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ABSTRACT 

 
A novel logit model is presented that explicitly includes endogeneity in explanatory variables 
whose values depend on individual choice decisions that involve network externalities or 
social interactions such as those impacting road congestion or public transport comfort and 
convenience. The proposed specification corrects for this particular type of endogeneity. The 
model is derived from a linearly constrained maximum entropy optimization problem that 
incorporates the network externalities or social interactions causing the endogeneity. It is 
validated through simulations and an application to a case of transport mode choice in a 
Chilean city using real data. 
 
Keywords: logit model; endogeneity; bias; network externalities; social interactions; fixed 
point; maximum entropy. 
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1. INTRODUCTION 
 
Logit multinomial discrete choice models are frequently used in marketing to model 
consumer preferences, and are also employed in transport system planning to represent trip 
demand and ground use. They are traditionally built from random utility models and 
estimated using maximum likelihood (McFadden, 1974; Ortúzar, 1982, 1983; Train, 2003; 
Ortúzar and Willumsen, 2011). Alternatively, however, they have been derived as the 
solution to certain constrained entropy maximization problems in which the Lagrange 
multipliers of the constraints are the model’s parameters (Anas, 1983; Donoso and De 
Grange, 2010; Donoso et al. 2011). 
 
In discrete choice models, interaction between supply and demand (Berry et al., 1995; Petrin 
and Train, 2010) and the omission of variables unobservable to the researcher (Villas-Boas 
and Winer, 1999) may cause endogeneity. In both cases, the problem can be handled by 
introducing instrumental variables into the estimation. The existence of endogeneity has also 
been traced to the definition of the choice set facing the individual (Haab and Hicks, 1997; 
Louviere et al., 2005). 
 
In this study, endogeneity is considered to be the result of network externalities or social 
interactions of the type peculiar to transport systems. More specifically, it emerges from the 
fact that the attractiveness of a particular alternative depends on the number of persons 
choosing it (Yamins et al., 2003; Blumenfeld-Lieberthal, 2009; Bogart, 2009). But whereas 
the attractiveness of a technology product, for example, often varies positively with user 
numbers, the choice of a transport mode can be negatively impacted by user numbers because 
it is influenced negatively by congestion. To deal with this phenomenon we propose a novel 
specification for logit models that corrects the endogeneity bias introduced by network 
externalities and social interactions.  
 
The approach that will be taken is based on entropy maximization with explicit incorporation 
of the endogeneity caused by network externalities or social interactions into logit 
multinomial discrete choice models. An equivalent maximum entropy optimization problem 
is formulated in which the explanatory variables facing individuals depend on the decisions 
they make (e.g., with private transport, trip time depends on congestion; with public transport 
it depends on wait time or crowding at bus stops or metro stations). This interdependence 
produces endogeneity in the model’s explanatory variables, whose values will therefore 
depend on the individuals’ decisions. 
 
The result of this approach is an alternative version of the logit multinomial model that has 
the functional form of a fixed-point equation in which the choice probabilities depend on 
themselves. Estimation is by maximum likelihood, and no additional variables (e.g., 
instruments) other than the original ones in the model are required, a major advantage of the 
proposed method.  
 
The remainder of this article is organized into four sections. Section 2 introduces the 
theoretical framework for the proposed methodology and briefly surveys the literature on 
endogeneity in discrete choice models. Section 3 formulates the Logit model with 
endogenous explanatory variables. Section 4 presents a numerical example using simulations 
and real data for a city in northern Chile. Finally, Section 5 sums up the main conclusions 
and contributions of this study. 



 
 
2. THEORETICAL FRAMEWORK AND LITERATURE SURVEY 
 
Logit-type discrete choice models are developed using either of two approaches. One of them 
is based on random utility models (McFadden, 1974; Williams, 1977; Train, 2003; Ortúzar and 
Willumsen, 2011) while the other involves formulating a maximum entropy optimization 
problem (Anas, 1983; Boyce, 2007; Hasan and Dashti, 2007; De Cea et al., 2008; Donoso and 
De Grange, 2010; Donoso et al. 2011; De Grange et al., 2010, 2011, 2013; Kitthamkesorn et 
al., 2014). Our proposed model takes the latter approach, specifying a maximum entropy 
optimization problem with constraints that explicitly incorporates the endogeneity 
phenomenon in the model’s explanatory variables. 
 
In the random utility approach, an individual i faced with a set of alternatives chooses the one 
that produces the greatest utility. Thus, the individual will choose alternative m when 

' 'm m
i iU U m m> ∀ ≠ . The utility function m

iU  is typically decomposed additively as 
m m m
i i iU V ε= + , where m

iV is a deterministic component depending on observable variables and 
m
iε a random component that is not observable. The observer does not directly observe the 

individuals’ actual utility functions m
iU but rather the choices they make and the attributes of 

each alternative, these latter constituting the definition of m
iV . The deterministic component is 

typically expressed as a linear function in the attributes. Thus, if the kth attribute or 
explanatory variable faced by individual i in alternative m is defined as  , ,m

kix i m k∀ , then 
m m m

i k ki
k

V xβ=∑ , where m
kβ are the parameters to be estimated and represent the relative weights 

of each attribute. 
 
