be “1”. For example, any interaction between two components from the LMRP-BOP

stack subsystem could first be tested at the subsystem level.

17	

	

We would also expect that any inter-subsystem interaction could not be tested until the second or

third (dock or subsea) levels, since those interactions do not exist for testing before the

subsystems have been assembled. Therefore the DSM entry for those interactions outside the

grey shaded area would be a “2” or a “3”. For example, an interaction between a component in

the LMRP/BOP stack subsystem and the Aux Lines subsystem could only first be tested at the

dock or subsea level.

This DSM is a map of when information regarding interaction performance is revealed within the

SE-V process. An ideal testing protocol would reveal as much information about the

performance of the interactions as soon as possible, revealing issues and risks early to allow time

for mitigation, re-work or re-design. From this interpretation, the ideal minimum integration

level DSM would show that all intra-subsystem entries are tested at the subsystem level (all

entries are 1) and the inter-subsystem entries are all tested at the dock level (all entries are 2).

5 Discussion

In many industries, test procedures are based on regulatory requirements and industry standards.

Such standards do not tend to specify tests from an interaction point of view. The DSM-based

query of interactions is a different lens through which the completeness of the test set can be

considered. Thus, this analysis has the potential to reveal previously undiscovered information

and insights to systems engineers.

5.1 Potential for Unanticipated Outcomes

Upon examination of the maximum integration level DSM, we see in Figure 7 that two thirds

(66%) of the interactions are tested to the highest test level (subsea) in the structural dimension;

18	

	

however, a quarter (26%) of the interactions are not being tested in the integration test set at all.

For instance, we observe that all of the interactions involving the Top Receiver Plate and all of

the interactions involving LMRP Frame are not structurally tested during system integration.

This is because these two components are not instrumented with strain gauges during these tests.

Presumably such instrumentation would require costly or time-consuming procedures in order to

check this interface on the stack after assembly and subsea. Thus, it possible for the multilevel

analysis proposed in this paper to yield outcomes which can point to opportunities to improve the

integration stage of SE-V process.

A deviation from the ideal test level discovered through the maximum and minimum integration

level DSMs may either prompt a redesign of the interface or call for additional instrumentation

on the existing interface so that it can be tested. Furthermore, it may induce the development

team to introduce additional integration tests. One caveat to these findings is that the quality of

output in terms of completeness of coverage is predicated upon the completeness of the chosen

integration test suite. In many complex systems ranging from offshore oil operations to mission

critical software development (Rosenblum & Weyuker, 1997), it is difficult to include all the test

conditions and their combinations. It is therefore common to use a range of test cases (sometimes

known as regression tests) to create adequate test coverage.

In any case, DSMs (shown in Figures 4, 5, and 6) provide useful maps for designing test

coverage and for debugging structural failure modes. Such findings are not limited to the

structural dimension. We have studied the maximum and minimum integration level DSMs for

the other four dimensions (not shown here). For instance, the information dimension DSMs show

that, within the scope of the 25 tests we considered, the interface between the pod hydraulic

section receptacle and the deadman/autoshear control system is not tested beyond the subsystem

19	

	

level. This analysis of integration-phase testing raises the possibility of potentially revealing

unanticipated failure modes and when additional tests should be performed, either at the

subsystem or system level.

5.2 Insights from Multilevel Analysis

A key contribution from this paper lies in the manner in which test and integration data are

represented within the DSM. The use of maximum and minimum functions is merely one

analytical approach for improving outcomes based on this representation. Other analytical

formulations are also possible. The choice of query and formulation function depends on the

question being asked. For instance, we have examined the data generated by alternative

multilevel queries (one set for each dimension of the 25 tests, disaggregated by levels, listed in

Table 1) to figure out either how early or how completely a particular test may address

integration issues at a given level of analysis. We have also examined the failure modes

associated with an aggregate (i.e. a single level) map of the product architecture by querying the

DSM representation that yielded measures such as "network centrality," and provided insights on

whether the network position of a component contributed to system failure. Such results are not

presented in the current manuscript for brevity.

The minimum integration level DSM reveals that in the structural dimension, some interactions

are not tested until the subsea level, even though these interactions are present earlier in the test

sequence (assuming that subsystems are assembled first). Many of the auxiliary lines interactions

exhibit this behavior, likely because they are not yet assembled for dock tests as they are too

physically large. Further we see that some inter-subsystem interactions are not tested until the

subsea level despite the fact that the interacting components may be fully assembled, although

20	

	

not in the deployed environment, in the second (dock) level. There is only one example of such

an interface, that between the choke & kill riser lines and the riser adapter. The maximum

integration level DSM (see Figure 7) reveals that in the structural dimension, some interactions

are tested at the subsystem and then are not tested as the system progresses through integration.

For example, the interactions within the BOP/LMRP stack between the BOP frame and wellhead

connector are tested at the subsystem level but are not tested at the dock or subsea system-level

configurations. Thus, the multilevel timing information revealed in the maximum and minimum

integration level DSM analyses shows which of the interfaces are tested early and late in the

integration process. Based on their coverage of interfaces, a design team can assign different

levels of risks to the integration plan. This observation gives rise to questions of how the dock

testing and subsea testing scope are decided. For instance, we found that in the material

dimension minimum integration level DSM that all of the intra-subsystem interactions are tested

at the ideal time, as soon as possible, except for those involving the flex joint which are not

integration tested through the set of tests examined in this work.

The interaction information in the DSM representation is restricted to our review of engineering

documentation, followed by inputs provided by subject matter experts. It is possible that other

interactions exist, but are neither reported in the documentation nor anticipated by an expert. It is

also possible that some potential failure modes might precipitate through a combination of

interactions. This heightens the need for careful design of the integration phase in the SE-V

through a series of tests to uncover unanticipated interactions, or combinations of interactions.

