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Abstract

Purpose Electric vehicles (EVs) are promoted due to theitential for reducing fuel consumption and
greenhouse gas (GHG) emissions. A comparative L@Avéden different technologies should account for
variation in the scenarios under which vehiclesarerated in order to facilitate decision-makingameling the
adoption and promotion of EVs. In this study we pane life-cycle GHG emissions, in terms of £, of EVs
and conventional internal combustion engine veki¢IEEV) over a wide range of use-phase scenanidhd

US, aiming to identify the vehicles with lower GHf&nissions and the key uncertainties regardingnipsact.

Methods An LCA model is used to propagate the uncertaimthe use phase into the greenhouse gas emissions
of different powertrains available today for compand midsize vehicles in the US market. Monte-€arl
simulation is used to explore the parameter spawk gather statistics about GHG emissions of those
powertrains. Spearman's partial rank correlatiogffaent is used to assess the level of contrdsubf each

input parameter to the variance of GHG intensity.

Results and discussion Within the scenario space under study, battergtiéevehicles are more likely to have
the lowest GHG emissions when compared with otloeveptrains. The main drivers of variation in the GH

impact are driver aggressiveness (for all vehiclesarging location (for EVs) and fuel economy ({GEVSs).

Conclusions The probabilistic approach developed and appliethis study enables an understanding of the
overall variation in GHG footprint for differentdenologies currently available in the US market aad be
used for a comparative assessment. Results idghtfymain drivers of variation and shed light oerarios

under which the adoption of current EVs can beremmentally beneficial from a GHG emissions stariaipo

Keywords Electric vehicles « Greenhouse gas emissionse-tytle assessment « Uncertainty analysis



1 Introduction

The electrification of the global vehicle fleetgsadually underway. Sales projections vary, and one
estimate puts the penetration of electric vehi¢iegs) at 7 % of the global market by the year 2020
(JD Power 2010). EVs are being promoted becauseeimit less tailpipe emissions. They also have
the potential to reduce greenhouse gas (GHG) emisdb mitigate the global warming impact of
road vehicle transport. There are various typeS\s (here understood as vehicles with some type of
electric powertrain), including hybrid-electric veles (HEVs), plug-in hybrid-electric vehicles
(PHEVS), and battery electric vehicles (BEVs). HEp®vide the ability to store energy, when
decelerating, in a battery and operate the vehisieg both an internal combustion engine (ICE) and
an electric motor. In PHEVS, the battery packslarger and they can be charged using electricity
from the grid. In BEVs, a battery and an electrioton replace the engine entirely and are likewise
charged from the grid. Fuel-cell vehicles (FCVshieh also use an electric powertrain, but produce
electricity from hydrogen stored in fuel cells mtlthan an electric battery, are not considereiien
scope of this work.

Increasing sustainability and energy policy consdrave promoted the adoption of EVs due
to their potential for reducing fuel consumptiondaglobal warming potential. The common
perception regarding the environmental superiootyEVs, as compared to conventional internal
combustion engine vehicles (ICEVs), relies on abmsing the direct tailpipe emissions, which
constitute only one element of the overall envirental footprint. Prior studies suggest that a
comprehensive environmental impact assessmeneadrttire vehicle life is crucial in making a robust
comparison among different technologies (Lave €1295; Hawkins et al. 2013). It remains debatable
whether PHEVs and BEVs offer significant savings GHG intensity over their predecessor
technologies on a life-cycle basis. Given the largattery packs and electric motor components,
PHEVs and BEVs typically require more resources anergy during their material processing and
manufacturing phases to produce (Hawkins et al2p0%oreover, the GHG emissions associated
with driving and charging EVs depend on a varidtfaators defining different aspects of vehicle .use
Some of the major factors that can influence tiseilte of comparative assessments among different
vehicle types include:

- What is being driven - type of EV, vehicle sipayload;

- How they are driven - trip characteristics, drikehavior, EV operational parameters;

- Where they are driven - traffic conditions, ragde and grade, weather conditions;

- When they are charged - peak vs. off-peak chgrgind

- Where they are charged - emissions intensityexftecity.

Over the past two decades, life-cycle assessmé&@nh)lhas been utilized as a tool for comparing the
environmental impacts of vehicles (Wang et al. 1%rgh 1998; Bandivadekar 2008; Baptista et al.

