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Abstract In this paper, we undertake a systematic study of sequences gen-
erated by recurrences xm+nxm = P (xm+1, . . . , xm+n−1) which exhibit the
Laurent phenomenon. Some of the most famous among these are the Somos
and the Gale-Robinson sequences. Our approach is based on finding period
1 seeds of Laurent phenomenon algebras of Lam-Pylyavskyy. We completely
classify polynomials P that generate period 1 seeds in the cases of n = 2, 3
and of mutual binomial seeds. We also find several other interesting families of
polynomials P whose generated sequences exhibit the Laurent phenomenon.
Our classification for binomial seeds is a direct generalization of a result by
Fordy and Marsh, that employs a new combinatorial gadget we call a double
quiver.

1 Introduction

The goal of this paper is to understand the Laurent phenomenon ([1]) ap-
pearing from (discrete) nonlinear recurrence relations, i.e., recurrences of the
form

xmxm+n = P (xm+1, xm+2, . . . , xm+n−1), m = 0, 1, 2, . . . (1.1)

where P is a polynomial.

Definition 1.1 A Laurent phenomenon sequence is a sequence (xm)m≥0 of
Laurent polynomials in the initial data, that is xm ∈ Z[x±1

0 , x±1
1 , . . . , x±1

n−1] for
all m ≥ 0, generated by a nonlinear recurrence of order n of the form (1.1).
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The prototypical example of such a sequence is the Somos-n sequence, gen-
erated by the recurrence:

xmxm+n =
∑

1≤i≤bn
2 c

xm+ixm+n−i.

Another key example is the Gale-Robinson sequence, generated by:

xm+nxm = αxm+rxm+n−r + βxm+pxm+n−p + γxm+qxm+n−q, (1.2)

for some p, q, r > 0 with p + q + r = n.

It is clear that the terms of the sequences generated from these recurrences
can be written as rational functions of the first n terms. Remarkably, in a
Somos-n sequence, for 1 ≤ n ≤ 7, or any Gale-Robinson sequence, each term
can, in fact, be written as a Laurent polynomial in the first n terms. This Lau-
rent phenomenon for Gale-Robinson sequences was first proven in [1], where
S. Fomin and A. Zelevinsky initated a study of Somos-type recurrences related
to cluster algebras.

In [2], these types of sequences are studied as exchange relations in cluster
mutation-periodic quivers. If mutating at a vertex v in a quiver Q results in a
permutation of the vertices of Q, then the exchange polynomial P associated
with v yields a Laurent phenomenon sequence. It is found in [2] that 3-term
Gale-Robinson sequences, which are of the form (1.2) with γ = 0, are exactly
the polynomials P we can obtain in this way. We also refer to [3], where an
enumerative interpretation of the Gale-Robinson sequences, as the numbers of
the perfect matches of graphs, was provided.

However, there are limitations to what the exchange polynomials can be
in a cluster algebra; they need to be binomials which come from a quiver.
Gale-Robinson sequences and other natural examples show that the Laurent
phenomenon can arise when P has other forms. In [4], Lam and Pylyavskyy
introduced a generalization of cluster algebras that removes these constraints,
called Laurent phenomenon algebras, or LP algebras. They showed that LP
algebras exhibit the Laurent phenomenon, which will imply that a period 1
LP algebra yields a Laurent phenomenon sequence.

In this paper, we study LP algebras arising from period 1 seeds to find
more far-reaching results than [2]. We prove classification results for period
1 seeds when n = 2, 3. For n = 2, we find, by comparing our seeds with the
classification of Laurent phenomenon sequences given by Musiker [5], which
is attributed to Speyer, that a polynomial generates a period 1 LP seed if
and only if it generates a Laurent phenomenon sequence. We also classify
mutual binomial period 1 seeds. As exchange polynomials in a cluster algebra
are all binomials, this result will generalize the classification theorem in [2]
by taking advantage of the lessened constraints of LP algebras. In fact, our
classification is described using a generalization of quivers that we introduce,
called double quivers, which operates within the machinery of LP algebras.
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We also give large families of polynomials that generate period 1 seeds. For
many of these, to the best of our knowledge, the Laurent phenomenon had
not been proven. Similar to [2, §9], we also investigate conserved quantities,
k-invariants and (multi)linearizations of these families, which yields insights
into their integrability.

The remainder of the paper is organized as follows. In Section 2, we intro-
duce the relevant notions of LP algebras. We give an algorithm that, given
a polynomial P , finds the unique candidate for a period 1 LP algebra, and
would show that (1.1) has the Laurent phenomenon. We also link to our im-
plementation of the algorithm in Sage. In Section 3, we summarize our results.
In Sections 4 and 5, we prove our results about mutual binomial seeds and
small n, respectively. In Section 6, we give the period 1 seeds corresponding
to our families of examples. Finally, in Section 7 we investigate the conserved
quantities and integrability of some of these recurrences.

2 Laurent Phenomenon Algebras

Before we state our main results, we introduce period 1 Laurent phenomenon
algebra seeds and their important properties.

2.1 Seeds and Mutations

In this subsection, we define Laurent phenomenon (LP) algebras and related
notions from [4].

Let F be the field of rational functions in n independent variables over Q.
A seed t is a pair (x,P) where:

– x = {x0, . . . , xn−1} is a transcendence basis for F over Q.

– P = {P0, . . . , Pn−1} is a collection of polynomials in P = Z[x0, . . . , xn−1]
satisfying:

(LP1) Pi ∈ P is irreducible and is not divisible by any xj .

(LP2) Pi does not depend on xi.

Equivalently, if we denote by Pi the polynomials in P that satisfy (LP1) and
(LP2), then we say that a seed (x,P) consists of a collection of pairs (xi, Pi),
0 ≤ i ≤ n − 1, such that Pi ∈ Pi for all i.

Borrowing terminology from the theory of cluster algebras, the set {x0, . . . , xn−1}
is called a cluster, each of x0, . . . , xn−1 is called a cluster variable, and the
polynomials P0, . . . , Pn−1 are the associated exchange polynomials.
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We now define mutation in LP algebras. For k ∈ {0, . . . , n − 1}, we say that
a seed (x′,P′) is obtained from (x,P) by mutation at k, which we denote
µk(x,P) = (x′,P′), if t′ = (x′,P′) comes from t = (x,P) via the following
sequence of steps:

1. Let L(t) = Z[x±1
0 , . . . , x±1

n−1] be the Laurent polynomial ring in the cluster

variables. Define the exchange Laurent polynomials {P̂0, . . . , P̂n−1} ⊂ L(t)
to be the unique set of Laurent polynomials satisfying:

– For each j ∈ {0, . . . , n−1} there are a1, . . . , aj−1, aj+1, . . . , an−1 ∈ Z≤0

such that P̂j = xa1
1 . . . x

aj−1

j−1 x
aj+1

j+1 . . . x
an−1

n−1 Pj

– For each i, j ∈ {0, . . . , n−1} with i 6= j, if we let Lj(t) = Z[x±1
0 , . . . , x±1

j−1, x
±1, x±1

j+1, . . . x
±1
n−1],

then we have P̂i|xj←Pj/x ∈ Lj(t) and P̂i|xj←Pj/x is not divisible by Pj

in Lj(t).

2. The new cluster x′ = {x′0, . . . , x
′
n−1} is given by:

x′i =

{
xi if i 6= k,

P̂k/xk if i = k.

3. Define the polynomial

Gj = Pj

∣∣∣∣∣xk←
P̂k|xj←0

x′
k

.

4. Define Hj to be the result of removing all common factors with P̂k|xj←0

from Gj (in the unique factorization domain Z[x0, . . . , xk−1, xk+1, . . . , xj−1, xj+1, . . . xn−1]).

5. Define the new exchange polynomial P ′j = MjHj , where Mj is the unique
Laurent monomial in x′0, . . . , x

′
n−1 for which MjHj is not divisible by any

Laurent monomial.

6. The new seed is given by µk(x,P) = (x′,P′) = ({x′0, . . . , x
′
n−1}, {P ′0, . . . , P

′
n−1}).

Remark 2.1 If Pj does not depend on xk, then Gj = Hj = Pj and Mj = 1,
implying that P ′j = Pj.

All the necessary existence and uniqueness conditions to show that the above
mutation gives a unique valid seed can be found in [4, §2]. We will often abuse
notation and write:

µ0({x0, . . . , xn−1}, {P0, . . . , Pn−1}) = ({x1, . . . , xn}, {P ′1, . . . , P
′
n}),

where xn = x′0 and P ′n = P ′0, since x′i = xi for all 0 < i ≤ n−1. More generally,
we will write:

µi({xi, . . . , xn+i−1}, {Pi, . . . , Pn+i−1}) = ({xi+1, . . . , xn+i}, {P ′i+1, . . . , P
′
n+i}),
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where xn+i = x′i and P ′n+i = P ′i . For any seed t, the Laurent phenomenon
algebra A(t) is the commutative subring of Q(x0, . . . , xn−1) generated by the
cluster variables of the seeds that can be obtained after a finite sequence of
mutations from t. We call t the initial seed of A(t). The importance of this
definition has much to do with the next theorem.

Theorem 2.2 [4, Theorem 5.1] Let A be a Laurent phenomenon algebra and
t = (x,P) a seed of A. If x = {x0, . . . , xn−1}, then any cluster variable of A
belongs to the Laurent polynomial ring L(t) = Z[x±1

0 , . . . , x±1
n−1].

2.2 Period 1 Seeds

In this paper, we are primarily interested in period 1 seeds that will be defined
shortly.

Definition 2.3 For any polynomial P ∈ Q[x−1, x0, x1, x2, . . .], the upshift of
P is the polynomial

Q = P |xi←xi+1 ∀i ∈ Q[x0, x1, x2, . . .],

while the downshift of P is

R = P |xi←xi−1 ∀i ∈ Q[x−2, x−1, x0, . . .].

