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Abstract: The systems engineering V (SE-V) is an established process model to guide the 

development of complex engineering projects (INCOSE, 2011). The SE-V process involves 

decomposition and integration of system elements through a sequence of tasks that produce both 

a system design and its testing specifications, followed by successive levels of build, integration, 

and test activities. This paper presents a method to improve SE-V implementation by mapping 

multilevel data into design structure matrix (DSM) models. DSM is a representation 

methodology for identifying interactions either between components or tasks associated with a 

complex engineering project (Eppinger & Browning, 2012). Multilevel refers to SE-V data on 

complex interactions that are germane either at multiple levels of analysis, e.g. component versus 

subsystem conducted either within a single phase or across multiple time phases, e.g. early or 

late in the SE-V process. This method extends conventional DSM representation schema by 

incorporating multilevel test coverage data as vectors into the off diagonal cells. These vectors 

provide a richer description of potential interactions between product architecture and SE-V 

integration test tasks than conventional domain mapping matrices (DMMs). We illustrate this 

method with data from a complex engineering project in the offshore oil industry. Data analysis 

identifies potential for unanticipated outcomes based on incomplete coverage of SE-V 

interactions during integration tests. Additionally, assessment of multilevel features using 

maximum and minimum function queries isolates all the interfaces that are associated with either 

early or late revelations of integration risks based on the planned suite of SE-V integration tests. 

Keywords: complexity, design structure matrix, design for testability, engineered systems, system 

architecture, systems engineering, system integration 
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1 Introduction 

Complex engineering involves multiple types of data and contexts. Figure 1 presents a stylized 

map of phases in a systems engineering V (SE-V) process for managing such a project. The SE-

V consists of conceptual development, preliminary system design, detailed design, construction, 

integration testing and validation, startup, operations and expansion phases (Blanchard & 

Fabrycky, 1990). An investment decision after the preliminary system design phase results in the 

commitment of capital to execute detailed design, procurement, construction, testing, validation, 

and startup activities (Halman & Braks, 1999). Hence, decision makers explore ways in which 

cost, performance, and the impact of downstream integration tasks and risks (the right side of the 

SE-V) can be examined early, i.e. during decomposition stage (the left side of the SE-V).   

The complexity in SE-V propagates through a sequence of changes (Giffin et al., 2009). These 

changes have been associated both with the large number of interactions involved within the 

system, the need for learning, and the fact that these systems involve decisions at multiple levels. 

Allied literature used the term “multi-scale” to capture robust design involving multiple level or 

time phases of decisions (Reich, 1998; Allen et al., 2006; Zha et al., 2008). We will use the term 

“multilevel” to identify decisions that involve two or more decomposition levels (e.g. 

components versus subsystems) and/or differing time scales (e.g. time gaps and sequencing 

needed across preliminary system design, detailed design and integration tests). Multilevel 

decisions result in poorly understood interactions. These interactions can lead to negative 

consequences such as cost overruns, poor startup or operational performance, and even 

propagation of failures (Lewis, 2012; Papakonstantinou et al., 2012). 
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The design structure matrix (DSM) methodology has made many contributions towards 

improving complex decisions involving choice of product, process and organizational 

architectures during the decomposition of systems on the left-hand side of the SE-V (Eppinger & 

Browning, 2012). The SE-V diagram in Figure 1 indicates that a complex systems engineering 

process involves five levels of decomposition (concept development, system-level design, 

subsystem design, detailed design and component development), specification, and integration 

testing. At each level of the system, the twin outcomes of a decomposition task are selection of 

the architecture for the next level of design and the specification for the corresponding 

integration tasks (shown by the horizontal dashed arrows in the SE-V). The goal of our research 

is to build relevant multilevel maps of DSMs involving integration tasks and corresponding 

component decomposition dependencies and to examine whether analysis of such maps can 

provide engineering managers with insights to improve the system integration process. 

This paper presents a method to account for multilevel data in the analysis of dependencies using 

DSM models. This method contributes to the DSM literature (Browning, 2001) by extending 

representation schema that incorporate multilevel and multi-time-scale test coverage data as 

vectors into the off diagonal DSM cells. These vectors provide a detailed mapping between the 

product architecture and the SE-V integration test tasks. This mapping is richer than 

conventional domain mapping matrices (DMMs, see Danilovic & Browning, 2007). We report 

on the collection of a preliminary dataset and multilevel analysis of 374 interactions related to a 

complex offshore oil industry project. Results indicate potential for unanticipated outcomes in 

terms of incomplete coverage of SE-V integration tasks. We also show that accounting for 

multilevel features using maximum and minimum function queries, readily identifies all the 

design interfaces associated with early and late revelations of coverage risks based on a selected 
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suite of integration test tasks. Finally, we discuss theoretical and applied implications of the 

findings. 

