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Abstract

Chapter Two: The standard public finance analysis of the dead weight loss of labour in-
come taxation is based on the estimation of labour supply functions that treat unemployed
individuals as non-participants. The innovation in this paper is to apply econometric models
of multinomial discrete choice to the labour market, explicitly allowing individuals to be in
any of three possible states (employment, unemployment and non-participation). I also control
for individual unobserved (random) effects. Based on these estimates, I present calculations of
the dead-weight loss of taxes, which turn out to be much larger than those suggested by the
standard literature.

Chapter three: Macroeconomic models predict that taxes can affect the level of unem-
ployment. Empirical investigation of this hypothesis to date has consisted of estimtation of
small scale structural macroeconomic models using aggregate data. This endevor has produced
weak evidence in favor of the hypothesis. By contrast, in this paper I estimate reduced form
specifications on aggregate data. I find that taxes have a small but significant effect on the level
of unemployment. In contrast with most of the rest of the literature, I find that this effect can
persist in the long run.

Chapter Four: Most theories of involuntary unemployment predict that the equilibrium
wage in the labor market will be greater than the reservation wage of the unemployed. These
theories concentrate on explaining why the labor market does not clear with the market wage
falling to the level of the reservation wage as predicted by the classical paradigm. Relatively
little, however, has been said about the behavior of reservation wages. This paper seeks to fill
the gap in the literature. We look at the empirical determinants of the reservation wage and
suggest what this implies for the evolution of the natural rate of unemployment.
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Chapter 1

Introduction

This collection of essays consists of three separate papers empirically analyzing the impact of
taxation on unemployment. In this introductory chapter I attempt to tie together the three
research papers, indicating the themes common to all and explaining the reasons behind the
different approaches taken by each paper.

I first became interested in the possible connection between taxation and unemployment
while I was an undergraduate in Ireland in the late 1980s. At that time, Ireland, in common with
other European countries, was just emerging from a sustained period of high unemployment.
Also at that time tax systems throughout Europe had tended to place a high burden of taxation
on labor income. Many commentators had come to believe that these two facts were connected,

1 The experiences of Europe

that high unemployment was the result of the high taxation.
were often contrasted with the experience of the United States, which had low tax and low
unemployment. This was often cited as prima facia evidence that taxes cause unemployment.
Professional economists have tended to be a little less sanguine. They recognize that the
multiplicity of interacting effects in general equilibrium means that the identification of any
causal relationship is very difficult (see Bean, 1994). Nevertheless taxation was often been cited
in the literature as one of a number of possible causes of unemployment (see Layard, Nickell &
Jackman, 1991).

I decided to investigate the issue in the course of my thesis. I approach the issue from the

'For Example, in a leading article in 1995 reviewing the performance of the French economy, the Economist
commented that “[The French tax system] still relies far too much on employment-killing payroll taxes".
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viewpoint of the two separate fields of economic research that have investigated the problem up
to now, namely public finance and macroeconomics. The first paper is entitled “Estimating the
Dead Weight Loss of Taxes in a Labor Market with Unemployment and Non-Participation”.
It adopts the traditional approach of public finance. The second paper, “Do Taxes Cause
Unemployment?”, adopts a macro-empirical approach. The third paper, “The Determinants of
the Reservation Wage” also adopts a micro approach.

The impact of tax on labor markets has been one of the dominant issue in public economics
at least since the early 1970s when Mirlees published his seminal papers. Somewhat surpris-
ingly, the empirical work on this question tended to ignore the specific issue of unemployment.
Most of the empirical papers tended to assume, at least implicitly, that the labor market was
competitive.?

The first paper in this dissertation corrects this omission. The purpose of this paper is to
calculate the dead-weight loss of labor market taxes in a framework that explicitly allows for
unemnployment and non-participation. I apply multinomial discrete choice econometric models
to individual level labor market data from the UK. These models explicitly allow an individual
to occupy any of three labor market states (employment, unemployment, non-participation).

I use two broad classes of models. The first class assumes that the individual can choose to
be unemployed. In this sense these are models of voluntary unemployment. The second class of
models that I estimate treat unemployment as completely involuntary. Individuals can choose
whether or not to participate. Then, conditional on participation, they get a job with some
probability. When making the participation decision individuals are aware that participation
does not guarantee employment. This setup leads to a NMNL estimator and also, to what may
be described as, a “nested probit” estimator.

It is possible to calculate the dead weight loss (DWL) of taxes from these estimates using
the method reported in Small & Rosen (1981) and McFadden (1986). The resulting values for
the DWL are considerably higher than those found in much of the public finance literature.

The models estimated in this paper represent an improvement over the traditional literature
in so far as they allow for both non-participation and unemployment. They are still lacking

in one significant aspect, however. In common with much of the literature, they are partial

*There were some exceptions, notably Ham (1982).
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equilibrium. I do not model the aggregate constraint that generates unemployment. I assume
that there is some inefliciency operating behind the scenes that prevents the labor market, from
clearing. 1do not investigate how this inefficiency interacts with the tax system. This interaction
could have important implications for social welfare. It is possible to envisage a multiplicity of
interacting effects. The dead-weight loss calculations that I present do not account for these
effects. Correcting this omission is an obvious topic for future research. _

The second paper in this dissertation approaches the issue of the impact of taxation on
unemployment from a macroeconomic perspective. It takes its inspiration from an empirical
macro literature that developed during the 1980s. This literature sought to measure the impact
of taxation on unemployment by estimating small scale models of the macro economy using
aggregate data. These models usually consist of a wage equation that models the behavior of
the supply side of the labor market énd an employment equation that models the demand for
labor. Various parameters of the tax system enter the equation as regressors. The results of this
literature are ambiguous. The size and significance of the estimated effects of the tax system
varies across countries. For example, Layard, Nickell & Jackman (1991) estimate this kind of
model for all the OECD countries. They find that the tax wedge is statistically insignificant
in eight countries (Belgium, Germany, Italy, Canada, USA, Japan, Austria, Switzerland) and
positive and significant in five (France, Ireland, Finland, UK).

The specification of these models is problematic. Taxation, unemployment and most other
macro variables are likely to move together for a variety of reasons. How we identify the causal
relationship between tax and unemployment is of crucial importance. The appropriate exclusion
restrictions are not always obvious. Tne variation in results between different papers looking
at the same country suggests that the estimated models are not robust to smali changes in
specification.

In contrast with most of the existing literature, I estimate parsimonious reduced form models
rather than specifying simple structural models. The basic estimation strategy is to see whether
unemployment and wages respond to exogenous changes in tax policy in a way consistent
with theory. By estimating reduced forms I avoid the problem of having to specify exclusion
restrictions necessary to identify a structural model. This is an advantage over the existing

literature. It has to be admitted, however, that the reduced form approach has its price. The
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model is vulnerable to the Lucas Critique. The ccefficients of the reduced form may themselves
change in response to changes in the tax system.

The methodology of this paper owes a lot to Poterba, Rotemberg & Summers (1986). They
treat a change in tax policy as an exogenous shock to the price structure and used this to identify
the effect of money on output. I effect I treat the tax changes as shocks to the structure of real
wages and use this to test for the presence of real wage rigidities. The results of this analysis
show that an increase in taxation increases unemployment. The effect is statistically significant,
but numerically small.

The macro approach has an advantage over the micro approach of the first paper. By
default it takes into account any interaction between taxation and unemployment. Thus, it
does not suffer from the omission of the general equilibrium interactions as does the first paper.
The disadvantage of the approach is, however, that it is not grounded in a specific model
of individual utility maximizing behavior. It is difficult therefore to infer the implications of
taxation for welfare from these estimates, as in the first paper.

The first and second chapters of this thesis are attempts to measure the same phenomenon,
namely the impact of taxation on unemployment. The first paper, using individual level data,
found that taxation had a large effect on the probability that an individual becomes unemployed.
The second paper, using aggregate data, found that taxation had a relatively small impact on
the aggregate level of unemployment. The difference in results could be due to the general
equilibrium interactions between tax and unemployment that are not accounted for in the first
essay. This possibility only serves to emphasize the need to address this issue in future research.

The third paper is written jointly with Professor Olivier Blanchard. The purpose of the
paper is to discover the determinants of the reservation wage. This is the wage that makes
workers indifferent between taking a job or remaining unemployed. This topic is interesting
in its own right, but it also has important implications for the central topic of this thesis,
the impact of taxation on unemployment. How this adjustment takes will be an important
determinant of the long run response of unemployment to real shocks such as tax changes.
Bean (1994) and Blanchard & Katz (1997) point out that we might expect that the workers
bear the entire burden of the tax in the long run. Their intuition is as follows. A permanent

increase in taxation will reduce permanent income and consumption. This will increase the

13



marginal utility of consumption relative to the marginal utility of leisure. This in turn implies
that the reservation wage will fall. It is not hard to design a specific set up where the net
result is no change in the mark-up and therefore the wage. Thus the incidence of the tax falls
completely on workers. This would imply that even a permanent increase in taxes would have
only a temporary effect on unemployment.

We specify the reservation wage as a function not only of the relevant distribution of wages,
of labor market conditions, and of unemployment benefits, but also of the wage received in
the previous job. We estimate this relation using the British household Panel Survey over four
years (1991-95). That data set contains explicit information about reservation wages, labor
market status, lagged wages, and can be used to construct a mean wage based on observable
characteristics of each worker. The main econometric challenge is to disentangle whether tke
coefficient on the lagged wage reflects causality, or the fact that the lagged wage contains
information about the unobservable characteristics of workers. We do so in a variety of ways,
through instrumental variables, or through use of the panel data dimension of our data and the
use of individual fixed effects.

We find a large and significant effect of the mean of the distribution of wages on the reser-
vation wage. We find a significant, but—to our surprise— a relatively small effect of the lagged
wage on the reservation wage. We also find a significant but small effect of benefits. One other
surprising result is our inability to find a significant effect of labor market conditions, proxied
either by a worker specific unemployment rate, or by local unemployment and vacancy rates,

on the reservation wage.
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Chapter 2

Estimating the Dead-Weight Loss of
Taxation in a Labour Market with
Unemployment and

Non-Participation

2.1 Introduction

The purpose of this paper is to calculate the dead-weight loss of labor market taxes in a frame-
work that explicitly allows for unemployment and non-participation. In doing so, this paper is
part of a long tradition in the public economics literature. The calculation of the dead-weight
loss of labor market taxes has been a focus of research for at least two decades. This level of
interest is not surprising. Modern governments raise such a high proportion of their revenue
from income and social security taxes that the welfare costs of these taxes are of crucial interest
for policy makers. What is surprising, however, is that most of the empirical analysis has tended
to avoid the issue of unemployment. The focus has been on the estimation of hours equation
over samples consisting of th.. employed workers only. Some authors, especially when analyzing

women'’s labor supply, did allow for non-participation®. In general, however, little attempt has

!'See Mroz (1987) for an example.
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been made to account for the unemployed.

Within the frame work of the traditional literature there are two possible ways of dealing
with those individuals observed to be unemployed. One can either include them in the estima-
tion sample and treat them as having supplied zero hours or, alternatively, one can exclude them
from the sample, using only the embloyed to estimate labor supply elasticities. Ham (1982)
showed that both these approaches resulted in biased .estimates of the labor supply function. If
the unemployed are included in the estimation sub-sample, and if they are truly constrained,
then the difference between observed and desired hours will be incorporated into the residual.
Thus the residual will be correlated with the independent variables rendering least squares esti-
mates of the labor supply function inconsistent. Alternatively, if the unemployed are dropped,
sample selection bias is introduced. Unless one is prepared to believe that unemployment is a
random event whose occurrence is uhcorrelated with any variables that may influence tastes
for work, estimation over a sample consisting of only the employed, will lead to biased results.
For example, if the unemployed tend to be those with less education, their exclusion from the
sample will bias estimates of the influence of education on tastes for work.

Ham (1982) dealt with this problem by excluding the unemployed from the sample and
correcting for the resulting selection bias using Heckman (1979) procedure. However, he did
not offer a consistent treatment of non-participants, those who reported zero hours but who were
not unemployed. Non-participants may have tastes for work that are systematically different
from either those of the employed or the unemployed. Thus treating them as being like the
uinployed (with zero hours “supplied”) or like the unemployed, would lead to biased estimates.
Similarly, excluding them from the sample would lead to another selection bias.

In this paper, I apply multinomial discrete choice econometric models to labor market data
from the UK. These models explicitly allow an individual to occupy any of three labor market
states (employment, unemployment, non-participation). Issues of sample selection do not arise
because these models can be estimated over the entire sample. The econometric innovation of
this paper is to control for individual unobservable (random) effects in each of the non-linear
models on panel data.

I use two broad classes of models. The first class assumes that the individual can choose

to be unemployed. In this sense these are models of voluntary unemployment. However,
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unemployment is still distinct from non-participation. Suppose, for example, that an individual
turns down an offer of a job at a low wage and opts instead to remain searching. He is
constrained having not received a “réasonable” offer. His unemployment is voluntary however,
in the sense that he could have accepted the low wage job or have dropped out of the labor
market. This setup leads to Multinomial Logit (MNL), Multinomial Probit (MNP) and Nested
Multinomial Logit (NMNL) estimators.

These estimates confirm some reasonable hypotheses regarding the labor market. Most par-
ticularly, it seems that employment, unemployment and non-participation are all qualitatively
different states. Formal tests of the hypothesis that the unemployed have the same preferences
as either the employed or the nonparticipants are overwhelmingly rejected. Thus the results
confirm those of Flinn & Heckman (1983). Any analysis of labor supply that fails to take this
into account could be misleading.

It is possible to calculate the dead weight loss (DWL) of taxes from these estimates using
the method reported in Small & Rosen (1981) and McFadden (1986). The resulting values for
the DWL are considerably higher than those found in much of the literature.

The second class of models that I estimate treat unemployment as completely involuntary.
Individuals can choose whether or not to participate. Then, conditional on participation, they
get a job with some probability. When making the participation decision individuals are aware
that participation does not guarantee employment. This setup leads to a NMNL estimator and
also to what may be described as a “nested probit” estimator. Again it is possible to calculate
the DWL of taxes in these models using the method reported in Small & Rosen (1981) and
McFadden (1986). The resulting values for the DWL are similar to those calculated from the
first set of models and considerably higher than those found in much of the literature.

A possible explanation for these higher dead weight loss results is that the estimates pre-
sented here capture the effect of wages (and taxes) on participation. The estimates in the
traditional literature report the effects of wages on hours supplied conditional on participation.
If there are fixed costs of entry to the labor market, then we might expect the participation
elasticity to be higher than the hours elasticity.

Interestingly my results are similar in magnitude to those calculated using the Non-Linear

Budget Set (NLBS) method and reported in Hausman (1985b). This is despite of the fact that I
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treat the budget constraint as being linear. This result helps shed some light on the controversy
regarding the alleged bias of the NLBS model. Some authors® have suggested that the NLBS
results are due to the estimation method imposing high compensating elasticities on the data.
It may be, however, that the difference in the results is due to the different treatment of the
non-participants. The linearized method is typically estimated over the employed, so it returns
the low compensated elasticity of hours conditional on participation. The NLBS method, being
a generalized version of the Tobit procedure, easily accommodates the non-participants (but
not the unemployed). Therefore the difference in measured elasticities could be entirely due to
a high elasticity of participation. This issue requires further research.

The models estimated in this paper represent an improvement over the traditional literature
in so far as they allow for both non-participation and unemployment. They are still lacking
in ore significant aspect, however. In common with much of the literature, they are partial
equilibrium. I do not model the aggregate constraint that generates unemployment. I assume
that there is some inefficiency operating behind the scenes that prevents the labor market
from clearing. I do not investigate how this inefficiency interacts with the tax system. This
interaction could have important implications for social welfare. The imposition of even a small
tax on an already distorted economy could have first order welfare effects increasing even more
the welfare cost of taxation. Suppose, for example, that unemployment is the result of inefficient
matching of job seekers and vacancies. The imposition of a tax on labor income could reduce
an individual’s search effort. Apart from the direct effect on the individuals welfare, this would
also reduce other individuals’ and firms’ welfare via the search externality: one persons reduced
search effort reduces the effectiveness of all other individuals’ job search and firms’ efforts to
fill vacancies. Thus, the search externality magnifies the welfare cost of taxation.

Alternatively, the two sources of inefficiency may actually counteract each other. Continuing
the search example. Suppose that workers face a cost of participation in the labor market and /or
a search cost. In this case, anything that forces workers to leave the labor market, will save
them the search cost. Thus the cost of taxation would be less than estimated here.

Alternatively, one could view unemployment as a job queue in a ranking model i.e. where

firms have multiple applications for their vacancies. In this economy, anything that causes an

2See MaCurdy (1992) for example.
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individual to leave the queue, raises the welfare of those remaining on it, without hurting the
firms who receive multiple applications. Also in this case the search externality reduces the
welfare cost of taxation.

The point being made here is that it is possible to envisage a multiplicity of interacting
effects. The dead-weight loss calculations that I present do nct account for these effects (if they
exist). It is not possible to sign the bias that results from this omission. As the examples given
above indicate, it could go either way. The standard models of competitive general equilibrium
used in public finance to examine the issue of tax incidence are obviously unable to resolve
this issue. Its resolution requires further research into the incidence of tax in non-competitive
models. Correcting this omission is an obvious topic for future research.

The paper is arranged as follows. Section 2 discusses in detail the previous approaches.
Section 3 discusses the data set used and some specification issues. Section 4 presents estimates
of the first class of model. Section 5 presents estimates of the second class of models. Section

7 calculates the dead-weight loss of taxes. Section 8 concludes.

2.2 Previous Approaches to Labor Supply

Consider a standard labor supply function such as equation (2.1). Suppose that equation (2.1)
is the true labor supply function i.e. H}, is the hours of work desired by the individual, where

X is a vector of independent variables and € is a normally distributed error.
Hi = Xuf + €ir (2.1)

We wish to estimate (2.1) in order to get consistent estimates of the underlying tastes
for work of all individuals. We can then use these estimates to calculate the social cost of
taxation. It turns out that the nature of the estimation sample we choose is crucial. As noted
by Ham (1982) least squares applied to (2.1) will almost certainly be biased no matter how we
construct the sample. Suppose that we try to estimate (2.1) using a sample consisting of both
the employed and the unemployed. In effect, we would be estimating equation (2.2) where u(X)
is the probability that an individual is unemployed and H;; is the actual observed hours, with

Hy = 0 for the unemployed. We have incorporated into the residual any difference between
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observed and desired hours, such as that caused by unemployment.3
Hy = Xuf + it (2.2)

Eit wp 1-—u(X;)
Nit =
eix—Hjy+Hy w.p u(Xit)

If the unemployed are not truly constrained, so that E(H}, — H;;) = 0, then there is no problem.
They could be treated as censored observations and equation (2.1) estimated using the Tobit
procedure. If they are constrained, however, it is clear from the definition of 5 that E(n|X) =
—H*u(X) = —Xpu(X). The residual is correlated with the independent variables and least
squares on (2.2) will be biased. The are two sources of bias. Firstly, even if unemployment is
random i.e. u(X) is a constant, any change in X will change the size of the constraint faced
by the unemployed. This biases the least squares estimate of 3 towards zero. Secondly, if
unemployment is not random and changes in X change the probability that an individual is
unemployed, then the extent to which the constraint is binding in the population also changes.
Least squares estimation of equation (2.2) incorporates both these effects into the estimate of
B. Consider, for example, a variable measuring an individual’s educational achievement. It is
plausible that this variable affects an individuals taste for work. It is equally plausible that
education also affects an individual’s chances of becoming unemployed. In this case, if we try
to estimate (2.1) over all individuals, employed and unemployed, the residual will be correlated
with one of independent variables rendering the estimates inconsistent.

