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Abstract 

Purpose Electric vehicles (EVs) are promoted due to their potential for reducing fuel consumption and 

greenhouse gas (GHG) emissions. A comparative LCA between different technologies should account for 

variation in the scenarios under which vehicles are operated in order to facilitate decision-making regarding the 

adoption and promotion of EVs. In this study we compare life-cycle GHG emissions, in terms of CO2eq, of EVs 

and conventional internal combustion engine vehicles (ICEV) over a wide range of use-phase scenarios in the 

US, aiming to identify the vehicles with lower GHG emissions and the key uncertainties regarding this impact. 

Methods An LCA model is used to propagate the uncertainty in the use phase into the greenhouse gas emissions 

of different powertrains available today for compact and midsize vehicles in the US market. Monte-Carlo 

simulation is used to explore the parameter space and gather statistics about GHG emissions of those 

powertrains. Spearman's partial rank correlation coefficient is used to assess the level of contribution of each 

input parameter to the variance of GHG intensity. 

Results and discussion Within the scenario space under study, battery electric vehicles are more likely to have 

the lowest GHG emissions when compared with other powertrains. The main drivers of variation in the GHG 

impact are driver aggressiveness (for all vehicles), charging location (for EVs) and fuel economy (for ICEVs). 

Conclusions The probabilistic approach developed and applied in this study enables an understanding of the 

overall variation in GHG footprint for different technologies currently available in the US market and can be 

used for a comparative assessment. Results identify the main drivers of variation and shed light on scenarios 

under which the adoption of current EVs can be environmentally beneficial from a GHG emissions standpoint.  

 

Keywords  Electric vehicles • Greenhouse gas emissions • Life-cycle assessment • Uncertainty analysis  
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1 Introduction 

The electrification of the global vehicle fleet is gradually underway. Sales projections vary, and one 

estimate puts the penetration of electric vehicles (EVs) at 7 % of the global market by the year 2020 

(JD Power 2010). EVs are being promoted because they emit less tailpipe emissions. They also have 

the potential to reduce greenhouse gas (GHG) emissions to mitigate the global warming impact of 

road vehicle transport. There are various types of EVs (here understood as vehicles with some type of 

electric powertrain), including hybrid-electric vehicles (HEVs), plug-in hybrid-electric vehicles 

(PHEVs), and battery electric vehicles (BEVs). HEVs provide the ability to store energy, when 

decelerating, in a battery and operate the vehicle using both an internal combustion engine (ICE) and 

an electric motor. In PHEVs, the battery packs are larger and they can be charged using electricity 

from the grid. In BEVs, a battery and an electric motor replace the engine entirely and are likewise 

charged from the grid. Fuel-cell vehicles (FCVs), which also use an electric powertrain, but produce 

electricity from hydrogen stored in fuel cells rather than an electric battery, are not considered in the 

scope of this work. 

Increasing sustainability and energy policy concerns have promoted the adoption of EVs due 

to their potential for reducing fuel consumption and global warming potential. The common 

perception regarding the environmental superiority of EVs, as compared to conventional internal 

combustion engine vehicles (ICEVs), relies on considering the direct tailpipe emissions, which 

constitute only one element of the overall environmental footprint. Prior studies suggest that a 

comprehensive environmental impact assessment of the entire vehicle life is crucial in making a robust 

comparison among different technologies (Lave et al. 1995; Hawkins et al. 2013). It remains debatable 

whether PHEVs and BEVs offer significant savings in GHG intensity over their predecessor 

technologies on a life-cycle basis. Given the larger battery packs and electric motor components, 

PHEVs and BEVs typically require more resources and energy during their material processing and 

manufacturing phases to produce (Hawkins et al. 2012). Moreover, the GHG emissions associated 

with driving and charging EVs depend on a variety of factors defining different aspects of vehicle use. 

Some of the major factors that can influence the results of comparative assessments among different 

vehicle types include: 

- What is being driven - type of EV, vehicle size, payload; 

- How they are driven - trip characteristics, driver behavior, EV operational parameters; 

- Where they are driven - traffic conditions, road type and grade, weather conditions; 

- When they are charged - peak vs. off-peak charging; and 

- Where they are charged - emissions intensity of electricity. 

Over the past two decades, life-cycle assessment (LCA) has been utilized as a tool for comparing the 

environmental impacts of vehicles (Wang et al. 1997; Singh 1998; Bandivadekar 2008; Baptista et al. 

