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Abstract The Clock Drawing Test – a simple pencil and paper test – has been used for more than 50 years
as a screening tool to differentiate normal individuals from those with cognitive impairment, and has proven
useful in helping to diagnose cognitive dysfunction associated with neurological disorders such as Alzheimer’s
disease, Parkinson’s disease, and other dementias and conditions.

We have been administering the test using a digitizing ballpoint pen that reports its position with consider-
able spatial and temporal precision, making available far more detailed data about the subject’s performance.
Using pen stroke data from these drawings categorized by our software, we designed and computed a large
collection of features, then explored the tradeoffs in performance and interpretability in classifiers built using
a number of different subsets of these features and a variety of different machine learning techniques. We used
traditional machine learning methods to build prediction models that achieve high accuracy. We operational-
ized widely used manual scoring systems so that we could use them as benchmarks for our models. We worked
with clinicians to define guidelines for model interpretability, and constructed sparse linear models and rule
lists designed to be as easy to use as scoring systems currently used by clinicians, but more accurate.

While our models will require additional testing for validation, they offer the possibility of substantial
improvement in detecting cognitive impairment earlier than currently possible, a development with considerable
potential impact in practice.
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1 Introduction

With progress in medicine extending life expectancy, populations worldwide are “graying,” producing a new
set of healthcare challenges. As one example, recent estimates suggest that 13.9 percent of people above the
age of 70 currently have some form of dementia (Plassman et al, 2007), while the Alzheimer’s Association
projects that by 2050 the number of Americans with Alzheimer’s disease will grow to some 13.8 million, with
the number worldwide growing to 135 million (Prince et al, 2013). As populations age there will clearly be
huge financial, caregiver, and social burdens on our healthcare system and on society in providing care for
patients with cognitive impairments.

Research is underway on many fronts, including pharmacological treatment, but there is as yet no cure for
cognitive impairments such as Alzheimer’s disease (AD) and Parkinson’s disease (PD), and pharmaceuticals
often take 12 years from discovery to clinical approval. There is however the potential to slow the progress
of some forms of cognitive decline, if caught early enough. Hence one important focus of research is early
detection.

A variety of tests are used to screen for and assist with differential diagnosis of cognitive decline. One of
the simplest and widely used is called the Clock Drawing Test (CDT). In use for over 50 years, it has been a
well-accepted cognitive screening tool used in subjects with various dementias and other neurological disorders.
The test asks the subject to draw on a blank sheet of paper a clock showing 10 minutes after 11 (called the
Command clock), then asks them to copy a pre-drawn clock showing that time (the Copy clock).

As a simple paper and pencil test, the CDT is quick and easy to administer, non-invasive and inexpensive,
yet provides valuable clinical and diagnostic information. It has been shown to be useful as a screening tool
to differentiate normal elderly individuals from those with cognitive impairment, and has been effective in
helping to diagnose dementias, such as Alzheimer’s disease, Parkinson’s disease, and other conditions (Freedman
et al, 1994, Grande et al, 2013). The CDT is often used by neuropsychologists, neurologists and primary care
physicians as part of a general screening for cognitive change (Strub et al, 1985).

But there are drawbacks in the current use of the test. While there are a variety of well-regarded manual
scoring systems used by clinicians, these systems often rely on the clinician’s subjective judgment of under-
specified properties of the drawing. One current scoring system (Nasreddine et al, 2005), for instance, calls for
judging whether the clock circle has “only minor distortion,” and whether the hour hand is “clearly shorter”
than the minute hand, without providing quantitative definitions of those terms, leading to variability in
scoring and analysis (Price et al, 2011). Other scoring systems (e.g., Nyborn et al, 2013) specify more precise
measures but are far too labor-intensive for routine use.

For the past 7 years neuropsychologists in our group have been administering the CDT using a digitizing
pen (the DP-201 from Anoto, Inc.) that, while functioning as an ordinary ballpoint, also records its position
on the page with considerable spatial (±0.005 cm) and temporal (12ms) accuracy. The raw data from the pen
is analyzed using novel software developed for this task (Davis et al, 2014, Davis and Penney, 2014, Cohen
et al, 2014); the resulting test is called the digital Clock Drawing Test (dCDT).

The dCDT provides a number of unique capabilities. The spatial precision of the raw data permits the
software to do an unprecedented level of geometric analysis of the drawing, with no effort by the user. Because
the data points are time-stamped, they capture the entire sequence of behaviors (every stroke, pause or hesita-
tion), rather than just the final result (the drawing). Having time-stamped data means that our software can
measure that behavior as well, including informative time intervals like the delay between finishing numbering
the clock and starting to draw the hands.

Processing raw data from the pen starts with sketch interpretation, i.e., classifying each pen stroke as one
or another component of the clock, e.g., as a minute hand, hour hand, as a specific digit, etc. (Davis et al,
2014).

The next step is clinical interpretation: what does the drawing and the behavior that produced it indicate
about the subject’s cognitive state? We report here on what light a variety of machine learning techniques shed
on answering this question. We describe our work on constructing features that are informative diagnostically,
on building classifiers that predict a subject’s condition, and on creating classifiers that are both accurate and
comprehensible to clinical users.

The medical focus of this paper is on three categories of cognitive impairment chosen because of their clinical
significance and because they represent three of the most common diagnoses in our data: memory impairment
disorders (MID) consisting of Alzheimer’s disease and amnestic mild cognitive impairment (aMCI); vascular
cognitive disorders (VCD) consisting of vascular dementia, mixed MCI and vascular cognitive impairment; and
Parkinson’s disease (PD).

There are two forms of prediction we want to make. Screening distinguishes between healthy and one of the
three categories of cognitive impairment. For each cognitive impairment category we built models that make
a binary-choice prediction indicating whether someone falls in that category or is healthy. We also do a group
screening for these three conditions together, i.e., whether a subject falls in any one of the three categories
or is healthy. The second task is the diagnosis-like task of clinical group classification – distinguishing one of
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the three categories from every other of the 43 diagnoses in our data set, including healthy. For brevity in the
remainder of the paper we refer to this simply as diagnosis.

We define 6 types of features, detailed in Section 3, on which our work is based:

– Digital-pen features are the features computed by the dCDT software.
– Clinician features are the features used in the existing manual scoring systems created by and used by

clinicians;
– Operationalized clinician features (op-clinician features) are rigorously defined and computed versions of

the clinician features.
– Simplest features is a subset of features chosen because we believe they are particularly easy to evaluate by

hand, hence less subject to inter-rater variance and usable in the pen-and-paper version of the test.
– The set of all features is the union of the digital-pen features, op-clinician features, and simplest features.
– The MRMR subset of all features is the first 200 features selected by Minimum-Redundancy-Maximum-

Relevance filtering (Peng et al, 2005) from the set of all the features.

We began by using off-the-shelf machine learning methods for their ability to produce accurate predictive
models when trained on large amounts of data. Section 4 describes this work and reports on the performance of
six classification methods - Gaussian SVM, random forests, CART, C4.5, boosted decision trees, and regularized
logistic regression - each of which had access to all features.

These classifiers performed very well in absolute terms, but determining the significance of their performance
results requires a baseline to use as a point of comparison. While data are available on the performance of
some of the scoring systems used by clinicians (Tuokko et al, 2000, Storey et al, 2001, 2002, Lourenço et al,
2008), these are imperfect measures due to variations in the way the test is given (e.g., whether only one clock
is to be drawn, whether the clock face circle is pre-drawn, etc.) and variations in the clinical populations used
in evaluation.

To provide a more closely comparable measure of performance, we evaluated our clock test data using seven
of the most widely used existing manual scoring systems, selected in a review of the literature. We did this by
creating automated versions of these systems, in order to make their use practical for the volume of data we
have. One challenge in doing this is that the scoring systems are designed for use by people, and often contain
under-specified measures (e.g. deciding whether a clock circle has “only minor distortions.”) We thus had to
operationalize these algorithms, i.e., specify the computations to be done in enough detail that they could be
expressed unambiguously in code. We refer to these as the operationalized scoring systems.

One disadvantage of off-the-shelf machine learning classifiers is that they produce black box predictive
models that may be impossible to understand as anything other than a numerical calculation. In response,
another focus of our work has been on exploring the tradeoff between accuracy and interpretability. In Section 6,
we provide a definition of interpretability for our problem. We use a recently developed framework, Supersparse
Linear Integer Models (SLIM) (Ustun and Rudin, 2015, Ustun et al, 2013), and introduce a simple metric to
prioritize more understandable features, enabling us to build interpretable linear models.

In Section 7, we move to a second class of models consisting of rules and rules lists, built by mining
association rules from the data. Some of these rules confirm existing knowledge about correlations between
pen-based features and diagnoses, while others appear novel, revealing correlations that had not been reported
previously. In a further step in this direction, we constructed rule lists by employing a recently-developed
machine learning technique called Bayesian Rule Lists (BRL) (Letham et al, 2015), which combines associations
to create accurate-yet-interpretable predictive models.

Based on the framework outlined above, we carried out a number of experiments that produced the eight
primary contributions of this paper:

(i) Starting from a collection of novel clock test features created over the years by members of our team
(see e.g., Penney et al, 2011a,b, Lamar et al, 2011, Penney et al, 2013), we created additional single-clock
features, as well as features taking advantage of aggregate properties of the clocks and differences between
the command and copy clocks. In addition, we operationalized the features used in existing scoring systems,
producing the operationalized clinician features, and selected a set of features that we believe to be most
easily and reliably determined by clinicians via clinical judgment.

(ii) We show that six state-of-the-art machine learning methods applied to the set of all features produced
classifiers with AUC performance ranging from 0.89 to 0.93 for screening and 0.79 to 0.83 for diagnosis.
Published AUCs of existing clinician scoring systems (Tuokko et al, 2000, Storey et al, 2001, 2002, Lourenço
et al, 2008), which typically attempt only screening (i.e., distinguishing healthy vs. cognitively impaired),
range from 0.66 to 0.79 depending on the dataset. Our methods are thus not only significantly more accurate
on this task, they are also capable of detecting more fine-grained classes of cognitive impairments for both
screening and diagnosis.

(iii) We created operationalizations of seven widely used manual CDT scoring systems, to provide the most
direct baseline for evaluating our models. Any free parameters in our operationalized scoring systems were
chosen so as to maximize performance of the system, providing an upper bound on the performance of
these systems on our data.
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(iv) The classifiers produced by the state-of-the-art machine learning methods greatly outperformed the op-
timized operationalized scoring algorithms for both screening and diagnosis. Where the machine learning
methods produced AUCs from 0.89 to 0.93 for screening and 0.79 to 0.83 for diagnosis, the best operational-
ized scoring algorithms have AUCs of between 0.70 and 0.73 for screening and 0.65 and 0.69 for diagnosis.
Thus, using the digital version of the CDT with our machine learning models would lead to more accurate
predictions.

(v) We show that applying the machine learning methods to the clinician features leads to models with AUCs
from 0.82 to 0.86 for screening and 0.70 to 0.73 for group classification, which is more accurate than
the operationalized scoring algorithms. We also show that using the simplest features results in better
performance than the operationalized scoring algorithms, with AUCs from 0.82 to 0.83 for screening and
0.72 to 0.73 for group classification. This opens up the possibility of clinicians recording these features and
inputting them into our machine learning models, producing more accurate predictions of their patients’
conditions, without changing what they attend to in evaluating the test.

(vi) We created Supersparse Linear Integer Models using simplest features, op-clinician features, and the MRMR
subset of all features, that are all more accurate than existing scoring systems on the screening task, with
AUCs from 0.73 to 0.83 depending on the feature set, and at least as accurate (and often better) on
the diagnosis task, with AUCs from 0.66 to 0.77. These models contain very few features and prioritize
understandable ones, leading to models that are at least as interpretable as existing algorithms and can be
used reliably by clinicians.

(vii) We mined association rules and found many that were consistent with existing knowledge about connections
between clock features and cognitive conditions, and some that suggested plausible but previously unknown
connections.