The rigor of the method described in this paper is restricted by the representation schema and

data that we have captured. It does not guarantee completeness of the test coverage. It also does

not rule out the possibility of unanticipated failures during integration tests. The DSM

21	

	

representation can inform failure model and effect analysis (IEC 60812) in terms of interaction

pattern identification and coverage while exploring the causes for unanticipated failures.

INCOSE (2011) recommends an integration process that “verifies that all boundaries between

system elements have been correctly identified and described.” DSM representation and allied

maximum and minimum integration level analyses can complement several useful alternatives

for investigating system integration: HAZOP (IEC, 61882), network reliability modeling

(Michelena & Papalambros, 1995) etc.

Our initial field study has restricted the scope of the work to 5 dimensions of dependencies:

spatial fit, structural load, energy flow, information flow, and material (fluid) flow across only

two domains (component and testing) from a list of 5 domains shown in Figure 2. The current

analysis is preliminary and limited to demonstrate a proof of the multilevel analysis concept.

Thus, we have restricted the analysis of the interactions to a single dimension, in this case,

structural, as shown in Figures 4 through 8. In reality there can be significant interactions across

the five dimensions. For instance, a structural load may cause deflections that could create spatial

misalignment while making hydraulic line connections. It is possible to augment the analysis, by

constructing combinations of interaction measures. We leave such an analysis as an extension for

follow-on work.

6 Conclusion

The research underlying this project, and the method outlined in this paper, are at an early stage

of development. Multilevel analysis of DSMs developed in this study contributes to the design of

complex engineered systems by addressing two gaps: (i) it develops a data collection and

mapping methodology to account for the amount of coverage available at each interface within

22	

	

DSM representation of complex SE-V processes, and (ii) it offers a theoretical basis and a

method for data aggregation and query that accounts for differing scales, both in terms of level

and timing, to explore if different types of integration risks may be evident at different time

scales.

Design and analysis of complex engineered systems is a growing research area that calls for

systematic and rigorous approaches based on advances in complexity and behavioral sciences

(Anderson & Joglekar, 2012). Augmented vector DSM data and visualizations presented in this

paper can lend themselves to further analysis. For instance, multilevel data can be used to inform

the development of system architecture decomposition options and optimal sequencing of the

integration tasks based on design for testability and design for reliability considerations.

Developments based on detailed understanding of interactions at each interface, captured in the

off diagonal cells of a system architecture DSM, may yield novel integration risk metrics,

algorithms and behavioral research opportunities for improving complex system design early in

the SE-V process.

References

Albers, A., Braun, A., Sadowski, E., Wynn, D. C., Wyatt, D. F., & Clarkson, P. J. (2011).

System architecture modeling in a software tool based on the contact and channel approach

(C&C-A). Journal of Mechanical Design 133, 101006

Allen, J. K., Seepersad, C., Choi, H., & Mistree, F. (2006). Robust design for multiscale and

multidisciplinary applications. Journal of Mechanical Design 128(4), 832-843.

Anderson, E. & Joglekar, N. (2012). The Innovation Butterfly: Managing Emergent

Opportunities and Risks during Distributed Innovation. New York: Springer.

Ashby, W.R. (1956). An Introduction to Cybernetics. New York: Chapman & Hall.

23	

	

Bar-Yam, Y. (2003), When Systems Engineering Fails - Toward Complex Systems Engineering.

IEEE International Conference on Systems, Man and Cybernetics 2, 2021-2028.

Bar-Yam, Y. (2006). Engineering complex systems: multiscale analysis of evolutionary

engineering. In Complex Engineering Systems (Braha, D., Minai, A., & Bar-Yam, Y., Eds.),

pp. 22-39. Berlin Heidelberg: Springer.

Beer, S. (1975). Designing Freedom. New York: John Wiley.

Blanchard, B. S. & Fabrycky, W. J. (1990). Systems engineering and analysis. Englewood Cliffs,

New Jersey: Prentice Hall.

Braha, D., & Maimon, O.Z. (1998). A mathematical theory of design: foundations, algorithms

and applications. Boston: Kluwer Academic Publishers.

Browning, T.R. (2001). Applying the design structure matrix to system decomposition and

integration problems: a review and new directions. IEEE Transactions on Engineering

Management 48(3), 292-306.

Danilovic, M. & Browning, T. R. (2007). Managing complex product development projects with

design structure matrices and domain mapping matrices. International Journal of Project

Management 25(3), 300-314.

Eppinger, S.D. & Browning, T.R. (2012). Design Structure Matrix Methods and Applications.

Cambridge: MIT Press.

Giffin, M., de Weck, O., Bounova, G., Keller, G., R., Eckert, C., & Clarkson, P.J. (2009).

Change propagation analysis in complex technical systems. Journal of Mechanical

Design 131(8), 081001.

Griffin, M. D. (2010). How do we fix system engineering? 61st Annual International Congress,

Paper No. IAC-10.D1.5.4, Prague, Czech Republic, September 27 – October 1.

Halman, J. & Braks, B. (1999). Project Alliancing in the offshore Industry, International Journal

of Project Management 17(2), 71–76.

24	

	

Hartmann, C., Zhang, W., Latorre, J., & Pavliotis, G., (2013). Optimal control of multiscale

systems: an approach using logarithmic transformations. International conference on

Scientific Computation and Differential Equations, SciCADE 2013, Valladolid, Spain,

September 16-20.

International Electrotechnical Commission. (2001). IEC 61882: Hazard and operability studies

(HAZOP studies) - Application guide. Geneva.

International Electrotechnical Commission. (2006a). IEC 60812: Analysis techniques for system

reliability - Procedures for failure mode and effect analysis (FMEA). Geneva.

International Electrotechnical Commission. (2006b). IEC 61025: Fault tree analysis (FTA).

Geneva.