The multinomial logit (MNL) model is obtained by assuming the random component of each 
utility function is independent and identically Gumbel-distributed (McFadden, 1974; Ben-
Akiva and Lerman, 1985; Train, 1986, 2003; Ortúzar and Willumsen, 2011). The probability 
that individual i chooses alternative m is then given in general terms by 
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Under the second approach, on the other hand, (1) is derived by solving the following 
maximum entropy optimization problem (the full derivation is given in Appendix A): 
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where variables m
ikx  are the measurable exogenous attributes individual i perceives in 

alternative m; and m
kc  are the observed values for each attribute k in each alternative m. Also,  

m m m
k i ik

i

c xδ=∑ , where m
iδ  is 1 if individual i chooses alternative m and 0 otherwise. The values 

of m
kix  and m

iδ  are traditionally obtained from surveys, measurements and calibration samples.  

 
Anas (1983) gives a formal statement of the equivalence between the multinomial model based 
on random utility theory (1) and the maximum entropy problem (2). Donoso and De Grange 
(2010) show that an analysis of (2) yields two useful interpretations of this equivalence: first, 
the maximum entropy problem is consistent with the rational decisions of welfare-maximizing 
individuals, and second, the likelihood function of the MNL model is equal to the problem’s 
dual. However, the equivalence is valid only if the constraints in (2) are linear, which is the 
case only when the attributes or variables m

kix  are exogenous. 

 
In general terms, endogeneity in discrete choice models is present when part of the 
deterministic utility function m

iV  is correlated with the error term miε  (Berry et al., 1995; 

Louviere et al., 2005; Guevara and Ben-Akiva, 2009; Walker et al., 2011). When this occurs, 
the estimates of the parameters m

kβ  in m m m
i k ki

k

V xβ=∑  may be inconsistent. 

 
Endogeneity may appear for a variety of reasons, such as a model specification error due to 
the omission of important variables or the ability of individuals to influence the formation of 
the choice sets (Louviere et al., 2005). In this study we consider it to be the product of social 
interactions, which may be positive or negative. More specifically, the attributes of the 
alternatives are assumed to depend on the level of choice aggregation. For example, as more 
individuals choose to travel by private car, trip times may increase due to congestion. 
Likewise, overcrowding in buses or the metro, or wait times at stops or stations, may increase 
if there are many travellers at peak hours.  
 
In addition, individuals may make decisions based on the actions of others due to incomplete 
information, such as occurs in herd behaviour (Banerjee, 1992) or informational cascades 
(Bikhchandani et al., 1992). For example, diners may avoid a restaurant if there are few 
customers inside, taking it as a sign of high prices or poor quality. Similarly, a bus stop with 
no-one or many people waiting may indicate a disruption in service and thus discourage 
potential riders. 
 
In all of these cases the explanatory or attribute variables 

kj

mx become endogenous variables of 

the type ( )m m m
ki kix x t= , where m m

i
i

t p=∑ is the total demand for alternative m so that 

m m m
ki ki i

i

x x p
 =  
 
∑ . 

 



Various ways of handling endogeneity in discrete choice models have been proposed in the 
literature. Blundell and Powell (2004) suggest a semi-parametric approach to testing for the 
exogeneity of continuous explanatory variables in binary choice models. Maximum likelihood 
is commonly employed with these models, but it requires an explicit parametric specification 
of the way in which each endogenous variable depends on a set of instruments and the errors. 
Furthermore, a joint distribution of the random component of the utility functions and the error 
component in the relationship between an endogenous variable and the instruments must be 
specified (Lewbel, 2007). These requirements can limit maximum likelihood’s usefulness due 
to the difficulties often involved in specifying these relationships correctly. De Grange et al. 
(2009) present an alternative method for estimating aggregate logit models by multiple linear 
regression that is based on proxy variables, thus circumventing the endogeneity problems 
arising when least-squares estimators are used. Batarce and Ivaldi, (2014) formulate a 
structural model for travel demand in which the congestion level is endogenously determined 
in the equilibrium of a game with a continuum of players. The estimation uses the first-order 
conditions of the users’ utility maximization problem to derive the likelihood function and 
then a two-step semi-parametric method. 
 
