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New Analysis and Results for the Frank-Wolfe Method

Robert M. Freund∗ Paul Grigas†

November 8, 2014

Abstract

We present new results for the Frank-Wolfe method (also known as the conditional gradient
method). We derive computational guarantees for arbitrary step-size sequences, which are then
applied to various step-size rules, including simple averaging and constant step-sizes. We also
develop step-size rules and computational guarantees that depend naturally on the warm-start
quality of the initial (and subsequent) iterates. Our results include computational guarantees
for both duality/bound gaps and the so-called FW gaps. Lastly, we present complexity bounds
in the presence of approximate computation of gradients and/or linear optimization subproblem
solutions.

1 Introduction

The use and analysis of first-order methods in convex optimization has gained a considerable
amount of attention in recent years. For many applications – such as LASSO regression, boost-
ing/classification, matrix completion, and other machine learning problems – first-order methods
are appealing for a number of reasons. First, these problems are often very high-dimensional and
thus, without any special structural knowledge, interior-point methods or other polynomial-time
methods are unappealing. Second, optimization models in many settings are dependent on data
that can be noisy or otherwise limited, and it is therefore not necessary or even sensible to re-
quire very high-accuracy solutions. Thus the weaker rates of convergence of first-order methods
are typically satisfactory for such applications. Finally, first-order methods are appealing in many
applications due to the lower computational burden per iteration, and the structural implications
thereof. Indeed, most first-order methods require, at each iteration, the computation of an ex-
act, approximate, or stochastic (sub)gradient and the computation of a solution to a particular
“simple” subproblem. These computations typically scale well with the dimension of the problem
and are often amenable to parallelization, distributed architectures, efficient management of sparse
data-structures, and the like.

Our interest herein is the Frank-Wolfe method, which is also referred to as the conditional
gradient method. The original Frank-Wolfe method, developed for smooth convex optimization on a
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polytope, dates back to Frank and Wolfe [9], and was generalized to the more general smooth convex
objective function over a bounded convex feasible region thereafter, see for example Demyanov and
Rubinov [3], Dunn and Harshbarger [8], Dunn [6], [7], also Levitin and Polyak [19] and Polyak [24].
More recently there has been renewed interest in the Frank-Wolfe method due to some of its
properties that we will shortly discuss, see for example Clarkson [1], Hazan [13], Jaggi [15], Giesen
et al. [11], and most recently Harchaoui et al. [12], Lan [18] and Temlyakov [25]. The Frank-Wolfe
method is premised on being able to easily solve (at each iteration) linear optimization problems
over the feasible region of interest. This is in contrast to other first-order methods, such as the
accelerated methods of Nesterov [21, 22], which are premised on being able to easily solve (at
each iteration) certain projection problems defined by a strongly convex prox function. In many
applications, solving a linear optimization subproblem is much simpler than solving the relevant
projection subproblem. Moreover, in many applications the solutions to the linear optimization
subproblems are often highly structured and exhibit particular sparsity and/or low-rank properties,
which the Frank-Wolfe method is able to take advantage of as follows. The Frank-Wolfe method
solves one subproblem at each iteration and produces a sequence of feasible solutions that are each
a convex combination of all previous subproblem solutions, for which one can derive an O( 1

k
) rate of

convergence for appropriately chosen step-sizes. Due to the structure of the subproblem solutions
and the fact that iterates are convex combinations of subproblem solutions, the feasible solutions
returned by the Frank-Wolfe method are also typically very highly-structured. For example, when
the feasible region is the unit simplex ∆n := {λ ∈ R

n : eT λ = 1, λ ≥ 0} and the linear optimization
oracle always returns an extreme point, then the Frank-Wolfe method has the following sparsity
property: the solution that the method produces at iteration k has at most k non-zero entries.
(This observation generalizes to the matrix optimization setting: if the feasible region is a ball
induced by the nuclear norm, then at iteration k the rank of the matrix produced by the method
is at most k.) In many applications, such structural properties are highly desirable, and in such
cases the Frank-Wolfe method may be more attractive than the faster accelerated methods, even
though the Frank-Wolfe method has a slower rate of convergence.

The first set of contributions in this paper concern computational guarantees for arbitrary step-
size sequences. In Section 2, we present a new complexity analysis of the Frank-Wolfe method
wherein we derive an exact functional dependence of the complexity bound at iteration k as a
function of the step-size sequence {ᾱk}. We derive bounds on the deviation from the optimal
objective function value (and on the duality gap in the presence of minmax structure), and on the
so-called FW gaps, which may be interpreted as specially structured duality gaps. In Section 3, we
use the technical theorems developed in Section 2 to derive computational guarantees for a variety
of simple step-size rules including the well-studied step-size rule ᾱk := 2

k+2 , simple averaging, and

constant step-sizes. Our analysis retains the well-known optimal O( 1
k
) rate (optimal for linear

optimization oracle-based methods [18], following also from [15]) when the step-size is either given

by the rule ᾱk := 2
k+2 or is determined by a line-search. We also derive an O

(

ln(k)
k

)

rate for both

the case when the step-size is given by simple averaging and in the case when the step-size is simply
a suitably chosen constant.

The second set of contributions in this paper concern “warm-start” step-size rules and associ-
ated computational guarantees that reflect the the quality of the given initial iterate. The O( 1

k
)

computational guarantees associated with the step-size sequence ᾱk := 2
k+2 are independent of

quality of the initial iterate. This is good if the objective function value of the initial iterate is very
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far from the optimal value, as the computational guarantee is independent of the poor quality of
the initial iterate. But if the objective function value of the initial iterate is moderately close to the
optimal value, one would want the Frank-Wolfe method, with an appropriate step-size sequence,
to have computational guarantees that reflect the closeness to optimality of the initial objective
function value. In Section 4, we introduce a modification of the ᾱk := 2

k+2 step-size rule that in-

corporates the quality of the initial iterate. Our new step-size rule maintains the O( 1
k
) complexity

bound but now the bound is enhanced by the quality of the initial iterate. We also introduce a
dynamic version of this warm start step-size rule, which dynamically incorporates all new bound
information at each iteration. For the dynamic step-size rule, we also derive a O( 1

k
) complexity

bound that depends naturally on all of the bound information obtained throughout the course of
the algorithm.

The third set of contributions concern computational guarantees in the presence of approximate
computation of gradients and linear optimization subproblem solutions. In Section 5, we first con-
sider a variation of the Frank-Wolfe method where the linear optimization subproblem at iteration k
is solved approximately to an (additive) absolute accuracy of δk. We show that, independent of the
choice of step-size sequence {ᾱk}, the Frank-Wolfe method does not suffer from an accumulation of
errors in the presence of approximate subproblem solutions. We extend the “technical” complexity
theorems of Section 2, which imply, for instance, that when an optimal step-size such as ᾱk := 2

k+2

is used and the {δk} accuracy sequence is a constant δ, then a solution with accuracy O( 1
k

+ δ) can
be achieved in k iterations. We next examine variations of the Frank-Wolfe method where exact
gradient computations are replaced with inexact gradient computations, under two different models
of inexact gradient computations. We show that all of the complexity results under the previously
examined approximate subproblem solution case (including, for instance, the non-accumulation of
errors) directly apply to the case where exact gradient computations are replaced with the δ-oracle
approximate gradient model introduced by d’Aspremont [2]. We also examine replacing exact gra-
dient computations with the (δ, L)-oracle model introduced by Devolder et al. [4]. In this case the
Frank-Wolfe method suffers from an accumulation of errors under essentially any step-size sequence
{ᾱk}. These results provide some insight into the inherent tradeoffs faced in choosing among several
first-order methods.

1.1 Notation

Let E be a finite-dimensional real vector space with dual vector space E∗. For a given s ∈ E∗

and a given λ ∈ E, let sTλ denote the evaluation of the linear functional s at λ. For a norm ‖ · ‖
on E, let B(c, r) = {λ ∈ E : ‖λ − c‖ ≤ r}. The dual norm ‖ · ‖∗ on the space E∗ is defined by
‖s‖∗ := max

λ∈B(0,1)
{sT λ} for a given s ∈ E∗. The notation “ṽ ← arg max

v∈S
{f(v)}” denotes assigning ṽ

to be any optimal solution of the problem max
v∈S
{f(v)}.
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2 The Frank-Wolfe Method

We recall the Frank-Wolfe method for convex optimization, see Frank and Wolfe [9], also Demyanov
and Rubinov [3], Levitin and Polyak [19], and Polyak [24], stated here for maximization problems:

max
λ

h(λ)

s.t. λ ∈ Q ,
(1)

where Q ⊂ E is convex and compact, and h(·) : Q → R is concave and differentiable on Q. Let
h∗ denote the optimal objective function value of (1). The basic Frank-Wolfe method is presented
in Method 1, where the main computational requirement at each iteration is to solve a linear
optimization problem over Q in step (2.) of the method. The step-size ᾱk in step (4.) could be
chosen by inexact or exact line-search, or by a pre-determined or dynamically determined step-size
sequence {ᾱk}. Also note that the version of the Frank-Wolfe method in Method 1 does not allow
a (full) step-size ᾱk = 1, the reasons for which will become apparent below.

Method 1 Frank-Wolfe Method for maximizing h(λ)

Initialize at λ1 ∈ Q, (optional) initial upper bound B0, k ← 1 .
At iteration k:
1. Compute ∇h(λk) .
2. Compute λ̃k ← arg max

λ∈Q
{h(λk) +∇h(λk)

T (λ− λk)} .

Bw
k ← h(λk) +∇h(λk)T (λ̃k − λk) .

Gk ← ∇h(λk)T (λ̃k − λk) .
3. (Optional: compute other upper bound Bo

k), update best bound Bk ← min{Bk−1, B
w
k , Bo

k} .
4. Set λk+1 ← λk + ᾱk(λ̃k − λk), where ᾱk ∈ [0, 1) .