INCOSE (2011). Systems Engineering Handbook: A Guide for System Life Cycle Processes and

Activities (Haskins, C. Ed.). San Diego, California.

Leveson, N. G. (2011). Engineering a Safer World. Cambridge, MA: The MIT Press.

Leveson, N., Dulac, N., Marais, K., Carroll J. (2009). Moving beyond normal accidents and high

reliability organizations: a systems approach to safety in complex systems. Organization

Studies 30(2-3), 227-249.

Lewis, K. (2012). Making Sense of Elegant Complexity in Design. Journal of Mechanical

Design, 134, 120801.

Michelena, N. & Papalambros, P. (1995). A Network Reliability Approach to Optimal

Decomposition of Design Problems, Journal of Mechanical Design, 117(3), 433-440.

Papakonstantinou, N., Sierla, S., Jensen, D., & Tumer, I.Y. (2012). Simulation of Interactions

and Emergent Failure Behavior During Complex System Design. Journal of Computing and

Information Science in Engineering 12(3), 031007.

Pimmler, T. U., & Eppinger, S. D. (1994). Integration analysis of product decompositions. ASME

Design Theory and Methodology Conference. Minneapolis, MN.

Reich, Y. (1998). Learning in Design: From Characterizing Dimensions to Working Systems.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 12, 161-172.

25	

	

Rosenblum D.S., & Weyuker, E.J. (1997) Lessons learned from a regression testing case study.

Empirical Software Engineering 2(2), 188–191.

Simoncelli, E. P., Freeman, W. T., Adelson, E. H., & Heeger, D. J. (1992). Shiftable multiscale

transforms. IEEE Transactions on Information Theory 38(2), 587-607.

Stamatis, D. H. (2003). Failure Mode and Effect Analysis: FMEA from Theory to Execution.

ASQ Quality Press.

Stone, R. B., Tumer, I. Y., & Van Wie, M. (2005). The Function-Failure Design Method. Journal

of Mechanical Design, 127(3), 397. doi:10.1115/1.1862678

Tilstra, A. H., Seepersad, C. C., & Wood, K. L. (2012). A high-definition design structure matrix

(HDDSM) for the quantitative assessment of product architecture. Journal of Engineering

Design 23(10-11), 767-789.

Whitney, D. E., Dong, Q., Judson, J., & Mascoli, G. (1999). Introducing knowledge-based

engineering into an interconnected product development process. In Proceedings of the 1999

ASME Design Engineering Technical Conferences.

Weinan, E., Engquist, B., Li, X., Ren, W., & Vanden-Eijnden, E. (2007). Heterogeneous

multiscale methods: a review. Communications in Computational Physics 2(3), 367-450.

Yassine, A. (2004). An introduction to modeling and analyzing complex product development

processes using the design structure matrix (DSM) method, Urbana 51(9), 1-17.

Zha, X. F., Sriram, R. D., Fernandez, M. G., & Mistree, F. (2008). Knowledge-intensive

collaborative decision support for design processes: A hybrid decision support model and

agent. Computers in Industry 59(9), 905-922.

26	

	

Figure 1: Phases and Levels within a SE-V Process

27	

	

Figure 2: A Multilevel DSM of SE-V Tasks and Components Dependencies
	

28	

	

Figure 3: System Architecture DSM Representation of Structural Interactions between
Components

Legend:

1	
 Interface between components in the row and column

Marks in off-diagonal cells identify interfaces between components in their row and column.

Boundaries of five subsystems (Stack-LMRP, Stack-BOP, Aux Lines, C&K and HPU) are
marked by solid lines.

! " # $ % & ' () !* !! !" !# !$!% !& !' !(!) "* "! "" "# "$ "% "& "' "(") #* #! #" ## #$ #% #& #' #(#) $* $! $" $# $$ $% $& $' $($) %* %! %" %# %$ %% %&

+,-./01234 ! ! ! ! ! ! ! !

56789:;7/<;= " ! " "

-:>41/?;791;@/<;= # ! # #

.;A/B@4891:82@/C489:;7 $ $! $

.;A/C91689614 % ! ! % ! ! %

.;A/DEA126@:8/C489:;7 & ! & ! ! ! ! ! ! ! ! &

+,-./?;77489;1 ' ! ' ! ! ! ! '

+,-./-FG/.274@ (! (! ! ! ! (

?;7A6:9/G2@H4/.28I2J4) ! !) ! ! !)

?K;I4/L/M:@@/N4>9/H2@H4> !* ! !* ! ! ! !*

O776@21/P14H47941> !! ! ! ! !! ! ! ! !!

O776@21/Q@44A/H2@H4> !" ! ! ! !" !"

0@4=:Q@4/8K;I4RI:@@/@:74/P:P:7J !# ! !# ! !#

-:>41/OA2P941 !$! ! !$! ! ! !$

0@4=/5;:79 !% ! ! !% !%

+,-./B341J478E/148;H41E/>E>943 !& ! !& !&

+;S41/Q2>4/P@294 !' ! ! ! ! !' ! ! ! !'

T49/32I4RQ142I/4@4891:82@/8;77489;1 !(! ! ! !(! ! !(

,:7:/?;77489;1>/;7/8K;I4RI:@@/@:74> !) ! ! ! ! ! !) ! ! ! !)

<F./,27A14@ "* ! "* ! ! "*

T4@@K42A/?;77489;1 "! "! ! ! ! ! ! "!