(viii) We created highly interpretable rule lists using simplest features, op-clinician features, and the MRMR
subset of all features, resulting in classifiers with AUCs ranging from 0.78 to 0.85 for screening and 0.69 to
0.74 for diagnosis, depending on the feature set and condition. As above, these models might be usable by
clinicians at least as easily, and possibly more reliably and accurately, than existing scoring systems.

Figures 1 and 2 summarize the results described above, showing the range of accuracies achieved by our
different models for screening and diagnosis, respectively, ordered by decreasing upper bound. Each model
category is a pairing of a class of model (traditional machine learning models, Supersparse Linear Integer
Models, or Bayesian Rule Lists) with a feature set (simplest features, clinician features, or all features/MRMR
subset of all features). Each bar shows the range of the AUC’s across test folds for each condition, for the
best algorithm in each category. For example, on the screening plot, “ML All features” indicates the range of
accuracies of the best machine learning algorithms using all features, over the four possible screening tasks.

Fig. 1: Summary of results for screening.
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Fig. 2: Summary of results for diagnosis.

Related work

The goal of creating interpretable models – described in early expert systems work as the need for transparency
– has received considerably less attention in the last two decades. In that time, machine learning methods have
rarely been used for creating scoring systems; instead these systems are often created manually by teams of
domain experts, or created by heuristically rounding logistic regression coefficients. There are some recent
efforts to develop and use machine learning in domains such as credit scoring (Martens et al, 2007), crime
prediction (Steinhart, 2006, Andrade, 2009, Ridgeway, 2013), national defense (Consulting, 2002), marketing
(Hauser et al, 2010, Verbeke et al, 2011, Wang et al, 2015), medical diagnosis (Tian and Tibshirani, 2011,
Van Belle et al, 2012, Letham et al, 2015, Wang and Rudin, 2015), and scientific discovery (Sun, 2006, Freitas
et al, 2010, Haury et al, 2011). None of these works use a machine learning algorithm designed for produc-
ing scoring systems, like the SLIM method we use in this paper. SLIM creates linear models that can be
heavily customized through integer programming techniques. This means that it can handle constraints on
the coefficients, constraints on the false positive rate, or very customized definitions of interpretability that
no other current method can handle. Bayesian Rule Lists, on the other hand, creates logical IF-THEN rule
models. Bayesian Rule Lists is a competitor for CART (Classification and Regression Trees, Breiman et al,
1984). CART uses a greedy (myopic) optimization method to produce decision trees, whereas BRL makes a
statistical approximation to reduce the size of the problem, and then aims to fully solve the reduced problem
for the best rule list. This means that for moderately sized problems like ours, BRL will generally produce
solutions that are more accurate and sparse than CART.

Numerous papers in the clinical literature describe a variety of manual scoring systems for the clock test
(Manos and Wu, 1994, Royall et al, 1998, Shulman et al, 1993, Rouleau et al, 1992, Mendez et al, 1992, Borson
et al, 2000, Libon et al, 1993, Sunderland et al, 1989), none of which used a machine learning approach to
optimize for accuracy.

There have also been a few attempts to create novel versions of the clock drawing test. The closest work
to ours (Kim et al, 2011a,b) builds a tablet-based clock drawing test that allows the collection of data along
with some statistics about user behavior. However, that work focuses primarily on the user-interface aspects
of the application, trying to ensure that it is usable by both subjects and clinicians, but not on automatically
detecting cognitive conditions.

No work that we know of – and certainly none used in practice – has used state-of-the-art machine learning
methods to create these systems or has reported levels of accuracy comparable to those obtained in this work.
In addition, no work that we know of has aimed to understand the tradeoff between accuracy of prediction
and interpretability for the clock drawing test.
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2 The Digital Clock Test Data

Over the past seven years we have accumulated a database of 3541 digital clock tests whose strokes have been
carefully classified and independently reviewed for accuracy. Some subjects have been tested multiple times
over the years; to avoid issues that might arise from repeated exposure to the test, only the first test for each
subject was included in our analysis, resulting in 2169 tests (each of which has both a Command and Copy
clock, yielding 4338 distinct drawings).

Our dataset consists of subjects with diverse medical conditions. The focus in this paper is on three
categories of cognitive impairment chosen because of their clinical significance and because they represent
three of the most common diagnoses in our data, along with healthy controls:

– The memory impairment disorders (MID) group consists of 206 subjects diagnosed as having Alzheimer’s
disease or amnestic MCI on the basis of one or more criteria: consensus diagnosis of a neuropsychologist
and neurologist, neuropsychological test finding, or selection into a study following the research diagnostic
criteria. Alzheimer’s disease is the most common form of dementia, accounting for 60 to 70 percent of
dementia cases (Petersen et al, 2014). MCI (mild cognitive impairment) can present with a variety of
symptoms; when memory loss is the predominant symptom it is termed “amnestic MCI” and is frequently
seen as a transitional stage between normal aging and Alzheimer’s disease (Albert et al, 2011). We would
expect memory problems on the clock test but do not expect significant motor slowing during the early
stages of the disease. In our sample, subjects with amnestic MCI meet criteria established by Petersen et al
(2014) and have circumscribed memory loss in the context of otherwise intact cognition and no report of
functional problems. Our subjects with Alzheimer’s disease are primarily at an early stage of the disease.

– The vascular cognitive disorders (VCD) group consists of 121 subjects diagnosed with vascular dementia,
mixed MCI, or vascular cognitive impairment (VCI). Vascular dementia is widely considered the second
most common cause of dementia after Alzheimer’s disease, accounting for 10 percent of cases (Battistin and
Cagnin, 2010). Early detection and accurate diagnosis are important, as risk factors for vascular dementia
are important targets for medical intervention. We hypothesize motor and cognitive slowing effects on the
test performance.

– The PD group has 126 subjects diagnosed with Parkinson’s disease. Early in the course of the disease
the most obvious symptoms are movement-related and may include tremor, rigidity, slowness of movement
and difficulty with gait. Later, thinking and behavioral problems may arise, with dementia (if diagnosed)
most often occurring in the advanced stages of the disease. There is no cure yet, but medical and surgical
treatments are effective at managing the motor symptoms of the disease.

– Our set of 406 healthy controls (HC) comes from people who have been longitudinally studied as participants
in the Framingham Heart Study1 and are judged by trained examiners to be cognitively intact.

The remainder of the tests have other neurological, psychiatric, and medical conditions; the distribution of
the most frequent conditions is shown in Figure 3.

Fig. 3: Histogram of most frequent conditions in the data set.

1 Initiated in 1948, the Framingham Heart Study (FHS) originated with biennial examinations of an original cohort to identify
the determinants of heart disease and stroke. The focus has since broadened to include additional generations of participants
and expanded investigations to other types of chronic diseases. The majority of their participants remain cognitively intact.
Beginning in 2011, FHS adopted the dCDT as part of its cognitive test suite.
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Figure 4 illustrates representative clock drawings from our dataset from a subject from the HC group, a
subject in the memory impairment group, and a subject diagnosed with PD. As the figure suggests, clocks by
HC subjects are typically reasonably round, have all 12 digits present and spaced regularly around the clock,
and have hands pointing towards digit 11 and digit 2. Hands often have arrowheads, and the minute hand is
often but not invariably longer than the hour hand, following the traditional clock format. A center dot is also
common.

There are many possible variations found in both HC and impaired subjects.

– Clocks vary significantly in size, with some subjects drawing them much smaller (Figure 4c).
– There may be a gap between the start and the stop of the clockface (Figure 4c).
– Digits maybe be missing, crossed-out, repeated, or with poor angular spacing (Figure 4b).
– Digits greater than 12 are sometimes drawn.
– Hands can be missing (Figure 4b), crossed-out, or repeated, with arrowheads sometime pointing toward

the clock center.
– Some clocks contain stokes used by subjects for spatial arrangement, and tickmarks used as replacement

for digits.
– Subjects sometime use additional text in their drawings, for example to write the time as a memory aid or

in lieu of a number.
– We have defined “noise” as strokes that are not part of the representation of defined clock elements (e.g.

hand, digit) but are clearly produced during the drawing process and are intentional (i.e. not random pen
drops) (Penney et al, 2011a). They vary from tiny dots to longer lines (Figure 4c).

– A more subtle feature, hooklets (Lamar et al, 2011, Penney et al, 2013), can also be observed. These are
abrupt changes in the direction at the end of a stroke that head toward the beginning of the next stroke.
For example, when drawing the numbers on a clock, subjects may leave a “tail” on the end of one digit
stroke that points toward the start of the first stroke of the next digit.

As described elsewhere (Davis et al, 2014), our software analyzes the raw data from the pen, automatically
classifying strokes as part of the clock face circle, hands, numbers, etc. It also permits assistance from the user,
needed in difficult cases (e.g., for clocks by more impaired subjects). Figure 5 shows a screenshot of the system
after the strokes in a clock have been classified, showing the starting point for the work reported here.

Fig. 5: Example classified command clock from Figure 4b. An ellipse is fit to the clockface, with the major and minor axis
shown; bounding boxes are drawn around each digit; arrows show the overall direction of the hands; the lines on digits 5, 10,
and 12 show hooklets, with “x”s indicating the start of the next stroke after each hooklet. The system adds the colored overlays
as a way of making stroke classification visually obvious.

Stroke classification is a key first step, as it enables appropriate measurement of clock features, e.g., the
average size of the numerals, how accurately the hands show the time, the latency between finishing drawing
the numerals and starting to draw the hands, etc. (see, e.g., Davis et al, 2011). The spatial and temporal
accuracy of the pen data permits our system to make precise measurements that are implausibly difficult with
ordinary ink on paper.

3 Feature construction

We constructed five sets of features to use with the various algorithms we employed. We describe the feature
sets and their objectives below.
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(a) Healthy Control

(b) Alzheimer’s Disease

(c) Parkinson’s Disease

Fig. 4: Example clocks, to scale, from our dataset for healthy controls, Alzheimer’s disease, and Parkinson’s disease, with
command clock on the left and copy clock on the right
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Fig. 6: A: the distance between starting and ending point of the clockface, as well as the angular difference; B: digit repetition;
width and height of the bounding box; C: the difference in angle between a hand and its correct angle; D: hooklet presence,
length, and direction.

Digital-pen features

These are the features computed by the dCDT software along with additional features based on those. They
fall into four categories:

Single-Clock-Measurements

These are measurements of geometric or temporal properties of components of a single clock. For example:

– The number of strokes, the total ink length, the time it took to draw, and the pen speed for each component
(e.g. the clockface, all digits, and all hands).

– The length of the major and minor axis of the fitted ellipse as well as the distance and angular difference
between starting and ending points of the clock face (Figure 6A).

– Digits that are missing or repeated, the height and width of their bounding boxes (Figure 6B).
– Omissions or repetitions of hands, the hour hand to minute hand size ratio, the presence and direction of

arrowheads, and angular error from their correct angle (Figure 6C).
– Whether the minute hand points to digit 10 instead of digit 2, which can happen as a consequence of the

instruction to set the time to “10 past 11”.
– The presence, length, and direction of hooklets (Figure 6D).
– The presence of tick marks, spokes, any text, or a center dot for the hands.
– The number of and length of noise strokes.
– Timing information is used to measure how quickly different parts of the clock were drawn. One particularly

interesting latency feature is one called the pre-firsthand latency, the time that elapsed between the first
stroke of the first hand drawn and whatever was drawn previously (e.g. Penney et al, 2011b).

Single-Clock-Aggregates

These are aggregates of geometric or temporal properties of a single clock. For example:

– The total time to draw the clock and the total number of strokes used.
– The average height, average width, and average length of all digits present.
– The number of digits missing or repeated.
– Whether digits 12, 6, 3, and 9 are drawn before any other digits.2

– Measures of the distribution of digits around the clock. For example, one feature counts the number of
digits in the clock that do not have 2 other digits within 45° on either side; another feature reports whether
all non-anchor digits are in the correct octant of the clock circle; yet another reports the variance in the
distance of digits from the clockface.

– The percentage of time spent drawing vs. thinking (holding the pen off the paper) for one clock.