Of the various approaches that have been suggested to correct for endogeneity, five in 
particular are worthy of note: 
 
i. control function approach 
ii. the Berry, Levinsohn and Pakes (BLP) approach 
iii. dual approach 
iv. latent variables approach 
v. special regressor approach 
 
Each of these are briefly describe in what follows. 
 
i  Control function approach. This method is described in Heckman (1976), Hausman 

(1978), Heckman and Robb (1985), Villas-Boas and Winer (1999), Blundell and Powell 
(2004), Guevara and Ben-Akiva (2006), and Petrin and Train (2010). It involves two 
stages. First, the endogenous variable is regressed on exogenous instruments; then, the 
residual (or a function of it) is incorporated into the utility function as an additional 
explanatory variable called the control function (Louviere et al., 2005; Guevara and Ben-
Akiva, 2009). As with maximum likelihood, this approach requires that the relationship 
between the endogenous regressors and the instrument be correctly specified. 

 
ii.   BLP approach. As described by Berry et al. (1995), this method is applicable when 

endogeneity arises with groups of individual decision-makers, such as when the 
endogenous variable is separable for individuals in geographically distinct locations. In 
other words, the endogenous variable varies among different groups of individuals but is 
the same for individuals within a single group. The method consists in linearising the 
discrete choice model (normally multinomial logit) and then applying classical 
instrumental variable techniques (Louviere et al., 2005). 

 



iii.  Dual approach. This method has been suggested by Matzkin (2004). It is applicable to 
both linear and non-linear models with endogeneity and can be interpreted as a dual of 
the instrumental variable approach. It consists in finding new explanatory 
variablesXɶ that are correlated with the original endogenous variable X  and may also be 
endogenous, but the difference ε between them must be completely random (i.e., 

( )X Xε ρ γ= −ɶ  where ( ), 0ρ γ > ) so the method does not require exogenous 

instruments Z. 
 

In discrete choice models, the new variable Xɶ  is included in the utility function together 
with the endogenous variable X. Train and Winston (2004) model the choice of vehicle 
make as a function of the resale price Xɶ , arguing that the latter variable is correlated 
with the new vehicle price, the endogenous variable X. 

 
iv.  Latent variable approach. This method is set out in Ben-Akiva and Boccara, 1995; 

Walker and Ben-Akiva, 2002; and Guevara and Ben-Akiva, 2009. It involves the 
explicit incorporation into the model of unobservable or latent variables (e.g., 
psychological factors, attitudes or perceptions). The missing variable causing the 
endogeneity is thus considered to be a latent variable and is modelled as part of a system 
of structural equations that are a function of observable variables. It is then incorporated 
into the utility function. 

 
v.  Special regressor approach. This method has been widely used with discrete and 

ordered choice models and models with censored data and selection bias (Lewbel, 1998, 
2000, 2007; Magnac and Maurin, 2007, 2008) as well as models with truncated data 
(Khan and Lewbel, 2007) and panel data (Ai and Gan, 2010). The special regressor 
estimator is a control function but the identification of the endogenous regressor’s 
coefficient considers the remaining terms of the latent variable as a special regressor.  

 
The proposed method set out in the following section is similar to the control function 
approach but has the advantage of not requiring that a functional form be specified, nor does it 
require exogenous instruments. 
 
 
3. FORMULATION AND ESTIMATION OF LOGIT MODEL WITH 
ENDOGENOUS EXPLANATORY VARIABLES (MNLE) 
 
3.1 Mathematical Formulation 
  
As was explained in Section 2, we represent the network externalities or social interactions of 

the explanatory variables by functions of the type ( )m m m
ki kix x t= , where m m

i
i

t p=∑  is the total 

demand for alternative m so that m m m
ki ki i

i

x x p
 =  
 
∑ . 

 
We can now solve the following equivalent optimization problem, incorporating explicitly the 

variables ( )m m m
ki kix x t=  with λ = 1 (for an extension to the hierarchical logit model with 

endogeneity, see Appendices B and C):  
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The optimality conditions of problem (3) are 
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Summing over m and taking the natural logarithm, we have 
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Substituting (7) into (5), we get the probability that individual i chooses alternative m: 
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This expression is similar to the traditional logit multinomial specification except that it 
explicitly incorporates the phenomenon of endogeneity of the variables m

kix  due to network 

externalities or social interactions. We thus describe it as a logit model with endogenous 
explanatory variables (MNLE). It is a fixed-point function in m

ip , whose estimation runs up 

against two difficulties: first, solving the fixed point; and second, estimating 
m

ki

m

i

dx

dp
. 

 
MNLE can be considered a member of the family of discrete choice models with social 
interactions and heterogeneity (Brock and Durlauf, 2001, 2006; Soetevent and Kooreman, 
2007; Dugundji and Gulyás, 2008; Amador et al., 2008). In these formulations, an individual’s 
decision may be affected by the decisions of other groups of individuals in society. 
 



When 0
m

ki

m

i

dx

dp
= , (8) reduces to the traditional MNL model but when 0

m

ki

m

i

dx

dp
≠ ,  a traditional 

MNL such as (1) would be incorrectly specified because the term ( )
m

ki

m

i

m m
i i

dx

dp
p δ− present in (8)

is missing. This omission results in biased estimations of the parameters mkβ . The missing 

term corrects the explanatory variables m
kix  by incorporating the effect of the network 

externality or social interaction type of endogeneity. 
 