2 Formulation 

2.1 Integration and Testing for System Failures  

Failures, sometimes of the most glaring and consequential nature, can and do occur at the 

boundaries or interfaces between elements. These failures have often been ascribed to 

uncontrolled, unanticipated, and unwanted interactions between elements – in many cases 

between elements thought to be entirely separate (Griffin, 2010). For instance, based on an in-

depth case study of errors in the Italian Air Force, Leveson et al. (2009) have argued that, 

“emergent safety properties are controlled or enforced by a set of safety constraints related to the 

behavior of the system components. Accidents result from interactions among system 

components that violate these constraints – in other words, from a lack of appropriate and 

effective constraints on component and system behavior.” One goal of integration is to identify 

and resolve potential failures of the system. Among techniques commonly used to this end is 

failure mode and effect analysis (International Electrotechnical Commission, 2006a; Stamatis, 

2003). The aim of this technique is to identify not only all potential failures of the system and its 

parts, but the effect and the mechanism of the failure. These failures are identified based on the 

analysis of drawings or flowcharts of the system, an understanding of the function of the system 

and its component, and details of the environment in which it operates. The process involves 

generating solutions for how to avoid and/or mitigate the effects of these failures on the system. 

Alternatively, HAZOP (Hazard and operability study) is used to identify failure risks for a given 

system. The identification is directed by the use of guide words (International Electrotechnical 
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Commission, 2001). The process involves the generation of solutions and treatments to address 

the identified risks. Potential causes of failure can be identified and understood using a fault tree 

analysis, whereby various failure factors are hierarchically organized and depicted in a tree 

according to their causal relationship (International Electrotechnical Commission, 2006b). This 

method is best performed when the team has a deep understanding of the system and causes of 

failure. It is recommended that the team use detailed diagrams of the system as an aid in analysis. 

Presented as a fundamentally different accident model with an emphasis on systems theory, the 

STAMP (Systems-Theoretic Accident Modeling and Processes) model focuses on controller or 

enforcement failures, not traditional component failures (Leveson, 2011). This method requires 

the analyst to conceive of the system as a control problem, and is facilitated through the 

generation of the process model and control structure for the system. Some methods address 

failure earlier in the SE-V process, for example the function-failure design method (Stone, 

Tumer, & Van Wie, 2005) which can be used during the conceptual design phase. 	
  

2.2 Hierarchical Decomposition and Composition	
  

The SE-V process incorporates potential failure modes as constraints on components and 

subsystem integration based on hierarchical decomposition. The study of constraints on 

component and system behavior is a non-trivial problem, especially as the complexity of a 

system rises. Braha and Maimon (1998) have modeled the underlying design process as an 

automaton and proved that the managing of such a planning problem is NP-Hard. Thus, both 

theorists and practicing engineers look for tools to visualize and understand the dependencies 

between components and subsystems within a system, especially when the complexity of the 

system design rises. Related work draws upon managing the decomposition based on hierarchy. 

For instance, Albers et al (2011) explore a “contact and channel” principle arguing that function 
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and form emerge together during design, and therefore should be considered together in a design 

representation. This principle is explored in a model of the system architecture of a humanoid 

robot arm considering the impact of a proposed design change. Tilstra et al (2012) have 

introduced a high-definition design structure matrix (HDDSM), illustrated in the context of a 

screwdriver design, to quantify the degree of nesting during the development of hierarchical 

product architecture.  

The DSM is the representation for capturing complex networks of dependencies used in this 

work (Eppinger & Browning, 2012). Groups of tasks associated in the SE-V (Figure 1) are 

mapped into a stylized task DSM in Figure 2. Several properties of this task DSM are 

noteworthy: 1) Owing to the logic of SE-V, there is a regular precedence pattern between task 

groups as shown by “x” marks immediately below the diagonal, where each DSM mark 

represents information dependency. 2) The dotted arrows depicting information flowing from the 

decomposition to the integration tasks in Figure 1 result in off-diagonal marks at each level. 3) 

The “?” marks represent design iterations which may occur after integration tasks. 4) 

Collectively, these marks form an X-shaped set of dependencies when tasks are grouped at each 

level of system decomposition. 5) The “z” marks in the component DSM represent the 

component and subsystem dependencies. Mark “z” is distinct from mark “x” because 

interactions in the component DSM represent interfaces between the system elements (captured 

as spatial, energy etc.).  