2 When the 12, 3, 6, and 9 digits are drawn before any other digits, they are referred to as “anchor digits,” as they are being
used to organize the drawing.
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Both-Clock-Aggregates

These are aggregates over both the command and the copy clock. For example:

– The total time to draw both clocks.
– The total number of strokes used.
– The average height, average width, and average length of all digits present in both clocks.
– The number of digits missing in both clocks.
– The percentage of time spent drawing vs. thinking for both clocks.

Clock Differences

We computed the difference in value of a feature across the command clock and the copy clock, e.g, the
difference in the total time to draw each clock. This follows the intuition that because the command and copy
clocks engage different cognitive functions, differences between them may be revealing.

Clinician features and operationalized-clinician features (op-clinician features)

Some of the features found in manual scoring systems (the “clinician features”) are quantitative, such as
checking for the presence of a digit or a hand. Others are less well defined: for example, one feature calls for
determining whether the minute hand is “obviously longer” than the hour hand, while another checks whether
there are “slight errors in the placement of the hands.” These can be estimated by a clinician, but it is not
immediately obvious how to compute them in a program in a way that captures the original intent. Section 5
describes our efforts to create the operationalized versions of these features.

The operationalized features then allow us to create computable versions of the manual scoring systems,
providing a baseline against which to compare the classifiers we build. We also use these features with the
machine learning algorithms to measure how predictive they can be in models of other forms.

Simplest features

This is a subset of the features available in the traditional pen-and-paper version of the test, selecting those for
which we believe there would be little variance in their measurement across clinicians. We expect, for example,
that there would be wide agreement on whether a number is present, whether hands have arrowheads on them,
whether there are easily noticeable noise strokes, etc.

Models created using this set of features would be applicable to the traditional pen-and-paper version of the
test (i.e. without the digitizing pen), with clinicians likely to be able to measure the features more consistently
than those in existing scoring systems.

All features

This is the union of digital-pen features, op-clinician features, and simplest features. Our intent here is to build
the best model possible, without regard to the number of features, their interpretability, etc., in order to get
the maximum benefit from the data.

MRMR subset of all features

From among all of the features, we created a subset of the first 200 selected by Minimum-Redundancy-
Maximum-Relevance filtering (Peng et al, 2005). This set of features can be used when it would be computa-
tionally too expensive to use the set of all features.

4 Machine learning on all features

Our aim in this section is to determine the highest accuracy attainable for classifiers built from our data, by
applying state-of-the-art machine learning methods to the set of all features.

We began with the screening task, seeking to develop classifiers able to distinguish HC subjects from those
with one of the conditions listed earlier: memory impairment disorders, vascular cognitive disorders, and PD,
as well as whether the subject is a HC or falls under any of the three clinical diagnosis groups.
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We generated classifiers using multiple machine learning methods, including CART (Breiman et al, 1984),
C4.5 (Quinlan, 1993), SVM with gaussian kernels (Joachims, 1998), random forests (Breiman, 2001), boosted
decision trees (Friedman, 2001), and regularized logistic regression (Fan et al, 2008). We used stratified cross-
validation to divide the data into 5 folds to obtain training and testing sets. We further cross-validated each
training set into 5 folds to optimize the parameters of the algorithm using grid search over a set of ranges.
Appendix A provides additional details the implementations.

Table 1 shows the prediction quality for all of the machine learning algorithms we used, reported as the
mean and standard deviation of performance over the test folds. We chose to measure quality using area under
the receiver operator characteristic curve (AUC) as a single, concise statistic; we display full ROC curves in
Figure 7. Each curve is a mean over the 5 folds, with 95% confidence intervals displayed as bars along the curves.
We assessed statistical significance for the experiments in Table 1 using matched pairs t-tests; bold indicates
algorithms whose result was not statistically significantly different from the best algorithm.3 In addition, we
provide F-scores for all of our experiments in Appendix B. Note that no single machine learning method can
be declared the winner across all experiments.

The best classifiers achieve AUC measures from the high 80s to the low 90s. With this level of prediction
quality, these methods can be quite helpful as decision aids for clinicians.

Algorithm Memory impairment disorders Vascular cognitive disorders PD All three
vs. HC vs. HC vs. HC vs. HC

C4.5 0.75 (0.08) 0.72 (0.07) 0.75 (0.06) 0.78 (0.08)
CART 0.78 (0.07) 0.75 (0.13) 0.76 (0.10) 0.76 (0.10)
SVM Gaussian 0.89 (0.06) 0.84 (0.08) 0.86 (0.08) 0.91 (0.09)
Random Forest 0.89 (0.10) 0.88 (0.09) 0.91 (0.11) 0.89 (0.06)
Boosted Decision Trees 0.93 (0.09) 0.88 (0.11) 0.87 (0.08) 0.90 (0.12)
Regularized Logistic Regression 0.88 (0.11) 0.85 (0.07) 0.91 (0.08) 0.89 (0.09)

Table 1: Classification results for the screening task: distinguishing clinical group from HC. Each entry in the table shows
the mean and standard deviation AUC of a machine learning algorithm across 5 folds. The first column is for the task of
distinguishing memory impairment disorders vs. HC, the second column is for vascular cognitive disorders vs. HC, the third
column is for PD vs. HC, and the last column is for any of the three cognitive impairments vs. HC. F-scores are in Appendix
B, Table 18.

For our sample of subjects, these results are superior to published accuracies of existing scoring systems,
even where those scoring systems focused on the simpler screening task of distinguishing HC subjects from
those with any form of cognitive impairment, instead of the more fine-grained categories we use. Published
results report AUC levels ranging from 0.60 to 0.79 (Tuokko et al, 2000, Storey et al, 2001, 2002, Lourenço
et al, 2008), with variance in the performance across reports. As an example of the ranges and variance, AUC
accuracy for two widely used scoring systems have been reported from 0.66 (Storey et al, 2002) to 0.79 (Storey
et al, 2001) for Shulman (Shulman et al, 1993), and from 0.7 (Storey et al, 2002) to 0.78 (Storey et al, 2001)
for Mendez (Mendez et al, 1992).

To produce the full ROC curves shown in Figure 7 for a particular model (machine learning model, or
scoring system), we rank subjects according to their score in the model and build the curve from the left
(subjects with the highest score) to right (subjects with the lowest score). This way, the left part of the curve
represents subjects most likely to have an impairment.

The second set of experiments was aimed at diagnosis, i.e., distinguishing subjects in one of our clinical
groups from subjects who have any other medical, neurological, or psychological condition. Table 2 shows
comparative accuracy results; Figure 8 shows the associated ROC curves. As expected, diagnosis is a more
difficult task, leading to the best algorithms having AUC’s within the high 70’s to low 80’s.

3 These hypothesis tests are problematic because experiments between folds are not independent, but there is apparently no
good alternative for testing (see, for instance, Markatou et al, 2005).
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(a) Memory impairment disorders vs. HC (b) Vascular cognitive disorders vs. HC

(c) PD vs. HC (d) All three vs. HC

Fig. 7: ROC curves for screening task (Table 1).

Algorithm Memory impairment disorders Vascular cognitive disorders PD All three
vs. All Others vs. All Others vs. All Others vs. All Others

C4.5 0.71 (0.10) 0.67 (0.06) 0.71 (0.09) 0.66 (0.09)
CART 0.72 (0.06) 0.69 (0.09) 0.68 (0.09) 0.64 (0.04)
SVM Gaussian 0.79 (0.07) 0.77 (0.13) 0.81 (0.11) 0.72 (0.06)
Random Forest 0.83 (0.06) 0.79 (0.10) 0.81 (0.07) 0.73 (0.04)
Boosted Decision Trees 0.80 (0.09) 0.77 (0.08) 0.77 (0.09) 0.82 (0.05)
Regularized Logistic Regression 0.78 (0.06) 0.79 (0.05) 0.82 (0.05) 0.79 (0.07)

Table 2: Classification results for the diagnosis task: distinguishing one cognitive impairment group from all other diagnoses.
Each entry in the table shows the AUC and standard deviation of a machine learning algorithm for distinguishing one disease
from the others. For instance, the entry in the table corresponding to memory impairment disorders and C4.5 indicates the
accuracy in distinguishing memory impairment disorders from every other condition. F-scores are in Appendix B, Table 19.
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(a) Memory impairment disorders vs. All others (b) Vascular cognitive disorders vs. All others

(c) PD vs. All others (d) All three vs. All others

Fig. 8: ROC curves for the diagnosis task (Table 2).

5 Operationalized scoring systems

Having established performance for machine learning classifiers, we would like to know how they compare to
the models currently in use by clinicians. Ideally, we would determine this by having a large number of our clock
tests manually evaluated by clinicians using the scoring systems in current use, but this was not pragmatically
possible. We were, however, able to establish a useful baseline by creating computational models of the existing
scoring systems, resulting in models which we call operationalized scoring systems. The goal here was to create
automated versions of the scoring systems used by clinicians so that we could reproduce the judgments they
would make when applying one of the existing scoring systems.

There are a variety of scoring systems for the clock test, varying in complexity and the types of features
they use. In each of the systems, points are added and subtracted based on features of the clock, such as
whether clock hands are present, digits are missing, or the correct time is shown. A threshold is then used to
decide whether the test gives evidence of impairment.

We worked with clinicians to identify the most widely used scoring algorithms, leaving us with seven: Manos
(Manos and Wu, 1994), Royall (Royall et al, 1998), Shulman (Shulman et al, 1993), Rouleau (Rouleau et al,
1992), Mendez (Mendez et al, 1992), MiniCog (Borson et al, 2000), and Libon (Libon et al, 1993) (based on
Sunderland et al (1989)). Table 3 shows the Rouleau scoring criterion; we focus on it as an example of the
operationalization process.

To operationalize these systems, we had to transform relatively vague terms, such as “slight errors in
the placement of the hands” and “clockface present without gross distortion”, into precise rules that can be
programmed. One challenge was defining what was meant by the vague terms.

As one example of our approach, guided by the clinicians, we translated “slight errors in the placement
of the hands” to “exactly two hands present AND at most one hand with a pointing error of between ε1
and ε2 degrees”, where the εi are thresholds. Similarly, “clock face present without gross distortion” became
“eccentricity of the clockface ≤ ε3 AND clock face closed percentage ≥ ε4”.

Table 4 shows the non-obvious features used in the Rouleau scoring system (e.g. “digit missing” is obvious),
while Table 5 shows the resulting operationalized scoring system. Operationalized scoring systems for all the
other manual scoring systems are given in Appendix C.
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maximum: 10 points

1. Integrity of the clockface (maximum: 2 points)

2: Present without gross distortion
1: Incomplete or some distortion
0: Absent or totally inappropriate

2. Presence and sequencing of the numbers (maximum: 4 points)

4: All present in the right order and at most minimal error in the spatial arrangement
3: All present but errors in spatial arrangement
2: Numbers missing or added but no gross distortions of the remaining numbers

Numbers placed in counterclockwise direction
Numbers all present but gross distortion in spatial layout

1: Missing or added numbers and gross spatial distortions
0: Absence or poor representation of numbers

3. Presence and placement of the hands (maximum: 4 points)

4: Hands are in correct position and the size difference is respected
3: Sight errors in the placement of the hands or no representation of size difference between the hands
2: Major errors in the placement of the hands (significantly out of course including 10 to 11)
1: Only one hand or poor representation of two hands
0: No hands or perseveration on hands

Table 3: Original Rouleau scoring system (Rouleau et al, 1992)

Variable Description

Eccentricity of fitted ellipse
√

(1− ( b
a

)2) where a and b are half the major and minor axes respectively. A perfect circle

has value 0, the value increases toward 1 as it gets flatter.
ClockfaceClosedPercentage The percentage of the angle of the clockface that is closed.
DigitsAngleError The average angle error of digits from their correct angle. A measure of the distribution of

digits angularly.
DigitNeighborsTest A count of the number of digits in the clock with fewer than 2 other digits within ±45°. A

second measure of the distribution of the digits angularly.
HandAngleError The difference in angle between the hand and the digit it should point to.
HandRatio The ratio: length of the hour hand / length of minute hand.

Table 4: Operationalized non-obvious features for Rouleau.