2009; Hawkins et al. 2013) (see Hawkins et al. 20d2 a general review). For EVs in particular,



there have been a number of studies examining @te@ intensity (Silva et al. 2009; Elgowainy et al.
2010; Freire and Marques 2012). Assumptions werden@a scenarios created for the driving and
charging profiles, usually based on travel survayad These analyses are often deterministic: the
average GHG emissions were reported, rather thaapilistic distributions. Some exclude materials
production impacts and examine the “well-to-whasgipact only. Reports that analyzed the variation
in emissions due to different factors tend to foousthe GHG intensity of the grids. Doucette and
McCulloch (2013) compare@O, emissions from BEVs in the U.S., France, India @hiha. BEVs
were found to emit mor€0O, than conventional ICE vehicles in countries likeira and India, where
the averag€_ O, intensity of power generation is high. Nansaile{2002) found that the life-cycle
CO; emissions of BEVs driven in Japan ranged widelyniyadue to regional differences in the
energy mix used for electric power generation i@ tountry. Ma et al. (2012) accounted for real-
world driving conditions and the burden of margie#ctricity to assess the impact of BEVs in the
UK and California. They concluded that GHG intepsit BEVs is context-specific, and BEVs do not
always outperform ICE vehicles or HEVs. Anair andativhassani (2012) did not consider the
complete life-cycle impact, but instead studied thgact of charging BEVs only. They found
variation in EV charging-related emissions acrdss ©.S., due to the regional variation in grid
emissions intensity.

Another set of studies focused on the effect obing patterns, local traffic, and road
conditions on the fuel consumption or energy uskoith conventional as well as electric powertrains.
Real-world fuel consumption and corresponding GHfiiseions always varied from the vehicle's
rated values, which is based on standardized emnmsdest drive cycles. Earleywine et al. (2010)
tracked 783 vehicles in Texas using Global Positgisystem technology to gain an understanding of
in-use travel profiles. More aggressive driving dngher accelerations were observed in the real
world than compared with standard test cycles. @ase a survey of more than 28,000 drivers in
Germany, Mock et al. (2012) reported that the vemlld fuel consumption experienced in
conventional vehicles were on average 21 % highan tthe value based on the New European
Driving Cycle (NEDC) standard. In Michigan, LeBlaret al. (2010) tracked 117 identical
conventional gasoline vehicles driven by differdnters, and observed that fuel consumption ranged
from 8 to 13 liters/100 km. Finally, Raykin et £012) simulated PHEVs over different drive cycles
(vehicle speed profiles) and also found substamtigation in tank-to-wheel energy use across dgyvi
patterns. Their study shows that, for PHEVS, enargyg per unit distance traveled over highway
driving can be almost twice that over city driving.

Considering that the variation of the aforementibfectors can greatly influence the GHG
intensity of EVs, using average values to assesgykbbal warming impact can be misleading. A
challenge arises in characterizing the overallatam in emissions due to different scenarios under

which the vehicles are operating. This is clearbhallenging task since an exhaustive examination o



all possible scenarios is prohibitive. An efficianethodology is required to explore a scenario spac
that is sufficiently representative. The other imant issue is the way the environmental impaats ar
compared across a range of scenarios for diffggewertrains. Finally, it is valuable to identifyeth
key drivers of vehicle environmental impacts.

The present paper aims to address the challengasfidd above. We propose a probabilistic
approach to characterize the uncertainty in scer@arameters and propagate the consequences into
the GHG emissions in terms @O, equivalent. This allows us to obtain probabilistmnclusions
aboutCGO; intensity for each powertrain under study. Giviea probabilistic description of the impact
quantity, frequency assessments are conductedatatifjuthe overall superiority of different typeg o
powertrains over the entire scenario space. Moredkre method of sensitivity analysis is employed
to characterize the relative contribution of diffiet factors in the variation of GHG intensity. The
probabilistic approach developed and applied is #tudy enables an understanding of the overall
variation in GHG footprint for different technolas currently available in the US market and can be
used for a comparative assessment. Results ideh#fynain drivers for variation and shed light on
scenarios under which the adoption of current E&s lse environmentally beneficial from a GHG
emissions standpoint. Although the methodology lmageneralized to other contexts, we consider in
particular the current situation in the US anddlzess of compact/midsize vehicles currently avégab
in the market.