We define domain mapping matrices (DMM): aDMM, dDMM, cDMM, iDMM, and oDMM 

respectively corresponding to linkages between the components and each of the task groups – 

analysis, decomposition, detailed component design, integration, and operations. The focus of 

this research is on the dependencies between the component architecture and the integration 
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tasks. Thus, iDMM and corresponding task and component DSMs are highlighted with chain 

dotted borders. Extending this representation schema, a single DSM can capture multiple types 

of interaction data if each off-diagonal cell contains a vector (Browning, 2001). For instance, 

these data types might be spatial, information, energy and material dimension of component 

interactions (Pimmler & Eppinger, 1994). Alternatively, these vectors may capture different 

types of task interactions (Yassine, 2004). Within this context, two types of gaps are evident in 

the DSM literature: 

1. Conventional DMMs map the elements in one domain to another. For example, 

component-task DMM maps a component DSM (that captures the complex interaction in 

product architecture) to a task DSM (that captures the complex interaction amongst 

system integration tasks, such as subsystem validation or a subsequent system 

verification test). However, such DMM mappings (Danilovic & Browning, 2007) have 

not accounted for the amount of coverage available at each interface within the product 

architecture based on a selected suite of integration tasks. 

2. The importance of accounting for multilevel evolution of complexity has been recognized 

in the complex engineering literature. For instance, the law of requisite variety (Ashby, 

1956; Beer, 1975) postulates that aggregation can absorb variety, where the term variety 

refers to the total number of possible states of a complex system. A simple example for 

the application of this law is a patient in a hospital with temperature fluctuation, i.e. 

uncertainty, associated with fever. Aggregation of some kind is needed if the doctor is not 

to sit all the month staring at the thermometer. Action must be taken immediately to 

isolate the patient, such that the root cause of the temperature fluctuation may be 

explored and understood based on different units of analysis, e.g. either fluctuation in 
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food intake or exposure to environments with different types of germs. In complex 

engineered systems, analogous decisions may involve situations where subsystem tests 

during a software development suite fail to reveal a bug, even if a test engineer suspects 

that a bug exists based on failure history. The test team may have to resort to higher-level 

integration tests, with a sufficient variety of stimuli, to replicate this failure.  

Based on the requisite variety law, Bar-Yam (2003) argues that “Modularity and abstraction are 

generalized by various forms of hierarchical and layered specification … these two approaches 

either incorrectly portray performance or behavioral relationships between the system parts or 

assume details can be provided at a later stage.”  This builds the case for taking a multilevel view 

of potential integration problems. Multilevel methods, such as logarithmic transformation and 

filtering of data, enable system design teams to understand patterns of emergent behavior as the 

complexity of their system rises (Simoncelli et al., 1992). For example, data analysis on system-

level tests may reveal unique insights about coverage on certain components that may be missing 

in subsystem-level test data. Conventional DSM models have typically not aggregated, or 

disaggregated, product architecture and process dependency data based on their levels of 

decomposition.  

Our premise is that both these gaps can be addressed by appropriate data mapping and analysis at 

each and every interface within the product architecture DSM based on multilevel views of the 

SE-V process. Hence, we develop a method for data collection, query, and aggregation that 

accounts for differing levels of testing to examine if different types of integration risks may be 

evident at different times during the integration process. Integration risk in this instance refers to 

the potential that any interface covered by a suite of tests during the SE-V integration process 

may reveal a failure mode within a system design. Data associated with this method grow 
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quickly with increase in the rank of the system DSM, the number of measurement dimensions, 

and size of the integration test suite.  

We have developed a vector representation scheme to capture all interactions from a suite of 

integration tests which are relevant to a particular DSM cell. Further, in order to isolate the 

contributions of multilevel analysis, we assign the interactions associated with different interface 

dimensions (e.g. structural versus information interactions) at relevant levels (e.g. component 

versus subsystem) with unique codes. Thus, the relevant interaction at any level can be queried, 

analyzed and displayed as a DSM map. A number of multilevel data aggregation and analysis 

techniques, ranging from re-normalization using finite element analysis to optimal control, have 

been reported in the literature (Bar-Yam, 2006; Weinan et al., 2007; Hartmann et al., 2013). 

Many of these multilevel implementations have been limited either to stylized data or small-scale 

problems. In our case, we have implemented multilevel analysis in a complex DSM context 

using maximum and minimum value filters in section 4. 