Ham (1982) also notes that the alternative procedure, excluding the unemployed from the
estimation sample is also likely to be biased. This is standard the issue of sample selection.
Least squares estimation of (2.1), over the sub-sample of the employed, will be consistent only
if E(e|lemployed) # f(X). If unemployment is a random event, so that the unemployed are not
systematically different from the employed, then this condition is satisfied. We expect, however,
that the probability of being unemployed is a function of the same sort of variables that enter

a labor supply equation (education, for example). Intuitively, if the unemployed tend to be

3 Actually any difference between the actual and desired hours will be incorporated into the residual, whether
it is due to unemployment over-employment or under-employment. I ignore the issues of over- and under-
employment. Ham (1982) did estimate his model also allowing for underemployment.
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those with less education, their exclusion from the sample will bias estimates of the influence
of education on tastes for work. Ham (1982) corrected for this bias using the selection model
of Heckman (1979) to estimate a labor supply equation over the sample consisting of employed
individuals only.

The Heckman procedure can deal successfully with the problem of unemployment, but does
not account for the possible distinction between the unemployed and non-participants. In fact
we face a similar set of issues regarding non-participants as we did regarding the unemployed.
As in the case of the unemployed, we can either include or exclude non-participants from the
sample used to estimate the model. In either case the estimates are likely to be biased.

If we believed that non-participants were randomly selected, then we could safely exclude
them from the estimation sample. If we believed that they were not significantly different froin
the employed, then we could treat tﬁem as censored observations and estimate a Tobit type
model.# If we believed that they were not significantly different from the unemployed we could
simply re-estimate the Ham model treating them as such. If we believe that the non-participants
are, potentially, systematically different from both the employed and the unemployed, then we
must account for them separately. This is most clearly done by estimating multinomial models

of discrete choice.

2.3 Data & Specification

From Table 2.1, we can see that unemployment in Europe tends to be higher and more persistent
than unemployment in the United States. This suggests that estimates of labor supply are
more likely to be affected by unemployment in the case of Europe. Therefore, I conduct the
analysis using a British dataset, the British Household Panel Survey (BHPS). This panel covers
4 years from 1991-95. This data has two particular advantages. Firstly, it contains a wealth
of information on the labor market status of respondents, enabling the difference between
unemployment and non-participation to be clearly defined. Secondly, as the data is a panel, we
will be able to control for individual specific (unobserved) effects.

I exclude women from the sample following the tradition in the labor supply literature which

!See Blundell, Ham & Meighir (1987)
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views the labor supply decision processes of the two sexes as being qualitatively different. I
also exclude from the analysis all those men who were employed but for whom no wage was
reported’. In all, after dropping observation with missing values, approximately 3,900 men are
observed at each of the four waves of the panel.

The precise definitions of employment status are obviously crucial to a study like this.
Unfortunately, the exact definition of involuntary unemployment is problematic as both Solow
(1990) and Ashenfelter (1978) have pointed out. An economically sensible definition, proposed
by Ashenfelter (1978) would hold that an individual, A, is involuntarily unemployed if, and
only if, two conditions are met. Firstly, there must exist another individual, B, identical to A
in preferences and skills, who is employed. Secondly, A must be willing to take Bs job under
the same terrns as B if it were to be offered. Obviously in practice it is impossible to implement
this definition because it is impossible to match people so closely.

Most statistically implemented definitions of unemployment rely on individuals reporting
their own employment status and then apply some consistency check to ensure that the con-
straint they claim to face is reasonable and that the unemployed individual is close to satisfying
Ashenfelter’s definition. The standard OECD definition requires that the unemployed individ-
ual has actively searched for work during the previous 4 weeks. If he has not done so, then he
is judged to be a non-participant. In practice there is quite a lot of variation across countries
in the precise definition of the “standardized” unemployment rate.5

The OECD definition seems too restrictive. Search effort is as much determined by the
perceived probability of success as it is by the tastes of workers. The OECD would tend to
systematically exclude, for example, discouraged workers. These individuals may have as much
a desire to work as other unemployed but are disillusioned with the efficacy of job search and
therefore, no longer actively search.

For this reason I define as unemployed any individual who does not have a job but reported

that he would work if he were offered a job. As a consistency check, to ensure that the unem-

"Most of these excluded observations were for individuals interviewd by proxy. Their exclusion will bias the
results if they are systematicallly different from those interviewed directly. We might expect this to be the case if
individuals interviewd by proxy tended to be young men living in their parents’ home, whereas those interviewed
directly were older men living independently. The former group may be expected to have a greater propensity
to be unemployed than the later. There is some evidence for this bias in the data.

fSee OECD (1986)
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ployed individual is truly constrained and that his aspirations are truly reasonable, I require
that he can indicate the minimum wage at which he would work and/or the type of occupation
which he would accept. both of these variables are available in the dataset. Furthermore if
these criteria are out of line with the individuals previous job and wage (if any) or his level of
education, age, region of residence etc., he is coded as a non-participant.’

The precise definition of employment status is as follows:

o A person is defined as employed (E) if he was working the week before the interview.
For these individuals I observe hours worked strictly greater than zero and the usual net

hourly wage (hwage).

e A person is defined as unemployed (U), if he did not have a job the week before the
interview but reported that he would take one if offered. Both the employed and the

unemployed constitute the labor force.

e A person is considered to be “not in the labor force” (IN) if he does not belong to either

of the other two categories.

Table 2.3 shows the percentage of individuals in each labor market state during each wave
of the sample. The sample unemployment rate is about 18% over the four years®. This makes
it significantly higher than the official unemployment rate for the U.K. over the same period,
which was 10% or so.® This reflects the difference in the definition of unemployment. Some
individuals, who are classified as non-participants under the official scheme, are classified as
unemployed here. This probably results from my re-classification of discouraged workers as
being unemployed rather than as non-participants. The problem is that we are trying to
approximate a continuous variable (degree of attachment to the labor force or search effort) by
a discrete division. There will always be a degree of ambiguity in the choice of where exactly

we should draw the dividing line between unemployment and non-participation.

"More precisely I regress wage on education age and region dummies for the employed. I use this regression
to generated a predicted market wage for the unemployed. If the individuals reported reservation wage is more
than two standard deviations greater than his predicted market wage, then he is recoded as a non-participant.
Only a very small number of individuals (93) were recoded.

Unemployment rate is defined as

U
U+FE
%See Table 2.1
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Another issue is how to deal with the likely joint endogeneity of a number of regressors.
The presence of progressive taxes implies that employment status, net wages and unearned
income are all jointly endogenous. Any change in employment status will tend to lead to higher
income, placing the worker in a higher tax band, which in turn reduces the net wage and after
tax unearned income. For this reason and because of the suspicion of error in both wage and
unearned income, I first regress hwage and dsave on the set of exogenous variables and use
the fitted values as regressors.

The exogenous variables used here are similar to those used throughout the literature. They
fall into three broad categories: Human Capital, Household Composition, Aggregate Demand
Side Variables, and time and region fixed effects. The human capital variables are all related
to education and occupation (educ, soc, pasoc, tae, voced). The household composition
variables include marital status (marstat), the number of dependent children of various ages
(k02y-k1618y) and a dummy for being head of household (hoh). The aggregate demand side
variables are long term interest rate {longi), national and regional unemployment rates (uktot
and regu), retail price index (rpi) and a regional index of the change in house prices (dval).

The fitted values were estimated by regressing hwage and dsave on dummies created from
the above exogenous variables together with interactions between time and region dummies.
This procedure is not without controversy. Only the exogeneity of fathers occupation (pasoc),
age and the time dummies are absolutely assured. One could argue that the human capital
variables, the household composition variables and even the regional dummies are all the result
of choices that are made jointly with the choice of labor market status and are therefore not
exogenous.

The are two defences against this criticism. Firstly, it can be argued that, while these
variables are formally the result of choices, those choices are sufficiently independent of the
choice of employment status to enable the resulting variables to be treated as being exogenous
in practice. For example, education may be thought to be endogenous because we choose a
higher level of education in anticipation that this will enable us to earn higher wages, avoid
unemployment etc. But it is also plausible to suggest that the choice of education is as much a
result of available opportunities, parental encouragement, personal abilities etc. To the extent

that this is so, the level of education can be considered to be exogenous. Similar arguments
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can be made in relation to the household composition variables. In the case of the aggregate
variables we can invoke a Nash type argument. Individuals are assumed to act on the basis that
they cannot affect the aggregate variables such as the interest rate and the unemployment rate,
even if they know that all individuals acting together collectively determine these variables.

The second defence is that the contribution of this paper to the literature, is not intended
to be the improvement on the identification of previous models. Instead the focus of the paper
is on the implications of unemployment for estimation of labor supply. It seems reasonable,
therefore, to adopt standard practice in all other respects.

Another issue that arises is the nature of the identifying variation. The wage variable used
throughout (hwage) is the individual’s reported hourly wage after tax. This implies that the
identifying variation is a combination of variation in the gross wage and variation in the tax
paid by individuals. There was very little change in the tax structure through time (at least
during the period covered by the BHPS data). Thus most of the tax variation will be cross-
sectional. The progressive nature of the tax structure implies that those with higher earnings

tend to have higher average tax rates.

2.4 A Model With “Voluntary” Unemployment

It is clear from section 2 that we need an econometric procedure that is flexible enough to
allow for three labor market states. Of crucial importance to this estimation scheme is how
I choose to model unemployment. I adopt two polar assumptions. In this section I propose
estimators based on the assumption that unemployment is voluntary (in a sense to be made
precise shortly). In the next section I propose estimators based on the opposite assumption that
unemployment is completely involuntary. In either case the Random Utility Model (RUM)!? is
a convenient framework within which to consider the alternative econometric methods.

The RUM model of labor market choice is given by equation (2.3). An individual, i, assigns
(indirect) utility (U;’;) to each of the three labor market states in each time period. Utility
consists of a deterministic component (V) and an stochastic component (¢],) where j and

k € {e,u,n} are indices of employment status. The deterministic component is a “linear in

1°Gee McFadden (1986)
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parameters” function of Xijt, a matrix of independent variables at time ¢, and o’ a vector of
individual specific effects. The stochastic components have a joint distribution F'(€¢, €*,€") with
a covariance matrix X. For convenience. I assume that the covariance matrix is the same for
all individuals (homoscedastic) and for all time periods. The stochastic component of utility
can be interpreted as either true randomness in preferences across time and individuals, or as
being that component of utility that is not observed by the econometrician.!! Specification of

the functional form of F' will generate particular econometric model.
J —yI o d
Up =V + €

V! =a] + X35 (2.3)
Co’"(dta Efs) =X = [0k]

Equation (2.3) is relatively unrestrictive. It implies that each of the three labor market states
may induce different levels of utility. In particular, being unemployed is niot necessarily the
same as being a non-participant. In this manner the model already departs from much of the
traditional analysis.

In the standard RUM the individual chooses whichever state provides the highest utility.
So, for example, the probability that an individual chooses employment at time ¢, conditional
on individual effects (o), is given by equation (2.4). The other probabilities are defined sym-

metrically.
Pr(Eyles) = Pr{U§ > U}, where j = (u,n) }

. . (2.4)
= Pr{e, <V§-Vj + €, where j = (u,n) }

Equation (2.4) is not innocent. It implies that individuals may choose to be unemployed. In
fact they will do so if U} > U,-J; . In this sense unemployment is voluntary. This does not mean,
however, that unemployment is the same as non-participation. Suppose, for example, that an
individual turns down an offer of a job at a low wage and opts instead to remain searching.
Such a person meets the definition of unemployment given in the last section. He is constrairned

having not received a “reasonable” offer. His unemployment is voluntary however, in the sense
]

'! We could specify a random coefficient model by allowing €}, to be a function of X7,. See Hausman & Wise
(1978) for an example.
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that he could have accepted the low wage job or have dropped out of the labor market. This
interpretation may strike some as being unreasonable, or at least restrictive, which is why it is
relaxed in the next section.

Following Ben-Akiva & Lerman (1985) a specific multinomial model can be derived from
equation (2.4) by specifying the form of F, the joint distribution of the errors. Let f(e®, €%, €™)
be the joint density of the error terms, where time and person subscripts have been dropped
in the interest of notational simplicity. Equation (2.4} can be evaluated by integration, as in
equation (2.5).

+oo €e+Ve-VuestVe_yn
Pr(Eit|a;) = / / [ f(€8, €%, €")de" de  de® (2.5)
=00 =00 €=—00
In many cases it is more convenient to work with the distribution function F. If we denote the

partial derivative of F with respect to €® by Fe, then (2.5) can be re-written &s

+00
Pr(Bulos) = [ Fuleleh+ Vie = Vit e+ Vi = VE)de (26)
e=—co

The integrand in (2.6) is the probability that e equals a particular value and that the other
disturbances are such that E will be chosen. By integrating over the support of €® we get the

probability that E is chosen (conditional on «;).
Given these probabilities, we can calculate equation (2.7), the log likelihood of the sample of
N individuals over T periods, conditional on individual effects, where d’, is a dummy variable

equal to one if individual i is observed in state j at time t.

InL=In

N
i=1

t=1 { j=e,u,n

ﬁ{ 3 d{,Pr(J,-da,-)} (2.7)

In general the first, and second, order conditions of (2.7) do not have convenient analytical
forms. Maximization of the likelihood may have to be done numerically.

With only cross-section data we would be unable to controi for the individual specific effects.
We would be forced to maximize the conditional likelihood (2.7) which treats the panel as

a set of T pooled cross-sections. But because the data is a panel we can control for the
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individual (random) effects. In principle this is relatively straight forward. We integrate them
out of equation (2.6), and maximize the resulting unconditional likelihood (2.8), where ¢ is the
p.d.f. of the random effects.'? In practice, however, maximization of (2.8) is computationally
burdensome. It requires an extra numerical integration each time the likelihood function is

evaluated and the use of numerical procedures to evaluate the gradient and the hessian.

0o ( -
inL = lnﬁ / {ﬂ 3 [d{, Pr(J,-tla,')] } d(e)da (2.8)
i=1_%, \t=1j=eun

Before proceeding, it is worth making clear why I do not attempt to implement fixed ef-
fects estimators. These are not generally available for non-linear models. Because of the noun-
linearities, the fixed effect cannot be differenced out as with the least squares “within-groups”
estimator. Therefore, it must be estimated as an incidental parameter. This yields consistent
esiimates only if T — oo, which is clearly not true in this dataset. Furthermore, because the
MLE of the coefficients on the independent variables and the incidental parameter are jointly
determined, this inconsistency will be passed on to the estimates of the other coefficients also.

An important special case where the above is not true is described by Chamberlin (1980).
He suggested controlling for fixed individual effects using a conditional likelihood estimator of
the MNL model. Unfortunately this procedure effectively drops from the sample all those whose
status has not changed over the period of the sample. This would tend to bias the estimates
if, for example, those who were employed for the entire duration are systematically different
from those who were not. Therefore, when I estimate a MNL model I adopt the alternative to
the Chamberlin method and treat the individual effects as being random, assume a distribution
(here normal) and integrate them out as in equation (2.8). This allows the MNL to be estimated
over the entire sample without the loss of any class of observations.

Estimation of a RUM amounts to estimation of the parameters of the utility function. But
because we observe only the demand functions and not the utility functions directly, we cannot

identify all the parameters of the model. In effect we only observe the difference in utility

'?] assume that the individual specific unobseravbles are distributed accross individuals according to a normal
distribution. Originally I had intended to estimate a model with different individual effects attached to each
utility index i.e. a® # a" # a", with a™ normalised to zero and with a® and a* jointly normally distributed. [t
proved impossible, however, to separately identify a® and a* in any model, so a® is assumed to equal o
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functions. Define AU* = U7 — U*. Then, dropping subscripts, the two equations below are

sufficient to characterize the individual's decisions.
AU = (a® —a") + (8% — B*) X + (5 — e*)

AU = (a® —a") + (8% - ") X + (€ — €")

Clearly we can only identify the differences in parameters when the variable in question does
not vary across alternatives. Normalizations are necessary. In what follows I normalize U™ to

be zero and 02 = 1.

2.4.1 Multinomial Logit (MNL)

Following McFadden (1974), assume that the € in (2.3) are i.i.d. extreme value, then F takes
the form

F(€,¢*,€") = emn(~[exp(~e) + exp(—e*) + ezp(—e™)] (2.9)
Performing the integration in (2.6) will generate equation (2.10), giving the MNL model.

exp(Vi)

P(Ei|a;) =
(Eit|os) exp(Vg) + exp(V¥) + exp(VP

(2.10)

More generally the probability of observing state j conditional on the individual effects, is given
by equation (2.11).

exp(of + X},6/)
Y. exp(al+ XTp™)

m=e,u,n

P(J.-tla:i) = (211)

By maximizing the log-likelihood in (2.7) or in (2.8) with P(Ji|a;) given by (2.11) we can
estimate the MNL model ignoring and controlling for individual effects respectively.

Table 2.4 provide estimates of the MNL model. Thz actual model estimated included as
regressors, polynomials in age and dummies reflecting the age groups of dependent children
(k02-k1618).  The coefficients on these variables are not shown in the tables for reason
of clarity. The first column reports estimates for the unrestricted case without controlling

for individual effects. The second column reports estimates when wages are constrained to
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have no direct impact on unemployment and benefits are constrained to have no direct impact
on employment, and again not controlling for individual effects. In the context of the RUM
interpretation of the MNL model, this restriction implies that the conditional utility of each
state is dependent only on the “price” associated with that state. The third and fourth columns
report estimates of the unrestricted and restricted model respectively, controlling for individual
random effects.

The coefficients take on plausible values in most cases. A higher wage tends to increase the
relative probability that an individual i employed and reduces the relative probability that he
is unemployed.!® The discrete model does not pick up the negative effect that higher wages
have on the hours supplied, conditional on participation. This accords with the standard labor
supply literature which has tended to report participation elasticities much larger than the
hours elasticity conditional on participation.

The negative coefficient on the wage variable in the unemployment equation, while plausi-
ble, is not a logical necessity. If we think of a model where unemployment and employment
are very similar states e.g. a simple search model where unemployment is a temporary state
inhabited relatively painlessly while waiting to take up a job. In this case a rise in the wage may
encourage non-participants to seek employment even if that means a short period of frictional
unemployment while they wait to be matched. Thus we might expect to see an increase in
the wage lead to an increase in the relative probability of being unemployed. The fact that we
do not observe this suggests that unemployment and employment are very different states. A
more formal test of this hypothesis can be conducted by re-estimating the model subject to
the constraint §* = 3°. The likelihood ratio test of this restriction produces the x? statistics
shown in the second last row of Table 2.4. The models reject this restriction.

The other hypothesis that we may wish to test is that the unemplcyed are the same as
non-participants i.e. g% = " = 0. If this hypothesis were true then we could explain the labor
market behavior by estimating a (binomial) logit model of participation. Again likelihood ratio
tests of this hypothesis lead to its rejection.

The coefficient on benefit income in the first column suggests that larger benefits increase

""Some care should be taken when interpreting the coefficients in any multinomial model. They do not
necessarily have the same sign as the marginal probabilities. In the case of MNL they represent the marginal
effect of the covariates on the log of the odds ratio i.e. g€ = &2 f; %
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the probability of being unemployed but also have a small positive (but insignificant) effect
on employment. This could be because the benefit system makes participation in general
more likely than non-participation. Imposing the restriction that benefits do not directly affect
employment and that wages do not directly affect unemployment improves the precision.