It is worth emphasizing that the results of undetyaanalysis rely on the assumptions
regarding the probabilistic descriptions of undertaput parameters. These assumptions are affecte
by limitations on the availability and the quality data sources. We acknowledge these limitations
despite of thorough review of different data sosrdbat we have conducted to improve the
characterization of distributions for the relevarut parameters. Furthermore, the degree by which
these assumptions affect the robustness of thééselpends on the functional relationship between
the input parameters and the modeled quantity tefeést. The sensitivity analysis presented in this
work provides useful insight about the level of witnutions of different input on the overall varat

of the global warming potential.

2 Life-cycle assessment model

In this section we present the main componenthefite-cycle assessment model that is developed in
order to assess the global warming potential ofMEE&Nd EVs. The goal of the analysis, system
definition, and functional unit are discussed, glomith the key parameters considered. This is
followed by a description on the uncertainty anialysethod, the data used in the analysis, and the

results.



2.1 System definition

The goal of this study is to provide a comparatigsessment of the life-cycle GHG emissions for
conventional and electric vehicles. In particulae, consider compact and midsize cars (according to
the classification of (EPA 2014)) operated in theited States (US) with five types of powertrain:
gasoline, diesel, HEV, PHEV10, PHEV40 (both PHE\&ihg an ICE as a range extender) and
BEV80, where the numbers after PHEV and BEV detloéemaximum range in miles they could
travel under solely battery power until rechargisgneeded (or until a range extender ICE must
intervene, in the case of PHEV). Only a subsethef tehicles on sale in the US is considered, to
increase comparability: cars with more than 150d\Mdower were excluded, as well as cars that were
significantly smaller (<4.10 m) or larger (>4.80 thjpn the compact and midsize BEV80s. In some
cases this means there is only one car in a categbich is a reflection of the state of the cutrei®
automotive market.

The system boundary of the LCA consists of the weeivheel impacts of generating,
transmitting, and distributing electricity usedcimarge the vehicles, and processing and usingifuel,
applicable. It also includes the impacts arisingrfrautomotive materials extraction, processing and
vehicle manufacturing. Fig. 1 shows the main stafes vehicle life-cycle. The end-of-life treatment
is not considered in this study due to its neglagibffect on greenhouse gas emissions as compared
with the use phase and vehicle production (SamamadsMeisterling 2008). In addition, we focus
solely on pure fossil fuels, thereby neglectinguke of ethanol and gasoline fuel blends, or tleeodfis

biodiesel. The functional unit is one kilometer {kaniven.

Figure 1 goes here

2.2 Vehicle production

Vehicle and battery production are the second megmtributor to life-cycle GHG emissions and

could vary for different powertrains (Hawkins et 2013). As such, it is important to account fog th

impact of vehicle production phase in a comparadisgessment of conventional and electric vehicles.
This includes a full life-cycle inventory analysi$ all the upstream processes related to the \eehicl
production. A complete LCA of vehicle production bgyond the scope of this study and is not
discussed here in detail. Readers are referredha@ordlevant studies in the literature for detailed
analyses (Sullivan et al. 1998; Burnham et al. 2@¥nhdivadekar 2008; Samaras and Meisterling
2008; Baptista et al. 2009). Hawkins et al. (20Eported the results of several studies on comgarin
GHG emissions from vehicle and battery production hoth conventional and electric vehicles

adjusted for the life standard lifetime mileage260,000 km. The reported values in (Hawkins et al.

2012) are averaged over different studies and sed bere as an estimation of the baseline upstream



GHG emissions due to vehicle and battery produstion the powertrains considered in this study

(Fig. A.1, Electronic Supplementary Material).

2.3 Use phase

In the life-cycle assessment of vehicles, the uses@ accounts for the majority of GHG emissions
through fuel combustion and/or electricity prodaoti An LCA model is developed in this work to
evaluate the use phase GHG impact. The model relefour main input moduli characterizing
charging location, trip profile, driving profilend charging pattern. These moduli are described in

more detail below.

2.3.1 Charging location

Charging location influences the GHG impact of BERi®ugh the GHG intensity of electricity grids.

Within the U.S., the fuel mix used to generate teleity varies by region and, as such, the GHG
emissions due to charging of EVs are heavily depenhdpon the location where the vehicles are
being used. Thus, the spatial variation in thetatdty grid must be taken into account to captare

full range of scenarios regarding the chargingtiooa. The U.S. Environmental Protection Agency
(EPA) provides comprehensive data on the emissidaaasity of almost all electric power generated
in the United States (EPA 2012). Fig. 2 shows GHtssions of the average US electricity grid and

the overall variation based on 2009 data.