For our purposes, we use the downshifts of polynomials P which do not de-
pend on x−1, so that their downshifts are in the smaller ring Q[x−1, x0, x1, . . .].

Example 2.4 The upshift and downshift of x2x
2
3+x7−3x9 are x3x

2
4+x8−3x10

and x1x
2
2 + x6 − 3x8, respectively.

Definition 2.5 Let t = ({x0, . . . , xn−1}, {P0, . . . , Pn−1}) be a seed and µ0(t) =
({x1, . . . , xn}, {P ′1, . . . , P

′
n}) be its mutation at x0 (xn = x′0 and P ′n = P ′0).

Then t is a period 1 seed if Pi is the downshift of P ′i+1 for all 0 ≤ i < n − 1,
and Pn−1 is the downshift of P ′0 (or equivalently of P0).

Period 1 seeds are interesting in light of Theorem 2.2, as they provide the
machinery to prove that some recurrence sequences satisfy the Laurent phe-
nomenon:

Corollary 2.6 Let P ∈ Z[x1, . . . , xn−1] be any irreducible polynomial, not di-
visible by any xj. If there exists a period 1 seed t = ({x0, . . . , xn−1}, {P0, . . . , Pn−1})
with P0 = P , then the sequence (xi)i≥0 of rational functions of x0, . . . , xn−1,
defined by

xm+n =
P (xm+1, . . . , xm+n−1)

xm
for all m ≥ 0,

is a Laurent phenomenon sequence.
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Proof The sequence (xi)i≥0 consists of the cluster variables we get by applying
the mutations µ0, µ1, . . . in order to t.

Example 2.7 For n = 3, the polynomial P = x1x2 + 1 is in the period 1 seed
{(x0, x1x2 + 1), (x1, x0 + x2), (x2, x0x1 + 1)} and generates the sequence

x0, x1, x2,
x1x2 + 1

x0
,
x1x

2
2 + x0 + x2

x0x1
,
(x1x2 + 1)(x1x

2
2 + x0 + x2) + x2

0x1

x2
0x1

,

(x1x
2
2 + x0 + x2)

2 + x2
0x1(x0 + x2)

x2
0x

2
1x2

, . . .

This example is a special case considered in [2] (equation (30)).

Corollary 2.8 If P ∈ Z[x1, . . . , xn−1] satisfies the conditions in Corollary
2.6, then the sequence (xi)i≥0 defined by

xm+n =
P (xm+1, . . . , xm+n−1)

xm
for all m ≥ 0,

with initial values xi = 1, for all 0 ≤ i < n, consists entirely of integers. If
the coefficients of P are positive, then the sequence consists entirely of positive
integers.

Definition 2.9 For a period 1 seed t = ({x0, . . . , xn−1}, {P0, . . . , Pn−1}), we
will say that t is the period 1 seed generated by P0, or that P0 generates t. We
call P0 a period 1 polynomial, or say that P0 is 1 periodic.

At this point, it is worth noting that the converse of Corollary 2.6 is not
true. For instance, consider n = 3 and P (x1, x2) = x1 + x2 + 1. After reading
the next section, the reader should be able to easily confirm that P does not
generate a period 1 seed. However, the sequence generated by P is periodic
and satisfies the Laurent phenomenon:

x1, x2, x3,
x2 + x3 + 1

x1
,
x1x3 + x1 + x2 + x3 + 1

x0x1
,
x1x2 + x2

2 + x1x3 + x2x3 + x1 + 2x2 + x3 + 1

x1x2x3
,

x1x3 + x1 + x2 + x3 + 1

x0x1
,
x2 + x3 + 1

x1
, x1, x2, x3, . . .

2.3 Generation of period 1 seeds

In this section, we propose a method for obtaining period 1 seeds generated
by particular polynomials, using a variant of the method in [1].

Given a polynomial P ∈ P0 = Z[x1, . . . , xn−1], we define a map τ = τP :
P → P, which takes polynomials in Pi to polynomials in Pi−1, for all i >
0. If Q ∈ Pi, then τP (Q) ∈ Pi−1 is computed according to the following
algorithm:
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1. Let G = G(x1, . . . , x̂i, . . . , xi) = Q

∣∣∣∣x0←
P |xi=0

xn+1

∈ P[x±1
n+1].

2. If d is the factor of G shared with P
∣∣
xi=0

i.e., d = gcd(G, (P |xi=0)
k) in

Z[x1, . . . , x̂i, . . . , xn−1] for some sufficiently large k ∈ N, then let H = G/d.

3. Finally, define τP (Q) to be the downshift of MH, where M ∈ L(x1, . . . , x̂i, . . . , xn)
is such that MH ∈ Z[x1, . . . , x̂i, . . . , xn] and MH is not divisible by any
xj .

Remark 2.10 If Q does not depend on x0, then H = G = Q, M = 1 and so
τP (Q) is simply the downshift of Q.

It is not immediately clear that τ maps polynomials from Pi to Pi−1 for all
i. The two propositions below show that this is the case.

Proposition 2.11 If Q ∈ Pi, then R = τP (Q) does not depend on xi−1.

Proof If Pi does not depend on x1, the statement follows because Pi−1 = τ(Pi)
is the downshift of Pi. If Pi depends on x1, then in the computation of τ(Pi),
we define G as the Laurent polynomial resulting from replacing x0 in Q by an
expression wherein we made the substitution xi = 0. In particular, G does not
depend on xi. Then, H does not contain xi and neither does M , by definition.
Hence, Pi−1 = τ(Pi), which is the downshift of MH, does not contain xi−1.

Proposition 2.12 If Q ∈ Pi, then R = τP (Q) is irreducible in P and is not
divisible by any of the xj.

Proof From the definition of τ , it is clear that R = τ(Q) is not divisible by
any xj . It then suffices to show R is irreducible. This is clear if Q does not
depend on x0, so assume Q depends on x0. Write

Q =
∑

k

fkxk
0 ,

where fk ∈ Z[x1, . . . , x̂i, . . . , xn−1] for all k. Then,

G = Q
∣∣
x0←

P |xi=0

xn

=
∑

k

fk

(
P |xi=0

xn

)k

,

and H is G divided by all common factors it shares with P0|xi←0. Finally, R
is the downshift of MH for some Laurent monomial M . As M is a unit in P,
it will suffice to show H is irreducible. Let d be a nonunit factor of H. From
the definition of H, d is not a factor of P |xi=0.

If d is independent of xn then d | fk for all k, which implies d | Q, contra-
dicting the irreducibility of Q.

If d depends on xn, write d = d(xn), so,

d

(
P0|xi←0

xn

)
divides G

(
P0|xi←0

xn

)
= Q(xn).
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This again contradicts that Q is irreducible.

Given an irreducible polynomial P = P (x1, . . . , xn−1) ∈ P, we generate a
seed (x,P) by letting P0 = P , Pn−1 be the downshift of P , and recursively
defining Pi = τP (Pi+1) for i = n − 1, n − 2, . . . , 1. From Propositions 2.11 and
2.12, it is clear that (x,P) is a valid seed. For example, for n = 3, the polyno-
mial P = x1x2+x2

3 generates the seed {(x0, x1x2+x2
3), (x1, x

3
2+x0x

2
3), (x2, x

2
0+

x1x3), (x3, x0x1 + x2
2)}. The following proposition gives a sufficient condition

for asserting that (x,P) is a period 1 seed.

Proposition 2.13 Let P̂0 be the exchange Laurent polynomial of P0 for the
generated seed (x,P). If P0 = τP (P1) and P̂0 = P0 = P (x1, . . . , xn−1), then
(x,P) is a period 1 seed. In particular, P generates a Laurent phenomenon
sequence.

Proof We remarked above that (x,P) is a valid seed. It is also clear that Pn−1

is the downshift of P0. Finally, observe that if P̂0 = P0, then the definitions of
τP and µ0 coincide. Therefore, the seed (x,P) is a period 1 seed, as desired.

If t = (x,P) is a seed generated by P ∈ P0 and is such that P0 = τP (P1), we
say t has pseudoperiod 1. Proposition 2.13 can then be rephrased as saying that
if P̂0 = P0, then t has period 1. The following conjecture, in conjunction with
Proposition 2.13, would show that period and pseudoperiod are equivalent
definitions in this context.

Conjecture 2.14 Let P̂0 be the exchange Laurent polynomial of P0 for the
generated seed (x,P). Then P̂0 = P0.

In the rest of this paper, we classify certain families of polynomials that
generate pseudoperiod 1 seeds. In addition, we find many examples of pseu-
doperiod 1 seeds. In all cases, we can show that the seeds are, indeed, period
1 seeds, using the Lemma below and Proposition 2.13.

For simplicity of terminology, in cases where the Lemma below is satisfied,
we will simply say period 1 instead of pseudoperiod 1.

Lemma 2.15 P̂0 = P0 if either of the two conditions holds

1. Pj depends on x0 whenever P0 depends on xj.

2. All polynomials Pj, 0 ≤ j ≤ n − 1, have the same number d of terms.

Proof From the construction of the Pj , it is clear that P0

∣∣
xj←Pj/x

∈ Z[x±1
0 , . . . , x±1

j−1, x
±1, x±1

j+1, . . . , x
±1
n−1].

It then suffices to show that P0

∣∣
xj←Pj/x

is not divisible by Pj , or equivalently

that P0

∣∣
xj=0

is not divisible by Pj .
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(1) If P0 depends on xj , then Pj depends on x0 by assumption. From Propo-
sition 2.11, P0 does not depend on x0 and therefore neither does P0

∣∣
xj=0

. Then

Pj cannot divide P0

∣∣
xj=0

.