The positive coefficient on unearned income in the employment equation in the first two
columns is curious. I would have expected that unearned income should be negatively correlated
with the probability of employment as it tends to be with the quantity of hours supplied. One
explanation of this is that leisure is an infc..or good! A more plausible explanation is that
this positive coefficient is the result of a spurious correlation. Those who were employed in the
past are more likely to be employed today. Also as a result of their previous employment, they
are more likely to have accumulated more assets giving them a higher unearned income today.
Hence we could observe a spurious poéitive correlation between employment today and unearned
income today. A possible way to control for this employment history effect is to implement the
random effects estimator of equation (2.8). Intuitively, if the long-term employed are somehow
different, then we can control for this by tracking them over time. Controlling for random
effects does change the sign of the coefficient on unearned income, making it negative. Note,
however, that, since the data has been re—sc'aled the coefficient is very small. This suggests that

income effects are low.

2.4.2 Multinomial Probit (MNP)

The assumption inherent in the MNL model, that the errors are i.i.d. is not reasonable in
many situations. This assumption has the undesirable consequence known as “Independence of
Irrelevant Alternatives” (IIA). The model assumes that all the alternatives are equally similar,
once we have controlled for observables. This is often unrealistic. In the context of the labor
market, for example, we might expect that employment and unemployment are similar in
unobservables, because both imply attachment to the labor force. The Multinomial Probit
(MNP) model can help overcome this problem.

The MNP has been used widely in the transport literature but less so in the labor economics
or public finance literatures (see Burtless & Hausman (1982) for an example). The main

advantage of the MNP model is that we are free, principle, to parameterize the covariance
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matrix as we like. Most particularly we are not obliged to impose IIA by restricting £ to be
diagonal. The main disadvantage is that the model can be computationally burdensome to
estimate especially as the number of alternatives increases. In the context of the labor market,
however, this is not such a problem as there are only three alternatives. The model can be
estimated in reasonable time by brutc force numerical integration.

If the errors (¢) in equation (2.3) are assumed to have a joint normal distribution with
covariance matrix X, then F' is the trivariate normal joint distribution function and the MNP
model results. Allowing for the necessary normalizations there are two free parameters to be
estimated in X, one variance parameter and one covariance parameter. As noted previously, I

choose to normalize U™ to zero, so that the covariance matrix is given by equation (2.12).

1
E=| peuou 03 (2.12)
0 0 O

For estimation of the MNP model it is inconvenient to work with equation (2.6) directly. It is
more convenient to follow Hausman & Wise (1978) and re-parameterize the model in terms of
differences in utility. Define 7/ = € — €/, AVY = V! — V7 and Q = [w] to be the correlation
matrix of the »'4. In this way equation (2.6), the probability of observing an employed individ-
ual, reduces to a single evaluation of the bivariate normal distribution, as in equation (2.13).

The other probabilities are defined symmetrically.

Pr(Eja) = Pr(5®™ < AV & n°* < AV®™) (2.13)
Aveu AVG'I
PBla) = [ [ £ o o) dnfdn
—00 —00

Muwiy = Var(n™) = 1+ 0% — 2peud.
we2 = Var(n®") =1
wiz = Covar(n®,n°") = 1 — peudu

0 = Corr(n®*,1™) = e
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cu 2 cu _en en 2
F 7™ e ) = = 5——ee () - () o]
N0 |Peu,Ou) = 2oVl = 02 P 2(1 - 62)

By substituting (2.13) into the conditional likelihood function, equation (2.7) we can estimate
the MNP model over the pooled cross section. Alternatively we can substitute (2.13) into the
unconditional likelihood function, equation (2.8) and estimate the MNP controlling for random
effects.

Unfortunately, it proved impossible to estimate the MNP model with the covariance pa-
rameter free. Attempts to do so always resulted in a singular Hessian matrix. The estimates
reported are when X is constrained to be diagonal i.e. IIA imposed. This result, however, is
not entirely unexpected. Keane (1992) conducted Monte Carlo simulations of the MNP model.
He found that unless the data was very well conditioned, it may be impossible to identify the
covariance parameters. He suggested that, while the covariance parameters are formally iden-
tified, they can easily be mimicked by the coefficients on the independent variables. Thus, in
practice the MLE algorithms will generate very large standard errors on estimates of all para-
meters or even fail completely due to the Hessian being singular. He suggested that a solution
to this problem may lie in exclusion restrictions, which may help separate movement in the
independent variables from movements in the covariance parameters. I have failed, however, to
estimate the model successfully with any economically sensible exclusion restrictions. I also es-
timated the model with the covariance parameter constrair.ed to equal values other than zero.!®
The resulting estimates were almost indistinguishable from those reported here. This confirms
that the covariance parameter is not well identified.

The first two columns of Table 2.5 show estimates of the independent MNP applied to the
pooled dataset. The third and fourth columns of Table 2.5 gives the estimates of the independent
MNP model controlling for random individual effects. As can be seen, the coefficients are very
similar (up to a scale factor) to those estimated in the corresponding MNL model. This suggests
that the specification is robust to different distributional assumptions. Thus the basic results of
the previous sub-section are confirmed. A higher wage tends to increase the relative probability

of being employed and reduce the relative probability of being unemployed. The coefficient on

!3The correlation coefficient, p.., was constrained to be 0, 0.5, 0.75 and 0.9.
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benefit income has a small positive effect on the relative probability of being employed and a
larger positive effect on the relative probability of being unemployed. Restricting wages to have
zero effect in the unemployment equation and benefits to have zero coefficient in the employment
equation, improves precision but does not change the direction of any effect. As with the MNL
model, the sign of the coefficient on dsave changes when we control for individual random

effects.

2.4.3 Nested Multinomial Logit (NMNL)

The assumption of “Independence of Irrelevant Alternatives” (IIA) inherent in the MNL and
independent MNP models is not reasonable in the context of the labor market. The NMNL
model, McFadden (1978) was designed to overcome this kind of problem. In terms of the RUM
of (2.3) the distribution of the €’ is given by the function F below

F(e°, ¢, €") = exp{—[exp(—€°) + exp(—€*)| p — ezp(—€")}

Performing the integration in equation (2.6) will generate (2.14) the NMNL

exp(V®){exp(V*®) + exp(V*)} 1

P(Ele) = {exp(Ve) + exp(V*)} 1 + exp(V™)

(2.14)

The parameter y represents the degree of dissimilarity between the unobserved components
of the utility of employment and unemployment.!® When p is one, all the unobservables are
equally dissimilar, F reduces to (2.9), equation (2.14) reduces to equation (2.10) and the NMNL
reduces to the MNL model.

The model could be estimated directly by substituting (2.14) into the likelihood function
(2.8). The model is more easily understood, however, if it is expressed in terms of tree structure
of sequential decisions conditional probabilities, as explained in McFadden (1984).

We can think of estimating the model in two stages. Suppose that labor market decisions
are structured as follows. Individuals choose between participating in, or dropping out of, the

labor force. This is the standard labor supply, or participation, decision. Then, conditional on

'®More precisely numerical simulation reported by Maddala (1983) has indicated that if p is the correlation
between £° and " and p is the coefficent on the inclusive value then p < 1 — u < p 4+ 0.045.
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participation, individuals choose either to become employed or unemployed.

exp(pAi)

P(Ligjai) = exp(V}) + exp(pdi) (2.15)
P(EalLi, o) = —oVid) (2.16)
TR exp(VE) + exp(V '

Aie = In(exp(V;f) + exp(Viy)) (2.17)

Each decision can be modelled as a standard binomial logit. The first stage “participaticn”
logit (2.15) has an extra regressor \;, known as the “inclusive value”, which summarizes the
outcome of the second stage “employment” logit (2.16). The coefficient on this parameter is a
measure of the similarity of U and E. If the coefficient is unity the NMNL reduces to the MNL
with all three states being equally dissimilar.

McFadden (1984) shows that the model can be estimated consistently in two stages. First
the employment logit (2.16) is estimated using a standard logit algorithm. Then the inclusive
value, A is calculated from (2.17), and is included as a regressor in the participation logit (2.15).
The participation logit is then estimated by the usual method. Note that )\ is calculated for all
individuals even the non-participants, otherwise \A;; would trivially determine the participation
logit.

Alternatively, the system can be estimated by Maximum Likeiihood. Equations (2.15) to
(2.17) can be used to calculate, the probability of observing an individual in each state as in
(2.18) below. We can then substitute P(J|a;) into the conditional likelihood function (2.7) in
order to estimate the model over the pooled dataset. In order to control for random effects we

use the unconditional likelihood function in equation (2.8).

P(E.-t|a,') = P(E,-da,-,L“) * P(L,'f,lai)
P(U,-;Ia,-) = (1 - P(E,-tlag, Lig)) * P(L,'t]a.-) (218)
P(N,-¢|a,-) = 1- P(L,-tla,-)

The MLE of the participation logit of the NMNL model are given in Table 2.6. The model
was estimated in three steps. Firstly, the two stage logit estimates were obtained. These

estimates were used as starting values for the maximization of the conditional likelihood (2.7)
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i.e. witi;out random effects. The results of the conditional model are shown in the first column
of table 2.6. Thcece estimates were used, in turn, as starting values for the maximization of the
unconditional likelihood (2.8), with random effects. The results uf the unconditional model are
shown in the second column of' table 2.6.

The first two columns of Table 2.6 show estimates of the independent NMNL applied to the
pooled dataset. The third and fourth columns of Table 2.6 gives the estimates of the independent
NMNL model controlling for random individnal effects. As can be seen, the coefficients are
very similar to those estimated in the corresponding MNL model. Thus the basic results of
the MNL model are confirmed by the NMNL model. A higher wage tends to increase the
relative probability of being employed and reduce the relative probability of being unemployed.
The coefficient on benefit income has a small positive effect on the relative probability of
being employed and a larger positivé effect on the relative probability of being unemployed.
Restricting wages to have zero effect in the unemployment equation and benefits to have zero
coefficient in the employment equation, improves precision but does not change the direction
of any effect. As with the MNL model, the sign of the coefficient on dsave changes when we
control for individual random effects.

The coefficient on the inclusive value term deserves special attention. The fact that it is
significantly different frem zero indicates that the second stage logit is relevant. We cannot
mode} the labor market with a standard binomial participation logit. M°Fadden (1984) notes
that if the coefficient on the inclusive value is significantly different from unity, then the data
rejects the hypothesis of independent errors necessary to estimate the model as a standard
multinomial logit. As can be seen from Table 2.6, this data rejects the hypothesis. In fact
the estimates suggest that the correlation between € and € is approximately 0.3. While the
coefficient on the inclusive value is significantly different from unity, numerically it is quite
close. This helps explain why the NMNL estimates of the other coefficients are so close to those
produced by the MNP and MNL models. Independence of Irrelevant Alternatives (IIA) is not
a bad approximation to the “true” model. Therefore the coefficients estimated by the MNL
and MNP models i.e. with ITA imposed, are not that different from the “true” NMML.
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2.5 Involuntary Unemployment

The estimates of the previous section were based on the idea that unemployment was voluntarily
chosen but still different from non-participation. In this section I adnpt the polar opposite
assumption that unemployment is completely involuntary. Suppose that the labor market
decisions are structured as follows. Individuals choose between participating in, or dropping out
of, the labor force. This is the standard supply decision. Then, conditional on participation,
individuals either get a job or become unemployed. The second stage is the result of the
imposition of an outside constraint. This is the sense in which unemployment is involuntary.
Individuals make their participation decision knowing that participation does not guarantee
employment. The probability that an individual gets a job if he participates is modeled as a
function of exogenous variables that are outside the control of the individual.!” So for example,
a youth with a low level of education, living in a high unemployment area has a low probability
of being employed. Knowing this, he would tend to be less willing to and seek work at any
given wage level. This interpretation of unemployment is different from that given in the last
section. Unemployment is the result of a constraint. The individual can do nothing to alter
the probability of being employed once he decides to participate. They only choice that exists
is between participation and non-participation. Unemployment is involuntary in this sense. '

This structure can be modeled formally as follows. Individuals choose between participation,
which yields indirect utility U}, and non-participation which yields i- The utility of non-
participation is as defined previously. The utility of participation is modeled as a function of
the payoff if the individual secures employment, the payoff if he becomes unemployed and the
probability that participation will yield employment. A convenient specification is to mode!
the utility of participation as the expected utility of the gamble that participation will yield

employment with probability pi, as in (2.19). The random variables, Ug , U% and U} are as

17 have assumed that the probability of employment conditional on participation is a function of variables that
are assumed tc be exogenous. Thus the analysis does not allow for any attempt by participants to improve their
chances of finding employment by, for example, migrating to a different region or improving their educational
qualifications.
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defined in (2.3) and n:e = pae(€; — €¢) + €}

UL =pix U+ (1 pa) » U} 219
=pa(Vit — Vi) + Vit + Mt

The individual will choose participation if U}, > U%. Conditional on participation he will get
a job with probability p;;. We can estimate the model in two stages. First we estimate the
probability of employment conditional on participation, p;: as a function of all the exogenous
variables. This is a standard binomial discrete dependent variable model such as probit or
logit. Then the fitted values from this regression can be used for p;; in estimating the binomial
choice between participation and non-participation. Alternatively, we could jointly estimate
both models using the two stage estimates as starting values. The probability of observing
the individual in each of the three states is given by (2.20). Substituting (2.20) into (2.8) will

enable FIML estimation of the model controlling for random effects.

P(Ligla) =P(U; >UE)
P(Ey|ai) = pie * P(Litla;)
P(Uitlai) = (1 — pi) * P(Lit]oxi)
P(Nilai) =1~ P(Lit|os)

(2.20)

2.5.1 Nested Logit

The conditional probability story described above leads naturally to consideration of the NMNL
model. The NMNL was originally derived in order to overcome the restrictive assumption of
independence of irrelevant alternatives inherent in the MNL model. This was why it was used
in section 3. However, McFadden (1984) shows that it also has a conditional probability
interpretation that is particularly convenient in this context. It is important to note that the
NMNL in this section should not be confused with that of section 3. The estimation method is
the same but the regressors and the underlying economic model are different.

Suppose that the utility of participation takes the form of equation (2.21). This equa-
tion states that the utility of participation rises with the wage and falls with the increasing

probability of unemployment
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U}, = ai + BeInWyy + 6 X + pln P(Uyy|Lir, i) (2.21)

Each decision in the two stage process can be modelled as a standard binomial logit. The first
stage “participation” logit (2.22) has an extra regressor A;, known as the “inclusive value”, which
summarizes the outcome of the second stage “employment” logit (2.23). The participation logit
(2.22) is the same as that estimated by MNL in the previous section, with the exception that it
has an extra regressor, ); the inclusive value term. Equation (2.24) shows that, in this model, the
inclusive value term is equal to the negative of the log of the probability of being unemployed
conditional on participation. Thus, the NMNL effectively includes the probability of being
unemployed in an otherwise standard participation equation. The employment logit (2.23)
includes the aggregate and individual level variables that may be hypothesized to influence an

individuals chance of becoming unemployed.

exp(BXit + pAit)
P(Li|ag) = .
(L tla ) 1+ ezp(ﬂX,-t + ﬂ/\,‘g) (2 22)
P(Eu|Lit, 04) = M (2.23)
it| ity X)) — 1 + ea:p(GZ,'t) .
Aie = In(1 + exp(a; + 62Z;)) (2.24)
= —P(Ui|Li, ;)

The system can be estimated consistently in two stages. First the employment logit (2.23)
is estimated using a standard logit algorithm. Then the inclusive value, ); is calculated from
(2.24), and is included as a regressor in the participation logit (2.22). The participation logit
is then estimated by the usual method. Note that ); is calculated for all individuals even the
non-participants, otherwise A\; would trivially determine the participation logit.

Alternatively, the system can be estimated by Maximum Likelihood. Equations (2.22) to
(2.24) can be used to calculate, the probability of observing an individual in each state as in
(2.25) below. We can then substitute P(J;]a;) into the conditional likelihood function (2.7) in

order to estimate the model over the pooled dataset. In order to control for random effects we
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use the unconditional likelihood function in equation (2.8).

P(Ey|a;) = P(Ei|ai, L) * P(Li|oy)
P(Ugla;) = (1 - P(Ei|ai, Lie)) * P(Li|a) (2.25)
P(Nitlas) = 1 - P(Li|a)

The MLE of the participation logit of the NMNL model are given in Table 2.8. The model
was estimated in three steps. Firstly, the two stage logit estimates were obtained. These
estimates were used as starting values for the maximization of the conditional likelihood (2.7)
i.e. without random effects. The results of the conditional model are shown in the first column
of table 2.8. These estimates were used, in turn, as starting values for the maximization of the
unconditional likelihood (2.8), with random effects. The results of the unconditional model are

shown in the second column of table 2.8.

The coefficients on the participation logit have plausible values. A higher wage increases the
probability that an individual will participate. Higher unearned income (dsave) decreases the
probability of participation as does higher benefit income. Note that, in contrast to the models
of the previous section, the inclusion of random effects does not affect the sign of the coefficient
on dsave. In both cases it is positive, as we would expect it to be. However, when we do not
allow for random effects, we cannot reject the hypothesis that the coefficient is positive.

The fact that coefficient on the inclusive value term is significantly different from zero
indicates that the second stage employment logit is relevant. The labor market cannot be
modeled with a standard binomial participation logit. The probability of being unemployed
at the second stage influences an individual’s decision to participate. The positive coefficient
implies that the higher is the probability that an individual will be unemployed, the lower the
probability that he will participate. The estimates of the reduced form employment logit (not
reported here) are jointly significant. This implies that occurrence of unemployment is not a
random event but is correlated with variables that typically enter labor supply equations either
directly or indirectly via the wage equation. This is what the traditional labor supply models

miss
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2.5.2 Nested Probit

While the model of (2.22)-(2.24) is intuitive, it is not an expected utility formulation. The
expected utility model of equation (2.19) can be estimated directly. The probability of partici-
pation is given by P(Ly) = P(U}, > U%).

e (VE=V2)+Ve

P(Luos) = ®(% k) | (2.26)

—_— . e u u
Mit = Pie(€ — €i¢) + €5t

As in previous sections I normalize a™ = " = €" = ( and I assume for simplicity that a® = a*.

If we assume that the errors, € héve a joint normal distribution, then so will 7. A prob-
lem arises with the error term . The variance of 7; is a function of p; which varies across
individuals. Thus even if the € are homoscedastic, the errors in the estimated model will be
heteroscedastic except in the special case where € = €®. Heieroscedasticy in non-linear models
leads to inconsistency as well as inefficiency (see Greene, 1993). Fortunately, the nature of
the heteroscedasticity is clear in this case, thus we can model it directly. Assuming that € are

homoacedastic, the variance of 7 is given by
Var(ni) =2+ 2+ p4 — 2% pa

Thus P(L;|a;) is given by (2.26). The model can be estimated in two stages. First we estimate
the probability of being employed conditicnal on participation. The fitted values from this
probit are used for p;; in (2.26), the participation equation, which is estimated as a standard
binomial probit. The two stage estimates are used as starting values for FIML estimation of
the model. From (2.20) we can derive the probability of individual being in each state, then
using (2.8) we can derive the likelihood of the sample controlling for random effects.

