
ESD Working Paper Series

ESD-WP-2014-31 October 2014

Agile Project Dynamics: A System Dynamics Investigation

of Agile Software Development Methods

Firas S. Glaiel

Principal Investigator
Raytheon Integrated Defense Systems
Research Affiliate
MIT Sloan School of Management
Email: firasg�mit.edu

Allen Moulton

Research Scientist
MIT Sociotechnical Systems Research

Center
Massachusetts Institute of Technology
Email: amoulton�mit.edu

Stuart Madnick

John Norris Maguire Professor of
Information Technology and Professor
of Engineering Systems

MIT Sloan School of Management and
MIT School of Engineering

Massachusetts Institute of Technology
Email: smadnick�mit.edu

esd.mit.edu/wps

Agile Project Dynamics:

A System Dynamics Investigation of

Agile Software Development Methods

Firas Glaiel

Allen Moulton

Stuart Madnick

Working Paper CISL# 2013-05

March 2013

Composite Information Systems Laboratory (CISL)

Sloan School of Management, Room E62-422

Massachusetts Institute of Technology

Cambridge, MA 02142

1

Agile Project Dynamics: A System Dynamics Investigation of

Agile Software Development Methods

Firas S. Glaiel
Raytheon Company and

MIT Sloan School of Management

firasg @mit.edu

Allen Moulton
MIT Sloan School of Management

and Engineering Systems Division

amoulton @mit.edu

Stuart E. Madnick
MIT Sloan School of Management

and Engineering Systems Division

smadnick @mit.edu

Abstract— While Agile software development has many advocates, acceptance in the

government and defense sectors has been limited. To address questions of meanings to the term

“Agile,” we examine a range of Agile methods practiced and develop a framework of seven

characteristics, which we call the Agile Genome. We gain insight into the dynamics of how

Agile development compares to classic “waterfall” approaches by constructing a System

Dynamics model for software projects. The Agile Project Dynamics (APD) model captures each

of the Agile genes as a separate component of the model and allows experimentation with

combinations of practices and management policies. Experimentation with the APD model is

used to explore how different genes work in combination with one another to produce both

positive and negative effects. The extensible design of the APD model provides the basis for

further study of Agile methods and management practices.

1. Introduction

In the commercial sector, many organizations have embraced Agile methodologies as the way

to better flexibility, greater responsiveness, and improved time-to-market in the development of

software. Forrester Research surveys of 1000+ IT professionals in 2009 and in 2010, showed a

decline in the use of “Traditional” development methodologies, and a rise in adoption of Agile.

About 40% of organizations reported using one or another of the Agile family of methodologies

[29,30]. Studies show a wide range of positive effects of Agile: 5% to 61% reductions in cost,

24% to 58% reductions in development time, and 11% to 83% reductions in product defects [33].

Despite these results, in the government, and particularly the defense sector, Agile is resisted.

A 2010 study of Agile in defense software acquisition [32] found that Agile was only likely to be

used in two circumstances: 1) the program is urgent and mission critical for combat forces and has

the clout to get a waiver from the normal process, or 2) the program is failing and likely to be

canceled.

This research uses System Dynamics to examine the characteristics of so-called “Agile”

software development methodologies. We focus specifically on large-scale government-type

software development efforts – though many of the findings apply to the private sector as well.

Our objective is to use System Dynamics to help answer these questions:

 What do people really mean by “Agile”?

 Why the wide variation in reported ROI compared to traditional methods?

 Can Agile ever make things worse?

 What are management options and implications? and

 Can Agile succeed in the large-scale government systems development domain?

1.1 Agile and Speed of Requirements Change

A common attitude in the software industry has been that Agile only works for small-scale

projects with small experienced teams, and that traditional Waterfall is better suited for larger

scale projects. Large-scale software engineering organizations have traditionally used plan-driven,

2

heavyweight, waterfall-style approaches for the planning, execution, and monitoring of software

development efforts. This approach often results in relatively long development schedules that are

susceptible to failure, especially in a rapidly changing environment. Schedule pressure, defects,

and requirements changes can drive endless redesign, delay the project, and incur extra cost. The

success of the waterfall development life cycle is dependent upon a stable business environment

(i.e. stable requirements) and breaks down in a high change environment [16]. Whether it is to

support the war efforts in the 2000s, to address rapidly-evolving cyber-security threats, or to

compete in an ever-more net-centric world: the demands of the government software customer

today are such that capabilities are needed on shorter time horizons, quality is expected out of the

gate. Software producers are expected to be nimble enough to mirror the fast-paced changes in

their customer’s needs and environment changes [33].

Taking inspiration from the world of biology, Charles Fine argues that each industry has its

own evolutionary life cycle (or “clockspeed”), measured by the rate at which it introduces new

products, processes, and organizational structures[13]. The government systems software market

had historically been a slow-to-medium-clockspeed environment, with software being only a

component within large multi-year programs. It is now becoming a fast-clockspeed environment,

with demand for quick software delivery to run on existing networks, infrastructure, and systems.

Fine argues that firms must adapt to the changing environment to maintain any competitive

advantage. Government software contractors must then adapt to survive. The government

software contractor community is looking at Agile development to deliver capabilities at the pace

and cost needed to stay competitive in the new government software market.

Many in the consumer-faced commercial software sector have dealt with a fast-clockspeed

environment by adopting Agile software development, since it was designed to be flexible and

responsive to high rates of change. The promise of Agile is that it will help organizations lower

costs and shorten development times while improving quality.

1.2 Agile in Government Software Development

Previous results [28] have found dramatic differences in the performance of commercial

software development compared to defense. Defense takes much longer and goes through more

cycles to refine defects out of software products. Commercial and defense sectors differ in the

control system that determines the value of the product. Government and defense (as well as some

bureaucratic parts of private organizations) do not have a market to set value. Defense also

operates by contracting out software development and has evolved elaborate bureaucratic

planning processes that try to control costs, expedite delivery, and make sure the government gets

value for its money. These processes were originally developed to control large weapons systems

acquisitions programs (for aircraft, tanks, ships, etc.) and transferred to software acquisition

(including software development)[15].

Concerns about the sluggishness of large scale government and defense IT development has

been expressed repeatedly for over thirty years. A 2009 Defense Science Board report found that

the average time from concept to initial operating capability was 91 months – over seven years

[17]. As long ago as 1982, a defense study recommended an agile-like process to “buy a little, test

a little” to minimize overall software development exposure and risk [14]. Thirty years later, a

2012 Brookings study found a “growing consensus on the need for agile approaches” in defense

IT system acquisition[15].

In 2010, then Under Secretary of Defense for Acquisition, Technology and Logistics, Dr.

Ashton Carter issued a memo entitled “Better Buying Power: Guidance for Obtaining Greater

Efficiency and Productivity in Defense Spending.” He was on a mission to rein in cost overruns

3

and spending as part of an overall plan to cut $100 billion from the Pentagon budget over the

subsequent five years. Carter also directed acquisition managers to award more services contracts

to small businesses to increase competition and provide with “an important degree of agility and

innovation,” with lower overhead costs[4].

The big government software contractors took note… The Pentagon budget is shrinking and

they now will increasingly have to compete with small/nimble firms for contracts. This is perhaps

the single driving force behind why these companies are taking a serious look at disrupting their

mature product development practices by incorporating Agile software development as practiced

in the commercial world, including in today’s dominant “born-on-the-web” software giants like

Google, Facebook, and Amazon.

1.3 Plan of the Paper

Software development teams that are said to employ “Agile development” make use of a

variety of practices that are advertised to reduce coordination costs, to focus teams on capability

objectives, and to produce stable product iterations that can be released incrementally. Agile

software development has become a de-facto approach to the engineering of software systems in

the web-based and other consumer-faced software sector and is now entering aerospace and

defense. But it is not clear whether Agile can work in these risk-averse and heavily plan-based

environments.

In section 2, we present a framework for understanding Agile systems development practices,

which we call the “Agile Genome.” A study of a broad range of Agile methodologies leads us to

the identification of seven representative characteristics of Agile software projects: 1)

story/feature-driven, 2) iterative-incremental, 3) micro-optimizing, 4) refactoring, 5) continuous

integration, 6) team dynamics, and 7) customer involvement.

In section 3, we describe the System Dynamics model developed in this research, which we

call the Agile Project Dynamics (APD) model. In developing an Agile software development

project model, the Agile Genome provided structure for capturing of the impact of each of the

Agile genes on the emergent behavior of medium to large scale software development projects.

System Dynamics models can be used to aid in proactive, strategic/tactical management of design

and development projects [11]. Our modeling of Agile projects builds upon an existing model and

integrative view of software development project management [12] that models the classic

Waterfall approach to development.

In section 4, we illustrate the use of the model in experiments to study how agile methods can

be successfully applied within the context of government and defense software acquisition. The

model helps to understand and simulate the impact of alternative management policies involving

the adoption of one, many, or all of the Agile genes and to compare resulting project performance

in terms of cost, schedule, and quality. The model can be used to compare the performance of

projects using classic Waterfall-style approaches versus those using various Agile methodologies

and combinations of Agile practices.