As a consequence of solving the linear optimization problem in step (2.) of the method, one
conveniently obtains the following upper bound on the optimal value h∗ of (1):

Bw
k := h(λk) +∇h(λk)

T (λ̃k − λk) , (2)

and it follows from the fact that the linearization of h(·) at λk dominates h(·) that Bw
k is a valid

upper bound on h∗. We also study the quantity Gk :

Gk := Bw
k − h(λk) = ∇h(λk)

T (λ̃k − λk) , (3)

which we refer to as the “FW gap” at iteration k for convenience. Note that Gk ≥ h∗ − h(λk) ≥ 0.
The use of the upper bound Bw

k dates to the original 1956 paper of Frank and Wolfe [9]. As early
as 1970, Demyanov and Rubinov [3] used the FW gap quantities extensively in their convergence
proofs of the Frank-Wolfe method, and perhaps this quantity was used even earlier. In certain
contexts, Gk is an important quantity by itself, see for example Hearn [14], Khachiyan [16] and
Giesen et al. [11]. Indeed, Hearn [14] studies basic properties of the FW gaps independent of their
use in any algorithmic schemes. For results concerning upper bound guarantees on Gk for specific
and general problems see Khachiyan [16], Clarkson [1], Hazan [13], Jaggi [15], Giesen et al. [11],
and Harchaoui et al. [12]. Both Bw

k and Gk are computed directly from the solution of the linear
optimization problem in step (2.) and are recorded therein for convenience.
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In some of our analysis of the Frank-Wolfe method, the computational guarantees will depend
on the quality of upper bounds on h∗. In addition to the Wolfe bound Bw

k , step (3.) allows for an
“optional other upper bound Bo

k ” that also might be computed at iteration k. Sometimes there is
structural knowledge of an upper bound as a consequence of a dual problem associated with (1),
as when h(·) is conveyed with minmax structure, namely:

h(λ) = min
x∈P

φ(x, λ) , (4)

where P is a closed convex set and φ(·, ·) : P × Q → R is a continuous function that is convex in
the first variable x and concave in the second variable λ. In this case define the convex function
f(·) : P → R given by f(x) := max

λ∈Q
φ(x, λ) and consider the following duality paired problems:

(Primal): min
x∈P

f(x) and (Dual): max
λ∈Q

h(λ) , (5)

where the dual problem corresponds to our problem of interest (1). Weak duality holds, namely
h(λ) ≤ h∗ ≤ f(x) for all x ∈ P, λ ∈ Q. At any iterate λk ∈ Q of the Frank-Wolfe method one can
construct a “minmax” upper bound on h∗ by considering the variable x in that structure:

Bm
k := f(xk) := max

λ∈Q
{φ(xk, λ)} where xk ∈ arg min

x∈P
{φ(x, λk)} , (6)

and it follows from weak duality that Bo
k := Bm

k is a valid upper bound for all k. Notice that xk

defined above is the “optimal response” to λk in a minmax sense and hence is a natural choice
of duality-paired variable associated with the variable λk. Under certain regularity conditions, for
instance when h(·) is globally differentiable on E, one can show that Bm

k is at least as tight a bound
as Wolfe’s bound, namely Bm

k ≤ Bw
k for all k (see Proposition A.1), and therefore the FW gap Gk

conveniently bounds this minmax duality gap: Bm
k − h(λk) ≤ Bw

k − h(λk) = Gk.

(Indeed, in the minmax setting notice that the optimal response xk in (6) is a function of the
current iterate λk and hence f(xk)− h(λk) = Bm

k − h(λk) is not just any duality gap but rather is
determined completely by the current iterate λk. This special feature of the duality gap Bm

k −h(λk)
is exploited in the application of the Frank-Wolfe method to rounding of polytopes [16], parametric
optimization on the spectrahedron [11], and to regularized regression [10] (and perhaps elsewhere
as well), where bounds on the FW gap Gk are used to bound Bm

k − h(λk) directly.)

We also mention that in some applications there might be exact knowledge of the optimal value
h∗, such as in certain linear regression and/or machine learning applications where one knows a
priori that the optimal value of the loss function is zero. In these situations one can set Bo

k ← h∗.

Towards stating and proving complexity bounds for the Frank-Wolfe method, we use the fol-
lowing curvature constant Ch,Q, which is defined to be the minimal value of C satisfying:

h(λ + α(λ̄− λ)) ≥ h(λ) +∇h(λ)T (α(λ̄− λ))− 1
2Cα2 for all λ, λ̄ ∈ Q and all α ∈ [0, 1] . (7)

(This notion of curvature was introduced by Clarkson [1] and extended in Jaggi [15].) For any
choice of norm ‖·‖ on E, let DiamQ denote the diameter of Q measured with the norm ‖·‖, namely
DiamQ := max

λ,λ̄∈Q
{‖λ − λ̄‖} and let Lh,Q be the Lipschitz constant for ∇h(·) on Q, namely Lh,Q is

the smallest constant L for which it holds that:

‖∇h(λ) −∇h(λ̄)‖∗ ≤ L‖λ− λ̄‖ for all λ, λ̄ ∈ Q .
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It is straightforward to show that Ch,Q is bounded above by the more classical metrics DiamQ and
Lh,Q, namely

Ch,Q ≤ Lh,Q(DiamQ)2 , (8)

see [15]; we present a short proof of this inequality in Proposition A.2 for completeness. In contrast
to other (proximal) first-order methods, the Frank-Wolfe method does not depend on a choice of
norm. The norm invariant definition of Ch,Q and the fact that (8) holds for any norm are therefore
particularly appealing properties of Ch,Q as a behavioral measure for the Frank-Wolfe method.

As a prelude to stating our main technical results, we define the following two auxiliary se-
quences, where αk and βk are functions of the first k step-size sequence values, ᾱ1, . . . , ᾱk, from
the Frank-Wolfe method:

βk =
1

k−1
∏

j=1
(1− ᾱj)

, αk =
βkᾱk

1− ᾱk
, k ≥ 1 . (9)

(Here and in what follows we use the conventions:
∏0

j=1 · = 1 and
∑0

i=1 · = 0 .)

The following two theorems are our main technical constructs that will be used to develop the
results herein. The first theorem concerns optimality gap bounds.

Theorem 2.1. Consider the iterate sequences of the Frank-Wolfe method (Method 1) {λk} and
{λ̃k} and the sequence of upper bounds {Bk} on h∗, using the step-size sequence {ᾱk}. For the
auxiliary sequences {αk} and {βk} given by (9), and for any k ≥ 0, the following inequality holds:

Bk − h(λk+1) ≤
Bk − h(λ1)

βk+1
+

1
2Ch,Q

∑k
i=1

α2
i

βi+1

βk+1
. (10)

(The summation expression in the rightmost term above appears also in the bound given for the
dual averaging method of Nesterov [23]. Indeed, this is no coincidence as the sequences {αk} and
{βk} given by (9) arise precisely from a connection between the Frank-Wolfe method and the dual
averaging method. If we define sk := λ0 +

∑k−1
i=0 αiλ̃i, then one can interpret the sequence {sk}

as the sequence of dual variables in a particular instance of the dual averaging method. This
connection underlies the proof of Theorem 2.1, and the careful reader will notice the similarities
between the proof of Theorem 2.1 and the proof of Theorem 1 in [23]. For this reason we will
henceforth refer to the sequences (9) as the “dual averages” sequences associated with {ᾱk}.)

The second theorem concerns the FW gap values Gk from step (2.) in particular.

Theorem 2.2. Consider the iterate sequences of the Frank-Wolfe method (Method 1) {λk} and
{λ̃k}, the sequence of upper bounds {Bk} on h∗, and the sequence of FW gaps {Gk} from step (2.),
using the step-size sequence {ᾱk}. For the auxiliary sequences {αk} and {βk} given by (9), and for
any ℓ ≥ 0 and k ≥ ℓ + 1, the following inequality holds:

min
i∈{ℓ+1,...,k}

Gi ≤
1

∑k
i=ℓ+1 ᾱi





Bℓ − h(λ1)

βℓ+1
+

1
2Ch,Q

∑ℓ
i=1

α2
i

βi+1

βℓ+1



+
1
2Ch,Q

∑k
i=ℓ+1 ᾱ2

i
∑k

i=ℓ+1 ᾱi

. (11)
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Theorems 2.1 and 2.2 can be applied to yield specific complexity results for any specific step-size
sequence {ᾱk} (satisfying the mild assumption that ᾱk < 1) through the use of the implied {αk}
and {βk} dual averages sequences. This is shown for several useful step-size sequences in the next
section.

Proof of Theorem 2.1: We will show the slightly more general result for k ≥ 0:

min{B,Bk} − h(λk+1) ≤
B − h(λ1)

βk+1
+

1
2Ch,Q

∑k
i=1

α2
i

βi+1

βk+1
for any B , (12)

from which (10) follows by substituting B = Bk above.

For k = 0 the result follows trivially since β1 = 1 and the summation term on the right side
of (12) is zero by the conventions for null products and summations stated earlier. For k ≥ 1, we
begin by observing that the following equalities hold for the dual averages sequences (9):

βi+1 − βi = ᾱiβi+1 = αi and βi+1ᾱ
2
i =

α2
i

βi+1
for i ≥ 1 , (13)

and

1 +
k
∑

i=1

αi = βk+1 for k ≥ 1 . (14)

We then have for i ≥ 1:

βi+1h(λi+1) ≥ βi+1

[

h(λi) +∇h(λi)
T (λ̃i − λi)ᾱi −

1

2
ᾱ2

i Ch,Q

]

= βih(λi) + (βi+1 − βi)h(λi) + βi+1ᾱi∇h(λi)
T (λ̃i − λi)−

1

2
βi+1ᾱ

2
i Ch,Q

= βih(λi) + αih(λi) + αi∇h(λi)
T (λ̃i − λi)−

1

2

α2
i

βi+1
Ch,Q

= βih(λi) + αi

[

h(λi) +∇h(λi)
T (λ̃i − λi)

]

− 1

2

α2
i

βi+1
Ch,Q

= βih(λi) + αiB
w
i −

1

2

α2
i

βi+1
Ch,Q .