If P0 does not depend on xj , then P0

∣∣
xj=0

= P0. As both P0 and Pj are

irreducible and not divisible by any xk, we only need that Pj 6= P0 for j > 0.
Let m,M be the minimum and maximum indices i such that P0 depends on
xi. We claim that Pj either does not depend on xM or it depends on some
xk with k < m; this immediately implies Pj 6= P0 for j > 0. If there is
no intermediate polynomial Pj′ with j′ > j that depends on x0, then Ps is
the downshift of Ps+1 for all s ≥ j. Since the maximum index upon which
Pn−1 = P (x0, . . . , xn−2) depends is M − 1, then the maximum index upon
which Pj depends is also smaller than M ; in particular Pj does not depend on
xM . If there is some intermediate polynomial Pj′ with j′ > j that depends on
x0, let j0 be the smallest such index j0 > j (so Ps is the downshift of Ps+1 for
all j ≤ s < j0). Recall that the polynomial Pj0−1 comes from

Pj0

∣∣∣∣
x0←

P |xj0
=0

xn

.

Hence, Pj0−1 depends on xm−1 unless Pj0

∣∣
x0=0

is divisible by P = P0. Since
Pj0 depends on x0, P0 depends on xj0 . From Proposition 2.11, Pj0 does not
depend on xj0 ; therefore P0 cannot divide Pj0 |x0=0. Therefore Pj0−1 depends
on xm−1. The polynomial Pj , which is the result of j0 − j − 1 downshifts from
Pj0−1, then depends on xm′ for some m′ < m.

(2) If P0 depends on xj , then P0

∣∣
xj=0

has at most d − 1 terms. Thus Pj ,

which has d terms, cannot divide it.

If P0 does not depend on xj , then P0|xj←Pj/x = P0. As both P0 and Pj are
irreducible and not divisible by any xk, we only need to show Pj 6= P0 for
j > 0. The argument is the same as in part (1) except for the reason why P0

does not divide Pj0 |x0=0. In this case, it is because Pj0 |x0=0 has at most d − 1
terms (as j0 was defined as an index for which Pj0 depends on x0) and P0 has
d terms.

Remark 2.16 One can see that if P generates some period 1 seed, then such
a seed must be the one described in Proposition 2.13. If we begin with P ∈ P
and follow the process mentioned above (recursively obtain the intermediate
polynomials Pj, 0 < j < n − 1), we may have that one of the conditions in
Proposition 2.13 is not satisfied; in that case, P is not a period 1 polynomial.

We next use [4, Proposition 2.10], which says that if (x′,F′) = µi(x,F), then
(x,F) = µi(x

′,F′), to devise an analogue of τ that instead takes polynomials
from Pi−1 to polynomials in Pi.

We define the mapping κ = κP , that is the inverse of τ , as follows.
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Given a polynomial P ∈ P0 = Z[x1, . . . , xn−1], let P ′ = P (x0, x1, . . . , xn−2) ∈
Pn−1 and κ : P → P a map which takes polynomials from Pi to polynomials
in Pi+1 for all i ≥ 0. If Q ∈ Pi, then κP (Q) ∈ Pi+1 is computed according to
the following rules:

1. Let G′ = G′(x−1, x1, . . . , x̂i, . . . , xn−1) = Q
∣∣
xn−1←

P ′|xi=0

x−1

∈ P[x±1
−1].

2. If d′ is the factor of G′ shared with P ′
∣∣
xi=0

, i.e., d′ = gcd(G′, (P ′|xi=0)
k)

in Z[x1, . . . , x̂i, . . . , xn−1] for some sufficiently large k ∈ N, then let H ′ =
G′/d′.

3. Finally, let R = κP (Q) be the upshift of M ′H ′, where M ′ ∈ L(x−1, x1, . . . , x̂i, . . . , xn−1)
is such that M ′H ′ ∈ Z[x−1, x1, . . . , x̂i, . . . , xn−1] and is not divisible by any
xj .

Remark 2.17 If Q does not depend on xn−1, then H ′ = G′ = Q, M ′ = 1
and so κP (Q) is simply the upshift of Q.

The proof that κ is a well-defined map comes from the analogous statements
of Propositions 2.11 and 2.12 to κ. Given an irreducible polynomial P , choose
k such that 0 < k < n − 1. We generate a seed (x,P) by letting P0 = P ,
Pn−1 = P ′ be the downshift of P and recursively defining Pi = τP (Pi+1) for
all k < i < n and Pi = κP (Pi−1) for all 0 < i < k. A refinement of Proposition
2.13 is then

Proposition 2.18 Let P̂0 be the exchange Laurent polynomial of P0 for the
generated seed (x,P). If Pk = κ(Pk−1), or equivalently Pk−1 = τ(Pk), and

P̂0 = P0, then (x,P) is a period 1 seed.

Remark 2.19 We have implemented the above algorithm (with k = bn/2c)
in Sage ([6]) at https: // bit. ly/ LPsequences . This can be used to test
whether a given polynomial P is period 1.

3 Statements of results and conjectures

In this section, we present our main results. Their proofs will be presented
in the remaining sections. In the first subsection, we give our classification
theorems, while in the second subsection, we give a proposition asserting that
several large families of polynomials are 1 periodic.

3.1 Classification theorems

We first classify all period 1 polynomials when n = 2, 3.

Theorem 3.1 For n = 2, the only period 1 polynomials P are

https://bit.ly/LPsequences
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1. Irreducible polynomials that are monic and palindromic, i.e., that satisfy
xdeg(P ) · P ( 1

x ) = P (x).

2. Irreducible polynomials of even degree that are monic and antipalindromic,
i.e., that satisfy xdeg(P ) · P (− 1

x ) = −P (x).

3. Monic irreducible polynomials of degree 2.

Remark 3.2 In [5], G. Musiker found necessary and sufficient conditions for
polynomials P ∈ Q[x] with P (0) 6= 0 to yield Laurent phenomenon sequences.
The polynomials in Theorem 3.1 are special cases of Proposition 1 in [5]; more
specifically, the polynomials in our theorem are the polynomials from the list
of Musiker that have are monic, irreducible and have integer coefficients.

Remark 3.3 The Laurent phenomenon, for the case of palindromic polyno-
mials P has recently been considered in the noncommutative setting (see [7]).

Theorem 3.4 For n = 3, the only period 1 polynomials P are

1. P = x1x2 + ax1 + ax2, for any a ∈ Z, a 6= 0,

2. P = x1x2 + ax1 − ax2, for any a ∈ Z, a 6= 0,

3. P = x1 − x2 − 1,

4. P = −x1 + x2 − 1,

5. P = x1x2 + ax1 + ax2 + b, for any a, b ∈ Z, not both of which are 0,

6. P = x2
1 + x2

2 + ax1x2 + bx1 + bx2 + c, for any a, b, c ∈ Z,

7. P = −x2
1 − x2

2 + ax1x2 + b, for any a, b ∈ Z,

8. P = ±x1x2 + a, for any a ∈ Z, a 6= 0,

9. P = 1 + xm
1 xn

2 +
∑

0<i<m

0<j<n
Ci,j(x

i
1x

j
2 + xm−i

1 xn−j
2 ), for any Ci,j ∈ Z, m,n ∈

N>0,

10. P = −1 + (−1)m+1xm
1 xn

2 +
∑

0<i<m

0<j<n
Ci,j(x

i
1x

j
2 + (−1)m+j+ixm−i

1 xn−j
2 ) for

any Ci,j ∈ Z, m,n ∈ N>0, m ≡ n mod 2.

Remark 3.5 The arbitrary coefficients and exponents in Theorem 3.4 must
be such that P is irreducible and not divisible by any xj.

The proofs of Theorems 3.1 and 3.4 are given in Section 5 below.

Our final classification theorem comes from our own definition of Double
Quivers (see Section 4, especially Definition 4.1). The family of polynomials
we found includes those that are classified by the main theorem in [2].

Theorem 3.6 The binomial P generates a period 1 seed which corresponds
to a double quiver if and only if it is of the form

P =
∏

1≤i≤n

xai

i +
∏

1≤i≤n

xbi

i ,
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where ai, bi ∈ Z≥0 are such that ai = 0 ⇐⇒ an−i = 0 and bj = 0 ⇐⇒ bn−j =
0.

The proof of Theorem 3.6, as well as the notion of a double quiver, is given
in Section 4 below.

Finally, the families of polynomials we have found, and that we present in
the next subsection, give rise to the following conjectures:

Conjecture 3.7 If P is a multilinear polynomial with positive coefficients that
generates a period 1 seed, then P (x1, x2, . . . , xn) = P (xn, xn−1, . . . , x1).

Conjecture 3.8 If n is odd, no degree 1 polynomial with positive coefficients
generates a period 1 seed. If n is even, the only degree 1 polynomial P with
positive coefficients that generates a period 1 seed is xn/2 + 1.

Conjecture 3.9 The only symmetric polynomials P with positive coefficients
that generate period 1 seeds are either of the form

P =
n−1∑

i=1

x2
i + M(x1, . . . , xn−1),

where M is any multilinear symmetric polynomial, or of the form

P =
∑

1≤i<j≤n−1

xixj + A
n−1∑

i=1

xi + B,

for odd n.

3.2 Families of period 1 polynomials

Theorem 3.10 The following families of polynomials P are 1 periodic.

1. Gale-Robinson polynomial.

P = Axpxn−p + Bxqxn−q + Cxrxn−r,

for any p < q < r and p + q + r = n.

2. Symmetric with second powers polynomial.

P = S + A1E1 + . . . An−1En−1 + A,

for any coefficients A,A1, . . . , An−1 ∈ Z, where Ek =
∑

1≤i1<...<ik≤n−1 xi1 . . . xik

for all 1 ≤ k ≤ n and S =
∑n−1

i=1 x2
i .

For example, P = x2
1 + x2

2 + 2x1x2 + 5 when n = 3.
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3. Sink-type binomial.

P = xa1
1 xa2

2 . . . x
an−1

n−1 + 1,

where ai = 0 ⇐⇒ an−i = 0 for all i. For example, P = x2
1x

3
3x5 + 1 when

n = 6.