T49/32I4RQ142I/1484P928@4 "" ! "" ! ""

,:7:/?;77489;1/-484P928@4 "# ! "# ! ! "#

.;A/DEA126@:8/C489:;7/-484P928@4 "$! ! "$! ! ! ! ! ! "$

N;P/1484:H41/P@294 "% ! ! ! ! ! ! ! ! "% ! ! ! ! ! ! ! "%

<F./01234 "& ! ! "& ! ! ! "&

<F./-FG/.274@ "' ! ! "' ! ! ! "'

U42A327RO69;>K421/?;791;@/CE>943 "(! ! ! "(! ! ! ! ! "(

C6Q>42/O88636@29;1> ") ! ! ! ! ") ")

.14>>614/27A/N43P4129614/P1;Q4> #* #* ! ! #*

-23/@;8I> #! ! ! ! ! #! ! ! #!

.:P4/-23> #" ! ! ! ! ! ! ! #" ! ! #"

CK421/-23> ## ! ! ! ! ! ! ! ! ## ! ##

D:JK/P14>>614/H2@H4>/V?K;I4RM:@@W #$! ! ! #$! #$

D:JK/P14>>614/P:P:7J/V8K;I4RI:@@W #% ! ! ! #% #%

<F./B341J478E/148;H41E/>E>943 #& ! #& #&

,6=/X3Q:@:82@/?2Q@4 #' #' ! #'

,6=/X3Q:@:82@/-44@ #(! #(#(

DEA126@:8/X3Q:@:82@ #) ! #) ! ! ! #)

DEA126@:8/1:>41/@:74> $* ! $* ! $*

DEA126@:8/A12P4>/@:74> $! ! $! ! $!

DEA126@:8/-:J/P:P:7J $" ! $" ! ! ! $"

DEA126@:8/144@ $# ! ! $# $#

?K;I4/L/M:@@/1:>41/@:74> $$! $$! $$

?K;I4/L/I:@@/A12P4>/@:74> $% ! $% ! $%

?K;I4/L/M:@@/-:J/P:P:7J $& ! $& ! ! $&

G2@H4> $' ! $' ! ! $'

?K;I4> $(! ! $(! ! $(

CP;;@> $) ! ! $) ! $)

?K;I4/L/G2@H4/?;791;@> %* %* %*

<6YY41/N27I %! ! ! %! %!

-4J6@29;1>/27A/G2@H4> %" %" ! ! ! ! %"

0:@941 %# ! %# ! %#

.63P %$! ! ! ! %$! %$

-4@:4Y/G2@H4 %% ! ! %% ! %%

C61Y284/O886336@29;1 %& ! ! ! ! %& %&

! " # $ % & ' () !* !! !" !# !$!% !& !' !(!) "* "! "" "# "$ "% "& "' "(") #* #! #" ## #$ #% #& #' #(#) $* $! $" $# $$ $% $& $' $($) %* %! %" %# %$ %% %&

C9
28
I/
Z/+
,
-
.

C9
28
I/
Z/<

F
.

O
6=
/+
:7
4>

?L
M

D
.X

29	

	

Figure 4: Multilevel Structural Interaction DSM Showing the Subsystem Test Level

Legend:

0	
 Interaction exists but it is not covered by subsystem-level test

1	
 Interaction exists and it is covered by subsystem-level test

! " # $ % & ' () !* !! !" !# !$!% !& !' !(!) "* "! "" "# "$ "% "& "' "(") #* #! #" ## #$ #% #& #' #(#) $* $! $" $# $$ $% $& $' $($) %* %! %" %# %$ %% %&

+,-./01234 ! ! * * * * * !

56789:;7/<;= " * " "

-:>41/?;791;@/<;= # * # #

.;A/B@4891:82@/C489:;7 $ $ * $

.;A/C91689614 % * * % * * %

.;A/DEA126@:8/C489:;7 & * & ! ! ! ! ! ! ! ! &

+,-./?;77489;1 ' ! ' ! ! ! ! '

+,-./-FG/.274@ (! (! ! ! ! (

?;7A6:9/G2@H4/.28I2J4) ! !) ! * *)

?K;I4/L/M:@@/N4>9/H2@H4> !* ! !* ! ! ! !*

O776@21/P14H47941> !! ! ! ! !! ! * * !!

O776@21/Q@44A/H2@H4> !" ! ! ! !" !"

0@4=:Q@4/8K;I4RI:@@/@:74/P:P:7J !# ! !# ! !#

-:>41/OA2P941 !$! ! !$ * * * !$

0@4=/5;:79 !% * * !% !%

+,-./B341J478E/148;H41E/>E>943 !& * !& !&

+;S41/Q2>4/P@294 !' * * ! * !' * * * !'

T49/32I4RQ142I/4@4891:82@/8;77489;1 !(! ! * !(! * !(

,:7:/?;77489;1>/;7/8K;I4RI:@@/@:74> !) * ! ! ! * !) ! * ! !)

<F./,27A14@ "* ! "* * ! "*

T4@@K42A/?;77489;1 "! "! ! * ! ! ! "!

T49/32I4RQ142I/1484P928@4 "" ! "" * ""

,:7:/?;77489;1/-484P928@4 "# ! "# * ! "#

.;A/DEA126@:8/C489:;7/-484P928@4 "$! ! "$ * ! ! ! ! ! "$

N;P/1484:H41/P@294 "% * * * * * * * * "% * * * * * * * "%

<F./01234 "& ! * "& * ! ! "&

<F./-FG/.274@ "' ! * "' ! ! ! "'

U42A327RO69;>K421/?;791;@/CE>943 "(! * ! "(! ! ! ! ! "(

C6Q>42/O88636@29;1> ") ! * ! ! ") ")

.14>>614/27A/N43P4129614/P1;Q4> #* #* ! ! #*

-23/@;8I> #! ! * ! ! #! ! ! #!

