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ABSTRACT

A novel logit model is presented that explicitlgimdes endogeneity in explanatory variables
whose values depend on individual choice decisibatinvolve network externalities or
social interactions such as those impacting roagestion or public transport comfort and
convenience. The proposed specification correcthis particular type of endogeneity. The
model is derived from a linearly constrained maximentropy optimization problem that
incorporates the network externalities or socigénactions causing the endogeneity. It is

validated through simulations and an applicatiora toase of transport mode choice in a
Chilean city using real data.
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1. INTRODUCTION

Logit multinomial discrete choice models are fregflie used in marketing to model

consumer preferences, and are also employed ispmainsystem planning to represent trip
demand and ground use. They are traditionally duoitn random utility models and

estimated using maximum likelihood (McFadden, 199#zar, 1982, 1983; Train, 2003;

Orttuzar and Willumsen, 2011). Alternatively, howevihey have been derived as the
solution to certain constrained entropy maximizatgroblems in which the Lagrange
multipliers of the constraints are the model’s paeters (Anas, 1983; Donoso and De
Grange, 2010; Donoso et al. 2011).

In discrete choice models, interaction between lstgopl demand (Berry et al., 1995; Petrin
and Train, 2010) and the omission of variables seolable to the researcher (Villas-Boas
and Winer, 1999) may cause endogeneity. In botescake problem can be handled by
introducing instrumental variables into the estimmatThe existence of endogeneity has also
been traced to the definition of the choice senfathe individual (Haab and Hicks, 1997;
Louviere et al., 2005).

In this study, endogeneity is considered to berdiselt of network externalities or social
interactions of the type peculiar to transporteyst. More specifically, it emerges from the
fact that the attractiveness of a particular alitve depends on the number of persons
choosing it (Yamins et al., 2003; Blumenfeld-Ligieat, 2009; Bogart, 2009). But whereas
the attractiveness of a technology product, fomgXa, often varies positively with user
numbers, the choice of a transport mode can bdinelygampacted by user numbers because
itis influenced negatively by congestion. To de#h this phenomenon we propose a novel
specification for logit models that corrects thalegeneity bias introduced by network
externalities and social interactions.

The approach that will be taken is based on entrggoyimization with explicit incorporation
of the endogeneity caused by network externalibessocial interactions into logit
multinomial discrete choice models. An equivaleakimum entropy optimization problem
is formulated in which the explanatory variablesrig individuals depend on the decisions
they make (e.g., with private transport, trip tidegpends on congestion; with public transport
it depends on wait time or crowding at bus stopsietro stations). This interdependence
produces endogeneity in the model’'s explanatorjatses, whose values will therefore
depend on the individuals’ decisions.

The result of this approach is an alternative wersif the logit multinomial model that has
the functional form of a fixed-point equation in isth the choice probabilities depend on
themselves. Estimation is by maximum likelihoodd amo additional variables (e.g.,
instruments) other than the original ones in thelehare required, a major advantage of the
proposed method.

The remainder of this article is organized intorfeections. Section 2 introduces the
theoretical framework for the proposed methodolagg briefly surveys the literature on
endogeneity in discrete choice models. Section Bnditates the Logit model with
endogenous explanatory variables. Section 4 pieaanimerical example using simulations
and real data for a city in northern Chile. Finafgction 5 sums up the main conclusions
and contributions of this study.



2. THEORETICAL FRAMEWORK AND LITERATURE SURVEY

Logit-type discrete choice models are developedgusither of two approaches. One of them
is based on random utility models (McFadden, 19Vitiams, 1977; Train, 2003; Ortizar and
Willumsen, 2011) while the other involves formutgtia maximum entropy optimization
problem (Anas, 1983; Boyce, 2007; Hasan and Dabiii/; De Cea et al., 2008; Donoso and
De Grange, 2010; Donoso et al. 2011; De Grangke, &@04.0, 2011, 2013; Kitthamkesorn et
al., 2014). Our proposed model takes the lattercgmh, specifying a maximum entropy
optimization problem with constraints that explicitincorporates the endogeneity
phenomenon in the model’s explanatory variables.

In the random utility approach, an individu&hced with a set of alternatives chooses the one
that produces the greatest utility. Thus, the imdial will choose alternativen when

Um>U™Om'#m. The utility function U™ is typically decomposed additively as
UT=V,"+¢&", whereV,"is a deterministic component depending on obseswabiables and

&™"a random component that is not observable. Theradisdoes not directly observe the
individuals’ actual utility functions),” but rather the choices they make and the attritnftes

each alternative, these latter constituting thendefn of V.. The deterministic component is
typically expressed as a linear function in theilaites. Thus, if thekth attribute or
explanatory variable faced by individuain alternativem is defined asx; Ui,m,k, then

V™= BIxi , wheref;" are the parameters to be estimated and represemtative weights
k

of each attribute.

The multinomial logit (MNL) model is obtained bysagning the random component of each
utility function is independent and identically Goet-distributed (McFadden, 1974; Ben-
Akiva and Lerman, 1985; Train, 1986, 2003; Ortuzat Willumsen, 2011). The probability
that individuali chooses alternativa is then given in general terms by

vm
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Under the second approach, on the other hand,s(&leiived by solving the following
maximum entropy optimization problem (the full dextion is given in Appendix A):
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where variablesx; are the measurable exogenous attributes individyserceives in
alternativem; andc," are the observed values for each attriluteeach alternativen. Also,
o = a"xy , whered™ is 1 if individuali chooses alternativeand 0 otherwise. The values

of x; andd™ are traditionally obtained from surveys, measuresiand calibration samples.