3 Research Context and Data 

We are working with a research sponsor in the offshore petroleum industry to study a deepwater 

development project, with focus on the blowout preventer (BOP). The primary function of the 

BOP is to manage well pressure during drilling by completely sealing off the well bore and 

circulating out the influx in the event of high-pressure hydrocarbons entering the drill hole. Data 

collection was performed in three stages. First, we assembled data to create the system 

architecture DSM. Second, we collected data regarding integration testing. Third, we 

documented interactions in the system architecture DSM that were tested in each type of 

integration test. Data were collected over a period of three months based on review of 
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engineering documentation and onsite interviews with subject matter experts. These onsite 

interviews were conducted during two week-long visits. These interviews were followed by 

email and phone conversations to clarify open issues. Each interface included in the dataset was 

reviewed through this process. Our experience with this data collection process, and allied 

literature (Whitney et al 1999), indicates that DSMs are sparsely populated and the size of the 

data collection scales linearly with the rank of the DSM. In order to manage the data collection 

effort, some of the subcomponents were grouped into a single component, based on inputs from 

this review.       

3.1 System Architecture 

The BOP system architecture describes its decomposition into subsystems and components. We 

placed our focus on including those primary components that affect system functions and are 

critical for system reliability. Ancillary parts (for example shuttle valves, piping, and hoses) were 

grouped with their corresponding components. An initial list of 93 components was created 

based upon company and industry documentation. These 93 components were classified into 8 

subsystems. The component list and subsystem boundaries were reviewed with company subject 

matter experts. The list was refined to 67 components in the following 6 subsystems:  

• Lower Marine Riser Package (LMRP) 

• Blowout Preventer (BOP) 

• Auxiliary Lines (Aux Lines) 

• Choke and Kill System (C&K) 

• Hydraulic Power Unit (HPU) 

• Surface Control System 
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In the integration stage, the BOP and LMRP are treated as one combined subsystem (known as 

“the stack”); thus for the analysis in this paper, we will consider these two subsystems to be 

combined. Furthermore, since the surface control system has minimal interactions in the types of 

DSMs we will show, we omit this subsystem for clarity, resulting in four subsystems in our 

analysis here. 

The next step in data collection was to identify interactions between pairs of components. We 

were interested in interactions in five dimensions critical to reliability and function, as advised 

by the subject matter experts. These dimensions are:  

• spatial, involving the physical connection or adjacency of two components 

• structural, involving a load or pressure-transferring interaction between two components 

• energy, involving the transfer of hydraulic or electrical energy between two components 

• information, involving the transfer of information between components by means of 

electrical signals or hydraulic pilot signals 

• materials, involving the transfer of material (principally drilling mud, but also gas and 

other wellbore fluids) from one component to another 

All possible pairs of interacting components were first identified using engineering 

documentation. These data were then reviewed with the subject matter experts. The presence of 

an interaction in any of the five dimensions was recorded. Interaction data are recorded on a 

binary scale, “0” (no interaction) or “1” (required interaction). These interaction data for each 

pair of components form a 67x67 system architecture DSM. We considered the 5 interaction 

dimensions separately and created a distinct DSM in each dimension. An entry of “1” indicates 
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the presence of an interaction between the component pair while a blank indicates a lack of 

interaction. Figure 3 shows the system architecture DSM for the structural dimension, including 

56 of the 67 components and their interfaces. (For clarity, we omit the remaining 11 components 

having no interfaces in the structural dimension. DSM data showing the other four dimensions 

are also excluded here, for brevity). The DSM is symmetric, as the interactions are non-

directional.  

It is possible for interactions to occur within a subsystem or across subsystems. The four areas of 

possible intra-subsystem interactions, occurring in blocks along the diagonal, have been shaded 

grey for visual clarity. In Figure 3, we see that a within-subsystem (intra-stack) interaction exists 

between components 25 and 26 (i.e. top receiver plate and BOP frame). Illustration of a cross-

subsystem interaction is evident between components 9 and 39 (i.e. the conduit valve package 

and hydraulic umbilical). Some subsystems have more interactions associated with them than 

others. In general, there are more interactions within a subsystem (in the grey areas along the 

diagonal) than across subsystems. In the full dataset, 331 interactions (in all the five dimensions) 

are within subsystems, and only 43 are across subsystems. 

3.2 Integration Tests 

The second stage of data collection focused on integration test data. Company documentation 

was first consulted to assemble a list of 57 integration tests. Given that our design structure 

matrix analysis focuses on interactions, only tests of interactions and interfaces were considered, 

and therefore tests of isolated components were excluded from the list.  

Upon consultation with the company subject matter experts, this list was reduced to 25 tests 

important to system function and reliability, as presented in Table 1. It is worth noting that the 
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data shown here are representative and not exhaustive. Thus, it is possible that a test suite in the 

current analysis might show that an interface is not tested, while it might be tested later through a 

test that is not discussed here. Each test included in this analysis falls into one of three test levels. 