2009; Hawkins et al. 2013) (see Hawkins et al. 2012) for a general review). For EVs in particular, 
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there have been a number of studies examining their GHG intensity (Silva et al. 2009; Elgowainy et al. 

2010; Freire and Marques 2012). Assumptions were made or scenarios created for the driving and 

charging profiles, usually based on travel survey data. These analyses are often deterministic: the 

average GHG emissions were reported, rather than probabilistic distributions. Some exclude materials 

production impacts and examine the “well-to-wheel” impact only. Reports that analyzed the variation 

in emissions due to different factors tend to focus on the GHG intensity of the grids. Doucette and 

McCulloch (2013) compared CO2 emissions from BEVs in the U.S., France, India and China. BEVs 

were found to emit more CO2 than conventional ICE vehicles in countries like China and India, where 

the average CO2 intensity of power generation is high. Nansai et al. (2002) found that the life-cycle 

CO2 emissions of BEVs driven in Japan ranged widely mainly due to regional differences in the 

energy mix used for electric power generation in the country. Ma et al. (2012) accounted for real-

world driving conditions and the burden of marginal electricity to assess the impact of BEVs in the 

UK and California. They concluded that GHG intensity of BEVs is context-specific, and BEVs do not 

always outperform ICE vehicles or HEVs. Anair and Mahmassani (2012) did not consider the 

complete life-cycle impact, but instead studied the impact of charging BEVs only. They found 

variation in EV charging-related emissions across the U.S., due to the regional variation in grid 

emissions intensity. 

Another set of studies focused on the effect of driving patterns, local traffic, and road 

conditions on the fuel consumption or energy use in both conventional as well as electric powertrains. 

Real-world fuel consumption and corresponding GHG emissions always varied from the vehicle’s 

rated values, which is based on standardized emissions test drive cycles. Earleywine et al. (2010) 

tracked 783 vehicles in Texas using Global Positioning System technology to gain an understanding of 

in-use travel profiles. More aggressive driving and higher accelerations were observed in the real 

world than compared with standard test cycles. Based on a survey of more than 28,000 drivers in 

Germany, Mock et al. (2012) reported that the real-world fuel consumption experienced in 

conventional vehicles were on average 21 % higher than the value based on the New European 

Driving Cycle (NEDC) standard. In Michigan, LeBlanc et al. (2010) tracked 117 identical 

conventional gasoline vehicles driven by different drivers, and observed that fuel consumption ranged 

from 8 to 13 liters/100 km. Finally, Raykin et al. (2012) simulated PHEVs over different drive cycles 

(vehicle speed profiles) and also found substantial variation in tank-to-wheel energy use across driving 

patterns. Their study shows that, for PHEVs, energy use per unit distance traveled over highway 

driving can be almost twice that over city driving. 

Considering that the variation of the aforementioned factors can greatly influence the GHG 

intensity of EVs, using average values to assess the global warming impact can be misleading. A 

challenge arises in characterizing the overall variation in emissions due to different scenarios under 

which the vehicles are operating. This is clearly a challenging task since an exhaustive examination of 
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all possible scenarios is prohibitive. An efficient methodology is required to explore a scenario space 

that is sufficiently representative. The other important issue is the way the environmental impacts are 

compared across a range of scenarios for different powertrains. Finally, it is valuable to identify the 

key drivers of vehicle environmental impacts. 

The present paper aims to address the challenges identified above. We propose a probabilistic 

approach to characterize the uncertainty in scenario parameters and propagate the consequences into 

the GHG emissions in terms of CO2 equivalent. This allows us to obtain probabilistic conclusions 

about CO2 intensity for each powertrain under study. Given the probabilistic description of the impact 

quantity, frequency assessments are conducted to quantify the overall superiority of different types of 

powertrains over the entire scenario space. Moreover, the method of sensitivity analysis is employed 

to characterize the relative contribution of different factors in the variation of GHG intensity. The 

probabilistic approach developed and applied in this study enables an understanding of the overall 

variation in GHG footprint for different technologies currently available in the US market and can be 

used for a comparative assessment. Results identify the main drivers for variation and shed light on 

scenarios under which the adoption of current EVs can be environmentally beneficial from a GHG 

emissions standpoint. Although the methodology can be generalized to other contexts, we consider in 

particular the current situation in the US and the class of compact/midsize vehicles currently available 

in the market.  