Anas (1983) gives a formal statement of the eqeinad between the multinomial model based
on random utility theory (1) and the maximum enyrppoblem (2). Donoso and De Grange
(2010) show that an analysis of (2) yields two ubwterpretations of this equivalence: first,
the maximum entropy problem is consistent withrétienal decisions of welfare-maximizing
individuals, and second, the likelihood functiortted MNL model is equal to the problem’s
dual. However, the equivalence is valid only if testraints in (2) are linear, which is the

case only when the attributes or variabi'sare exogenous.

In general terms, endogeneity in discrete choicaletsois present when part of the
deterministic utility functionV,™ is correlated with the error teraf" (Berry et al., 1995;
Louviere et al., 2005; Guevara and Ben-Akiva, 2008Jker et al., 2011). When this occurs,
the estimates of the parametgg3 in V" = > B"xi' may be inconsistent.

k

Endogeneity may appear for a variety of reasortd) as a model specification error due to
the omission of important variables or the abiityndividuals to influence the formation of
the choice sets (Louviere et al., 2005). In thislgtwe consider it to be the product of social
interactions, which may be positive or negative.rélspecifically, the attributes of the
alternatives are assumed to depend on the leebbide aggregation. For example, as more
individuals choose to travel by private car, timés may increase due to congestion.
Likewise, overcrowding in buses or the metro, oit times at stops or stations, may increase
if there are many travellers at peak hours.

In addition, individuals may make decisions basethe actions of others due to incomplete
information, such as occurs in herd behaviour (Bare1992) or informational cascades
(Bikhchandani et al., 1992). For example, dinery moid a restaurant if there are few
customers inside, taking it as a sign of high mrimepoor quality. Similarly, a bus stop with

no-one or many people waiting may indicate a disonpin service and thus discourage
potential riders.

In all of these cases the explanatory or attrilmaltiis;lbIesx;n become endogenous variables of

the type x; = x;‘(tm), wheret™ =) pis the total demand for alternative so that

coc[zr)



Various ways of handling endogeneity in discreteiatt models have been proposed in the
literature. Blundell and Powell (2004) suggest misgarametric approach to testing for the
exogeneity of continuous explanatory variablesniaty choice models. Maximum likelihood
is commonly employed with these models, but it negguan explicit parametric specification
of the way in which each endogenous variable depend set of instruments and the errors.
Furthermore, a joint distribution of the random gament of the utility functions and the error
component in the relationship between an endogevemiegble and the instruments must be
specified (Lewbel, 2007). These requirements cait thaximum likelihood’s usefulness due
to the difficulties often involved in specifyingdbe relationships correctly. De Grange et al.
(2009) present an alternative method for estimatggyegate logit models by multiple linear
regression that is based on proxy variables, tivgsrmaventing the endogeneity problems
arising when least-squares estimators are usedrdgagand Ivaldi, (2014) formulate a
structural model for travel demand in which thegestion level is endogenously determined
in the equilibrium of a game with a continuum cys#rs. The estimation uses the first-order
conditions of the users’ utility maximization prebi to derive the likelihood function and
then a two-step semi-parametric method.

Of the various approaches that have been suggéstedrrect for endogeneity, five in
particular are worthy of note:

i. control function approach

ii. the Berry, Levinsohn and Pakes (BLP) approach
iii. dual approach

iv. latent variables approach

V. special regressor approach

Each of these are briefly describe in what follows.

[ Control function approach. This method is described in Heckman (1976), Hausm
(1978), Heckman and Robb (1985), Villas-Boas andaM{1999), Blundell and Powell
(2004), Guevara and Ben-Akiva (2006), and Petroh Brain (2010). It involves two
stages. First, the endogenous variable is regressegdogenous instruments; then, the
residual (or a function of it) is incorporated irttae utility function as an additional
explanatory variable called the control functionilziere et al., 2005; Guevara and Ben-
Akiva, 2009). As with maximum likelihood, this aach requires that the relationship
between the endogenous regressors and the instriseenrrectly specified.

ii.  BLP approach. As described by Berry et al. (1995), this meti®dpplicable when
endogeneity arises with groups of individual desismakers, such as when the
endogenous variable is separable for individuatgewgraphically distinct locations. In
other words, the endogenous variable varies amiffiegatt groups of individuals but is
the same for individuals within a single group. Thethod consists in linearising the
discrete choice model (normally multinomial loganhd then applying classical
instrumental variable techniques (Louviere et2005).



iii.  Dual approach. This method has been suggested by Matzkin (2004 )applicable to
both linear and non-linear models with endogereaity can be interpreted as a dual of
the instrumental variable approach. It consists fimding new explanatory
variablesX that are correlated with the original endogenouibéeX and may also be
endogenous, but the differeneebetween them must be completely random (i.e.,

gz(p)Z—yX) where (p,y)>0) so the method does not require exogenous
instrument<Z.