.:P4/-23> #" ! ! * ! ! ! ! #" ! ! #"

CK421/-23> ## ! ! * ! ! ! ! ! ## ! ##

D:JK/P14>>614/H2@H4>/V?K;I4RM:@@W #$! ! ! #$! #$

D:JK/P14>>614/P:P:7J/V8K;I4RI:@@W #% ! ! ! #% #%

<F./B341J478E/148;H41E/>E>943 #& * #& #&

,6=/X3Q:@:82@/?2Q@4 #' #' ! #'

,6=/X3Q:@:82@/-44@ #(! #(#(

DEA126@:8/X3Q:@:82@ #) * #) ! * * #)

DEA126@:8/1:>41/@:74> $* * $* ! $*

DEA126@:8/A12P4>/@:74> $! ! $! ! $!

DEA126@:8/-:J/P:P:7J $" ! $" * * * $"

DEA126@:8/144@ $# ! * $# $#

?K;I4/L/M:@@/1:>41/@:74> $$ * $$ * $$

?K;I4/L/I:@@/A12P4>/@:74> $% * $% * $%

?K;I4/L/M:@@/-:J/P:P:7J $& * $& * * $&

G2@H4> $' * $' ! ! $'

?K;I4> $(* ! $(! ! $(

CP;;@> $) ! ! $) ! $)

?K;I4/L/G2@H4/?;791;@> %* %* %*

<6YY41/N27I %! ! ! %! %!

-4J6@29;1>/27A/G2@H4> %" %" ! ! ! ! %"

0:@941 %# ! %# ! %#

.63P %$ * * ! ! %$! %$

-4@:4Y/G2@H4 %% ! ! %% ! %%

C61Y284/O886336@29;1 %& * * ! ! %& %&

! " # $ % & ' () !* !! !" !# !$!% !& !' !(!) "* "! "" "# "$ "% "& "' "(") #* #! #" ## #$ #% #& #' #(#) $* $! $" $# $$ $% $& $' $($) %* %! %" %# %$ %% %&

C9
28
I/
Z/+
,
-
.

C9
28
I/
Z/<

F
.

O
6=
/+
:7
4>

?L
M

D
.X

30	

	

Figure 5: Multilevel Structural Interaction DSM Showing the Dock Test Level

Legend:

0	
 Interaction exists but it is not covered by dock-level tests

2	
 Interaction exists and it is covered by dock-level tests

! " # $ % & ' () !* !! !" !# !$!% !& !' !(!) "* "! "" "# "$ "% "& "' "(") #* #! #" ## #$ #% #& #' #(#) $* $! $" $# $$ $% $& $' $($) %* %! %" %# %$ %% %&

+,-./01234 ! ! * * * * * !

56789:;7/<;= " * " "

-:>41/?;791;@/<;= # * # #

.;A/B@4891:82@/C489:;7 $ $ * $

.;A/C91689614 % * * % * * %

.;A/DEA126@:8/C489:;7 & * & " " " " " " " " &

+,-./?;77489;1 ' " ' " " " " '

+,-./-FG/.274@ (" (" " " " (

?;7A6:9/G2@H4/.28I2J4) " ") " * ")

?K;I4/L/M:@@/N4>9/H2@H4> !* " !* " " " !*

O776@21/P14H47941> !! " " " !! " * * !!

O776@21/Q@44A/H2@H4> !" " " " !" !"

0@4=:Q@4/8K;I4RI:@@/@:74/P:P:7J !# " !# " !#

-:>41/OA2P941 !$ " " !$ * " * !$

0@4=/5;:79 !% * * !% !%

+,-./B341J478E/148;H41E/>E>943 !& * !& !&

+;S41/Q2>4/P@294 !' * * " * !' * * * !'

T49/32I4RQ142I/4@4891:82@/8;77489;1 !(" " * !(" * !(

,:7:/?;77489;1>/;7/8K;I4RI:@@/@:74> !) * " " " * !) " * " !)

<F./,27A14@ "* " "* * " "*

T4@@K42A/?;77489;1 "! "! " * " " " "!

T49/32I4RQ142I/1484P928@4 "" " "" * ""

,:7:/?;77489;1/-484P928@4 "# " "# * " "#

.;A/DEA126@:8/C489:;7/-484P928@4 "$ " " "$ * * " " " " "$

N;P/1484:H41/P@294 "% * * * * * * * * "% * * * * * * * "%

<F./01234 "& * * "& * * * "&

<F./-FG/.274@ "' " * "' " " " "'

U42A327RO69;>K421/?;791;@/CE>943 "(* * * "(" " " " " "(

C6Q>42/O88636@29;1> ") " * * " ") ")

.14>>614/27A/N43P4129614/P1;Q4> #* #* " " #*

-23/@;8I> #! " * " " #! " " #!

.:P4/-23> #" " " * " " " " #" " " #"

CK421/-23> ## " " * " " " " " ## " ##

D:JK/P14>>614/H2@H4>/V?K;I4RM:@@W #$ " " " #$ " #$

D:JK/P14>>614/P:P:7J/V8K;I4RI:@@W #% " " " #% #%

<F./B341J478E/148;H41E/>E>943 #& * #& #&

,6=/X3Q:@:82@/?2Q@4 #' #' " #'

,6=/X3Q:@:82@/-44@ #(" #(#(

DEA126@:8/X3Q:@:82@ #) " #) " " " #)

DEA126@:8/1:>41/@:74> $* " $* * $*

DEA126@:8/A12P4>/@:74> $! * $! * $!

DEA126@:8/-:J/P:P:7J $" * $" " " " $"

DEA126@:8/144@ $# " " $# $#

?K;I4/L/M:@@/1:>41/@:74> $$ * $$ * $$

?K;I4/L/I:@@/A12P4>/@:74> $% * $% " $%

?K;I4/L/M:@@/-:J/P:P:7J $& " $& " " $&

G2@H4> $' " $' " " $'

?K;I4> $(" " $(" * $(

CP;;@> $) " " $) * $)

?K;I4/L/G2@H4/?;791;@> %* %* %*

<6YY41/N27I %! * * %! %!