The inequality in the first line above follows from the definition of Ch,Q in (7) and λi+1 − λi =
ᾱi(λ̃i − λi). The second equality above uses the identities (13), and the fourth equality uses the
definition of the Wolfe upper bound (2). Rearranging and summing the above over i, it follows
that for any scalar B:

B +
k
∑

i=1

αiB
w
i ≤ B + βk+1h(λk+1)− β1h(λ1) +

1

2

k
∑

i=1

α2
i

βi+1
Ch,Q . (15)
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Therefore

min{B,Bk}βk+1 = min{B,Bk}
(

1 +

k
∑

i=1

αi

)

≤ B +
k
∑

i=1

αiB
w
i

≤ B + βk+1h(λk+1)− h(λ1) +
1

2

k
∑

i=1

α2
i

βi+1
Ch,Q ,

where the first equality above uses identity (14), the first inequality uses the fact that Bk ≤ Bw
i

for i ≤ k, and the second inequality uses (15) and the fact that β1 = 1. The result then follows by
dividing by βk+1 and rearranging terms.

Proof of Theorem 2.2: For i ≥ 1 we have:

h(λi+1) ≥ h(λi) +∇h(λi)
T (λ̃i − λi)ᾱi − 1

2 ᾱ2
i Ch,Q

= h(λi) + ᾱiGi − 1
2 ᾱ2

i Ch,Q ,

(16)

where the inequality follows from the definition of the curvature constant in (7), and the equality
follows from the definition of the FW gap in (3). Summing the above over i ∈ {ℓ + 1, . . . , k} and
rearranging yields:

∑k
i=ℓ+1 ᾱiGi ≤ h(λk+1)− h(λℓ+1) +

∑k
i=ℓ+1

1
2 ᾱ2

i Ch,Q . (17)

Combining (17) with Theorem 2.1 we obtain:

k
∑

i=ℓ+1

ᾱiGi ≤ h(λk+1)−Bℓ +
Bℓ − h(λ1)

βℓ+1
+

1
2Ch,Q

∑ℓ
i=1

α2
i

βi+1

βℓ+1
+

k
∑

i=ℓ+1

1

2
ᾱ2

i Ch,Q ,

and since Bℓ ≥ h∗ ≥ h(λk+1) we obtain:

(

min
i∈{ℓ+1,...,k}

Gi

)

(

k
∑

i=ℓ+1

ᾱi

)

≤
k
∑

i=ℓ+1

ᾱiGi ≤
Bℓ − h(λ1)

βℓ+1
+

1
2Ch,Q

∑ℓ
i=1

α2
i

βi+1

βℓ+1
+

k
∑

i=ℓ+1

1

2
ᾱ2

i Ch,Q ,

and dividing by
∑k

i=ℓ+1 ᾱi yields the result.

3 Computational Guarantees for Specific Step-size Sequences

Herein we use Theorems 2.1 and 2.2 to derive computational guarantees for a variety of specific
step-size sequences.

It will be useful to consider a version of the Frank-Wolfe method wherein there is a single “pre-
start” step. In this case we are given some λ0 ∈ Q and some upper bound B−1 on h∗ (one can use
B−1 = +∞ if no information is available) and we proceed like any other iteration except that in

8



Procedure 2 Pre-start Step of Frank-Wolfe Method given λ0 ∈ Q and (optional) upper bound
B−1

1. Compute ∇h(λ0) .
2. Compute λ̃0 ← arg max

λ∈Q
{h(λ0) +∇h(λ0)

T (λ− λ0)} .

Bw
0 ← h(λ0) +∇h(λ0)

T (λ̃0 − λ0) .
G0 ← ∇h(λ0)

T (λ̃0 − λ0) .
3. (Optional: compute other upper bound Bo

0), update best bound B0 ← min{B−1, B
w
0 , Bo

0} .
4. Set λ1 ← λ̃0 .

step (4.) we set λ1 ← λ̃0, which is equivalent to setting ᾱ0 := 1. This is shown formally in the
Pre-start Procedure 2.

Before developing computational guarantees for specific step-sizes, we present a property of the
pre-start step (Procedure 2) that has implications for such computational guarantees.

Proposition 3.1. Let λ1 and B0 be computed by the pre-start step Procedure 2. Then B0−h(λ1) ≤
1
2Ch,Q.

Proof. We have λ1 = λ̃0 and B0 ≤ Bw
0 , whereby from the definition of Ch,Q using α = 1 we have:

h(λ1) = h(λ̃0) ≥ h(λ0) +∇h(λ0)
T (λ̃0 − λ0)− 1

2Ch,Q = Bw
0 − 1

2Ch,Q ≥ B0 − 1
2Ch,Q ,

and the result follows by rearranging terms.

3.1 A Well-studied Step-size Sequence

Suppose we initiate the Frank-Wolfe method with the pre-start step Procedure 2 from a given value
λ0 ∈ Q (which by definition assigns the step-size ᾱ0 = 1 as discussed earlier), and then use the
step-size ᾱi = 2/(i + 2) for i ≥ 1. This can be written equivalently as:

ᾱi =
2

i + 2
for i ≥ 0 . (18)

Computational guarantees for this sequence appeared in Clarkson [1], Hazan [13] (with a corrected
proof in Giesen et al. [11]), and Jaggi [15]. In unpublished correspondence with the first author in
2007, Nemirovski [20] presented a short inductive proof of convergence of the Frank-Wolfe method
using this step-size rule.

We use the phrase “bound gap” to generically refer to the difference between an upper bound B
on h∗ and the value h(λ), namely B−h(λ). The following result describes guarantees on the bound
gap Bk − h(λk+1) and the FW gap Gk using the step-size sequence (18), that are applications of
Theorems 2.1 and 2.2, and that are very minor improvements of existing results as discussed below.

Bound 3.1. Under the step-size sequence (18), the following inequalities hold for all k ≥ 1:

Bk − h(λk+1) ≤
2Ch,Q

k + 4
(19)

and

min
i∈{1,...,k}

Gi ≤
4.5Ch,Q

k
. (20)
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The bound (19) is a very minor improvement over that in Hazan [13], Giesen et al. [11], Jaggi [15],
and Harchaoui et al. [12], as the denominator is additively larger by 1 (after accounting for the
pre-start step and the different indexing conventions). The bound (20) is a modification of the
original bound in Jaggi [15], and is also a slight improvement of the bound in Harchaoui et al. [12]
inasmuch as the denominator is additively larger by 1 and the bound is valid for all k ≥ 1.

Proof of Bound 3.1: Using (18) it is easy to show that the dual averages sequences (9) satisfy

βk = k(k+1)
2 and αk = k + 1 for k ≥ 1. Utilizing Theorem 2.1, we have for k ≥ 1:

Bk − h(λk+1) ≤
Bk − h(λ1)

βk+1
+

1
2Ch,Q

∑k
i=1

α2
i

βi+1

βk+1

≤ B0 − h(λ1)

βk+1
+

1
2Ch,Q

∑k
i=1

α2
i

βi+1

βk+1

≤
1
2Ch,Q

βk+1
+

1
2Ch,Q

∑k
i=1

α2
i

βi+1

βk+1

=
Ch,Q

(k + 1)(k + 2)

[

1 +
k
∑

i=1

2(i + 1)2

(i + 1)(i + 2)

]

=
Ch,Q

(k + 1)(k + 2)

[

k
∑

i=0

2(i + 1)

(i + 2)

]

≤ 2Ch,Q

k + 4
,

where the second inequality uses Bk ≤ B0, the third inequality uses Proposition 3.1, the first equal-
ity substitutes the dual averages sequence values, and the final inequality follows from Proposition
A.3. This proves (19).

To prove (20) we proceed as follows. First apply Theorem 2.2 with ℓ = 0 and k = 1 to obtain:

G1 ≤
1

ᾱ1
[B0 − h(λ1)] +

1

2
Ch,Qᾱ1 ≤

1

2
Ch,Q

[

1

ᾱ1
+ ᾱ1

]

=
1

2
Ch,Q

[

3

2
+

2

3

]

=
13

12
Ch,Q ,

where the second inequality uses Proposition 3.1. Since 13
12 ≤ 4.5 and 13

12 ≤ 4.5
2 , this proves (20) for

k = 1, 2. Assume now that k ≥ 3. Let ℓ = ⌈k2⌉ − 2 so that ℓ ≥ 0. We have:

k
∑

i=ℓ+1

ᾱi = 2

k
∑

i=ℓ+1

1

i + 2
= 2

k+2
∑

i=ℓ+3

1

i
≥ 2 ln

(

k + 3

ℓ + 3

)

≥ 2 ln

(

k + 3
k
2 + 1.5

)

= 2 ln(2) , (21)

where the first inequality uses Proposition A.5 and the second inequality uses ⌈k2⌉ ≤ k
2 + 1

2 . We
also have:

k
∑

i=ℓ+1

ᾱ2
i = 4

k
∑

i=ℓ+1

1

(i + 2)2
= 4

k+2
∑

i=ℓ+3

1

i2
≤ 4(k − ℓ)

(ℓ + 2)(k + 2)
≤ 4

(

k
2 + 2

)

k
2 (k + 2)

=
4(k + 4)

k(k + 2)
, (22)
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where the first inequality uses Proposition A.5 and the second inequality uses ⌈k2⌉ ≥ k
2 . Applying

Theorem 2.2 and using (21) and (22) yields:

min
i∈{1,...,k}

Gi ≤
1

2 ln(2)





Bℓ − h(λ1)

βℓ+1
+

1
2Ch,Q

∑ℓ
i=1

α2
i

βi+1

βℓ+1
+

2Ch,Q(k + 4)

k(k + 2)





≤ 1

2 ln(2)

[

2Ch,Q

ℓ + 4
+

2Ch,Q(k + 4)

k(k + 2)

]

≤ 2Ch,Q

2 ln(2)

[

2

k + 4
+

k + 4

k(k + 2)

]

=
2Ch,Q

2 ln(2)

[

3k2 + 12k + 16

(k + 4)(k + 2)k

]

≤ 2Ch,Q

2 ln(2)

(

3

k

)

≤ 4.5Ch,Q

k
,

where the second inequality uses the chain of inequalities used to prove (19), the third inequality
uses ℓ + 4 ≥ k

2 + 2, and the fourth inequality uses k2 + 4k + 16
3 ≤ k2 + 6k + 8 = (k + 4)(k + 2).