In discrete choice models, the new variaKlés included in the utility function together
with the endogenous variabte Train and Winston (2004) model the choice of gkhi
make as a function of the resale prie arguing that the latter variable is correlated
with the new vehicle price, the endogenous varixble

iv. Latent variable approach. This method is set out in Ben-Akiva and Boccad®@5;
Walker and Ben-Akiva, 2002; and Guevara and Ben:&kR009. It involves the
explicit incorporation into the model of unobserealor latent variables (e.g.,
psychological factors, attitudes or perceptiond)e Tmissing variable causing the
endogeneity is thus considered to be a latentiarand is modelled as part of a system
of structural equations that are a function of olesele variables. It is then incorporated
into the utility function.

v.  Special regressor approach. This method has been widely used with discreté an
ordered choice models and models with censorechaataelection bias (Lewbel, 1998,
2000, 2007; Magnac and Maurin, 2007, 2008) as aslnodels with truncated data
(Khan and Lewbel, 2007) and panel data (Ai and @840). The special regressor
estimator is a control function but the identifioat of the endogenous regressor’'s
coefficient considers the remaining terms of thierlavariable as a special regressor.

The proposed method set out in the following secti® similar to the control function

approach but has the advantage of not requiririgathanctional form be specified, nor does it
require exogenous instruments.

3. FORMULATION AND ESTIMATION OF LOGIT MODEL WITH
ENDOGENOUS EXPLANATORY VARIABLES (MNLE)
3.1 Mathematical Formulation

As was explained in Section 2, we represent thear&texternalities or social interactions of
the explanatory variables by functions of the tyffe= x (tm) ,wheret™ =>" p" is the total

demand for alternativen so thatx,' = x,:‘(z p{“j .

We can now solve the following equivalent optimiaatproblem, incorporating explicitly the
variables x;' = X (tm) with A = 1 (for an extension to the hierarchical logitdabwith

endogeneity, see Appendices B and C):
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The optimality conditions of problem (3) are

dL dx; dx;
=lnp"-o, - Mo+ pt—L—-9"—~ | =0 4
dp,m pl i ;ﬁk (XM pl dpim i dpimJ ( )
p" =exp| +Z,3k X +(pi _O:m)dpm (5)
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Summing ovem and taking the natural logarithm, we have

.

o <-ngenf {7 ;

p"

3 =1 S 0+ 245 o (6o 5

Substituting (7) into (5), we get the probabilityat individuali chooses alternative:

eXP(Zﬂ?(&F(p?‘-dm)jﬁD
= Idx;“

S [l )

(8)

This expression is similar to the traditional logiultinomial specification except that it
explicitly incorporates the phenomenon of endoggradithe variablesg due to network

externalities or social interactions. We thus déscit as a logit model with endogenous
explanatory variables (MNLE). It is a fixed-poinirfction in p™, whose estimation runs up

. e . . . . . . L dx”
against two difficulties: first, solving the fixgmbint; and second, estlmatm&ejx‘“:.
P

MNLE can be considered a member of the family sicdite choice models with social
interactions and heterogeneity (Brock and Durl20f)1, 2006; Soetevent and Kooreman,
2007; Dugundji and Gulyéas, 2008; Amador et al. .80 these formulations, an individual’'s
decision may be affected by the decisions of agineups of individuals in society.



When%:o, (8) reduces to the traditional MNL model but wh%)f’?’“ri 0, a traditional
pi pi

MNL such as (1) would be incorrectly specified hesathe ternﬁ p" - 5{“)% presentin (8)
P

is missing. This omission results in biased esiionatof the parameterg,”. The missing

term corrects the explanatory variablgs by incorporating the effect of the network
externality or social interaction type of endogénei

3.2 Parameter Estimation

Multinomial logit and other analogous models apedgily estimated by maximum likelihood.
For the fixed-point model (8) just described, hoarewa practical complication arises due to
the presence of the™ term on the right-hand side of the equation. Agé&way of getting

- . . . . ax" .
around this difficulty is to estimate the modehio steps. In the first step, the teré% is

estimated exogenously. For example, if the varialflerepresents trip time by private

dx” . .
transport, the paramettaixim can be estimated from the road network flow-dé&lagtions, as

will be done here when the model is applied to dedh (Section 4.2). If the model is being
used for empirical work, either additional datalmmparameter value or valid instruments will
be needed to obtain a consistent estimate. Yehanutay is to make a conjecture and then
conduct a sensitivity analysis on it to get an idithe order of magnitude of the possible bias.

A starting point must also be specified for anmeate of p|,. This can be obtained using the

multinomial logit model (Raveau et al, 2011; De @aet al., 2013), which is the equivalent

of setting jxi =0 in (8) and provides a warm start. Thus,

o eXP(Zk: ﬁkm,anT) (9)

| ZeXP(Z/B&x;“)
where the values 0B, are the maximum likelihood estimators of the paatars.

o

dp,
directly via maximum likelihood the parametg8S of the following model:

Once p;, and have been estimated we proceed to the secondndiagh is to estimate
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This process is iterated unyﬁK”fn = ,[?k"fn_l Ok, m, which implies p, = p;,_, at the fixed point

defined in (10). For the case whea%r‘ﬂ— is constantli, the sufficient conditions of existence
P

and uniqueness for the equilibrium solution of this iteegbrocess are set out in what follows.

Theorem: Let /7’“=Z(/3km

dx;
k P

ax” . . .
], where & = congt, i . If either (|)max‘/7”“< 2, or
dp” dp” m

(i) Z‘/]"“ < 4, then both the existence and the uniqueness of agoiatiare assured and the

linear convergence of the iterative method just describgdaranteed.