4. Extreme polynomial.

P = x1xn−1 + A ·
n−1∑

i=1

xi + B,

for any coefficients A,B ∈ Z. For example, P = x1x3 +3(x1 +x2 +x3)+2
when n = 4.

5. Singleton polynomial. If n ∈ N is even, let P is a single variable monic
irreducible polynomial that is palindromic (xdeg(P ) · P (1/x) = P (x)), or
antipalindromic (xdeg(P ) · P (1/x) = −P (x)), or P = x2

n/2 + Axn/2 + B for

any A,B ∈ Z. For example, P = x2
2 + 2x2 − 7 when n = 3.

6. Chain polynomial. If n ∈ N, n > 2 is odd,

P =
n−2∑

i=1

xixi+1 + A ·
n−1∑

i=1

xi + B,

for any coefficients A,B ∈ Z. For example, P = x1x2 + x2x3 + x3x4 +
2(x1 + x2 + x3 + x4) + 3 when n = 5.

7. Multilinear symmetric polynomial. If n ∈ N, n > 2,

P = E2 + A · E1 + B,

for any coefficients A,B ∈ Z, where the Ei are the elementary symmetric
polynomials. For example, P = x1x2 +x2x3 +x1x4 +x2x3 +x2x4 +x3x4 −
3(x1 + x2 + x3 + x4) + 1 when n = 5.

8. r-Jumping polynomial. If r, n ∈ N are such that n ≥ 2r + 1 and n ≡ 1
(mod r),

P =

n−1
r
−1∑

i=0

xri+1 · xri+r + A,

for any A ∈ Z. For example, P = x1x3 + x4x6 when n = 7.

9. r-Hopping polynomial. If r, n ∈ N be such that n ≥ 2r + 2 and n ≡ 1
(mod r),

P =

n−1
r
−1∑

i=0

xri+1 · xri+r + A ·

n−1
r
−2∑

i=0

xri+r · xri+r+1 + B,
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for any A,B ∈ Z. For example, P = x1x3 − 2x3x4 + x4x6 + 3 when n = 7.

Note: The r-Jumping polynomials are special cases of the r-Hopping poly-
nomials (when A = 0). We distinguish them because we found a conserved
quantity for sequences generated by r-Jumping polynomials, but not by r-
Hopping polynomials (see Section 7).

10. Flip-symmetric binomial. If L,R ⊂ [n − 1] are disjoint subsets such that
i ∈ L ⇐⇒ n − i ∈ L and i ∈ R ⇐⇒ n − i ∈ R, and if a : L ∪ R → N is any
map into the positive integers, then,

P =
∏

i∈L

x
a(i)
i +

∏

i∈R

x
a(i)
i .

For example, P = x3
1x

2
7 + x3

4x2x6 when n = 8.

Note: The Somos-4 and Somos-5 polynomials (x1x3+x2
2 and x1x4+x2x3)

are particular cases of flip-symmetric binomials. The family (2) of sink-type
polynomials are also particular cases of flip-symmetric polynomials (when
R = ∅).

11. Balanced polynomial. If L,R ⊂ [n − 1] are disjoint subsets such that i ∈
L ⇐⇒ n − i ∈ L and i ∈ R ⇐⇒ n − i ∈ R, and a : L ∪ R → N is any map

into the positive integers. Then for any m > 1, write M1 =
∏

i∈L

x
a(i)
i ,M2 =

∏

i∈R

x
b(i)
i and,

P = Mm
1 + Mm

2 +

bm
2 c∑

i=1

Ai ·
(
M i

1M
m−i
2 + Mm−i

1 M i
2

)
,

for arbitrary coefficients Ai ∈ Z, 1 ≤ i ≤ bm
2 c. For example, P = x12

3 x4
6 +

x4
2x

8
7 + 2(x2x

9
3x

3
6x

2
7 + x3

2x
3
3x6x

6
7) + 3x2

2x
6
3x

2
6x

4
7 when n = 9.

12. Vector sum polynomial. For a1, . . . , an−1 ∈ N and a finite set B of vectors
(b1, . . . , bn−1) ∈ Nn−1 such that 0 < bi < ai for all i, then,

P = 1 + xa1
1 . . . x

an−1

n−1 +
∑

b∈B

(Cb · xb1
1 . . . x

bn−1

n−1 + Cb · xa1−b1
1 . . . x

an−1−bn−1

n−1 ),

for arbitrary coefficients Cb ∈ N. For example, P = 1 + x3
1x

2
2x

4
3x

2
4 +

2x1x2x
2
3x4 + 2x2

1x2x
2
3x4 when n = 5.

13. Little Pi polynomial. For k, n ∈ N such that n > 2k and n 6= 3k, then

P = Axk + Axn−k + x2kxn−2k,

for any A ∈ Z. For example, P = 2x2 + 2x5 + x4x3 when n = 7, k = 2.
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14. Pi polynomial. For k, n, a1, b1, a2, b2 ∈ N such that n > 2k, n 6= 3k and
a1 + b1 = a2 + b2, then

P = Axa1

k xb
b1 + Bxa2

k xb2
n−k + x2kxn−2k

for any A,B ∈ Z. For example, P = −2x1
2x

4
6 + 3x2

2x
3
6 + x2

4 when n = 8,
k = 2.

Remark 3.11 In each case of the theorem above, we omitted saying that the
coefficients and exponents are such that P is irreducible and not divisible by
any xj. The following important corollary will also follow easily from the proof
of Theorem 3.10 and Lemma 2.15.

Remark 3.12 Recently, Hone and Ward found independently the Lauren-
t phenomenon for extreme polynomials (family (3) in Theorem 3.10). They
do a thorough study of this family of polynomials in [8].

The proof of Theorem 3.10 occupies most of Section 6 below. The following
Corollary is immediate from the previous theorem and the machinery devel-
oped in Section 2.

Corollary 3.13 All polynomials P from Theorem 3.10 generate Laurent phe-
nomenon sequences.

Conjecture 3.14 Let k, n, a1, b1, a2, b2 ∈ N be such that n > 2k, n 6= 3k and
a1 + b1 = a2 + b2. Consider the polynomial

P = (Axa1

k xb1
n−k + Bxa2

k xb2
n−k) · M + x2kxn−2k,

for any A,B ∈ Z and monomial M =

n−1∏

i=1
i6=2k,n−2k

xci

i , where ci = 0 ⇐⇒ cn−i = 0

for all i.

Then P is a period 1 polynomial and generates a Laurent phenomenon se-
quence.

We also will prove in Section 6 the following lemmas that can be applied to
known period 1 polynomials to yield new ones:

Lemma 3.15 (Expansion Lemma) If F = F (x1, x2, . . . , xn−1) generates a
period 1 seed, then for any k ∈ N, so does the polynomial G = G(x1, x2, . . . , xnk−1) =
F (xk, x2k, . . . , x(n−1)k). We call G the k-expansion of F .

Lemma 3.16 (Reflection Lemma) If F = F (x1, x2, . . . , xn−1) generates a
period 1 seed, then so does G = G(x1, x2, . . . , xn−1) = F (xn−1, xn−2, . . . , x1).

Remark 3.17 Observe that the reflection lemma, applied to the families of
polynomials in Theorem 3.10, always gives another member of the same family.
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4 Polynomials arising from double quivers

4.1 Binomial Seeds and Double Quivers

In this section we find all period 1 binomials with a mild mutuality condition.
To do this, we first introduce a new representation for binomial seeds, which
we call a double quiver. The main constraint of a normal quiver that our
double quiver removes is that binomial seeds represented by a quiver have to
be mutual, i.e., if xi appears in Pj , then xj appears in Pi with the same degree.

Definition 4.1 A double quiver Q is a finite set of vertices with directed half-
edges between vertices. Between each pair of vertices i and j, there can be edges
between them attached at i, as well as edges between them attached at j. We
allow multiple half-edges at each vertex, but not 2-cycles, i.e., there cannot be
edges from i to j as well as edges from j to i all attached at i. We also do not
allow self-loops.

The B-matrix B = (bi,j)n×n of a double quiver with n vertices is defined
as follows. The magnitude |bi,j | is the number of half-edges between vertex
i and vertex j that are attached at i. If the edges are outgoing from vertex
i, then bi,j > 0; if the edges are incoming to i, then bi,j < 0. Conversely,
each n × n integer matrix with 0’s in its diagonal corresponds to a double
quiver. For convenience, we will index the rows and columns of B from 0 to
n − 1. The (LP algebra) seed corresponding to a B-matrix B is (x,P), where
x = {x0, . . . , xn−1} and the intermediate polynomials are, for all i:

Pi =
∏

j:bi,j>0

x
bi,j

j +
∏

j:bi,j<0

x
−bi,j

j .

Example 4.2 Figure 1 shows a double quiver with 3 vertices. There is a half-
edge from x1 to x0 attached at x0, a half-edge from x1 to x0 attached at x1,
two half-edges from x0 to x2 attached at x0, a half-edge from x0 to x2 attached
at x2, three half-edges from x2 to x1 attached at x1 and no half-edges from x1

to x2 attached at x2.

Definition 4.3 A vertex i of a double quiver is mutable if, whenever there are
half-edges between i and j attached at j, then there are also half-edges between
i and j attached at i. In terms of the B-matrix, vertex i is mutable if for all
other vertices j, bj,i 6= 0 implies bi,j 6= 0.

Example 4.4 In the double quiver of figure 1, x0 and x1 are mutable, but x2

is not mutable since there are half-edges from x2 to x1 attached at x1, but no
half-edges between x1 and x2 attached at x2.
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x1
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x2
���

6
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@R

@
@R

@
@R

{x0 : x1 + x
2
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}

{x1 : x0 + x
3

2
}

{x2 : x0 + 1}

B=





0 −1 2

1 0 −3

−1 0 0





Fig. 1 Example of a Double Quiver

Definition 4.5 We define mutation at a mutable vertex k of a double quiver
Q with vertices {0, 1, . . . , n − 1} to be the application of the map τk that takes
Q to a new double quiver τk(Q) via the following steps:

1. Add a half-edge i → j attached at i, for each pair of half-edges i → k
attached at i and k → j attached at k. Also add a half-edge j → i attached
at i, for each pair of half-edges j → k attached at k and k → i attached at
i.