3.2 Parameter Estimation 
  
Multinomial logit and other analogous models are typically estimated by maximum likelihood. 
For the fixed-point model (8) just described, however, a practical complication arises due to 
the presence of the mip  term on the right-hand side of the equation. A simple way of getting 

around this difficulty is to estimate the model in two steps. In the first step, the term 
m

ki

m

i

dx

dp
 is 

estimated exogenously. For example, if the variable m
kix  represents trip time by private 

transport, the parameter 
m

ki

m

i

dx

dp
 can be estimated from the road network flow-delay functions, as 

will be done here when the model is applied to real data (Section 4.2). If the model is being 
used for empirical work, either additional data on the parameter value or valid instruments will 
be needed to obtain a consistent estimate. Yet another way is to make a conjecture and then 
conduct a sensitivity analysis on it to get an idea of the order of magnitude of the possible bias. 
 
 
A starting point must also be specified for an estimate of ,0

m
ip . This can be obtained using the 

multinomial logit model (Raveau et al, 2011; De Grange et al., 2013), which is the equivalent 

of setting 0
m

ki

m

i

dx

dp
=  in (8) and provides a warm start. Thus, 
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where the values of ,0

m
kβ  are the maximum likelihood estimators of the parameters. 

 

Once ,0
m
ip  and 

m

ki

m

i

dx

dp
 have been estimated we proceed to the second step, which is to estimate 

directly via maximum likelihood the parameters m
kβ  of the following model: 
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This process is iterated until , , 1
ˆ ˆm m

k n k nβ β −≈  ∀k, m, which implies , , 1
m m
i n i np p −≈  at the fixed point 

defined in (10). For the case where 
m

ki

m

i

dx

dp
 is constant ∀i, the sufficient conditions of existence 

and uniqueness for the equilibrium solution of this iterative process are set out in what follows. 
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η <∑ , then both the existence and the uniqueness of a fixed point are assured and the 

linear convergence of the iterative method just described is guaranteed.  
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where parameters mkβ  and mη  are the points that optimize the log-likelihood function of the 

MNL. This is a continuous function (De Grange et al., 2013) and the recursive estimation is 
such that ( )( ) ( 1)n nf p p += . 

 
Let ,p q  be any two points. For any norm, 
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Matrix norm 
1

⋅
 
and matrix norm ⋅

∞
 are applied to Jacobian (13) to get (14) and (15), 

respectively. Thus,  
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If condition (i) is satisfied, ( )f ⋅  is proven to be a contraction for norm 

1
⋅ , and if condition 

(ii) is satisfied, ( )f ⋅  is a contraction for norm 
∞

⋅ . In both cases, by the Banach fixed point 

theorem, a unique fixed point exists. Furthermore, since all norms are equivalent in a finite-
dimensional space, the linear convergence of the iterative method is demonstrated for any 
norm. 
 
 
4. NUMERICAL EXAMPLES 
 
In this section we review the performance of the model set out above in the presence of 
endogeneity using two sets of data, one generated by a Monte Carlo simulation and the other 
taken from an urban transport survey in the Chilean city of Antofagasta. 
 
4.1 Monte Carlo Simulation 
 
Consider a simple case in which there are only two transport alternatives (private car and bus) 
and one explanatory variable (trip time) with a common parameter βtime. The utility functions 
for the two modes are 
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where the private car trip time in minutes observed by individual i is a linear function of the 

total number of car trips in a given period t ( )car
tF  plus a random term car

itε , and is thus 

expressed as  
 

car car car
it t itT F uα γ= + +                    (18) 



 
where α = 3, γ = 1/15, and ( )100;500car

tF U∼ , so that the total flow of cars during period t is 

100 to 500 vehicles uniformly distributed. Different trip time intervals can be chosen as a 
function of aggregate demand. Since the number of trips will be different in each simulation, 
the number of observations (i.e., the sample size) in each case will also differ (each traveller or 
user is an observation). A total of 130 simulations were conducted with sample sizes ranging 
from 150 to 800 users or observations. 
 

The variable car
itu  distributes uniformly between 0 and ( ) 2car

tFα γ+ . The bus trip time is 

independent of demand and is defined as ( )8;60bus
itT U∼ . Finally, the population parameters 

are set at βtime = -0.25 and β0 = -0.15.   
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car car car
it it t

i i

p Fδ= =∑ ∑ , and therefore 1
car

t

car

it

dF

dp
=  and 

1

15

car car car car

it it t it

car car car car

it t it t

dT dT dF dT

dp dF dp dF
γ= = = = . 

 
The values estimated for βtime using the traditional MNL model (1) above and MNLE model 
(8), the latter explicitly reflecting the endogeneity in the private car trip time variable, are 
compared by the histograms in Figure 1. The histograms for the parameter β0 are shown in 
Figure 2. In Appendix D we show simulation results using γ = 1 y γ = 2. 
 