3.2 Simple Averaging

Consider the following step-size sequence:

ᾱi =
1

i + 1
for i ≥ 0 , (23)

where, as with the step-size sequence (18), we write ᾱ0 = 1 to indicate the use of the pre-start step
Procedure 2. It follows from a simple inductive argument that, under the step-size sequence (23),
λk+1 is the simple average of λ̃0, λ̃1, . . . , λ̃k, i.e., we have

λk+1 =
1

k + 1

k
∑

i=0

λ̃i for all k ≥ 0 .

Bound 3.2. Under the step-size sequence (23), the following inequality holds for all k ≥ 0:

Bk − h(λk+1) ≤
1
2Ch,Q(1 + ln(k + 1))

k + 1
, (24)

and the following inequality holds for all k ≥ 2:

min
i∈{1,...,k}

Gi ≤
3
4Ch,Q (2.3 + 2 ln(k))

k − 1
. (25)

Proof of Bound 3.2: Using (23) it is easy to show that the dual averages sequences (9) are given
by βk = k and αk = 1 for k ≥ 1. Utilizing Theorem 2.1 and Proposition 3.1, we have for k ≥ 1:

Bk − h(λk+1) ≤
1
2Ch,Q

βk+1
+

1
2Ch,Q

∑k
i=1

α2
i

βi+1

βk+1

=
1
2Ch,Q

k + 1

[

1 +
k
∑

i=1

1

i + 1

]

≤
1
2Ch,Q

k + 1
[1 + ln(k + 1)] ,
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where the first equality substitutes the dual averages sequence values and the second inequality
uses Proposition A.5. This proves (24). To prove (25), we proceed as follows. Let ℓ = ⌊k2⌋ − 1,
whereby ℓ ≥ 0 since k ≥ 2. We have:

k
∑

i=ℓ+1

ᾱi =

k
∑

i=ℓ+1

1

i + 1
=

k+1
∑

i=ℓ+2

1

i
≥ ln

(

k + 2

ℓ + 2

)

≥ ln

(

k + 2
k
2 + 1

)

= ln(2) , (26)

where the first inequality uses Proposition A.5 and the second inequality uses ℓ ≤ k
2 − 1. We also

have:

k
∑

i=ℓ+1

ᾱ2
i =

k
∑

i=ℓ+1

1

(i + 1)2
=

k+1
∑

i=ℓ+2

1

i2
≤ k − ℓ

(ℓ + 1)(k + 1)
≤

k
2 + 1.5

(k
2 − 1

2)(k + 1)
=

k + 3

(k − 1)(k + 1)
, (27)

where the first inequality uses Proposition A.5 and the second inequality uses ℓ ≥ k
2−1.5. Applying

Theorem 2.2 and using (26) and (27) yields:

min
i∈{1,...,k}

Gi ≤
1

ln(2)





Bℓ − h(λ1)

βℓ+1
+

1
2Ch,Q

∑ℓ
i=1

α2
i

βi+1

βℓ+1
+

1
2Ch,Q(k + 3)

(k − 1)(k + 1)





≤ 1

ln(2)

[

1
2Ch,Q(1 + ln(ℓ + 1))

ℓ + 1
+

1
2Ch,Q(k + 3)

(k − 1)(k + 1)

]

≤
1
2Ch,Q

ln(2)

[

1 + ln(k
2 )

k
2 − 1

2

+
k + 3

(k − 1)(k + 1)

]

≤
1
2Ch,Q

ln(2)

[

2 + 2 ln(k)− 2 ln(2)

k − 1
+

5
3

k − 1

]

≤
3
4Ch,Q (2.3 + 2 ln(k))

k − 1
,

where the second inequality uses the bound that proves (24), the third inequality uses k
2 − 1.5 ≤

ℓ ≤ k
2 − 1 and the fourth inequality uses k+3

k+1 ≤ 5
3 for k ≥ 2.

3.3 Constant Step-size

Given ᾱ ∈ (0, 1), consider using the following constant step-size rule:

ᾱi = ᾱ for i ≥ 1 . (28)

This step-size rule arises in the analysis of the Incremental Forward Stagewise Regression algorithm
(FSε), see [10], and perhaps elsewhere as well.

Bound 3.3. Under the step-size sequence (28), the following inequality holds for all k ≥ 1:

Bk − h(λk+1) ≤ (Bk − h(λ1)) (1− ᾱ)k + 1
2Ch,Q

[

ᾱ− ᾱ(1− ᾱ)k
]

. (29)

If the pre-start step Procedure 2 is used, then:

Bk − h(λk+1) ≤ 1
2Ch,Q

[

(1− ᾱ)k+1 + ᾱ
]

. (30)
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If we decide a priori to run the Frank-Wolfe method for k iterations after the pre-start step Pro-
cedure 2, then we can optimize the bound (30) with respect to ᾱ. The optimized value of ᾱ in the
bound (30) is easily derived to be:

ᾱ∗ = 1− 1
k
√

k + 1
. (31)

With ᾱ determined by (31), we obtain a simplified bound from (30) and also a guarantee for the
FW gap sequence {Gk} if the method is continued with the same constant step-size (31) for an
additional k + 1 iterations.

Bound 3.4. If we use the pre-start step Procedure 2 and the constant step-size sequence (31) for
all iterations, then after k iterations the following inequality holds:

Bk − h(λk+1) ≤
1
2Ch,Q (1 + ln(k + 1))

k
. (32)

Furthermore, after 2k + 1 iterations the following inequality holds:

min
i∈{1,...,2k+1}

Gi ≤
1
2Ch,Q (1 + 2 ln(k + 1))

k
(33)

It is curious to note that the bounds (24) and (32) are almost identical, although (32) requires
fixing a priori the number of iterations k.

Proof of Bound 3.3: Under the step-size rule (28) it is straightforward to show that the dual
averages sequences (9) are for i ≥ 1:

βi = (1− ᾱ)−k+1 and αi = ᾱ(1− ᾱ)−k ,

whereby
k
∑

i=1

α2
i

βi+1
=

k
∑

i=1

ᾱ2(1− ᾱ)−i = ᾱ2

( 1
(1−ᾱ)k − 1

ᾱ

)

= ᾱ
[

(1− ᾱ)−k − 1
]

.

It therefore follows from Theorem 2.1 that:

Bk − h(λk+1) ≤ Bk−h(λ1)
βk+1

+
1
2
Ch,Q

∑k
i=1

α2
i

βi+1

βk+1

= (Bk − h(λ1)) (1− ᾱ)k +
(

Ch,Q

2

)

ᾱ
[

(1− ᾱ)−k − 1
]

(1− ᾱ)k

= (Bk − h(λ1)) (1− ᾱ)k +
(

Ch,Q

2

)

[

ᾱ− ᾱ(1− ᾱ)k
]

,

(34)

which proves (29). If the pre-start step Procedure 2 is used, then using Proposition 3.1 it follows
that Bk − h(λ1) ≤ B0 − h(λ1) ≤ 1

2Ch,Q, whereby from (29) we obtain:

Bk − h(λk+1) ≤
1

2
Ch,Q(1− ᾱ)k +

(

Ch,Q

2

)

[

ᾱ− ᾱ(1− ᾱ)k
]

=
1

2
Ch,Q

[

(1− ᾱ)k+1 + ᾱ
]

,
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completing the proof.

Proof of Bound 3.4: Substituting the step-size (31) into (30) we obtain:

Bk − h(λk+1) ≤
1

2
Ch,Q

[

(

1
k
√

k + 1

)k+1

+ 1− 1
k
√

k + 1

]

≤ 1

2
Ch,Q

[

(

1
k
√

k + 1

)k+1

+
ln(k + 1)

k

]

≤ 1

2
Ch,Q

[

1

k + 1
+

ln(k + 1)

k

]

≤ 1

2
Ch,Q

[

1

k
+

ln(k + 1)

k

]

,

where the second inequality follows from (i) of Proposition A.4. This proves (32). To prove (33),
notice that inequality (34) together with the subsequent chain of inequalities in the proofs of (29),
(30), and (32) show that:





Bk − h(λ1)

βk+1
+

1
2Ch,Q

∑k
i=1

α2
i

βi+1

βk+1



 ≤ 1

2
Ch,Q

(

1 + ln(k + 1)

k

)

. (35)

Using (35) and the substitution
∑2k+1

i=k+1 ᾱi = (k + 1)ᾱ and
∑2k+1

i=k+1 ᾱ2
i = (k + 1)ᾱ2 in Theorem 2.2

yields:

min
i∈{1,...,2k+1}

Gi ≤
1

(k + 1)ᾱ

(

1
2Ch,Q(1 + ln(k + 1))

k

)

+
1
2Ch,Q(k + 1)ᾱ2

(k + 1)ᾱ

≤ 1
2Ch,Q

(

1 + ln(k + 1)

k

)

+ 1
2Ch,Q · ᾱ

≤
1
2Ch,Q (1 + 2 ln(k + 1))

k
,

where the second inequality uses (ii) of Proposition A.4 and the third inequality uses (i) of Propo-
sition A.4.

3.4 Extensions using Line-Searches

The original method of Frank and Wolfe [9] utilized an exact line-search to determine the next
iterate λk+1 by assigning α̂k ← arg max

α∈[0,1]
{h(λk + α(λ̃k − λk))} and λk+1 ← λk + α̂k(λ̃k − λk).

When h(·) is a quadratic function and the dimension of the space E of variables λ is not huge,
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an exact line-search is easy to compute analytically. It is a straightforward extension of Theorem
2.1 to show that if an exact line-search is utilized at every iteration, then the bound (10) holds
for any choice of step-size sequence {ᾱk}, and not just the sequence {α̂k} of line-search step-sizes.
In particular, the O( 1

k
) computational guarantee (19) holds, as does (24) and (29), as well as the

bound (38) to be developed in Section 4. This observation generalizes as follows. At iteration k of
the Frank-Wolfe method, let Ak ⊆ [0, 1) be a closed set of potential step-sizes and suppose we select
the next iterate λk+1 using the exact line-search assignment α̂k ← arg max

α∈Ak

{h(λk + α(λ̃k − λk))}

and λk+1 ← λk + α̂k(λ̃k − λk). Then after k iterations of the Frank-Wolfe method, we can apply
the bound (10) for any choice of step-size sequence {ᾱi}ki=1 in the cross-product A1 × · · · ×Ak.

