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Quantitative empirical trends in technical performance
C. L. Mageel, S. Basnet’, J. L. Funk? and C. L. Benson®

Abstract

Technological improvement trends such as Moore’s law and experience curves have
been widely used to understand how technologies change over time and to forecast the
future through extrapolation. Such studies can also potentially provide a deeper
understanding of R&D management and strategic issues associated with technical
change. However, this requires that methodological approaches for these analyses be
addressed and compared to more effectively interpret results. Our analysis of
methodological issues recommends less ambiguous approaches to: 1) the unit of
analysis; 2) choice of the metrics within a unit of analysis; 3) the relationships among
possible independent variables; and 4) qualitative and quantitative data quality
considerations.

The paper then uses this methodology to analyze performance trends for 28
technological domains with the following findings:

1. Sahal’s relationship is tested for several effort variables (for patents and
revenue in addition to cumulative production where it was first developed).

2. The relationship is quite accurate when all three relationships, ( a. an
exponential between performance and time, b. an exponential of effort and
time and c. a power law between performance and the effort variable) have
good data fits (r*>0.7) .

3. The power law and effort exponents determined are dependent upon the
choice of effort variable but the time dependence exponential is not.

4. In domains where the quantity of patents do not increase exponentially with
time, Sahal’s relationship gives poor estimates even though Moore’s law is
followed even for these domains.

5. Good data quality for any of the relationships depends upon adequate screening
involving not only r® but also the confidence interval based upon two different
statistical tests; by these measures, all 28 domains have high quality fits
between the log of performance and time whereas less than % show this level of
quality for power law fits with patents as the effort variable.

Overall, the results are interpreted as indicating that Moore’s law is a better description
of longer-term technological change when the performance data come from various
designs whereas experience curves may be more relevant when a singular design in a
given factory is considered.

Keywords: Technical Performance; Forecasting,; quantitative performance trends;
empirical quantitative trends

1 Massachusetts Institute of Technology (MIT), SUTD-MIT International Design
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1. Introduction

Since economic and social impacts of technologies are dependent upon the trend of
performance, many theories of technological change (1-8) involve hypotheses about
such trends over the life cycle of a technology. Nonetheless, there are major issues with
the quantitative empirical analysis of such trends that make testing of such hypotheses
problematic. One objective in this paper is to help make this aspect of technological
change less ambiguous, more standardized and thus more useful to all researchers.

Trajtenberg opens his important 1990 paper (9) with the following statement: “The
study of technological change has been hampered all along by the scarcity of
appropriate data and, in particular, by the lack of good indicators of innovation having a
wide coverage”. His paper establishes the importance of citation counts in signaling
patent significance thereby contributing to making the patent system a vital data source
for people studying technical change; success is evidenced in the extensive ongoing
literature using patents as an empirical means to understand technological progress
(and to test theories about technological progress).

In his computed tomography (CT) scan case study at the heart of the 1990 paper,
Trajtenberg also utilizes performance (including cost/price) measures for establishing
the amount of technological progress in CT during the period from 1975- 1982 (10).
Such performance and price trends are themselves a second potentially excellent way
(“good indicator with wide coverage”) to study technological change in addition to
patents. Therefore it is not surprising that many researchers over the past decades have
utilized price and performance trends as part of the empirical edifice for studying
technological change (11-21). Despite the fact that some of the co-authors are among
the researchers noted, we cannot strongly dispute Coccia’s conclusion (22) that most
studies of performance trends are (at least somewhat) “ad hoc”.

This paper attempts to make technical performance trends a more reliable part of the
empirical arsenal for those studying technological change by discussing and clarifying
important methodological issues. Section 2 examines the ambiguities involved with
describing the quantitative technical performance trend of a technology. Analysis of the
issues involved is done in terms of four important factors that are discussed in more
depth in the following section of the paper. Section 3 presents performance trend
results for 28 “technologies” following the four factors identified and discussed in
section 2 whereas section 4 interprets the results and discusses their implications in
terms of the remaining ambiguity associated with reliably determining the quantitative
technical performance trend of technologies.

2. Methodological Issues in analyzing performance trends

2.1 Important factors in reliable determination of quantitative technical
performance trends
There are four important factors in understanding the quantitative technical
performance trend of a technology. identifies the four most important factors in



achieving the goal. One is the unit of analysis; in other words, what do we mean by “a
technology” when we measure the quantitative technical performance trend of a
technology? Second, what do we mean by “technical performance” when we measure
the quantitative technical performance trend of a technology? This involves the
complex subject of metrics and choice of the most appropriate metric as a dependent
variable to characterize technical performance of a technology. Third, what independent
variable is appropriate which depends upon the “trend” we are attempting to represent.
Possible independent variables include time, production, sales revenue, profits, R&D
spending, and numbers of patents. The fourth key factor in the framework proposed
here is data quality.

2.2 Unit of analysis
Arriving at a non-ambiguous definition of a technology is very challenging and this
affects all empirical and theoretical studies in the field of technological change 3 There
are a lot of different approaches to decomposition of technology to specific
technologies but the broadest attempts by highly experienced and motivated experts is
clearly the US (UPC) and International patent classes (IPC). The UPC has about 400 “top
level” classes and about 135,000 subclasses (24) and the IPC (is structured with 628 4-
digit classes and 71,437 subgroups at the most granular level of the hierarchy (25).

Most technological progress researchers find these “too detailed” for several reasons.
First, since technologies evolve in unexpected directions, detailed decompositions such
as the UPC and IPC constantly evolve over time. The second logical problem with
decomposition of technology is the diversity of inter-relationships among different
named technologies: technologies are related hierarchically, in complementary and in
competitive manners. Indeed, some technologies are seen as general- purpose
technologies that affect a great number of other technological fields by becoming
embedded in them or serving to enable them by complementary relationships (26,27).
The reality of this logical issue is supported by the fact that an average US patent is
listed in 4.6 UPCs and 2.4 IPCs indicating impact on multiple streams of technology.