-4J6@29;1>/27A/G2@H4> %" %" " " " " %"

0:@941 %# " %# " %#

.63P %$ " " " " %$ " %$

-4@:4Y/G2@H4 %% " " %% " %%

C61Y284/O886336@29;1 %& " " " " %& %&

! " # $ % & ' () !* !! !" !# !$!% !& !' !(!) "* "! "" "# "$ "% "& "' "(") #* #! #" ## #$ #% #& #' #(#) $* $! $" $# $$ $% $& $' $($) %* %! %" %# %$ %% %&

C9
28
I/
Z/<

F
.

C9
28
I/
Z/+
,
-
.

O
6=
/+
:7
4>

?L
M

D
.X

31	

	

Figure 6: Multilevel Structural Interaction DSM Showing the Subsea Test Level

Legend:

0	
 Interaction exists but it is not covered by subsea tests

3	
 Interaction exists and it is covered by subsea tests

! " # $ % & ' () !* !! !" !# !$!% !& !' !(!) "* "! "" "# "$ "% "& "' "(") #* #! #" ## #$ #% #& #' #(#) $* $! $" $# $$ $% $& $' $($) %* %! %" %# %$ %% %&

+,-./01234 ! ! * * * * * !

56789:;7/<;= " * " "

-:>41/?;791;@/<;= # * # #

.;A/B@4891:82@/C489:;7 $ $ * $

.;A/C91689614 % * * % * * %

.;A/DEA126@:8/C489:;7 & * & # # # # # # # # &

+,-./?;77489;1 ' # ' # # # # '

+,-./-FG/.274@ (# (# # # # (

?;7A6:9/G2@H4/.28I2J4) # #) # * #)

?K;I4/L/M:@@/N4>9/H2@H4> !* # !* # # # !*

O776@21/P14H47941> !! # # # !! # * * !!

O776@21/Q@44A/H2@H4> !" # # # !" !"

0@4=:Q@4/8K;I4RI:@@/@:74/P:P:7J !# # !# # !#

-:>41/OA2P941 !$ # # !$ * # # !$

0@4=/5;:79 !% * * !% !%

+,-./B341J478E/148;H41E/>E>943 !& * !& !&

+;S41/Q2>4/P@294 !' * * # * !' * * * !'

T49/32I4RQ142I/4@4891:82@/8;77489;1 !(# # * !(# * !(

,:7:/?;77489;1>/;7/8K;I4RI:@@/@:74> !) * # # # * !) # * # !)

<F./,27A14@ "* # "* * # "*

T4@@K42A/?;77489;1 "! "! # * # # # "!

T49/32I4RQ142I/1484P928@4 "" # "" * ""

,:7:/?;77489;1/-484P928@4 "# # "# * # "#

.;A/DEA126@:8/C489:;7/-484P928@4 "$ # # "$ * * # # # # "$

N;P/1484:H41/P@294 "% * * * * * * * * "% * * * * * * * "%

<F./01234 "& * * "& * * * "&

<F./-FG/.274@ "' # * "' # # # "'

U42A327RO69;>K421/?;791;@/CE>943 "(* * * "(# # # # # "(

C6Q>42/O88636@29;1> ") # * * # ") ")

.14>>614/27A/N43P4129614/P1;Q4> #* #* # # #*

-23/@;8I> #! # * # # #! # # #!

.:P4/-23> #" # # * # # # # #" # # #"

CK421/-23> ## # # * # # # # # ## # ##

D:JK/P14>>614/H2@H4>/V?K;I4RM:@@W #$ # # # #$ # #$

D:JK/P14>>614/P:P:7J/V8K;I4RI:@@W #% # # # #% #%

<F./B341J478E/148;H41E/>E>943 #& * #& #&

,6=/X3Q:@:82@/?2Q@4 #' #' # #'

,6=/X3Q:@:82@/-44@ #(# #(#(

DEA126@:8/X3Q:@:82@ #) # #) # # # #)

DEA126@:8/1:>41/@:74> $* # $* # $*

DEA126@:8/A12P4>/@:74> $! # $! # $!

DEA126@:8/-:J/P:P:7J $" # $" # # # $"

DEA126@:8/144@ $# # # $# $#

?K;I4/L/M:@@/1:>41/@:74> $$ # $$ # $$

?K;I4/L/I:@@/A12P4>/@:74> $% # $% # $%

?K;I4/L/M:@@/-:J/P:P:7J $& # $& # * $&

G2@H4> $' # $' * # $'

?K;I4> $(* * $(* * $(

CP;;@> $) # * $) * $)

?K;I4/L/G2@H4/?;791;@> %* %* %*

<6YY41/N27I %! * * %! %!

-4J6@29;1>/27A/G2@H4> %" %" # # # # %"

0:@941 %# # %# # %#

.63P %$ # # # # %$ # %$

-4@:4Y/G2@H4 %% # # %% # %%

C61Y284/O886336@29;1 %& # # # # %& %&

! " # $ % & ' () !* !! !" !# !$!% !& !' !(!) "* "! "" "# "$ "% "& "' "(") #* #! #" ## #$ #% #& #' #(#) $* $! $" $# $$ $% $& $' $($) %* %! %" %# %$ %% %&

?L
M

D
.X

C9
28
I/
Z/+
,
-
.

C9
28
I/
Z/<

F
.

O
6=
/+
:7
4>

32	

	

Figure 7: Maximum Structural Integration Level DSM

Legend:

0	
 Interaction exists but is not covered by any tests

1	
 Interaction exists and it is not covered beyond the subsystem-level tests

2	
 Interaction exists and it is not covered beyond the dock-level tests

3	
 Interaction exists and it is not covered beyond the subsea-level tests

! " # $ % & ' () !* !! !" !# !$!% !& !' !(!) "* "! "" "# "$ "% "& "' "(") #* #! #" ## #$ #% #& #' #(#) $* $! $" $# $$ $% $& $' $($) %* %! %" %# %$ %% %&

+,-./01234 ! ! * * * * * !