2. Reverse the direction of half-edges between vertex k and node i, for all
i 6= k.

3. Successively pick 2-cycles and remove both half-edges until no 2-cycles re-
main.

The mutation of a double quiver corresponds to the mutation of the corre-
sponding LP algebra seed. Let (x,P) be the LP algebra seed associated to the
double quiver Q and (x′,P′) the LP algebra seed associated to Q′, the double
quiver resulting from mutating Q at k. Then the intermediate polynomials P ′j
are the intermediate polynomials of the seed µk(x,P), where µk is seed muta-
tion as defined in Section 2. We will be able to find all period 1 binomials P
that satisfy some mild conditions regarding their corresponding double quiver
Q. Observe that a period 1 seed whose exchange polynomials are all binomials
has a corresponding period 1 double quiver Q. However, it will be easier to
work with period 1 B-matrices; next, we give the corresponding definition of
mutation for B-matrices.

Denote by 1S the indicator variable of S. Mutation at vertex k corresponds
to a mutation of the B-matrix of the double quiver that maps it to τk(B) =
B̃ = (b̃i,j)n×n, such that

b̃i,j =

{
−bi,j i = k or j = k
bi,j + bi,k · |bk,j | · 1{bk,ibk,j<0} otherwise

(4.1)

Example 4.6 If we mutate the double quiver in Figure (1) at x0, we obtain
the following double quiver
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Fig. 2 Double Quiver Mutation at x0

Remark 4.7 Double quivers are generalizations of (normal) quivers in the
following sense:

1. A quiver Q can be regarded as an example of a double quiver. Split each
edge i → j into two half-edges. Then attach one of them to i and the other
to j. The mutation rules for double quivers and for quivers agree with each
other.

2. The cluster algebra A defined by any skew-symmetrizable matrix B can be
realized as a double quiver. In fact, B is associated to a double quiver Q
and to a seed t that gives rise to a LP algebra A(t) that is identical to A
and the mutation rules agree. Furthermore, if v is a vertex in the double
quiver Q̃, that is the result of mutating Q at v, then v is mutable in Q̃.

3. Fomin and Zelevinsky defined cluster algebras in their fundamental paper
[9] by sign-skew-symmetric matrices. In this definition, it was required that
any sequence of mutations yields another sign-skew-symmetric matrix. Our
double quivers can be regarded as a direct generalization of cluster algebras
defined by sign-skew-symmetric matrices. For one thing, we do not require
the matrix B to be sign-skew-symmetric. For another, we have fewer re-
strictions on the mutation rules; we define mutability at a vertex, so that
double quivers where some mutation sequences are invalid but others are
not can still be considered.

4.2 1 Periodicity

In this section, we examine more precisely the notion of a period 1 double
quiver. We also prove a weaker version of Theorem 3.6.

Let Q be a double quiver and B be the matrix (not necessarily skew-
symmetric) determined by Q. We say that Q has period 1 if mutating at 0
and relabeling the vertices (0, 1, 2, . . . n−1) → (n−1, 0, 1, . . . n−2) gives back
the original double quiver Q. In particular, if Q has period 1, then its vertex
0 is mutable, meaning in terms of B-matrices that bk,0 6= 0 =⇒ b0,k 6= 0.
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Mutating at vertex 0 yields the new B-matrix B̃ given by:

b̃i,j =

{
−bi,j i = 0 or j = 0
bi,j + bi,0 · |b0,j | · 1{b0,ib0,j<0} otherwise

The B-matrix of the mutated quiver τ(Q) is

τ(B) =





0 −b0,1 −b0,2 . . . −b0,n−1

−b1,0 0 b1,2 + ε1,2 . . . b1,n−1 + ε1,n−1

−b2,0 b2,1 + ε2,1 0 . . . b2,n−1 + ε2,n−1

...
...

...
. . .

...
−bn−1,0 bn−1,1 + εn−1,1 bn−1,2 + εn−1,2 . . . 0





where εi,j = bi,j + bi,0 · |b0,j | · 1{b0,ib0,j<0}. The double quiver Q has period 1
if τ(B) and µBµ−1 represent the same binomial seed, where µ is the permu-
tation matrix such that µBµ−1 corresponds to the seed after the relabeling
(0, 1, 2, . . . n − 1) → (n − 1, 0, 1, . . . n − 2),

µBµ−1 =





0 bn−1,0 bn−1,1 . . . bn−1,n−2

b0,n−1 0 b0,1 . . . b0,n−2

b1,n−1 b2,1 0 . . . b2,n−2

...
...

...
. . .

...
bn−2,n−1 bn−2,0 bn−2,1 . . . 0





Therefore Q is a period 1 double quiver if

τ(B) = µBµ−1. (4.2)

Equivalently, Q is a period 1 double quiver if

bn−1,i = −b0,i+1, 0 ≤ i ≤ n − 2, (4.3)

bi,n−1 = −bi+1,0, 0 ≤ i ≤ n − 2, and (4.4)

bi,j = bi+1,j+1 + εi+1,j+1, 0 ≤ i, j ≤ n − 2. (4.5)

Solving these equations leads to the following equations

− bi+1,0 = bi,n−1 = bi−1,n−2 − εi,n−1

= bi−2,n−3 − εi−1,n−2 − εi,n−1

...

= b0,n−i−1 − ε1,n−i − ε2,n−i+1 − . . . − εi,n−1. (4.6)

−b0,i+1 = bn−1,i = bn−2,i−1 − εn−1,i

= bn−3,i−2 − εn−2,i−1 − εn−1,i

...

= bn−i−1,0 − εn−i,1 − εn−i+1,2 − . . . − εn−1,i. (4.7)
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Using the same terminology as [2] for quivers, vertex i of the double quiver
Q is said to be a sink if all the half-edges incident to i are directed inwards.
A double quiver is said to be a period 1 sink-type double quiver if vertex 0
is sink, and the double quiver has period 1. From above, we can obtain the
following theorem classifying all period 1 sink-type double quivers:

Theorem 4.8 Let B be the matrix of a sink-type double quiver Q. Then Q is
a period 1 double quiver if and only if the following conditions hold:

1. b0,i and b0,n−i are either both negative, or both zero, for i = 1, 2 . . . n − 1.

2. bi,0 = −b0,n−i, for i = 1, 2, . . . n − 1.

3. bi,j = b0,j−i if 0 < i < j ≤ n − 1 and bi,j = −b0,n−i+j if 0 < j < i ≤ n − 1.

Proof Since Q is of sink type, then b0,i ≤ 0 for all i. Therefore εi,j = 0 for all
0 < i, j ≤ n − 1.

If all three conditions above are satisfied, then (4.3), (4.4) and (4.5) are
trivially satisfied.

Conversely, let us assume Q has period 1, so (4.3), (4.4) and (4.5) are
satisfied. From (4.5), we have

bi,j = b0,j−i, if 0 < i < j ≤ n − 1,

bi,j = bi−j,0, if 0 < j < i ≤ n − 1.

Combining with (4.3) and (4.4), we have,

bi,n−1 = b0,n−i−1 = −bi+1,0,

bn−1,i = −b0,i+1 = bn−i−1,0.

It follows that b0,i+1 = 0 =⇒ bn−i−1,0 = 0. Since 0 is a mutable vertex, we
have b0,n−i−1 = 0 for all i.

The seed t = (x,p) corresponding to a sink-type double quiver Q is such
that p0 is of the form

∏
j x

aj

j +1. If Q has period 1, then ai = 0 ⇐⇒ an−i = 0
follows from (1) in the theorem above. Conversely, any polynomial of this form
generates a period 1 seed as item (2) of Theorem 3.10 shows. Thus Theorem
4.8 can be restated as:

Theorem 4.9 The only period 1 binomials such that the quiver correspond-
ing to (x,P) is of sink-type and has period 1 are those of the form P =
xa1

1 xa2
2 · · · x

an−1

n−1 + 1, where ai = 0 ⇐⇒ an−i = 0, for all i.

4.3 Mutual Double Quiver

In general, given a binomial seed (all the exchange polynomials are binomials),
the corresponding double quiver is not unique. For example, if we reverse all
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the half-edges attached at a certain vertex, the new double quiver represents
the same seed. However, there is a canonical choice, which coincides with
usual quivers (if we regard a quiver as a double quiver, as it was done in (1) of
Remark 4.7). From the mutability of vertex 0, if there are half-edges between
0 and i attached to i, then there are half-edges between 0 and i attached to 0.
We make all these half-edges point in the same direction by reversing all the
half-edges attached at i, if necessary. In terms of the B-matrix, the resulting
canonical quiver is such that b0,i and bi,0 are of opposite sign. A double quiver
with this condition is said to be mutual at vertex 0. Such double quiver is said
to be the canonical double quiver associated to the seed. In this subsection,
we prove Theorem 4.10 regarding period 1 mutual (at 0) double quivers. By
translating this into the language of period 1 polynomials, this is equivalent
to Theorem 3.6 in Section 3.

Theorem 4.10 Let B be the matrix associated to a canonical mutual double
quiver Q. Then Q has period 1 if and only if the following conditions hold:

1. bi,0 and b0,i are of opposite signs, or both zero, for 0 < i ≤ n − 1.

2. bi,0 = −b0,n−i, for i = 1, 2, . . . n − 1.

3. bi,j = −
∑i

k=0 εi−k,j−k + b0,j−i if 0 < i < j ≤ n − 1.

4. bi,j = −
∑j

k=0 εi−k,j−k − b0,n−i+j if 0 < j < i ≤ n − 1.