It is worth emphasizing that the results of uncertainty analysis rely on the assumptions 

regarding the probabilistic descriptions of uncertain input parameters.  These assumptions are affected 

by limitations on the availability and the quality of data sources. We acknowledge these limitations 

despite of thorough review of different data sources that we have conducted to improve the 

characterization of distributions for the relevant input parameters. Furthermore, the degree by which 

these assumptions affect the robustness of the results depends on the functional relationship between 

the input parameters and the modeled quantity of interest. The sensitivity analysis presented in this 

work provides useful insight about the level of contributions of different input on the overall variation 

of the global warming potential.  

 

2 Life-cycle assessment model 

In this section we present the main components of the life-cycle assessment model that is developed in 

order to assess the global warming potential of ICEVs and EVs. The goal of the analysis, system 

definition, and functional unit are discussed, along with the key parameters considered. This is 

followed by a description on the uncertainty analysis method, the data used in the analysis, and the 

results.  
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2.1 System definition 

The goal of this study is to provide a comparative assessment of the life-cycle GHG emissions for 

conventional and electric vehicles. In particular, we consider compact and midsize cars (according to 

the classification of (EPA 2014)) operated in the United States (US) with five types of powertrain: 

gasoline, diesel, HEV, PHEV10, PHEV40 (both PHEVs having an ICE as a range extender) and 

BEV80, where the numbers after PHEV and BEV denote the maximum range in miles they could 

travel under solely battery power until recharging is needed (or until a range extender ICE must 

intervene, in the case of PHEV). Only a subset of the vehicles on sale in the US is considered, to 

increase comparability: cars with more than 150 kW of power were excluded, as well as cars that were 

significantly smaller (<4.10 m) or larger (>4.80 m) than the compact and midsize BEV80s. In some 

cases this means there is only one car in a category, which is a reflection of the state of the current US 

automotive market. 

The system boundary of the LCA consists of the well-to-wheel impacts of generating, 

transmitting, and distributing electricity used to charge the vehicles, and processing and using fuel, if 

applicable. It also includes the impacts arising from automotive materials extraction, processing and 

vehicle manufacturing. Fig. 1 shows the main stages of a vehicle life-cycle. The end-of-life treatment 

is not considered in this study due to its negligible effect on greenhouse gas emissions as compared 

with the use phase and vehicle production (Samaras and Meisterling 2008). In addition, we focus 

solely on pure fossil fuels, thereby neglecting the use of ethanol and gasoline fuel blends, or the use of 

biodiesel. The functional unit is one kilometer (km) driven. 

Figure 1 goes here 

 

2.2 Vehicle production 

Vehicle and battery production are the second major contributor to life-cycle GHG emissions and 

could vary for different powertrains (Hawkins et al. 2013). As such, it is important to account for the 

impact of vehicle production phase in a comparative assessment of conventional and electric vehicles. 

This includes a full life-cycle inventory analysis of all the upstream processes related to the vehicle 

production. A complete LCA of vehicle production is beyond the scope of this study and is not 

discussed here in detail. Readers are referred to the relevant studies in the literature for detailed 

analyses (Sullivan et al. 1998; Burnham et al. 2006, Bandivadekar 2008; Samaras and Meisterling 

2008; Baptista et al. 2009). Hawkins et al. (2012) reported the results of several studies on comparing 

GHG emissions from vehicle and battery production for both conventional and electric vehicles 

adjusted for the life standard lifetime mileage of 200,000 km. The reported values in (Hawkins et al. 

2012) are averaged over different studies and are used here as an estimation of the baseline upstream 
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GHG emissions due to vehicle and battery productions for the powertrains considered in this study 

(Fig. A.1, Electronic Supplementary Material). 

 

2.3 Use phase 

In the life-cycle assessment of vehicles, the use phase accounts for the majority of GHG emissions 

through fuel combustion and/or electricity production. An LCA model is developed in this work to 

evaluate the use phase GHG impact. The model relies on four main input moduli characterizing 

charging location, trip profile, driving profile, and charging pattern. These moduli are described in 

more detail below. 

 

2.3.1 Charging location 

Charging location influences the GHG impact of EVs through the GHG intensity of electricity grids. 

Within the U.S., the fuel mix used to generate electricity varies by region and, as such, the GHG 

emissions due to charging of EVs are heavily dependent upon the location where the vehicles are 

being used. Thus, the spatial variation in the electricity grid must be taken into account to capture a 

full range of scenarios regarding the charging locations. The U.S. Environmental Protection Agency 

(EPA) provides comprehensive data on the emissions intensity of almost all electric power generated 

in the United States (EPA 2012). Fig. 2 shows GHG emissions of the average US electricity grid and 

the overall variation based on 2009 data. 