56789:;7/<;= " * " "

-:>41/?;791;@/<;= # * # #

.;A/B@4891:82@/C489:;7 $ $ * $

.;A/C91689614 % * * % * * %

.;A/DEA126@:8/C489:;7 & * & # # # # # # # # &

+,-./?;77489;1 ' # ' # # # # '

+,-./-FG/.274@ (# (# # # # (

?;7A6:9/G2@H4/.28I2J4) # #) # * #)

?K;I4/L/M:@@/N4>9/H2@H4> !* # !* # # # !*

O776@21/P14H47941> !! # # # !! # * * !!

O776@21/Q@44A/H2@H4> !" # # # !" !"

0@4=:Q@4/8K;I4RI:@@/@:74/P:P:7J !# # !# # !#

-:>41/OA2P941 !$ # # !$ * # # !$

0@4=/5;:79 !% * * !% !%

+,-./B341J478E/148;H41E/>E>943 !& * !& !&

+;S41/Q2>4/P@294 !' * * # * !' * * * !'

T49/32I4RQ142I/4@4891:82@/8;77489;1 !(# # * !(# * !(

,:7:/?;77489;1>/;7/8K;I4RI:@@/@:74> !) * # # # * !) # * # !)

<F./,27A14@ "* # "* * # "*

T4@@K42A/?;77489;1 "! "! # * # # # "!

T49/32I4RQ142I/1484P928@4 "" # "" * ""

,:7:/?;77489;1/-484P928@4 "# # "# * # "#

.;A/DEA126@:8/C489:;7/-484P928@4 "$ # # "$ * ! # # # # "$

N;P/1484:H41/P@294 "% * * * * * * * * "% * * * * * * * "%

<F./01234 "& ! * "& * ! ! "&

<F./-FG/.274@ "' # * "' # # # "'

U42A327RO69;>K421/?;791;@/CE>943 "(! * ! "(# # # # # "(

C6Q>42/O88636@29;1> ") # * ! # ") ")

.14>>614/27A/N43P4129614/P1;Q4> #* #* # # #*

-23/@;8I> #! # * # # #! # # #!

.:P4/-23> #" # # * # # # # #" # # #"

CK421/-23> ## # # * # # # # # ## # ##

D:JK/P14>>614/H2@H4>/V?K;I4RM:@@W #$ # # # #$ # #$

D:JK/P14>>614/P:P:7J/V8K;I4RI:@@W #% # # # #% #%

<F./B341J478E/148;H41E/>E>943 #& * #& #&

,6=/X3Q:@:82@/?2Q@4 #' #' # #'

,6=/X3Q:@:82@/-44@ #(# #(#(

DEA126@:8/X3Q:@:82@ #) # #) # # # #)

DEA126@:8/1:>41/@:74> $* # $* # $*

DEA126@:8/A12P4>/@:74> $! # $! # $!

DEA126@:8/-:J/P:P:7J $" # $" # # # $"

DEA126@:8/144@ $# # # $# $#

?K;I4/L/M:@@/1:>41/@:74> $$ # $$ # $$

?K;I4/L/I:@@/A12P4>/@:74> $% # $% # $%

?K;I4/L/M:@@/-:J/P:P:7J $& # $& # " $&

G2@H4> $' # $' " # $'

?K;I4> $(" " $(" ! $(

CP;;@> $) # " $) ! $)

?K;I4/L/G2@H4/?;791;@> %* %* %*

<6YY41/N27I %! ! ! %! %!

-4J6@29;1>/27A/G2@H4> %" %" # # # # %"

0:@941 %# # %# # %#

.63P %$ # # # # %$ # %$

-4@:4Y/G2@H4 %% # # %% # %%

C61Y284/O886336@29;1 %& # # # # %& %&

! " # $ % & ' () !* !! !" !# !$!% !& !' !(!) "* "! "" "# "$ "% "& "' "(") #* #! #" ## #$ #% #& #' #(#) $* $! $" $# $$ $% $& $' $($) %* %! %" %# %$ %% %&

C9
28
I/
Z/+
,
-
.

C9
28
I/
Z/<

F
.

O
6=
/+
:7
4>

?L
M

D
.X

33	

	

Figure 8: Minimum Structural Integration Level DSM

Legend:

0	
 Interaction exists but is not covered by any tests

1	
 Interaction exists and it is first covered by subsystem-level tests

2	
 Interaction exists and it is first covered by dock-level system tests

3	
 Interaction exists and it is first covered by subsea-level system tests

! " # $ % & ' () !* !! !" !# !$!% !& !' !(!) "* "! "" "# "$ "% "& "' "(") #* #! #" ## #$ #% #& #' #(#) $* $! $" $# $$ $% $& $' $($) %* %! %" %# %$ %% %&

+,-./01234 ! ! * * * * * !

56789:;7/<;= " * " "

-:>41/?;791;@/<;= # * # #

.;A/B@4891:82@/C489:;7 $ $ * $

.;A/C91689614 % * * % * * %

.;A/DEA126@:8/C489:;7 & * & ! ! ! ! ! ! ! ! &

+,-./?;77489;1 ' ! ' ! ! ! ! '

+,-./-FG/.274@ (! (! ! ! ! (

?;7A6:9/G2@H4/.28I2J4) ! !) ! * ")

?K;I4/L/M:@@/N4>9/H2@H4> !* ! !* ! ! ! !*

O776@21/P14H47941> !! ! ! ! !! ! * * !!

O776@21/Q@44A/H2@H4> !" ! ! ! !" !"