Figure 2 goes here

2.3.2 Tripprofile

Trip profile consists of the number and distancewaiekday and weekend trips as well as long
distance trips. There is a considerable variatiotrip statistics across different states. The dweti
Household Travel Survey (NHTS) (Santos et al. 2@dyides a rich nationwide inventory of travel
trends. NHTS includes detailed information on daityd longer-distance travel. This information is

used to estimate a reasonable range of valuesg@rofile parameters (see Table 1).

2.3.3 Driving profile

A driving profile includes traffic conditions encatered (i.e. traffic congestion) and driving stfile.

driver aggressiveness), which would determine geed vs. time profiles of trips undertaken by the



vehicles considered. In this work we account faffic congestion, which varies by locations andetim
of day, by splitting city versus highway drivingchassuming that congestion only happens during the
daily commute. The Urban Mobility Report by the &iexTransportation Institute provides information
on congestion across the U.S. (Schrank et al. 2011} information is used to estimate lower and
upper bounds for the travel time spent idling. idlieg is implicitly taken into account in our agals

by considering the fraction of distance split bedweity driving versus highway driving and EPA’s
Urban Dynamometer Driving Schedule (UDDS) and HighwFuel Economy Driving Schedule
(HWFET), respectively.

The driving aggressiveness, defined as driver padace in speed and acceleration of
vehicles, is another factor that influences thé é&eenomy and consequently impacts the use phase of
the vehicle LCA. Studies on the effect of aggresslviving on fuel and battery power consumption
show that the electric vehicles can potentiallyni@re sensitive to driving aggressiveness (Duoba et
al. 2005; Carlson et al. 2009). Thus, the variafiorthe fuel consumption due to different driving
behavior needs to be adequately addressed in aacative LCA of different powertrains. Carlson et
al. (2009) conducted an experimental study to emarttie impact of aggressive driving on PHEV fuel
and electrical energy consumption. The resultshefrtstudy were presented in the form of the
percentage change in fuel consumption/battery tepléor different driving cycles. We make use of
these results to take into account the variatiodriving aggressiveness in our LCA model for the us
phase. For this purpose the percentage changelirfiiciency due to increase in driving cycles are
applied to the baseline on-road fuel consumptidtéba depletion (see Table A.1, Electronic
Supplementary Material for baseline values). Weelvheel GHG emissions and other fuel parameters
used in this study are extracted from Bandivad€k@08) and reported in Table A.2 (Electronic

Supplementary Material).

2.3.4 Charging pattern

The GHG impact of PHEVs is further complicated bhamging pattern, which encompasses the
distances driven between charging. This can vapeidding on the user as well as availability of
charging infrastructure. It affects the fractiontiofie the vehicle is driven on battery charge-dipde
mode, versus relying on combusting fuel within #mgine (charge-sustaining mode). Often, an
aggregated utility factor, or the fraction of trawe battery charge-depleting mode, is interprdtenh
travel survey data and used. Whether EVs are ctiangly during the night or also charged during the
day can impact GHG emissions through the interdditthe electricity grid that is being used while
charging. In our LCA model the charging habit isgmaeterized by a bimodal variable that specifies
whether the electric vehicle is charged only dutimg night or also charged during the day, with the
associated percentage of the charging time duhiagday. We assume that charging during the day

corresponds to the peak electricity demand with-lmeseload output emission rates are being used
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(EPA 2012). It should be noted that our current ehaibes not account for the differences in charging

modes or location-related losses, which could lmthesn source of variation.

3 Uncertainty analysis method

In section 2.3 we described the main parameteiigidgfthe scenarios under which the vehicles are
used (trip nature, driving pattern, charging pefind charging location). These parameters directly
affect the GHG intensity of the use phase. Theegesggnificant variation in scenarios stemming from
the uncertainty in these parameters. The consequ#ribese uncertainties is reflected in the resaflt
LCAs in the form of variation in GHG emissions. dnder to obtain robust conclusions about LCA
results, these uncertainties need to be suffigieattommodated. The propagation of uncertainty in
comparative LCA of different alternative producequires generating sufficiently representative
subsets of the scenario space.