1) Intra-subsystem component-to-component interaction tests are classified as “subsystem” level 

tests. 2) Inter-subsystem tests performed before subsea implementation are classified as “dock” 

level tests. 3) Finally, tests of the assembled system performed subsea in the final deployed 

environment are classified as “subsea” level tests. These tests are sequenced within each level 

and are temporally separated. 

3.3 Interactions Addressed by Integration Tests 

The third stage of data collection sought to identify which interactions, and which dimensions, 

were tested in each of the integration tests. Each interaction-test combination was reviewed with 

the subject matter experts in order to identify these data.  

Given that there are 25 tests, and 374 total interactions across the 5 dimensions in the full data 

set, there was a challenging number of combinations to review. To facilitate the subject matter 

expert consultation process, we developed a data table where the integration tests could be 

mapped to the component-component interactions in an efficient manner. An example of this 

data input is shown in Table 2. Each test-component-pair combination was assigned its own row 

in the table. There is an entry in the row corresponding to an interaction in each of the five 

dimensions. If no interaction exists in the corresponding dimension, the cell is shaded grey and 

the combination does not need to be reviewed. If the interaction does exist, the cell is white and 

the subject matter expert identifies whether that interaction is tested by the test under review. If it 

is included in the test, an “x” is marked and if it is not, the cell is marked with an “o”. For 
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example in Table 2, test T2, the function verification test, is a subsystem-level test of the LMRP-

BOP stack subsystem. For this test, the spatial and structural interactions (shown by “x” marks in 

Table 2) between the LMRP connector and the pod hydraulic section are tested and verified. 

However, T2 does not test the integrity of the connection between the LMRP and BOP; the BOP 

mandrel’s spatial, structural and material interactions with the LMRP connector are not tested in 

T2 (as shown by “o” marks in Table 2). 

3.4. Vector Representation 

An effective way to represent the dataset is to envision a vector of 25 tests associated with each 

of the off-diagonal entries in the 67x67 DSM. Abstracting to a higher level, and given that each 

test is classified into one of three levels (subsystem, dock or subsea), we set a 3-dimensional 

vector behind each interaction in the DSM. We label each test level numerically; subsystem is 

level 1, dock is level 2 and subsea is level 3. We further add details so that a vector in each DSM 

cell captures the integration test sequence coverage (i.e. for individual interaction, for each of 25 

integration tests spread across three levels), for 5 types of dependency dimensions (spatial, 

structural, energy, information and flow). This yields an augmented 67 x 66 x 25 x 5 (i.e. 

552,750 potential interactions in the full data set, most of which are null because the matrices are 

sparse) vector dataset that captures the multilevel complexity associated with the system 

development and integration test architecture.   

4. Results 

We have explored several alternative data aggregation mechanisms to visualize these data 

vectors. In order to improve the ease of visualization during multilevel information comparison, 

we first present these data by levels, and then use the maximum and minimum filters to construct 
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maximum and minimum integration level DSMs for each of the five dimensions in our dataset. 

For ease of exposition, we present the results on only one dimension (structural) out of the five 

dimensions of interactions. As explained in section 3.1, these structural interactions are only 

presented for a subset of the data (that form a DSM with rank 56) instead of the full data set 

(with rank 67). 

4.1 Interactions by Levels 

Figures 4 through 6 depict the results of queries by different levels in DSMs. For instance the 

marks “1” (and “0”) in Figure 4 show the structural interfaces that are (or are not) addressed by 

subsystem-level tests. Similarly, the marks “2” (and “0”) in Figure 5 show the interfaces that are 

(or are not) addressed by set of dock system-level tests. Finally, Figure 6 uses marks “3” and “0” 

to identify the interfaces tested in the subsea system-level tests. In principle, every interface can 

be tested at the subsea level since the BOP system is installed in its operational condition. It is 

clear that not all tests are relevant to each interface. It is also evident that the test suite we 

analyzed has very different distribution of coverage at the subsystem, dock, and subsea levels of 

tests.   

4.2 Multilevel Output: Maximum Integration Level 

Figures 7 and 8 combine interaction marks from multiple test levels. The off-diagonal terms in 

the DSM can be filtered out of the data across multiple levels to reveal the highest test level at 

which each interaction is tested, per dimension. We map the largest index of a positive test level 

in the vector corresponding to each of the interactions onto the system architecture DSM. The 

maximum integration level DSM for the structural dimension is presented in Figure 7. For 

example, a “1” mark in the maximum integration level DSM indicates that that particular 
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interaction is last tested at the subsystem level, and is not at all tested at the dock level or subsea 

level.  