The estimates of the reduced form employment equation are not reported in Table 2.7,
for reasons of space. The coeficients are jointly significant. This implies that occurrence of

unemployment is not a random event but is correlated with variables that typically enter labor
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supply equations either directly or indirectly via the wage equation. This is what the traditional
labor supply models miss. Table 2.7 shows results for the joint (FIML) estimation of (2.26). The
coefficients show are the estimated parameters of U® and U" that comprise UL as in equation
(2.19). As expected, a higher wage increases the utility of employment and hence the probability
of participation. Higher unearned income (dsave) decreases utility of both employment and

unemployment and hence the probability of participation.

2.6 Supply Response & Welfare Effects

We can use the estimates from the previous two sections to calculate how an individual’s
response tu changes in taxation and hence calculate the deadweight loss of taxes. Before doing
so, however, it is useful to present estimates of a standard labor supply model. Table 2.9
shows the results of 2SLS estimates of equation (2.27) over a sample consisting of the employed

workers only.!8

Y;
Hyi=o0i+[InW; + ’Yﬁ + 60Xt + i (2.27)

The results are consistent with theory in so far as the estimated Hicksian wage elasticity is
positive. The size of the elasticity is within the range reported by other authors for the UK,
although it is at the lower end of the range.!?

In contrast with the results in Table 2.9, the estimates of the previous two sections all show
large wage elasticities. In order to see this more clearly, we can calculate the supply response
of the representative agent. Table 2.10 shows how the probability of observing the average
individuzl in each state varies with the tax rate using the estimates of the MNL model of section
four. The table are calculated using the estimates of the restricted MNL model controlling for
random effects (the fourth column of Table 2.4). I assume that the UK tax system over the
period of the panel can be thought of as imposing a single proportional tax rate of 23% on
an average worker?’ who earns the sample mean of £6.44 per hour. All other variables are
evaluated at their sample means. Table 2.10 shows that the imposition of 23% tax rate is

sufficient to lead to the probability of being employed falling by 16 percentage points, from 76%

!*Equation (2.27) has been used by Blundell et. al. (1994).
'%See Blundell (1993) and Pencaval (1986).
*This is approximately true. See OECD (1993)
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to 60%. The size of this effect suggests that the DWL of taxes will be correspondingly large.
In fact the elasticity of the probability of being employed with respect to the wage, evaluated
at point of imposition of the 23% tax is 1.02.

Performing the same calculation as above for the nested iogit model of section four generates
Table 2.11. The nested logit model generates a wage elasticity of participation of 1.2. and the
nested probit generates an elasticity of 0.98, both evaluated at the point of imposition of the
23% tax.

These effects are obviously a much larger effect than that measured by the standard labor
supply model of Table 2.9. The labor supply model and the models of section three and section
four are all measuring different but related responses. The labor supply model measures the
response to wages of hours worked conditional on participation and employment. This elasticity
is small. Once they have made the decision to participate in the labor force and once they have
a job, men are relatively insensitive to the wage. The discrete models, however, estimate
participation elasticities. These elasticities are much higher. This is not surprising. If there are
fixed costs of participation and job search then individuals’ participation decisions will be very
sensitive to the wage level, but once those fixed costs have been incurred, individuals behavior
(hours supplied) is relatively insensitive to the wage level.

The results for the wage response suggests that the calculated DWL of the same taxes will
differ greatly depending on whether we focus on discrete choice or the hours model. The DWL
of taxes based only on the hours model will be quite low, since workers are relatively insensitive
to wage, the government can tax hours with relative impunity. On the other hand if we use the
discrete models, we will get large dead weight losses, because the participation decision is very

“sensitive to the wage level.

In order to see this more formally, we need a method of calculating the dead-weight loss
in the context of discrete choice models. Small & Rosen (1981) and McFadden (1986) show
that in the context of a RUM such as (2.3) or (2.19), the probability function can be treated
as the demand function for a discrete good. Define % to be the hours supplied conditional
on employment and h to be the unconditional hours. Small & Rosen (1981) show that for
the representative agent equation (2.28) holds, where P¢ is the estimated probability of being
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employed.
h=P¢xh (2.28)

They also show that the standard results of consumer theory for continuous goods carry over to
case of discrete choice. Specifically we can apply Roy’s Identity to the conditional hours supply
function (71 = -—g%;é—g—;%) and Shephard’s Lemma to the unconditional hours supply function
(h = $%) where C is the consumers cost function. By substitution into (2.28) we get (2.29)
where 6 is the marginal utility of income (§ = §V¢/§Y).

s __1ove
W~ 0&W

P (2.29)

The compensating variation is calculated by changing variables and integrating the area under
the compensated demand curve, given by (2.29), to get equation (2.30). The DWL of a tax is

given by the CV less the tax revenue.
cv = / 9w = —= / Po(Ve)dV® (2.30)

In order to take the @ outside the integral we must assume that the marginal utility of income
is independent of wages. Thus strictly speaking, (2.30) is the Marshallian consumer surplus.
In the models estimated here, utility is linear in the income term, so the marginal utility of
income is independent of the wage. In this case the Marshallian concept of consumer surplus
coincides with the compensating variation.

The expression in (2.30) has a convenient closed form in the case of the MNL and NMNL
models. In the case of the MNL model (2.30) reduces to equation (2.31) and in the case of the
NMNL it reduces to equation (2.32). In the case of the MNP model (2.30) must be evaluated
by numerical integration.

v/

cV = (2.31)

—%’ In { Z exp(Vj)}

je{e'uin}

v
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1 v
CV = [—5 In{1+exp(V! + p.,\)}] y (2.32)

Table 2.12 and Table 2.13 show the dead-weight loss caused by varicus different tax rates,
as calculated from the estimates of sections three and four respectively. In the case of the MNL
and MNP, the estimates used are for the restricted model with random effects. Calculations
are for the case of the average worker in the sample. I assume that he earned £6.44 per hour,
paid tax at 23% (£1.48 per hour) and worked 43 hours a week.

Consider, for example, the calculation of the DWL of tax at 23% using the estimates of
the MNL model. Evaluating equation (2.31) at the sample means generates a compensating
variation of £0.99 per hour. This amount is sufficient to restore the average worker to his
pre-tax utility given that he is now less likely to be employed. The revenue raised by this tax
is £1.48 per hour but this must be adjusted for the fact that the imposition of the tax reduces
the number of individuals working. From Table 2.10, the imposition of the 23% tax reduces the
probability of an individual being employed by 16 percentage points, from 76% to 60%. This
gives a tax revenue of £0.88 per hour for each average individual (as distinct from each average
worker). Thus the DWL of the tax is £0.11 per hour or £20.48 per month for the average
worker. This is equal to 13% of revenue. The rest of Table 2.12 and Table 2.13 are calculated
in a similar manner.

Table 2.12 must be interpreted with care. Equation (2.30) applied to the models of section
three effectively views unemployment as just another discrete choice individuals can make. The
models of section four view unemployment as completely involuntary. Individuals can decide to
participate or not, but they cannot affect their probability of getting a job once they participate.
In this case the DWL formula measures the distortionary effect of taxes on participation, when
there is a possibility that participation may not lead to employment.

The DWL figures calculated from both models are much larger than those typically esti-
mated by labor supply models that adopt the linear approach to the budget constraint. For
example, using the estimates of the labor supply model reported in Table 2.9, I calculated the

DWL of the 23% tax rate to be equal to 1.7% of revenue.?! The difference in size can be

*!This calculation was done using the Harberger Triangle formula. This is a second order approximation to
the true dead-weight loss. It is unlikely, however, that this approximation can account for the difference.
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explained, to some extent, by the fact that the traditional estimators do not account for partic-
ipation effects, whereas the multinomial models used in this paper account for participation and
employment effects at the expense of ignoring the hours margin. Typically when compensated
hours elasticities are estimated, on the assumption of a linear budget constraint, they turn out
to be low (often less than 0.2).22 Thus, conditional on participation workers are relatively insen-
sitive to tax changes. The discrete choice models, effectively estimate participation elasticities,
which are generally regarded as being larger than the standard hours elasticity.

It is interesting to note that the DWL figures shown in Table 2.12 are very close to those
reported by Hausman (1985a) using the NLBS method. This fact helps shed some light on
controversy over whether the NLBS method is biased. The existing literature on the estimation
of labor supply models suggests that the treatment of the budget constraint matters. Pencavel
(1986) reports that estimates of the compensated elasticity of supply given by the linearization
method are smaller, by a factor of five, than the estimates using the alternative, Non-Linear
Budget Set (NLBS), procedure of Hausman (1985b). McCurdy (1992) has argued that this
difference is due to the fact that the Hausman method effectively imposes large compensated
elasticities on the data. The results presented here suggest that the crucial issue may be the
treatment of non-participants. The li 1earized method is typically estimated over the employed,
so it returns the low compensated elasticity of hours conditional on participation. The NLBS
method, being a generalized version of the Tobit procedure, easily accommodates the non-
participants (but not the unemployed) generating an average of the participation and hours
elasticities. Therefore the difference in measured elasticities could be entirely due to a high

elasticity of participation.

2.7 Conclusions & Extensions

The goal of this paper was to calculate the dead-weight loss of taxes in a framework that explic-
itly allowed for both unemployment and non-participation. Two different classes of econometric
models were applied to British panel data. Each model allowed individuals to be employed, un-

employed or a non-participant. The paper’s technical innovation was to apply these non-linear

*2Gee Pencaval (1986) or Blundell (1993) for surveys of the literature.
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models to panel data controlling for individual specific random effects.

The estimates confirmed some reasonable hypotheses regarding the labor market. Most
particularly, it seems that employment, unemployment and non-participation are all qualita-
tively different states. Any analysis of labor supply that fails to take this into account could be
misleading.

The estimates were used to calculate the DWL of labor market taxes. These figures turned
out to be much higher than those estimated by the traditional labor supply literature. This
appears to be because the estimates presented are of participation elasticities. These might
be expected to be higher than the hours elasticity conditional on participation measured by
the traditional literature. Interestingly my results are close to those estimated using the NLBS
method of Hausman (1985). This fact helps shed some light on the controversy regarding the
alleged bias of the NLBS model. The higher elasticity estimated by the NLBS model could be
due to fact that NLBS accounts for participation (if not unemployment) whereas the linearized
method typically does not.

This paper is a step towards the ultimate goal of a complete characterization of the impact of
taxation on the labor market. Much remains to be done. In particular two important statistical
extensions to this paper and one important theoretical extension suggest themselves.

Firstly, we must develop an estimation strategy that can incorporate variation in hours,
without dropping the distinction between the three labor market states. Not accounting for the
variation in hours means that we are throwing way information which could be used to identify
individuals’ preferences more accurately.

Another important extension to the statistical model is to allow for dynamics. It is quite
likely that employment status is more persistent than the independent variables would suggest.
This would occur, for example, if there are large costs to both the employer and employee of
breaking the match. This would tend to generate autocorrelated errors. In non-linear models
autocorrelation leads to inconsistency as well as inefficiency. If the persistence is due to the
presence of some unobserved factor specific to each individual, then the problem could be dealt
with through the use of the random effects estimators. More, generally, however, we might
want to model the autoregressive nature of the errors directly i.e. the equivalent of including

lags of the dependent variable as regressors in the estimated models.
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Lastly, and more importantly, we must try to improve on the partial equilibrium nature
of the analysis in this paper. Specifically we must explicitly model the interaction between
the inefficiency generated by taxation and the inefficiency responsible for unemployment in the
first place. This is important because the interaction could have very substantial implications
for welfare. The imposition of even a small tax on an already distorted economy could have
first order welfare effects. Alternatively, the two sources of inefficiency could counteract each
other, leading to a lower welfare costs of taxation than that reported here. Clearly the usual
competitive general equilibrium models of tax incidence are unable to resolve this issue. Its

resolution requires research into the theory of taxation in the labor market.
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Table 2.1: OECD Standardised Unemployment Rates

1975 1980 1985 1990 1991 1992 1993 1994

Us 8.3 7.0 7.1 5.4 6.6 73 6.7 6.0
Japan 1.9 2.0 2.6 2.1 2.1 2.2 2.5 2.9
FRG 3.6 2.9 7.1 4.8 4.2 4.6 79 8.4
France 4.0 6.2 10.2 8.9 94 104 116 123
Italy 5.8 7.5 9.6 103 99 165 102 11.1
UK 43 6.4 11.2 69 88 101 104 95
Spain 36 111 211 159 160 181 224 238
Ireland - - 170 133 147 1565 156 143

1. Source: OECD Main Economic Indicaters, Various issues
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Table 2.2: BHPS Data

Variable Definition Mean
age age at interview 43.33
tae terminal age of education 17.42
month month of interview 9.69
year year of interview 92.49
mastat =1 if married 0.57
region region 8.44
hwage usual net hourly wage 4.96 2
hours usual hours per week 43.62
pasoc Father’s occupation code 3.52
soc interviewee's occupation code 5.46
educ level of education 1.8
race ethnic background 0.94
k02y no. of children aged 0 to 2 in household 0.06
k34y no. of children aged 3 to 4 in household 0.07

k511y no. of children age.. 5 to 11 in household 0.15
k1215y no. of children aged 12 to 15 in household 0.12
k1618y no. of children aged 16 to 18 in household 0.036

Regu Regional Unemployment 7.15
uktot Total Unemployment 9.7
dval change in house prices 155.3
rpi Consumer prices 1.07
nli reported non-labor income 308.91
longi rate on long term govt. bonds 8.64
dsave dissaving -5680.95

1. Summary Statistics are calculated for the pooled cross section
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Table 2.3: Percentage of Sample in Each State

Wave %E %U %N

1 63 14 24
2 60 15 25
3 63 13 24
4 60 14 26

Table 2.4: Voluntary Unemployment (MNL)

Empl. Eqn. (V¢)
In(hwage) 165 255 265 3.2
(0.39) (0.27) (167)  (0.43)

dsave/100 0.0387 0.091 -0.036  0.02
(0.03) (0.03) (0.01)  (0.01)

Benefit/100 0007 - -0.041 ;
007) - (0.01) ;

Unempl. Eqn. (V")

In(hwage) -1.486 - -3.8 -
(0.43) - (1.80) -
dsave/100 0.008 0.095 -0.037 -0.116
(0.04) (0.02) (0.03) (0.03)
Benefit/100 0.12 0.157 -0.008 -0.19
(0.08) (0.06) (0.01) (0.05)
Random Effect - - 2.75 3.75
(1.28) (1.85)
Test
Hy:E=U 901.66 - 1036.32 -
Hy:U=N 1074.76 750.59 1301.75 1175.02

1. Standard Errors are in parentheses
2. (V©) and (V*) also include polynomials in age and dummies
for the number of dependent children of various ages
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Table 2.5: Voluntary Unemployment (MNP)

Empl. Egn. (V?)
In(hwage) 2.28 3.05 1.8 2.75
(1.13) (0.86) (0.88)  (0.70)

dsave/100 0.08 0.10 -0.049 -0.018
(0.02) (0.03) (0.12) (0.01)
Benefit/100 0.04 - -0.005 -
- (0.03) - (0.06) -

Unempl. Eqn. (V")

In(hwage) -2.412 - -1.34 -
(0.48) - (0.07) -
dsave/100 0.163 023 -0.6532 -0.84

(0.11) (0.03) (0.29)  (0.13)

Benefit/100 0238 028 -0.845 -0.12
(0.11) (0.08) (0.16)  (0.08)

Random Effect - - 1.702 2.87
- (1.08) (1.59)

Test:x?

Hy: E=U 856.4 - 1152.37 -

Ho: N=U 927.48 758.26 1479.25 1051.76

1. Standard Errors are in parentheses
2. (V) and (V'*) also include polynomials in age and dummies
for the number of dependent children of various ages
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Table 2.6: Voluntary Unemployment (NMNL)

Empl. Egn. (V¢)

In(hwage) 1.95
(0.8)

dsave/100 0.042
(0.07)

Benefit/100 0.01
(0.03)

Unempl. Eqn. (V%)

In(hwage) -1.62
(0.04)
dsave/100 0.01
(0.06)
Benefit/100 0.08
(0.1)
Random Effect -
Inclusive Value 0.8
(0.23)

3.14
(0.6)

0.104
(0.09)

0.903
(0.01)

0.112
(0.08)

0.67
(0.15)

2.43
(1.48)

-0.045
(0.02)

-0.02
(0.04)

-2.7
(1.6)

-0.04
(0.03)

-0.01
(0.008)

1.83
(0.65)

0.73
(0.31)

3.09
(1.02)

-0.03
(0.01)

-0.16
(0.04)

-0.09
(0.02)

2.45
(2.04)

0.62
(0.24)

1. Standard Errors are in parentheses

2. (V) and (V*) also include polynomials in age and dummies
for the number of dependent children of various ages
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Table 2.7: Involuntary Unemployment (Nested Probit)

Empl. Eqn. (V°)

In(hwage) 3.27 3.792
(0.24) (0.13)

dsave/100 -0.241 -0.325
(0.026) (0.026)

Benefit/100 - -

Unempl. Eqn. (V")

In(hwage) - -
dsave/100 -0.051 0.109
(0.06) (0.04)
Benefit/100 -0.083 C.114
(0.04) (0.02)
Random Effect - 2.3
- (0.4)

1. Standard Errors are in parentheses
2. (V©) and (V*) also include polynomials in age and
dummies for the number of dependent children of various ages
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Table 2.8: Involuntary Unemployment (NMNL)

Part. Eqn.

In(hwage) 3.45 2.369
(0.557) (0.406)

dsave/100 -0.101  -0.263
(0.08) (0.011)

benefits/1000 -0.127  -0.104

(0.06)  (0.04)

inclusive value 0.65 0.776
(0.12) (0.087)

Random Effect - 4.2
- (1.2)

1. Standard Errors are in parentheses
2. Also include polynomials

in age and dummies for the number of
dependent children of various ages
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Table 2.9: 2SLS Estimates of Hours Eqn.

In(hwage) -0.33
(0.21)

dsave/(hwage*100) -3.59
(0.44)

Marshallian Elasticity 0.07
Hicksian Elasticity 0.1

1. Standard Errors are in parentheses

2. Also include polynomials
in age and dummies for the number of
dependent children of various ages

Table 2.10: Voluntary Unemployment Model (MNL)

Tax Rate 0% 10% 20% 23% 30% 40% 50%

%E 76 69 62 60 54 45 34
%U 8 10 12 13 15 18 22
%N 17 21 25 27 31 37 44

Table 2.11: Involuntary Unemployment Model (NMNL)

Tax Rate 0% 10% 20% 23% 30% 40% 50%
oL 97 88 77 73 64 50 33
%N 3 12 23 27 36 50 67
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Table 2.12: DWL of Voluntary Unemployment Models

Tax Rate 0% 10% 20% 23% 30% 40%

MNL - 5% 13% 13% 31% 52%
NMNL - 4% 1% 12% 2T% 45%
MNP - 6% 14% 15% 3% 57%

Table 2.13: DWL of Involuntary Unemployment Models

Tax Rate 0% 10% 20% 23% 30% 40%
Logit - 8% 23% 2% 51% 92%
Probit - 12% 32% 33% 75% 110%
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Chapter 3

Do Taxes Cause Unemployment?

3.1 Introduction

Are high taxes responsible for high unemployment in Europe? Many commentators take it
for granted that they are. In a recent leading article reviewing the performance of the French
economy, the Economist commented that “[The French tax system)] still relies far too much on
employment-killing payroll taxes”. Professional economists have tended to be a little less san-
guine. They recognize that the multiplicity of interacting effects in general equilibrium means
that the identification of any causal relationship is very difficult (see Bean, 1994). Neverthe-
less taxation has often been cited in the literature as one of a number of possible causes of
unemployment (see Layard, Nickell & Jackman, 1991).