In general, exploring the scenario space can h@edaout using two different strategies. In
one strategy the domain parameters can be disletind the scenario space is analyzed in a
parametric way by changing one parameter a time. Alternatiesle can explore the scenario space in
aprobabilistic manner. In this method each scenario parametisisribed as a random variable with
an appropriate probability distribution. Then a pling method, such as Monte Carlo simulation, is
utilized to generate a large number of random sasnpl the scenario space. These samples are in turn
used to compute the corresponding realizationgnpfact quantities making use of the LCA model.
The overall variation on GHG intensity of each pavan can then be represented by a probability
distribution estimated from computed realizatiof®r a large scenario space an exhaustive
examination of all possible scenarios in a parametay is prohibitive. As such, in this work the
latter method is used to characterize the unceyt@ina large scenario space in an efficient wahyisT
leads to the estimation of complete probabilisésdatiptions for GHG intensity, which in turn can be
well adapted to conduct the comparative assessmargtatistical manner.

Fig. 3 schematically presents the stochastic LC#cedure, using a Monte Carlo simulation,
to propagate use phase uncertainty into the glebamning potential of alternative powertrains. The
probabilistic analysis of the scenario space spta ramework for performing a global (versus one-
factor-at-a-time) sensitivity analysis to find tkey drivers of GHG impact. We use Spearman's partia
rank correlation coefficient (PRCC) (Hamby 1994) floe sensitivity analysis. This method measures
the sensitivity as the relative correlation betwé®sn output and each uncertain input parameter. The
square of PRCCs are normalized and representedeapetcentage of variation in GHG intensity
accounted for by variability in each input. Thifoals us to rank the input parameters based on their

level of contribution to the variance of GHG intins



Figure 3 goes here

4 Results and discussion

4.1 Uncertainty characterization and propagation

The range of values and probability distributiorsed for the parameters that define use phase
scenarios are presented in Table 1. Most of theegatharacterizing the trip profile are estimatedf

the data available through the National HouseholV/dl Survey (Santos et al. 2011). For parameters
without information on their underlying distributipa uniform distribution is used within appropeiat
lower and upper bounds estimated from NHTS datas ®&han attempt to uniformly explore the
parameter space, in this situation where the trsteilsltions are unknown due to a lack of data. The
only exception is for long distance trips, where thoice of a lognormal distribution seems to be
more pertinent since the trips with longer distaace less frequent. A lognormal distribution is
estimated from the long distance trip data avadlabl NHTS 2001 (Hu and Reuscher 2004). A
probabilistic analysis using the Monte Carlo siniolahas been performed based on the methodology
described in Section 3 and depicted in Fig. 3 tippgate the uncertainty in scenario parameters into
GHG use phase impacts. The Monte-Carlo simulatiaks into account the different nature of the
variables in groups A to D in Table 1. The ranghssen for the variables in Table 1 intend to
represent the current situation in the U.S., réflgcthe variation among different locations
different trip characteristicsx{ - Xg), and among different individual behaviors; &ndx,o), based on
official surveys. The exceptions axrg Xx;», andx;s, for which a full range of 0 % to 100 % was
considered reflecting all the possibilities thatyroacur.

Fuel economy of vehicles is another important a®wf uncertainty that propagates into the
use phase GHG intensity (Cheah 2013). The uncértairthe vehicles' fuel economy mostly stems
from the variation in the technology and performaraf vehicles. The Environmental Protection
Agency's National Vehicle and Fuel Emissions datalyarovides data on the rated fuel consumption
for different vehicle types and different powemsi(EPA 2014). The year 2014 data for different
types of midsize/compact vehicles are used to cheniae the uncertainty in the fuel consumption for
gasoline, diesel, and hybrid vehicles. Considednly midsize and compact class vehicles, there are
two BEV80s, one PHEV40, and two PHEV10 in the EPBA14 database. For the sake of
comparability, one of the PHEV10 vehicles is exeldidsince it is much larger (4.90 m) in length than
the remaining PHEVs and BEV80s (ranging from 4.38®m.50 m). In the same spirit, HEV, Gas and
Diesel vehicles longer than 4.80m or shorter tha@m are excluded. Another filter applied concerns
power, since there are several very high performafieVs and Gas vehicles incomparable with the
BEV and PHEVs. An upper limit of 150 kW is consieer

10



We used data on over 100 vehicles for the gasddilgbt for the diesel vehicles, and eight for
the HEVSs to estimate the variability of fuel econpraniform distributions are estimated to represent
the variation, considering the minimum and maximoinserved values. For the PHEV10, PHEV40
and BEV80 powertrains, this information is only &hon one or two types of vehicle and as such
only the baseline values are considered. This imébion is summarized in Table A.1 (Electronic
Supplementary Material).