For inexact line-search methods, Dunn [7] analyzes versions of the Frank-Wolfe method with
an Armijo line-search and also a Goldstein line-search rule. In addition to convergence and com-
putational guarantees for convex problems, [7] also contains results for the case when the objective
function is non-concave. And in prior work, Dunn [6] presents convergence and computational guar-
antees for the case when the step-size ᾱk is determined from the structure of the lower quadratic
approximation of h(·) in (7), if the curvature constant Ch,Q is known or upper-bounded. And in
the case when no prior information about Ch,Q is given, [6] has a clever recursion for determining
a step-size that still accounts for the lower quadratic approximation without estimation of Ch,Q.

4 Computational Guarantees for a Warm Start

In the framework of this study, the well-studied step-size sequence (18) and associated compu-
tational guarantees (Bound 3.1) corresponds to running the Frank-Wolfe method initiated with
the pre-start step from the initial point λ0. One feature of the main computational guarantees
as presented in the bounds (19) and (20) is their insensitivity to the quality of the initial point
λ0. This is good if h(λ0) is very far from the optimal value h∗, as the poor quality of the initial
point does not affect the computational guarantee. But if h(λ0) is moderately close to the optimal
value, one would want the Frank-Wolfe method, with an appropriate step-size sequence, to have
computational guarantees that reflect the closeness to optimality of the initial objective function
value h(λ0). Let us see how this can be done.

We will consider starting the Frank-Wolfe method without the pre-start step, started at an initial
point λ1, and let C1 be a given estimate of the curvature constant Ch,Q. Consider the following
step-size sequence:

ᾱi =
2

2C1
B1−h(λ1) + i + 1

for i ≥ 1 . (36)

Comparing (36) to the well-studied step-size rule (18), one can think of the above step-size rule as
acting “as if” the Frank-Wolfe method had run for 2C1

B1−h(λ1)
iterations before arriving at λ1. The

next result presents a computational guarantee associated with this step-size rule.

Bound 4.1. Under the step-size sequence (36), the following inequality holds for all k ≥ 1:

Bk − h(λk+1) ≤
2max{C1, Ch,Q}

2C1
B1−h(λ1) + k

. (37)
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Notice that in the case when C1 = Ch,Q, the bound in (37) simplifies conveniently to:

Bk − h(λk+1) ≤
2Ch,Q

2Ch,Q

B1−h(λ1)
+ k

. (38)

Also, as a function of the estimate C1 of the curvature constant, it is easily verified that the bound
in (37) is optimized at C1 = Ch,Q.

We remark that the bound (37) (or (38)) is small to the extent that the initial bound gap
B1 − h(λ1) is small, as one would want. However, to the extent that B1 − h(λ1) is small, the
incremental decrease in the bound due to an additional iteration is less. In other words, while the
bound (37) is nicely sensitive to the initial bound gap, there is no longer rapid decrease in the

bound in the early iterations. It is as if the algorithm had already run for
(

2C1
B1−h(λ1)

)

iterations

to arrive at the initial iterate λ1, with a corresponding dampening in the marginal value of each
iteration after then. This is a structural feature of the Frank-Wolfe method that is different from
first-order methods that use prox functions and/or projections.

Proof of Bound 4.1: Define s = 2C1
B1−h(λ1) , whereby ᾱi = 2

s+1+i
for i ≥ 1. It then is straightforward

to show that the dual averages sequences (9) are for i ≥ 1:

βi =

i−1
∏

j=1

(1− ᾱj)
−1 =

i−1
∏

j=1

s + j + 1

s + j − 1
=

(s + i− 1)(s + i)

s(s + 1)
,

and

αi =
βiᾱi

1− ᾱi
=

2(s + i)(s + i− 1)(s + i + 1)

s(s + 1)(s + i + 1)(s + i− 1)
=

2(s + i)

s(s + 1)
.

Furthermore, we have:

k
∑

i=1

α2
i

βi+1
=

k
∑

i=1

4(s + i)2(s)(s + 1)

s2(s + 1)2(s + i)(s + i + 1)
=

k
∑

i=1

4(s + i)

s(s + 1)(s + i + 1)
≤ 4k

s(s + 1)
. (39)

Utilizing Theorem 2.1 and (39), we have for k ≥ 1:

Bk − h(λk+1) ≤
Bk − h(λ1)

βk+1
+

1
2Ch,Q

∑k
i=1

α2
i

βi+1

βk+1

≤ s(s + 1)

(s + k)(s + k + 1)

(

B1 − h(λ1) +
Ch,Q

2
· 4k

s(s + 1)

)

=
s(s + 1)

(s + k)(s + k + 1)

(

2C1

s
+

2kCh,Q

s(s + 1)

)

≤ 2max{C1, Ch,Q}
(s + k)(s + k + 1)

(s + 1 + k)

=
2max{C1, Ch,Q}

s + k
,
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which completes the proof.

4.1 A Dynamic Version of the Warm-Start Step-size Strategy

The step-size sequence (36) determines all step-sizes for the Frank-Wolfe method based on two
pieces of information at the initial point λ1: (i) the initial bound gap B1 − h(λ1), and (ii) the
given estimate C1 of the curvature constant. The step-size sequence (36) is a static warm-start
strategy in that all step-sizes are determined by information that is available or computed at the
first iterate. Let us see how we can improve the computational guarantee by treating every iterate as
if it were the initial iterate, and hence dynamically determine the steps-size sequence as a function
of accumulated information about the bound gap and the curvature constant.

At the start of a given iteration k of the Frank-Wolfe method, we have the iterate value λk ∈ Q
and an upper bound Bk−1 on h∗ from the previous iteration. We also will now assume that we have
an estimate Ck−1 of the curvature constant from the previous iteration as well. Steps (2.) and (3.)
of the Frank-Wolfe method then perform the computation of λ̃k, Bk and Gk. Instead of using a
pre-set formula for the step-size ᾱk, we will determine the value of ᾱk based on the current bound
gap Bk−h(λk) as well as on a new estimate Ck of the curvature constant. (We will shortly discuss
how Ck is computed.) Assuming Ck has been computed, and mimicking the structure of the static
warm-start step-size rule (36), we compute the current step-size as follows:

ᾱk :=
2

2Ck

Bk−h(λk) + 2
, (40)

where we note that ᾱk depends explicitly on the value of Ck. Comparing ᾱk in (40) with (18), we
interpret 2Ck

Bk−h(λk) to be “as if” the current iteration k was preceded by 2Ck

Bk−h(λk) iterations of the

Frank-Wolfe method using the standard step-size (18). This interpretation is also in concert with
that of the static warm-start step-size rule (36).

We now discuss how we propose to compute the new estimate Ck of the curvature constant
Ch,Q at iteration k. Because Ck will be only an estimate of Ch,Q, we will need to require that Ck

(and the step-size ᾱk (40) that depends explicitly on Ck) satisfy:

h(λk + ᾱk(λ̃k − λk)) ≥ h(λk) + ᾱk(Bk − h(λk))−
1

2
Ckᾱ

2
k . (41)

In order to find a value Ck ≥ Ck−1 for which (41) is satisfied, we first test if Ck := Ck−1 satisfies
(41), and if so we set Ck ← Ck−1. If not, one can perform a standard doubling strategy, testing
values Ck ← 2Ck−1, 4Ck−1, 8Ck−1, . . ., until (41) is satisfied. Since (41) will be satisfied whenever
Ck ≥ Ch,Q from the definition of Ch,Q in (7) and the inequality Bk − h(λk) ≤ Bw

k − h(λk) =
∇h(λk)

T (λ̃k − λk), it follows that the doubling strategy will guarantee Ck ≤ max{C0, 2Ch,Q}. Of
course, if an upper bound C̄ ≥ Ch,Q is known, then Ck ← C̄ is a valid assignment for all k ≥ 1.
Moreover, the structure of h(·) may be sufficiently simple so that a value of Ck ≥ Ck−1 satisfying
(41) can be determined analytically via closed-form calculation, as is the case if h(·) is a quadratic
function for example. The formal description of the Frank-Wolfe method with dynamic step-size
strategy is presented in Method 3.

We have the following computational guarantees for the Frank-Wolfe method with dynamic step-
sizes (Method 3):
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Method 3 Frank-Wolfe Method with Dynamic Step-sizes for maximizing h(λ)

Initialize at λ1 ∈ Q, initial estimate C0 of Ch,Q, (optional) initial upper bound B0, k ← 1 .
At iteration k:
1. Compute ∇h(λk) .
2. Compute λ̃k ← arg max

λ∈Q
{h(λk) +∇h(λk)

T (λ− λk)} .

Bw
k ← h(λk) +∇h(λk)T (λ̃k − λk) .

Gk ← ∇h(λk)T (λ̃k − λk) .
3. (Optional: compute other upper bound Bo

k), update best bound Bk ← min{Bk−1, B
w
k , Bo

k} .
4. Compute Ck for which the following conditions hold:

(i) Ck ≥ Ck−1 , and
(ii) h(λk + ᾱk(λ̃k − λk)) ≥ h(λk) + ᾱk(Bk − h(λk))− 1

2Ckᾱ
2
k , where ᾱk := 2

2Ck
Bk−h(λk)

+2
.

5. Set λk+1 ← λk + ᾱk(λ̃k − λk) .

Bound 4.2. The iterates of the Frank-Wolfe method with dynamic step-sizes (Method 3) satisfy
the following for any k ≥ 1:

Bk − h(λk) ≤ min
ℓ∈{1,...,k}

{

2Ck

2Ck

Bℓ−h(λℓ)
+ k − ℓ

}

. (42)

Furthermore, if the doubling strategy is used to update the estimates {Ck} of Ch,Q, it holds that
Ck ≤ max{C0, 2Ch,Q}.