Proof:
Let f:p=(p")OR™ i f(p)OR™ be

m

exp(nm (pm-am) +Z,6’km>ﬁi‘j
Zexp(n”" (pm-am)+ Zﬁf"&?'j

f(p)

(11)
where parameterg,” and;™ are the points that optimize the log-likelihooddtion of the

MNL. This is a continuous function (De Grange et 2013) and the recursive estimation is
such thatf (p®™) = p™*.

Let p,q be any two points. For any norm,

[£(p)-f (@l <2 (r)(p-a)|<]3 (r)][p-al (12)

whereJ is the Jacobian df((Jandr is a point such that=8p+(1-6)q, 60[0,1.
amfn (A=), i=jik=m

-n“fmfx, i=j;kzm (13)
0, i Zj

A

ij ap;(




Matrix norm |ffj and matrix normH[n] are applied to Jacobian (13) to get (14) and (15),
respectively. Thus,

m m m m m m m m 1 m
(0, =maxmay”| 1 (3 17) | 75, 15 2al| mat( 267)< ] ]

”‘] (r)”00 = max ma%m‘ fim( F fim)+ fimZ‘Uk‘ f < max ma)fim( 1 fim)Z‘ﬂk‘S%Z‘ﬂk‘ Or
I " k#m : m X "

Since f"f* < fi”‘(l— fim)sl, 0i ,k,m, we obtain

4
mnz:lx‘/ym‘ <2=|f(p)-f(a)|,<L|p-qa,. LO[0] (14)
Z‘q"‘"<4:”f(p)—f(q)||m<L||p—q||w, LO[0,]) (15)

If condition (i) is satisfied,f (0 is proven to be a contraction for noffif}, and if condition
(ii) is satisfied, f ([ is a contraction for norrffl . In both cases, by the Banach fixed point

theorem, a unique fixed point exists. Furthermsige all norms are equivalent in a finite-
dimensional space, the linear convergence of #rative method is demonstrated for any
norm.

4. NUMERICAL EXAMPLES

In this section we review the performance of thedelset out above in the presence of
endogeneity using two sets of data, one genergtadMonte Carlo simulation and the other
taken from an urban transport survey in the Chilggnof Antofagasta.

4.1 Monte Carlo Simulation

Consider a simple case in which there are onlyttamsport alternatives (private car and bus)

and one explanatory variable (trip time) with a coom parametefime. The utility functions
for the two modes are

Vie =B+ Binelic (16)

me it
Vi = BT (17)

where the private car trip time in minutes observgdhdividuali is a linear function of the
total number of car trips in a given peribc@Ff“) plus a random terng;" , and is thus

expressed as

T =a+yR™ +uf (18)



wherea =3, y=1/15, andr™ ~U (100;500 , so that the total flow of cars during perids

100 to 500 vehicles uniformly distributed. Diffeterip time intervals can be chosen as a
function of aggregate demand. Since the numbeipsf will be different in each simulation,
the number of observations (i.e., the sample sizedch case will also differ (each traveller or
user is an observation). A total of 130 simulatiaese conducted with sample sizes ranging
from 150 to 800 users or observations.

The variableus™ distributes uniformly between 0 alﬁd'+yFtCar )/2 The bus trip time is

independent of demand and is defined@ &5~ U (8; 60) . Finally, the population parameters
are set afzime = -0.25 ang3 = -0.15.

Since by constructio ™ =% Jd", itis easily demonstrated for this simulationreiee that
B |
i i

dF daT™ _ dT™ dF™ _ dT™ 1
Z pe = 25.?’ =F*, and therefore—/——=1and——=——-——=—_=y=—
i I dplcal' dpiCaI' dF[CaI’ dp:ar dF[CaI’ 15

The values estimated f@me using the traditional MNL model (1) above and MNixi6del
(8), the latter explicitly reflecting the endogedgén the private car trip time variable, are
compared by the histograms in Figure 1. The histogrfor the parametg} are shown in
Figure 2. In Appendix D we show simulation resulétngy=1yy= 2.

The mean of th&;ime estimator for both models in the presence oftinge congestiony=
1/15) is shown in Table 1 along with the resuleag§imulation using the same population
parameters fime = -0.25 andf = -0.15) but no congestion (i.e,= 0) and thus no
endogeneity. The bias in the simulation estimateéhef mean offime using MNL with
endogeneity in trip time (e.g., congestion) is ewidin the figure of -0.125. At this value the
null hypothesi#o: Bime = -0.25, the known population parameter, is rejgetith a high level
of significance. The mean estimate produced by MNirEhe other hand, is not significantly
different from the known parameter value and thiémgpothesis cannot be rejected. In the
bottom row of the table, it can be seen that wihemnetis no endogeneity € 0) the classic
MNL'’s estimate is consistent.

The results for parametgp are given in Table 2. As witfine, the MNL estimate in the
presence of endogeneity is biased whereas the Midtimate is statistically unbiased (as is
MNL without endogeneity in the bottom row of théle).