Figure 2 goes here 

 

2.3.2 Trip profile 

Trip profile consists of the number and distance of weekday and weekend trips as well as long 

distance trips. There is a considerable variation in trip statistics across different states. The National 

Household Travel Survey (NHTS) (Santos et al. 2011) provides a rich nationwide inventory of travel 

trends. NHTS includes detailed information on daily and longer-distance travel. This information is 

used to estimate a reasonable range of values for trip profile parameters (see Table 1). 

 

2.3.3 Driving profile 

A driving profile includes traffic conditions encountered (i.e. traffic congestion) and driving style (i.e. 

driver aggressiveness), which would determine the speed vs. time profiles of trips undertaken by the 
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vehicles considered. In this work we account for traffic congestion, which varies by locations and time 

of day, by splitting city versus highway driving and assuming that congestion only happens during the 

daily commute. The Urban Mobility Report by the Texas Transportation Institute provides information 

on congestion across the U.S. (Schrank et al. 2011). This information is used to estimate lower and 

upper bounds for the travel time spent idling. The idling is implicitly taken into account in our analysis 

by considering the fraction of distance split between city driving versus highway driving and EPA’s 

Urban Dynamometer Driving Schedule (UDDS) and Highway Fuel Economy Driving Schedule 

(HWFET), respectively. 

The driving aggressiveness, defined as driver performance in speed and acceleration of 

vehicles, is another factor that influences the fuel economy and consequently impacts the use phase of 

the vehicle LCA. Studies on the effect of aggressive driving on fuel and battery power consumption 

show that the electric vehicles can potentially be more sensitive to driving aggressiveness (Duoba et 

al. 2005; Carlson et al. 2009). Thus, the variation in the fuel consumption due to different driving 

behavior needs to be adequately addressed in a comparative LCA of different powertrains. Carlson et 

al. (2009) conducted an experimental study to examine the impact of aggressive driving on PHEV fuel 

and electrical energy consumption. The results of their study were presented in the form of the 

percentage change in fuel consumption/battery depletion for different driving cycles. We make use of 

these results to take into account the variation in driving aggressiveness in our LCA model for the use 

phase. For this purpose the percentage change in fuel efficiency due to increase in driving cycles are 

applied to the baseline on-road fuel consumption/battery depletion (see Table A.1, Electronic 

Supplementary Material for baseline values). Well to wheel GHG emissions and other fuel parameters 

used in this study are extracted from Bandivadekar (2008) and reported in Table A.2 (Electronic 

Supplementary Material).  

 

2.3.4 Charging pattern 

The GHG impact of PHEVs is further complicated by charging pattern, which encompasses the 

distances driven between charging. This can vary depending on the user as well as availability of 

charging infrastructure. It affects the fraction of time the vehicle is driven on battery charge-depleting 

mode, versus relying on combusting fuel within the engine (charge-sustaining mode). Often, an 

aggregated utility factor, or the fraction of travel on battery charge-depleting mode, is interpreted from 

travel survey data and used. Whether EVs are charged only during the night or also charged during the 

day can impact GHG emissions through the intensity of the electricity grid that is being used while 

charging. In our LCA model the charging habit is parameterized by a bimodal variable that specifies 

whether the electric vehicle is charged only during the night or also charged during the day, with the 

associated percentage of the charging time during the day. We assume that charging during the day 

corresponds to the peak electricity demand with non-baseload output emission rates are being used 
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(EPA 2012). It should be noted that our current model does not account for the differences in charging 

modes or location-related losses, which could be another source of variation. 

 

3 Uncertainty analysis method 

In section 2.3 we described the main parameters defining the scenarios under which the vehicles are 

used (trip nature, driving pattern, charging profile and charging location). These parameters directly 

affect the GHG intensity of the use phase. There is a significant variation in scenarios stemming from 

the uncertainty in these parameters. The consequence of these uncertainties is reflected in the results of 

LCAs in the form of variation in GHG emissions. In order to obtain robust conclusions about LCA 

results, these uncertainties need to be sufficiently accommodated. The propagation of uncertainty in 

comparative LCA of different alternative products requires generating sufficiently representative 

subsets of the scenario space.  

In general, exploring the scenario space can be carried out using two different strategies. In 

one strategy the domain parameters can be discretized and the scenario space is analyzed in a 

parametric way by changing one parameter a time. Alternatively one can explore the scenario space in 

a probabilistic manner. In this method each scenario parameter is described as a random variable with 

an appropriate probability distribution. Then a sampling method, such as Monte Carlo simulation, is 

utilized to generate a large number of random samples of the scenario space. These samples are in turn 

used to compute the corresponding realizations of impact quantities making use of the LCA model. 