Section 5 presents conclusions and directions for future research.

2. Identifying The Agile Genome

As part of an effort to develop a System Dynamics model, which can be used to understand the

impact of Agile practices on software and systems engineering project performance, there was a

need to identify and characterize “agile” practices employed by software and system development

organizations. In other words: in order to model the dynamic effects of agile practices, we had to

first understand the “essence of agility”: What makes development Agile?

4

We reviewed a range of common Agile development methodologies, including Scrum[6],

eXtreme Programming, Feature Driven Design, and Test Driven Design. After review and

analysis of many approaches, we found that they share common characteristics. The project teams

that employ these methodologies in effect practice combinations of some or all of seven

remarkably similar “agile techniques.” We call these “the Genome of Agile,” consisting of the

seven genes shown in Table 1. Each of these genes will be described in the following sections.

Table 2 showing how the genes map to some popular methodologies is included in section 2.8 .

Gene Name Short Description

Story/Feature Driven Break up of project into manageable pieces of functionality; sometimes
named “features”, “stories”, “use cases”, or “threads”.

Iterative-Incremental Development is performed in repeated cycles (iterative) and in portions at a
time (incremental.)

Micro-Optimizing Teams are empowered to modify aspects of the process or dynamically
adapt to changing circumstances. Small improvements and variable changes
are made frequently and as needed.

Refactoring Refinement of the software design and architecture to improve software
maintainability and flexibility.

Continuous Integration Policies and practices related to Configuration Management, and software
build and test automation.

Team Dynamics “Soft” factors related to the project team. Daily meetings, agile workspaces,
pair programming, schedule/peer pressure, experience gain, etc.

Customer-Involvement Customer/User involved in demonstrations of functionality to
verify/validate features. Higher frequency feedback and clarification of
uncertainty. Availability to participate in development meetings.

Table 1 - The Genome of Agile

2.1 Story/Feature Driven

Most Agile projects decompose the system being developed into manageable sets of

“features” or “stories.” The terminology differs (“use case”, “thread”, “feature”, “capability,”

etc) across methodologies and organizations, but the concept is the same: The system is

segmented into sets of client-valued functionality, and development work is organized around

producing these features. An advantage of the feature driven paradigm is that, as features are

produced, they become available for early deployment, customer demonstrations, or early

integration and test activities – all of which can help reduce uncertainty, detect functional defects

early in the development cycle, or deliver early capabilities to customers (as opposed to waiting

for a full-featured product). Decomposing a system into feature sets allows functional problems

and requirements issues to be identified much earlier (as soon as each feature is implemented and

available to be tested).

In contrast, traditional approaches generally employ “Functional Decomposition” where a

system is broken into sub-components (e.g. user-interface component, database component, etc)

which are implemented in parallel, and integrated in late stages of development.[1] For this

“waterfall” approach to be viable, the up-front requirements specifications must be locked-down

and perfectly match the ultimate needs of users. Despite requirements lock-down, functional and

requirements issues can surface late in the project, when the integrated system becomes visible in

functionally testing.

From a management perspective, the feature driven approach also yields a concrete measure

of progress by feature (i.e. 9 out of 10 features implemented means 90% complete, assuming all

5

features weighted equally.) This differs from traditional measures of progress, based on arguably

arbitrary milestones, where for example, the completion of a design phase might translate to

claiming forty percent of the project complete. One class of problems associated with using a

functional decomposition approach is that a project can report to be at 90% completion, yet still

have no functioning software to show for it.

2.2 Iterative-Incremental

Whereas traditional development approaches call for complete requirements analysis phase,

followed by lengthy design, coding, and test phases, Agile projects tend to develop an initial

increment of software which then incrementally evolves into the final product through a series of

short design/code/test iterations. This allows development to begin without necessarily having

completely finalized requirements.

 This gene combines with the Feature-Driven gene to allow the system to continually evolve

as a series of increments, each one adding more features to the existing previous incarnation. The

Iterative-Incremental concept is neither novel nor unique to Agile methodologies. In fact,

extensive use of Incremental Iterative Development (IID) for major software development efforts

dates back to the Sixties[3].

Figure 1 illustrates the process of Feature-Driven and Iterative-Incremental development. On

the far left is the Product Backlog, which consists of the required features to be built. On the far

right is the Delivered Product which is shipped to the customer. In the middle are successively

smaller cycles – releases and sprints. The pitcher on top of the Product Backlog is a reminder

that requirements often change over time.

In a single-pass waterfall development project, there would be no middle stages. The entire

product requirements set would be put through a plan-driven process aimed at delivering the

product in one step. Incremental Iterative Development uses many of the same plan-driven

processes, but delivers software in a series of releases, each adding new functionality, often

spaced at 6-12 month intervals. The best value is obtained when iterations are designed such that

early tasks help resolve uncertainty later in the project. Rather than one big design phase, one big

implementation phase, one big integration phase, then one big test phase, many iterations are

performed, each consisting of a shorter design-implement-integrate-test cycle. In Figure 1,

required features from the Product Backlog are selected and transferred to the Release Backlog.

Figure 1 Feature-Driven and Iterative-Incremental Development

6

After development is completed, a Shippable Release is produced, which then becomes part of

the Delivered Product.

One principle of the Agile Manifesto[2] is to “deliver working software frequently, from a

couple of weeks to a couple of months.” Development is performed in repeated cycles (iterative)

and in segments of work at a time (incremental.) This allows developers to focus on short-term

objectives while taking advantage of what was learned during earlier development in later

iterations. Figure 1 illustrates the frequent cycles of the Agile approach as a series of time-boxed

“sprints,” each of which moves a subset of the Release Backlog into a Sprint Backlog and

produces a Potentially Shippable Product Increment in a fixed period of time (often 2-4 weeks).

The diagram also shows a Daily Scrum meeting that is used in some forms of Agile to help keep

the project team on target. The product of all the sprints accumulates into a release, which in turn

becomes the deliverable product.

2.3 Micro-Optimizing

The Micro-Optimizing gene represents the adaptive nature of Agile management processes.

We employ the term “Optimizing” because Agile teams in most Agile methodologies are

encouraged to tailor aspects of the development process to dynamically adapt to changing

circumstances. “Micro” indicates small process adjustments and improvements made frequently.

Micro-optimizing also includes a Double Loop Learning [5] effect where the team steps back,

reviews results, questions assumptions and goals, and revises them to improve future results.

This contrasts with Single Loop Learning where an individual or a team learns to be more

efficient and productive from repetition of similar tasks. In other words, double loop learning

changes “what we do” rather than “how we do it”.

Classic development processes can exhibit a “light” flavor of this gene in the form of “Lessons

Learned” activities that are called for at the completion of a project, but which rarely feeds into

the next development cycle and yields little improvement effect on subsequent development

projects. In the context of Agile, however, iterations (e.g. sprints) are short and frequent enough

so that process adjustment is near-continuous throughout the life of a project in between

iterations. For example, the Crystal family of methods calls for “reflection workshops” to be held

every few weeks.

Teams are also trusted to self-adjust and gradually learn about how much work they can handle

in a given period of time. For example, the measure of “Sprint Velocity” in Scrum represents

how much product backlog a team can handle in one sprint. It is established as the team learns

about the project and about working with each other. Typically, team velocity improves as sprint

cycles are completed and experience gained.

2.4 Refactoring

Several agile methodologies consider refactoring to be a primary development practice.

Refactoring consists of taking apart existing working code, factoring out common elements, and

rebuilding it to provide a stronger base for subsequent development. It can also mean refining the

design or architecture of the system to allow for greater flexibility and extensibility.

Refactoring has the disadvantage that it takes extra effort and requires changing baseline

software without any direct or apparent return on investment (ROI). A project manager may ask

“why are we spending effort re-designing portions of the system unrelated to the next planned set

of features?” The answer is that future development will be lower cost and higher quality if the

code base is restructured now.

7

The downside of a feature-driven and iterative-incremental approach is that over time, the

product/system starts to exhibit signs of having “high coupling” and “low cohesion,” making it

harder (and more costly) to maintain and evolve. Coupling refers to the degree to which system

components depend on each other – in a system with high coupling there is a high degree of

dependency; changes to one element is likely to have ripple effects and impact on the behavior of

other elements. Cohesion is a measure of how strongly related the responsibilities of a single

component are – low cohesion is an indicator of lack of structure in the system. Over time, the

evolution of a system feature-by-feature, incrementally, can lead to “high coupling” and “low

cohesion,” making new changes increasingly more difficult.

 One metaphor for this effect is “technical/design debt.” Similar to credit debt, technical debt

accrues interest payments in the form of extra effort that must be made in subsequent

development cycles. The practice of refactoring pays off “technical/design debt” which has

accrued over time, especially when incremental and evolutionary design results in a sub-optimal

or inflexible architecture, duplication, and other undesirable side effects.