Figure 1
Distribution of the Bime Parameter Estimator for the MNL and MNLE Models (y=

1/15)
=E
Figure 2
Distribution of the & Parameter Estimator for the MNL and MNLE Models (y=
1/15)
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Table 1
LBime Parameter Estimators
MODEL ﬁm Standard Error t Test (Bime = -0.25)
MNL (y= 1/15) -0.125 0.046 2.704
MNLE (y= 1/15) -0.262 0.058 -0.211
MNL (= 0) -0.255 0.056 -0.084




Table 2

MODEL B, Standard Error t Test (B = -0.15)
MNL (y= 1/15) -1.102 0.431 -2.209
MNLE (y= 1/15) -0.194 0.342 0.128
MNL (y= 0) -0.131 0.185 0.105

A dispersion graph of the bias estimated in eagtuksition for theGime parameter and the
level of demand or flowr,™ impacting the level of congestion is shown in F&g8. As is
apparent, increasing congestion induces a downlwasdn the MNL model estimates. Thus,

the greater is the congestion the greater wilheeMNL estimate bias unless the endogeneity
is corrected.

Figure 3
Relation betweengime Estimator Bias and Flow in MNL Models (y= 1/15)
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As regards the models’ goodness-of-fit, four inthesiare reported in Table 3: log-likelihood
evaluated at the parameter estimate valugsl¢g-likelihood evaluated at zerb%, and rho-

square( pz) and adjusted rho—squaf@z) where

(19)

andK is the number of estimated parameters. The vabewn are the averages of the
simulation results for each statistic. They cleahHpw that MNLE has better goodness-of-fit
on various indicators.



Table 3
Goodness-of-Fit for MNL and MNLE Models (y= 1/15)

STATISTIC MNL MNLE
L -274.80 -267.06
L° -308.991 -308.991
0 0.110 0.136
o 0.104 0.129

The Horowitz test (1983) for comparing non-nestisdregte choice models can also be used to
compare the two models. The null hypothesis istbdel with more parameters does not have
a better fit. The value of this test statistic igegn by

{@{—(—Z(ﬁf—ﬁz)[ﬂ_%(Kh—K,))%H_l~ N(0,1) (20)

where:

o’ is the adjusted likelihood ratio index for the rebdith the lowestl} value;
p? is the adjusted likelihood ratio index for the rabaith the highesth) value (in our case,

it was the MNLE);
Kn, K| are the numbers of parameters in motiesdl, respectively;
@ is the standard normal cumulative distributioncfion.

Using a 95% level of confidence the criterion fgecting the null hypothesis )ﬂ)'l‘ >1.96.

The average value @™ for various simulations was -3.934 indicating ttret MNLE was
had a better fit than MNL.

These findings can be complemented with the Hauspacification test statistic (Hausman,
1978; Marquez-Ramos et al, 2011), which in thegntsase is expressed as

H= [ﬁMNL _li\/INLE T |:Var (ﬁ/INL )' var (ﬁ/INLE )Jl [ﬁNL 'rﬁNLE :| DX; (21)

where (ﬁMNL) is the parameter vector estimated by the MNL macuel (ﬁMNLE) the
corresponding vector estimated by MNLE. Analogousdar(ﬁMNL) is the variance and

covariance matrix of the MNL parameter estimateiswm(ﬁMNLE ) the corresponding matrix

for the MNLE. The null hypothesis of the test iattthe selected parameters in both models
are statistically equaH is chi-squared distributed withdegrees of freedom (in this case 2,
the number of parameters, and the critical valubeb% level of significance is 5.99). The
value of the statistic i$l =18.58> 5.9¢ supporting that the MNL estimator is more biased
than that of the MNLE.



Thus, for the simulations that were conducted ethgogeneity in the trip time explanatory
variable caused by congestion causes in the MNLatrestimate whose order of magnitude is
significant compared to the parameter values. Bytrast, MNLE produces consistent

estimators that fit the data better.

A sensitivity analysis was carried out on tﬁé; term. As noted above, the relationship
P

between trip time and demand defined for the sitimrla was such thac-ixT"—car =y= 1—15 = 0.07.

By modifying this value slightly in the MNLE modestimation, variations are produced in the
Lime parameter bias and the log-likelihood value. Témuits are graphed for the former in
Figure 4 and for the latter in Figure 5. Figurehdws the values taken by the likelihood

function for different values of% (by trial and error). Figure 5 show the bias fiffedent
P

i
m

f dx;

m

values o

((by trial and error). As may be observed, thénbig log-likelihood values are

obtained whend% is relatively close to 1/15 0.07 while the lowest bias levels fiin are

also found close to that point. These relationshipisbe useful for estimating the MNLE

. . . . ax™ .
model in real-world situations where the functiofoam of dX: is not known.
P,

Figure 4
Sensitivity Analysis: dX/dP and Log-Likelihood
dX/dp
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Figure 5
Sensitivity Analysis: dX/dP andBine Bias

Bias

dx/dp

4.2 Application of MNLE Model to Real Data

The multinomial model with endogeneity (MNLE) apeassed by (8) was tested on real data
from a trip survey conducted in the northern Chiledtly of Antofagasta (SECTRA, 2011).
Antofagasta is the city with the highest per capitame of Chile, and the fifth most populous
city with about 400,000 inhabitants in an area28,000 square kilometers. Figure 7 shows

the hourly distribution of trips in the city.

Figure 6
Trips distribution, week day.
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The peak period (7 am to 9 am) represents 20%ilyftdas. Observed modal split is 48% for
Bus, 33% for Private Car and 19% for Share Taxe dterage travel time for Private Car is
approximately 10.6 minutes. For the off-peak petioel average travel time is close to 7
minutes, and the observed modal splitis 52% far, R6% for Private Car and 23% for Share
Taxi.