The mean of the βtime estimator for both models in the presence of trip time congestion (γ = 
1/15) is shown in Table 1 along with the result of a simulation using the same population 
parameters (βtime = -0.25 and β0 = -0.15) but no congestion (i.e., γ = 0) and thus no 
endogeneity. The bias in the simulation estimate of the mean of βtime using MNL with 
endogeneity in trip time (e.g., congestion) is evident in the figure of -0.125. At this value the 
null hypothesis H0: βtime = -0.25, the known population parameter, is rejected with a high level 
of significance. The mean estimate produced by MNLE, on the other hand, is not significantly 
different from the known parameter value and the null hypothesis cannot be rejected. In the 
bottom row of the table, it can be seen that when there is no endogeneity (γ = 0) the classic 
MNL’s estimate is consistent. 
 
The results for parameter β0 are given in Table 2. As with βtime, the MNL estimate in the 
presence of endogeneity is biased whereas the MNLE estimate is statistically unbiased (as is 
MNL without endogeneity in the bottom row of the table). 
 



Figure 1 
Distribution of the ββββtime Parameter Estimator for the MNL and MNLE Models (γγγγ = 

1/15) 

 
Figure 2 

Distribution of the ββββ0 Parameter Estimator for the MNL and MNLE Models (γγγγ = 
1/15) 

 
Table 1 

ββββtime Parameter Estimators  
MODEL ˆ

time
β  Standard Error t Test (βtime = -0.25) 

MNL (γ = 1/15) -0.125 0.046 2.704 

MNLE (γ = 1/15) -0.262 0.058 -0.211 

MNL (γ = 0) -0.255 0.056 -0.084 

 



Table 2 
MODEL 

0
β̂  Standard Error t Test (β0 = -0.15) 

MNL (γ = 1/15) -1.102 0.431 -2.209 

MNLE (γ = 1/15) -0.194 0.342 -0.128 

MNL (γ = 0) -0.131 0.185 0.105 

 
A dispersion graph of the bias estimated in each simulation for the βtime parameter and the 
level of demand or flow car

tF  impacting the level of congestion is shown in Figure 3. As is 

apparent, increasing congestion induces a downward bias in the MNL model estimates. Thus, 
the greater is the congestion the greater will be the MNL estimate bias unless the endogeneity 
is corrected. 
 

Figure 3 
Relation between ββββtime Estimator Bias and Flow in MNL Models (γγγγ = 1/15) 
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As regards the models’ goodness-of-fit, four indicators are reported in Table 3: log-likelihood 
evaluated at the parameter estimate values (L*), log-likelihood evaluated at zero (L0), and rho-

square ( )2ρ  and adjusted rho-square ( )2ρ  where 

 
*

2
0

1
L

L
ρ = −  ,   

*
2

0
1

L K

L
ρ −= −          (19)  

 
and K is the number of estimated parameters. The values shown are the averages of the 
simulation results for each statistic. They clearly show that MNLE has better goodness-of-fit 
on various indicators.  
 



Table 3 
Goodness-of-Fit for MNL and MNLE Models (γγγγ = 1/15) 

STATISTIC MNL MNLE 

L* -274.80 -267.06 

L0
 -308.991 -308.991 

2ρ  0.110 0.136 

2ρ  0.104 0.129 

 
The Horowitz test (1983) for comparing non-nested discrete choice models can also be used to 
compare the two models. The null hypothesis is the model with more parameters does not have 
a better fit. The value of this test statistic is given by 
 

( ) ( )( ){ }1
2

1
2 2 02 (0,1)h l h lL K K Nρ ρ

−
 Φ − − − ⋅ + −  

∼              (20)  

 
where: 
 

2
lρ  is the adjusted likelihood ratio index for the model with the lowest (l) value; 
2
hρ  is the adjusted likelihood ratio index for the model with the highest (h) value (in our case, 

it was the MNLE); 
Kh, Kl are the numbers of parameters in models h and l, respectively; 
Φ is the standard normal cumulative distribution function. 
 

Using a 95% level of confidence the criterion for rejecting the null hypothesis if 1 1.96−Φ > . 

The average value of Φ-1 for various simulations was -3.934 indicating that the MNLE was 
had a better fit than MNL. 
 
These findings can be complemented with the Hausman specification test statistic (Hausman, 
1978; Marquez-Ramos et al, 2011), which in the present case is expressed as 
 

( ) ( ) 2ˆ ˆ ˆ ˆ ˆ ˆ
qH χ     ∼    

-1T

MNL MNLE MNL MNLE MNL MNLE= β -β var β - var β β -β                     (21) 

 

where ( )ˆ
MNLβ  is the parameter vector estimated by the MNL model and ( )ˆ

MNLEβ  the 

corresponding vector estimated by MNLE. Analogously, ( )ˆvar MNLβ  is the variance and 

covariance matrix of the MNL parameter estimates and ( )ˆvar MNLEβ  the corresponding matrix 

for the MNLE. The null hypothesis of the test is that the selected parameters in both models 
are statistically equal. H is chi-squared distributed with q degrees of freedom (in this case 2, 
the number of parameters, and the critical value at the 5% level of significance is 5.99). The 
value of the statistic is 18.58 5.99H = >  supporting that the MNL estimator is more biased 
than that of the MNLE. 
 