2.5 Continuous Integration

Continuous Integration involves methods of maintaining an updated code base that includes

all changes that have been made and regularly building a testable version of the product. Agile

projects often include policies and approaches to Configuration Management (CM) as well as

automation of development workflow and processes. Automation can speed up development by

eliminating repetitive and manual tasks.

Configuration Management– Traditionally, the popular CM approach is to have different

teams develop portions of software in isolated environments (i.e. separate “branches” of a version

tree), and integrate their work products later in the development cycle. However, we know that

the later in development that a defect is found, the costlier it is to fix.[8] Moreover, significant

number of defects are interface defects.[9] Thus it can be very advantageous to integrate

components early and often.

In the mid-1990s, Microsoft moved to a "synch-and-stabilize" process which relied on daily

builds for frequent synchronizations and incremental milestones for periodic stabilizations of the

products under development.[10] This is one of the early examples of frequently integrating

various pieces of software under development to detect early conflicts.

Automated Testing – Continuous Integration includes test automation at various levels, from

unit testing of individual software modules, up to system-level functional tests. Test automation

complements the automation of other manual tasks, such as software builds.

There can be a significant up-front cost associated with developing test suites and an

infrastructure to support them. Nevertheless, there are benefits from having software perform

testing that would otherwise need to be done manually. Once tests have been automated, they can

be run quickly and repeatedly. Systems that have a long maintenance life can benefit from an

automated regression test suite – legacy projects for these types of systems often require copious

and costly manual regression testing to verify that there is no breakage in baseline functionality

introduced by added features. When Agile software is developed incrementally, automated testing

assures that new development integrates with prior work.

2.6 Team Dynamics

The Team Dynamics gene represents the collection of “soft factors” and effects related to

unique practices that influence the development team’s performance. The majority of Agile

methods call for frequent meetings to allow teams to self-organize, prioritize, and assign tasks,

8

while communicating roadblocks. The most efficient and effective method of conveying

information to and within a development team is face-to-face conversation.[7] Practices such as

“pair programming,” and attitudes such as “collective code ownership” are also claimed to have

positive effects on project performance. Team co-location and open workspaces and environments

are also preferred. These help promote the flow of information between and drive team

performance through transparency.

Another unique team dynamic that emerges in agile teams is a distinctive “social/schedule

pressure” effect. In Scrum, for example, as teams convene daily to report on what they are doing,

what they have done, and what they plan to do next, a certain level of peer pressure comes into

play, driving individuals to perform at a higher productivity. When paired with short

increments/sprints, this produces more frequent bouts of schedule pressure coinciding with the

end of each time-boxed iteration, as opposed to a single schedule crunch at the end of a waterfall

project.

2.7 Customer-Involvement

The Customer Involvement gene means accepting changing requirements and including the

user and/or customer in the development team (to the degree that this is possible). This can be in

daily stand-up meetings, design reviews and product demos. The customer’s availability and input

to the development process helps to reduce uncertainty and identify rework early. This requires

collaborating with the user/customer to evolve the requirements throughout the process – with

later requirements informed by insights gained from earlier development.

This gene can exhibit itself even on projects which appear prima facie to be “non-agile.”

Large classic Waterfall projects may hold User Involvement Events (UIEs) or deliver proof-of-

concept prototypes. These types of activities can help to clarify requirements and improve

responsiveness to customers early in the design/architecture phases.

A more traditional contracting approach is to lock-in the system requirements early on in the

project. Any subsequent change requires contractual re-negotiations for “added scope” or “scope

change”. This type of project control mechanism is intended to help keep the size of the project

in check (thus helping limit growth in costs and schedule). Nevertheless, it may mean that a long

time is spent up-front developing, refining, and validating requirements. By the time the product

is delivered, it may well meet the specifications agreed to contractually, but not be what is really

need to support the mission, especially in light of changing mission needs. Many requirements

agreed to up front turn out to be unnecessary, while other capabilities were not known and not

delivered.

There are two distinct problems with a “fixed requirements” attitude: (1) The “ah-hah”

moment: the first time that you actually use the working product. You immediately think of 20

ways you could have made it better. Unfortunately, these very valuable insights often come at the

end.[6] When requirements are locked-in up front, there is no room for making the product

better later in the development cycle. (2) Undetected requirements defects can wreak havoc on a

project if detected late in the schedule. Indeed, that is one of the reasons that the Waterfall

method came to be, to lock-down and specify the requirements so that later development could

proceed without turbulence. However, as discussed previously, when real user needs are

changing, requirements must evolve.

Often the customer interfaces with the contractor’s business operations and project managers.

Requirements are generated by business analysts (in some industries “system engineers” or

“domain experts”) and are flowed down to the development team. In such cases, those

implementing the software are at least two or three degrees of separation away from the end user.

9

2.8 Summary of the Agile Genome Framework

Applying the Agile Genome framework to describe five popular Agile methodologies, Table 2

shows that all five of the example methodologies include the Feature Driven and Iterative

Incremental genes. The other five genes are present in some of these methodologies and missing

in others.

 Agile Gene

Methodology
Feature
Driven

Iterative-
Incremental

Refactoring
Micro-

Optimizing
Customer

Involvement
Team

Dynamics
Continuous
Integration

Scrum X X X X X

XP X X X X X X

TDD X X X X

FDD X X

Crystal X X X X

Table 2 - Agile Genes Mapped to Several Popular Agile Methodologies

3. The System Dynamic Model of Agile Project Dynamics (APD)

System Dynamics models can be used to aid in a proactive, strategic/tactical management of

design and development projects[11]. Our modeling of Agile projects builds upon an existing

model and integrative view of software development project management in [12] which examined

the classic single-pass Waterfall approach to development. Another sophisticated model [20]

looked at the commercial sector, XP and SCRUM methods, and the interaction of customer

involvement, pair programming, and refactoring. The model in [21] looks at the effect of short

Agile cycle time and automated testing on project performance compare to waterfall under stable

and varying requirements patterns and finds Agile better unless software production quality falls.

The model in [23] focuses on schedule pressure effects and concludes that cycle times should be

somewhat longer than typically practiced. A study examining range of cases [22] finds that a

System Dynamics rework cycle model is well suited to Agile management processes. Feedback

cycles inherent in Agile is examined in [24] with recommendations for improved manager

understanding of these effects, along with single and double loop learning effects. The research in

[26] applies grounded theory to develop propositions about communications effects in Agile. A

feedback loop is proposed in [25] to examine the effects of schedule pressure in Agile software

maintenance processes. The model presented in [27] uses a two-stage backlog with rework cycle

to evaluate Kanban and Scrum against waterfall and recommends further modeling investigation.

The Agile Project Dynamics (APD) model presented here builds on prior work to develop an

extensible model for comparison of variants of Agile to each other and to traditional waterfall

methods. The model is built around a central core work production model based on the rework

cycle paradigm [28]. The features and genes of Agile are detachable and replaceable sub-models.

Sub-models for Agile genes influence the main production model through both positive and

negative as well as interactive effects on:

• the rate at which work is accomplished,

• the size and relative effectiveness of the staff on the project,

• the rate at which defects are produced,

• the rate at which defects are discovered, and

• the rate at which working software is released.

10

System Dynamics is particularly appropriate for this work since it provides transparency into

both model structure and parameters. We expect that critiques of aspects of the model will lead to

improved sub-models and thence an improved model. In some sense, we can say that the

development of the APD is in and of itself an Agile process in that the various features (i.e. sub-

models) have evolve incrementally and have been refactored as new insights have over time led to

the refinement of sub-models (much akin to requirements changes in a software project).

Illustrations of model behavior below use representative values for exogenous parameters

(such as Nominal Fraction Correct and Complete) that are consistent with the authors’

experience, but would need calibration against historical data in applying the model in a particular

organization. In the tradition of System Dynamics, all of these exogenous parameter values are

adjustable and not fixed in the model structure. The Management Dashboard shown in Figure 11

includes sliders for adjusting key parameters in experimenting with the model. Experimenting

with changes to parameters can be used to evaluate the impact of assumptions or possible changes

within the organization

3.1 Feature-Driven and Iterative-Incremental

Figure 2 shows a simplified illustration of the core software production process model and

rework loops used in APD. Development tasks begin in the Product Backlog on the upper left.

Work to be done, work being done, and work completed are all measured in units of “tasks.”

Development production rates are measured in tasks per week.

If releases are used, then the release planning process moves a portion of the Product Backlog

into the Release Backlog at the beginning of each release. For a single-pass waterfall process or an

Agile project with a single release, the whole Product Backlog is moved into the Release Backlog

immediately.

Software production takes place in the “sprint” section of the model on the right side. In Agile,

a sprint is time-boxed. That means that it has a fixed period of time to complete its work (usually

2-4 weeks). The model of waterfall also uses the “sprint” production process, but is not time-

boxed and runs to project completion.