The interest of both pundits and economists in the possibility of a causal link between
taxation and the level and persistence of unemployment, has been stimulated by recent OECD
experience. There appears to be a correlation between high taxation and high unemployment.
This correlation can be observed both across countries at any given time and within countries,
through time.

Table 3.1 shows OECD standardized unemployment rates for selected countries since 1965.
The basic facts illustrated by table 3.1 are well known. There was an inexorable rise in un-
employment from the early seventies until the mid eighties in all countries. After 1985 unem-
ployment tended to fall but not to the level of the 1960s, and it remained very high in some

countries.
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Table 3.2 shows total tax revenue as a percentage of GDP. It appears that taxes have
risen in those countries that have experienced high unemployment (e.g. Ireland, Denmark,
Italy). This is the correlation that sparked the interest of economists and pundits alike. It is
especially obvious in the case of the United States versus Europe. As Blanchard & Katz (1997)
have commented, the low tax and low unemployment US economy is often cited as prima
facia evidence that taxes cause unemployment. Taxes, however, have also risen in a number of
countries that have not experienced high unemployment. Indeed the share of taxation is highest
in those countries (Sweden Austria, Finland) with traditionally the lowest unemployment! Thus
even with this crude analysis, the evidence is far from clear.

The observed correlation could be explained by many things other than the hypothesis that
taxes cause unemployment. An empirical macro literature on this topic developed in the 1980s.
It sought to disentangle all the effects, and to identify and measure the causal link between
taxes and unemployment. This activity was most common in Europe where a plethora of papers
have been produced since the late eighties.!

This literature has focused on the estimation of small scale models of the macro economy
using aggregate data. These models usually consist of a wage equation that mc «els the behavior
of the supply side of the labor market and an employment equaticn that models the demand
for labor. Various parameters of the tax system enter the equation as regressors. The results
of this literature are ambiguous. The size and significance of the estimated effects of the tax
system varies across countries. For example, Layard, Nickell & Jackman (1991) estimate this
kind of model for the OECD countries. They find that the tax wedge is statistically insignificant
in eight countries (Belgium, Germany, Italy, Canada, USA, Japan, Austria, Switzerland) and
positive and significant in five (France, Ireland, Finland, UK).

These results appear to suggest that taxation is not the primary cause of unemployment in
Europe, but provides some evidence that taxes are a contributory factor. There are, however,
three different grounds on which to criticize the existing literature. Model specification is
problematic. Taxation, unemployment and most other macro variables are likely to move

together for a variety of reasons. How we identify the causal relationship between tax and

!See for example Bean & Dreze (1990), Bean, Layard & Nickell (1986), Layard & Nickell (1986), Layard,
Nickell & Jackman (1991), and Whelan (1995). The various papers co-authored by Layard, Nickell, Jackman
and Bean are typical and much imitated.
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unemployment is of crucial importance. The appropriate exclusions restrictions are not always
obvious. The variation in results between different papers looking at the same country suggests
that the estimated models are not robust to small changes in specification.

The insignificance of the results could also be attributed to the data. Many of these models
are estimated using annual macro data, as are the models estimated in this paper. This means
that there are relatively few observations with which to ideatify the model. This problem is
compounded if we try to identify a structural model, as most existing studies do. This problem
is even more serious if we try to identify the dynamic effect of tax on unemployment. The
inclusion of lagged variables reduces the degrees of frec-lom even further. In this context, a
lack of precision is not surprising. This is unfortunate because the issue of whether taxes have
permanent or transitory effect on the level of employment is particularly interesting. In fact
many of the existing studies impose the long run neutrality of taxes as an identifying restriction.
This is a restriction that we might want to test rather than imposing on the data.

There is another reason for being suspicious of results that imply that taxes have no sig-
nificant effect. Insignificance has an important policy implication. If taxation has relatively
little impact on output and employment, then a country could solve severe budgetary problems
by increasing labor taxes dramatically, without fear of adverse consequences. Few economists
would ever recommend this policy, and indeed, where it has been tried, it has failed (see Alesina
& Perotti, 1995).

In contrast with most of the existing literature, I propose to estimate parsimonious reduced
form models rather than to specify simple structural models. The basic estimation strategy is
to see whether unemployment and wages respond to exogenous changes in tax policy in a way
consistent with theory. By estimating reduced forms I avoid the problem of having to specify
exclusion restrictions necessary to identify a structural model. This is an advantage over the
existing literature. It has to be admitted, however, that the reduced form approach has its
price. The model is vulnerable to the Lucas Critique. The coefficients of the reduced form may
themselves change in response to changes in the tax system.

A similar procedure was used by Poterba, Rotemberg & Summers (1986) to test for the
presence of nominal rigidities. They treated change in tax policy as exogenous shocks to the

price structure and used this to identify the effect of money on output. I effect I treat the tax
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changes as shocks to the structure of real wages and use this to test for the presence of real
wage rigidities.

The results of this analysis show that the effect of an increase in taxation is to increase
unemployment. The effect is statistically significant, long lasting, but numerically small.

The paper is organized as follows: Section two outlines a simple model of the interaction of
taxes and unemployment. Section three discusses some data and specification issues. Section

four discusses econometric methodology. Section five presents the results. Section six concludes.

3.2 A Review of the Theory

The question of whether labor market taxes cause unemployment is essentially a question of the
incidence of those taxes. If it is the case that the burden of the taxes falls entirely on the workers,
then the cost of labor does not rise and the tax has no implications for unemployment. Of course,
individuals whose after tax wage has fallen may withdraw from the labor force, leading to a fall
in employment. These individuals, however, not unemployed; they are nonparticipants. Thus
the quote from the Economist, and the conventional wisdom it represents, are wrong unless it
can be shown that the burden of taxes is shifted, to some extent, onto employers.

In order to test this hypothesis, we need a simple model of unemployment. When there
is involuntary unemployment the competitive model is not suitable for analyzing the labor
market. Almost by definition, it precludes the existence of involuntary unemployment. For this
reason most of the macro literature treats the labor market as non-competitive. There is some
inefficiency in the labor market that prevents it from clearing in a classical fashion. For example
in Shapiro & Stiglitz (1984) model of efficiency wages employers have imperfect information
regarding workers level of effort. This causes them to pay a wage above the market clearing
level in order to induce workers to exert effort. This leads to unemployment. Another example
is the search model due to Diamord (1982) and Pissarides (1990). In this case the inefficiency
is the inability of firms and prospective workers to form matches instantaneously. This results
in a stock of unemployment even while some jobs remain unfilled.?

While these models differ in structure, many can be expressed in terms of equations such as

?Discusion of other examples can be found in Bean(1994), Blanchard & Katz (1997) a1 d Layard et. al. (1991).
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(3.1). The presence of some inefficiency prevents the market from clearing to the point where
workers reservation wage equals the value of the marginal productivity of their labor to firms.
Firms are willing to offer a wage that workers would be willing to accept, but hiring is prevented
by the inefficiency in the labor market. In the case of the search model, unemployed workers
and firms do not meet sufficiently quickly, whereas in the case of the efficiency wage model,
workers cannot credibly commit not to shirk if they are hired. This implies that in equilibrium
unexploited rents to employment. Therefore, at the margin, if firms and workers somehow over
come the inefficiency, there will exist a surplus which must be divided between the firm and
worker. It is usually assumed that the wage is set according to Nash bargain between firms and
workers over this surplus. Firms then set employment given the negotiated wage.3 If we think
of a simple model where firms and workers split equally the rents generated by employment,
then the wage will be given by the m@ﬁzation of (3.1), where W is the real wage, W& is the
reservation wage (the worker’s outside option), II(W) is the profit function and 7 is the tax
rate. Models such as Diamond (1982) and Pissarides (1990) as well as the model estimated by
Layard et. al. (1991) all include an equation of the form (3.1).

W@ -7) - wRIw) (3.1)

Typically the first order condition of (3.1) takes the form of (3.2), where the market wage is
some multiple of the reservation wage. If the wage that maximizes (3.1) is greater than W&,
then there will be involuntary unemployment. Workers will not be on their supply curves. Some
workers, who are prepared to accept to work at the going wage (W > WH), will not be offered
a job in equilibrium. Even those models that do not explicitly contain as bargaining equation
such as (3.1) will generate an equation like (3.2). An example is the efficiency wage model of
Shapiro & Stiglitz (1984). Workers are paid a markup on their reservation wage in order to
discourage them from shirking.
WR

*M¢Donald & Solow(1981) look at what happens when firms and workers negotiate over employment as well
as the wage. Layard et. al. (1991) show that two structures give the same results if unemployed are excluded
from the negotiating process after some time.
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The size of the markup of the market wage over the reservation wage depends on the relative
bargaining strength of workers and firms, which in turn depends on unemployment among other
factors. For example, in the search model of Pissarides (1990), higher unemployment and lower
vacancies strengthens the hand of firms allowing them to take a larger share of the surplus,
resulting in a lower wage rate. In the case of efficiency wages, the efficiency wage premium
declines as unemployment rises, because higher levels of unemployment act a deterrent against
shirking.

The imposition of a tax on wage income will alter the Nash maximand and result in higher
unemployment. Workers, seeking to preserve the markup of net wage on the reservation wage,
shift some of the burden of taxes onto employers in the form of a higher gross wage. Firms
respond to an increase in the cost of labor by cutting back on hires.

In this framework, if a more general income tax could be levied on the workers’ outside
option also, it would lead to less of an effect on unemployment. In fact if the tax rates on inside
and outside options were the same then the tax would have no effect on the markup over the
reservation wage. The incidence of the tax would fall entirely on the workers. Thus, there would
be no effect on employment. An important example of this is the case of a general sales tax.
This would, in effect, be a tax on income both in and out of unemployment. Thus we would
expect a sales tax to have no effect on bargained wage. This is the rationale for suggesting that
income and social security taxes have an effect on employment, but that sales taxes do not.

The determination of the reservation wage is crucial. For example, if the reservation wage
is equal to unemployment benefits and if unemployment benefits are taxable at the same rate
as wage income, then W2 = (1 — 1)b. Clearly T cancels out of (3.2) and thus taxes will have no
effect on unemployment. In this simplistic case the reservation wage adjusts immediately and
completely to the change in taxes. In a more realistic case, we might expect any adjustment in
the reservation wage to take time. How the reservation wage adjusts to tax changes will be an
important determinant of the long run response of unemployment to taxes. Bean(1994) points
out that we might expect that the workers bear the entire burden of the tax in the long run.
A permanent increase in taxation will reduce permanent income and consumption. This will
increase the marginal utility of consumption relative to the marginal utility of leisure. This

implies that the reservation wage will fall. It is not hard to design a specific set up where the
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net result is no change in the mark-up and therefore the wage. Thus the incidence of the tax
falls completely on workers. This would imply that even a permanent increase in taxes would
have only a temporary effect on unemployment.

Consider the following illustrative example. Suppose that an individual derives utility from

consumption (c) and leisure (!) according to the function (3.3).
U(Ct, lt) =In ¢+ In lg (3.3)

Suppose also that credit markets are such that the individual can consume the annuity value of
permanent income, so that ¢; is given by (3.4), where Y is permanent income, r is the discount

rate and 7 is the tax rate on permanent income.
a=rY(1-17) (3.4)

In this context the reservation wage can be defined as the marginal rate of substitution of
consumption for leisure? and is given by (3.5)

_rY(-7)

R
w l

(3.5)
Substituting W from (3.5) into (3.2) results in an expression for the gross wage that is in-
dependent of the tax rate. Thus, real wages are not rigid, any change in taxation will fall
entirely on the workers. Therefore, even a permanent increase in taxation will have no effect
on unemployment. This sort of reasoning has lead the macro literature to search for temporary
(although possibly long lasting) effects of taxation on unemployment.

Of course this story only works tc the extent that the Permanent Income Hypothesis is
true. There is still scope for taxes to have a long run impact on unemployment if we allow for
a departure from the utility maximizing framework of equations (3.3)-(3.5). Consider a more
general definition of the reservation wage. Assume it refiects, not just the value of leisure, but

workers aspirations also. As a simple, if extreme, example of this aspirations scenario, suppose

‘I am being sloppy here. Presumably the possibility of being unemployed would effect the individual's
permanent income as well as the definition of the reservation wage. I ignore these complications in order to
illustrate the basic point.
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that pride ensures that an unemployed individual will never accept a job at a wage lower than
the wage he received during a previous period of employment. In this case the reservation wage

would be given by W/ = W;_,. Substituting into equation (3.2) will generate
t
InW; = InB(u,v,X)+1InW;_; —In(1 - 71)

This shows that the burden of the tax shifts entirely to firms. Also the wage equation now has
a unit root. Both these properties imply that increases in taxation will have a permanent effect
on wages and employment. The scenario modeled here is one where a worker fails to adjust his
aspirations to changes in reality. Following a tax increase (from zero to 7), he still seeks the same
after tax wage as he had before, despite the fact that this wage is now economically infeasible
for the (marginal) employer. Unemployment results and will last as long as aspirations fail to
adjust to the new reality.

Obviously, this aspirations story is extreme and simplistic, but then so is the utility max-
imization scenario. The truth probably lies somewhere in between. But, to the extent that
the aspirations are an issue, there is clearly scope for taxes to have persistent, even perma-
nent effects on employment.> Therefore, I do not impose long-run neutrality on the estimated

models.

3.3 Specification & Data

In essence we want to estimate a system of equations with unemployment and 1he wage rate as
dependent variables and various parameters of the tax system as regressors. If the coefficients on
tax parameters are positive in both equations, this would be evidence that real wages are rigid
and that taxes cause unemployment. Furthermore if we added distributed lag and autoregressive
terms to each equation we model the dynamic effect of taxation on unemployment and wages.
We could then test the hypothesis that taxes are neutral in the lcng run.

Ideally we would like to estimate the model using the true legislated tax rates. These

are the rates that actually influence economic behavior. The tax system, however, is much

SBlanchard & Hogan (1997), the thizd paper in this disertation, attempt to ascertain the importance cf
previous wages for the reservation wage. We find that there is a significant, but small effect.
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too complicated for us to think in terms of a single tax rate observable in aggregate data.l
Therefore following tradition in the literature I define 7 to be the share of direct taxes in GDP
and 6 to be the share of indirect taxes in GDP. Direct taxes includes all income and social
security taxes levied on the household. Indirect tax»= includes the VAT, excise taxes and other
duties levied on goods and services. The definition, source and summary statistics of the data
used in this paper are given in table 3.3.

There are several problems with estimating regressions of unemployment on taxation. The
difficulty lies in trying to identify the nature of any observed correlation between tax rates and
unemployment. There are several possibie explanations for any such correlations, only one of
which we are actually interested in. The effect of interest is a substitution effect. Real wage
rigidities, caused by search, efficiency wages etc., enable workers to shift the burden of taxation
to firms who respond by substituting away from labor. The econometric problem is to separate
this effect from the many others that could be responsible for any observed correlation between
taxes and unemployment.

The most obvious source of correlation between tax and unemployment, other than the
substitution effect, is a cyclical income effect. An increase in taxation will reduce disposable
income, reducing the demand for labor via lower private consumption. This would be true even
if taxes were lump sum (and therefore not distortionary). Typically this is controlled for using
the total tax revenue as a regressor.

Another source of spurious correlation is the automatic stabilizer. A regression of unemploy-
ment on taxation will pick up the unwanted effects of unemployment on measured tax rates. For
example, in a recession we expect unemployment to rise and tax revenue to fall automatically.
Because the true tax rates are not proportional and are not levied on all of GDP, and because
recessions do not effect all the income distribution uniformly, it is probable that the measured
tax/GDP ratios, 7 and 8, will vary over the business cycle as a result of compositional effects.
For example, if a recession reduces the incomes of lower paid workers more than higher paid
workers, and if the true tax system is progressive, we could observe tax share to rise while

unemployment is also rising. Similarly, if sales taxes are levied more on luxury goods i.e. on

®For an estimation of the impact of taxaticn on unemployment and individual labor market behavior, using
micro data see Hogan (1997)
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goods with high income elasticities, we would observe a fall in sales taxes coincident with a rise
in unemployment.

Poterba, Rotemberg & Summers (1986), developed a simple way of lessening the impact of
this reverse causality. They calculate a variable, tmiz, which is equal to the difference between
the aggregate income tax rate, 7, and the aggregate sales tax rate, 8. The idea is that tmiz
is more likely to capture true exogenous changes in policy than are the aggregate tax rates.
These aggregate tax rates vary over time as the result of both policy shocks and in response to
(endogenous) cyclical variation in GDP such as the automatic stabilizer identified above. If the
elasticity of T with regard to GDP has the same sign as the elasticity of 8, tmiz will offset the
two sources of bias. While there is no guarantee that they will offset exactly, it is reasonable to
suggest that there will be less systematic reverse causality between tmiz and economic activity.
Therefore we can treat tmir as being exogenous with respect to unemployment. It must be
admitted, however, that some reverse causality will still exist. To the extent that it does the
results will suffer from simultaneous equation bias. Nevertheless, such as bias will be smaller
than that which would result from using the aggregaté tax rates as separate regressors.

The focus of this paper is on the measurement of the effect of taxes on unemployment.
Unlike ruch of the rest of the literature I do not attempt to account for the other causes of
unemployment. Therefore I do not specify a model of the entire macro economy. I estimate
several parsimonious reduced form systems. Specifying a full macro model, as Layard, Nickell
& Jackman (1991) do, is the alternative strategy. I choose the reduced form approach for three
reasons. Firstly, specifying a structural model would involve specifying identifying exclusion
restrictions which may not be reasonable. Secondly, modeling the entire structure of the econ-
omy distracts attention from the central question of interest, namely the real effects of taxation.
Thirdly, it is difficult to keep structural models parsimonious. Once we start building a macro
model it is tempting to include almost any macro variable. I resist the temptation to include
the kitchen sink and specify parsimonious models. This is an important issue here, because I
am working with annual data, degrees of freedom are a precious commodity. Nevertheless I
need to include other macro variables in order to control for the potential sources of spurious
correlation identified earlier.

It has to be admitted, however, that this reduced form procedure comes at a price. Firstly,
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the parsimonious specification may suffer from omitted variable bias. It may leave out an
important effect, perhaps inducing a spurious correlation between the tax and unemployment.
variables. Secondly, because I do not model the structure of the economy, I loose the ability to
say how taxes affect unemployment and wages. Thirdly, and most importantly, the reduced form
models are open to the Lucas critique. The reduced form parameters may not be independent
of the tax parameters, because they do not come from estimation of behavioral equations.

The defence against the Lucas critique is to note that the theories of unemployment reviewed
in section two generate clear predictions of the effect of tax on unemployment and wages. If we
observe the predicted correlation in data, while controlling for other possible causes, we can be
reasonably sure what we have identified.

Most studies included the change in the tax rate as a regressor rather than the tax rate
itself. TLis specification implicitly accepts the idea that taxes have only short run effects on
unemployment and wages. Eventually the level of wages will adjust to completely offset the
level of taxes, with only further changes in the level of taxes having any impact on wages and
employment. While the hypothesis of long run tax neutrality is plausible, it was shown in section
two that it results from a special case. Therefore, we might want to test this hypothesis, rather
than assuming it. For this reasons, I include the level and several lags of the tax variables in each

regression and explicitly examine the dynamic relationship implied by each set of estimates.