Given no constraints on resources, an ideal system validation procedure would have all 

interactions tested at the final test level in the sequence. In this way, all interactions are tested in 

the most completely assembled configuration, and in the most realistic setting to actual 

operational conditions. A system that is fully tested at the subsea level would lead to a maximum 

integration level DSM in Figure 7 with every interaction entry a dark green “3”. A red entry of 

“0” indicates that the interaction does exist but is not tested in any of the integration tests in this 

dataset. 

4.3 Multilevel Output: Minimum Integration Level  

A second useful way to present the integration test data is the minimum integration level DSM. 

Such a DSM shows the first level at which each interaction is tested in each dimension. The 

minimum integration level DSM for the structural dimension is presented in Figure 8. The data 

displayed in the DSM are the result of a minimum search of the test-level vector for each 

interaction. A red entry of “0” in the DSM indicates that the interaction is not tested in the 

integration test sequence in any assembled configuration. 

From the minimum integration level DSM, we would ideally see that each interaction within a 

subsystem would be first tested at the subsystem level. This area is shaded grey for clarity of 

visualization. Therefore all of the entries in the grey shaded area along the diagonal should 

ideally be “1”. For example, any interaction between two components from the LMRP-BOP 

stack subsystem could first be tested at the subsystem level. 
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We would also expect that any inter-subsystem interaction could not be tested until the second or 

third (dock or subsea) levels, since those interactions do not exist for testing before the 

subsystems have been assembled. Therefore the DSM entry for those interactions outside the 

grey shaded area would be a “2” or a “3”. For example, an interaction between a component in 

the LMRP/BOP stack subsystem and the Aux Lines subsystem could only first be tested at the 

dock or subsea level. 

This DSM is a map of when information regarding interaction performance is revealed within the 

SE-V process. An ideal testing protocol would reveal as much information about the 

performance of the interactions as soon as possible, revealing issues and risks early to allow time 

for mitigation, re-work or re-design. From this interpretation, the ideal minimum integration 

level DSM would show that all intra-subsystem entries are tested at the subsystem level (all 

entries are 1) and the inter-subsystem entries are all tested at the dock level (all entries are 2). 

5 Discussion  

In many industries, test procedures are based on regulatory requirements and industry standards. 

Such standards do not tend to specify tests from an interaction point of view. The DSM-based 

query of interactions is a different lens through which the completeness of the test set can be 

considered. Thus, this analysis has the potential to reveal previously undiscovered information 

and insights to systems engineers. 

5.1 Potential for Unanticipated Outcomes  

Upon examination of the maximum integration level DSM, we see in Figure 7 that two thirds 

(66%) of the interactions are tested to the highest test level (subsea) in the structural dimension; 
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however, a quarter (26%) of the interactions are not being tested in the integration test set at all. 

For instance, we observe that all of the interactions involving the Top Receiver Plate and all of 

the interactions involving LMRP Frame are not structurally tested during system integration. 

This is because these two components are not instrumented with strain gauges during these tests. 

Presumably such instrumentation would require costly or time-consuming procedures in order to 

check this interface on the stack after assembly and subsea. Thus, it possible for the multilevel 

analysis proposed in this paper to yield outcomes which can point to opportunities to improve the 

integration stage of SE-V process. 

A deviation from the ideal test level discovered through the maximum and minimum integration 

level DSMs may either prompt a redesign of the interface or call for additional instrumentation 

on the existing interface so that it can be tested. Furthermore, it may induce the development 

team to introduce additional integration tests. One caveat to these findings is that the quality of 

output in terms of completeness of coverage is predicated upon the completeness of the chosen 

integration test suite. In many complex systems ranging from offshore oil operations to mission 

critical software development (Rosenblum & Weyuker, 1997), it is difficult to include all the test 

conditions and their combinations. It is therefore common to use a range of test cases (sometimes 

known as regression tests) to create adequate test coverage.  

In any case, DSMs (shown in Figures 4, 5, and 6) provide useful maps for designing test 

coverage and for debugging structural failure modes. Such findings are not limited to the 

structural dimension. We have studied the maximum and minimum integration level DSMs for 

the other four dimensions (not shown here). For instance, the information dimension DSMs show 

that, within the scope of the 25 tests we considered, the interface between the pod hydraulic 

section receptacle and the deadman/autoshear control system is not tested beyond the subsystem 
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level. This analysis of integration-phase testing raises the possibility of potentially revealing 

unanticipated failure modes and when additional tests should be performed, either at the 

subsystem or system level. 