The sprint planning model (which ties into the Micro-Optimizing gene) determines how much

work is moved at the beginning of the sprint from the Release Backlog into the Sprint Backlog.

From that point to the end of the sprint, work is accomplished at a rate determined by current

Productivity and Effective Staff (both of which derive from the effects of other genes and their

parameters).

All work completed flows into Work Done in Release, which accumulated all the work that has

apparently been completed during the release. Some of the apparently completed work is correct

and complete; some is not. The lower right of the diagram shows the accumulation of

Undiscovered Rework in Sprint. The model variable Fraction Correct and Complete (which is

influenced by to all the other gene models) estimates how much of the Sprint Work Being

Accomplished has defects or other problems that will need additional rework to perfect.

Undiscovered rework is not directly visible or measureable until the defects are found by

testing and further development work. The rate that rework is found is controlled by Development

Rework Discovery Rate (which is influenced by other genes). When defects are found, the rework

tasks are added to the Sprint Backlog to be worked. This works like a standard rework model

except that the control variables are determined by the interaction of sub-models for each of the

Agile genes.

11

Figure 2 - APD Model, Agile Core Rework Cycle

The sprint ends either when either the Sprint Backlog is empty or when the Sprint Duration

time runs out. At the end of the sprint, all remaining tasks in the Sprint Backlog are transferred

back to the Release Backlog as shown by the flow at the top center of the diagram. All work that

has apparently been completed becomes part of the release product to be tested or shipped.

At the end of the sprint, because the sprint is time-boxed, all remaining Undiscovered Rework

in Sprint is transferred into Undiscovered Rework in Release. This models the defects that remain

in the completed product at the end of the sprint. If release integration and system test is practiced

(controlled by model parameters), defects in the product waiting for release will be found at the

Release Rework Discovery rate. These defects are then added to the Release Backlog as shown in

the arrow flowing up in the left center of the diagram. Once returned to the Release Backlog,

rework tasks are processed by a subsequent sprint.

A release completes when its backlog is empty and the rate of new defects discovered in

system testing falls to an acceptable threshold. At the end of a release, the completed product is

shipped. If any undiscovered defects remain, they also escape into the shipped product. When a

release completes, the cycle continues with planning and executing the next release. When the

entire Product Backlog is empty, the project is complete. Figure 3 illustrates how work flows

through the three levels of backlog for a four-release Agile project.

Product Backlog

Product Backlog

Work Generation

Release Backlog

Release Planning

Work Generation

Sprint Backlog

Sprint Planning

Work Generation

Work
Performed in

ReleaseSprint Work Being

Accomplished

Undiscovered
Rework in

Sprint

Sprint Rework

Generation

Fraction Correct
and CompleteSprint Rework

Discovery

End of Sprint
Remaining Work

Transfer

Undiscovered
Rework in

Release
Rework Escaping

Sprint into Release

Development
Rework

Discovery Rate

Productivity
Effective Staff

Defects Escaping

into Product

Release Rework

Discovery

Extra Work For

Release

12

Figure 3 - Transfer of Work through Backlogs

3.2 Schedule Pressure Effects

In [11] schedule pressure was found to be a significant factor in project performance on large

multi-year projects managed under waterfall. In that type of project, pressure to meet the deadline

rises late in the project as the scheduled delivery date comes closer.

A unique team dynamic that emerges in agile teams is a distinctive “social/schedule pressure”

effect – As teams convene frequently (on a daily basis, in most cases) to report on what they are

doing, what they have done, and what they plan to do next, a certain level of peer pressure comes

into play, driving individuals to perform at a higher productivity. Additionally, when developing

in short increments/sprints, the team experiences more frequent bouts of schedule pressure

coinciding with the end of each sprint, as opposed to a single end-of-project schedule pressure

effect.

As will be seen in the section on the Micro-Optimizing gene, teams learn to adjust the size of

work taken on in the sprint to their team capacity and velocity of work production. An ideal sprint

has enough schedule pressure to motivate performance, but not so much as to be detrimental. The

section of the APD model in Figure 4 below shows how two effects of schedule pressure are

modeled: Working Harder and Haste Makes Waste.

Working Harder at End of Sprint: In the top loop in the diagram, the Number of Developers

Needed to Complete on Schedule (for the sprint) is calculated based on the Time Left in Sprint and

the Effort Remaining in Sprint. If this number is greater than zero, then Schedule Pressure is

perceived, after a short delay (controlled by Time to Perceive Sched Pressure). Schedule Pressure

in turn drives work intensity (working harder, and using overtime), which then increases the

Effective Staff (the product of actual Staff by Work Intensity). That will increase the Sprint Work

Rate and tasks will be accomplished faster.

Haste Makes Waste: Working at higher intensity also leads to more defect generation as shown

on the lower right of the diagram. Work Intensity not only speeds up the completion of correct

work, but also speeds up the generation of defects. This is modeled by a delayed effect that

depresses Fraction Correct and Complete from what it would otherwise be.

13

Figure 4 - Schedule Pressure Effects

3.3 Micro-Optimizing

As discussed above, the Micro-Optimizing gene represents the adaptive nature of a given

project’s development processes. In an Agile project, we can model this by recognizing that at the

end of each sprint, the team tweaks and fine tunes the process to achieve incremental gains in

Productivity, FCC, and Development Rework Discovery Rate. Additionally, the team learns over

time what their work capacity is, and they dynamically adjust the size of each sprint by reducing

or increasing the amount of work they choose to tackle in the next sprint, based on performance in

previous sprints

Figure 5 illustrates the APD model for sprint size adjustment. If the Micro-Optimizing gene is

turned on, at the end of each sprint, any work is remaining in the Sprint Backlog, it represents the

“gap” between the size of the previous sprint and the amount of work that the team was able to

accomplish. This gap is captured by the variable Sprint Size Gap at end of Sprint. If the gap

amount is positive, it is used to decrease Ideal Sprint Size, at the next Sprint End Event. In turn,

Ideal Sprint Size is used to set the variable controlling the size of the next sprint, Sprint Size.

On the other hand, if the team finishes all of the Sprint Backlog work before the end of the

sprint, the Time Left In Sprint at that point is used to determine how much Extra Bandwidth the

team had to spare in that sprint, and that amount will be used to increase the size of the next sprint

via the Sprint Size Increase flow.

14

Figure 5 - Sprint Size Adjustment from Micro-Optimization

Figure 6 below shows an example of the behavior produced when we turn on the Allow Micro-

Optimization lever. The Sprint Size changes dynamically over time when running this model. We

interpret this graph as follows: the team selects an initial sprint size of 7500 tasks, based on initial

project parameters (Sprint Duration, Number of Releases, and Release Size). Then, as

development work proceeds, the team learns and adapts while dynamically changing the sprint

size, which represents how much work the team can handle within a single sprint.

Figure 6 - Example of Dynamically Changing Sprint Size

Figure 7 - Example Model Behavior: FCC Improvement as

a Function of Sprints Completed

At first, there is a dip in this capacity, as the project is still assimilating its’ new inexperienced

staff, and while requirements are still uncertain. As the project progresses, the team becomes more

and more productive, while generating fewer defects, allowing them to tackle larger amounts of

work in each sprint as the project proceeds. This behavior matches what is observed in industry:

Allow Micro
Optimization

Initial Sprint Size

Ideal Sprint Size

Sprint Size Decrease

<TIME
STEP>

Sprint Size Gap at

end of Sprint

<Sprint End Event>

<Current Sprint ID>

<Effective Sprint

Duration>
<Sprint Backlog>

<Staff>

<Time Left In Sprint>

Extra

Bandwidth
sprint size

increase rate

<Productivity>

Sprint Size

Increase

<TIME STEP>

<Current Sprint ID>

<Release Size>
Sprints Per

Release

<Release Cycle

Duration>

<Sprint In Progress>

Sprint Size

30,000

22,500

15,000

7,500

0

0 16 32 48 64 80 96

ta
sk

Sprint Size

Improvement in FCC based on Number of Sprints Completed

1.25

1.187

1.125

1.062

1

0 4 8 12 16 20 24 28 32 36 40 44 48 52

Time (Week)

D
m

n
l

Effect of MO on FCC : Current

15

Scrum teams report that after a dozen or more sprints they become “fine-tuned” and capable of

handling more work per sprint.

The other set of effects gathered under the micro-optimization genes, as discussed earlier, are

impacts on Fraction Correct and Complete, on Rework Discovery Time, and on Productivity. In

its current form the APD model uses a simple approach for modeling these simply as a function of

the number of sprints completed. In other words, the more sprints, the better the team performs

along these dimensions. While the model will benefit from additional calibration against historical

performance data, we have used a simple lookup table with very conservative values. This

produces the following improvement over time for FCC, for example as seen in Figure 7 above.