Thus, for the simulations that were conducted, the endogeneity in the trip time explanatory 
variable caused by congestion causes in the MNL model estimate whose order of magnitude is 
significant compared to the parameter values. By contrast, MNLE produces consistent 
estimators that fit the data better. 
 

A sensitivity analysis was carried out on the 
m

ki

m

i

dx

dp
 term. As noted above, the relationship 

between trip time and demand defined for the simulations was such that 
1

0.07
15

car

it

car

it

dT

dp
γ= = ≈ . 

By modifying this value slightly in the MNLE model estimation, variations are produced in the 
βtime parameter bias and the log-likelihood value. The results are graphed for the former in 
Figure 4 and for the latter in Figure 5. Figure 4 shows the values taken by the likelihood 

function for different values of  
m

ki

m

i

dx

dp
 (by trial and error). Figure 5 show the bias for different 

values of 
m

ki

m

i

dx

dp
 ((by trial and error). As may be observed, the highest log-likelihood values are 

obtained when 
m

ki

m

i

dx

dp
 is relatively close to 1/15 ≈ 0.07 while the lowest bias levels in βtime are 

also found close to that point. These relationships will be useful for estimating the MNLE 

model in real-world situations where the functional form of 
m

ki

m

i

dx

dp
 is not known. 

 

Figure 4 
Sensitivity Analysis: dX/dP and Log-Likelihood 
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Figure 5 
Sensitivity Analysis: dX/dP and ββββtime Bias 

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22

B
ia
s

dX/dP
 

 
 
4.2 Application of MNLE Model to Real Data 
 
The multinomial model with endogeneity (MNLE) as expressed by (8) was tested on real data 
from a trip survey conducted in the northern Chilean city of Antofagasta (SECTRA, 2011). 
Antofagasta is the city with the highest per capita income of Chile, and the fifth most populous 
city with about 400,000 inhabitants in an area of 125,000 square kilometers. Figure 7 shows 
the hourly distribution of trips in the city.  
 

Figure 6 
Trips distribution, week day. 

 
 



The peak period (7 am to 9 am) represents 20% of daily trips. Observed modal split is 48% for 
Bus, 33% for Private Car and 19% for Share Taxi. The average travel time for Private Car is 
approximately 10.6 minutes. For the off-peak period the average travel time is close to 7 
minutes, and the observed modal split is 52% for Bus, 26% for Private Car and 23% for Share 
Taxi. 
 
A total of 903 individual commuter trips during the morning peak hour (7 am to 9 am) were 
surveyed in three transport modes: 
 

i. Private Car  
ii. Bus  

iii.  Share Taxi 
 

For comparison purposes a conventional MNL model was also tested. The explanatory 

variables in the two models were trip time for mode m ( )m
iT  and cost (cosinci), the latter 

divided by traveller income. The utility functions for the three models are presented in Table 4. 
The estimation process was performed using BIOGEME (Bierlaire, 2003; Bhat and Guo, 
2004). 
 
The modal constant of the bus mode ( 0busβ = ) was set as the reference (zero) value and the 

other two specific modal constants were then estimated with respect to it. Generic parameters 

( ),m
k k mβ β= ∀  were used for trip time and cost. 

 
Table 4 

Utility Function by Mode, MNLE and MNL 
Mode Function 

Private Car 0
car car car

i time i c iV T cosincβ β β= + ⋅ + ⋅  

Bus bus bus
i time i c iV T cosincβ β= ⋅ + ⋅  

Share Taxi 0
share share share

i time i c iV T cosincβ β β= + ⋅ + ⋅  

 
 

To estimate the models, a functional form had to be chosen for 
m

ki

m

i

dx

dp
, ∀ k, m. It was assumed 

that only the trip time variable (i.e., not cost) could be endogenous. Thus, 
m

ki

m

i

dx

dp
 was interpreted 

as the ratio of the variation in total trip time between peak and off-peak periods for private car 
travel to the variation between peak and off-peak periods in the total number of trips. 
Analytically, this ratio can be written as  
 

car

i

car

i

total total
peak off peak

total total
peak off peak

dT

dp

T T

F F
−

−

−
≈

−
         (22)  



 
where total

peakT  and total
off peakT −  are the total private car trip times in peak and off-peak periods, 

respectively, and total
peakF  and total

off peakF − are the corresponding total private car trips. The 

conjectured value of 
car

i

car

i

dT

dp
was thus estimated using the Antofagasta survey data (SECTRA, 

2011)  to be 1.82. The model in this case is called MNLE-1. 
 