It is important to note the disparity in the numlaérvehicles used as data sources for fuel
economy across the different categories (over dd@dsoline vehicles, compared with eight for the
diesel vehicles and HEVs, two for the BEV80s, and each for the PHEV10 and PHEV40). While it
would certainly be preferable to have a significeainple size for data sources in each category, our
analysis is a realistic assessment of the currearkeh The introduction of a few vehicles in all
categories except for gasoline vehicles would irhgee results.

Fig. 4 shows the average values as well"aarfsl 98' percentiles of life cycle GHG intensity
in g COxeqg/km for different powertrains estimated usingdP0, Monte Carlo samples. It is important
to note that these GHG intensity results includkicle production, although the scenario variation
only concerns the use phase. The gasoline powersfaows the largest variation in the impact

whereas the variation is lowest for the case of PHE as can be seen in Fig. 4.
Table 1 goes here
Figure 4 goes here

Figure 5 goes here

4.2 Comparative assessment

The results of an LCA are often represented inrapawative manner in order to allow analysis to
comment on the superiority of different alternasivéVhen the LCA is conducted under uncertainty,
the results are not deterministic values but rathesinge of possible outcomes with their associated
probabilities. As described in Section 3, we usentddCarlo simulation to explore the variation ie th
scenario space and propagate this variation int@ @rhissions. This provides the ingredients for
conducting the comparative assessment in a stafistianner.

One straightforward comparison can be made obsgrile GHG intensity cumulative
distribution functions (CDF) for the different posrins, depicted in Fig. 5. The comparison of CDFs
shows that among all the powertrains, it is mdkelji that the BEV80s and the PHEV10 vyield lower

GHG intensity among all. This implies a first ord#pchastic dominance of the BEV80s and the

11



PHEV10 over the other powertrains (the cumulatix@bpbility of having less than any given GHG
intensity level is higher for the BEV80s and theBR.0 than for other powertrains).

A more detailed analysis can be made based omvercomparisons. L& be the scenario
space analS denote each element of the set defining a useepbeenario. LeGy(S) denote the
random variable associated with the GHG intengity dowertrainX, whereX can be any of the
powertrains being compared, thatXslPT= {Gas, Diesel, HEV, PHEV10, PHEV40, BEV80}. As a
basic statistical indicator, one can look at thegfrency of the cases that a prodddias less GHG
intensity than an alternative produ¥tamong all the scenarios under study. This frequeac

mathematically defined as
pxy = P(Gx(s) < Gxy(s)),X,Y € PT (1)

in which P(.) denotes the probability or the likelihood. Tableréports the likelihoodsp,y, in

percentage terms for different pairs of powertralfer instance, the first row indicates that thesdl

vehicle had less GHG intensity than the gasolirecle in 66.9 % of the randomly generated cases.
As another measure of comparison, we also lotkealikelihood that each powertrain has the

lowest GHG impact among all the powertrains, that i
px = P(Gx(s) = min{G;(s)| i € PT}). 2

These quantities are estimated from the resuliarite Carlo simulation and compared in Fig. 6. Gas
vehicles, diesel vehicles, and the PHEV40 were mthe best in terms of GHG impacts, and HEVs
performed better than all other vehicles in only % of the cases. Most of the times, the BEV80s had

lower emissions.
Table 2 goes here

Figure 6 goes here

Based on the results of comparative assessmentndtraed in Fig. 6, the BEV80s and
PHEV10 are the two contenders with a likelihoodhalving the lowest emission of 68.9 % and
30.2 %, respectively. In order to statistically qtify the difference between the two, we make use o
a comparison indicator defined as the ratio ofrthesociated GHG intensity as follows (Huijbregdts e
al. 2003):

Cl = GBEVSO/ Gpuevio (5)

For each scenario, the BEV80s show lower GHG itifeisan the PHEV10 ifCl < 1. The
probability density function of the random variakle (Fig. 7) is estimated from the results of Monte
Carlo simulation. This information is used to quiyrthe relative difference in the performancewbt
powertrains along with the associated likelihoodr istance, the probability that the BEV80s have
lower GHG intensity than the PHEV10 is definedfas P(CI < 1), which is estimated @%0.69 (Fig.