A second way to differentiate among technologies is using Dosi’s notions (28) of
“trajectories and paradigms” for technological progress. Dosi uses the idea of a
paradigm as normal technology progress (analogous to Kuhn's interpretation of
scientific progress) and trajectory as the economic focus on the technological problem
solving process inherent in a paradigm. Much more recently, Martinelli (29) utilized
Dosi’s concepts in a study of the telecommunication switching industry and in doing so,
developed the ideas further. Martinelli considers seven generations of switches (from
1870-2010) as described in the technical literature and identifies 4 overall paradigms
(which she discusses based upon knowledge used by the engineers) containing the 7
generations that she equates with trajectories. The Dosi approach as evolved by

3 This is just as serious an issue for patents (where the sub-classes are too numerous
to map to desired “technologies”) as it is for technical performance trends (see 23).



Martinelli is more flexible than the patent classification system partly because it is less
detailed. However, useful reductions in ambiguity without becoming too detailed are
possible.

A third way to differentiate technologies starts with generic functional categories (17).
One advantage of this approach is that a specific set of functional categories can be
determined; an example is shown in figure 1. A second favorable aspect of the approach
is the linking of technological direction to basic functional needs (transport, storage and
transformation of basic technical quantities) which delineates a connection between
economics and technology similar to Dosi’s trajectories. A drawback of this approach is
the breadth of the generic categories dictates that very different artifacts, very different
scientific knowledge bases and also very distinct industries are contained in one
category. From both governmental policy and industrial strategy viewpoints, a more in-
depth decomposition is needed in order to distinguish among clearly different
technologies. An approach that moves in this direction is to consider domains within
functional categories: specifically, a technological domain is defined here as “artifacts”
that fulfill a specific generic function utilizing a particular, recognizable body of scientific
knowledge”. This definition essentially decomposes generic functions along the lines of
established bodies of scientific knowledge. This approach is in the same spirit as the
Dosi/Martenelli framework [and with Arthur’s later approach (30)] with the generic
function connecting the domains to the economy and the body of scientific knowledge
connecting the domain to science and other technical knowledge. Its advantage is that
both generic function and domain (body of recognized scientific knowledge) are less
ambiguous than the trajectory and paradigm concepts. This approach to the unit of
analysis aspect is applied in Section 3 to 28 domains where sufficient data has been
gathered to quantitatively describe the technical performance trend.

Operands
operations Information Energy Material
Storage Punch card Super capacitor Silo, reservoir
Magnetic tape Li ion battery
Hard disk Lead acid battery
Transfer single cable Belts, shafts Aircraft (Boeing 747)

coaxial cable

Electrical power
transmission lines

Train, Sailing ship

Transformation

Sliderule
Zuse’s Z3
Harvard Mach Il
IBM Mainframe

Electrical Generator
Hydropower turbine

Bridgeport Milling
machine

SLA machine (MakerBot
Replicator)

4 Artifacts include systems, products, subsystems, processes, software and

components




Figure 1: Generic functional categories with some selected artifacts shown in each
functional category (the intersections of three fundamental technical “things” —
operands- and three fundamental processes that add value -operations)

2.3 Dependent variable: performance metric selection
Once we have defined the technological domain, how should we measure performance
to quantify improvements in performance? This depends on the purpose of the study.
One purpose for studying trends of metrics is to indicate the significance of usage of a
technology to the economy and society over time. The metrics used in such studies (and
there are extensive such “diffusion” studies) include the amount consumed (31),
fraction of potential users who become users (32), market penetration (33), and units
produced (34). While this research is very important, it does not clarify trends in
technical performance and the metrics used are not measures of technical performance.

A second purpose is to help one visualize future engineering problems or future design
directions. The metrics used in such work (they are numerous but usually as part of
more comprehensive design trend studies) include pressure ratio (13), Temperature
achieved in an artifact (13), energy efficiency (35), mass balance (35) and others. Again,
although such technical metrics are unquestionably important, effective analysis of
technical change and its social and cultural impact requires that technical performance
metrics must go beyond these technical metrics. Indeed, an appropriate definition for
this purpose is that technical performance metrics are the properties of artifacts that are
coupled to economic usage but are independent of amount of usage, number of possible
users, competitive offerings, or the scarcity or depletion of resources that are used in
building the artifacts.

The “ideal” metric for assessing technical capability is one that would assess the
economic value of an artifact independently of purely economic variables such as
scarcity and strength of demand. An ideal metric would combine (in the "correct"
weight) all performance factors that have a role in a purchase/use decision. Thus, these
“techno-economic” metrics would measure the performance of an artifact as viewed by
a user and not design variables as viewed by an engineer (the technical metrics) and also
not the number of users or depletion effects as present in more marketing or
economically focused metrics. The desire for such ideal metrics has also been discussed
as part of hedonic pricing research (10, 36,37).

The prior work has shown that developing a metric that correctly combines all
performance factors that define the value of an artifact for users (to establish trends) is
vey problematic not least because different customers/users place different weights on
different attributes. Nonetheless, reductions in ambiguity relative to current practice
are possible (sometimes technical, economic and techno-economic metrics- in our
terminology- are mixed together in ways that make all statements about trends or



findings extremely ambiguous). As a summary of this subsection, six principles can be
used in choosing metrics to describe quantitatively the technical performance of
technologies:

1. The proposed metric should be user focused- not producer or designer focused
(what makes this artifact class more valuable to a user? is the relevant question
to ask).

2. The proposed metric should not assess the number of users or revenue
generated by the artifacts under study; the intent is to measure technological
performance, not adoption.