The clinicians on our team confirmed the form and content of these operationalized scoring systems and
provided initial values for the thresholds which they believed made the operationalizations capture the intent
of the original manual scoring systems. For instance, the initial hand pointing thresholds were 15° and 30°.

Starting from these initial values, we created a range of possible values for each parameter (see Appendix D),
then selected parameter values via a 5-fold stratified cross-validation that maximized AUC. This maximization
of the AUC ensures that our operationalized versions of the manual scoring systems provide an upper bound
on the performance the scoring system is capable of.

Table 6 and Figure 9 show the performance for each operationalized scoring system on the screening task.

The manual version of some of the scoring systems we operationalized have previously been evaluated on
the task of screening for general dementia. Results reported for Shulman ranged from 0.66 (Storey et al, 2002)
to 0.79 (Storey et al, 2001), while our operationalization of Shulman yielded 0.67 on memory impairment
disorders and 0.71 on vascular cognitive disorders. Results reported for Mendez ranged from 0.70 (Storey et al,
2002) to 0.78 (Storey et al, 2001), while our operationalization of Mendez gave us 0.72 on memory impairment
disorders and 0.70 on vascular cognitive disorders. Manos achieved 0.67 (Lourenço et al, 2008), while our
operationalization gave us 0.73 on memory impairment disorders and 0.69 on vascular cognitive disorders. Thus,
while there is a range of accuracies reported for these algorithms due in part to their being evaluated on different
datasets and for different groupings of conditions (general dementia vs. memory impairment disorders/vascular
cognitive disorders), our operationalized scoring systems achieve similar accuracies, providing a check on our
operationalization process.

We then used a variety of machine learning methods on the op-clinician features and the simplest features.
The lower part of Table 6 shows AUCs for the best machine learning algorithm on these two feature sets,
followed by the AUCs of the best machine learning algorithm on all features (reproduced from Section 4 for
comparison). We can see that all three machine learning models are much more accurate than the operational-
ized scoring systems, even when using identical features (the op-clinician features), or ones that are even easier
to measure (the simplest features).

Table 7 and Figure 10 show corresponding accuracy results for the operationalized scoring systems on
the diagnosis task. Again, the machine learning classifiers created from all three feature sets are much more
accurate than the operationalized scoring systems, which scored mostly in the low 60s. We were unable to find
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maximum: 10 points

1. Integrity of the clockface (maximum: 2 points)

2: eccentricity ≤ ε1 AND clockface closed percentage ≥ ε2
1: eccentricity > ε1 OR clockface closed percentage < ε2
No clockface strokes OR normed residual > ε3

2. Presence and sequencing of the numbers (maximum: 4 points)

4: If all digits present AND correct angular sequence AND DigitsAngleError ≤ ε4
3: If all digits present AND correct angular sequence AND ε4 ≤ DigitsAngleError ≤ ε5
2: (At least one digit missing OR at least one digit repeated OR digits greater than 12 present)

AND DigitNeighborsTest ≤ ε6)
OR numbers counterclockwise
OR All digits present AND (at least one digit outside the clock OR DigitNeighborsTest ≥ ε6)

1: At least one digit missing OR at least one digit repeated OR digits greater than 12 present)
AND DigitNeighborsTest ≥ ε6)

0: No digits

3. Presence and placement of the hands (maximum: 4 points)

4: Exactly two hands AND both HandAngleError ≤ ε7 AND HandRatio ≤ ε8
3: Exactly two hands AND (at least one hand has ε7 < HandAngleError ≤ ε9 OR HandRatio > ε8)
2: Exactly two hands AND at least one hand has HandAngleError > ε9

OR Minute hand pointing closer to “10” than “2” and within 30° of digit “10”
1: One hand or more than two hands present
0: No hands present

Table 5: Operationalization of Rouleau scoring system

Algorithm Memory impairment disorders Vascular cognitive disorders PD All three
vs. HC vs. HC vs. HC vs. HC

Manos 0.73 (0.08) 0.69 (0.13) 0.70 (0.11) 0.70 (0.07)
Royall 0.73 (0.14) 0.67 (0.13) 0.73 (0.09) 0.70 (0.06)
Shulman 0.67 (0.05) 0.71 (0.07) 0.66 (0.07) 0.67 (0.05)
Libon 0.67 (0.09) 0.72 (0.09) 0.68 (0.10) 0.68 (0.12)
Rouleau 0.61 (0.16) 0.68 (0.15) 0.59 (0.13) 0.61 (0.08)
Mendez 0.72 (0.11) 0.70 (0.12) 0.69 (0.07) 0.69 (0.06)
MiniCog 0.57 (0.08) 0.55 (0.13) 0.54 (0.15) 0.58 (0.12)

Best ML with op-clinician features 0.83 (0.09) 0.83 (0.11) 0.86 (0.08) 0.82 (0.10)
Best ML with simplest features 0.83 (0.06) 0.82 (0.07) 0.83 (0.08) 0.83 (0.07)
Best ML with all features 0.93 (0.09) 0.88 (0.11) 0.91 (0.11) 0.91 (0.09)

Table 6: Operationalized scoring system AUCs for screening test, together with AUCs of the best machine learning model
on the op-clinician features, simplest features, and the set of all features. F-scores are in Appendix B, Table 20.

any published accuracies for these existing scoring systems on a comparable diagnosis task. Given these higher
accuracies from the machine learning models, the dCDT could be considered not only as a general screening
tool, but could also potentially guide diagnosis.

Algorithm Memory impairment disorders Vascular cognitive disorders PD All three
vs. All Others vs. All Others vs. All Others vs. All Others

Manos 0.69 (0.07) 0.63 (0.08) 0.62 (0.07) 0.64 (0.06)
Royall 0.68 (0.08) 0.62 (0.07) 0.65 (0.07) 0.63 (0.09)
Shulman 0.62 (0.07) 0.65 (0.05) 0.59 (0.06) 0.63 (0.04)
Libon 0.60 (0.08) 0.65 (0.12) 0.60 (0.14) 0.64 (0.05)
Rouleau 0.59 (0.13) 0.64 (0.09) 0.53 (0.09) 0.60 (0.06)
Mendez 0.68 (0.06) 0.65 (0.05) 0.61 (0.07) 0.61 (0.07)
MiniCog 0.55 (0.07) 0.56 (0.07) 0.53 (0.05) 0.54 (0.07)

Best ML with op-clinician features 0.73 (0.06) 0.71 (0.08) 0.71 (0.05) 0.70 (0.06)
Best ML with simplest features 0.72 (0.05) 0.73 (0.07) 0.74 (0.08) 0.72 (0.05)
Best ML with all features 0.83 (0.06) 0.79 (0.05) 0.82 (0.05) 0.82 (0.05)

Table 7: Operationalized scoring system AUCs for diagnosis task, together with AUCs of the best machine learning model
on the op-clinician features, simplest features, and the set of all features. F-scores are in Appendix B, Table 21.
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(a) Memory impairment disorders vs. HC (b) Vascular cognitive disorders vs. HC

(c) PD vs. HC (d) All three vs. HC

Fig. 9: ROC curves for the experiments in Table 6.

6 Interpretable Linear Models

We have found that state-of-the-art machine learning methods on simplest features, clinician features, and
the set of all features outperform existing scoring criteria. But the existing scoring systems remain more
interpretable. Interpretability is crucial if domain experts are to accept and use the model. We turn next to
finding models that are more transparent and hence more likely to be accepted in practice, yet still outperform
existing models.

The interpretability of a model is domain specific. To ensure that we produced models that can be used
and accepted in a clinical context, we obtained guidelines from clinicians. This led us to focus on three
components: ease of feature measurements and their reliability, model computational complexity, and model
understandability.

1. Ease of feature measurements and reliability: Some features can be measured quickly by eye (e.g. is there a
minute hand present) while others would require a digital pen (time to draw the hand). In addition, some
have a greater inter-clinician variance in measurements. This led us to focus on features that we believed
would have the lowest variance; as noted we call these the “simplest features.” Models produced using these
features could easily be used even without a digital pen or other digitizing mechanism.

2. Computational complexity: the models should be relatively easy to compute, requiring a number of simple
operations similar to the existing manual scoring systems. The existing scoring systems discussed above
have on average 8 to 15 rules, with each rule containing on average one or two features. We thus focus on
models that use fewer than 20 features, and have a simple form, which in our case means either addition
or subtraction of feature scores (i.e., a linear model), or an ordered sequence of if-then statements (a rule
list or decision list). Clinicians should be able to evaluate these types of models rapidly.

3. Understandability: the rationale for a decision made by the model should be easily understandable, so that
the user can understand why the prediction was made and can easily explain it. Thus if several features are
roughly equally useful in the model, the most understandable one should be used. As one example of what
we mean by “understandable,” note that our feature set includes 3 measures of test taking time: the total
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(a) Memory impairment disorders vs. All others (b) Vascular cognitive disorders vs. All others

(c) PD vs. All others (d) All three vs. All others

Fig. 10: ROC curves for the experiments in Table 7.

time to draw the command clock, the total time to draw the copy clock, and the aggregate of the two, the
total time to draw both. If using total time to draw both clocks produces the most accurate model, but
almost all of the predictive power comes from only one of the components, say the total time to draw the
command clock, it would be reasonable to trade some small amount of accuracy in order to use the simpler
feature, the command clock drawing time. The form of the model is also important for understandability,
leading us to focus on linear models and rule lists.

Our goal in the remainder of this paper is to build classifiers that are at least as interpretable as existing
scoring systems (according to the criteria mentioned above), but that are more accurate. While our focus will
be on using the simplest features, we will also create interpretable models using op-clinician features and the
MRMR subset of all features. These latter two might not be as practical to use manually, and may not be as
interpretable, but exploring them allows us to test the predictive power of these more complex features. In
addition, if these models achieve high accuracy, they could also be used for automatic scoring while providing
interpretability for each prediction.

We begin by using a recently developed framework, Supersparse Linear Interpretable Models (SLIM) (Ustun
and Rudin, 2015, Ustun et al, 2013), designed to create sparse linear models that have integer coefficients and
constraints on the range of coefficients. To improve model understandability, we added feature preferences,
where certain features would be preferred over others if performance is similar.

Given a dataset of N examples DN = {(xi, yi)}Ni=1, where observation xi ∈ RJ and label yi ∈ {−1, 1},
and an extra element with value 1 is included within each xi vector to act as the intercept term, we want to
build models of the form ŷ = sign(λTx), where λ ⊆ ZJ+1 is a vector of integer coefficients. The framework
determines the coefficients of the models by solving an optimization problem of the form:

min
λ

Loss(λ;DN ) + ·Φ(λ)

s.t. λ ∈ L.
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The Loss function Loss(λ;DN ) penalizes misclassifications. The interpretability penalty function Φ(λ) : RJ+1 →
R allows for a tradeoff between desired interpretability qualities and accuracy. The framework also allows in-
terpretability constraints by limiting λ to a user-defined set L, to restrict coefficients to a particular set of
values, in our case, integers.

The interpretability penalty function Φ(λ) allows us to prioritize certain features, helping to ensure that
the most understandable features appear in the model. In particular, we defined an understandability penalty
uj for each feature j by organizing our features into trees such that the children of each feature are those it
depends on. For instance “total time to draw both clocks” has as children “total time to draw command clock”
and “total time to draw copy clock.” The height of a given node is the number of nodes traversed from the
top of the tree to the given node. We define

uj = height(j) ∀j

which produces a bias toward simpler features, i.e., those lower in the tree. To regulate both the model
complexity and the model understandability, we define our interpretability penalty function Φ(λ) as

Φ(λ) = sparsity penalty + understandability penalty

= C0

J∑
j=1

1[λj 6= 0] + C1

J∑
j=1

uj · 1[λj 6= 0].
(1)

The first term simply computes the `0 semi-norm of Φ(λ), which is the count of the number of nonzero
features. This term encourages the model to use fewer features. The second term allows the optimization to
potentially sacrifice some training accuracy to favor using features lower in the tree, which we believe will be
more understandable. The constants C0 and C1 trade off between the two terms, so that if one cares more
about sparsity, then C0 would be set larger, and if one cares more about understandability, then C1 would be
set larger. The values of C0 and C1 can be set using nested cross-validation if desired.