3.4 Econometric Methodology

3.4.1 A Vector Auto Regression (VAR) Model

The most obvious specification to employ when looking at aggregate data is Sims’ Vector
AutoRegression (VAR) technique. The advantage of using this technique is that as VARs are
reduced forms, they are easy to estimate. They enable us to track the correlations in aggregate
data through time. Of course, in order to infer causation from the observed correlation, we
must impose some structure on the estimated specification. The VAR provides a convenient
framework within which to test the sensitivity of the results to different structural assumptions.

The estimated VARs are of the form (3.6), where a(L) and B(L) are matrices of lag poly-
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nomials.
Y: = a(L)Y-1 + B(L)A: + &

-
U:
W

Ttott

(3.6)
}’t =

i Tmz'a:, ]
The variables U and A are the natural logarithms of the unemployment rate and total factor
productivity series described in table 3.3. The variable W is the logarithm of the real consump-
tion wage, as in (3.7) where WRM is the wage rate in manufacturing and P is the consumer
price index as defined in table 3.3. Finally T'tot is the aggregate tax share of GDP and T'miz

is the tax policy variable.

_ WRM(Q-7)
w - P
Ttot = T+6 (3.7)
Tmiz = T—0

The productivity term is included as it is likely to be the major determinant of real wages
in the long run. Treating A as being exogenous in the short run, may be problematic. If firms
hoard high productivity workers, and/or layoff low productivity workers during a recession,
then measured productivity would be a function of unemployment. Equation (3.6) would suffer
from simultaneous equation bias. In practice, however, this turned out not to matter. Results
were virtually identical when contemporaneous A was left out of (3.6) or when it was replaced
with a deterministic trend.

Estimation of (3.6) will account for the observed correlation in the aggregate data series.
In order to infer the causation of interest, we must put some structure on the model. This is
usually accomplished in the context of a VAR by specifying a Cholski decomposition of the
variance-covariance matrix of €. This is equivalent to specifying a just-identified triangular
structure form which has (3.6) as its reduced form. We can then track how the endogenous
variables respond to structural shocks. There are many different structures that may have
(3.6) as their reduced form. Obviously the results can be highly sensitive to the choice of the

particular structural form. Given the discussion in section three, it is reasonably clear that
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tmiz is exogenous. Thus contemporaneous causation runs from tmiz to the other variables,
in the jargon of VARs, tmiz is ordered first. It is less clear, but not unreasonable to say
that T'tot is ordered before unemployment and wages. In other words, the automatic stabilizer
notwithstanding, contemporaneous causation runs from the tax share to unemployment and
wages and not the other way round. It is, however, completely unreasonable to attempt to
order U and W. It is not possible to say, a priori, whether prices or quantities are determined
first in the labor market. The best that can be done is to present estimates of the impulse
response functions for both cases and see if they are significantly different.

As discussed earlier, one of the interesting hypothesis we might want to test is the supposed
long run neutrality of taxes. Estimation of (3.6) will probably imply in a structural form in
which tmiz does not have a unit root exactly. Therefore, any shock to tmix will represent
a temporary, if long-lasting, policy change. This would be true even if the coefficients were
such that we could not reject the hypothesis that there is a unit root. In order to test the
hypothesis that taxes are neutral in the long run, we need to have a permanent change in tmiz.
The concept of long run neutrality has no meaning otherwise. Thus I re-estimate a restricted

version of (3.6) with a unit root imposed on tmiz.

3.4.2 An Alternative Specification

There is an alternative way of identifying the dynamic responses of unemployment and wages
that places less of a burden on the econometrics and more on the underlying economic theory.
This procedure is very close to that adopted by Poterba, Rotemberg & Summers (1986) and
is discussed in detail in Rigobon (1997). The idea is to make greater use of the exogeneity of
tmizx.

Modeling the system as a standard VAR, in the last section, tmir was treated in the same
manner as the other variables. We regressed it on lags of itself and the other variables. This
reduced form did not distinguish ¢miz from the other variable in any way. We only made
use of the exogeneity of tmiz by ordering last in the structural decomposition of the VAR i.e.
we assumed that tmiz contemporaneously caused the other variables, but that they did not
contemporaneously cause it.

On reflection this procedure both imposes unnecessary restrictions on the other variables
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and fails to make full use of the exogeneity of tmiz. For example, in order to calculate figure
1, it was assumed that unemployment caused wages and not the other way round. As it turned
out the results were not sensitive to this assumption, but nonetheless it not very satisfying
assumption to have to make. It turns out that we can avoid making any assumption regarding
causation between unemployment and wages. The question of interest is the effect of tax
on unemployment and wages. As long as we are not trying to distinguish between different
mechanisms through which that effect occurs, we do not care whether unemployment causes
wages or wages cause unemployment. In other words assumptions regarding the contemporary
causation between wages an unemployment are unnecessary. Conceptually, all that we want to
do is to track the response of unemployment and wages to an exogenous shock to the level of
taxation. Therefore all that is needed is to estimate reduced form regressions of unemployment
and wages on the exogenous parameters of the tax system. Provided that we are sure that the
tax variables are truly exogenous, no further identifying assumptions are needed. Thus I need
to be able to assume the contemporaneous causation runs from tmiz to the other variables.
But I do not need to make any assumption regarding causation among those other variables.
The actual model estimated is given in equation (3.8), where all the variables have the
same meaning as in the previous section. The first three equations, for U, W and T'tot are
almost the same as in the VAR model of equation (3.6) with the crucial exception that both
the current value and lags of tmiz are included as regressors. Thus tmiz is treated explicitly

as an exogenous variable.

Y; = a(L)Y;—1 + B(L) A + v(L)Tmiz, + €,

U, (3.8)
i=| W,
TtOtt

The estimated coefficients from (3.8) can be used to calculate the impulse response «f Y to
permanent and temporary shocks to tmiz. In order to model the shock to tmiz, I think of it as
following an AR(1) process. To model a temporary shock to tmiz, the autoregressive coefficient

can be set equal to zero. Thus the shock disappears from tmiz after one period. Its effect on
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the other variables may persist, depending on the rigidities in the labor market. It is precisely
these rigidities that we are interested in. For the case of a permanent shock, the autoregressive
coefficient is set equal to unity. Thus the shock lasts forever in tmiz, but may not persist
in Y if, for example, the reservation wage adjusts in the manner hypothesized in section two.
Clearly any intermediate case can be examined by setting the autoregressive coefficient to a
value between zero and one.

It could be argued that the above experiments are not clean, becsuse ttot is allowed to move
in response to tmiz. Thus the observed effect of unemployment and wages could be the result
of changes in ttot and not just tmiz. Therefore, I re-estimate the system dropping the equation
for ttot and with lags of ttot (but not its contemporaneous value) included as regressors in the
equations for U and W. ‘

The impulse response functions exhibit a curious initial effect on unemployment. When
contemporaneous tmiz is included in the equations for U and W, a rise in tmiz leads to an
initial fall in U in that period. This fall turns into a large rise in the next period. This is
clearly an anomalous result. The size of the decline and the fact that it is immediately reversed
casts doubt on the assumption that tmiz is exogenous with regard to unemployment. The
impulse response function seems to be picking up a positive effect of activity on measured
aggregate tax rates. The possibility of this spurious correlation was discussed in section three.
The initial decline in tmiz can be eliminated if contemporaneous tmiz is excluded from the
unemployment equation. This suggests that the anomaly does indeed result from some sort
of cyclical dependence of tmiz. Similarly, if tmiz is first regressed on lagged real GDP and
the residual used in place of tmiz in (3.8) the anomaly also disappears. This lends credence
to the idea that the anomaly is the result of some spurious reverse causation from activity
to tmiz. This procedure could be regarded as dangerous, however. It may be the case that
instead of removing some spurious cyclical effect we are removing a genuine effect of tmiz on
unemployment. Nevertheless, the fact that the only qualitative difference between the two
methods is the presence of the anomalous initial decline in unemployment suggests that the

procedure is valid.
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3.5 Empirical Results

3.5.1 VAR

The basic VAR specification (3.6) was estimated using UK annual data (1960-96), where w
is the log of the real consumption wage after tax. The coefficients and their standard errors
are shown in Table 3.4. The VAR was estimated with two lags of the endogenous variables. I
experimented with the inclusion of extra lags of the endcgenous variables but these turned out
to be insignificant, even in their own autoregressions.

The estimated coefficients in Tabl: 3.4 suggest that tax changes have real effects on
unemployment and wages. The tmiz coefficients are jeintly significant at the 5% level in only
the wage equation. (This is the F-test reported in the last row of Table 3.4). Although tmiz
does not appear to have any effect directly on unemployment, it will affect unemployment
indirectly via the wage. This test rejects the hypothesis that taxes do not have an effect on
wages and unemployment.

The null hypothesis that taxes are neutral in the long run can also be rejected. A Likelihood
" Ratio test that the coefficients on tmiz sum to zero in each equation produces a test statistic
of 8.923, which is distributed under the null as x? with four degrees of freedom. Thus the
hypothesis is rejected at the 5% significance level.

In order to illustrate the dynamic effects of a change in tmiz, I compute the impulse response
functions of the variables to changes in tmizr. Figure 1 plots the response of the variables to
a one standard deviation increase in tmiz (i.e. an increase in income tax relative to the sales
tax) in period zero. As expected the log of the real after tax wage falls and the log of the
unemployment rate rises. Wages reach their lowest point roughly four years after the shock,
around the same time as unemployment reaches its highest point. Thereafter, they both return
to their initial positions within another five years. Even at its maximum point, unemployment
rose only by one quarter of a standard deviation. The tax mix appears to have an effect, but
it is not very large.

The impulse response functions suggest the following story. After a tax increase, or more
precisely a shift from sales to income taxes, workers real take home pay falls. It does not fall

by enough however, some of the burden of the taxes is shifted to the firms. This causes the
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real cost of labor to firms to rise. This in tun causes the unemployment rate to rise. In order
to verify this, I re-estimated (3.6) with the wage variable given by the log of the real labor cost
(RLC). The resulting impulse response functions are shown in figure two. They confirm that
the shift to income taxes results in an increase in the real cost of labor to employers. This cost
falls back to its initial level quite quickly, however. Unemployment rises in response to the cost
of labor, but it remains higher for longer than does the real cost of labor. This may indicate the
presence of persistence in unemployment. Further evidence for this persistence can be found in
Table 3.6, where I report the results of Augmented Dickey-Fuller (ADF) tests for the presence
of a unit root in unemployment. As can be seen the null hypothesis that unemployment has
a unit root cannot be rejected. This result is robust to the inclusion of extra lags, a constant
and/or a deterministic trend in the testing autoregression.

In order to calculate the impulse response functions in figures one and two, a triangular
structural form had to be assumed. The particular “ordering” used was that tmizx caused ttot
which, in turn, caused U which caused W. The results turn out not to be very sensitive to the
particular ordering assumption used as long as tmix is ordered first. I tried all combinations of
ordering U, W and ttot. In no case were the results qualitatively different from those depicted
in figures 1 and 2. This is not surprising given that the estimated covariance matrix of the two
VARs were almost diagonal.

A problem with the impulse responses illustrated in figures one and two is that they represent
the response to a temporary change in tax policy. This can be seen from the graph of the
response of tmizx to itself. Clearly the shock to tmiz is temporary as it returns to its initial
level within ten years. Therefore it is not really that surprising that wage and unemployment
also return to their initial levels. In order to illustrate the neutrality of the tax policy mix in
the long run we need to look at the response of the variables to a permanent change in taxes.
The concept of long run neutrality has very little meaning otherwise. The problem arises in the
standard VAR because the estimated autoregressive coefficients on tmiz do not sum to unity.
Therefore, I re-calculated the impulse response functions with the tmiz equation containing
only autoregressive terms and with the coefficients constrained to sum to unity. Repeated ADF
tests on tmiz (shown in table 3.6) failed to reject the hypothesis that tmiz had a unit root.

This result was robust to the inclusion of an intercept, deterministic trend and several lags in
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the testing autoregression. Indeed the best fit to tmir seemed to be a simple random walk with
no drift.

Figures ihree and four show the impulse response functions generated by the new system.
Figure three is for the case when the wage is the real after tax wage received by workers and
figure four is for the case when the wage is the real cost of labor to the firms. As can be seen
from the impulse response of tmix to itself, the shock is permanent. Together the two figures
indicate that the wage received by workers falls permanently and the unemployment rate rises
permanently, but that the rise in the cost of labor to firms is only temporary. This is curious.
One explanation for it could be hysteresis. Initially the burden of taxes is split between workers
and firms. This causes workers take-home pay to fall and the cost of labor to rise. As a result
of the rise in the cost of labor, the unemployment rate rises. Eventually, the cost of labor falls
back to its original level, while workers take home wage remains low, indicating that the burden
of taxes is shifted completely to the workers in the very long run. The question is therefore,
why does unemployment not fall back also. One explanation could be hysteresis type effect like
those discussed -by Blanchard & Summers (1986). Those who become unemployed initially as
a result of the tax policy, remain unemployed for so long a period that they drop out of the
labor market. Either they become discouraged workers, so that they no longer actively search
for a job or they become de-skilled and therefore unemployable. Either way, when the labor
market reaches its new long run equilibrium, it does so in their absence leaving the measured
unemployment rate high.

While this story is plausible, there is little direct evidence to support it. One piece of

evidence of course, id the apparent unit root in unemployment discussed previously

3.5.2 Alternative Specification

The alternative specification (3.8) was estimated using UK annual data (1960-96), where w is
the log of the real consumption wage after tax. The coefficients and their standard errors are
shown in Table 3.5. The model was estimated with two lags of the endogenous variables. As in
the case of the VAR, extra lags of the endogenous variables but turned out to be insignificant,
even in their own autoregressions.

The estimated coefficients given in Table 3.5 suggest similar results to those nf the VAR.
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Taxes appear to have real effects on unemployment and wages. The hypothesis that they are
jointly insignificant in each equation can be rejected at the 5% level, only in the case of the
wage equation. (This is the F-test reported in the last row of Table 3.5). These tests support
the hypothesis that taxes do have an effect on wages and unemployment.

The null hypothesis that taxes are neutral in the long run can also be rejected. A Likelihood
Ratio test that the coefficients on tmiz sum to zero in each equation produces a test statistic
of 7.321, which is distributed under the null as x? with three degrees of freedom. Thus the
hypothesis is rejected at the 10% significance level, but cannot be rejected at the 5% significance
level. |

In order to illustrate the dynamic effects of a change in tmiz, I compute the impulse response
functions of the endogenous variables to changes in tmizx. As discussed in section four, the
inclusion of contemporaneous tmiz in the unemployment equation, leads to the anomalous result
that unemployment declines in the initial period. This anomaly disappears if contemporaneous
tmiz is excluded from the unemployment equation or if tmizx is first regressed on lagged real
GDP. The impulse response function shown in figures five to eight are for this latter case. I
suspect that this anomaly results from the fact that I use annual data calculated on the basis
of the calender year. The UK tax year begins in April. Therefore changes in tax policy would
not be felt until the middle of the period covered by tmiz. We could get around this problem
if we had access to quarterly or even six monthly data.

Figure 5 plots the response of the variables to an increase in tmiz (i.e. an increase in income
tax relative to the sales tax) in period zero. This increase is temporary, it disappears after one
period. As expected the log of the real after tax wage falls and the log of the unemployment
rate rises. Wages reach their lowest point roughly two years after the shock, around the same
time as unemployment reaches its highest point. Thereafter, they both return to their initial
positions within another five years, with unemployment returning slightly slower than wages.
Figure six shows the responses when the wage is given by the real cost of labor. The real cost
of labor rises in response to the initial increase in tmiz in period zero. The cost of labor then
falls back to its initial level quite quickly. Unemployment rises also and returns to its initial
level slightly slower than the real cost of labor.

Both sets of impulse responses confirm the results of the VAR analysis reported previously.
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The shift to income taxes (rise in tmiz) results in a fall in the net pay of workers and an
increase in the real cost of labor to employers. This cost falls back to its initial level quite
quickly, however. Unemployment rises in response to the cost of labor, but it remains higher
for longer than does the real cost of labor, suggesting the presence of some sort of hysteresis
effect.

The impulse responses illustrated in figures five and six represent the response to a tempo-
rary change in tax policy. This can be seen from the graph of the response of tmiz to itself.
Clearly the shock to tmiz is temporary as it returns to its initial level within a year. Therefore
it is not really that surprising that wage and unemployment also return to their initial levels.
In order to illustrate the neutrality of the tax policy mix in the long run we need to look at the
response of the variables to a permanent change in taxes.

Figures seven and eight show the impulse response functions generated by a permanent
increase in tmiz. Figure seven is for the case when the wage is the real after tax wage received
by workers and figure eight is when the wage is the real cost of labor to the firms. As can be
seen from the impulse response of tmiz to itself, the shock is permanent. These figures again
confirm the result of the VAR analysis. Together the two figures indicate that the wage received
by workers falls permanently and the unemployment. rate rises permanently, but that the rise
in the cost of labor to firms is only temporary. A potential‘ explanation for this is the presence

of hysteresis effects in the labor market.

3.6 Conclusions

There do appear to be some striking results. A shift in tax policy away from indirect tc direct
taxes seems to have the effects predicted by theory. The burden of the tax is shared by the
workers and employers and as a result unemployment rises. Even a temporary tax change,
which itself disappears after 5 years, has real effects which persist for up to 10 years. The size
of these effects is relatively small. The shock results in increase in unemployment of .less than
one standard deviation.