3. The proposed metric should not incorporate depletion effects such as often
happens with study of natural resource extraction technologies. Managi et al
(16) clearly show that depletion effects tend to decrease output that is
improving due to increases in technical capability; oscillation of improvement
and deterioration of output is shown by them to be the result in one case (oil
extraction in the Gulf of Mexico measured by yield of oil per depth of well) and
similar oscillations are seen in results from other researchers for similar metrics
for other cases [(14)-coal extraction in West Virginia; (38, 39)- fossil fuels more
generally]

4. Increase in the metric should make the artifact more appealing (thus indicators
that reduce appeal -such as cost- should be in the denominator);

5. The proposed metric should not be extensive; for example, building height, kiln
size, batch size, windmill power, computer computation magnitude, etc. are not
good measures of technical performance. These metrics depend upon technical
performance (as do those in item 2) but also reflect investment and usage
factors that can render the underlying technical performance trend ambiguous.

6. For an intensive metric, the minimum number of performance indicators in the
metric is two (desired output per some constraint) but incorporation of more
indicators helps to minimize the “omitted variable problem”.

2.4 Multiplicity of Independent Variables
Trends in technical performance are usually determined as a function of either time or
effort. Intuitively, many feel more comfortable with identifiable activities for
improvement of technology as opposed to the “passive” passage of time as an implied
driver of technological change®. As an example is this quotation from MacDonald and
Schrattenholzer (40)

“For most products and services, however, it is not the passage of time that
leads to cost reductions, but the accumulation of experience. Unlike a fine wine, a
technology design that is left on the shelf does not become better the longer it sits
unused.”

5> This thought indicates a potentially unjustified confluence of causation with the
functional relationship whereas without additional work only correlation is known.



Counterbalancing this apparent drawback of using time is the fact that measurement of
effort introduces more needed data searching. More importantly, measurement of time
is unambiguous whereas effort is ambiguous and can be assessed according to several
distinct concepts. The original research by Wright (41) and further extensions (42-45)
use cumulative production as the independent variable (the equation used will be
discussed below). Although Wright treated learning as within a single plant (and for
specific airplane designs), the same independent variable is now sometimes used more
widely raising further unit of analysis issues. In particular, many researchers now treat
cumulative production of an entire (usually global) industry as the independent variable.
However, this requires more careful definition of “industry” than is sometimes done. In
addition, this broad approach almost always introduces ambiguity about the initial
values of output needed for cumulative production and thus also introduces data
manipulation issues. To put it simply, determining when unrecorded early units were
produced is very problematic.

Another issue involves defining effort since R&D and new designs —not just production-
are important. The quotation above (40) is also interesting in that the implied “unit of
analysis” is a “technology design” and one could counter that technological change does
not proceed simply by continuing to accumulate experience on existing designs but
through invention and creation of new designs. Recognizing this, some who take the
broader view argue that cumulative production is not then “learning by doing” but
instead an indirect —more or less total- measure of relevant effort. More direct
measures of such broader relevant effort include number of patents, R&D spending, and
sales revenue: all of these as well as cumulative production have issues in initial values
and are more difficult to obtain. For these as well as historical reasons, much of the
practice for independent variables for effort remains cumulative production [despite
identification of significant issues in interpreting such studies (46)].

In addition to its passive nature, time as the independent variable conceptually seems to
assume technology development is fully exogenous to what is happening in the
economy. Since the consensus is that there are strong endogenous aspects of
technology development, a fully exogenous assumption is counter-intuitive to those
thinking primarily about causes. However, time indirectly contains the endogenous
drivers as well as any exogenous drivers. For example if the production rate of an
artifact is constant, then cumulative production and time are proportional (with the
proportionality constant the rate of production) so learning by doing for factory workers
is also implicitly contained within the time variable. Similar arguments apply to R&D
spending, revenue and numbers of patents with a direct relationship realized if the rates
of each are constant over time. The obvious weakness of these indirect entailments for
time is that the effort-independent- variable (patent production, revenue or R&D
spending) is not necessarily constant over time; a similar weakness for cumulative
production occurs because profits/patents etc. are not directly proportional to
cumulative production since cost or revenue per unit is in fact the dependency usually
studied and R&D spending and patents are dependent on revenue-not units.



A preliminary conclusion could be that time casts “too wide a net” to give adequate
emphasis to the endogenous affects in technological progress but that any specific
effort variable “casts too narrow a net” to adequately capture all the endogenous
efforts and captures none of the broader effects including “spillover” from efforts
outside the implicit unit of analysis.

Perhaps surprisingly given this qualitative story of differences in the approaches, in a
very important way the two approaches are equivalent and measure the same things.
Important steps in showing this equivalence have been taken by Sahal, Nordhaus and
Nagy et al (47-49). The mathematical relationships (and the inter-relationship among
them) is given to specify this equivalence. A generalization of Moore’s Law® that
includes only performance q is

q =qo exp {k(t-to)} (1)
where qo=q att =ty and k is a constant; generalizing to an equation that includes cost
as well as performance gives

a/c=do/coexp {k(t-to)} (2)
where cis price/costandc=cg att =1t
Wright’s equation is usually formulated as describing only cost and relates it to
cumulative production (p) as a power law:
c=Bp" (3)
where B is the cost for the first unit of production and w is a constant
A generalization of Wright’s Law consistent with Equation 2 is

a/c=(a/clop” (4)
(a/c)ois the value of g/c at 1 unit of production.
Sahal showed that that if the cumulative production, p, (or production) also follows an
exponential relationship with time, namely

P =po exp g {(t-to)} (5)
where g is a constant and p = pg at t = to, then eliminating time between equations 2
and 5 yields equation 4 with

k=wg (6)
Thus, Sahal showed that the Wright and Moore formulations were equivalent when
production follows an exponential (Equation 5) and the key parameters are simply
related (Equation 6). An important issue is why one might expect equation (5) to hold.
Nordhaus pointed out (48) that as user-based performance increases or cost decreases
according to equation 2, basic economics (demand elasticity) would result in demand
(hence production) increases. Since Equation 2 is exponential, demand and hence
production would “automatically” (if demand elasticity is constant) follow the
exponential relationship in equation (5). Thus, if either the Moore or Wright equation
holds, Nordhaus’ research indicates the other will be followed as well.