Notice that (42) naturally generalizes the static warm-start bound (37) (or (38)) to this more
general dynamic case. Consider, for simplicity, the case where Ck = Ch,Q is the known curvature
constant. In this case, (42) says that we may apply the bound (38) with any ℓ ∈ {1, . . . , k} as the
starting iteration. That is, the computational guarantee for the dynamic case is at least as good
as the computational guarantee for the static warm-start step-size (36) initialized at any iteration
ℓ ∈ {1, . . . , k}.
Proof of Bound 4.2: Let i ≥ 1. For convenience define Ai = 2Ci

Bi−h(λi)
, and in this notation (40)
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is ᾱi = 2
Ai+2 . Applying (ii) in step (4.) of Method 3 we have:

Bi+1 − h(λi+1) ≤ Bi+1 − h(λi)− ᾱi(Bi − h(λi)) + 1
2 ᾱ2

i Ci

≤ Bi − h(λi)− ᾱi(Bi − h(λi)) + 1
2 ᾱ2

i Ci

= (Bi − h(λi))(1 − ᾱi) + 1
2 ᾱ2

i Ci

=
2Ci

Ai

(

Ai

Ai + 2

)

+
2Ci

(Ai + 2)2

= 2Ci

(

Ai + 3

(Ai + 2)2

)

<
2Ci

Ai + 1
,

where the last inequality follows from the fact that (a+2)2 > a2 +4a+3 = (a+1)(a+3) for a ≥ 0.
Therefore

Ai+1 =
2Ci+1

Bi+1 − h(λi+1)
=

Ci+1

Ci

(

2Ci

Bi+1 − h(λi+1)

)

>
Ci+1

Ci
(Ai + 1) . (43)

We now show by reverse induction that for any ℓ ∈ {1, . . . , k} the following inequality is true:

Ak ≥
Ck

Cℓ
Aℓ + k − ℓ . (44)

Clearly (44) holds for ℓ = k, so let us suppose (44) holds for some ℓ + 1 ∈ {2, . . . , k}. Then

Ak ≥
Ck

Cℓ+1
Aℓ+1 + k − ℓ− 1

>
Ck

Cℓ+1

(

Cℓ+1

Cℓ
(Aℓ + 1)

)

+ k − ℓ− 1

≥ Ck

Cℓ

Aℓ + k − ℓ ,

where the first inequality is the induction hypothesis, the second inequality uses (43), and the third
inequality uses the monotonicity of the {Ck} sequence. This proves (44). Now for any ℓ ∈ {1, . . . , k}
we have from (44) that:

Bk − h(λk) =
2Ck

Ak
≤ 2Ck

Ck

Cℓ
Aℓ + k − ℓ

=
2Ck

2Ck

Bℓ−h(λℓ)
+ k − ℓ

,

proving the result.
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5 Analysis of the Frank-Wolfe Method with Inexact Gradient

Computations and/or Subproblem Solutions

In this section we present and analyze extensions of the Frank-Wolfe method in the presence of
inexact computation of gradients and/or subproblem solutions. We first consider the case when
the linear optimization subproblem is solved approximately.

5.1 Frank-Wolfe Method with Inexact Linear Optimization Subproblem Solu-
tions

Here we consider the case when the linear optimization subproblem is solved approximately, which
arises especially in optimization over matrix variables. For example, consider instances of (1)
where Q is the spectrahedron of symmetric matrices, namely Q = {Λ ∈ S

n×n : Λ � 0, I • Λ = 1},
where S

n×n is the space of symmetric matrices of order n, “�” is the Löwner ordering thereon,
and “· • ·” denotes the trace inner product. For these instances solving the linear optimization
subproblem corresponds to computing the leading eigenvector of a symmetric matrix, whose solution
when n ≫ 0 is typically computed inexactly using iterative methods. For δ ≥ 0 an (absolute) δ-
approximate solution to the linear optimization subproblem max

λ∈Q

{

cT λ
}

is a vector λ̃ ∈ Q satisfying:

cT λ̃ ≥ max
λ∈Q

{

cT λ
}

− δ , (45)

and we use the notation λ̃← approx(δ)λ∈Q

{

cT λ
}

to denote assigning to λ̃ any such δ-approximate
solution. The same additive linear optimization subproblem approximation model is considered
in Dunn and Harshbarger [8] and Jaggi [15], and a multiplicative linear optimization subproblem
approximation model is considered in Lacoste-Julien et al. [17]; a related approximation model
is used in connection with a greedy coordinate descent method in Dud́ık et al. [5]. In Method
4 we present a version of the Frank-Wolfe algorithm that uses approximate linear optimization
subproblem solutions. Note that Method 4 allows for the approximation quality δ = δk to be a
function of the iteration index k. Note also that the definition of the Wolfe upper bound Bw

k and
the FW gap Gk in step (2.) are amended from the original Frank-Wolfe algorithm (Method 1) by
an additional term δk. It follows from (45) that:

Bw
k = h(λk) +∇h(λk)

T (λ̃k − λk) + δk ≥ max
λ∈Q

{

h(λk) +∇h(λk)T (λ− λk)
}

≥ h∗ ,

which shows that Bw
k is a valid upper bound on h∗, with similar properties for Gk. The following two

theorems extend Theorem 2.1 and Theorem 2.2 to the case of approximate subproblem solutions.
Analogous to the the case of exact subproblem solutions, these two theorems can easily be used to
derive suitable bounds for specific step-sizes rules such as those in Sections 3 and 4.

Theorem 5.1. Consider the iterate sequences of the Frank-Wolfe method with approximate sub-
problem solutions (Method 4) {λk} and {λ̃k} and the sequence of upper bounds {Bk} on h∗, using
the step-size sequence {ᾱk}. For the auxiliary sequences {αk} and {βk} given by (9), and for any
k ≥ 0, the following inequality holds:

Bk − h(λk+1) ≤
Bk − h(λ1)

βk+1
+

1
2Ch,Q

∑k
i=1

α2
i

βi+1

βk+1
+

∑k
i=1 αiδi

βk+1
. (46)
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Method 4 Frank-Wolfe Method with Approximate Subproblem Solutions

Initialize at λ1 ∈ Q, (optional) initial upper bound B0, k ← 1 .
At iteration k:
1. Compute ∇h(λk) .
2. Compute λ̃k ← approx(δk)λ∈Q{h(λk) +∇h(λk)

T (λ− λk)} .
Bw

k ← h(λk) +∇h(λk)T (λ̃k − λk) + δk .
Gk ← ∇h(λk)T (λ̃k − λk) + δk .

3. (Optional: compute other upper bound Bo
k), update best bound Bk ← min{Bk−1, B

w
k , Bo

k} .
4. Set λk+1 ← λk + ᾱk(λ̃k − λk), where ᾱk ∈ [0, 1) .

Theorem 5.2. Consider the iterate sequences of the Frank-Wolfe method with approximate sub-
problem solutions (Method 4) {λk} and {λ̃k}, the sequence of upper bounds {Bk} on h∗, and the
sequence of FW gaps {Gk} from step (2.), using the step-size sequence {ᾱk}. For the auxiliary
sequences {αk} and {βk} given by (9), and for any ℓ ≥ 0 and k ≥ ℓ + 1, the following inequality
holds:

min
i∈{ℓ+1,...,k}

Gi ≤
1

∑k
i=ℓ+1 ᾱi





Bℓ − h(λ1)

βℓ+1
+

1
2Ch,Q

∑ℓ
i=1

α2
i

βi+1

βℓ+1
+

∑ℓ
i=1 αiδi

βℓ+1



 (47)

+
1
2Ch,Q

∑k
i=ℓ+1 ᾱ2

i
∑k

i=ℓ+1 ᾱi

+

∑k
i=ℓ+1 ᾱiδi
∑k

i=ℓ+1 ᾱi

.

Remark 5.1. The pre-start step (Procedure 2 can also be generalized to the case of approximate
solution of the linear optimization subproblem. Let λ1 and B0 be computed by the pre-start step
with a δ = δ0-approximate subproblem solution. Then Proposition 3.1 generalizes to:

B0 − h(λ1) ≤
1

2
Ch,Q + δ0 ,

and hence if the pre-start step is used (46) implies that:

Bk − h(λk+1) ≤
1
2Ch,Q

∑k
i=0

α2
i

βi+1

βk+1
+

∑k
i=0 αiδi

βk+1
, (48)

where α0 := 1.

Let us now discuss implications of Theorems 5.1 and 5.2, and Remark 5.1. Observe that the
bounds on the right-hand sides of (46) and (47) are composed of the exact terms which appear
on the right-hand sides of (10) and (11), plus additional terms involving the solution accuracy
sequence δ1, . . . , δk. It follows from (14) that these latter terms are particular convex combinations
of the δi values and zero, and in (48) the last term is a convex combination of the δi values, whereby
they are trivially bounded above by max{δ1, . . . , δk}. When δi := δ is a constant, then this bound
is simply δ, and we see that the errors due to the approximate computation of linear optimization
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subproblem solutions do not accumulate, independent of the choice of step-size sequence {ᾱk}. In
other words, Theorem 5.1 implies that if we are able to solve the linear optimization subproblems
to an accuracy of δ, then the Frank-Wolfe method can solve (1) to an accuracy of δ plus a function
of the step-size sequence {ᾱk}, the latter of which can be made to go to zero at an appropriate
rate depending on the choice of step-sizes. Similar observations hold for the terms depending on
δ1, . . . , δk that appear on the right-hand side of (47).

Note that Jaggi [15] considers the case where δi := 1
2δᾱiCh,Q (for some fixed δ ≥ 0) and

ᾱi := 2
i+2 for i ≥ 0 (or ᾱi is determined by a line-search), and shows that in this case Method 4

achieves O
(

1
k

)

convergence in terms of both the optimality gap and the FW gaps. These results
can be recovered as a particular instantiation of Theorems 5.1 and 5.2 using similar logic as in the
proof of Bound 3.1.