Proof We assume Q is a canonical mutual double quiver. If all four conditions
above are satisfied, then (4.3), (4.4) and (4.5) are trivially satisfied.

Conversely, let us assume Q has period 1, so (4.3), (4.4) and (4.5) are satis-
fied. We first prove by induction

b0,i = −bn−i,0 and bi,0 = −b0,n−i. (4.8)

Setting i = 0 in (4.6) and (4.7) gives the base cases b0,1 = −bn−1,0 and
b1,0 = −b0,n−1. Now, assume that (4.8) holds for i = 0, 1, 2 . . . k; we prove it
for i = k + 1. Note that,

− bk+1,0 = b0,n−k−1 −
k∑

j=1

εj,n−k+j−1

= b0,n−k−1 −
k∑

j=1

bj,0 · |b0,n−k+j−1| · 1{b0,jb0,n−k+j−1<0}

= b0,n−k−1 −
1

2
·
( k∑

j=1

bj,0 · |b0,n−k+j−1| · 1{b0,jb0,n−k+j−1<0}(4.9)

+
k∑

j=1

bk−j+1,0 · |b0,n−j | · 1{b0,k−j+1b0,n−j<0}

)
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From the inductive hypothesis, bj,0 = b0,n−j and bk−j+1,0 = b0,n−k+j−1, so,

bj,0 · |b0,n−k+j−1| · 1{b0,jb0,n−k+j−1<0} + bk−j+1,0 · |b0,n−j | · 1{b0,k−j+1b0,n−j<0}

= b0,n−j · |b0,n−k+j−1| · 1{b0,jbk−j+1,0<0} + b0,n−k+j−1 · |b0,n−j | · 1{b0,k−j+1bj,0<0}(4.10)

From the mutuality assumption, 1{b0,k−j+1bj,0<0} = 1{b0,jbk−j+1,0<0}. If both
of them are 0, then (4.10) is zero. If both of them are 1, then b0,n−k+j−1

and b0,n−j are of opposite sign, therefore (4.10) is zero. Substituting back into
(4.9), we have −bk+1,0 = b0,n−k−1. From (4.7), by a similar argument, we
obtain −b0,k+1 = bn−k−1,0.

Finally, conditions (3) and (4) follow from equations (4.8) and (4.3).

Remark 4.11 Theorem 3.6 generalizes the main theorem of [2]. For example,
the polynomial P = xa

1x
b
2 + 1, with a 6= b, produces Laurent phenomenon

sequences; it is predicted by Theorem 3.6, but not by [2, Theorem 6.6].

Remark 4.12 A double quiver with a skew-symmetrizable matrix B-matrix is
mutual at each vertex. Hence, restricting B to be skew-symmetric, Theorem
4.10 provides a classification of period 1 cluster algebras over the coefficient
ring Z.

5 Classification of period 1 Seeds for Small n

In this section we prove the classifications stated in Section 3 of all period 1
seeds when n = 2 and n = 3.

5.1 Proof of Theorem 3.1

Let P = P (x1) =
∑d

i=0 aix
i
1 be an (irreducible) polynomial of degree d > 0

that generates a period 1 seed. Since P is not divisible by x1, we know a0 6= 0
and P |x1=0 = a0 6= 0. From the definition of τ , P generates a period 1 seed if
and only if

P (x1) = a−1
0 xd

1 ·
d∑

i=0

ai

(a0

x1

)i
=

d∑

i=0

(aia
i−1
0 )xd−i

1 . (5.1)

For each 0 ≤ i ≤ d, by equating the coefficient of xi
1 on both sides of (5.1),

we see that

ai = ad−ia
d−i−1
0 for all i. (5.2)

In particular, when i = d, we obtain ad = 1, so P has to be monic.
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If d > 2, we have that ai = ad−ia
d−i−1
0 = (aia

i−1
0 )ad−i−1

0 = aia
d−2
0 for all i.

Setting i = d gives that a0 = ±1. If a0 = 1 then (5.2) implies ai = ad−i for
all i, or equivalently, P is palindromic, and all such polynomials satisfy (5.1).
If a0 = −1, then (5.2) implies ai = (−1)d−i−1ad−i for all i. When d is odd,
these relations when i = i0, d − i0 imply ai0 = 0 for all 1 ≤ i0 ≤ d − 1. But
then P = xd

1 − 1 is not irreducible. When d is even, we find that ai = −ad−i

for all i, or equivalently, P is antipalindromic.

If d = 2, (5.2) is trivially satisfied for any a1, a2.

If d = 1, (5.2) with i = 0 gives a0 = a1 = 1.

5.2 Proof of Theorem 3.4

5.2.1 Bounding Degrees

Assume the following is a period 1 seed

{
x0, P (x1, x2)

}
,

{
x1, Q(x0, x2)

}
,

{
x2, P (x0, x1)

}
,

where P is a two-variable irreducible polynomial not divisible by x1 or x2.
By Proposition 2.12, Q(x0, x2) is also irreducible and not divisible by x0 or
x2. Then P (x0, 0) and P (0, x1) are not 0. It is not hard to see that there
do not exist period 1 polynomials P that do not depend on x0 or x1. Thus
assume that P depends on both of these variables. Let m be the degree of x0

in P (x0, x1); we can write

P (x0, x1) =
m∑

k=0

fk(x1)x
k
0 , (5.3)

where the fk are single variable polynomials for k = 0, 1, . . . m. Let Q̃ be the
intermediate polynomial G at step (2) of applying τ to Q. Then

Q̃(x0, x2) = P

(
P (x0, 0)

x2
, x0

)
=

m∑

k=0

fk(x0) ·
P k(x0, 0)

xk
2

.

Let d(x0) be the maximal factor of Q̃(x0, x2), which is in the form xs1
0 · p(x0),

where f(x0) is a factor of P (x0, 0)K for some K. From the rules for computing
τ , we have

Q(x0, x2) =

m∑

k=0

fk(x0)P
k(x0, 0)

d(x0)
xm−k

2 . (5.4)



24 Joshua Alman et al.

In view of (5.4), the coefficient of xm
2 in Q is

f0(x0)

d(x0)
=

P (0, x0)

d(x0)
,

which is a non-vanishing polynomial. Therefore d(x0) divides f0(x0) = P (x0, 0),
and x2 is of degree m in Q(x0, x2).

We can similarly obtain P (x1, x2) from Q(x0, x2). Let n be the degree of x0

in Q(x0, x2); we can write

P (x1, x2) =

n∑

k=0

gk(x1)P
k(0, x1)

t(x1)
xn−k

2 . (5.5)

The coefficient of xn
2 in P is

g0(x1)

t(x1)
=

P (x1, 0)

t(x1)
,

which is a nonzero polynomial. Therefore t(x1) divides g0(x1) = Q(0, x1) and
the degree of x2 in P (x1, x2) is n.

If we let x2 = 0 in (5.4), then

Q(x0, 0) =
fm(x0)P

m(x0, 0)

d(x0)
(5.6)

and similarly

P (x0, 0) =
gn(x0)P

n(0, x0)

t(x0)
. (5.7)

Comparing the degree of both sides of (5.6) and (5.7) and recalling the di-
visibility relations d(x0) | P (0, x0), t(x0) | Q(0, x0), we arrive at the inequali-
ties

deg fm(x0) + mdeg P (x0, 0) =deg Q(x0, 0) + deg d(x0) ≤ deg Q(x0, 0) + deg P (0, x0)
(5.8)

deg gn(x0) + ndeg P (0, x0) =deg P (x0, 0) + deg t(x0) ≤ deg P (x0, 0) + deg Q(0, x0)
(5.9)

Summing (5.8) and (5.9), and noticing that deg Q(0, x0) ≤ m, deg Q(x0, 0) ≤
n, we obtain the following inequality:

2 ≥ deg gn(x0) + deg fm(x0) + (m − 1)
(
deg P (x0, 0) − 1

)
+ (n − 1)

(
deg P (0, x0) − 1

)
.

(5.10)

From this inequality, the classification of period 1 polynomials is decomposed
into the following five cases:

1. deg P (x0, 0) = 2 and deg P (0, x0) = 1
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2. deg P (x0, 0) = 1 and deg P (0, x0) = 2

3. deg P (x0, 0) = deg P (0, x0) = 1

4. deg P (x0, 0) = deg P (0, x0) = 2

5. Either deg P (x0, 0) = 0 or deg P (0, x0) = 0

Lemma 5.1 If P (0, 0) 6= 0, then the bound (5.9) can be refined to

deg gn(x0) + ndeg P (0, x0) =deg P (x0, 0) + deg t(x0) ≤ 2 deg P (x0, 0).
(5.11)

Proof Since d(x0) | P (0, x0) and x0 - P (0, x0), we see that x0 - d(x0).

We moreover claim that x1 - t(x1). Assume otherwise that x1 | t(x1). From
(5.5), t(x1) divides gk(x1)P

k(0, x1) for all k = 0, 1, 2 . . . n and x1 - P (0, x1).
Therefore x1 | gk(x1) for all k = 0, 1, . . . n. This implies that x1 | Q(x0, x1),
which contradicts the irreducibility of Q(x0, x1).

Since P (x0, 0) =
∑m

k=0 fk(0)xk
0 , then fk(0) = 0 if k > deg p(x0, 0). Hence

t(x1) | Q(0, x1) =
m∑

k=0

fk(0)P k(0, 0)

d(0)
xm−k

1

=




deg P (x0,0)∑

k=0

fk(0)P k(0, 0)

d(0)
x

deg P (x0,0)−k
1



 · x
m−deg P (x0,0)
1 .

Therefore deg t(x1) ≤ deg P (x0, 0) and (5.9) leads to the desired inequality

deg gn(x0) + ndeg P (0, x0) =deg P (x0, 0) + deg t(x0) ≤ 2 deg P (x0, 0).

Lemma 5.2 If fm(x1) has a nonzero constant term, then m = deg P (x0, 0).