3.4 Refactoring and Technical Debt

Refactoring is a technique used to pay off the “technical/design debt” which accrues over time,

especially when incremental and evolutionary design results in a bloated code base, inflexible

architecture, duplication, and other undesirable side effects. After refactoring, the code becomes

easier to maintain and modify for subsequent requirements.

The metaphor of technical debt was coined in 1992 by Ward Cunningham (creator of the Wiki)

to describe what happens as the complexity and architecture of a software project grow and it

becomes more and more difficult to make enhancements. Cunningham describes the technical

debt concept as [18]:

Another, more serious pitfall is the failure to consolidate. Although immature

code may work fine and be completely acceptable to the customer, excess

quantities will make a program unmasterable, leading to extreme specialization of

programmers and finally an inflexible product. Shipping first time code is like

going into debt. A little debt speeds development so long as it is paid back

promptly with a rewrite. … The danger occurs when the debt is not repaid. Every

minute spent on not-quite-right code counts as interest on that debt. Entire

engineering organizations can be brought to a stand-still under the debt load of an

unconsolidated implementation, object- oriented or otherwise.

The concept of technical debt has become popular as it can be understood by both technical

minded and business minded people. Just like credit debt, technical debt accrues interest payments

in the form of extra effort that must be made in subsequent development cycles. Management can

choose to pay down the principal on this debt by refactoring, and keep the future cost of change as

low as possible.

Controlling the cost of change is very important for an Agile project, since the philosophy is to

embrace change. Indeed one of the twelve principles of the Agile Manifesto [2] is to welcome

changing requirements, even late in development. Agile processes harness change for the

customer's competitive advantage. Therefore, refactoring is critical to keeping the agile process

sustainable through the pay-down of technical debt.

Many agile methodologies (in particular XP) consider refactoring to be a primary development

practice. The technical debt metaphor comes in handy as a tool for communicating the business

impact of design and architectural decisions.

 The project management may resist refactoring with: “If we do refactoring, we will have to re-

test and re-certify existing baseline functionality, at added effort and cost to the project!” Any

change has the potential to reduce the maturity and the stability of the software, requiring

regression testing and revalidation of the baseline feature set. This is why it is advantageous to

practice refactoring in conjunction with test-heavy practices (e.g. TDD) and Continuous

Integration techniques.

16

An example of a software organization that embraces refactoring as part of its software

engineering culture is Google. The following points, taken from Google’s Agile Training [19]

summarize some of the reasons behind their embrace of Refactoring:

 As code ages, the cost of change goes up

 As Google grows, the percentage of code in maintenance mode grows with it

 We need to keep code flexible, so we can change it to suit new market conditions quickly

 It’s not important if all you’re trying to do is get new products out. (Smart programmers can
develop very good applications without tests, but those applications will be much harder to
maintain.)

A final note on refactoring and technical/design debt is that this phenomenon can be observed

at the enterprise level. We observe that much of the work involved in converting legacy systems

to an SOA (Service-Oriented Architecture) or Cloud platform consists of factoring out parts of the

application code that will now be supplied by the platform. Through the lens of the technical debt

metaphor, these projects can be seen as grand-scale exercises in refactoring.

Figure 8 - Model Elements for Technical Debt and Refactoring

Figure 8 shows the APD model structure elements and feedbacks for accumulating technical

debt and paying it off by initiating refactoring. As work in performed in the project, Technical

Debt accrues at the Technical Debt Accrual Rate based on Sprint Work Being Accomplished. Tech

Debt Accrued per unit of Work represents the percentage of each completed work task that is

susceptible to refactoring at a later point in time. Quantifying the Technical Debt Accrual Rate is

extremely difficult; it cannot be calculated a priori, especially for a legacy program where

development may occur “on top of” an existing baseline with an unknown technical debt quantity.

One way to derive a measure for technical debt is to assess the “quality” of one’s code. The

SQALE (Software Quality Assessment based on Lifecycle Expectations) is one model for doing

this. It is a methodology for assessing the quality of code, using algorithms to score software

quality along the dimensions of: Reusability, Maintainability, Efficiency, Changeability,

Allow
Refactoring

Technical Debt

Technical Debt

Accrual

Planned
Refactoring

Work

Planning to pay

Down Technical Debt

<Sprint Size><TIME STEP>

Allocation of
Refactoring to

Release

Refactoring Work

Generation Rate

Technical Debt Pay

Off Amount of Work

Refactoring

Agressiveness

Technical Debt

Accrual Rate

Tech Debt Accrued

per unit of Work

Effect of Tech

Debt on FCC

<Start of Release

Cycle Event>

<Sprint Duration>

<Release Work

Done Correctly>

<Sprint Work Being

Accomplished>

17

Reliability, and Testability. This type of analysis is available in several static analysis packages

including: Insite SaaS, Sonar, SQuORE, and Mia-Quality (see http://www.sqale.org/tools). Some

have been using the SQALE SQI (Software Quality Index) as a measure of technical debt.

Agile practitioners suggest other, simpler approaches: Agile teams can monitor the amount of

refactoring compared to the amount of new feature work in each sprint or iteration to establish a

historical baseline for Technical Debt Accrual.

Figure 9 - Accumulation and Pay Off of Technical Debt

If Refactoring is practiced (using the switch Allow Refactoring), when Technical Debt level

reaches the Technical Debt Pay Off Amount of Work, then that amount of work is moved into

Planned Refactoring Work to be performed in the next sprint. Once it reaches Technical Debt Pay

Off Amount of Work, the stock is drained as the work is planned into the next release. Figure 9

illustrates Technical Debt accumulation and payoff over time assuming a constant rate of 5 units

of technical debt for every 100 correct tasks completed to drive Technical Debt Accrual and

refactoring when the debt reaches 120 technical debt units.

Technical debt that is not paid off becomes an increasing drag on the project by reducing the

Fraction Correct and Complete, which results in rework. Note that technical debt and

undiscovered rework are related, but distinguishable, concepts. Undiscovered rework represents

defects in the product that must be removed to meet customer requirements. Technical debt makes

progress more difficult and errors more likely, but does not constitute a defect in the product per

se.

3.5 Continuous Integration

Continuous Integration can be broken into two sub-practices: Configuration Management

(CM), and Test Automation, which will require acquiring, installing, and configuring the tools

and servers and process specification specific to the project. This may involve custom scripting

and development to automate certain aspects of the build process, or even modification of the

software product to add harnessing or support for test automation. This can be a costly up-front

effort for any project, but the project cannot enjoy the benefits of CI until this environment is

available.

As shown in Figure 10, the APD model uses exogenous parameters to calculate the upfront

cost of CI setup. At the beginning of the project, if the CI gene is turned on, the project CI setup

work is the first set of tasks that are transferred into the Release Backlog.

Technical Debt

200

150

100

50

0

0 26 52 78 104 130 156 182

Time (Week)

ta
sk

Technical Debt : Current

Technical Debt Pay Off Amount of Work : Current

18

Figure 10 - APD Model Elements for Continuous Integration

Figure 10 also shows a lever parameter variable called CM and Build Environment Automation

Level which can be set from 0 to 10 to indicate the level of automation (how much of the process

of preparing and building the software for daily development use and especially for release is

automated and repeatable). Level of Automated Testing Used likewise represents how much test

automation is in the system; this can range from 0 (no automation) to 10 (fully automated unit

testing as well as fully automated functional tests – the system can completely self-test as part of a

nightly build.)

This allows the configuration of the Continuous Integration gene depending on the nature and

purpose of the simulation experiment to have varying degrees of impact on productivity and

rework discovery. Simply put, more automation means more productivity, as repetitive manual

labor is replaced by software that automated portions of the workflow.

3.6 Team Dynamics

The model of schedule pressure effects in team dynamics is described in section 3.2 above.

The model also includes team dynamics effects for frequency of team meetings on error

generation (Fraction Correct and Complete) and on rework discovery (Development Rework

Discovery Rate), as well as coordination overhead that reduces the rate of work accomplishment

(Productivity).

The last team dynamics effect included in the model is Pair Programming. When Pair

Programming is turned on (Allow Pair Programming), the model recognizes that developers

usually spend only part of their day actually paired up. This is modeled with an exogenous

parameter (Percent Time Spent on PP). Pair Programming produces indirect effects through the

Allow Continuous
Integration

Continuous

Integration Setup

Work

Number of Tasks to

Setup CI Environment

Time to set up
CI

Staff to set up
CI

CI setup work rate

CI Setup Work

Generation Rate

<Current Release ID>

<Current Sprint ID>

<TIME STEP>

CI Environment

Available

Effect of CI on Rework

Discovery Rate

<InRelease>

Level of Automated
Testing Used

CM and Build
Environement

Automation Level

Effect of Automated
Testing on Rework

Discovery

Effect of CM

Environment on

Rework Discovery

Effect of CI on

Productivity

Effect of Test

Automation on Pdy

Effect of CM

Environment on Pdy

<Nominal

Productivity>

19

learning curve rate of staff experience gain and reduction of the load on experience staff for non-

productive training time. Pair Programming also produces positive effects on the work production

rate (Productivity) and reduction in defect generation (Fraction Correct and Complete) as well as

the rate of rework discovery (Development Rework Discovery Rate).