The loss function measures a balance between accuracy on the positive examples and accuracy on the
negative examples. It is:

Loss(λ;DN ) = C+
1

N

∑
i:yi=1

ψi + C−
1

N

∑
i:yi=−1

ψi,

where ψi is 1 if an incorrect prediction is made. The user-defined values of C+ and C− determine the relative
costs of false negatives and false positives.

We include a margin γ, and we say an incorrect prediction is made if the value of yiλ
Txi is below γ.

The SLIM optimization thus becomes:

min
λ,ψ,Φ,α,β

C+

N

∑
i:yi=1

ψi +
C−
N

∑
i:yi=−1

ψi +
J∑
j=1

Φj

s.t. Miψi ≥ γ −
J∑
j=0

yiλjxi,j i = 1,...,N 0–1 loss (2a)

Φj = C0αj + C1ujαj + εβj j = 1,...,J int. penalty (2b)
−Λjαj ≤ λj ≤ Λjαj j = 1,...,J `0-norm (2c)
−βj ≤ λj ≤ βj j = 1,...,J `1-norm (2d)
λj ∈ Lj j = 0,...,J coefficient set

ψi ∈ {0, 1} i = 1,...,N loss variables

Φj ∈ R+ j = 1,...,J penalty variables

αj ∈ {0, 1} j = 1,...,J `0 variables

βj ∈ R+ j = 1,...,J `1 variables

The first constraints (2a) force ψi to be 1 if the prediction is incorrect, meaning below the margin value
γ. The value of Mi is a sufficiently large upper bound on values of γ −

∑J
j=0 yiλjxi,j ; it can be computed

easily given the largest value of each xi,j and the largest allowable value of λj (denoted Λj): we set Mi such
that Mi > γ +

∑
j Λj maxi(xi,j). The constraints (2b) define the two penalty terms in Φ and also include

a very small coefficient on βj , where βj will be set to the absolute value of coefficient λj . The βj term is
not a regularization term, its only effect is to ensure that the coefficients are coprime, meaning that they are
not divisible by a common integer. This helps with interpretability but does not affect training accuracy. For
instance, consider coefficients [2,2,4] and [1,1,2], which are indistinguishable to all other terms in the model.
The εβj terms will force the optimization to choose [1,1,2]. The next constraints (2c) define each αj as being
1 when λj is non-zero (0 otherwise). Λj is the largest allowable value of λj . The constraints (2d) on βj , along
with the fact that βj is being minimized in the objective, define it as being the absolute value of λj . The
meaning of the other constraints was explained above.
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The optimization problem was programmed in Matlab and solved using the CPLEX 12.6 API. We ran our
optimization problem on the set of simplest features and the clinician features, with a hard upper bound of
10 features, to keep them interpretable, and on the MRMR subset of all features with an upper bound of 20
features. We used stratified cross-validation to divide the data into 5 folds to obtain training and testing sets.
We further cross-validated each training set into 5 folds to optimize the parameters (C+, C−, C0, C1) using
grid search over a set of ranges. Tables 8 and 9 present the AUCs for screening and diagnosis, respectively. For
screening, all the SLIM models outperformed the operationalized scoring systems, the best of which performed
in the 0.70 to 0.73 range (Table 8). For diagnosis, only the SLIM models with the MRMR subset of all features
significantly outperforms the operationalized scoring systems, while the others perform similarly, the best of
the operationalized systems performed in the 0.64 to 0.69 range (Table 9).

Features Memory impairment disorders Vascular cognitive disorders PD All three
vs. HC vs. HC vs. HC vs. HC

SLIM with simplest features 0.78 (0.08) 0.75 (0.05) 0.78 (0.07) 0.74 (0.05)
SLIM with op-clinician features 0.75 (0.10) 0.74 (0.07) 0.73 (0.11) 0.74 (0.06)
SLIM with MRMR subset 0.83 (0.09) 0.81 (0.13) 0.81 (0.10) 0.83 (0.09)

Best operationalized scoring system 0.73 (0.08) 0.72 (0.09) 0.73 (0.09) 0.70 (0.06)
Best ML with all features 0.93 (0.09) 0.88 (0.11) 0.91 (0.11) 0.91 (0.09)
Best ML with op-clinician features 0.83 (0.09) 0.83 (0.11) 0.86 (0.08) 0.82 (0.10)
Best ML with simplest features 0.83 (0.06) 0.82 (0.07) 0.83 (0.08) 0.83 (0.07)

Table 8: AUC results for Supersparse Linear Integer Models on the screening task. F-scores are in Appendix B, Table 22.

Features Memory impairment disorders Vascular cognitive disorders PD All three
vs. All others vs. All others vs. All others vs. All others

SLIM with simplest features 0.68 (0.12) 0.66 (0.10) 0.66 (0.07) 0.69 (0.05)
SLIM with op-clinician features 0.67 (0.09) 0.66 (0.07) 0.66 (0.10) 0.70 (0.04)
SLIM with MRMR subset 0.75 (0.04) 0.72 (0.06) 0.77 (0.06) 0.76 (0.08)

Best operationalized scoring system 0.69 (0.07) 0.65 (0.05) 0.65 (0.07) 0.64 (0.05)
Best ML with all features 0.83 (0.06) 0.79 (0.05) 0.82 (0.05) 0.82 (0.05)
Best ML with op-clinician features 0.73 (0.06) 0.71 (0.08) 0.71 (0.05) 0.70 (0.06)
Best ML with simplest features 0.72 (0.05) 0.73 (0.07) 0.74 (0.08) 0.72 (0.05)

Table 9: AUC results for Supersparse Linear Integer Models on the diagnosis task. F-scores are in Appendix B, Table 23.

Table 10 shows a SLIM model containing only 9 binary features, yet it achieves an AUC score of 0.78.
Pushed by the understandability penalty, the model uses mostly simple features composed of a single property,
except for the first line which consists of an aggregate of multiple simpler features, chosen by the optimization
despite its complexity because of its high screening power. This model contains only elements from the simplest
feature set, which means they do not have the problems present in many existing scoring systems; in particular,
the features used in the model are not as subjective, producing a scoring system likely to be more reliable.

PREDICT MEMORY IMPAIRMENT DISORDER IF SCORE < 10

Command clock:

1. All digits are present, not repeated, and in the correct angular order +5
2. Hour hand is present +5
3. All of the non-anchor digits are in the correct eighth +1
4. Crossed-out digits present -3
5. Two hands not present -1
6. More than 60 seconds to draw -1
7. Minute hand points to digit 10 -6

Copy clock:

8. All of the non-anchor digits are in the correct eighth +4
9. Numbers are repeated -3

Table 10: Supersparse Linear Integer Model for screening of memory impairment disorders
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7 Rules and Rule Lists

We mined association rules from our data and used these rules to build interpretable rule lists. The rules allow
us to gain insights about how different cognitive impairments influence behavior on the test. By constraining
the width and length of our decision lists to levels similar to existing scoring systems, and by using simple
features, we created rule lists that we believe can be easily interpreted by clinicians. Unlike the linear models
above, rules and rule lists also allow us to use non-linear relationships in the data.

7.1 Mining Association Rules

The first step was to discretize all of our features into equal-frequency bins, using 2 and 5 bins per feature.
We then mined globally for all IF-THEN rules in the data that obeyed certain conditions on the quality of the
rule. In particular, we wanted the rules with both sufficiently high support (i.e the number of subjects that
obeyed the IF condition) and high confidence (i.e. the empirical probability of the THEN condition to be true,
given that the IF condition is true). We used FPGrowth (Borgelt, 2005) to extract decision rules from our data
that predict each of our conditions (memory impairment disorders, vascular cognitive disorders, PD). We set
a minimum support threshold of 40 tests, and required confidence to be greater than chance, where chance is
simply the proportion of total patients who had the condition. Figure 11 shows the distribution of confidence
and support for rules for each condition in the screening task.

(a) Memory impairment disorders vs. HC (b) Vascular cognitive disorders vs. HC

(c) PD vs. HC (d) All three vs. HC

Fig. 11: Scatter plot of Confidence vs. Support for rules for each condition vs. HC. Each dot on the plot represents an
IF-THEN rule, where the condition is the THEN part of the rule. The right angle at the bottom left of each of these clusters
shows the minimum confidence and support cutoffs used when mining the rules.

These graphs show us that some of these rules can be very accurate. For memory impairment disorders
for example, we have a rule that, for our data, can be applied to 15% of the tests and can accurately predict
memory impairment disorders over 80% of the time (circled in Figure 11(a)). This rule is: Predict memory
impairment if the pre-first-hand latency on the copy clock is greater than 2.3 seconds, and at least one hand is
missing on the command clock. This rule is consistent with what is known about memory impairment disorders.
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7.2 Interesting patterns

Some of the association rules confirm existing knowledge about correlations between pen-based features and
clinical groups (e.g., the example just above). Others appear to be novel, possibly providing insight into
correlations not reported previously. Tables 11, 12, and 13 present a set of rules that focus on the screening
task for memory impairment disorders, vascular cognitive disorders, and PD.

Rule Support Confidence

1 Percentage thinking time is high, > 65% 0.2 0.57
(alternative phrasing: Percentage inking time is low, < 35%)

2 Pre-first-hand latency on copy clock is high, > 2.3 seconds 0.2 0.64
3 Pre-first-hand latency on copy clock is high, > 2.3 seconds, AND at least one

hand missing on the command clock
0.14 0.84

4 There is at least one digit missing on command clock and none missing on
copy clock

0.04 0.78

5 The minute hand is pointing more than 15° away from digit 2 on command
clock but points within 15° degrees on copy clock

0.06 0.75

Table 11: Screening conditions implying memory impairment disorders

Rule Support Confidence

1 In the command clock the minute hand points within 15° of digit 10 0.04 0.79
2 In the command clock one or more digits have fewer than 2 other digits within

±45°

0.19 0.52

3 For both clocks average time to draw digits is high, > 2.5 seconds 0.2 0.52

Table 12: Screening conditions implying vascular cognitive disorders

Rule Support Confidence

1 Average inking time over both clocks is high, > 17 seconds 0.2 0.38
2 Average angle gap over both clock faces is high, > 57° 0.2 0.43
3 The average pen speed is low for both clocks 0.19 0.41
4 Average digit width over both clocks is low, < 3mm 0.2 0.33
5 Average digit height over both clocks is low, < 5mm 0.2 0.34
6 Average number of strokes per clock is high, > 27 0.16 0.34
7 Average number of noise strokes per clock is high, > 1.5 0.2 0.38
8 Average number of noise strokes smaller than 0.3mm per clock is high, > 0.5 0.2 0.49

Table 13: Screening conditions implying PD

Memory impairment disorders

The first rule in Table 11 shows that, when compared to HC subjects, the memory impairment group subjects
tend to spend a greater percentage of the test-taking time thinking (i.e., with pen off the paper) and a smaller
percentage of their test-taking time inking (with pen on the paper). This is consistent with what is known
about Alzheimer’s disease and amnestic MCI.

The second rule indicates that memory impairment group subjects make a longer than normal pause
between the first stroke of the hands and the last stroke that was drawn before the hands on the copy clock.
This may result from decision-making difficulty, or from trouble recalling the instructions given (e.g., what
time to set the clock to). Combining this second rule with the condition that at least one hand is missing in
the command clock gives the third rule, which has a very high confidence.

Memory impairment patients tend to display signs of improvement from the command clock to the copy
clock. Consistent with this, the fourth rule finds in the data that there is a significant chance someone belongs
in the memory impairment group if they have one or more digits missing on their command clock but none
missing on their copy clock. Similarly, the fifth rule tells us that this group is very likely the correct choice if
the minute hand is not aimed accurately in the command clock but is aimed accurately in the copy clock.
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Vascular cognitive disorders

The patterns that distinguish the vascular-related cognitive disorders subjects from our HC subjects are similar
to those of the memory impairment group. These subjects also tend to spend more time thinking, less time
inking, and show signs of improvements between the two clocks.