6 Q in the original or actual Moore’s Law is the number of transistors on a wafer.



Beyond these theoretical considerations, Nagy et al (49) carried out an important and
relatively extensive empirical investigation of these relationships. For 62 cases (but
where only price of the artifacts was considered), they found for most cases that
production followed exponentials with time and that Equation 6 showed minimal
deviation in all 62 cases. The research by Sahal, Nordhaus and Nagy et al. shows that
attempting to use fits to equations 1 through 4 to distinguish among the intuitively
different interpretations of technological progress is not easily done.

In this work, we consider other effort variables as a further test of what has been done
with production. In particular, we pursue invention as a driver of technical change and
utilize the number of patents in a domain as an effort-variable in 28 different domains.
In one domain, we consider production, revenue and the number of patents as effort
variables and compare the results. As background for those results, we demonstrate in
this section that Sahal’s relationship is again expected if any effort- variable follows an
exponential relationship with time. In particular, if we simply decompose the derivative
of In. performance vs. time defining E as any effort variable, we obtain:

din Q/dt =dInQ/dInE x dInE/dt (7)

The left hand side of Equation (7) is the familiar slope of a In performance vs. time plot
which is k (= equation 2 exponent). The first term on the right hand side of (7) is the
power law exponent (w in equations 3 and 4) and the second term is the slope of the
exponential fit of the effort-variable with time, g in equation 5. Thus, for any effort
variable, Sahal’s relationship (equation 6) holds, k = w g. where g is now the exponent
of equation 5 for any effort variable and w is the exponent of a power law (equation 4)
or the slope of a log performance vs. log effort plot. Of course, for the relationship to
hold the effort variable must be the same for both terms on the right hand side of
Equation 7. As we will see in the results, each of these quantities can depend upon the
effort variable selected. Note that equation 7 holds for cumulative or annual versions of
the effort variables as long as equation 6 holds.

2.5 Data Quality

An important reason for greater reliance on patent than performance data by scholars is
that the quality of patent data is perceived to be higher than that of performance data.
For patent data, there is a highly motivated group of experts (the patent examiners and
other patent attorneys as well as courts of law) who maintain the definitional quality of
a patent and the meaningfulness of various metadata associated with each patent. To
promote the use of performance data by researchers, similar quality levels should be
the goal. This section describes some important quality issues for technical performance
trend data and suggests a standard set of quantitative statistical tests.

One can often obtain technical performance data from a variety of sources combining
them into metrics that vary with time and other independent variables. Although the



entire data set thus obtained can be of interest: for determining the trend, only non-
dominated observations are typically used. Non-dominated observations are those for
which the metric is not surpassed in magnitude by the value achieved by the metric at
lower values (earlier time, smaller number of patents, smaller cumulative production,
etc.) —they are “record setters”. Although this reduces the amount of data available for
analysis, it is the usual preferred practice because of concern that dominated points
may be exceedingly high on a missing variable introducing noise.

Numerous other data quality issues are worth considering. These include:

* Range of independent variable over which data is collected (more range is
better)

* Number of observations (more is better);

* Source of observed data (private communication is weaker than publicly
available data but archival Journals are better yet with multiple journal articles
the best to be expected;

* Three or more user-oriented attributes in metric is best, two or more user-
oriented attributes in metric is next best, use of non-user-oriented attribute in
metric or use of an extensive metric is the poorest;

In addition to these considerations, quality analysis continues with exponential fits
(equation 1 or 2) for the log-linear plots and with power law fits (equation 3 or 4) for the
log-log graphs. In addition to determining best estimates of parameters such as k and w
as discussed in section 3.4, the regression analysis gives r’ values for each regression
which are useful estimates of the explanatory power of the estimated equation. We also
find two other statistical estimates of value in analyzing the regression results. Both give
estimates of the reliability of the parameters (k and w) derived by the regression
analysis. The first is a standard F test analysis and the second is to analyze the
distribution of k (or w) estimates by a point-removal method. In the point-removal
method (50), regression analyses are performed with each separate observation
eliminated from the data set. For n observations, this results in n regressions with n
different estimates of k (or w) and the standard deviation of the set of estimates gives
information about how sensitive the overall k estimate is to singular observations.

3. Results

3.1 Overview of results

This section of the paper will first present some key results that are relevant to the four
issues just discussed from analysis of data sets from 28 domains. We will first consider
the unit of analysis results specifying the domains investigated in Section 3.2. Section
3.3 first reports results for one domain (integrated circuits processing) concerning
different independent variables and then focuses on the use of patents as an
independent variable because patents are the most direct measure of inventive effort in
a domain. We then report the dependent variable (performance metric) results in



section 3.4 and the results section closes (as does our discussion of issues in section 2)
with results relative to data quality in section 3.5.

The Supplementary Information file (see section 7 for overview and a link) contains the
key data for the 28 domains and for 71 different performance metrics within those
domains. The Sl also contains annual patent counts from 1976 to 2013 for each domain;
the quantity of patents is used as an effort variable for each domain to compare with
time dependence. We obtained these highly relevant patent sets by use of a
classification overlap method (51) developed earlier; the application of the method for
the 28 domains is described in (50).

3.2 Unit of Analysis: Technological domains

The 28 domains for which we have sufficiently high quality data sets are shown in Figure
2 demonstrating their position in the generic functions as displayed in Figure 1. The
figure also shows for each of these domains the generic functions and branches of
scientific knowledge that define each domain. Domains do define a narrower unit of
analysis than simply using generic functions; one example is that we show three
separate domains for information storage where magnetism, optics and electronic
structure of solids are the relevant scientific fields of knowledge. Indeed, all generic
functions in figure 2 with more than one domain represent a narrower unit of analysis
than chosen by Koh and Magee (17). However, we must also note that our
differentiation based upon distinct branches of knowledge is not simply determined. In
fact, the differences sometimes hinge as well on differentiation among artifacts. The
wireless telecommunication domain is different from electrical (or wired)
telecommunication as much by artifact classes than by differences in branches of
science since both rely essentially on electromagnetism as first developed by Faraday.