3.7 Customer Involvement

Customer Involvement has some positive and some negative effects on the core APD rework

cycle. The positive effects of Customer Involvement are captured in Effect of Customer

Involvement on FCC and Effect of Customer Involvement on Rework Discovery Time.

Effect of Customer Involvement on FCC: A large part of software defects are caused by

requirements uncertainty. As progress is made during each sprint, requirements uncertainty is

eliminated with customer feedback and product demos. This in turn improves FCC.

Effect of Customer Involvement on Rework Discovery Time: Likewise, customer availability to

answer questions, detect conflicts, resolve misunderstandings and to identify usability issues

during product demonstrations means that the project is more likely to identify rework early in the

process.

What could be considered a negative effect is the fact that continuous customer input results in

a certain level of requirements churn. We model this by calculating a measure of work progress,

which is used with a lookup table to estimate Effect of Customer Involvement on Requirements

Churn. This variable represents the percentage of the requirements that will change based on

customer input and how far along in the release the project has proceeded. For the purposes of this

model we are using a bell-curve reference mode, with a maximum of 10% churn. The rationale

behind this is that the most churn occurs toward the middle of the release as tangible software is

produced and allows the customer to feedback changes into the release. Requirements churn feeds

new tasks into the Product Backlog in the core model.

3.8 Project Staffing and Experience

Following [12], the APD model used a two level exponential delay for hiring and project

experience gain (assimilation). The levels are called New Staff and Experienced Staff. While these

are both measured in units of full-time equivalent people, these levels do not represent whole

people who move from one level to the next. Instead, they are a mathematical formulation of the

experience level of the whole staff on the project. Experience in this sense does not refer to career

experience, but to experience with project goals and requirements, working relationships and

organizational culture, the way that technology is being applied in the project, all of which need to

be learned on a specific project to be fully effective.

The model includes a simple first order delay for hiring new staff needed to meet planned total

staffing needs and another first order delay representing the turnover of staff leaving the project

(which has the dynamic effect of requiring new staff hiring). In this context, “hiring” could mean

either actually bringing new people in from the outside or transferring people from other projects.

In either case, they need time to learn the project. The model also includes a “Brooks Law” effect

[31] where the assimilation of new staff imposes a training load on experienced staff that reduces

the time they can apply to production.

We use an exogenous variable Relative Experience of New Staff to represent the relative

effectiveness of new staff joining the project. Using this relative experience ratio we can

formulate values for the Effect of Experience on Productivity and the Effect of Experience on

FCC. The effect is based on the fraction of staff which are inexperienced and the Relative

20

Experience of New Staff. These effects impact Productivity and Fraction Correct and Complete in

the core model rework cycle.

4. APD Model Simulation Experiments

In order to perform “what if” analysis and sensitivity tests on the effects produced from the

interaction of gene combinations and management policy variables, we have constructed a

“Management Dashboard” that allows us to “pull the levers” of the project parameters and

observe the results (see Figure 11).

Figure 11 - APD Management Dashboard

The three project performance graphs that we choose to observe in our dashboard are based on

the three sides of the “Iron Triangle” of project management: Schedule, Cost, and Quality.

Schedule completion is determined based on the amount of time it takes to drain the Product,

Release, and Sprint backlogs. Cost is estimated based on the cumulative amount of development

effort spent on the project. Quality is estimated based on the amount and duration of rework

(defects) that are encountered in the project.

The base case parameters are:

Project Size = 200,000 tasks

Initial Number of Inexperienced Staff = 10 people

Initial Number of Experienced Staff = 10 people

Nominal Productivity = 200 tasks per-week, per-person

Nominal Fraction Correct and Complete = 80%

Relative Experience of New Staff = 20%

21

The baseline case is a single-pass waterfall project. We will then “turn on” agile genes one-by-

one to observe their cumulative effects on project performance. Table 3, summarizes the set of

cases covered in the series of experiments.

Case
Switch for
Waterfall

Iterative/
incremental
& Feature-

driven
Micro-

Optimization Refactoring
Continuous
Integration

Customer
Involvement

Pair
Programming

Base Case 0 Waterfall OFF OFF OFF OFF OFF OFF

Case 1 Agile ON OFF OFF OFF OFF OFF

Case 2 Agile ON ON OFF OFF OFF OFF

Case 3 Agile ON ON ON OFF OFF OFF

Case 4 Agile ON ON ON ON OFF OFF

Table 3 - APD Model Experiements Design Summary

The APD model and set of experiments is not intended to predict or re-create results from real

projects, but to compare behavior of a project under different scenarios. Different exogenous

parameters would produce different results, but here exogenous parameters are held constant to

perform a relative comparison of behavior based solely on the selection of Agile genes. Results of

the experiments is summarized in Table 4 in section 4.6 below.

4.1 Base Case 0: Single-pass Traditional Waterfall

As a base-case, we start by executing the model in “waterfall mode” by using our ‘Switch for

Waterfall”. It yields the following results:

Project End Time: 79 Weeks (see Figure 12). The project end time is the point at which all of

the work backlogs have been depleted, including rework discovered in system testing. In this

example, the project spends the last several weeks clearing up discovered rework.

Figure 12 - APD Base Case Schedule

Figure 13 - APD Base Case Cost

Project Cost: 250,223 tasks (see Figure 13). Note that for management, this is translatable into

a dollar cost. We are currently using “task” as a fungible unit of work. This can easily be

substituted with person-hours. Using this in conjunction with labor costs, we can quickly

determine the dollar amount of the effort spent. For our purposes, however, “task” is an

acceptable unit of cost.

Project Quality: The single-pass waterfall project completes its work without fully

discovering all the defects in the code. Note that here we are measuring quality by the amount of

undiscovered rework tasks that escape into the delivered product that is passed along to a follow

on system test or beta test stage. Additional work will be required after the project is “complete”

Schedule (Backlogs)

200,000 task

1 Dmnl

100,000 task

0.5 Dmnl

0 task

0 Dmnl

0 16 32 48 64 80 96

Time (Week)

Product Backlog task

Release Backlog task

Sprint Backlog task

Project End Dmnl

Cost (Development Effort Spent)

400,000

300,000

200,000

100,000

0

0 16 32 48 64 80 96

Time (Week)

ta
sk

Development Effort

Final Cost

Project End

22

to discover and repair these defects. In government software development, this defect discovery

and repair effort is often incorporated in total project time and cost performance. In commercial

software, defect discovery is sometimes left to be done by the end user (which can be a less

effective form of “customer involvement” than the Agile gene counterpart).

4.2 Case 1: Fixed-schedule Feature-Driven Iterative/Incremental

In the next experiment, we ‘turn off’ the waterfall switch. This activates the

iterative/incremental Agile gene and the feature-driven Agile gene. The project is performed in

four equal-sized releases delivered in regular intervals in feature sets. Executing the model with

these settings produces the project performance the agile Case 1 row of Table 4.

Looking at these results, we find that the same project now takes 16 extra weeks, ending at

week 95, and incurs extra cost (roughly 25000 more tasks). However, the product now is

delivered with zero defects. Cost and Quality graphs can be observed in Figure 14.

Figure 14 – Agile Case 1 Cost and Quality

Moreover, there is a much more subtle difference generated by this case: the software is now

delivered in four releases, i.e. four functional increments. These are annotated below on the

Schedule graph in Figure 15. Each release is not just a random chunk of the software, but a

cohesive feature set that is “potentially shippable” and has client/end-user value. Each release can

be tested against system-level specifications and user expectations.

This can be of tremendous value to the recipient of the software release: they can immediately

start providing feedback and acting as a “beta-tester” as of release #1 in week 24. If the recipient

of this release is an integration, test, or quality assurance organization, they can get a head start on

testing the software against the system specifications, performing boundary case tests, and so on.

In fact, depending on the project environment, being able to several early increments of

functionality may be more valuable to the customer than the added cost incurred by this case.

Cost (Development Effort Spent)

400,000

200,000

0

0 24 48 72 96

Time (Week)

ta
sk

Development Effort

Quality (Defects in Product)

800 task

1 Dmnl

400 task

0.5 Dmnl

0 task

0 Dmnl

0 24 48 72 96

Time (Week)

Defects task

Project Finished Dmnl

Project End

23

Figure 15 – Agile Case 1 Schedule

4.3 Agile Case 2: Introduction of Micro-Optimization.

Next, we will enable Micro-Optimization, simulates the management policy of empowering

the development team to self-manage workload, and to perform process tweaks in between

sprints, using learning from prior sprints to improve future sprint performance. The previous

Agile settings are retained and the Micro-Optimization gene is turned on. The model produces the

project performance shown in the Agile Case 2 row of Table 4.