We highlight a few additional rules in Table 12. The first rule shows a particularly interesting phenomenon:
some patients draw the minute hand pointing towards the 10 digit instead of towards the 2 digit, presumably
driven by the words “ten” and “eleven” (as in the instructions to set the time to “ten past eleven”). Almost
80% of people who do this fall in our vascular cognitive disorders group, making it a very accurate rule for
screening. The second rule measures the angular distribution of the digits around the clock, and if one or more
digits have fewer than 2 other digits within ±45°, there is a high chance the subject belongs in our vascular
cognitive disorders group. These subjects also tend to spend a long time drawing digits, as shown in the third
rule.

Parkinson’s Disease

The patterns for the Parkinson’s group are very different. As expected, given the motor slowing and increased
incidence of tremor characteristic of this disorder, instead of having low inking time like the memory group and
the cognitive disorders group, subjects in the PD group tend to have high inking time over both clocks, likely
due to motor impairment, as shown in the first rule of Table 13. The second rule shows that they tend to leave
a larger angular gap in their clock faces, possibly a consequence of their difficulty in starting, stopping, and
persisting in motions, which might contribute to premature stopping, producing the gaps. They also tend to
display signs of bradykensia, drawing slower than HC patients, a common symptom of Parkinson’s, as shown in
the third rule. The fourth and fifth rule show that the digits tend to be both shorter and narrower than those of
HC subjects, suggestive of micrographia, also common among Parkinson’s patients. Both their command and
copy clocks also tend to have more total strokes (rule 6), and they also have a larger number of noise strokes
(rule 7), particularly small strokes (rule 8), possibly due to tremors, or a pull to stimulus (i.e. the subject is
resting the pen on a target of attention in the clock).

While all the rules described above provide interesting insights when considered individually, we also want
to combine them to produce a classifier in the form of a rule list, yielding a classifier with a high degree of
accuracy that remains interpretable. We turn next to this.

7.3 Rule Lists

To construct scoring systems for the CDT that are both accurate and interpretable using the rules mined
above, we chose a recently developed machine learning algorithm called Bayesian Rule Lists (BRL) (Letham
et al, 2015). Its intent is to create classifiers that have better accuracy and interpretability than traditional
machine learning models like CART, and thus more likely to be used by clinicians. BRL derives from the data
an ordered list of IF-THEN rules. Table 16 shows an example of a BRL list for screening of memory impairment
disorders.

There are two main steps to the BRL algorithm:

– Find all of the feature combinations that occur sufficiently often (e.g., copy clock is missing numbers AND
there is a missing hour hand on the command clock).

– Choose and order the feature combinations to form the left hand sides of rules for the rule list. This is done
using a Bayesian modeling approach. BRL has two user-defined parameters that enter into its Bayesian
prior over rule lists, allowing the user to specify the desired number of rules in the rule list, λ, and the
desired number of conditions within each rule, η.

BRL’s Bayesian modeling approach creates a posterior distribution of rule lists. The Bayesian prior encourages
it to favor lists with approximately λ rules and η conditions per rule, as specified by the user.

We ran BRL on our three sets of features: simplest features, op-clinician features, and the MRMR subset
of all features. AUCs for screening are shown in Table 14, and range from 0.79 to 0.85. These are significantly
more accurate than the operationalized scoring systems (the best of which performed in the 0.70 to 0.73 range,
Table 6). These scores are approximately at the level of the best ML algorithms with simplest features and
with op-clinician features. Diagnosis AUCs, shown in Table 15, display a range from 0.69 to 0.74, again better
than the operationalized scoring systems (the best of which performed in the 0.64 to 0.69 range, Table 7), and
similar to the best ML algorithms with simplest features and with op-clinician features.

To keep the rule lists interpretable, we restricted the width of the lists to at most 2. We varied the list
length to see how it influences accuracy. Figure 12 shows testing AUC vs. list length for the simplest features.
For the screening task, Figure 12 indicates that lists between 4 and 7 rules lead to test AUCs similar to the
best test AUC’s, while for the testing task, 5 to 8 rules leads to diagnoses similar to the highest AUC’s. These



Learning Classification Models of Cognitive Conditions from Subtle Behaviors in the Digital Clock Drawing Test 23

Features Memory impairment disorders Vascular cognitive disorders PD All three
vs. HC vs. HC vs. HC vs. HC

BRL with simplest features 0.82 (0.06) 0.79 (0.08) 0.81 (0.05) 0.82 (0.06)
BRL with op-clinician features 0.82 (0.07) 0.78 (0.07) 0.83 (0.09) 0.78 (0.10)
BRL with MRMR subset 0.83 (0.10) 0.82 (0.07) 0.79 (0.09) 0.85 (0.09)

Best operationalized scoring system 0.73 (0.08) 0.72 (0.09) 0.73 (0.09) 0.70 (0.06)
Best ML with all features 0.93 (0.09) 0.88 (0.11) 0.91 (0.11) 0.91 (0.09)
Best ML with op-clinician features 0.83 (0.09) 0.83 (0.11) 0.86 (0.08) 0.82 (0.10)
Best ML with simplest features 0.83 (0.06) 0.82 (0.07) 0.83 (0.08) 0.83 (0.07)

Table 14: AUC results for BRL on screening task. F-scores are in Appendix B, Table 24.

Features Memory impairment disorders Vascular cognitive disorders PD All three
vs. All others vs. All others vs. All others vs. All others

BRL with simplest features 0.72 (0.08) 0.71 (0.05) 0.70 (0.08) 0.69 (0.06)
BRL with op-clinician features 0.70 (0.11) 0.72 (0.08) 0.69 (0.07) 0.72 (0.11)
BRL with MRMR subset 0.73 (0.08) 0.70 (0.05) 0.73 (0.06) 0.74 (0.08)

Best operationalized scoring system 0.69 (0.07) 0.65 (0.05) 0.65 (0.07) 0.64 (0.05)
Best ML with all features 0.83 (0.06) 0.79 (0.05) 0.82 (0.05) 0.82 (0.05)
Best ML with op-clinician features 0.73 (0.06) 0.71 (0.08) 0.71 (0.05) 0.70 (0.06)
Best ML with simplest features 0.72 (0.05) 0.73 (0.07) 0.74 (0.08) 0.72 (0.05)

Table 15: AUC results for BRL on diagnosis task. F-scores are in Appendix B, Table 25.

Fig. 12: Plot of AUC on testing folds vs. list length for simplest features, for both screening and diagnosis.

models are generally both more concise and more accurate than the existing scoring algorithms we discussed
earlier.

Table 16 presents a rule list obtained for the screening of memory impairment disorders. This rule list was
derived using the simplest features to allow the resulting rule list to be used with the pen-and-paper test,
and to allow clinicians to measure these features quickly and reliably by eye. Containing only 5 rules, each of
similar complexity to a line from the existing scoring systems, it is shorter than most of the existing scoring
systems, yet it achieves an AUC of 0.82, higher than the upper bound of 0.73 on the best existing scoring
system that we examined.

Another new machine learning method, similar to Bayesian Rule Lists, is called Falling Rule lists (Wang
and Rudin, 2015). A falling rule list is a rule list where the right hand side probabilities decrease along the list.
This means that the most at-risk patients should fall into one of the first few conditions. This can be useful
for decision-making, as clinicians need only check the first few conditions on the list to determine whether a
patient is at high risk. We ran FRL on the set of simplest features, and obtained the model in Table 17 for the
screening of all three conditions vs. healthy; it contains only five rules yet has an AUC of 0.75.
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IF the command clock minute hand points within 15° of digit 10 THEN 94% (88%− 100%)
ELSE IF the command clock minute hand is present and drawn outwards from the center AND
all of the non-anchor digits in the command clock are in the correct eighth

THEN 16% (12%− 20%)

ELSE IF all hands are present with arrowheads pointing outwards AND more than 5 of the non-
anchor digits in the copy clock are in the correct eighth

THEN 24% (17%− 32%)

ELSE IF the command clock took more than 40 seconds to draw THEN 92% (84%− 98%)
ELSE IF the copy clock took less than 20 seconds to draw THEN 12% (0%− 21%)
ELSE 33% (12%− 45%)

Table 16: BRL for screening of memory impairment disorders. Percentages are the probability of memory impairment
disorders, with the 95% confidence interval in parentheses.

IF not all non-anchor digits in the command clock are in the correct eighth AND there is at least
one hand missing

THEN 88%

ELSE IF not all non-anchor digits in the copy clock are in the correct eighth AND the copy clock
took more than 30 seconds to draw

THEN 68%

ELSE IF there is at least one noise stroke in the copy clock AND there are fewer than 4 definite
hooklets in the copy clock

THEN 65%

ELSE IF there are more than two digits an the incorrect quadrant in the copy clock AND the copy
clock took more than 20 seconds to draw

THEN 34%

ELSE 15%

Table 17: FRL for screening of memory impairment disorders, vascular cognitive disorders, and Parkinson’s disease. Percent-
ages are the probability of any of the three disorders.

8 Discussion of Challenges and Conclusion

Traditional scoring systems created by clinicians are typically based on obvious features and thus have a trans-
parency and face validity that is readily understood by the user population. A potential lack of transparency
in machine learning-derived classifiers could be a barrier to clinical use.

Our goal was to have the best of both worlds: create an automated system that took advantage of new
sensor technology (the digital pen), state-of-the-art machine learning methods, and large amounts of patient
data, but that ensured the same interpretability qualities as the existing scoring systems. There are several
important challenges we faced when trying to create our assessment models, in addition to the usual challenges
of applying machine learning in practice for knowledge discovery applications.

The first challenge is interpretability. A major theme of this work is how to walk the line between inter-
pretability and accuracy. We started with traditional (black box) machine learning methods to establish the
highest accuracy baselines, then went to the other end of the spectrum by mining association rules, which
provided accuracy baselines for the most interpretable methods. We then aimed to find the right balance of
interpretability and accuracy using new machine learning techniques designed for this particular tradeoff. The
models we learned have major advantages in accuracy over the traditional scoring systems for the clock draw-
ing test, and even some advantages in interpretability because the traditional pen-and-paper scoring systems
require subjective judgment and are not consistent across clinicians. Interpretability is notoriously difficult to
quantify for a particular domain, but in this case we were able to use new machine learning techniques to create
models that mimic the form of model that clinicians currently use. These techniques allowed us to optimize
directly for interpretability as we chose to define it. The resulting models are potentially directly usable by
clinicians. Our results indicate that some of our models are more robust, just as interpretable, more accurate
than some widely used scoring systems, and require less computation on the part of the clinicians to compute
the result, even without the benefit of the detailed data from the digital pen.

Another challenge we faced is how to create a reasonable assessment of the quality of our predictions, which
required us to encode subjective human judgments in a way that captured the intent of those judgments. This
led to our strategy of creating an optimized version of each of the existing scoring systems (the operationalized
scoring systems). We were then able to show that even fully optimized versions of widely used scoring methods
were not as accurate as a machine learning methods trained on data – even when that machine learning
method was trained on the same features used in the existing scoring systems. This shows the power of
combining machine learning with clinical knowledge.

This project brings together many important pieces: a new sensor (the digital pen), new techniques for
handwritten stroke classification, techniques for optimizing calculations made using human judgment, new
machine learning techniques for interpretability, and data created from many subjects’ clock drawings and
their subsequent clinical classifications. While our classifiers now need to be tested in actual clinical use, the
results presented here suggest the potential of this work to make significant improvements in both screening
and diagnosis.
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A Machine Learning Implementation Details

CART: The R library “rpart” with default parameters.
C4.5: The R library “RWeka” with default settings.
SVM: SVMlight Joachims (1998) with a radial basis function kernel. We selected the slack parameter CSVM and the kernel

parameter γ using a grid search over the ranges CSVM ∈ {2−4, 2−2, ..., 214} and γ ∈ {2−6, 2−1, ..., 210}
Random Forests: The MATLAB class “TreeBagger” with parameter “NVarToSample” set to the square root of the total

number of variables and the variable “NTrees” for the number of trees was set to 1000.
Regularized Logistic Regression: The LIBLINEAR Fan et al (2008) implementation of logistic regression with l1 regular-

ization. We selected the regularization parameter CLR from {2−8, 2−6, ..., 28} as that with the best 5-fold cross-validation
performance.