The persistence of the real effects of taxes is even more starkly illustrated by the reaction

to a permanent shock to taxes. It appears that a permanent shock has permanent effect on
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unemployment and the consumption wage, but a temporary effect on the real product wage.
This result is consistent with theory, but is nevertheless unusual. It is certainly not the result
that I expected to get. In common with most of the literature I expected that in the long
run a change in tax policy would have no effect on the level of unemployment. Most of the
empirical literature (see Layard, Nickell & Jackman, 1991) use specifications that actually

impose neutrality on the estimates. This approach would appear to be invalid.
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Table 3.1: OECD Standardised Unemployment Rates

1975 1980 1985 1990 1991 1992

UsS 8.3 7.0 7.1 5.4 6.6 7.3
Japan 1.9 2.0 2.6 21 2.1 2.2
FRG 3.6 29 7.1 4.8 4.2 4.6
France 4.0 6.2 10.2 8.9 94 104
Italy 5.8 7.5 9.6 103 99 105
UK 4.3 6.4 11.2 6.9 8.8 10.1
Spain 36 111 211 159 16.0 18.1
Ireland - 170 133 147 155

Denmark 5.3 7.0 9.0 95 104 11.1
Sweden 1.6 2.0 2.8 1.5 2.7 4.8
Austria 1.5 1.6 3.6 3.2 3.5 3.6

1. Source: OECD Main Economic Indicators, various issues




Table 3.2: Tax Share of GDP

1975 1980 1985 1990 1991

us 28 29 28 29 30
FRG 36 38 38 37 42
France 37 42 44 4 - 44
Italy 26 30 35 39 40
UK 36 35 38 37 36
Spain 20 24 29 34 35
Ireland 32 34 38 37 37
Denmark 41 45 49 48 48
Sweden 43 49 50 56 53
Austria 39 41 43 41 42

1. Source: OECD Main Economic Indicators, various issues



Table 3.3: Data

Variable Definition O Series No. Mean Stn. Dev.
U Unemployment Rate (%) 26UR 566  3.738
WRM  Wage rate Manfact. Sector (Index 1984=1) 26WRMA 0.74  0.666
RLC  Real labor Cost (Index 1991=1) 26RLC 0.76  0.207
T Income & Social Security Taxes 26THY 0.106 0.014
as share of GDP
0 Indirect taxes/GDP 26IND 0.147 0..012
TFP  Total Factor Productivity (Index 1991=1)  26PDTY  0.803 0.170
P Retail Price Index (1990=1) IFS 0472 0.361

1. Series No. refers to the reference no. for the series on the OECD CD-ROM database



Table 3.4: Basic VAR

Regressor Dependent Variable
Wi U, Ttot, tmix,
W1 0.244 -3.778 -0.105 0.068

(0.229) (2.265) (0.094) (0.117)

Wi_s -0.044 0924 -0.109 0.034
(0.149) (1.478) (0.061) (0.076)

Ui -0.036 1260 -0.008 -0.021
(0.025) (0.245) (0.010) (0.013)

U2 0.022 -0.591 -0.009 0.016
(0.031) (0.311) (0.013; (0.016)

Ttot,_ 1017 5092 1231  0.181
(0.476) (4.716) (0.195) (0.243)

Ttot_o 0405 -6.517 -0.709  0.041
(0.455) (4.513) (0.187) (0.233)

Tmiz,—, 0560 2.354  0.095  1.001
(0.404) (4.009) (0.166) (0.207)

Tmiz,_s -0.209 -4.130 -0.137 -0.195
(0.381) (3.773) (0.156) (0.194)

Constant 0.567 2.268 0.241  -0.092
(0.178) (1.765) (0.073) (0.091)

A 0.960 -3.434 -0.044 -0.011
(0.303) (3.002) (0.124) (0.155)

Ay -0.350 3.621 0392 -0.160
(0.421) (4.178) (0.173) (0.215)

Az 0.342 3464 -0.073 0.079
(0.231) (2.291) (0.095) (0.118)

F—-Testof Tmiz=0 4.402 0.693 0.4011 21.78

1. Standard errors are in Parentheses



Table 3.5: Exogenous System

Regressor

U

Ui-2

W1

We—2

Ttott — 1

Ttott — 2

Constant

A

Ay

A

Tmizx,

Tmi.'b‘g- 1

Tmix,_2

F —Test of Tmiz =0

ey

T Dependent Variable

U4

-0.026
(0.026)

-0.020
(0.030)

0.149
(0.223)

-0.138
(0.172)

-0.873
(0.445)

0.189
(0.417)

0.667
(0.189)

0.931
(0.300)

-0.271
(0.417)

0.477
(0:232)

.0.411
(0.383)

-0.122
(0.556)

-0.403
(0.384)

4.402

U

1.190
(0.252)

-0.561
(0.292)

-3.283
(2.170)

-0.999
(1.674)

5.888
(4.329)

-7.979
(4.057)

3.118
(1.837)

-2.269
(2.924)

3.243
(4.062)

4.329
(2.257)

0.433
(3.732)

4.251
(5.412)

-6.160
(3.741)

0.693

Ttotg

-0.009
(0.011)

-0.009
(0.013)

-0.092
(0.098)

-0.150
(0.076)

1.237
(0.195)

-0.730
(0.183)

0.258
(0.083)

-0.025
(0.132)

0.388
(0.183)

-0.056
(0.102)

0.049
(0.168)

0.055
(0.244)

.0.141
(0.169)

0.4011

1. Standard errors are in Parentheses
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Chapter 4

The Determinants of the
Reservation Wage (joint with Olivier

Blanchard)

4.1 Introduction

In all models of the labor market, the reservation wage —the wage that makes workers indifferent
between taking a job or remaining unemployed— is a central determinant of the actual wage,
and in turn of employment/unemployment. In competitive models, the actual wage is simply
equal to the reservation wage. In models with bargaining or efficiency wages, the reservation
wage is one of the determinants of the actual wage. The purpose of this paper is to explore
empirically the determinants of the reservation wage, and draw out the implications of our
findings for wage determination.

The standard way of thinking about the reservation wage is as follows. Unemployed workers
face a wage distribution, which depends in particular on their observable and unobservable (to
us, not to employers) characteristics. The rate at which they get wage offers depends on
labor market conditions. While waiting or searching for offers, workers draw down assets,
receive unemployment and other benefits, and may get utility from leisure. In that standard

model, the past does not directly matter. Bygones are bygones. More formally, given the
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wage distribution that they face and the unemployment benefits that they receive, the wage
that workers received in the previous job is irrelevant. Some economists believe however that
this implication is counterfactual. To them, the behavior of workers laid off from high wage
industries suggests that lagged wages affect reservation wages, above and beyond what they
may reveal about the characteristics of the workers.

We can think of two reasons why this may occur. Firstly, workers may view, rightly or
wrongly, the lagged wage as being the best indicator of their value to a potential employer. Thus
they could simply set their reservation wage to equal the wage received in previous employment.
A second reason is pride. Even if it is unrealistic to expect reemployment at the previous wage,
pride could make it very difficult for an unemployed worker to accept an offer of anything less.

With these issues in mind, we specify the reservation wage as a function not only of the
relevant distribution of wages, of labor market conditions, and of unemployment benefits, but
also of the wage received in the previous job. We estimate this relation using the British
household Panel Survey over four years (1991-95). That data set contains explicit information
about reservation wages, labor market status, lagged wages, and can be used to construct a
mean wage based on observable characteristics of each worker. The main econometric challenge
is to disentangle whether the coefficient on the lagged wage reflects causality, or the fact that
the lagged wage contains information about the unobservable characteristics of workers. We
do so in a variety of ways, through instrumental variables, or through use of the panel data
dimension of our data.

Our empirical conclusions are clear, and appear robust to a number of alternative specifi-
cations and econometric treatments. We find a large and significant effect of the mean of the
distribution of wages on the reservation wage. Ceteris paribus, an increase in the mean of 10%
increases the reservation wage by about 4%. We find a significant, but—to our surprise— a
relatively small effect of the lagged wage on the reservation wage. Ceteris paribus, an increase in
the lagged wage of 10% increases the reservation wage by only 1.5%. We also find a significant
but small effect of benefits. Ceteris paribus, a rise in benefits received of 10% leads to a 1%
increase in the reservation wage. One other surprising result is our inability to find a significant
effect of labor market conditions, proxied either by a worker specific unemployment rate, or by

local unemployment and vacancy rates, on the reservation wage.

101



These results have interesting macroeconomic impli-ations, because the reservation wage in
part determines the natural rate of unemployment.! Were it the case that the coefficient on the
lagged wage was close to unity, reservation wages would be largely a function of the past. If
the market wage is a mark up on the reservation wage, we would expect to see it following an
autoregressive process with close to a unit root. Thus, changes in policy could have permanent
(or at least long lasting) effects on wages and unemployment. Our results suggest that the
reservation wage will adjust to any shock relatively quickly. The coefficients on the variables
that reflect current reality, the level of benefits, and the expected future wage are larger than
the coefficient on the historic variable, the wage in the previous job. This implies that the
natural rate of unemployment will adjust relatively quickly to tax and productivity shocks.

Before proceeding, we must comment on the relationship between this paper and two other
strands of the literature. There is a large literature in public finance that seeks the effect of
unemployment benefits on labor market behavior, particularly the duration of unemployment
spells. The paper most related to ours is Feldstein & Poterba (1984). In essence, they regress
the reservation wage on the level of unemployment benefits. They find an effect roughly three
or four time the size of ours. A second strand of literature that is related to our paper is the
optimal search literature. The focus of this literature is not on the determination of reservation
wages, however, but on the effect of reservation wages on unemployment duration. Jones (1988),
for example, finds for the UK, that a 1% increase in the reservation wage leads to a 7% increase

in the duration of unemployment.

4.2 Specification

A standard definition of the reservation wage is that it is the minimum wage needed to induce
an individual to give up a unit of leisure. It is equal, therefore, to the marginal utility of leisure
normalized by the marginal utility of the consumption of other goods i.e. the marginal rate of
substitution of consumption for leisure. Anything that affects the marginal utility of leisure or
the marginal utility of consumption will affect the reservation wage.

Following this line of reasoning, we see that an obvious determinant of the reservation wage

!See Blanchard & Katz (1997) for a simple discussion of the link between reservation wages and the natural
rate of unemployment.
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is the individuals’ valuation of leisure time. Controlling for the level of consumption of other
goods, individuals will be reluctant to take up employment because it means devoting less time
to other more desirable activities. The higher the value individuals place on these activities, the
higher will be the reservation wage. This presumes, of course, that individuals like non-work
activities more than work. It may be the case that, even ignoring the monetary benefits of
work, individuals prefer work to leisure because of the opportunity to interact socially. In this
case the unemployed have an excess of free time. The marginal utility of leisure is negative, at
least in the neighborhood of zero hours worked. While it is difficult to think of a direct measure
of the utility of leisure we can imagine that it is related to personal characteristics such as age,
marital status and number and on whether the individual has dependent children or not.

The other obvious determinant of reservation wages is the level of income support an in-
dividual can expect to receive when unemployed. The more consumption of other goods the
individual can have while unemployed, the more reluctant he will be to take up work, and the
higher the reservation wage. Income support implies more than just the welfare benefits paid
by the state. It includes also support provided in cash, or in kind, by families. This source of
support is very difficult to measure, but could be very important. For example, Blanchard & Ji-
meno (1995) hypothesized that large intra-family transfers plays an important role in explaining
the high level of Spanish unemployment.

Another source of income while unemployed is savings and access to credit. How low a
wage the unemployed are prepared to accept will depend not only on the income they get from
others, but on the level of their own savings and on their ability to borrow against expected
future income. In reality the unemployed are likely to be severely credit constrained, unable to
borrow against future income. Even if credit constrained, an unemployed individual could have
enough saving to enable him to maintain living standards during a spell of unemployment. If
this is so, then he will have a relatively high reservation wage. Again, however, it is unlikely to
be so, as most individuals have relatively low level of liquid savings. Most individuals’ savings
tend to be held in the form of housing assets, which may be difficult to liquidate, or in the form
of pensions, many of which cannot be run down before retirement.

The value of leisure, level of benefits, and non-labor income all determine the reservation

wage in the competitive model i.e. when it is equal to the marginal rate of substitution of
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consumption for leisure. In a more realistic case the reservation wage will be influenced by
other factors. An individual will be more likely to turn down any job offer if he feels he is
relatively likely to receive a better offer sooner rather than later. Thus, the reservation wage
will probably be a negative function of the individual’s expected performance ‘n the labor
market in the near future. This expected performance level can be broken into two component
parts, the probability of receiving a job offer and the distribution of wage offers. Tadividuals will
be less reluctant to turn down an offer of a job at a low wage if they believe that the probability
of a better offer arriving anytime soon is low. This probability will likely be a negative function
of the unemployment rate and a positive function of the vacancy rate. Similarly the reservation
wage will also be a positive function of the distribution of wage offers that the individual expects
to receive. The higher the mean of this distribution, and the lower its variance, the more likely
is the individual to turn down a low wage offer, hence the reservation wage will be relatively
high.

The reservation wage could also be a function of the wage received during any previous
period of employment. This wage indicates to the individual his value to a previous employer
and is, therefore, an indicator of his iikely value to a future employer. If the individual receives
an offer at a wage below his previous wage, he may be inclined to think that this offer is from
the low end of the distribution, and therefore reject it. Furthermore, pride is likely to make any
individual less likely to accept a job at a wage lower than that earned in a previous employment.
We might expect both these effects to diminish over time as reality begins to bite. As length
of time spent unemployed increases, the individual may revise down his wage expectations and
swallow his pride.

From the discussion in the previous paragraphs we might expect the reservation wage to be
determined by a function such as (4.1) where, W% is the wage in last employment, Wj, is the
mean of the distribution of offers, u;; is unemployment rate, a;; is asset income and b;; is the
level of unemployment benefits. We choose the log-linear functional form so that the coefficients

may be interpreted as elasticities.

ani’f = a+ﬂan,-’g +vInby + 61ln Wy + plnay + Anug + € (4.1)
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4.3 Data

We conduct the analysis using a British dataset, the British Household Panel Survey (BHPS).?
This panel covers 4 years from 1991-95. This dataset has three particular advantages. Firstly,
it contains a wealth of information on the labor market status of respondents, enabling the
difference between unemployment and non-participation to be clearly defined. Secondly, the
data includes observations of an individuals reservation wage. Thirdly as the data is a panel,
we may be able to control for individual specific (uncbserved) effects. The major disadvantage
of the data is that there are relatively few obsecrvations. After elimination of missing values we
are left with 1167 observations of individuals without employment. These observations consist
of 822 distinct individuals. We do iiot observe every individual to be unemployed in each wave.
The average number of observations in the time dimension is 1.42 per individual. The panel is
highly unbalanced.

Table 4.1 contains the definitions and summary statistics of the variables used in the analy-
sis.3 The exogenous variables used here fall into two categories: human capital and time and
region fixed effects. The human capital variables (educ, soc, pasoc, voced) are all related to
education and occupation .

The reservation wage variable, W, is not imputed, it is the result of direct observation.
Individuals who reported that they did not have a job, but who said that they would like one,

were asked the following question:
“What is the lowest weekly take home pay you would consider accepting for a job?”

We interpret the answer to this question as being the individual’s reservation wage after
tax.? We have observations of W for individuals who are unemployed and also for individuals
who might be better described as non-participants or discouraged workers. The difference is
that the unemployed reported that they had looked for a job within the previous four week,

whereas the others reported, merely that they would “like” a job. The fact that an individual

2We are grateful to Brian Bell for providing us with regional vacancy and unemployment data for Britan.

3The summary statistics are calculated for the pooled cross section.

1The question would certainly be understood by the respondent to refer to the after tax wage. Tax illusion
may cause problems, however. It is not clear whether, for example, individuals answered this question by first
calculating a gross wage and applying some arbitrarily chosen tax rate or whether their prefernces over alternative
labor market states were already paramaterized in terms of net wages.
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said that he would like a job, and could suggest what sort of job it might be, was sufficient for
him to be asked the question quoted above.

We acknowledge the potential objection that the answer to this question may not accord
exactly with the theoretical concept of the reservation wage. Individuals may have little incen-
tive to give an honest answer. Also there is the possibility that the ordering of the questions in
survey may have led to some confusion.

As regards the honesty of the replies, this is a potential problem in all surveys. Two facts
lead us to trust the answers in this survey. Firstly, the respondents knew that the survey
was confidential. In particular they knew that the information they gave was not to be made
available to tax and welfare authorities. Secondly, elsewhere in the survey many individuals
who were receiving state unemployment benefits reported that they were not actively searching
for work. This is despite the fact that active search is supposedly a requirement for receipt of
those benefits. This suggests that respondents believed that survey was confidential.

The issue of the ordering of the question is more problematic. Before being asked the
“reservation wage” question, individuals were first asked to specify the occupaticn that they
“expected” to get. It is possible that they interpreted the subsequent “reservation wage”
question as referring to the lowest wage for which they would accept that occupation, as distinct
from the lowest wage they would accept for some arbitrary job. If there is some variance in
the precise interpretation of this question, we believe that its answer is still indicative of an
individuals relative willingness to leave unemployment. More formally, if there is an error in
the WR variable, there is no reason to expect that it is correlated with any of the regressors in
(4.1). Least squares on (4.1) will still produce consistent estimates.

The wage in the last job, W, is calculated as the weekly wage received in the most recent
spell of employment. For many, but not all the unemployed, this is equal to the wage reported
at a previous wave of the panel i.e. W'ft' = W;, where s < t. For the rest the variable is
calculated from the answers individuals gave to a series of questions about their labor market
activities between the current and previous waves of the parel.

The benefits variable is the level of state benefits the respondent reported receiving at
time of interview. This may be different form the level of benefits to which the individual is

entitled. We do not investigate the issue of benefit take up rates any further. Not all the
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benefits available are formally linked to employment status. Most of the benefits, however, are
means tested. Therefore they are likely to vary with employment status. About 26% of the
observations in the sample are of zero benefits. We treat these individuals $0.25 in benefits per
week in order to avoid taking logs of zero.

As we discussed in the previous section, we expect labor market conditions to influence
the reservation wage. For simplicity we consider two channels through which this occurs.
Reservation wages will be influenced by the probability of receiving a job offer and by the
expected wage associated with that offer.

We use two alternative procedures to account for the effect of the probability of receiving
offers. The first method is to proxy the probability by the regional unemployment and vacancy
rates. These are included as regressors in (4.1). This follows the spirit of Blanchflower & Oswald
(1994). We would expect that a high unemployment rate and a low vacancy rate would make
the unemployed less likely to turn down a job offer even at a low wage, for fear that a better
offer is unlikely to materialize in reasonable time.

Card (1995) notes that this method suffers from the problem that there are relatively few
independent observations of the regional level data. As our sample in already small, there
may be insufficient variability in the unemployment and vacancy variable to identify an effect,
even if it exists. Therefore we also try an alternative approach. We construct an individual

. specific unemployment rate. We first estimate a probit model of employment on a sample
consisting of the employed and unemployed. The independent variables in this model are
regional unemployment and vacancy rates, individual characteristics such as age and education,
and region and time dummies and their interactions. The dependent variable is the individual’s
current reported employment status. We use the predicted probability of unemployment from
this probit model as a regressor in (4.1). The idea is that this variable represents the probability
that an arbitrary individual with the same characteristics as person i will get a job conditional on
him searching.’ This procedure can be thought of as being a generalization of the Blanchflower
& Oswald (1994) idea of using the unemployment rate for i's region as a regressor in wage

equations. It goes some way towards meeting the Card (1995) objection that there is insufficient

5The probabilty is conditional on searching because we estimate the probit model on a sample consisting of
the employed and the unemployed, but not the non-participants. We then construct the predicted probabilty for
both the unemployed and the non-participants, as we observe reservation wage for both groups.
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variation in the regional unemployment variable.
We have two measures of the mean of the distribution of wage offers. The first, direct

measure, is W}, the individual’s response to the question:
“What weekly take home wage would you expect to get?”

There are two obvious problems with interpreting the answer to this question. Firstly, it
suffers from the same problem as the reservation wage question. It is not clear whether the
expectation is taken with respect to all job offers or only over the offers relating to the previously
indicated occupation of choice. Secondly it is not clear whether the expectation is conditional
on the offer being acceptable i.e. the offered wage being greater than the reservation wage. We
want the unconditional mean of the distribution.

Given the difficulty in interpreting the variable, W§, we construct Wit, an alternative mea-
sure of the mean of the distribution of offered wages. We first estimate a standard wage equation
on a sample consisting of all the employed. We regress the weekly wage on education, region
and time dummies and their interactions. We correct for sample selection using the two stage
procedure of Heckman (1979).6 The R? in the wage equation is 0.23 and the coefficient on
the inverse mills ratio is —0.68 with a standard error of 0.02. We then use the coefficients
from this regression to calculate fitted values for those who do not have a job. We interpret
these fitted values, Wi, as being the mean of the distribution of wage offers that an individual
faces, conditional on his characteristics and the characteristics of the local labor market. This
procedure has the advantage that it is not open to the kind of problems of interpretation that .
undermine our confidence in W§. But there are two problems with it. Firstly the fitted values
were created via a regression of the wage on dummies derived from the human capital variables
together with interactions between time and region dummies. This procedure is not without
controversy. Only the exogeneity of father’s occupation (pasoc), age and the time dummies
are absolutely assured. One could argue that the human capital variables and even the regional
dummies are all the result of choices that are made jointly with the choice of labor market

status and are therefore not exogenous.