12



7). Furthermore, the results suggest that the Gti€hsity of the BEV80s is almost surely at most 3/2
of the competitor, the PHEV10; that isP(< 3/2)= 1. On the contrary, the probability@®(< 2/3) is
far from negligible (although B < 1/2)= 0).

Figure 7 goes here

Looking into the scenarios under which the BEV8@senlower GHG intensity shows that these
scenarios correspond to the situations where thieles are operating in low grid emission areas and
the EVs are mostly charged during the night. Moeepit is more likely that the BEV80s prevail over
other powertrains for lower degrees of driving @&ggiveness. This suggests that these parameters are
the most critical factors when assessing whetheBiEV80s have lower GHG intensity. Regarding
the comparative assessment of BEVs, it should b#qubout that the range of this type of powertrain
is often insufficient to allow the completion ofetlong distance trips. Thus it is worth noting tfratn
this aspect, not all the vehicles that are analgzedcomparable.

In the following section we present a global sévigjit analysis in order to systematically
identify the contribution of different uncertaincfars in the variation of resulting G@missions for

each vehicle type.

4.3 Sensitivity analysis

The use phase model for quantifying GHG intensity,described in section 2.3, depends upon a
variety of inputs, which influence the GHG impadt each powertrain to different extents. The
influence of each parameter can be different farwveational and electric vehicles. It is importamt t
identify the key drivers of impact in order to limthe burden and expense of data collection for a
better characterization. Moreover, this informatioelps decision-makers to identify the area that
causes the decision to change. To this end, weonperfy sensitivity analysis to quantify the
dependency of the impact to each uncertain paramétethe measure of sensitivity we compute
partial rank correlation between each input and ¢hgput, represented as the percentage of
contribution to the variance of GHG intensity. Toasult of this sensitivity analysis is shown in.Fg
Driving aggressiveness is one of the top contritsuto the GHG impact for all the powertrains. For
the battery and plug-in hybrid electric vehiclegy(B(a)) the charging location (grid) is one ofsho
influential drivers of the uncertainty. For convienal and hybrid vehicles (Fig. 8(b)) other major
factors include the fuel economy, percentage ¢f miles, and the average distance driven during the
weekdays. The variation in the impact of the HE¥almost entirely influenced by the uncertainty in

the fuel consumption of these vehicles.

13



Figure 8 goes here

It is important to note the final results presentedthis study and the subsequent outcome of
comparative assessment hinge on the underlyingrgggns regarding the range of input parameters
and the associated distributions. The degree tahwiiiese assumptions influence the decision
depends upon their level of contributions to tmalfiresults. The global sensitivity analysis préseén

in this section identifies the critical areas tods on for a more detailed characterization.

5 Conclusions

In this paper we present a comparative assessmieBHG impacts for conventional and electric
vehicles, while accounting for uncertainty in thse yphase. A stochastic analysis using a Monte Carlo
simulation has been adopted to propagate the aiggrtin the use phase into the greenhouse gas
emissions of different powertrains. This procedaltews us to characterize overall variation in GHGs
and conduct the comparative assessment in a istishanner. Moreover, we present a global
sensitivity analysis in order to identify the keyivérs of impact that could cause the outcome to
change.

The results suggest that the EVs currently avalablthe US market are preferable from a
GHG standpoint only within certain contexts. Withire scenario space under study, the BEV80s are
more likely to result in the lowest GHG impactscampared to other powertrains. According to Table
2, only in rare circumstances do the BEV80s shayhdr CQ emissions than the PHEV40 (0.7 %),
HEVs (7.4 %), gas vehicles (0.2 %), or diesel velsiq0.5 %). Even acknowledging the use of
uniform distribution and the absence of correlatioodelling as limitations of this study, these are
very robust conclusions that would not change (eivanmbers would be different) if other statistica
distributions were used. The close competitor &ssRRHEV10, which achieved lower GHG intensity in
30.2 % of the scenarios. But Fig. 7 shows that &limost certain that the GHG intensity of BEV89s i
at most 50 % higher than that of the PHEV10, wretka reverse is not true.

If more precise results are sought, the sensitaitglysis provides clues on which parameters
matter the most. GHG intensity of the PHEV40 and/B&s depends heavily on the electricity grid
used for charging the vehicles. Furthermore, dgvaggressiveness can significantly affect the
environmental footprint for both electric and contienal vehicles.