Proof In view of (5.5), P (x0, x1) contains the term fm(x1)x
m
0 . Since fm(x1)

contains a nonzero constant term, then fm(0) 6= 0. Thus, P (x0, 0) contains
the term fm(0)xm

0 . This implies deg P (x0, 0) ≥ m and since m is the degree
of x0 in P (x0, x1), we have deg P (x0, 0) ≤ m. Therefore m = deg P (x0, 0).

5.2.2 Analysis of Cases

Case 1: deg P (x0, 0) = 2 and deg P (0, x0) = 1.

From (5.10), we either have m = 2 or m = 3.

If m = 3, we obtain deg f3(x1) = 0 from (5.10). However, Lemma 5.2
says that P (x0, 0) = 3, thus implying f3(x1) 6= 0, a contradiction.
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If m = 2, (5.8) tells us that deg f2(x0)+4 = degQ(x0, 0)+deg d(x0) ≤
n + 1, thus n ≥ 3. From (5.3), we have

P (x0, x1) = f2(x1)x
2
0 + f1(x1)x0 + f0(x1).

Since the degree of x1 in P (x0, x1) is n ≥ 3, deg f2(x1) ≤ 1 and
deg f0(x1) = 2, we must have deg f1(x1) = n. In view of (5.5),

Q(x0, x2) =
f0(x0)

d(x0)
x2

2 +
f1(x0)P (x0, 0)

d(x0)
x2 +

f2(x0)P
2(x0, 0)

d(x0)
.

As the degree of x0 in Q(x0, x2) is n, we have

n ≥ degx0

(
f1(x0)P (x0, 0)

d(x0)

Then

n ≥ deg f1(x0) + deg P (x0, 0) − deg d(x0) ≥ n + 2 − 1 = n + 1.

Therefore there are no period 1 polynomials in this case.

Case 2: deg P (x0, 0) = 1 and deg P (0, x0) = 2.

From (5.10), we either have n = 2 or n = 3.

If n = 3, we obtain deg fm(x1) = 0 from (5.10). From Lemma (5.2),
we have m = deg P (x0, 0) = 1. Hence in (5.3),

P (x0, x1) = f1(x1)x0 + f0(x1).

However, deg f1(x1) = 0 and deg f0(x1) = 2, so the degree of x1 in
P (x0, x1) is 2 6= n, a contradiction.

If n = 2, inequalities (5.8) and (5.9) yield

deg fm(x0) + m ≤ 4,

deg gn(x0) + 3 ≤ m.

Thus m ≥ 3 > 1 = deg P (x0, 0). From Lemma (5.2), we have deg fm(x1) ≥
1. These inequalities yield m = 3, deg f3(x1) = 1 and deg gn(x0) = 0.
Moreover, from (5.9), deg t(x0) = 3. Since these values do not satisfy
(5.11), Lemma (5.1) tells us that P (0, 0) = 0, i.e., P (x0, x1) does not
have a constant term. Taking m = 3 in (5.4) yields

Q(x0, x2) =
f0(x0)

d(x0)
x3

2 +
f1(x0)P (x0, 0)

d(x0)
x2

2 +
f2(x0)P

2(x0, 0)

d(x0)
x2

2 +
f3(x0)P

3(x0, 0)

d(x0)
.

From (5.8) and the values already found, we also have deg d(x0) = 2.
Since f3(x0) and P (x0, 0) are both linear polynomials without con-
stant terms, f3(x0)P

3(x0, 0) = ax4
0 for some a ∈ Z. Since d has de-

gree 2 and divides (x0) | f3(x0)P
3(x0, 0), then d(x0) = bx2

0 for some
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b ∈ Z, b 6= 0. From d(x0) | f0(x0) and d(x0) | f1(x0)P (x0, 0), we have
x0 | f0(x0) and x0 | f1(x0). From equation (5.3), we have

P (x0, 0) = f3(0)x3
0 + f2(0)x2

0 + f1(0)x0 + f0(0) = f3(0)x3
0 + f2(0)x2

0.

Since in this case, deg P (x0, 0) = 1, then P (x0, 0) = 0. This contra-
dicts the fact that P (x0, x1) is not divisible by x1.

Case 3: deg P (x0, 0) = deg P (0, x0) = 1.

If P (x0, x1) contains no constant term, then we can write

P (x1, x2) = ax1 + bx2 + x1x2R(x1, x2),

where a, b ∈ Z are both nonzero and R(x1, x2) is a polynomial of
degree m−1 in x1 and degree n−1 in x2. We next obtain τP (P (x0, x1))
by replacing x0 with ax1

x3
, downshifting and then multiplying by a

monomial M . This monomial has to be such that the resulting Q is a
Laurent polynomial, not divisible by any xi and its coefficients have
greatest common divisor 1. Assume M̃ is M , but with coefficient 1 and
let Q̃ be the resulting polynomial. Thus Q̃ = cQ for some constant c.
We can write Q̃ as

Q̃(x0, x2) = a2xm−1
2 + bxm

2 + ax0R(
ax0

x2
, x0)x

m−1
2

From this polynomial, we analogously obtain P̃ by omitting a constant
factor for the adjusting monomial

P̃ (x1, x2) = a2xk+1
2 + bx1x

k+1
2 + abx1R(

ab

x2
,
bx1

x2
)xk

2 ,

where k is the least integer for which abx1R( ab
x2

, bx1

x2
)xk

2 is a polynomi-

al. In view of the above equation, k+1 = deg P̃ (0, x2) = P (0, x2) = 1.
Therefore k = 0 and so R(x0, x1) is a contant; write R = R(x0, x1).
Then P̃ (x1, x2) = abRx1+a2x2+bx1x2 must be equal to λP (x1, x2) =
λax1+λbx2+λRx1x2, where λ is a nonzero integer. After equating co-
efficients, we obtain the polynomials in items (1) and (2) of Theorem
3.4 whose generated seeds are

{x0, ax1 + ax2 + x1x2}, {x1, a + x0 + x2}, {x2, ax0 + ax1 + x0x1}

and

{x0, ax1 − ax2 + x1x2}, {x1, a + x0 − x2}, {x2, ax0 − ax1 + x0x1}.

If P (x0, x1) has a nonzero constant term, we can write

P (x0, x1) = c + ax0 + bx1 + x0x1R(x0, x1).
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From Lemma 5.1, we have n ≤ 2. Substituting into (5.8),

deg fm(x0) + m ≤ deg d(x0) + 2.

If a 6= b, then gcd(P (x0, 0), P (0, x0)) = 1, so deg d(x0) = 0. We can
then write constant d(x0) as d. By the same argument as in Lemma
5.2, we have m = 1. Then (5.4) reads

Q(x0, x2) =
f1(x0)P (x0, 0)

d
+

f0(x0)

d
x2,

and since the degree of x0 in Q(x0, x2) is n ≤ 2, we must have
deg f1(x0) ≤ 1. Then we can write P (x0, x1) = c+ ax0 + bx1 +Rx0x1

for some R ∈ Z and where a 6= b. By the same argument as above, we
obtain the period 1 polynomials in items (3) and (4) of Theorem 3.4
whose generated seeds are

{x0, x1 − x2 − 1}, {x1,−x0x2 + x0 − x2 − 1}, {x2, x0 − x1 − 1}

and

{x0,−x1 + x2 − 1
}
, {x1, x0x2 + x0 − x2 + 1}, {x2,−x0 + x1 − 1}.

If a = b then m = 1 or 2. If m = 1, from (5.5) and (5.4),

Q(x0, x2) = f1(x0) + x2, P (x1, x2) =
xn

2

t(x1)

(
f1(

f0(x1)

x2
) + x1

)
.

Since f1(x0) has constant term a, P (x1, x2) contains the term xn
2 .

Therefore n = 1 = deg f1(x0). We can then write P (x0, x1) = c +
ax0 + ax1 + Rx0x1. The same argument as above yields the period 1
polynomials in (5) of Theorem 3.4, whose associated seed is

{
x0, x1x2 + ax1 + ax2 + c

}
,

{
x1, x0 + x2 + a

}
,

{
x2, x0x1 + ax0 + ax1 + c

}
.

If m = 2, then m 6= deg P (x0, 0). From Lemma 5.1, fm does not
contain constant term, so deg fm ≥ 1. Since deg d ≤ deg P (0, x0) = 1,
plug them into (5.8), we get n = 2 and deg fm = 1. Morover, from
Lemma 5.2, deg t ≤ 1. Plug them into (5.9), we get deg gn = 0. From
(5.3)

P (x0, x1) = f2(x1)x
2
0 + f1(x1)x0 + f0(x1),

and the degree of x1 is 2, it must be that deg f1 = 2. Mutating at x0

to obtain Q(x0, x2) gives (notice P (x0, 0) = P (0, x0)),

Q(x0, x2) = f2(x0)P (x2, 0) + f1(x0)x2 + x2
2.

This contains the term x2
0x2, which contradicts that deg g2 = 0.
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Case 4: deg P (x0, 0) = deg P (0, x0) = 2.

From (5.11), we see that m = n = deg P (x0, 0) = deg P (0, x0) = 2
and deg gn(x0) = deg fm(x0) = 0. Hence,

P (x0, x1) =f2(x1)x
2
0 + f1(x1)x0 + f0(x1),

Q(x0, x2) =
f2(x0)P

2(x0, 0)

d(x0)
+

f1(x0)P (x0, 0)

d(x0)
x2 +

f0(x0)

d(x0)
x2

2. (5.12)

The first equation gives deg f0(x1) = deg P (0, x1) = 2. From the sec-
ond, by looking at the coefficient of x2

2, we have deg d(x0) ≤ deg f0(x0) =
2. Moreover, remember we had Q(x0, x2) = g2(x2)x

2
0 + g1(x2)x0 +

g0(x2). Since deg g2(x0) = 0, Q does not contain terms divisible by
x2x

2
0. By looking at the coefficient of x2 in Q in equation (5.12),

we have that deg f1(x0) + deg P (x0, 0) − deg d(x0) ≤ 1, from which
deg f1(x0) ≤ 1. Since deg f2(x0) = 0, from (5.12) we have that d(x0) |
P 2(x0, 0).