Proof of Theorem 5.1: First recall the identities (13) and (14) for the dual averages sequences
(9). Following the proof of Theorem 2.1, we then have for i ≥ 1:

βi+1h(λi+1) ≥ βi+1

[

h(λi) +∇h(λi)
T (λ̃i − λi)ᾱi −

1

2
ᾱ2

i Ch,Q

]

= βih(λi) + (βi+1 − βi)h(λi) + βi+1ᾱi∇h(λi)
T (λ̃i − λi)−

1

2
βi+1ᾱ

2
i Ch,Q

= βih(λi) + αi

[

h(λi) +∇h(λi)
T (λ̃i − λi)

]

− 1

2

α2
i

βi+1
Ch,Q

= βih(λi) + αiB
w
i − αiδi −

1

2

α2
i

βi+1
Ch,Q ,

where the third equality above uses the definition of the Wolfe upper bound (2) in Method 4. The
rest of the proof follows exactly as in the proof of Theorem 2.1.

Proof of Theorem 5.2: For i ≥ 1 we have:

h(λi+1) ≥ h(λi) +∇h(λi)
T (λ̃i − λi)ᾱi − 1

2 ᾱ2
i Ch,Q

= h(λi) + ᾱiGi − ᾱiδi − 1
2 ᾱ2

i Ch,Q ,

where the equality above follows from the definition of the FW gap in Method 4. Summing the
above over i ∈ {ℓ + 1, . . . , k} and rearranging yields:

∑k
i=ℓ+1 ᾱiGi ≤ h(λk+1)− h(λℓ+1) +

∑k
i=ℓ+1

1
2 ᾱ2

i Ch,Q +
∑k

i=ℓ+1 ᾱiδi . (49)

The rest of the proof follows by combining (49) with Theorem 5.1 and proceeding as in the proof
of Theorem 2.2.

5.2 Frank-Wolfe Method with Inexact Gradient Computations

We now consider a version of the Frank-Wolfe method where the exact gradient computation is
replaced with the computation of an approximate gradient, as was explored in Section 3 of Jaggi [15].
We analyze two different models of approximate gradients and derive computational guarantees for
each model. We first consider the δ-oracle model of d’Aspremont [2], which was developed in the
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context of accelerated first-order methods. For δ ≥ 0, a δ-oracle is a (possibly non-unique) mapping
gδ(·) : Q→ E∗ that satisfies:

∣

∣(∇h(λ̄)− gδ(λ̄))T (λ− λ̄)
∣

∣ ≤ δ for all λ, λ̄ ∈ Q . (50)

Note that the definition of the δ-oracle does not consider inexact computation of function values.
Depending on the choice of step-size sequence {ᾱk}, this assumption is acceptable as the Frank-
Wolfe method may or may not need to compute function values. (The warm-start step-size rule
(40) requires computing function values, as does the computation of the upper bounds {Bw

k }, in
which case a definition analogous to (50) for function values can be utilized.)

The next proposition states the following: suppose one solves for the exact solution of the
linear optimization subproblem using the δ-oracle instead of the exact gradient. Then the absolute
suboptimality of the computed solution in terms of the exact gradient is at most 2δ.

Proposition 5.1. For any λ̄ ∈ Q and any δ ≥ 0, if λ̃ ∈ arg max
λ∈Q

{

gδ(λ̄)T λ
}

, then λ̃ is a 2δ-

approximate solution to the linear optimization subproblem max
λ∈Q

{

∇h(λ̄)T λ
}

.

Proof. Let λ̂ ∈ arg max
λ∈Q

{

∇h(λ̄)T λ
}

. Then, we have:

∇h(λ̄)T (λ̃− λ̄) ≥ gδ(λ̄)T (λ̃− λ̄)− δ

≥ gδ(λ̄)T (λ̂− λ̄)− δ

≥ ∇h(λ̄)T (λ̂− λ̄)− 2δ

= max
λ∈Q

{

∇h(λ̄)T λ
}

−∇h(λ̄)T λ̄)− 2δ ,

where the first and third inequalities use (50), the second inequality follows since λ̃ ∈ arg max
λ∈Q

{

gδ(λ̄)T λ
}

,

and the final equality follows since λ̂ ∈ arg max
λ∈Q

{

∇h(λ̄)T λ
}

. Rearranging terms then yields the

result.

Now consider a version of the Frank-Wolfe method where the computation of ∇h(λk) at step
(1.) is replaced with the computation of gδk

(λk). Then Proposition 5.1 implies that such a version
can be viewed simply as a special case of the version of the Frank-Wolfe method with approximate
subproblem solutions (Method 4) of Section 5.1 with δk replaced by 2δk. Thus, we may readily apply
Theorems 5.1 and 5.2 and Proposition 5.1 to this case. In particular, similar to the results in [2]
regarding error non-accumulation for an accelerated first-order method, the results herein imply
that there is no accumulation of errors for a version of the Frank-Wolfe method that computes
approximate gradients with a δ-oracle at each iteration. Furthermore, it is a simple extension to
consider a version of the Frank-Wolfe method that computes both (i) approximate gradients with
a δ-oracle, and (ii) approximate linear optimization subproblem solutions.

5.2.1 Inexact Gradient Computation Model via the (δ, L)-oracle

The premise (50) underlying the δ-oracle is quite strong and can be restrictive in many cases. For
this reason among others, Devolder et al. [4] introduce the less restrictive (δ, L)-oracle model. For
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scalars δ, L ≥ 0, the (δ, L)-oracle is defined as a (possibly non-unique) mapping Q → R× E∗ that
maps λ̄→ (h(δ,L)(λ̄), g(δ,L)(λ̄)) which satisfy:

h(λ) ≤ h(δ,L)(λ̄) + g(δ,L)(λ̄)T (λ− λ̄) , and (51)

h(λ) ≥ h(δ,L)(λ̄) + g(δ,L)(λ̄)T (λ− λ̄)− L

2
‖λ− λ̄‖2 − δ for all λ, λ̄ ∈ Q , (52)

where ‖ · ‖ is a choice of norm on E. Note that in contrast to the δ-oracle model, the (δ, L)-oracle
model does assume that the function h(·) is smooth or even concave – it simply assumes that there
is an oracle returning the pair (h(δ,L)(λ̄), g(δ,L)(λ̄)) satisfying (51) and (52).

In Method 5 we present a version of the Frank-Wolfe method that utilizes the (δ, L)-oracle.
Note that we allow the parameters δ and L of the (δ, L)-oracle to be a function of the iteration
index k. Inequality (51) in the definition of the (δ, L)-oracle immediately implies that Bw

k ≥ h∗. We
now state the main technical complexity bound for Method 5, in terms of the sequence of bound
gaps {Bk − h(λk+1)}. Recall from Section 2 the definition DiamQ := max

λ,λ̄∈Q
{‖λ − λ̄‖}, where the

norm ‖ · ‖ is the norm used in the definition of the (δ, L)-oracle (52).

Method 5 Frank-Wolfe Method With (δ, L)-Oracle

Initialize at λ1 ∈ Q, (optional) initial upper bound B0, k ← 1 .
At iteration k:
1. Compute hk ← h(δk ,Lk)(λk), gk ← g(δk ,Lk)(λk) .

2. Compute λ̃k ← arg max
λ∈Q
{hk + gT

k (λ− λk)} .

Bw
k ← hk + gT

k (λ̃k − λk) .
3. (Optional: compute other upper bound Bo

k), update best bound Bk ← min{Bk−1, B
w
k , Bo

k} .
4. Set λk+1 ← λk + ᾱk(λ̃k − λk), where ᾱk ∈ [0, 1) .

Theorem 5.3. Consider the iterate sequences of the Frank-Wolfe method with the (δ, L)-oracle
(Method 5) {λk} and {λ̃k} and the sequence of upper bounds {Bk} on h∗, using the step-size
sequence {ᾱk}. For the auxiliary sequences {αk} and {βk} given by (9), and for any k ≥ 0, the
following inequality holds:

Bk − h(λk+1) ≤
Bk − h(λ1)

βk+1
+

1
2Diam2

Q

∑k
i=1 Li

α2
i

βi+1

βk+1
+

∑k
i=1 βi+1δi

βk+1
. (53)

As with Theorem 5.1, observe that the terms on the right-hand side of (53) are composed of the
exact terms which appear on the right-hand side of (10), plus an additional term that is a function
of δ1, . . . , δk. Unfortunately, Theorem 5.3 implies an accumulation of errors for Method 5 under
essentially any choice of step-size sequence {ᾱk}. Indeed, suppose that βi = O(iγ) for some γ ≥ 0,

then
∑k

i=1 βi+1 = O(kγ+1), and in the constant case where δi := δ, we have
∑k

i=1 βi+1δi

βk+1
= O(kδ).

Therefore in order to achieve an O
(

1
k

)

rate of convergence (for example with the step-size sequence
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Method/ Type of Accuracy with Accuracy with Special Structure
Class Subproblem Exact Gradients (δ, L)-oracle of Iterates

Frank-Wolfe Linear Optimization O (1/k) O (1/k) + O(δk) Yes

Classical Gradient Prox Projection O (1/k) O(1/k) + O(δ) No

Accelerated Gradient Prox Projection O
(

1/k2
)

O
(

1/k2
)

+ O(δk) No

Figure 1: Properties of three (classes of) first-order methods after k iterations.

(18)) we need δ = O
(

1
k2

)

. This negative result nevertheless contributes to the understanding of the
merits and demerits of different first-order methods as follows. Note that in [4] it is shown that the
“classical” gradient methods (both primal and dual), which require solving a proximal projection
problem at each iteration, achieve an O

(

1
k

+ δ
)

accuracy under the (δ, L)-oracle model for constant
(δ, L). On the other hand, it is also shown in [4] that all accelerated first-order methods (which also
solve proximal projection problems at each iteration) generically achieve an O

(

1
k2 + kδ

)

accuracy
and thus suffer from an accumulation of errors under the (δ, L)-oracle model. As discussed in the
Introduction herein, the Frank-Wolfe method offers two possible advantages over these proximal
methods: (i) the possibility that solving the linear optimization subproblem is easier than the
projection-type problem in an iteration of a proximal method, and/or (ii) the possibility of greater
structure (sparsity, low rank) of the iterates. In Figure 1 we summarize the cogent properties of
these three methods (or classes of methods) under exact gradient computation as well as with the
(δ, L)-oracle model. As can be seen from the table in Figure 1, no single method dominates in the
three categories of properties shown in the table; thus there are inherent tradeoffs among these
methods/classes.