Concerning the limitations of this study, there ather sources of uncertainty that are not
addressed. In particular, the uncertainty in vehpirbduction is not accounted and average valwes ar
used for these quantities. The uncertainty in thel production (see Kocoloski et al. 2012), for
instance) is not discussed here since this is dmitdie scope of our LCA model. Other sources of
variation such as the weight of the occupants ege of air conditioning were not considered eithe

There is also temporal variation due to the teatgldynamics, in particular in the electrical grid
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emission factors, which can influence the resutstlie future scenarios. The focus of this paper is
however, on addressing uncertainty already presettie current situation of use phase. While we
were able to characterize some sources of uncirtainthe use phase, several sources were not
included due to a lack of data such as weatherittonsl and the loads of equipment and devices
within the vehicle. This study is also limited ack of information on the correlations between inpu
parameters, which deserves further investigatiomally, the scope of the analysis is limited by the
small numbers of EVs currently available in the t&rket. Introduction of a few new EVs could
potentially have a significant impact on outcomes.

Despite these limitations, the results of thiddgtaan inform decision-makers of the overall
variation in environmental footprint for differetéchnologies and shed light on the scenarios under
which the adoption of EVs currently available ire tdS market can be environmentally beneficial

from a GHG emissions standpoint.
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Figure captions

Fig. 1 Study system boundary — the dotted lines inditia¢elife-cycle phases of vehicle included

within the scope of this study

Fig. 2 Variation in GHG emissions intensity of electtycigrids in the U.S. The non-baseload
emission rates are a portion of the system tota) with a greater weight given to plants that opera

during the peak demand for electricity

Fig. 3 Monte Carlo simulations are used to propagateutteertainty in the use phase into the life-
cycle GHG intensity. Statistical distributions oHG intensity are estimated and used to conduct a

probabilistic comparative assessment

Fig. 4 Average values and uncertainty ranges for GHénsity. The error bars represent tffeafid

95" percentiles

Fig. 5 Comparison of estimated cumulative distributiomdiion of GHG intensity from vehicle

production and use
Fig. 6 The likelihood that each powertrain achievesldmeest emission among all powertraing, p

Fig. 7 Statistical characterization of the differencehe performance of PHEV10 and BEV80. The
plot shows the cumulative distribution function tbe comparison indicator, Cl, as the measure of

comparison

Fig. 8 Sensitivity analysis: percentage of variationdHG intensity accounted for by variability in
each input parameter (see Table 1 and Table A.&c{fehic Supplementary Material) for the
descriptions of each parametg): (a) Vehicles charged or partially charged frone tgrid; (b)

Vehicles not charged from the grid
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Table 1 Description of scenario parameters and the astgatdistributions used in uncertainty analysis

Scenario Parameters Min Max Distribution type
A. Charging location

* X, : Grid emission (dCOeq/KWh) 227.1 894.2 Uniform (discrete)
B. Trip profile

* X, : Number of trips per weekday 1 4° Uniform (discrete)
* X3 : Average weekday trip distance (km) 6.4 48° Uniform

* X4 : Number of trips per weekend days 0 3° Uniform (discrete)
* X5 : Average weekend trip distance (km) 6.4 48° Uniform

* x5 : Number of long-distance trips per year 0 4 Umifddiscrete)
* X7 : Average distance of long trips (km) =425 0=360° Lognormal

* Xg : Average trip congestion time for weekday Uniform
commute (min) 7 20¢

C. Driving profile

* X9 : Percentage of distance driven in city (vs. Uniform

highway) 0% 100 %

e Xio : Driving aggressiveness (USDDS scaling.0 1.6 Uniform (discrete)
factor)

D. Charging pattern

* Xy1 : Charging habit night night\day Binomial

* X1, : Percentage of charging time during the day 0% 00 % Uniform

* X3 : Chance missing a charge (percentage) 0%

100 % nifortth

References: ® eGRID (EPA 2012)° NHTS 2009 (Santos et al. 2012),
®NHTS 2001 (Hu and Reuscher 2004)Schrank et al. 2011,(Carlson et al. 2009)
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Table 2 The likelihood that a powertraii, has lower emission than an alternative d@xy= P(Gx<Gy)

X \Y
Diesel
HEV

PHEV40 | 99.1
PHEV10 | 100.0

BEV80

Gas
66.9 Diesel
97.1 97.1 HEV
98.2 48.7 PHEV40
100.0 98.4 99.0 PHEV10
99.8 | 99.5 92.6/ 99.3 69.0
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