# | Information Energy Material

Semiconductor Information storage | Electrochemical batteries
(Solid-state physics, chemistry) (Electro-chemistry)

Storage

Magnetic information storage Capacitors
(magnetic materials) (Electrostatics)




Optical information storage Flywheel
(Optical materials) (Mechanics, materials)
Electrical telecommunication Electrical power transmission | Aircraft transport
c | (Electromagnetism) (electromagnetics) (Aerodynamics, mechanics)
(=]
=
58 | Optical telecommunication Superconductivity
o (photonics, optics) (solid state physics)
7y
&
= | Wireless telecommunication
(Electromagnetism))
IC Processors Combustion engines Milling Machines
(Solid-state physics, chemistry) (Thermodynamics, mechanics) | (Mechanics, dynamics)
Electronic computation Electrical motors 3D printing
(Solid-state physics, computation) (Electromagnetism) (Materials, computation)
- Camera Sensitivity Solar PV power Photolithography
© | (Photonics) (Solid-state physics) (Chemistry, optics)
®
€ | MRI Wind turbines
.,g (Nuclear physics) (Aerodynamics, mechanics)
c
Y
= | CT scan Fuel cells
(Atomic physics, computation) (Physical Chemistry)
Genome sequencing Incandescent Lighting
(biology, genomics) (materials)
LED lighting
(Solid-state physics)

Figure 2: The 28 technological domains defined for this study shown in the generic
functional format shown in Figure 1. The italicized phrase is the scientific knowledge
base for the domain.

We therefore find that even narrower units of analysis are possible than a domain. The
case of magnetic storage is of interest in that data were gathered for two distinctly
different artifacts in the domain- magnetic storage disks and magnetic tape. Figure 3
shows exponential plots for these two different artifacts contained within the magnetic
information storage domain. The visual signal from this graph (before 1990) and the
qguantitative information in Table 1 indicates that these two classes of artifact are
reasonably distinguishable and can be treated as separate unit of analyses for trend
data. Moreover, Table 1 shows that the statistically significant difference between the
rate of advance of these classes of artifacts is not very large so one can choose to
combine or not these artifacts as one’s research goals dictate. A similar finding




determined that the combustion engine domain remain singular rather than devolving
into the separate artifact-based sub-domains of turbines, internal combustion engines
and diesel engines.
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Figure 3: Performance of magnetic tape and Hard Disk Drive
Figure 3a-separate fits (circles for HDD and crosses tape); Figure 3b- combined data fit

K R?
Magnetic tape 0.236 | 0.93
Hard Disk drive 0.327 | 0.96

Combined - Tape and Hard Disk drive | 0.238 | 0.88

Table 1: combined and individual k and R for tape and disk drive artifacts in the
magnetic information storage domain

3.3 Independent variable results

3.3.1 Performance vs. time and three effort-variables for Integrated Circuits

Before analyzing the results we have considering patents as an effort-variable, it is
useful to recall that Section 2.4 showed that Sahal’s relationship is generalizable to any
effort -variable. An empirical confirmation of this is possible by examination of one of
our 28 domains- namely integrated circuits. In particular, we obtained detailed
production and revenue data for the IC domain from (52). Table 2 shows empirical
estimates of g and w for ICs for all three effort-variables along with r? for each estimate.
g describes the exponential between the effort-variable and time (Equation 5) whereas
w is the power law fit for performance vs. the effort variable (Equation 4). These results



indicate acceptable power-law fit quality for the IC domain for Moore’s performance
variable (transistors/ die) vs. each of the three effort-variables- production/demand,
revenue and patents for this domain/industry. The results in Table 2 also indicate
acceptable fit to the exponential with time for each of these effort-variables.

Independent — g from equation 5 w from Equation 4 Estimated k from
effort-variable and (r?) and (r?) Equation 6;
{empirically det.}
Production/demand | 0.59 (.97) 0.6 (.99) 0.35; {0.36}
Revenue 0.095 (.91) 3.4(.88) 0.32; {0.36}
Number of Patents | 0.114 (.76) 3.0 (.86) 0.34; {0.36}

Table 2: Empirical values of g and w for IC processors with the dependent variable (Q) =
transistors/die. The empirical value of k for this dependent variable is 0.36 in good
agreement with the values estimated from Sahal’s relationship (k = g w)

It is first interesting to note that the estimates for w and g are dependent upon the
particular effort-variable; g is much higher and w much lower for production as opposed
to revenue. This striking result is a natural outcome of the fact that this domain has
improved rapidly so that the revenue per transistor has greatly diminished over time. As
a result, the exponential increase with time (g) is much lower for revenue than for
production. Similarly, the log of increase in performance with a logarithmic increase in
effort (w) is understandably much larger for revenue than for production again because
of the much more rapid increase in production compared to revenue with the same
performance increase. In a given domain, the amount of R&D spending is approximately
proportional to revenue and the number of patents is approximately proportional to
R&D spending (53); thus, g and w for revenue and patents are expected to be similar.
Table 2 confirms empirically that g and w are much more similar for patents and
revenue than for production/demand but also shows that patents have increased
slightly more rapidly (11.4% per year) compared to revenue (9.5% per year) due to
increases in the R&D/revenue ratio in this domain over time (54).