We see improved project duration, down to 82 weeks instead of 95 in case 1. Cost is 244K

tasks is also lower than both the base case (250K tasks) and case 1 (275K tasks). Although this

may seem counter-intuitive to management, the results here suggest that a team empowered to

self-regulate their workload may curtail costs and schedule overrun as opposed to an incremental

delivery model whose releases are dictated in advance.

Figure 16 – Agile Case 2 Schedule

Given more time, it is almost always possible to improve the product and this could lead to the

“gold-plating” effect where teams spend time over-engineering the product beyond what is

Schedule (Backlogs)

200,000 task

1 Dmnl

100,000 task

0.5 Dmnl

0 task

0 Dmnl

0 16 32 48 64 80 96

Time (Week)

Product Backlog task

Release Backlog task

Sprint Backlog task

Project End Dmnl

Schedule (Backlogs)

200,000 task

1 Dmnl

100,000 task

0.5 Dmnl

0 task

0 Dmnl

0 16 32 48 64 80 96

Time (Week)

Product Backlog task

Release Backlog task

Sprint Backlog task

Project End Dmnl

Release #1

Release #2

Release #3

Release #4

Release #2

Release #1

24

necessary to achieve the desired functionality (it is almost the opposite of ‘technical debt’).

However, the fact that agile iterations are time-boxed and feature-driven mitigates this effect, as

teams will give priority and focus to completing specific features.

Examining work backlogs in Figure 16, we see that roughly two-thirds of the functionality is

delivered in the first two releases, around week 50. What has happened here, as opposed to the

previous case, is that teams can gradually handle more work than was allotted to them per-sprint

in the previous case, and have self-regulated the amount of work they do per-sprint. This allows

them to get more sprints completed by week 50 than in the previous case.

4.4 Agile Case 3: Introduction of Refactoring

In this case we will allow refactoring. When the “technical/design debt” for the project reaches

a threshold, the development team will take time to work on additional refactoring tasks to

improve the quality of the software and keep it flexible and lower the cost for expansion and

addition of future features. Executing the model with three of the genes, now produces the project

performance shown in the Agile Case 3 row of Table 4.

Intuitively, management may have thought that allowing refactoring is akin to scope creep, and

thus may have thought that this would have increased either cost or slipped the schedule. Our

results, on the contrary, show that allowing refactoring resulted in a very minor (albeit negligible)

improvement in schedule and in cost. To explain this, let us take a look at the graph for Technical

Debt in case 3 vs. case 2 – see Figure 17. Refactoring keeps the technical debt “balance” lower,

resulting in a less detrimental effect on Fraction Correct and Complete than letting technical debt

get out of hand, as shown in Figure 18

 Finally, there is one more subtle benefit observed in comparing these two cases. Introducing

refactoring in Case 3 cuts the accumulated defects at the end of a release by 75%. In other words,

refactoring also allows the development team to produce better quality incremental releases. This

makes sense intuitively, as it is clear that refactoring to optimize will improve the quality of the

software, however the surprising part is the previous finding: that refactoring has no detrimental

effect on cost or schedule. This is because of the upward effect that unpaid technical debt has on

defect generation.

Figure 17 - Technical Debt Over Time Figure 18 - Effect of Technical Debt on FCC

On a larger scale, if project managers see refactoring as valuable to their current project and

the project is finished with less technical debt, then cost imposed on future improvement projects

25

will be much lower. On small projects, the effect of technical debt may not be enough to have any

immediate impact, though again long term effects will accumulate and may overwhelm a future

project.

4.5 Agile Case 4: Introduction of Continuous Integration

Next the Continuous Integration lever is activated. This will increase load in tasks to be

performed, representing the initial effort to set up and configure the development and delivery

environment. Later, once that environment is available and automated tests begin to accumulate,

Continuous Integration enhances productivity, and the ability to detect rework tasks by automated

testing. Executing the model with these parameters produces the project performance results in

the Agile Case 4 row of Table 4.

Figure 19 – Agile Case 4 Quality

There are no surprises here: Introducing Continuous Integration increases cost somewhat, due

to the up-front investment to configure such an environment. However, the cost is recouped in

schedule time. The project duration is shortened thanks to a significant speed-up in rework

discovery. If the project were extended beyond 104 weeks to several years, this up-front cost

becomes less significant. Another interesting observation with this gene is the quality profile as

exhibited in Figure 19.

Compared to what was seen in cases 2 and 3, the quality profile shows that defects have a short

life, as they are quickly discovered and addressed. This has several positive effects. Chiefly: the

“Errors upon Errors” dynamic is less powerful, since there are fewer undiscovered rework tasks

dormant in the system at any given time.

4.6 Summary of Experiments and Comparison with Experience

Table 4 shows the results of experiments described above – the Single-Pass Waterfall base

case and the four Agile cases that each add one more Agile gene. From these experiments, it is

clear that Agile can produce substantially improved performance or can lead to worse

performance, depending on what form of Agile is implemented. For example, the Refactoring

gene adds extra work in the short term to pay down “technical debt” and save work later (often on

a subsequent project). That extra work can be compensated by the “Continuous Integration” gene

which accelerates rework discovery.

Quality (Defects in Product)

100 task

1 Dmnl

50 task

0.5 Dmnl

0 task

0 Dmnl

0 16 32 48 64 80 96

Time (Week)

Defects task

Project Finished Dmnl

Project End

26

Case
Schedule
(weeks)

Cost
(tasks)

Quality
(level)

Base Case 0: Single-Pass Waterfall 79 250,223 L

Agile Case 1: Iterative-Incremental 95 275,111 M

Agile Case 2: add Micro-Optimization 82 244,436 M

Agile Case 3: add Refactoring 81.6 243,904 M

Agile Case 4: add Continuous Integration 62.8 255,593 H
Table 4 - Summary of Experimental Results

Experimentation with the APD has led to better understanding of some of results observed by

one of the author’s personal experience with Agile. This author reports that during the times when

some form of Agile development was practiced, there was never a case where all seven of the

Agile genes were employed. Customer Involvement was never truly practiced. In one project a

System Engineer (SE) filled the role of customer proxy, and was either unwilling or unable to

participate in daily scrums. Moreover, there is no guarantee that an SE could really represent the

vision of the end user. Continuous Integration was also not truly practiced. Although automatic

unit-testing was used, very little else was automated. Functional tests were still long and laborious

procedure-driven tasks. Configuration Management policy was also isolationist: in other words,

pieces of functionality were developed in isolation and only integrated (“merged”) near the end of

the development cycle, thus no “continuous” aspect of integration to identify rework early.

Refactoring (at least, large-scale refactoring) was also a frowned-upon practice. It was

considered by managers who did not understand the concept of Technical Debt to be extra non-

value-added work. The net result was that in most of this author’s experience with Agile, the only

elements employed were the Feature-Driven, Iterative-Incremental, and Micro-Optimizing genes.

The observed results of a natural experiment in the author’s personal experience are shown in

Table 5

Case
Schedule
(weeks)

Cost
(tasks)

Quality
(tasks)

Base Case 79 250223 L

“Personal” Agile Case 82 242213 M
Table 5 - APD Project Performance for “Personal” Case

These results are consistent with Agile Case 2 above. As we can see, this configuration saves

some cost, improves quality, and yet delays the project by three weeks. This is by no means a win

for agile over waterfall, or grounds to declare one superior to the other. Depending on program

priorities, schedule may be the most important factor. However this explains a bit more about the

promise and reality of agile practices.

5. Conclusions and Future Research

We have presented the Agile Genome, a unifying framework for describing characteristics of

Agile software development management practices. The framework has been used both to show

the commonalties and differences in popular methodologies and to indicate other combinations of

practices which may be employed. We have found the Agile Genome useful in the development

of the APD model for software development projects, which is capable of simulating both Agile

and Waterfall methodologies. The modular architecture of APD is such that any of the Agile Gene

sub-models can be evolved and refined over time as we gain more insight through personal

27

experience, research and interviews with subject matter experts and software engineering

professionals.

A Systems Thinking perspective would suggest that the software product itself is part of the

system under study here, in addition to the people, processes, and tools and the interactions

thereof that we are trying to model. Holistically speaking, one could argue that true Agile is not

only about the agility of the development process, or the team, but also about the software product

itself. If the software code is constantly refactored to keep it easy to adapt and evolve along with

the requirements, needs, or market environment, then the project can truly be agile. This is one of

the notions that APD helps us explore, thanks to the Refactoring gene sub-model, which includes

a construct for the metaphor of Technical Debt.

The model also gives us insight into the reason why the adoption of Agile in the large-scale

software engineering world has yet to reap the full benefits of Agile: Experiments with the APD

suggest that, for projects to gain the full benefits of Agile, they cannot simply cherry-pick easy-to-

adopt development techniques and hope to derive positive project performance results. We have

learned that each practice, combined with project policies, can produce both positive and negative

effects on the project performance. However, in reality organizations are quick to adopt practices

such as the Daily Scrum but will not practice Refactoring, or have not been able to adopt cutting-

edge Continuous Integration practices. As such, they see little ROI from Agile adoption to date.