The overall variation on GHG intensity of each powertrain can then be represented by a probability 

distribution estimated from computed realizations. For a large scenario space an exhaustive 

examination of all possible scenarios in a parametric way is prohibitive. As such, in this work the 

latter method is used to characterize the uncertainty in a large scenario space in an efficient way. This 

leads to the estimation of complete probabilistic descriptions for GHG intensity, which in turn can be 

well adapted to conduct the comparative assessment in a statistical manner.  

Fig. 3 schematically presents the stochastic LCA procedure, using a Monte Carlo simulation, 

to propagate use phase uncertainty into the global warming potential of alternative powertrains. The 

probabilistic analysis of the scenario space sets up a framework for performing a global (versus one-

factor-at-a-time) sensitivity analysis to find the key drivers of GHG impact. We use Spearman's partial 

rank correlation coefficient (PRCC) (Hamby 1994) for the sensitivity analysis. This method measures 

the sensitivity as the relative correlation between the output and each uncertain input parameter. The 

square of PRCCs are normalized and represented as the percentage of variation in GHG intensity 

accounted for by variability in each input. This allows us to rank the input parameters based on their 

level of contribution to the variance of GHG intensity. 
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Figure 3 goes here 

 

4 Results and discussion 

4.1 Uncertainty characterization and propagation 

The range of values and probability distributions used for the parameters that define use phase 

scenarios are presented in Table 1. Most of the values characterizing the trip profile are estimated from 

the data available through the National Household Travel Survey (Santos et al. 2011). For parameters 

without information on their underlying distribution, a uniform distribution is used within appropriate 

lower and upper bounds estimated from NHTS data. This is an attempt to uniformly explore the 

parameter space, in this situation where the true distributions are unknown due to a lack of data. The 

only exception is for long distance trips, where the choice of a lognormal distribution seems to be 

more pertinent since the trips with longer distance are less frequent. A lognormal distribution is 

estimated from the long distance trip data available in NHTS 2001 (Hu and Reuscher 2004). A 

probabilistic analysis using the Monte Carlo simulation has been performed based on the methodology 

described in Section 3 and depicted in Fig. 3 to propagate the uncertainty in scenario parameters into 

GHG use phase impacts. The Monte-Carlo simulations take into account the different nature of the 

variables in groups A to D in Table 1. The ranges chosen for the variables in Table 1 intend to 

represent the current situation in the U.S., reflecting the variation among different locations x1, 

different trip characteristics (x2 - x8), and among different individual behaviors, (x9 and x10), based on 

official surveys. The exceptions are x9, x12, and x13, for which a full range of 0 % to 100 % was 

considered reflecting all the possibilities that may occur. 

 Fuel economy of vehicles is another important source of uncertainty that propagates into the 

use phase GHG intensity (Cheah 2013). The uncertainty in the vehicles' fuel economy mostly stems 

from the variation in the technology and performance of vehicles. The Environmental Protection 

Agency's National Vehicle and Fuel Emissions database provides data on the rated fuel consumption 

for different vehicle types and different powertrains (EPA 2014). The year 2014 data for different 

types of midsize/compact vehicles are used to characterize the uncertainty in the fuel consumption for 

gasoline, diesel, and hybrid vehicles. Considering only midsize and compact class vehicles, there are 

two BEV80s, one PHEV40, and two PHEV10 in the EPA 2014 database. For the sake of 

comparability, one of the PHEV10 vehicles is excluded, since it is much larger (4.90 m) in length than 

the remaining PHEVs and BEV80s (ranging from 4.39 m to 4.50 m). In the same spirit, HEV, Gas and 

Diesel vehicles longer than 4.80m or shorter than 4.10m are excluded. Another filter applied concerns 

power, since there are several very high performance HEVs and Gas vehicles incomparable with the 

BEV and PHEVs. An upper limit of 150 kW is considered. 
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We used data on over 100 vehicles for the gasoline, eight for the diesel vehicles, and eight for 

the HEVs to estimate the variability of fuel economy. Uniform distributions are estimated to represent 

the variation, considering the minimum and maximum observed values. For the PHEV10, PHEV40 

and BEV80 powertrains, this information is only based on one or two types of vehicle and as such 

only the baseline values are considered. This information is summarized in Table A.1 (Electronic 

Supplementary Material). 