A total of 903 individual commuter trips during therning peak hour (7 am to 9 am) were
surveyed in three transport modes:

i. Private Car
ii. Bus
iii. Share Taxi
For comparison purposes a conventional MNL moded aiso tested. The explanatory
variables in the two models were trip time for mcude(Tim) and costosing), the latter
divided by traveller income. The utility functiofe the three models are presented in Table 4.

The estimation process was performed using BIOGHEBIErlaire, 2003; Bhat and Guo,
2004).

The modal constant of the bus modg#, (= 0) was set as the reference (zero) value and the
other two specific modal constants were then esédchaith respect to it. Generic parameters
(/3,[“ = L., Dm) were used for trip time and cost.

Table 4
Utility Function by Mode, MNLE and MNL
Mode Function
Private Car V& =87 + L. T™ + 5. [dosinc
Bus Vibus = ﬁtime |:I-ibus + ﬁc @OS' r]C|
Share Taxi Ve = g g [T + S [tosinc

To estimate the models, a functional form had tchoEsen forjxk' , 0k, m. It was assumed

m

o . . ax” .
that only the trip time variable (i.e., not cosiutd be endogenous. Thufflm was interpreted
P

as the ratio of the variation in total trip timeween peak and off-peak periods for private car
travel to the variation between peak and off-peakiguls in the total number of trips.
Analytically, this ratio can be written as

car total __ -y-total
dT, — Tpeak Toff—peak

@ | total total
dp. Fpeak Foff - peak

(22)



where T3 and T2, are the total private car trip times in peak affebeak periods,

respectively, andFy&; and Fi®  are the corresponding total private car trips. The

conjectured value of:'—wwas thus estimated using the Antofagasta survey(@&CTRA,
P

2011) to be 1.82. The model in this case is caidlLE-1.

car

. ar= . . . .
Another way to estlmatedt is by a “trial and error” process (see FigurelJging many
p

different values onT'—w, we choose one that produces the highest valiedbg-likelihood

function. In this second case, we obtghr— =1.60 and a better goodness of fit. The model in

this second case is called MNLE-2.

Figure 7
Sensitivity Analysis: dX/dP and Log-Likelihood Consdering Real Data (MNLE-2)
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The results of the estimation for MNL, MNLE-1 andNME-2 are set out in Table 5. All of the
parameter estimates have the correct sign andhddugl of statistical significance.



Table 5

Parameter Estimates for MNL and MNLE Models (*)

Parameter MNL MNLE-1 (dx'/dp’ =1.82)| MNLE-2 (o’ /dp’ = 1.6)
ol -0.082 (-0.51) -0.518 (-2.51) -0.569 (-2.70
share -0.473  (-4.42) -0.521 (-4.74) -0.528 (-.80
B. -0.122 (-6.54) -0.135 (-6.75) -0.136 (-6.77
Bine -0.023 (-4.72) -0.039 (-5.75) -0.041 (-5.77
L -679.54 -665.48 -663.81
LO -864.74 -864.74 -864.74
e 0.214 0.230 0.232
D7 () 0.210 0.226 0.227

PCP (=) 68.4% 68.9% 68.9%

RSS (+++4) 242.64 235.86 235.03

(*): Figures in parentheses are statistical sigaifce levels.
) p?=1-L/0.

™) p* =1-(L' -4)/1°-

(***): PCP is percent of correct prediction.

(™) Rss=3(a"-p")?*:

For the MNLE-1, the Horowitz test was applied tegé estimates was'=-5.304 rejecting
the null hypothesis of the test and indicating dvdit of the MNLE model compared to the
MNL.

These outcomes are reinforced by the results dithesman test applied to the two groups of
estimators in Table 5. The chi-square critical edlorH statistic at a 95% confidence level
with four degrees of freedom is 9.49. In this casdhaveH =13.97> 9.4¢, rejecting the null
hypothesis of the test. This confirms that MNLE iaghs a closer fit and supports the

e . AT
suitability of our conjecture settmg'j at 1.82.
P

For the MNLE-2, the Horowitz test was applied tesk estimates was'=-5.402 rejecting
the null hypothesis. In the Hausman test we havairdd thatH =14.18> 9.4€, rejecting
again the null hypothesis of the test.

Finally, using the Horowitz test to compare MNLEvith MNLE-2, we found no statistical
difference between the two models.

5. CONCLUSIONS

A new approach was presented for dealing with eedeiyy in choice models where the
attributes of the alternatives or the explanatasiables and their values are endogenous
because they depend on individual choice decisifims.type of endogeneity typically arises
in the context of social interactions or networibjsct to network externalities. The article
addressed a transport network setting in whichiptdainsport trip times depend on wait times



or crowding at bus stops or train stations andgpeivcar trip times are subject to road
congestion.

The proposed methodology explicitly incorporatess ttype of endogeneity into logit
multinomial discrete choice models via the formigiatof an equivalent maximum entropy
optimization problem. The solution of the problema logit model with a fixed-point
functional form that is calibrated through maximiikelihood estimation. This model is
extendible to hierarchical multinomial formulations

The approach was tested by comparing the new nm®geliformance with that of a
traditional logit model in two different applicatis, one using simulated data and the other
employing real data. The simulated data were géeeweith endogeneity in the explanatory
variable. The new model corrected the bias in theupeter estimates produced by the
traditional formulation. The greater was the degfeendogeneity (i.e., level of congestion),
the greater was the estimated bias. The proposddlratso achieved a tighter fit to the data
according to several goodness-of-fit indicators stadistical tests.