0@4=:Q@4/8K;I4RI:@@/@:74/P:P:7J !# ! !# ! !#

-:>41/OA2P941 !$! ! !$ * " # !$

0@4=/5;:79 !% * * !% !%

+,-./B341J478E/148;H41E/>E>943 !& * !& !&

+;S41/Q2>4/P@294 !' * * ! * !' * * * !'

T49/32I4RQ142I/4@4891:82@/8;77489;1 !(! ! * !(! * !(

,:7:/?;77489;1>/;7/8K;I4RI:@@/@:74> !) * ! ! ! * !) ! * ! !)

<F./,27A14@ "* ! "* * ! "*

T4@@K42A/?;77489;1 "! "! ! * ! ! ! "!

T49/32I4RQ142I/1484P928@4 "" ! "" * ""

,:7:/?;77489;1/-484P928@4 "# ! "# * ! "#

.;A/DEA126@:8/C489:;7/-484P928@4 "$! ! "$ * ! ! ! ! ! "$

N;P/1484:H41/P@294 "% * * * * * * * * "% * * * * * * * "%

<F./01234 "& ! * "& * ! ! "&

<F./-FG/.274@ "' ! * "' ! ! ! "'

U42A327RO69;>K421/?;791;@/CE>943 "(! * ! "(! ! ! ! ! "(

C6Q>42/O88636@29;1> ") ! * ! ! ") ")

.14>>614/27A/N43P4129614/P1;Q4> #* #* ! ! #*

-23/@;8I> #! ! * ! ! #! ! ! #!

.:P4/-23> #" ! ! * ! ! ! ! #" ! ! #"

CK421/-23> ## ! ! * ! ! ! ! ! ## ! ##

D:JK/P14>>614/H2@H4>/V?K;I4RM:@@W #$! ! ! #$! #$

D:JK/P14>>614/P:P:7J/V8K;I4RI:@@W #% ! ! ! #% #%

<F./B341J478E/148;H41E/>E>943 #& * #& #&

,6=/X3Q:@:82@/?2Q@4 #' #' ! #'

,6=/X3Q:@:82@/-44@ #(! #(#(

DEA126@:8/X3Q:@:82@ #) " #) ! " " #)

DEA126@:8/1:>41/@:74> $* " $* ! $*

DEA126@:8/A12P4>/@:74> $! ! $! ! $!

DEA126@:8/-:J/P:P:7J $" ! $" " " " $"

DEA126@:8/144@ $# ! " $# $#

?K;I4/L/M:@@/1:>41/@:74> $$ # $$ # $$

?K;I4/L/I:@@/A12P4>/@:74> $% # $% " $%

?K;I4/L/M:@@/-:J/P:P:7J $& " $& " " $&

G2@H4> $' " $' ! ! $'

?K;I4> $(" ! $(! ! $(

CP;;@> $) ! ! $) ! $)

?K;I4/L/G2@H4/?;791;@> %* %* %*

<6YY41/N27I %! ! ! %! %!

-4J6@29;1>/27A/G2@H4> %" %" ! ! ! ! %"

0:@941 %# ! %# ! %#

.63P %$ " " ! ! %$! %$

-4@:4Y/G2@H4 %% ! ! %% ! %%

C61Y284/O886336@29;1 %& " " ! ! %& %&

! " # $ % & ' () !* !! !" !# !$!% !& !' !(!) "* "! "" "# "$ "% "& "' "(") #* #! #" ## #$ #% #& #' #(#) $* $! $" $# $$ $% $& $' $($) %* %! %" %# %$ %% %&

O
6=
/+
:7
4>

?L
M

D
.X

C9
28
I/
Z/+
,
-
.

C9
28
I/
Z/<

F
.

34	

	

Table 1: List of Integration Tests

Index	
 Test	
 Level	

T1	
 Mechanical	
 FIT	
 check Subsystem

T2	
 Function	
 verification	
 check Subsystem

T3	
 Actuator	
 leak	
 check Subsystem

T4	
 Shear	
 Test Subsystem

T5	
 Emergency	
 Systems	
 test Subsystem

T6	
 EDS	
 test Subsystem

T7	
 BOP	
 pressure	
 test Subsystem

T8	
 Mechanical	
 FIT	
 check Subsystem

T9	
 C&K	
 Control	
 and	
 pressure	
 Test Subsystem

T10	
 HPU	
 function	
 an	
 performance	
 test Subsystem

T11	
 Panel	
 function	
 test Subsystem

T12	
 System	
 setup	
 and	
 verification Dock

T13	
 HPU	
 Function	
 Test Dock

T14	
 Panel/BOP	
 function	
 test Dock

T15	
 High	
 pressure	
 mud	
 system	
 test Dock

T16	
 Signature	
 test	
 of	
 operators	
 (performance) Dock

T17	
 Power	
 and	
 communications	
 redundancy	
 test Dock

T18	
 Emergency	
 systems	
 test Dock

T19	
 EDS	
 test Dock

T20	
 BOP	
 pressure	
 test Dock

T21	
 BOP	
 drift	
 test Dock

T22	
 Function	
 Test Subsea

T23	
 BOP	
 pressure	
 test Subsea

T24	
 Emergency	
 systems	
 test Subsea

T25	
 EDS	
 test Subsea

Table 2: Test Coverage Data Collection Table

In
de

x	

Test	
 Component	
 1	
 Component	
 2	
 	
 M
at
er
ia
l	

	
 In
fo
rm

at
io
n	

	
 E
ne

rg
y	

	
 S
tr
uc
tu
ra
l	

	
 S
pa

tia
l	

T2	

Function	

verification	
 check	
 6	

Pod	
 Hydraulic	

Section	
 7	

LMRP	

Connector	
 	
 	
 	
 X	
 X	

T2	

Function	

verification	
 check	
 20	
 BOP	
 Mandrel	
 7	

LMRP	

Connector	
 O	
 	
 	
 O	
 O	