5The selection probit includes variables representing the marital status, age, sex, and number of dependent
children as regressors. We exclude all the human capital variables from the selection probit in order to identify
the inverse mills ratio.
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It can be argued, however, that, while these variables are formally the result of choices, those
choices are sufficiently independent of the choice of employment status to enable the resulting
variables to be treated as exogenous in practice. For example, education'may be thought to be
endogenous because we choose a higher level of education in anticipation that this will enable
us to earn higher wages, avoid unemployment etc. But it is also plausible to suggest that
the choice of education is as much a result of available opportunities, parental encouragement,
personal abilities etc. To the extent that this iv so, the level of education can be considered to

. be exogenous.

A moze serious prob}em is that this procedure may introduce an “errors—in-varjables” prob-
lem rendering OLS estimates of (4.1) inconsistent. Replacing W;, with Wi introduces the term
Wi — W;, into the residual of the estimated equation. This term will, almost surely, have an
individual specific cé)mponent 4. This represents ffnat component of the expected wage that is
specific to the individual and is not correlated with the observed characteristics that were used

to construct W;. The actual model estimated wil! have the form (4.2).
InWR = a+BIn W) + ylnby + 8§ In Wi + Alnwe + i + € (4.2)

It is p£obably the case that WY will be positively correlated with i, because W7, the wage
in the previous job probably reflects at least in part this individual specific component. Thus
OLS estimation of (4.2) will probably yield upward biesed estimates of the effect ot WE on
reservation wages.

In order to combat this potential problem we use an IV procedure. We first project WE on
a set of instruments which consist of 150 dummies representing the three digit industry code
of the previous job. In order for this procedure to be valid , we need that the industry code be
correlated with W% but uncorrelated with p;, the individual specific unobservable component
of expected wages. The first of these requirements is easy to accept. The second, however,
is not. To the extent that unemployed individuals are more likely to get a job in the same
industry in which they were previously employed, the industry codes will be correlated with p;
and they will not be valid instruments. If, however, we use sufficiently disaggregated industry

codes, the probability of an individual returning to the same industry is minimized. At the
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three digit level the probability that an unemployed individual has ezactly the same code on
reemployment, as the most recent previous job, is 34%. As we use 150 three digit industry
dummies , we feel that the IV procedure is valid and yields worth-while estimates. But we do

acknowledge that the procedure is not foolproof.

4.4 Empirical Results

We report the OLS estimates of equation (4.1) in Table 4.2. The first column shows the esti-
mates of (4.1) when Wj, the mean of the distribution of offered wages is proxied by W§, the
individuais subjective expectation of future wages. The estimates in the first column also allow
for regional vacancies and unemployment rates to influence the reservation wage. Surprisingly,
the effect of unemployment and vacancy rates is insignificant. This could indicate that local
unemployment rates have no direct effect on reservation wages, perhaps only influencing reser-
vation wages indirectly via an effect on the distribution of wage offers. It may be, however, a
manifestation of the problem discussed in the last section and by Card (1995). Because they
are observed at the regional level, the number of independent observations of Uy; and V;, is only
47 and 67 respectively. Furthermore, from Table 4.1 we can see that their variance is small.
This may not be sufficient to identify an effect even if one exists.

The coefficient on the expected wage variable, W is large and highly significant. In fact this
variable alone explains post of the variation in the dependent variable, WJ. The coefficients
on the “wage in the previous job” variable, W%, and on the benefits variable, b;;, are small but
statistically significant.

The size of the coefficient on W leads us to suspect that this variable may not truly capture
the mean of the distribution of wage offers. It could be the case that individuals, when asked
what they expect to earn, give as their answer a wage equal to their reservation wage plus 15%,
for example. This sort of behavior generates a spurious correlation between the dependent
variable W and the regressor Wg. This could fully explain the results reported in the first
column of table 4.2.

- In order to examine this possibility, we present, in column two of Table 4.2, the estimates

a

of (4.1) with W§ replaced by Wj, the fitted value from a wage regression. If W£ measures the
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mean of the wage distribution, then the results in the first two columns of table 4.2 should not
be significantly different. It is clear, however, that they are different. The magnitude of the
point estimates of the effect of W% and b;; have risen by factors of, approximately, 10 and 4
respectively. The coefficient on VV;, is two thirds of that on W5. The R? for this regression
is one quarter of that in column 1. This leads us to suspect that the estimates using W
are contaminated by a spurious correlation and therefore the estimates reported in the second
column are to be preferred.

We next considered a possible solution to problem of insufficient observations of regional
unemployment and vacancy rates. We re-estimate equation (4.1) with the regional variables,
Uyt and V., replaced by (7{;, our constructed individual specific unemployment rate. These
estimate are presented in the third column of Table 4.2. The coefficients on the variable are
virtually unchanged from those of column 2. The R? is similarly unchanged. Furthermore, the
coefficient on Uy is not significantly different from zero. This suggests that unemployment rates
do not directly influence the formation of reservation wages.

We next consider the possibility that the wage in previous job does not exert an influence on
the reservation wage, independent of that exerted by the mean of the distribution. This could
be the case if the wage in the last job is drawn from the distribution which has W, as its mean.
Both variables could be picking up the effect of personal characteristics on the reservation wage
even if previous employment per se had no effect on the reservation wage. Therefore we re-
estimated the regression excluding the lagged wage variable. These results are presented in
the fourth column of Table 4.2. These results should be compared with those in column 2 of
Table 4.2, where the regressors are identical but for the inclusion of WZ%. The coefficients on
unemployment and vacancy rates remain insignificant. The coefficient on Wig, the constructed
mean of the distribution of wage offers, has risen, however, and is significantly diflerent from
that in column 2. The explanatory power of the model, as given by the R?, is cut in half by the
exclusion of W£%. This suggests that while there is some degree of positive collinearity between
W,{' and ﬁ’it, the wage received in the previous job does exert an independent influence on the
formation of reservation wages.

As explained in the last section, we might expect that OLS estimation of (4.1) is inconsistent

because W,{‘ is correlated with the residual when Wy is a regressor. We report Instrumental
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Variable estimation of equation (4.1) in table 4.3. The columns of Table 4.3 correspond to
columns 2 and 3 of Table 4.2, with the exception that W} is first projected onto 150 industry
code dummies. The effect of this IV procedure is to increase the point estimate of the coefficient
on WE by one third. This increase is statistically significant. The point estimate of the
coefficient on benefits falls, but is not significantly different form the OLS estimates. Similarly
the point estimate of the coefficient on Wi rises, but not by a statistically significant amount.
As in the case of the OLS estimates the unemployment and vacancy variables are insignificant

The increase in the coefficient on W} is curious. As explained in section three we would
have expected IV to reduce the estimate this coefficient relative to the OLS estimate. Further
work needs to be done in order to explain exactly why the IV estimate is larger. It is worth
noting, however, that both estimates of the influence of W on reservation wages are relatively
small.

An alternative method of dealing with the individual specific unobservable is to make use
of the panel aspect of the data. We should be able to difference out the individual effect using
the “within groups” estimator. We present these results in the first column of Table 4.4. The
results are less than impressive. Almost all of the regressors are insignificant. Collectively they
explain only 2% of the variation within groups. On reflection this is not surprising. We have
very few individuals in the dataset who have had more than one spell of unemployment. The
_average number of observations per individual in the time dimension is less than 1.5. Basically
our panel is a cross section.

For the sake of completeness we report GLS estimates of a random effects model in the
second and third columns of table 4.4. The GLS method suffers from the same problem as
OLS, namely that x a component of the residual, could be correlated with a regressor, Wk, We
attempt to overcome this by instrumenting for the lagged wage using industry code dummies
as before. The result is reported in the third column of table 4.4. These results are not very
different from those reported in tables 4.2 and 4.3 for the pooled cross sections.

An interesting extension is to look at how these results vary by sex. The estimates reported
previously made no attempt to distinguish between the sexes, apart from the inclusion of sex
dummy as a regressor in both the wage equation and the selection probit used to calculate

the fitted value Wy. Labor economists tend to view the labor supply of men and women as
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being qualitatively different. Therefore we report in Table 4.5 the results from estimation of
equation (4.1) on separate sub-samples of men and women. We also add an extra regressor,
kids, the number of dependent children in the household, as we suspect that this may influence
the behavior of women especially.

The results are quite striking. Dividing the sample by sex gives very different results. The
coefficients on W and b;, are very different. Their coefficients from the full sample regressions
do not equal the average of the coefficients estimated over the two sub-samples. This suggests
that estimates over the full sample are picking up some spurious correlation between sex and
the lagged wage and benefit variables.

If we assume that women have lower wages in general, then W will be negatively correlated
with the sex dummy, where female is coded as one and male as zero. It also probable that
women have lower reservation wages than men, if only because they can expect a lower wage
upon employment. Thus, the sex dummy will be negatively correlated with the reservation
wage.” The exclusion of a variable that is negatively correlated with both reservation wage and
the lagged wage will generate a spurious positive correlation between the lagged wage and the
reservation wage. This explains why the coefficient on the lagged wage falls once we split the
sample by sex.

The change in the coefficient on the benefits variable could have a similar explanation, if we
believe that women receive systematically lower benefits than men. This is actually observed
in this dataset®, but it is not clear why it should be so. It may simply be the case that benefits
paid to a household with both a male and female adults tend formally to be paid to the male
as “head of household”.

The mean wage variable behaves as one would expect. The coefficient estimated from the
full sample is roughly equal to the average of coefficients estimated on the two sub-samples. The
=f7.ct for females is slightly higher than for males, but not significantly so. The negative effect
of asset income on the reservation wage is significant only for men. Similarly. the presence of

children raises the reservation wage of men, but lowers that of females.

"The correlation between the sex dummy (with female coded as one) and the reservation wage is —0.38.
similarly the correlation with the lagged wage is —0.32.
8The correlation between sex and benefits is —0.28.
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4.5 Macro Implications

In order to illustrate the macro implications of the results presented in the previous section,
consider the imposition of a income tax in a labor market with involuntary unemployment. Sup-
pose further that the involuntary unemployment results from a Shapiro & Stiglitz (1984) model
of efficiency wages.® Employers have imperfect information regarding workers level of effort.
This causes them to pay a premium in order tc induce workers to exert effort. This ensures that
equilibrium wage is above the market clearing level, leading to involuntary unemployment. !V
The labor market can be described by equation (4.3), where the market wage is some
multiple of the reservation wage and a standard labor demand curve. There is involuntary

unemployment because some workers, who are prepared to accept to work at the going wage

(W > WH), will not be offered a job in equilibrium.
InWl-7)=InWh 49 (4.3)

In this context workers are paid a markup on their reservation wage in order to discourage them
from shirking. The efficiency wage premium declines as unemployment rises, because higher
levels of unemployment act as a deterrent against shirking.

In order to illustrate the policy implications played by these models and the role played
by reservation wages, consider the impact on the natural rate of an increase in 7, the tax on
wage income. Intuitively, if the burden of the taxes falls entirely on the workers, then the cost
of labor does not rise and the tax has no implications for unemployment.!! Workers, seeking
to preserve the markup of net wage on the fixed reservation wage, shift some of the burden of
taxes onto employers in the form of a higher gross wage. Firms respond to an increase in the
cost of labor by cutting back on hires.

This holds for a fixed reservation wage. But, if the reservation wage itself changes in response

to the tax, then the effect of the tax on the natural rate of unemployment turns out to be very

°In the actual modei presented in Shapiro & Stiglitz (1984), they assume, for simplicity, that the labor supply
curve is vertical. The reservation wage is not well defined in this case.

10Djiscusion of other examples can be found in Bean (1994), Blanchard & Katz (1997) and Layard et. al.
(1991).

1 0f course, individuals whose after tax wage has fallen may withdraw from the labor force, leading to a fall
in employment. These individuals, however, not unemployed; they are nonparticipants.
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different. Consider the following simple example. Assume that the reservation wage is equal to
net income when unemployed and that unemployment benefits, b, are taxable at the same rate

as wage income, as in equation (4.4).
WR=01-1)% (4.4)

Substituting (4.4) for W2 in the wage setting equation (4.3) results in an expression for the
equilibrium wage that is independent of 7. Thus taxes will have no effect on equilibrium
wages or unemployment. In this simplistic case the reservation wage adjusts immediately and
completely to the change in taxes. Workers have no ability to pass on any of the burden of taxes
to employers. Firms faced with unchanging cost of labor do not change employment levels.

In a more realistic case, we might expect any adjustment in the reservation wage to take
time. How this adjustment takes will be an important determinant of the long run response of
unemployment to real shocks such as tax changes. Bean (1994) and Blanchard & Katz (1997)
point out that we might expect that the workers bear the entire burden of the tax in the long
run. Their intuition is as follows. A permanent increase in taxation will reduce permanent
income and consumption. This will increase the marginal utility of consumption relative to the
marginal utility of leisure. This in turn implies that the reservation wage will fall. It is not
hard to design a specific set up where the net result is no change in the mark-up and therefore
the wage. Thus the incidence of the tax falls completely on workers. This would imply that
even a permanent increase in taxes would have only a temporary effect on unemployment.

Much depends on the exact from of (4.3). As explained earlier, if reservation wages are
primarily a function of the level of benefits, then they are likely to adjust quickly to any changes
in taxes or productivity. Thus, the change in the natural rate of unemployment brought about
by the change in taxation, is likely to be small and not long lasting. Alternatively, if the
reservation wage is primarily a function of the wage in the previous job, the effects of changes
in taxation on the natural rate of unemployment could be very long lasting. Substituting W
for Wit in (4.3) leads to an expression for the market wage that is an autoregressive process

with a coefficient close to unity.!? In this case the reservation wage adjusts slowly leading to

12 W,l{ ~ Wn..l
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large changes in the natural rate. The unemployed are holding out for a wage equal to the
wage they received in the previous employment, even though the tax increase has made that
net wage economically infeasible. Unemployment will persist until reservation wages adjust to

the new reality.

4.6 Conclusions

This paper set out to find the determinants of the reservation wage and to indicate what the
structure of reservation wages implies for the evolution of the natural rate of unemployment.
We find that the level of benefits, the wage in a previous job and the expected future wage are
all important determinants of the reservation wage. Surprisingly, we find that unemployment
rates have no influence on reservation wages. Our empirical conclusions are clear, and appear
robust to a number of alternative specifications and econometric treatments. We find a large
and significant effect of the mean of the distribution of wages on the reservation wage. Ceteris
paribus, an increase in the mean of 10% increases the reservation wage by about 4%. We find a
significant, but—to our surprise— a relatively small effect of the lagged wage on the reservation
wage. Ceteris paribus, an increase in the lagged wage of 10% increases the reservation wage
by only 1.5%. We also find a significant but small effect of benefits. Ceteris paribus, a rise in
benefits received of 10% leads to a 1% increase in the reservation wage. One other surprising
result is our inability to find a significant effect of labor market conditions, proxied either by
a worker specific unemployment rate, or by local unemployment and vacancy rates, on the

reservation wage.
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Table 4.1: The BHPS Data

Variable Definition Mean Variance
age age at interview 36.76  13.47
month month of interview 9.43 1.82
year year of interview 93.11 0.80
region region 8.55 5.81
bie benefits 183.30 232.72
W; usual weekly wage
wh reservation wage 111.21 74.52
fA expected wage 144.31 104.81
Wi constructed mean wage 169.08 69.45
wi wage in previous job 158.71 129.65
Ut Regional unemp. rate 9.82 1.09
Vit Regional vacancy rate 0.58 0.22
Us constructed unemp. rate 9.68 6.14
educ level of education 1.8 1.55
voced vocational education dummy 3.64 1.28
soc occupation code 5.72 2.3
pasoc father’s occupation 3.64 1.28
race ethnic background 1.12 0.77
sex sex 0.50 0.50

1. Statistics are calculated for the pooled cross section



Table 4.2: OLS Estimation
Dependent Variable:InW#

Regressor (1) (2) (3) (4)
InWk 0.020 0224 0.226 -
(0.009) (0.017) (0.018) -
Inb;; 0.047 0.187 0.182 0.221
(0.011) (0.023) (0.022) (0.019)
InW;, - 0.421 0.421 0.391
- (0.074) (0.074) (0.064)
ln iet 0.877 - - -
(0.015) - - -
InUy¢ -0.133  -0.102 - -
(0.115) (0.158) - -
InV,, 0.06 -0.137 - -
(0.021) (0.047) - -
InU;, - - 0.491  0.441
- - (0.287) (0.238)
Ina; -0.008 -0.045 -0.043 -0.028
(0.006) (0.015) (0.014) (0.012)
constant  0.327 0.625 1.709  1.560
(0.168) (0.530) (0.803) (0.653)
N 1350 1160 1160 1160
R? 0814 0224 0220 0.086

1. Standard errors are in parentheses



Table 4.3: IV Estimation
Dependent Variable:lnW#

(2) ©)

InW¥ 0411  0.409
(0.037) (0.037)

Inb;, 0.202  0.199
(0.023) (0.023)

InW;, 0454  0.455
(0.075)  (0.075)

InWj - -
Uy 0219 -
(0.161) -
InV; 0155 -
(0.048) -
Wm0, - 0.416
- (0.291)
Ina; -0.040  -0.037

(0.014) (0.015)
constant -0.166  0.496

(0.552) (0.400)
N 1160 1160

R? 0.178  0.168

1. Standard errors are in parentheses
2. IV has W% instrumented by idustry code



Table 4.4: Panel Data Estimation

Dependent Variable:InW#

Within GLS  GLS-IV
InWk 0.060  0.208 0.387
(0.068) (0.020)  (0.041)
Inb;, 0.072  0.154 0.158
(0.040) (0.022)  (0.023)
InW;, 0.257 0.387 0.421
(0.322) (0.081) (0.082)
Inug, 0.741 0.479 0.489
(0.522) (0.282) (0.283)
Ina; 0.000 (0.034) (0.030)
(0.036) (0.151)  (0.015)
constant 4.408 2.094 1.116
(1.778) (0.806)  (0.833)
N 797 797 797
T 1.455  1.455 1.455
R? 0.180 0.224 0.161

1. Standard errors are in parentheses
2. GLS is the standard Random Effects model
3. IV has W% instrumented by idustry code



Table 4.5: Estimation By Sex

Dependent Variable:InW2

N

lnb,-t

InW;,

Inu;,

Ina;;

Kids

constant

N

R2

ALL

OLS

0.227
(0.018)

0.183
(0.023)

0.432
(0.074)

0.485
(0.286)

-0.046
(0.015)

-0.035
(0.017)

1.683
(0.802)
1160

0.222

v

0.397
(0.037)

0.197
(0.023)

0.469
(0.075)

0.405
(0.289)

-0.044
(0.015)

-0.049
(0.017)

0.485
(0.833)
1160

0.19

Male

OLS

0.142
(0.027)

0.072
(0.020)

0.371
(0.078)

0.038
(0.305)

-0.046
(0.016)

0.094
(0.019)

1.918
(0.855)
573

0.179

v

0.137
(0.041)

0.077
(0.029)

0.437
(0.078)

-0.071
(0.309)

-0.0401
(0.016)

0.095
(0.020)

1.33
(0.895)
576

0.15

Female
OLS v
0.107 0.234
(0.025) (0.058)
0.089  0.089
(0.032) (0.031)
0.528  0.503
(0.112) (0.111)
0.735  0.685
(0.410) (0.408)
-0.008 -0.011
(0.020) (0.021)
-0.076  -0.086
(0.026) (0.026)
2.44 1.896
(1.150) (1.171)
587 591
0.099  0.095

1. Standard errors are in parentheses

2. IV has W% instrumented by idustry code