It is important to note the disparity in the number of vehicles used as data sources for fuel 

economy across the different categories (over 100 for gasoline vehicles, compared with eight for the 

diesel vehicles and HEVs, two for the BEV80s, and one each for the PHEV10 and PHEV40). While it 

would certainly be preferable to have a significant sample size for data sources in each category, our 

analysis is a realistic assessment of the current market. The introduction of a few vehicles in all 

categories except for gasoline vehicles would impact the results. 

 Fig. 4 shows the average values as well as 5th and 95th percentiles of life cycle GHG intensity 

in g CO2eq/km for different powertrains estimated using 20,000 Monte Carlo samples. It is important 

to note that these GHG intensity results include vehicle production, although the scenario variation 

only concerns the use phase. The gasoline powertrain shows the largest variation in the impact 

whereas the variation is lowest for the case of PHEV10, as can be seen in Fig. 4. 

Table 1 goes here 

Figure 4 goes here 

Figure 5 goes here 

 

4.2 Comparative assessment 

The results of an LCA are often represented in a comparative manner in order to allow analysis to 

comment on the superiority of different alternatives. When the LCA is conducted under uncertainty, 

the results are not deterministic values but rather a range of possible outcomes with their associated 

probabilities. As described in Section 3, we use Monte Carlo simulation to explore the variation in the 

scenario space and propagate this variation into GHG emissions. This provides the ingredients for 

conducting the comparative assessment in a statistical manner. 

One straightforward comparison can be made observing the GHG intensity cumulative 

distribution functions (CDF) for the different powertrains, depicted in Fig. 5. The comparison of CDFs 

shows that among all the powertrains, it is more likely that the BEV80s and the PHEV10 yield lower 

GHG intensity among all. This implies a first order stochastic dominance of the BEV80s and the 
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PHEV10 over the other powertrains (the cumulative probability of having less than any given GHG 

intensity level is higher for the BEV80s and the PHEV10 than for other powertrains).  

 A more detailed analysis can be made based on pair-wise comparisons. Let S be the scenario 

space and s∈S denote each element of the set defining a use phase scenario. Let GX(S) denote the 

random variable associated with the GHG intensity for powertrain X, where X can be any of the 

powertrains being compared, that is X∈PT= {Gas, Diesel, HEV, PHEV10, PHEV40, BEV80}. As a 

basic statistical indicator, one can look at the frequency of the cases that a product X has less GHG 

intensity than an alternative product Y among all the scenarios under study. This frequency is 

mathematically defined as 

 ��� = �����	
 < ����	
�, �, � ∈ �� (1) 

in which P(.) denotes the probability or the likelihood. Table 2 reports the likelihoods, pXY, in 

percentage terms for different pairs of powertrains. For instance, the first row indicates that the diesel 

vehicle had less GHG intensity than the gasoline vehicle in 66.9 % of the randomly generated cases. 

 As another measure of comparison, we also look at the likelihood that each powertrain has the 

lowest GHG impact among all the powertrains, that is 

 �� = �����	
 = min����	
|	� ∈ ���
. (2) 

These quantities are estimated from the results of Monte Carlo simulation and compared in Fig. 6. Gas 

vehicles, diesel vehicles, and the PHEV40 were never the best in terms of GHG impacts, and HEVs 

performed better than all other vehicles in only 0.9 % of the cases. Most of the times, the BEV80s had 

lower emissions. 

Table 2 goes here 

Figure 6 goes here 

Based on the results of comparative assessment demonstrated in Fig. 6, the BEV80s and 

PHEV10 are the two contenders with a likelihood of having the lowest emission of 68.9 % and 

30.2 %, respectively. In order to statistically quantify the difference between the two, we make use of 

a comparison indicator defined as the ratio of their associated GHG intensity as follows (Huijbregts et 

al. 2003): 

 �� = �� !"# �$% !&#⁄  (5) 

For each scenario, the BEV80s show lower GHG intensity than the PHEV10 if CI < 1. The 

probability density function of the random variable CI  (Fig. 7) is estimated from the results of Monte 

Carlo simulation. This information is used to quantify the relative difference in the performance of two 

powertrains along with the associated likelihood. For instance, the probability that the BEV80s have 

lower GHG intensity than the PHEV10 is defined as β = P(CI  < 1), which is estimated as β≈0.69 (Fig. 
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7). Furthermore, the results suggest that the GHG intensity of the BEV80s is almost surely at most 3/2 

of the competitor, the PHEV10; that is: P(CI  < 3/2) ≈ 1. On the contrary, the probability P(CI  < 2/3) is 

far from negligible (although P(CI  < 1/2) ≈ 0). 