Despite the systemic change in w and g for the three effort-variables, Table 2 shows
good agreement between direct determination of k and the value of k calculated from
Sahal’s relationship. The estimates are definitely within the confidence interval for k for
the IC processors. The strong agreement with all three effort-variables for IC processors
is a strong confirmation of the usefulness of Sahal’s relationship and that patents can
potentially be used as an effort variable. In fact, some (3) have argued that use of an
invention-oriented effort- variable is superior to time or production. In fact, for the
number of transistors per die to increase over time obviously takes more invention than
continued production of a given design and thus patents are arguably superior for this
case relative to production. However, since much helpful invention occurs outside the
domain of interest, time may still be better. We now turn to results for using patents as
an effort-variable for all 28 of our domains. We first show some plots to calibrate the
reader to different levels of fit found in the data for equations 2, 4 and 5.




3.3.1 Performance vs. time and patent output for other technological domains

Figure 4a shows log-linear plots of performance with time (equation 2) for four domains
(optical telecom, LEDs, batteries and 3D printing) and four relevant performance metrics
(we call each of these domains with a specific metric a domain-metric-pair). Figure 4b
shows the log of performance vs. log of patents’ (Equation 4) for the same four-domain-
metric-pairs and Figure 4c plots log patents vs. time (equation 5) for the same four pairs.
These four domain-metric-pairs are chosen because they represent the full range of
quality of fits in our larger data set. In particular, the LED and optical Telecom plots
show good r* values and subjectively good fits for all three plots. However, 3D printing
and batteries show poorer subjective fits and r’ values in Figures 4b and 4c. Itis
important to note that Sahal’s relationship is not accurate in cases with such poor fit
since the parameters on the right hand side of Equation 7 are not constant. In fact, the k
estimated from equation 6 for 3D printing and batteries are off from the directly
determined value by factors greater than 1.5 (much greater for 3D printing) but are
within a factor of 1.2 for optical telecom and LEDs. These results indicate that Sahal’s
relationship is accurate for cases where good fits (r> >0.75) exist for k, w and g. An
apparent reduction in accuracy of the relationship occurs as the fits deteriorate. This
finding does not depend upon the nature of the effort-variable but instead upon
whether an exponential describes well the relationship between the effort-variable and
time.

7 We also tested cumulative patents and got similar results. An additional issue in
use of cumulative patents (as with any cumulative variable) is that one does not
have actual data for many years (in our patents, we cannot apply COM before 1976)
and estimation techniques do not actually add any information. Since equation 7
works for cumulative or annual effort variables and the exponents g and w) are the
same for annual or cumulative variables, we use the actual data rather than an
arbitrary reworking of it.
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Figure 4C: Annual patents against time for four domains (optical telecommunications,
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Figure 5 is a distribution of r* for all 28 domains for the three key fit variables (k, g and
w). We note that only 2 of the 28 r’values are less than 0.8 for k but that the majority
are less than 0.8 for w and for g. This demonstrates that Moore’s Law is followed even
when a relevant effort-variable does not increase exponentially with time. This is an
important result because some might interpret Sahal’s result to mean that one needs to
have exponential increases with time for effort -variables to get exponentials of
performance with time. The results in Figure 5 show that such a conclusion is clearly not
true. Moreover, many cases of low r’ for w shows that Wright’s Law is also not followed
well for this effort-variable when patent numbers do not increase exponentially with
time. These results lead us to restrict ourselves to time as the independent variable in
the remainder of the results section.
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Figure 5: Distribution of r* for all 28 domains for k, g and w. (Note that w could not be
calculated for two of the domains)

3.4 Dependent variable (performance metrics) results

For 12 of our domains as specified in section 3.2, we only found data for a single metric;
however, for the remainder we had multiple metrics and overall we studied progress
results for 71 distinct domain- metric pairs. Table 3 compares the statistical information
for metrics that contain cost (usually estimated as equal to price) as part of the metric
with those that do not contain cost. Our rationale for doing this was the reality that cost
introduces sources of noise (depletion, subsidies, profit variation with time) that should
make the relationship less strong. Although the average values for the standard
deviations do show some deterioration for metrics containing cost, the r*values are
quite similar for both kinds of metrics. Thus, including cost in a metric does cause some
statistical downgrading but the effect is small enough that the important cost variable is
certainly important to provide in all cases where it is available.

R2 STDEV | PRM STDEV

WITH PRICE 0.869 | 4.4% 2.8%

WITHOUT PRICE | 0.868 | 1.6% 0.8%

Table 3: Comparison of statistical criteria for domain-metric-pairs containing and not
containing cost.

Another important issue is to consider the magnitude of the effect different metrics
have on estimating quantitative technological trends in a given domain. Figure 6 shows
the 16 domains where multiple metrics were studied (59 distinct domain-metric-pairs



for the sixteen domains where we had multiple metrics). For each domain, the figure
shows the mean k and the variation in k (calculated from the multiple metric results).
Four of these domains (electric power transmission, MRI, photolithography and wireless
information transmission) demonstrate significant variation where the standard
deviation is > 0.5 times the mean. For the other 12 domains, the variation is small
enough that a similar quantitative estimate of technological progress would arise with
use of any single metric. However, the four exceptions show that assuming this always
holds is not a reliable assumption.
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Figure 6: The k values for the 16 domains with multiple metrics showing the number of
performance metrics for each technology in parentheses and the standard deviation for
the estimates of the multiple metrics in the error bars

The distribution of the rate of improvement (k) for all 71 domain metric pairs studied is
given in Figure 7; this demonstrates that the inter-domain variation is greater than the
intra domain variation even allowing for the 4 exceptions just discussed.
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3.5 Data Quality

Figure 8 shows the distribution of r’ values for all 71 cases of the fits of log of the
performance metrics with time. The worst fits still have r greater than 0.5 but the
subset in Figure 6 are even stronger. Figure 9 shows the variance calculated by the
methods discussed in section 2.5 for these 71 cases. These results demonstrate that —
even for metrics with minimal data- exponential fits are an excellent model for
technological improvement with time. We found it possible for all 28 domains to find
metrics that have r values greater than 0.7 and variations less than 0.07 by both
variation calculations.
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4.Discussion

This section first discusses the research reported here in regard to our desire to develop
a less ambiguous approach for describing the quantitative technical performance trend
of a technology. After this examination of the research process, we briefly explore the
implications of the research results on quantitative technical performance trends in 28
technological domains to general understanding of technological change. We conclude
the discussion by consideration of open questions for further research using
quantitative technical performance trends to more deeply understand technological
change.