Boosted Decision Trees: The MATLAB class “fitensemble” with 500 trees and parameter “LearnRate” set to 0.05.

B F-scores of experiments

Algorithm Memory impairment disorders Vascular cognitive disorders PD All three
vs. HC vs. HC vs. HC vs. HC

C4.5 0.67 (0.07) 0.57 (0.08) 0.58 (0.05) 0.77 (0.08)
CART 0.72 (0.09) 0.63 (0.06) 0.58 (0.09) 0.76 (0.05)
SVM Gaussian 0.79 (0.04) 0.69 (0.04) 0.65 (0.06) 0.86 (0.08)
Random Forest 0.77 (0.03) 0.74 (0.05) 0.74 (0.06) 0.83 (0.05)
Boosted Decision Trees 0.82 (0.04) 0.73 (0.03) 0.67 (0.04) 0.85 (0.05)
Regularized Logistic Regression 0.77 (0.02) 0.69 (0.04) 0.74 (0.03) 0.83 (0.05)

Table 18: Machine learning algorithms F-scores for screening test.

Algorithm Memory impairment disorders Vascular cognitive disorders PD All three
vs. All Others vs. All Others vs. All Others vs. All Others

C4.5 0.38 (0.05) 0.34 (0.04) 0.35 (0.07) 0.41 (0.05)
CART 0.41 (0.05) 0.37 (0.04) 0.34 (0.04) 0.40 (0.07)
SVM Gaussian 0.51 (0.04) 0.59 (0.03) 0.54 (0.04) 0.48 (0.03)
Random Forest 0.53 (0.02) 0.48 (0.05) 0.51 (0.04) 0.47 (0.02)
Boosted Decision Trees 0.49 (0.03) 0.49 (0.06) 0.5 (0.04) 0.57 (0.04)
Regularized Logistic Regression 0.51 (0.04) 0.52 (0.03) 0.53 (0.02) 0.52 (0.04)

Table 19: Machine learning algorithms F-scores for diagnosis test.

Algorithm Memory impairment disorders Vascular cognitive disorders PD All three
vs. HC vs. HC vs. HC vs. HC

Manos 0.59 (0.04) 0.48 (0.07) 0.51 (0.05) 0.71 (0.03)
Royall 0.59 (0.04) 0.45 (0.03) 0.53 (0.05) 0.70 (0.06)
Shulman 0.58 (0.03) 0.52 (0.08) 0.48 (0.06) 0.69 (0.05)
Libon 0.57 (0.06) 0.53 (0.03) 0.50 (0.05) 0.68 (0.04)
Rouleau 0.50 (0.04) 0.48 (0.03) 0.38 (0.03) 0.67 (0.05)
Mendez 0.58 (0.02) 0.50 (0.07) 0.47 (0.08) 0.69 (0.04)
MiniCog 0.50 (0.05) 0.37 (0.03) 0.38 (0.03) 0.69 (0.05)

Table 20: Operationalized scoring system F-scores for screening test.

Features Memory impairment disorders Vascular cognitive disorders PD All three
vs. HC vs. HC vs. HC vs. HC

SLIM with simplest features 0.66 (0.04) 0.63 (0.04) 0.61 (0.03) 0.72 (0.05)
SLIM with op-clinician features 0.64 (0.02) 0.58 (0.06) 0.57 (0.04) 0.73 (0.07)
SLIM with MRMR subset 0.72 (0.05) 0.65 (0.06) 0.63 (0.02) 0. 78 (0.02)

Table 22: F-scores results for Supersparse Linear Integer Models on screening test.
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Algorithm Memory impairment disorders Vascular cognitive disorders PD All three
vs. All Others vs. All Others vs. All Others vs. All Others

Manos 0.27 (0.03) 0.17 (0.02) 0.17 (0.02) 0.39 (0.04)
Royall 0.28 (0.05) 0.14 (0.05) 0.18 (0.07) 0.37 (0.08)
Shulman 0.23 (0.06) 0.17 (0.07) 0.14 (0.03) 0.42 (0.06)
Libon 0.24 (0.10) 0.17 (0.08) 0.16 (0.04) 0.43 (0.07)
Rouleau 0.26 (0.04) 0.19 (0.02) 0.13 (0.04) 0.35 (0.03)
Mendez 0.28 (0.09) 0.18 (0.07) 0.17 (0.11) 0.37 (0.05)
MiniCog 0.21 (0.03) 0.13 (0.02) 0.14 (0.04) 0.34 (0.06)

Table 21: Operationalized scoring system F-scores for diagnosis test.

Features Memory impairment disorders Vascular cognitive disorders PD All three
vs. All others vs. All others vs. All others vs. All others

SLIM with simplest features 0.34 (0.04) 0.33 (0.02) 0.32 (0.07) 0.42 (0.05)
SLIM with op-clinician features 0.32 (0.05) 0.34 (0.05) 0.32 (0.04) 0.43 (0.05)
SLIM with MRMR subset 0.46 (0.04) 0.47 (0.06) 0.49 (0.03) 0.47 (0.03)

Table 23: F-scores results for Supersparse Linear Integer Models on diagnosis test.

Features Memory impairment disorders Vascular cognitive disorders PD All three
vs. HC vs. HC vs. HC vs. HC

BRL with simplest features 0.74 (0.03) 0.64 (0.02) 0.60 (0.05) 0.79 (0.06)
BRL with op-clinician features 0.72 (0.04) 0.64 (0.02) 0.63 (0.03) 0.76 (0.02)
BRL with MRMR subset 0.74 (0.03) 0.66 (0.01) 0.61 (0.04) 0.81 (0.03)

Table 24: F-scores results for BRL on screening test.

Features Memory impairment disorders Vascular cognitive disorders PD All three
vs. All others vs. All others vs. All others vs. All others

BRL with simplest features 0.40 (0.05) 0.39 (0.02) 0.36 (0.07) 0.45 (0.03)
BRL with op-clinician features 0.37 (0.3) 0.42 (0.04) 0.36 (0.04) 0.46 (0.03)
BRL with MRMR subset 0.43 (0.03) 0.41 (0.05) 0.41 (0.06) 0.49 (0.05)

Table 25: F-scores results for BRL on diagnosis test.

C All operationalized scoring systems

C.1 Additional features

We define two additional non-obvious features that appear within the operationalized scoring systems, in Table 26. The following
subsections each provide an existing scoring system and our operationalization of it.

Variable Description

ClockfaceGap The distance between the start and end of the clock face
DigitClockfaceDistanceVariance The variance in the distance of digits from the clockface.
HandIntersectCenterDistance the distance between where the hands intersect (or would intersect) and the center of the

best fit ellipse, normalized for the size of the ellipse.

Table 26: Additional non-obvious operationalized clinician features.

C.2 Manos

Table 27 provides the original Manos scoring system, and Table 28 shows our operationalization.
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maximum: 10 points

1. Digit placement errors (maximum: 8 points)

The clock is divided into eighths, beginning with a line through “12” and
the center of the circle
(if “12” is missing the position is assumed to be counterclockwise from the “1”
at a distance equal to that between the “1” and “2”)
For each eighths, add one point if the expected anchor digit is missing

2. Presence and placement of the hands (maximum: 2 points)

One point each is given for an obvious short hand pointing at the “11”
and an obvious long hand pointing to the “2”
The difference in the length of the hands must be obvious at a glance

Table 27: Original Manos scoring system (Manos and Wu, 1994)

maximum: 10 points

1. Digit placement errors (maximum: 8 points)

Get angle of digit 12
If “12” present, go to step 2.
Else if “12” not present but “1” and “2” present, get angle of “1” and “2”, compute difference in angle,
and add difference to angle of “1” to get approximate angle of “12”.
Else if “12” not present but “10” and “11”” present, get angle of “10” and “11”, compute difference
in angle, and subtract difference to angle of “11” to get approximate angle of “12”.
Else, bring up error.

∀ step ∈ [−15,−14, ..., 0, ..., 14, 15]
Break up clock into eighths using angle of “12” + step
and adding multiples of 45° to obtain eighths
For each eighth, add one point if the expected anchor digit is missing

Pick the the minimum score over all step values.

2. Presence and placement of the hands (maximum: 2 points)

If exactly two hands are present AND handRatio ≤ ε1
If minute hand has handAngleError ≤ ε2, add 1
If hour hand has handAngleError ≤ ε2, add 1

Table 28: Operationalization of Manos scoring system

C.3 Royall

Table 29 provides the original Royall scoring system, and Table 30 shows our operationalization.

maximum: 15 points; one point for each line satisfied

1. Does figure resemble a clock?
2. Circular face present?
3. Dimensions > 1 inch ?
4. All numbers inside the perimeter?
5. “12”, “6”, “3” and “9” placed first?
6. Spacing intact? (symmetry on either side of “12” and “6” o’clock)
7. No sectoring or tic marks?
8. Only Arab numerals?
9. Only numbers 1-12 among the numerals present?
10. Sequence 1-12 intact? (no omissions or intrusions)
11. Only two hands present? (ignore sectoring/tic marks)
12. All hands represented as arrows?
13. Hour hand between 1 and 2 o’clock?
14. Minute hand longer than hour hand?
15. None of the following

(1) hand pointing to 10 o’clock
(2) “11:10” present?
(3) intrusions from “hand” or “face” present?
(4) any letters, words or pictures?
(5) any intrusion from circle below?

Table 29: Original Royall scoring system (Royall et al, 1998)
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maximum: 15 points; one point for each line satisfied

1. Clockface closed percentage ≥ ε1 AND at least 4 digits present AND at least 1 hand present
2. Clockface present
3. Major axis of fitted ellipse to clockface greater than 1 inch
4. All numbers inside the clockface
5. “12”, “6”, “3”, “9” all anchor digits
6. DigitsAngleError ≤ ε2
7. No spokes or tick marks present
8. Always 1 (we do not have any clocks with other numerals in our dataset so assume it is very rare)
9. No digit greater than 12 present
10. All numbers present in correct order by angle, no repetitions,

no numbers greater than 12, no text, crossed-out digits allowed
11. Two hands present, no repetitions of hands but allow crossed-out hands
12. Arrows present on both hands, direction must be correct
13. Angle of hour hand between angle of “11” and angle of “12”. If either digits or hand missing, 0
14. HandRatio ≤ ε3
15. None of the following

(1) Minute hand pointing closer to “10” than “2” and within 30° of digit “10”
(2) Any text present
(3) Always false. Very hard to measure, and no example in dataset so assume it is very rare
(4) Any text present
(5) Always false.