Figure 7 goes here 

Looking into the scenarios under which the BEV80s have lower GHG intensity shows that these 

scenarios correspond to the situations where the vehicles are operating in low grid emission areas and 

the EVs are mostly charged during the night. Moreover, it is more likely that the BEV80s prevail over 

other powertrains for lower degrees of driving aggressiveness. This suggests that these parameters are 

the most critical factors when assessing whether the BEV80s have lower GHG intensity. Regarding 

the comparative assessment of BEVs, it should be pointed out that the range of this type of powertrain 

is often insufficient to allow the completion of the long distance trips. Thus it is worth noting that from 

this aspect, not all the vehicles that are analyzed are comparable.  

In the following section we present a global sensitivity analysis in order to systematically 

identify the contribution of different uncertain factors in the variation of resulting CO2 emissions for 

each vehicle type.  

 

4.3 Sensitivity analysis 

The use phase model for quantifying GHG intensity, as described in section 2.3, depends upon a 

variety of inputs, which influence the GHG impact of each powertrain to different extents. The 

influence of each parameter can be different for conventional and electric vehicles. It is important to 

identify the key drivers of impact in order to limit the burden and expense of data collection for a 

better characterization. Moreover, this information helps decision-makers to identify the area that 

causes the decision to change. To this end, we perform a sensitivity analysis to quantify the 

dependency of the impact to each uncertain parameter. As the measure of sensitivity we compute 

partial rank correlation between each input and the output, represented as the percentage of 

contribution to the variance of GHG intensity. The result of this sensitivity analysis is shown in Fig. 8. 

Driving aggressiveness is one of the top contributors to the GHG impact for all the powertrains. For 

the battery and plug-in hybrid electric vehicles (Fig. 8(a)) the charging location (grid) is one of most 

influential drivers of the uncertainty. For conventional and hybrid vehicles (Fig. 8(b)) other major 

factors include the fuel economy, percentage of city miles, and the average distance driven during the 

weekdays. The variation in the impact of the HEVs is almost entirely influenced by the uncertainty in 

the fuel consumption of these vehicles.  
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Figure 8 goes here 

It is important to note the final results presented in this study and the subsequent outcome of 

comparative assessment hinge on the underlying assumptions regarding the range of input parameters 

and the associated distributions. The degree to which these assumptions influence the decision 

depends upon their level of contributions to the final results. The global sensitivity analysis presented 

in this section identifies the critical areas to focus on for a more detailed characterization. 

 

5 Conclusions 

In this paper we present a comparative assessment of GHG impacts for conventional and electric 

vehicles, while accounting for uncertainty in the use phase. A stochastic analysis using a Monte Carlo 

simulation has been adopted to propagate the uncertainty in the use phase into the greenhouse gas 

emissions of different powertrains. This procedure allows us to characterize overall variation in GHGs 

and conduct the comparative assessment in a statistical manner. Moreover, we present a global 

sensitivity analysis in order to identify the key drivers of impact that could cause the outcome to 

change. 

The results suggest that the EVs currently available in the US market are preferable from a 

GHG standpoint only within certain contexts. Within the scenario space under study, the BEV80s are 

more likely to result in the lowest GHG impacts as compared to other powertrains. According to Table 

2, only in rare circumstances do the BEV80s show higher CO2 emissions than the PHEV40 (0.7 %), 

HEVs (7.4 %), gas vehicles (0.2 %), or diesel vehicles (0.5 %). Even acknowledging the use of 

uniform distribution and the absence of correlation modelling as limitations of this study, these are 

very robust conclusions that would not change (even if numbers would be different) if other statistical 

distributions were used. The close competitor is the PHEV10, which achieved lower GHG intensity in 

30.2 % of the scenarios. But Fig. 7 shows that it is almost certain that the GHG intensity of BEV80s is 

at most 50 % higher than that of the PHEV10, whereas the reverse is not true.  

If more precise results are sought, the sensitivity analysis provides clues on which parameters 

matter the most. GHG intensity of the PHEV40 and BEV80s depends heavily on the electricity grid 

used for charging the vehicles. Furthermore, driving aggressiveness can significantly affect the 

environmental footprint for both electric and conventional vehicles.  

Concerning the limitations of this study, there are other sources of uncertainty that are not 

addressed. In particular, the uncertainty in vehicle production is not accounted and average values are 

used for these quantities. The uncertainty in the fuel production (see Kocoloski et al. 2012), for 

instance) is not discussed here since this is outside the scope of our LCA model. Other sources of 

variation such as the weight of the occupants or the use of air conditioning were not considered either. 