Another way to estimate 
car

i

car

i

dT

dp
 is by a “trial and error” process (see Figure 7). Using many 

different values of 
car

i

car

i

dT

dp
, we choose one that produces the highest value of the log-likelihood 

function. In this second case, we obtain 1.60
car

i

car

i

dT

dp
=  and a better goodness of fit. The model in 

this second case is called MNLE-2. 
 

Figure 7 
Sensitivity Analysis: dX/dP and Log-Likelihood Considering Real Data (MNLE-2) 

 
 
The results of the estimation for MNL, MNLE-1 and MNLE-2 are set out in Table 5. All of the 
parameter estimates have the correct sign and a high level of statistical significance.  
 



Table 5 
Parameter Estimates for MNL and MNLE Models (*) 

Parameter MNL MNLE-1  ( 1.82
m m

ki i
dx dp = ) MNLE-2 ( 1.6

m m

ki i
dx dp = ) 

0
carβ  -0.082    (-0.51) -0.518    (-2.51) -0.569   (-2.70) 

0
shareβ  -0.473    (-4.42) -0.521    (-4.74) -0.528   (-4.80) 

cβ  -0.122    (-6.54) -0.135    (-6.75) -0.136   (-6.77) 

timeβ  -0.023    (-4.72) -0.039    (-5.75) -0.041   (-5.77) 

L* -679.54 -665.48 -663.81 

L0
 -864.74 -864.74 -864.74 

2ρ  (**) 0.214 0.230 0.232 

2ρ  (***) 0.210 0.226 0.227 

PCP (****) 68.4% 68.9% 68.9% 

RSS (*****) 242.64 235.86 235.03 
(*): Figures in parentheses are statistical significance levels. 
(**): 2 * 01 L Lρ = − . 

(***): ( )2 * 01 4L Lρ = − − . 

(****): PCP is percent of correct prediction. 
(*****): 2

,

( )m m
i i

i m

RSS pδ= −∑ . 

 
For the MNLE-1, the Horowitz test was applied to these estimates was Φ-1=-5.304 rejecting 
the null hypothesis of the test and indicating a better fit of the MNLE model compared to the 
MNL. 
 
These outcomes are reinforced by the results of the Hausman test applied to the two groups of 
estimators in Table 5. The chi-square critical value for H statistic at a 95% confidence level 
with four degrees of freedom is 9.49. In this case we have 13.97 9.49H = > , rejecting the null 
hypothesis of the test. This confirms that MNLE achieves a closer fit and supports the 

suitability of our conjecture setting 
car

i

car

i

dT

dp
 at 1.82. 

 
For the MNLE-2, the Horowitz test was applied to these estimates was Φ-1=-5.402 rejecting 
the null hypothesis. In the Hausman test we have obtained that 14.18 9.49H = > , rejecting 
again the null hypothesis of the test. 
 
Finally, using the Horowitz test to compare MNLE-1 with MNLE-2, we found no statistical 
difference between the two models. 
 
 
5. CONCLUSIONS 
 
A new approach was presented for dealing with endogeneity in choice models where the 
attributes of the alternatives or the explanatory variables and their values are endogenous 
because they depend on individual choice decisions. This type of endogeneity typically arises 
in the context of social interactions or networks subject to network externalities. The article 
addressed a transport network setting in which public transport trip times depend on wait times 



or crowding at bus stops or train stations and private car trip times are subject to road 
congestion. 
 
The proposed methodology explicitly incorporates this type of endogeneity into logit 
multinomial discrete choice models via the formulation of an equivalent maximum entropy 
optimization problem. The solution of the problem is a logit model with a fixed-point 
functional form that is calibrated through maximum likelihood estimation. This model is 
extendible to hierarchical multinomial formulations. 
 
The approach was tested by comparing the new model’s performance with that of a 
traditional logit model in two different applications, one using simulated data and the other 
employing real data. The simulated data were generated with endogeneity in the explanatory 
variable. The new model corrected the bias in the parameter estimates produced by the 
traditional formulation. The greater was the degree of endogeneity (i.e., level of congestion), 
the greater was the estimated bias. The proposed model also achieved a tighter fit to the data 
according to several goodness-of-fit indicators and statistical tests. 
 
In the case of the real data, drawn from a trip time survey conducted in a Chilean city, the 
degree of endogeneity was not known with certainty and a conjecture had to be estimated 
using the data themselves. The estimation of the model demonstrated that if the endogeneity 
was of the order of magnitude conjectured, the traditional logit model’s estimators were 
considerably biased whereas the proposed formulation fit the data relatively well. 
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APPENDICES 
 
Appendix A: Microeconomic Deduction of the Maximum Entropy Problem for the 
Multinomial Logit Model 
 
Assuming a Gumbel-distributed function, the maximum expected utility (EMUi) for an 
individual is 
 

( )1
ln exp m

i i
m

EMU Vλ
λ

= ∑                    (23) 