In the case of the real data, drawn from a trigetsurvey conducted in a Chilean city, the
degree of endogeneity was not known with certaamy a conjecture had to be estimated
using the data themselves. The estimation of thdefrdiemonstrated that if the endogeneity
was of the order of magnitude conjectured, theiticathl logit model’s estimators were
considerably biased whereas the proposed formulétithe data relatively well.
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APPENDICES

Appendix A: Microeconomic Deduction of the Maximum Entropy Problem for the
Multinomial Logit Model

Assuming a Gumbel-distributed function, the maximerpected utility EMU;) for an
individual is

EMU, :%In Zm:exp(/]\/im) (23)

It is known that for the Gumbel distribution,

exp(/l\/im) ) Zexp(/l\/im'): ex;(/l\/im)



Substituting (24) into (23) we obtain

—exp(ﬁmv‘m)J =" 71'” p” (25)

EMU, =1|n[
A P

Multiplying (25) by p™ and summing oven, we have

PP EMU, = BV = 7 In (26)
EMUiZm: pi’“:Zm: p,"\/im—%zm: p"In p" (27)

EMU, = ; prv," —%Zm“ p"In p" (28)
EMU, —Zm: VAR —%; p"In p™ (29)

It is evident from (29) that the entropy can beeipteted as the difference between the
maximum expected utility of the individual and @neerage utility the individual faces. From
this result we can also formulate the followingioptation problem that each individual
solves:

m.,.m l m m
max EMU, =3 V"g"-3 2 n (Inpr-1

st.: Zm:pimzl (o)

(30)

Problem (30) represents the optimal decisionsrt&idual will make in a mixed strategy.
The optimality conditions for (30) are

__exp(av”)

_1 m
D _W , D —;Ian:exp(A\/i ) (31)

Assuming the linear additive utility functiof™ =" Z"x for each individual and that
k

multiple individuals make their optimal decisiomsiltaneously (based on mixed strategies),
we formulate the following optimization problem:

H —_ l m m
min Zl—iZ§A p"Inp (32)

St



2P =X Okm (A7) (33)
3 pr=1 O (@) (34)

where the variabl@™ is the probability (in a mixed strategy) that widual i chooses
alternativemand constraints (34) impose that each individyatdabilities must add up to 1.
The parameteit is a scalar that must be positive. Constrainty (@3ose Lagrange multipliers

give the specific constan(sﬁ’g‘) for each alternative, ensure that the observepigotion of

individuals choosing alternativeis the same as the proportion predicted by theamdthis
result is also obtained when the constant termsre@porated in maximum likelihood
estimations of MNL models based on random utiligdry.

Note also that one of the constraints in (33)niedrly dependent on the others, implying that
one of the 3" parameters must be 0. This is equivalent to whdbige in random utility
theory, where one of the constant terms is alstosefor identifiability of parameters.

Finally, the x| variables are the explanatory variables of altéraat perceived by individual
i and X,"is the generalized total cost of variakltor alternativem.

Appendix B: Microeconomic Deduction of the MaximumEntropy Problem for the
Hierarchical Logit Model

The maximum expected utilitfeMU;) of an individual in a hierarchical choice struetis
given by

1 n n 1 m'
EMU, :;Ingexp(aLi) , L = InmzDn expé/l"\/i ) (35)
In this case we know that
nm exp(aL\n) eXF(/]n\/Im) n m
m = =p"[p 36
. Zexp(ap”) > exr(/l”\/im) PrLp (36)
n m'Un
o' p"
_ . exp(aLi”)
Since p _—Zexp(al_?') ,
EMU, =£In{MJ ==L 37)
a P a

Multiplying both sides of (37) byp" and summing ovet, we have



p"'EMU, = p"L! —% p'ln p" (38)
EMU, = ; p'L —%Zﬂ: p"In p" (39)
Also, we know that.! = Tlnln n%;]exp(A”\/im').
Therefore, since

_ o)

m’n

we readily obtain

VAL —Inp => pV"- —Zp Inp" (40)

min min

Finally, substituting (40) into (39) we get
n m n 1 m m 1 n n
EMU, =2 p 2 pV" =2 =5 2 pTinp"=— > plin p (41)

From this expression we can formulate the followmgtimization problem that each
individual solves:

n m n 1 m m 1 n n
I’TlaZ( Z P Z pimvi _Z P _nz P Inp, __Z P Inp,
{Q *Q} n m n A5 a
st > p"=1 Oin (CDi”) (42)
mOn

p'=1 0On (x)
The optimality conditions for the problem are

exp AV I m
ey o= eetn) 4

mTn

~ exp(aLi”) 1 .
_ZeT(aLi”) : yi—;InZn:exp(aLi) (44)



Assuming a linear additive utility function™ =" B"xi' for each individuai and that
k

multiple individuals make their optimal decisiomsiltaneously (based on mixed strategies),
we formulate the following optimization problem:

s.t.:
> pr=1 Oi,n (o7) (46)
n.in pr=1 i (%) (47)
Z o' P = XV Ok, mOn - (B7) (48)

The uniqueness of solution (45) - (48) imposesAhat0 andA" > a (0n), or in other words,

0<¢' = % < 1. This condition is the equivalent of the conditinmierarchical logit models

S : a : :
based on random utility in which paramete?r:F <1 so that the variances will not be

negative. Recall that for reasons of parametettifignility, in classic econometric estimation
one of the parametersr (or A") must be fixed, leading to the use of upper angelo

normalizations. If we assume an upper normalizatiofe = 1), theng :A—ln <1.