The selection of management policies and combination of agile practices by software

development organizations needs to be balanced to optimize the system. Combinations of Agile

genes counter-balance negative effects with positive effects. For example: incremental

development can lead, over time, to high technical debt with negative consequences on

development time and quality. This effect can be counter-balanced by practicing refactoring.

Similarly, the loss in productivity from refactoring can be counter-balanced by gains from the

continuous integration and automated testing.

The goal for management is to configure the project-system in a fashion that maximizes the

up-sides while minimizing the downsides of methods. This underscores the Systems Thinking

adage that “a system is not a sum of its parts, but a product of their interactions”. The APD model

assists in the study of the interactions of the various “parts” of Agile and understanding of the

pluses and minuses of using any combination of methods. The APD’s management dashboard can

act as a “flight simulator” to facilitate this exploration.

By decomposing the Agile concept into component genes, some of the difficulties with

adoption in the government sector become more clear. There are many stakeholders (such as

program sponsors, contracting managers, program managers, and contractors) each of which has

its own perspectives, power, authority, and sense of urgency about any project. Some of the Agile

genes fall almost completely within the domain of the contractor (e.g. pair programming and team

meeting practices). Some are shared responsibility (e.g., incremental releases and customer

involvement). Some practices run contrary to traditional program control processes (such as risk

aversion to any change or rework vs. accepting change as inevitable and maximizing value).

Some Agile practices (such as customer involvement) would require new cooperation between

government and contractors (the government by allowing customers to influence requirements

changes during the project and the contractor by not taking advantage of customer contact to

demand excessive cost increases). The APD model can assist in developing collaborative change

by helping all parties to test the effects of new policies before they are put in place.

The APD model is explicitly designed to evolve as more is learned about Agile methods and

other aspects of project management. By substituting a more complete staffing model, for

28

example, we have been able to investigate how Agile practices respond to budget gaps and

fluctuations on software projects[34], and whether Agile projects are more resilient to such

funding problems. We expect to continue to test and evolve the Agile Genome framework and

extend the model to management practices that guide the definition and prioritization of features

for software development and to the interaction of software product with users.

References
[1] n.d., “Waterfall model,” Wikipedia. [Online]. Available: http://en.wikipedia.org/wiki/Waterfall_model.

[Accessed: 02-Aug-2012].

[2] K. Beck et al. (2001), “Manifesto for Agile Software Development,”[Online]. Available:

http://agilemanifesto.org.

[3] C. Larman and V. Basili (2003), “Iterative and Incremental Development: A Brief History,” Computer, vol. 36,

no. 6, pp. 47-56..

[4] B. Berwin (2010), “How a lawn mowing contract is changing Defense acquisition,” NEXTGov, pp.1-2.

Available at: http://www.nextgov.com/nextgov/ng_20100916_6260.php.

[5] C. Argyris and D. Schon (1978), Organizational Learning: A theory of action perspective. Reading, MA:

Addison-Wesley.

[6] P. Deemer, G. Benefield, C. Larman, and B. Vodde (2009), “The Scrum Primer.” Scrum Foundation, pp. 1-22.

[7] T. J. Allen and G. Henn (2006), The Organization and Architecture of Innovation: Managing the Flow of

Technology. Taylor & Francis..

[8] B. W. Boehm and P. N. Papaccio (1990), “Understanding and Controlling Software Costs,” IEEE Transactions

on Software Engineering, vol. 14, pp. 1462-1477..

[9] V. Basili and F. Shull (2005), “Evolving Defect ‘Folklore’: A Cross-Study Analysis of Software Defect

Behavior,” in International Software Process Workshop, pp. 1-9.

[10] M. A. Cusumano and S. Smith (1995), “Beyond the Waterfall: Software Development at Microsoft,” MIT Sloan

School of Management WP# 3844-BPS-95.

[11] J. M. Lyneis, K. G. Cooper, and S. A. Els (2001), “Strategic management of complex projects: a case study

using system dynamics,” System Dynamics Review, vol. 17, no. 3, pp. 237-260.

[12] T. K. Abdel-Hamid and S. Madnick (1991), Software Project Dynamics: An Integated Approach. Prentice Hall..

[13] C.H. Fine (1996), “Industry Clockspeed and Competency Chain Design,” MIT Sloan School of Management

Working Paper No. 147-96.

 [14] Armed Forces Communications and Electronics Association (AFCEA 1982), Command & Control (C2)

Systems Acquisition Study Final Report. Washington, DC: Defense Technical Infor Center, Sept. 1982.

[15] L. M. Duvall (2012), "Be Quick, Be Useable, Be On Time: Lessons in Agile Delivery of Defense Analytic

Tools," Brookings Center for 21st Century Security and Intelligence Policy Paper, June 6, 2012.

 [16] J. Highsmith (2002), “What Is Agile Software Development?” CrossTalk. The Journal of Defense Software,

(October 2002). Available at:

http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:What+Is+Agile+Software+Development+?#

0 [Accessed April 18, 2012].

[17] Defense Science Board. (2009) “Department of Defense Policies and Procedures for the Acquisition of

Information Technology” Office of the Under Secretary of Defense for Acquisition, Technology, and Logistics:

Washington, DC, (March 2009).

[18] W. Cunningham (1992), “The WyCash Portfolio Management System,” OOPSLA ’92 Experience Report.

[19] I. McFarland (2006), “Agile Practices on Real-World Projects.” In Google Java Users Group Agile 101.

[20] L. Cao, B. Ramesh, and T. Abdel-Hamid. (2010). “Modeling dynamics in agile software development.” ACM

Trans. Manage. Inf. Syst. 1, 1, Article 5 (December 2010)

[21] K. Chichakly (2007). "Modeling Agile Development: When Is It Effective?" Proc Int’l Conf. of the System

Dynamics Society 2007.

[22] W. Tignor (2009), “Agile Project Management,” Proc. Int’l Conf. of the System Dynamics Society 2009.

[23] K. van Oorschot, K. Sengupta and Luk van Wassenhove (2009), “Dynamics of Agile Software Development,”

Proc. Int’l Conf. of the System Dynamics Society 2009

[24] W. Tignor (2011), “Agile Essence,” Proc. Int’l Conf. of the System Dynamics Society 2011.

[25] X. Kong, L. Liu and J, Chenc'a. (2011) “Modeling Agile Software Maintenance Process Using Analytical

Theory of Project Investment,” Procedia Engineering, Volume 24.

29

[26] S. Marjaie and U. Rathod (2011) “Communication in Agile Software Projects: Qualitative Analysis using

Grounded Theory in System Dynamics,” Proc. Int’l Conf. of the System Dynamics Society 2011.

[27] L. Cocco, K. Mannaro, G. Concas, and M. Marchesi (2011). "Simulating Kanban and Scrum vs. Waterfall with

System Dynamics", XP 2011.

[28] K. Cooper and T. Mullen (1993), "Swords and Plowshares: The Rework Cycle of Defense and Commercial

Software Development". American Programmer Vol 6, no. 5, (May 1993).

[29] D. West, et al. (2010). “Agile Development: Mainstream Adoption Has Changed Agility.” Forrester Research.

[30] D. West et al. (2011) “Water-Scrum-Fall Is The Reality Of Agile For Most Organizations Today.” Forrester

Research.

[31] F. Brooks (1975) The Mythical Man-Month. Addison-Wesley.

[32] M. Lapham, et al. (2010) “Considerations for Using Agile in DoD Acquisition.” Carnegie Mellon, Software

Engineering Institute: April 2010, Technical Note CMU/SEI-2010-TN -002.

[33] Rico, D. F. (2008). "What is the return of investment (ROI) of agile methods?": 7

[34] T. Trammell, S. Madnick and A. Moulton (2012), "Effect of Funding Fluctuations on Government Funded

Software Development," International Research Workshop on IT Project Management 2012. Paper 12.

Acknowledgments
The authors would like to thank Mr. Richard Herrick, Mr. Kelly Hughes, Ms. Sarah Kingensmith, and Mr. Ian

Macurdy at the Defense Intelligence Agency and Mr. Douglas Marquis at MIT Lincoln Labs, for their valuable

insights into the issues addressed in this paper. The work reported herein was supported, in part, by the MIT Lincoln

Laboratories and the Defense Intelligence Agency (DIA) under the "Understanding the Challenges to Net-Centric

Systems and Mitigating Approaches" project, MIT Lincoln Laboratory contract 16-11-TCO-0013. Any opinions,

findings, and conclusions or recommendations expressed in this material are those of the authors and do not reflect

the official policy or position of Raytheon, MIT Lincoln Laboratory, the Defense Intelligence Agency or the

Department of Defense.

	CISL WP 2013-05 cover page
	2013-03-20 Agile SD Conf v48 AM-WP - Copy