 
It is known that for the Gumbel distribution,  
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Substituting (24) into (23) we obtain 
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Multiplying (25) by m

ip  and summing over m, we have 
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It is evident from (29) that the entropy can be interpreted as the difference between the 
maximum expected utility of the individual and the average utility the individual faces. From 
this result we can also formulate the following optimization problem that each individual 
solves: 
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Problem (30) represents the optimal decisions the individual will make in a mixed strategy. 
The optimality conditions for (30) are  
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Assuming the linear additive utility function m m m

i k ik
k

V xβ=∑  for each individual i and that 

multiple individuals make their optimal decision simultaneously (based on mixed strategies), 
we formulate the following optimization problem: 
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m
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Z p p
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s.t.:                              



m m m
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i

p x X=∑      ∀k, m   ( )m
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1m
i

m

p =∑        ∀i    (Φi)            (34) 

 
where the variable pi

m is the probability (in a mixed strategy) that individual i chooses 
alternative m and constraints (34) impose that each individual’s probabilities must add up to 1. 
The parameter λ is a scalar that must be positive. Constraints (33), whose Lagrange multipliers 

give the specific constants ( )0
mβ  for each alternative, ensure that the observed proportion of 

individuals choosing alternative m is the same as the proportion predicted by the model. This 
result is also obtained when the constant terms are incorporated in maximum likelihood 
estimations of MNL models based on random utility theory.  
 
Note also that one of the constraints in (33) is linearly dependent on the others, implying that 
one of the 0

mβ parameters must be 0. This is equivalent to what is done in random utility 

theory, where one of the constant terms is also set to 0 for identifiability of parameters. 
 
Finally, the m

ikx variables are the explanatory variables of alternative m perceived by individual 

i and m
kX is the generalized total cost of variable k for alternative m. 

 
 
Appendix B: Microeconomic Deduction of the Maximum Entropy Problem for the 
Hierarchical Logit Model 
 
The maximum expected utility (EMUi) of an individual in a hierarchical choice structure is 
given by 
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In this case we know that  
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Multiplying both sides of (37) by n

ip  and summing over n, we have 
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Also, we know that ( )'
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Therefore, since 
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, we readily obtain  
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Finally, substituting (40) into (39) we get 
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From this expression we can formulate the following optimization problem that each 
individual solves: 
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The optimality conditions for the problem are 
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Assuming a linear additive utility function m m m
i k ki

k

V xβ=∑  for each individual i and that 

multiple individuals make their optimal decision simultaneously (based on mixed strategies), 
we formulate the following optimization problem: 
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s.t.:                              
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The uniqueness of solution (45) - (48) imposes that λn > 0 and λn > α (∀n), or in other words, 

0 1n
n

αφ
λ

< = < . This condition is the equivalent of the condition in hierarchical logit models 

based on random utility in which parameter 1n
n

αφ
λ

= <  so that the variances will not be 

negative. Recall that for reasons of parameter identifiability, in classic econometric estimation 
one of the parameters (α or λn) must be fixed, leading to the use of upper and lower 

normalizations. If we assume an upper normalization of (α = 1), then 
1

1n
n

φ
λ

= < .  

 
Appendix C: Extension of Model with Endogenous Explanatory Variables to the 
Hierarchical Logit Case 
  
The equivalent optimization problem whose optimality conditions give the hierarchical logit 
model is the following (Donoso et al., 2011): 
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where n represents the nest and m m m
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V xβ=∑ . 
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Dividing (50) by (51), we have 
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The optimality conditions for (49) are 
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From (53) we obtain 
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Summing over m in (57), we get 
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Dividing (57) by (58), we have 
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This expression represents the probability that individual i chooses alternative m given that he 
or she is in nest n. In other words, it is the conditional probability of choosing the nest. 
 
Taking the natural logarithm of  (59), 
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Multiplying both sides by m

ip and summing over m,  
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Dividing both sides by nλ ,  
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Substituting the expression 
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This can be rewritten as 
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Summing over n, we have 
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Dividing (66) by (67), 
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This equation gives the probability that individual i chooses nest n. 
 
Finally, from (59) and (68) we obtain the hierarchical logit model for estimating the 
probability ,n m n m

i i ip p p= ⋅ that individual i chooses alternative m in nest n. 
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This expression is also a fixed-point function that can be solved by defining an instrument for 

m
ip . 

 
Appendix D: simulation results using γγγγ = 1 y γγγγ = 2 
 



Figure A.8 
Distribution of the ββββtime Parameter Estimator for the MNL and MNLE Models (γγγγ = 1) 

 
 

Figure A.9 
Distribution of the ββββtime Parameter Estimator for the MNL and MNLE Models (γγγγ = 2) 

 
 

Table A.4 
ββββtime Parameter Estimators  

MODEL ˆ
time

β  Standard Error t Test (βtime = -0.25) 

MNL (γ = 1) -0.108 0.045 3.167 

MNLE (γ = 1) -0.294 0.075 -0.578 

MNL (γ = 2) -0.119 0.057 2.318 

MNLE (γ = 2) -0.305 0.079 -0.695 

 
 
 
 