A summary of possible practices for reducing ambiguity regarding the four identified
factors is given in Table 4. Examination of the research process addresses three
guestions: 1) How do these practices reduce ambiguity? 2) What evidence from section
3 supports our assertion that these practices reduce ambiguity? 3) What open issues
remain?

One contribution this paper makes to reduction of ambiguity in this complex area is the
explicit framework evident in the paper and Table 4. By delineating four distinct factors
needing sufficient definition, we have attempted to make clear how this complex
problem can be decomposed to issues that can be separately addressed. For each
factor, the specific practices were followed in section 3. Our application of the
framework in section 3 identified no important issues that show this framework is too
narrow or is missing significant elements.



In regard to the unit of analysis, the recommended practices resulted in the 28 domains
given in Figure 2. This result is a definite reduction in ambiguity from approaches that
simply use “off-the-shelf” names for technology. It is also more specific than the generic
categories given in Figure 1. However, we must note that some ambiguity remains. For
example, we cannot say for sure that Figure 1 is complete and we do not have a specific
list of recognized bodies of scientific knowledge. Moreover, very different artifacts are
still contained in a single domain; for example, the domain of combustion engines
(recognized body of knowledge thermodynamics, generic function of transforming
energy) includes not only Diesels and Otto combustion engines but also airplane
turbines and electric power turbines. We mentioned in section 3.2 that all of these
artifacts have improved at roughly the same (low) rate; nonetheless, interpretations of
trends in more depth may require more specific units of analysis.

Three further points can be made relative to the unit of analysis factor. First, some of
our domains can be considered as contained within other domains (for example,
photolithography within IC processors). Second, some domains are general purpose
technologies (IC processors with large effects on numerous other domains such as
camera sensitivity, solid state memory, solar photovoltaics, etc.) Third, analyses at more
aggregated units of analysis are of interest in describing the quantitative technical
performance trends of associated groups of technologies- a closely related objective to
what we have labeled the primary purpose. Overall, a precise and unchanging definition
of “a technology” remains elusive despite the modest progress described in this paper.

The realities of data availability and time led to the 71 domain metric pairs covered in
this paper. The principals guiding choice of metrics (the dependent variables whose
trend we examine) are briefly summarized in Table 4. The principals receive implicit
support from the acceptable quality found in all 28 cases. Use of single (intensive)
metrics to characterize the overall quantitative technological trend is supported
somewhat since 12 of the 16 domains where multiple metrics were examined showed
that progress in a domain was quite similar for diverse metrics. However, the results
also demonstrate that this is not true for the other four domains. An important future
goal of research is to explain these domain and metric attribute differences for the
domains and metrics studied here and for more domains and metrics. Similarly, the
results support the principals relative to the superiority of using multiple attributes to
arrive at more complete metrics but in one of our domains (superconductivity) a
singular value metric (critical Temperature) gave an adequate estimate for the progress
rate.

Perhaps the most important contribution of this paper to reduction of ambiguity in the
guantitative description of technical performance trends is our broader consideration of
possible independent variables. In particular, we identify production —the most popular
choice in the literature- but also revenue, R&D spending and quantity of patents issued
as potentially useful “effort-variables”. Our results demonstrate that Sahal’s
relationship is valid for integrated circuits using either revenue, or patents or production



as the effort- variable. The results also show that patents do not always follow an
exponential increase with time and in such domains, one usually also does not find good
fits for power laws between performance and patents despite having a good fit for an
exponential between performance and time. For study of quantitative trends in
performance, always reporting time is a firm conclusion. Time is always available and
requires no more work. Fitting the exponential with time in addition to the power law
with an effort- variable (if sufficient data exists) also appears sensible especially since
this formulation of technical trends is found here to be the most accurate over a wide
range of technological domains. We also recommend explicit discussion of the specific
algorithm for estimating missing data when using cumulative effort-variables. This is
unfortunately rarely done now and seriously limits the utility of such work since the
importance of unknown assumptions cannot be checked. It is preferable to simply use
the effort variable (annual or some other fixed period) directly rather than cumulative
versions that are undocumented as to how non-existing effort variables are estimated.

Table 4

Factor Recommended Practices

Unit of Analysis- 1. Choose domains — artifacts that serve a specific generic
definition of “a function from figure 1 while utilizing knowledge from a
technology” specific branch of scientific knowledge

2. Gather as much reliable data as possible concerning
dependent and corresponding independent variables as
described in the next two topics;

3. Examine trends of any multiple potential sub-domain
artifact classes (such as magnetic tape and disk drives in
the magnetic memory domain) and use this unit of
analysis to the extent possible.

Dependent Metric 1. The metric should be user-focused
for technical 2. The metric should not involve the number of users,
capability market share or sales revenue of the artifacts

3. The metric should not incorporate resource depletion

4. Increase in the metric should correspond to increasing
appeal of the artifacts being studied

5. The proposed metric should be intensive-not extensive

6. The incorporation of more attributes is positive with the
minimum acceptable number being two.

Independent 1. Always report time with any dependent metric
variables and fits observation

2. Report all available effort-independent-variables (patent
numbers, R&D spending, sales revenue and cumulative




production) along with each dependent metric
observation.

3. Record the unit of analysis for each effort independent
variable and performance observation

4. Test Sahal’s relationship when possible

Quality 1. Report r*and two measures of variation in r* for each
domain-metric pair and for each independent variable for
which data is gathered,

2. A high quality standard is that r* must be greater than 0.7
and that variance of both types must be <0. 07

Analysis 1. Visual inspection of linear graphs of each dependent
variable against each independent variable is the
suggested first analysis step.