Appendix C: Extension of Model with Endogenous Exg@natory Variables to the
Hierarchical Logit Case

The equivalent optimization problem whose optinyatiinditions give the hierarchical logit
model is the following (Donoso et al., 2011):

o, S(EaTanw)ols(Sann]-S(Tasav)

st.: Y p"=1 Oin (CDi") (49)

>p'=1 0On  (x)

n

wheren represents the nest aud = > B .
k

Assuming thatx™ = x™ (tm) , and in this casé” :Z( p" Ep,m),DmD n, then

ax:1 ax:1 otm ax:1 )
- = - - = n|1 pl (50)
op” ot"odp" ot



ax;“ _ ax:1 o ax;“
op"  ot™ ap"  ot"

m

Dividing (50) by (51), we have

ox™ /ap p" nOX" X"
ox" /ap T T B op’

The optimality conditions for (49) are

dL 1 dx;
— == In p|m+1 +(Din+ ﬂm( ot pim_'J:O
dpi Omin ( ) k,%n “ Xkl dpim

x Zp. Inp"+= (Inp+1)+y+2p Zﬂk[ +|O.”Z[X)“;J=0

mn k,mn i

w)e

dL
L == an. In pm+= (In|0+1)+y+Z,6’k XTI+l
dpi A k,nOn

From (53) we obtain

Inp" = —ACD”AZ,BK( ”‘X‘“Jl

k,mCn

p" —exp( —A"®f - A" Zﬂk(xwp.m X‘;J 1}
dp

k,mn i

Summing ovemin (57), we get

> =1 e -0 - ])Zex;E—/i > A (xk.p X“B

k,mOn

Dividing (57) by (58), we have

exp(—/l” Z ﬁm(xw +p" dX‘E‘:D
"= d OmOn
e )

k,mL

B =

(51)

(52)

(53)

(54)

(55)

(56)

(57)

(58)

(59)

This expression represents the probability thaviddal i chooses alternativa given that he
or she is in nest. In other words, it is the conditional probabildf/choosing the nest.

Taking the natural logarithm of (59),



Inp"=-A">" A (xk.+p. j anexp[—A > B (xwp. d’;;D (60)

k,mn k,mn q

Multiplying both sides byp™and summing oven,

;np.”‘lnpim—-ﬁ P ADIVA (xwp ]

mn k,mOn
m (61)
YA Y expA" Y ﬁ;“(xz‘wmj‘;jj
min min k,mn pi

%‘,np.”’ln pr=-A"> A (xwp."‘ X‘“j InZeXp(—/l Zﬁk( Xi + P PD (62)

k,mOn k,mn

Dividing both sides by",

Zn In p"= Zﬁk[ X+ dp;j——'nznexp( ADINA [xk.+p. D (63)

k,mn k,mn

Substituting the expressie/]%n—z p™In p™ from (63) into (55), and recalling equality (52
mOn

obtain

1 ( n 1 n m| m m dXE —

—(Inp +1)——nInZex A" B x| [+y=C (64)

a A mn k,mn dp|

This can be rewritten as
m X

In p" ——InZexp A" BN et —= | |-ay -1 (65)

k,mCn dpi

p" =exp(-ay, - :I)ex{— Inz exE A" B [Xk. +p" mjD (66)

k,mCn

Summing oven, we have

2P =1 exp(-ay -3 eX:E— D, eXE A" Y ﬁk( |+ P dX:D} (67)

k,mn

Dividing (66) by (67),



- exp(“ mz ex —A"Zﬁm(X”PTﬁJD (68)
Zexp( nY exg -1" 3 A7 ( : :k m

k,mCn

P

This equation gives the probability that individuahooses nest.

Finally, from (59) and (68) we obtain the hieraozhilogit model for estimating the
probability p™™ = p"" [p" that individuali chooses alternativa in nestn.

m Xk. n m m mdxlzn
— -A" - tpt
ezl i) rzaler i)

pi m
Zexp( N> exg -A">. A" ( | Dj > ex;{—/l” > ,ka(x;” +p" :X'f“D
min k,mOn pi min k,mOn pi

If we now definen™ = Z,Bk , we finally arrive at

exp(jn InY ex -A"(nm pr+ D, ﬁE‘XFJD ex{—A"(nm ph+ D, ﬁkaL“D
nm _ min k,mCn k,mOn

R R e e o S )

This expression is also a fixed-point function ttext be solved by defining an instrument for

m

P

(69)

(70)

Appendix D: simulation results usingy=1yy=2



Figure A.8
Distribution of the Bime Parameter Estimator for the MNL and MNLE Models (y= 1)
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Figure A.9
Distribution of the Bime Parameter Estimator for the MNL and MNLE Models (y= 2)
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Table A.4
Bime Parameter Estimators
MODEL [?ﬁme Standard Error t Test (Bime = -0.25)
MNL (y=1) -0.108 0.045 3.167
MNLE (y= 1) -0.294 0.075 -0.578
MNL (y= 2) -0.119 0.057 2.318
MNLE (y= 2) -0.305 0.079 -0.695