5.2 Insights from Multilevel Analysis  

A key contribution from this paper lies in the manner in which test and integration data are 

represented within the DSM. The use of maximum and minimum functions is merely one 

analytical approach for improving outcomes based on this representation. Other analytical 

formulations are also possible. The choice of query and formulation function depends on the 

question being asked. For instance, we have examined the data generated by alternative 

multilevel queries (one set for each dimension of the 25 tests, disaggregated by levels, listed in 

Table 1) to figure out either how early or how completely a particular test may address 

integration issues at a given level of analysis. We have also examined the failure modes 

associated with an aggregate (i.e. a single level) map of the product architecture by querying the 

DSM representation that yielded measures such as "network centrality," and provided insights on 

whether the network position of a component contributed to system failure. Such results are not 

presented in the current manuscript for brevity.  

The minimum integration level DSM reveals that in the structural dimension, some interactions 

are not tested until the subsea level, even though these interactions are present earlier in the test 

sequence (assuming that subsystems are assembled first). Many of the auxiliary lines interactions 

exhibit this behavior, likely because they are not yet assembled for dock tests as they are too 

physically large. Further we see that some inter-subsystem interactions are not tested until the 

subsea level despite the fact that the interacting components may be fully assembled, although 
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not in the deployed environment, in the second (dock) level. There is only one example of such 

an interface, that between the choke & kill riser lines and the riser adapter. The maximum 

integration level DSM (see Figure 7) reveals that in the structural dimension, some interactions 

are tested at the subsystem and then are not tested as the system progresses through integration. 

For example, the interactions within the BOP/LMRP stack between the BOP frame and wellhead 

connector are tested at the subsystem level but are not tested at the dock or subsea system-level 

configurations. Thus, the multilevel timing information revealed in the maximum and minimum 

integration level DSM analyses shows which of the interfaces are tested early and late in the 

integration process. Based on their coverage of interfaces, a design team can assign different 

levels of risks to the integration plan. This observation gives rise to questions of how the dock 

testing and subsea testing scope are decided. For instance, we found that in the material 

dimension minimum integration level DSM that all of the intra-subsystem interactions are tested 

at the ideal time, as soon as possible, except for those involving the flex joint which are not 

integration tested through the set of tests examined in this work.  

The interaction information in the DSM representation is restricted to our review of engineering 

documentation, followed by inputs provided by subject matter experts. It is possible that other 

interactions exist, but are neither reported in the documentation nor anticipated by an expert. It is 

also possible that some potential failure modes might precipitate through a combination of 

interactions. This heightens the need for careful design of the integration phase in the SE-V 

through a series of tests to uncover unanticipated interactions, or combinations of interactions. 

The rigor of the method described in this paper is restricted by the representation schema and 

data that we have captured. It does not guarantee completeness of the test coverage. It also does 

not rule out the possibility of unanticipated failures during integration tests. The DSM 
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representation can inform failure model and effect analysis (IEC 60812) in terms of interaction 

pattern identification and coverage while exploring the causes for unanticipated failures. 

INCOSE (2011) recommends an integration process that “verifies that all boundaries between 

system elements have been correctly identified and described.” DSM representation and allied 

maximum and minimum integration level analyses can complement several useful alternatives 

for investigating system integration: HAZOP (IEC, 61882), network reliability modeling 

(Michelena & Papalambros, 1995) etc.  

Our initial field study has restricted the scope of the work to 5 dimensions of dependencies: 

spatial fit, structural load, energy flow, information flow, and material (fluid) flow across only 

two domains (component and testing) from a list of 5 domains shown in Figure 2. The current 

analysis is preliminary and limited to demonstrate a proof of the multilevel analysis concept. 

Thus, we have restricted the analysis of the interactions to a single dimension, in this case, 

structural, as shown in Figures 4 through 8. In reality there can be significant interactions across 

the five dimensions. For instance, a structural load may cause deflections that could create spatial 

misalignment while making hydraulic line connections. It is possible to augment the analysis, by 

constructing combinations of interaction measures. We leave such an analysis as an extension for 

follow-on work. 

6 Conclusion  

The research underlying this project, and the method outlined in this paper, are at an early stage 

of development. Multilevel analysis of DSMs developed in this study contributes to the design of 

complex engineered systems by addressing two gaps: (i) it develops a data collection and 

mapping methodology to account for the amount of coverage available at each interface within 



22	
  
	
  

DSM representation of complex SE-V processes, and (ii) it offers a theoretical basis and a 

method for data aggregation and query that accounts for differing scales, both in terms of level 

and timing, to explore if different types of integration risks may be evident at different time 

scales.  