2. Visual inspection of a) log-linear plots of each dependent
variable with time and b) log-log plots of each dependent
variable with each “effort” independent variable is the
second analysis step

3. The major analysis step is regression analysis including
calculation of r*and variance for parameter estimates for
each of the graphs in items 1 and 2 in this listing. This
step is essential for the testing of Sahal’s relationship as
recommended above.

One practical implication of the results reported in this paper is for technological
forecasting. Technical performance and cost are important to understand and future
values of them are critical to such issues as potential diffusion and firm profitability. The
high reliability of the fits to equation 2 (generalized Moore’s law) is not evidence for
imprudent forecasting but it does support the back-casting results (49) in indicating the
value of such an approach in technological forecasting.

Achieving reliable knowledge about quantitative technical performance trends has been
demonstrated in this paper. Having high-reliability knowledge concerning quantitative
technical performance trends for a wide variety of technological domains opens up a
number of research questions of significance to understanding technological change and
thus improving our foundation for technological forecasting. A major one is causal
explanation for the great variation in rates of advance over the full range of
technologies (our 28 domain “sample” shows variation with time that varies from 3.1 %
per year (electric motors) to 65.1% per year (optical telecommunication). Testing
causal explanations for quantitative technical capability trends as outlined in (56) is
possible with this wide range of variation for 28 domains.

Another important research issue is developing a broader domain-based technological
map. One key question in this regard: how many domains exist in which one might
measure a technical capability trend? Further work will be needed to even arrive at




approximate answers to this question but a deeper understanding of the relationship
among domains may be a necessary first step in developing a meaningful domain-based
technological map. To what extent domains overlap and how they interact
(containment, competition for a need, enabling are three identified possibilities but
others might exist) are important parts of this research topic.

Two other topics involve hypotheses about the trends and we have not fully identified
meaningful analytical procedures to address them. S curves are hypothesized to be the
usual trend for technical performance when plotted linearly against time or effort.
Visual inspection of linear plots were done for all 71 domain metric pairs and none
unequivocally appeared to be S curves; however, a desire for a more clearly objective
way of determining the reality of S curves is needed. Unfortunately, statistical tools are
limited by the fact that logistic (and other equation forms giving S curves) contain
additional variables: there are cases (57) when these curves have been fit to data
predicting emerging S curves that have not (even 30 years later) appeared. A second
hypothesis about the technical capability trends is that they show major discontinuities
(6). Testing this hypothesis is not straightforward because increases in technical
performance must in reality be discontinuous since advances are typically made by
introduction of new designs (inventions and products). However, the level of
discontinuity is dependent upon the time between new products and it is not known
how many new product observations are missed. One might want to only note
discontinuities that in fact are breaks from an existing exponential or power law fit.
Objective means for deciding what constitutes a major technological break is also
needed to address these questions. Overall, the results reported here give no support to
S curves, discontinuities or life cycle hypotheses in regard to technical change.

Our final important topic for future research (that may well greatly extend work on
dependent variable metrics) is the linking of technical performance change with
productivity changes with time. Although it is widely agreed that technological change is
a major source of economic growth (58, 43, 59), there are not approaches that start
with quantitative trends in technological performance and proceed to economic growth.
This is at least partly due to the difficulty of the problem but the lack of attempts is
disappointing. A simpler beginning issue in this regard might be linking technical
performance trends with innovation and diffusion. It is widely intuitively understood
that the metrics attempt to measure what is better and that what is better is generally
what diffuses (33,32) but formal treatment has not been attempted. In fact, most
diffusion models implicitly consider the relative performance and cost of a diffusing
artifact to be constant so a doable first step might be to eliminate this assumption: using
real data would be best as a test of any model so again the quality and availability of
such data —one output of this paper- is an essential part of the research program.



5. Conclusions

Twenty-eight technologies (technological domains) are studied in this paper exploring
their improvement as a function of time and effort where effort is measured by the
annual number of patents published for the technology. A total of 71 different
performance metrics were studied for these 28 domains. The paper analyzes issues in
empirically determining quantitative technical performance trends in terms of four
factors (unit of analysis, dependent variables, independent variables, and data quality)
and based upon the results makes recommendations for all four factors relative to
future work of this kind.

A major finding is that the results indicate that Moore’s Law appears to be more
fundamental than Wright’'s power law for these 28 domains (where performance data
are record breakers from numerous designs and different factories). This conclusion is
supported by:

1. The performance metrics in all 28 technological domains have strong
exponential correlations with time (Moore’s law generalization).

2. In contrast, most of these same performance metrics in the 28 domains, have
much weaker log-log correlations with patents (Wright’s law generalization).

3. Wright’s law is followed only in those domains where published patents in the
domain show a strong exponential correlation with time. For these domains,
Sahal’s relationship is followed: k =w g, where k is the Moore’s Law exponent, w
the Wright power law exponent and g the patent growth exponent.

We also find that of the sixteen domains for which we have multiple metrics, the intra-
domain variation is much smaller than the inter-domain variation. Indeed, in only four
of these domains are the variations of performance improvement with time significant
when comparing different metrics.
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7. Supplementary Information

In addition to the information presented in this paper, we have compiled key data used
into a Microsoft Excel file that can be easily obtained by copying the following link into a
web browser where it can be viewed and/or downloaded:

http://bit.ly/mageeetalSIMay2014

This document contains three worksheets which are accessible by clicking the tabs at
the bottom of the excel window.

28 Domains with k, g and w — this worksheet contains the k, g, and w values
along with the r® values for each of the regressions for the 28 technological
domains.

71 domain-metric-pairs with Statistical information — this worksheet includes the
71 domain-metric-pairs for the 28 technological domains (sixteen have more
than one metric for which trends are determined) along with the relevant
statistical information



* Domain Annual Patenting Rates — this worksheet shows the annual number of
patents for each of the 28 domains.