Proof of Theorem 5.3: Note that (51) and (52) with λ̄ = λ imply that:

h(λ) ≤ h(δ,L)(λ) ≤ h(λ) + δ for all λ ∈ Q . (54)

Recall properties (13) and (14) of the dual averages sequences (9). Following the proof of Theorem
2.1, we then have for i ≥ 1:

βi+1h(λi+1) ≥ βi+1

[

hi + gT
i (λ̃i − λi)ᾱi −

1

2
ᾱ2

i LiDiam2
Q − δi

]

= βihi + (βi+1 − βi)hi + βi+1ᾱig
T
i (λ̃i − λi)−

1

2
βi+1ᾱ

2
i LiDiam2

Q − βi+1δi

= βihi + αi

[

hi + gT
i (λ̃i − λi)

]

− 1

2

α2
i

βi+1
LiDiam2

Q − βi+1δi

≥ βih(λi) + αiB
w
i −

1

2

α2
i

βi+1
LiDiam2

Q − βi+1δi ,

where the first inequality uses (52), and the second inequality uses (54) and the definition of the
Wolfe upper bound in Method 5. The rest of the proof follows as in the proof of Theorem 2.1.

6 Summary/Conclusions

The Frank-Wolfe method is the subject of substantial renewed interest due to the relevance of appli-
cations (e.g., regularized regression, boosting/classification, matrix completion, image construction,
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other machine learning problems), the need in many applications for only moderately high accu-
racy solutions, the applicability of the method on truly large-scale problems, and the appeal of
structural implications (sparsity, low-rank) induced by the method itself. The method requires (at
each iteration) the solution of a linear optimization subproblem over the feasible region of interest,
in contrast to most other first-order methods which require (at each iteration) the solution of a
certain projection subproblem over the feasible region defined by a strongly convex prox function.
As such, the Frank-Wolfe method is particularly efficient in various important application settings
including matrix completion.

In this paper we have developed new analysis and results for the Frank-Wolfe method. Virtu-
ally all of our results are consequences and applications of Theorems 2.1 and 2.2, which present
computational guarantees for optimality gaps (Theorem 2.1) and the “FW gaps” (Theorem 2.2)
for arbitrary step-size sequences {ᾱk} of the Frank-Wolfe method. These technical theorems are
applied to yield computational guarantees for the well-studied step-size rule ᾱk := 2

k+2 (Section
3.1), simple averaging (Section 3.2), and constant step-size rules (Section 3.3). The second set of
contributions in the paper concern “warm start” step-size rules and computational guarantees that
reflect the quality of the given initial iterate (Section 4) as well as the accumulated information
about the optimality gap and the curvature constant over a sequence of iterations (Section 4.1).
The third set of contributions concerns computational guarantees in the presence of an approxi-
mate solution of the linear optimization subproblem (Section 5.1) and approximate computation
of gradients (Section 5.2).

We end with the following observation: that the well-studied step-size rule ᾱk := 2
k+2 does not

require any estimation of the curvature constant Ch,Q (which is generically not known). There-
fore this rule is in essence fully-automatically scaled as regards the curvature Ch,Q. In contrast,
the dynamic warm-start step-size rule (40), which incorporates accumulated information over a
sequence of iterates, requires updating estimates of the curvature constant Ch,Q that satisfy cer-
tain conditions. It is an open challenge to develop a dynamic warm-start step-size strategy that is
automatically scaled and so does not require computing or updating estimates of Ch,Q.
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A Appendix

Proposition A.1. Let Bw
k and Bm

k be as defined in Section 2. Suppose that there exists an open

set Q̂ ⊆ E containing Q such that φ(x, ·) is differentiable on Q̂ for each fixed x ∈ P , and that h(·)
has the minmax structure (4) on Q̂ and is differentiable on Q̂. Then it holds that:

Bw
k ≥ Bm

k ≥ h∗ .

Furthermore, it holds that Bw
k = Bm

k in the case when φ(x, ·) is linear in the variable λ.

Proof. It is simple to show that Bm
k ≥ h∗. At the current iterate λk ∈ Q, define xk ∈ arg min

x∈P
φ(x, λk).

Then from the definition of h(λ) and the concavity of φ(xk, ·) we have:

h(λ) ≤ φ(xk, λ) ≤ φ(xk, λk) +∇λφ(xk, λk)
T (λ− λk) = h(λk) +∇λφ(xk, λk)

T (λ− λk) , (55)

whereby ∇λφ(xk, λk) is a subgradient of h(·) at λk. It then follows from the differentiability of h(·)
that ∇h(λk) = ∇λφ(xk, λk), and this implies from (55) that:

φ(xk, λ) ≤ h(λk) +∇h(λk)
T (λ− λk) . (56)

Therefore we have:

Bm
k = f(xk) = max

λ∈Q
{φ(xk, λ)} ≤ max

λ∈Q
{h(λk) +∇h(λk)

T (λ− λk)} = Bw
k .

If φ(x, λ) is linear in λ, then the second inequality in (55) is an equality, as is (56).

Proposition A.2. Let Ch,Q, DiamQ, and Lh,Q be as defined in Section 2. Then it holds that
Ch,Q ≤ Lh,Q(DiamQ)2.

Proof. Since Q is convex, we have λ + α(λ̃−λ) ∈ Q for all λ, λ̃ ∈ Q and for all α ∈ [0, 1]. Since the
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gradient of h(·) is Lipschitz, from the fundamental theorem of calculus we have:

h(λ + α(λ̃− λ)) = h(λ) +∇h(λ)T (α(λ̃− λ)) +

1
∫

0

[∇h(λ + tα(λ̃− λ))−∇h(λ)]T (α(λ̃− λ))dt

≥ h(λ) +∇h(λ)T (α(λ̃− λ))−
1
∫

0

‖∇h(λ + tα(λ̃− λ))−∇h(λ)‖∗(α)‖λ̃ − λ‖dt

≥ h(λ) +∇h(λ)T (α(λ̃− λ))−
1
∫

0

Lh,Q‖(tα)(λ̃ − λ)‖(α)‖λ̃ − λ‖dt

= h(λ) +∇h(λ)T (α(λ̃− λ))− α2

2
Lh,Q‖(λ̃− λ)‖2

≥ h(λ) +∇h(λ)T (α(λ̃− λ))− α2

2
Lh,Q(DiamQ)2 ,

whereby it follows that Ch,Q ≤ Lh,Q(DiamQ)2.

Proposition A.3. For k ≥ 0 the following inequality holds:

k
∑

i=0

i + 1

i + 2
≤ (k + 1)(k + 2)

k + 4
.

Proof. The inequality above holds at equality for k = 0. By induction, suppose the inequality is
true for some given k ≥ 0, then

∑k+1
i=0

i+1
i+2 =

∑k
i=0

i+1
i+2 + k+2

k+3

≤ (k+1)(k+2)
k+4 + k+2

k+3

= (k + 2)
[

k2+5k+7
k2+7k+12

]

.

(57)

Now notice that

(k2 + 5k + 7)(k + 5) = k3 + 10k2 + 32k + 35 < k3 + 10k2 + 33k + 36 = (k2 + 7k + 12)(k + 3) ,

which combined with (57) completes the induction.

Proposition A.4. For k ≥ 1 let ᾱ := 1− 1
k
√

k+1
. Then the following inequalities holds:

(i)
ln(k + 1)

k
≥ ᾱ , and

(ii) (k + 1)ᾱ ≥ 1 .
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Proof. To prove (i), define f(t) := 1− e−t, and noting that f(·) is a concave function, the gradient
inequality for f(·) at t = 0 is

t ≥ 1− e−t .

Substituting t = ln(k+1)
k

yields

ln(k + 1)

k
= t ≥ 1− e−t = 1− e− ln(k+1)

k = 1− 1
k
√

k + 1
= ᾱ .

Note that (ii) holds for k = 1, so assume now that k ≥ 2. To prove (ii) for k ≥ 2, substitute

t = − ln(k+1)
k

into the gradient inequality above to obtain − ln(k+1)
k

≥ 1 − (k + 1)
1
k which can be

rearranged to:

(k + 1)
1
k ≥ 1 +

ln(k + 1)

k
≥ 1 +

ln(e)

k
= 1 +

1

k
=

k + 1

k
. (58)

Inverting (58) yields:

(k + 1)−
1
k ≤ k

k + 1
= 1− 1

k + 1
. (59)

Finally, rearranging (59) and multiplying by k + 1 yields (ii).

Proposition A.5. For any integers ℓ, k with 2 ≤ ℓ ≤ k, the following inequalities hold:

ln

(

k + 1

ℓ

)

≤
k
∑

i=ℓ

1

i
≤ ln

(

k

ℓ− 1

)

, (60)

and

k − ℓ + 1

(k + 1)ℓ
≤

k
∑

i=ℓ

1

i2
≤ k − ℓ + 1

k(ℓ− 1)
, (61)

Proof. (60) and (61) are specific instances of the following more general fact: if f(·) : [1,∞)→ R+

is a monotonically decreasing continuous function, then

∫ k+1

ℓ

f(t)dt ≤
k
∑

i=ℓ

f(i) ≤
∫ k

ℓ−1
f(t)dt . (62)

It is easy to verify that the integral expressions in (62) match the bounds in (60) and (61) for the
specific choices of f(t) = 1

t
and f(t) = 1

t2
, respectively.

30


	Introduction
	Notation

	The Frank-Wolfe Method
	Computational Guarantees for Specific Step-size Sequences
	A Well-studied Step-size Sequence
	Simple Averaging
	Constant Step-size
	Extensions using Line-Searches

	Computational Guarantees for a Warm Start
	A Dynamic Version of the Warm-Start Step-size Strategy

	Analysis of the Frank-Wolfe Method with Inexact Gradient Computations and/or Subproblem Solutions
	Frank-Wolfe Method with Inexact Linear Optimization Subproblem Solutions
	Frank-Wolfe Method with Inexact Gradient Computations
	Inexact Gradient Computation Model via the (,L)-oracle


	Summary/Conclusions
	References
	Appendix