Design and analysis of complex engineered systems is a growing research area that calls for 

systematic and rigorous approaches based on advances in complexity and behavioral sciences 

(Anderson & Joglekar, 2012). Augmented vector DSM data and visualizations presented in this 

paper can lend themselves to further analysis. For instance, multilevel data can be used to inform 

the development of system architecture decomposition options and optimal sequencing of the 

integration tasks based on design for testability and design for reliability considerations. 

Developments based on detailed understanding of interactions at each interface, captured in the 

off diagonal cells of a system architecture DSM, may yield novel integration risk metrics, 

algorithms and behavioral research opportunities for improving complex system design early in 

the SE-V process. 
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Figure 1: Phases and Levels within a SE-V Process 
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Figure 2: A Multilevel DSM of SE-V Tasks and Components Dependencies 
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Figure 3: System Architecture DSM Representation of Structural Interactions between 
Components 

Legend: 

1	
   Interface between components in the row and column 
 

Marks in off-diagonal cells identify interfaces between components in their row and column.   

Boundaries of five subsystems (Stack-LMRP, Stack-BOP, Aux Lines, C&K and HPU) are 
marked by solid lines. 
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Figure 4: Multilevel Structural Interaction DSM Showing the Subsystem Test Level 

Legend: 

0	
   Interaction exists but it is not covered by subsystem-level test 

1	
   Interaction exists and it is covered by subsystem-level test 
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Figure 5: Multilevel Structural Interaction DSM Showing the Dock Test Level 

Legend: 

0	
   Interaction exists but it is not covered by dock-level tests 

2	
   Interaction exists and it is covered by dock-level tests 
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Figure 6: Multilevel Structural Interaction DSM Showing the Subsea Test Level 

Legend: 

0	
   Interaction exists but it is not covered by subsea tests 

3	
   Interaction exists and it is covered by subsea tests 
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Figure 7: Maximum Structural Integration Level DSM  

Legend: 

0	
   Interaction exists but is not covered by any tests 

1	
   Interaction exists and it is not covered beyond the subsystem-level tests 

2	
   Interaction exists and it is not covered beyond the dock-level tests 

3	
   Interaction exists and it is not covered beyond the subsea-level tests 
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Figure 8: Minimum Structural Integration Level DSM 

Legend: 

0	
   Interaction exists but is not covered by any tests 

1	
   Interaction exists and it is first covered by subsystem-level tests 

2	
   Interaction exists and it is first covered by dock-level system tests 

3	
   Interaction exists and it is first covered by subsea-level system tests 
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Table 1: List of Integration Tests 

Index	
   Test	
   Level	
  

T1	
   Mechanical	
  FIT	
  check Subsystem 

T2	
   Function	
  verification	
  check Subsystem 

T3	
   Actuator	
  leak	
  check Subsystem 

T4	
   Shear	
  Test Subsystem 

T5	
   Emergency	
  Systems	
  test Subsystem 

T6	
   EDS	
  test Subsystem 

T7	
   BOP	
  pressure	
  test Subsystem 

T8	
   Mechanical	
  FIT	
  check Subsystem 

T9	
   C&K	
  Control	
  and	
  pressure	
  Test Subsystem 

T10	
   HPU	
  function	
  an	
  performance	
  test Subsystem 

T11	
   Panel	
  function	
  test Subsystem 

T12	
   System	
  setup	
  and	
  verification Dock 

T13	
   HPU	
  Function	
  Test Dock 

T14	
   Panel/BOP	
  function	
  test Dock 

T15	
   High	
  pressure	
  mud	
  system	
  test Dock 

T16	
   Signature	
  test	
  of	
  operators	
  (performance) Dock 

T17	
   Power	
  and	
  communications	
  redundancy	
  test Dock 

T18	
   Emergency	
  systems	
  test Dock 

T19	
   EDS	
  test Dock 

T20	
   BOP	
  pressure	
  test Dock 

T21	
   BOP	
  drift	
  test Dock 

T22	
   Function	
  Test Subsea 

T23	
   BOP	
  pressure	
  test Subsea 

T24	
   Emergency	
  systems	
  test Subsea 

T25	
   EDS	
  test Subsea 

 

Table 2: Test Coverage Data Collection Table 
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de
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   Component	
  1	
   Component	
  2	
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  E
ne

rg
y	
  

	
  S
tr
uc
tu
ra
l	
  

	
  S
pa

tia
l	
  

T2	
  
Function	
  

verification	
  check	
   6	
  
Pod	
  Hydraulic	
  

Section	
   7	
  
LMRP	
  

Connector	
   	
   	
   	
   X	
   X	
  

T2	
  
Function	
  

verification	
  check	
   20	
   BOP	
  Mandrel	
   7	
  
LMRP	
  

Connector	
   O	
   	
   	
   O	
   O	
  

 