Table 30: Operationalization of Royall scoring system

C.4 Shulman

Table 31 provides the original Schulman scoring system, and Table 32 shows our operationalization.

maximum: 6 points

1. Perfect
2. Minor visuospatial errors

Examples
(a) Mildly impaired spacing of times
(b) Draws times outside circle
(c) Turns page while writing numbers so that some numbers appear upside down
(d) Draws in lines (spokes) to orient spacing

3. Inaccurate representation of “10 after 11” when visuospatial organization is perfect or shows only minor deviations
Examples
(a) Minute hand points to “10”
(b) Writes “10 after 11”
(c) Unable to make any denotation of time

4. Moderate visuospatial disorganization of times such that accurate denotation of “10 after 11” is impossible
Example
(a) Moderately poor spacing
(b) Omits numbers
(c) Perseveration: repeats circle or continues on past 12 to 13, 14, 15 etc.
(d) Right-left reversal: numbers drawn counterclockwise
(e) Dysgraphia: unable to write numbers accurately

5. Severe level of disorganization as described in 4
6. No reasonable representation of a clock
Exclude severe depression or other psychotic states

Example
(a) No attempt at all
(b) No semblance of a clock at all
(c) Writes a word or name

Table 31: Original Shulman scoring system (Shulman et al, 1993)
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maximum: 6 points

1. eccentricity ≤ ε1 AND clockface closed percentage ≥ ε2 AND
all digits present AND no digits repeated AND correct angular sequence AND DigitsAngleError ≤ ε3 AND
exactly two hands AND both have HandAngleError ≤ ε4

2. Minor visuospatial errors
(a) ε3 < DigitsAngleError ≤ ε5
(b) At least one digit outside the circle
(c) No way to measure automatically given our data, and very rare according to doctors
(d) At least one spoke present

3. Inaccurate representation of “10 after 11” when visuospatial organization is perfect or shows only minor deviations
(a) Minute hand pointing closer to “10” than “2” and within 30° of digit “10”
(b) Any text present
(c) both hands have HandAngleError > ε4

4. Moderate visuospatial disorganization of times such that accurate denotation of “10 after 11” is impossible
(a) DigitNeighborsTest ≥ ε6
(b) At least one digit missing
(c) More than one clockface OR at least one digit repeated OR digits greater than 12 present
(d) Numbers drawn counterclockwise
(e) At least one digit missing

5. Severe level of disorganization as described in 4
Severely poor spacing: DigitNeighborsTest ≥ ε6

6. No reasonable representation of a clock
Clockface closed percentage < ε2 OR fewer than four digits present OR no hands present

Table 32: Operationalization of Shulman scoring system

C.5 Libon

Table 33 provides the original Libon scoring system, and Table 34 shows our operationalization.

maximum: 10 points

Scores 10 to 6: Circle and Hands are basically intact, some impairment in hand placement.

10: Hands, numbers and circle are totally intact
9: Slight error(s) in hand number placement; hands of equal length; any self-correction
8: More noticeable errors in hand/number placement; hand length correct but shifted to one side or top/bottom
7: Significant errors in hand placement; hand placement intact with some numbers deleted;

minor perseveration in number placement
6: Inappropriate use of clock hands i.e., digital display; circling numbers to indicate hand placement; connecting the numbers
10 and 11 or 11 and 2.

Scores 5 to 1: Circle, numbers and/or hand placement are grossly impaired.

5: Crowding numbers to one side; numbers reversed; significant perseveration of numbers within circle boundary
4: Loss of clock face integrity, numbers outside circle boundary, further distortion of number placement
3: Numbers and clock face no longer connected
2: Vague representations of a clock; clock face absent but numbers present
1: Either no attempt or response is made; scattered bits or fragments are produced

Table 33: Original Libon scoring system (Libon et al, 1993)

maximum: 10 points

Scores 10 to 6: Circle and Hands are basically intact, some impairment in hand placement.

10: Both hands have HandAngleError ≤ ε1
9: At least one hand has ε1 < HandAngleError
8: Both hands hand have ε1 < HandAngleError
7: At least one hand not in correct quadrant
6: Ignore: Hard to measure automatically, and very rare in our data

Scores 5 to 1: Circle, numbers and/or hand placement are grossly impaired.

5: DigitNeighborsTest ≥ ε2
4: Any number missing or any number placed outside the clockface
3: DigitNeighborsTest ≥ ε3
2: Clockface closed percentage < ε4 OR fewer than four digits present OR less than one hand present
1: Clockface closed percentage < ε4 AND fewer than four digits present AND less than one hand present

Table 34: Operationalization of Libon scoring system
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C.6 Mendez

Table 35 provides the original Mendez scoring system, and Table 36 shows our operationalization.

maximum: 20 points; one point for each line satisfied

1. There is an attempt to indicate a time in any way
2. All marks or items can be classified as either part of a closure figure, a hand, or a symbol for clock numbers
3. There is a totally closed figure without gaps (closure figure).

Score only if Symbols for Clock Numbers Are Present

4. A 2 is present and is pointed out in some way for the time
5. Most symbols are distributed as a circle without major gaps
6. Three or more clock quadrants have one or more appropriate numbers

(12 to 3, 3 to 6, 6 to 9, 9 to 12 per respective clockwise quadrant)
7. Most symbols are ordered in a clockwise or rightward direction
8. All symbols are totally within a closure figure.
9. An 11 is present and is pointed out in some way for the time
10. All numbers 1-12 are indicated
11. There are not repeated or duplicated number symbols
12. There are no substitutions for Arabic or Roman numerals
13. The numbers do not go beyond the number 12
14. All symbols lie about equally adjacent to a closure figure edge
15. Seven or more of the same symbol type are ordered sequentially.

Score Only if One or More Hands Are Present:

16. All hands radiate from the direction of a closure figure center
17. One hand is visibly longer than another hand
18. There are exactly two distinct and separable hands
19. All hands are totally within a closure figure
20. There is an attempt to indicate a time with one or more hands.

Table 35: Original Mendez scoring system (Mendez et al, 1992)

maximum: 20 points; one point for each line satisfied

1. At least one hand present
2. No noise, no ticks, no spokes, no text
3. ClockfaceGap ≤ ε1
Score only if Symbols for Clock Numbers Are Present

4. “2” is present, minute hand has handAngleError ≤ ε2
5. DigitsAngleError < ε3
6. Break clock into quadrants, and at least three correct digits within each quadrant
7. More than half of digits present are in clockwise direction
8. No digit or hands present outside clockface
9. “11” is present, hour hand has handAngleError ≤ ε2
10. All digits present
11. No repeated digits (cross-outs allowed)
12. Always 1 (hard to measure and very rare in our data)
13. No digits greater than 12 present
14. DigitClockfaceDistanceVariance < ε4
15. At least 7 digits are in correct order by angle

Score Only if One or More Hands Are Present:

16. HandIntersectCenterDistance ≤ ε5
17. HandRatio ≤ ε6
18. Only two hands present (cross-outs allowed)
19. Ignore since never happens in our data
20. At least one hand present

Table 36: Operationalization of Mendez scoring system

C.7 MiniCog

Table 37 provides the original MiniCog scoring system, and Table 38 shows our operationalization.
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maximum: 1 point

If all numbers approximately in the correct position AND there are two hands pointing properly +1

Table 37: Original MiniCog scoring system (Borson et al, 2000)

maximum: 1 point

If DigitsAngleError < ε1 AND both hands have HandAngleError < ε2 +1

Table 38: Operationalization of MiniCog scoring system

D Grid search for operationalization parameters

Variable Threshold values

Eccentricity of fitted ellipse {0.5, 0.53, ..., 0.77, 0.80}
ClockfaceClosedPercentage {50, 55, ..., 95, 100}
ClockfaceGap {0, 0.3, ..., 2.7, 3.0}
DigitsAngleError {0, 10, .., 90, 100}
DigitNeighborsTest {0, 1, 2, 3, 4}
DigitClockfaceDistanceVariance {0.1, 0.2, ..., 0.9, 1.0}
HandAngleError {0, 2, ..., 38, 40}
HandRatio {0.7, 0.75, ..., 1.0, 1.05}

Table 39: Parameter search values for operationalizations
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Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I, Cummings JL, Chertkow H (2005) The
Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. Journal of the American
Geriatrics Society 53(4):695–699

Nyborn JA, Himali JJ, Beiser AS, Devine SA, Du Y, Kaplan E, O’Connor MK, Rinn WE, Denison HS, Seshadri S, et al (2013)
The Framingham Heart Study clock drawing performance: normative data from the offspring cohort. Experimental aging
research 39(1):80–108

Peng H, Long F, Ding C (2005) Feature selection based on mutual information criteria of max-dependency, max-relevance, and
min-redundancy. Pattern Analysis and Machine Intelligence, IEEE Transactions on 27(8):1226–1238

Penney D, Libon D, Lamar M, Price C, Swenson R, Eppig J, Nieves C, Garett K, Davis R (2011a) The Digital Clock Drawing
Test (dCDT) - I: Information contained within the ”noise”, 5th Congress of the 1International Society for Vascular, Cognitive
and Behavioural Disorders (VAS-COG), Lille, France

Penney D, Libon D, Lamar M, Price C, Swenson R, Scala S, Eppig J, Nieves C, Garett K, Davis R (2011b) The Digital Clock
Drawing Test (dCDT) - IV: Clock drawing time and hand placement latencies in mild cognitive impairment and dementia,
abstract and poster, 5th Congress of the Int’l Soc. for Vascular, Cognitive and Behavioural Disorders, Lille, France

Penney D, Lamar M, Libon D, Price C, Swenson R, Scala S, Eppig J, Nieves C, Macaulay C, Garett K, Au R, Devine S,
Delano-Wood L, Davis R (2013) The digital Clock Drawing Test (dCDT) – Hooklets: A novel graphomotor measure of
executive function, abstract and poster, 6th Congress of the Int’l Soc. for Vascular, Cognitive and Behavioural Disorders,
Montreal, Canada

Petersen R, Caracciolo B, Brayne C, Gauthier S, Jelic V, Fratiglioni L (2014) Mild cognitive impairment: a concept in evolution.
Journal of internal medicine 275(3):214–228

Plassman BL, Langa KM, Fisher GG, Heeringa SG, Weir DR, Ofstedal MB, Burke JR, Hurd MD, Potter GG, Rodgers WL,
et al (2007) Prevalence of dementia in the United States: the aging, demographics, and memory study. Neuroepidemiology
29(1-2):125–132

Price CC, Cunningham H, Coronado N, Freedland A, Cosentino S, Penney DL, Penisi A, Bowers D, Okun MS, Libon DJ (2011)
Clock drawing in the Montreal Cognitive Assessment: recommendations for dementia assessment. Dementia and geriatric
cognitive disorders 31(3):179–187

Prince M, Guerchet M, Prina M (2013) Policy brief for heads of government: the global impact of dementia 2013–2050. London,
UK: Alzheimer Disease International

Quinlan JR (1993) C4.5: Programs for Machine Learning. Morgan Kaufmann
Ridgeway G (2013) The pitfalls of prediction. NIJ Journal, National Institute of Justice 271:34–40
Rouleau I, Salmon DP, Butters N, Kennedy C, McGuire K (1992) Quantitative and qualitative analyses of clock drawings in

Alzheimer’s and Huntington’s disease. Brain and Cognition 18(1):70–87
Royall DR, Cordes JA, Polk M (1998) CLOX: an executive clock drawing task. Journal of Neurology, Neurosurgery & Psychiatry

64(5):588–594
Shulman KI, Pushkar Gold D, Cohen CA, Zucchero CA (1993) Clock-drawing and dementia in the community: A longitudinal

study. International Journal of Geriatric Psychiatry 8(6):487–496
Steinhart D (2006) Juvenile detention risk assessment: A practice guide to juvenile detention reform. Juvenile Detention

Alternatives Initiative A project of the Annie E Casey Foundation 28:2011
Storey JE, Rowland JT, Basic D, Conforti DA (2001) A comparison of five clock scoring methods using ROC (receiver operating

characteristic) curve analysis. International journal of geriatric psychiatry 16(4):394–399
Storey JE, Rowland JT, Basic D, Conforti DA (2002) Accuracy of the clock drawing test for detecting dementia in a multicul-

tural sample of elderly Australian patients. International Psychogeriatrics 14(03):259–271
Strub RL, Black FW, Strub AC (1985) The mental status examination in neurology. FA Davis Philadelphia



Learning Classification Models of Cognitive Conditions from Subtle Behaviors in the Digital Clock Drawing Test 33

Sun H (2006) An accurate and interpretable bayesian classification model for prediction of hERG liability. ChemMedChem
1(3):315–322

Sunderland T, Hill JL, Mellow AM, Lawlor BA, Gundersheimer J, Newhouse P, Grafman J (1989) Clock drawing in Alzheimer’s
disease: a novel measure of dementia severity. Journal of the American Geriatrics Society 37(8):725–729

Tian L, Tibshirani R (2011) Adaptive index models for marker-based risk stratification. Biostatistics 12(1):68–86
Tuokko H, Hadjistavropoulos T, Rae S, O’Rourke N (2000) A comparison of alternative approaches to the scoring of clock

drawing. Archives of Clinical Neuropsychology 15(2):137–148
Ustun B, Rudin C (2015) Supersparse linear integer models for optimized medical scoring systems. Accepted with minor

revision to Machine Learning, preprint on arXiv:150204269
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