There is also temporal variation due to the technology dynamics, in particular in the electrical grid 
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emission factors, which can influence the results for the future scenarios. The focus of this paper is, 

however, on addressing uncertainty already present in the current situation of use phase. While we 

were able to characterize some sources of uncertainty in the use phase, several sources were not 

included due to a lack of data such as weather conditions and the loads of equipment and devices 

within the vehicle. This study is also limited by lack of information on the correlations between input 

parameters, which deserves further investigation. Finally, the scope of the analysis is limited by the 

small numbers of EVs currently available in the US market. Introduction of a few new EVs could 

potentially have a significant impact on outcomes. 

 Despite these limitations, the results of this study can inform decision-makers of the overall 

variation in environmental footprint for different technologies and shed light on the scenarios under 

which the adoption of EVs currently available in the US market can be environmentally beneficial 

from a GHG emissions standpoint.  
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Figure captions 

 

Fig. 1  Study system boundary – the dotted lines indicate the life-cycle phases of vehicle included 

within the scope of this study 

 

Fig. 2  Variation in GHG emissions intensity of electricity grids in the U.S. The non-baseload 

emission rates are a portion of the system total mix, with a greater weight given to plants that operate 

during the peak demand for electricity 

 

Fig. 3  Monte Carlo simulations are used to propagate the uncertainty in the use phase into the life-

cycle GHG intensity. Statistical distributions of GHG intensity are estimated and used to conduct a 

probabilistic comparative assessment 

 

Fig. 4  Average values and uncertainty ranges for GHG intensity. The error bars represent the 5th and 

95th percentiles 

 

Fig. 5  Comparison of estimated cumulative distribution function of GHG intensity from vehicle 

production and use 

 

Fig. 6  The likelihood that each powertrain achieves the lowest emission among all powertrains, pX 

 

Fig. 7  Statistical characterization of the difference in the performance of PHEV10 and BEV80. The 

plot shows the cumulative distribution function of the comparison indicator, CI, as the measure of 

comparison 

 

Fig. 8  Sensitivity analysis: percentage of variation in GHG intensity accounted for by variability in 

each input parameter (see Table 1 and Table A.1 (Electronic Supplementary Material) for the 

descriptions of each parameter xi): (a) Vehicles charged or partially charged from the grid; (b) 

Vehicles not charged from the grid 
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Table 1  Description of scenario parameters and the associated distributions used in uncertainty analysis 

Scenario Parameters Min Max Distribution type 

A. Charging location    

• x1 : Grid emission (g CO2eq/KWh) 227.1  894.2 a Uniform (discrete) 

B. Trip profile    

• x2 : Number of trips per weekday 1  4 b Uniform (discrete) 

• x3 : Average weekday trip distance (km) 6.4  48 b Uniform 

• x4 : Number of trips per weekend days 0  3 b Uniform (discrete) 

• x5 : Average weekend trip distance (km) 6.4  48 b Uniform 

• x5 : Number of long-distance trips per year 0 4 Uniform (discrete) 

• x7 : Average distance of long trips (km) µ=425  σ=360 c Lognormal 

• x8 : Average trip congestion time for weekday 

commute (min) 7  20 d 

Uniform 

C. Driving profile    

• x9 : Percentage of distance driven in city (vs. 

highway) 0 % 100 % 

Uniform 

• x10 : Driving aggressiveness (USDDS scaling 

factor) 

1.0 1.6 e Uniform (discrete) 

D. Charging pattern    

• x11 : Charging habit night night\day   Binomial 

• x12 : Percentage of charging time during the day 0 % 100 % Uniform 

• x13 : Chance missing a charge (percentage) 0 % 100 % Uniform 

References: a eGRID (EPA 2012), b NHTS 2009 (Santos et al. 2012),  
c NHTS 2001 (Hu and Reuscher 2004), d (Schrank et al. 2011), e (Carlson et al. 2009) 
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Table 2  The likelihood that a powertrain, X, has lower emission than an alternative one, Y, pXY = P(GX<GY) 

X   \  Y Gas     

Diesel 66.9 Diesel    

HEV 97.1 97.1 HEV   

PHEV40 99.1 98.2 48.7 PHEV40  

PHEV10 100.0 100.0 98.4 99.0 PHEV10 

BEV80 99.8 99.5 92.6 99.3 69.0 

 

 