If d(x0) - P (x0, 0), then d(x0) = cr2(x0) for some monic linear factor
r(x0) and constant c ∈ Z. We will omit the constant c as it will
factor later, so simply write d(x0) = r2(x0). In particular, we have
deg d(x0) = 2, from which deg f0(x0) = 2. Moreover, since d(x0) |
f1(x0)P (x0, 0), then deg f1(x0) = 1. From the divisibility relations,
we can write

P (x0, 0) = t(x0)r(x0), f0(x0) = Ar2(x0),

f1(x0) = Br(x0), f2(x0) = C,

for some polynomial t and constants A,B,C ∈ Z. Expression (5.12)
can then be simplified:

Q(x0, x2) = Ax2
2 + Bt(x0)x2 + Ct2(x0)

We also have

Ar2(x2) = P (0, x2) = Ax2
2 + Bt(0)x2 + Ct2(0).

From both equations, we have

t2(0)Q(x0, x2) = Ar2

(
x2t(0)

t(x0)

)
t2(x0).

Since Q(x0, x2) is irreducible, then t(0) = 0. From above, we have
Ar2(x2) = Ax2

2 and so d(x0) = r2(x0) = x2
0. Moreover, t(0) = 0

implies x0 | t(x0) and so d(x0) = x2
0 | t(x0)r(x0) = P (x0, 0). This is a

contradiction with our initial assumption.

Now assume d(x0) | P (x0, 0).

If P (x0, x1) has a nonzero constant term, then since d(x0) | P (x0, 0)
and d(x0) | P (0, x0), we see P (x0, 0) = P (0, x0). P (x0, x1) must be
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of the form P (x0, x1) = ax2
0 + ax2

1 + bx0x1 + cx0 + cx1 + d. In this
case, we obtain the period 1 polynomials in item (6) of Theorem 3.4,
whose generated seeds are

{x0, x
2
1 + x2

2 + ax1x2 + bx1 + bx2 + c},

{x1, x
2
0 + x2

2 + ax0x2 + bx0 + bx2 + c},

{x2, x
2
0 + x2

1 + ax0x1 + bx0 + bx1 + c},

and

{x0,−x2
1 − x2

2 + ax1x2 + c}, {x1, x
2
0 + x2

2 + ax0x2 − c}, {x2,−x2
0 − x2

1 + ax0x1 + c}.

If P (x0, x1) does not have a constant term, then d(x0) = ax2
0+bx0 and

P (x0, x1) is of form P (x0, x1) = d1(ax2
0+bx0)+d2(ax2

1+bx1)+cx0x1.
In this case, we obtain a special case of (6) and the general polynomial
in (7) of Theorem 3.4. Their generated seeds are

{x0, x
2
1 + x2

2 + ax1x2 + bx1 + bx2},

{x1, x
2
0 + x2

2 + ax0x2 + bx0 + bx2},

{x2, x
2
0 + x2

1 + ax0x1 + bx0 + bx1}

and

{x0,−x2
1 − x2

2 + ax1x2}, {x1, x
2
0 + x2

2 − ax0x2}, {x2,−x2
0 − x2

1 + ax0x1}.

Case 5: Either deg P (x0, 0) = 0 or deg P (0, x0) = 0.

From Lemma (5.1), deg P (x0, 0) = 0 =⇒ deg P (0, x0) = 0. Thus,
we only consider the case where deg P (0, x0) = 0, i.e., P (0, x0) is a
nonzero constant a ∈ Z. Observe that d(x0) | P (0, x0) implies that
d(x0) is a constant d. Equation (5.5) can then be simplified to

P (x1, x2) =

n∑

k=0

gk(x1)a
k

t(x1)
xn−k

2 , (5.13)

from which t(x1) | gk(x1) for all k. Therefore t(x1) | Q(x0, x1). Since
Q(x0, x1) is irreducible, t(x1) is a constant t. Equation (5.13) with
x2 = 0 and x1 = 0 yield

P (0, x2) = a =

n∑

k=0

gk(0)ak

t(x1)
xn−k

2 ,

P (x1, 0) =
angn(x1)

t
=

agn(x1)

gn(0)
.
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From the first one, we have t = gn(0)an−1 and x1 | gk(x1) for 0 ≤ k ≤
n − 1. Now mutating P (x1, x2) at x0 gives,

Q(x0, x2) =
xm

2

d
P (

P (x0, 0)

x2
, x0)

=
xm

2

td

n∑

k=0

gk(
agn(x0)

gn(0)x2
)akxn−k

0 (5.14)

=
n∑

k=0

gk(x2)x
k
0 (5.15)

=
m∑

l=0

hk(x0)x
l
2.

Next we compute hm. Since x2 | gk(x2) for k = 0, 1, 2 . . . , n − 1, in

(5.14), only the term
xm
2

td gn(agn(x0)
gn(0)x2

)an contains term xm
2 . Indeed,

hm(x0)x
m
2 =

gn(0)an

td
xm

2 .

Therefore hm(x0) is a constant, so only g0(x2) contains the term xm
2 ,

say g0(x2) = bxm
2 + . . .. Since deg gk < m for k = 1, 2, . . . , n − 1,

x2 |
xm

2

td
gk(

agn(x0)

gn(0)x2
)akxn−k

0 , k = 1, 2, . . . n − 1.

Setting x2 = 0, the above expressions all vanish, so

Q(x0, 0) = h0(x0) =
b

td

(agn(x0)

gn(0)

)m
xn

0 .

Since deg Q(x0, 0) ≤ n, deg gn(x0) = 0 (or m = 0, then P (x0, x1) only
depends on x0). (5.14) is simplified as

xm
2

td

n∑

k=0

gk(
a

x2
)akxn−k

0 =
n∑

k=0

gn−k(x2)x
n−k
0 ,

Comparing coefficients on both sides, we see,

xm
2

td
gk(

a

x2
)ak = gn−k(x2), k = 0, 1, 2 . . . n.

Taking k = 0 in above equation, and noticing that t = gn(0)an−1, we
have n = 1 or a = ±1. We thus obtain the period 1 polynomials in
items (8), (9) and (10) of Theorem 3.4. Their generated seeds are

{x0,±x1x2 + a}, {x1,±x0 + x2}, {x2,±x0x1 + a}
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and

{x0, 1 + xm
1 xn

2 +
∑

0<i<m

0<j<n

Ci,j(x
i
1x

j
2 + xm−i

1 xn−j
2 )},

{x1, x
n
0 + xm

2 +
∑

0<i<m

0<j<n

Ci,j(x
j
0x

m−i
2 + xn−j

0 xi
2)},

{x2, 1 + xm
0 xn

1 +
∑

0<i<m

0<j<n

Ci,j(x
i
0x

j
1 + xm−i

0 xn−j
1 )}.

When m ≡ n mod 2,

{x0,−1 + (−1)m+1xm
1 xn

2 +
∑

0<i<m

0<j<n

Ci,j(x
i
1x

j
2 + (−1)m+j+ixm−i

1 xn−j
2 )},

{x1,−xn
0 − xm

2 +
∑

0<i<m

0<j<n

Ci,j((−1)jxj
0x

m−i
2 + (−1)ixn−j

0 xi
2)},

{x2,−1 + (−1)m+1xm
0 xn

1 +
∑

0<i<m

0<j<n

Ci,j(x
i
0x

j
1 + (−1)m+j+ixm−i

0 xn−j
1 )}.

6 Examples of period 1 polynomials and seeds

In this section, we prove that several families of polynomials P = P (x1, . . . , xn−1)
are 1 periodic. In our first subsection, we prove the Expansion and Reflection
Lemmas (Lemmas 3.15 and 3.16), which can be applied to period 1 polynomi-
als to generate more period 1 polynomials. In the second subsection, we prove
Theorem 3.10.

The proof that P is a period 1 polynomial for each item in Theorem 3.10 will
simply consist of writing down the intermediate polynomials Pi. In general, it
is easy to verify that Pi−1 = τP (Pi) for all i (and Pn−1 = τP (P0)), showing
the seed is a period 1 seed.

The importance of period 1 polynomials stems from Proposition 2.13 that
says that if P̂0 = P0, then P generates a Laurent phenomenon sequence. Lem-
ma 2.15 gives sufficient conditions for P̂0 = P0 to be satisfied. In most of the
seeds given below, the reader can easily verify that the intermediate polyno-
mials Pi that depend on x0 are the ones for which P = P0 depends on xi, and
so condition (1) of Theorem 2.15 is satisfied. The only exceptions will be the
families in Subsections 6.2.10 and 6.2.11, but these families satisfy condition
(2) of Lemma 2.15 instead. Hence, the truth of Corollary 3.13 will follow from
the seeds for the polynomials in Theorem 3.10 that we give below.
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6.1 Proofs of the Expansion and Reflection Lemmas

6.1.1 Proof of Lemma 3.15

Let t = (x,F) be the period 1 seed generated by F and let k ∈ N be any posi-
tive integer. We prove that G(x1, x2, . . . , xnk−1) = F (xk, x2k, . . . , x(n−1)k) gen-
erates a period 1 seed. Let G = (G1, . . . , Gkn), where Gk(i−1)+j(x1, . . . , x̂k(i−1)+j , . . . , xkn) =
Fi(xj , . . . , x̂k(i−1)+j , . . . , xk(n−1)+j) for all 1 ≤ i ≤ n, 1 ≤ j ≤ k. It is clear that
t′ = (y,G) is a seed and Gkn = G. It will then suffice to show that t′ = (y,G)
has period 1. Observe that G1(x2, . . . , xkn) = F1(xk+1, . . . , xk(n−1)+1) and
Gkn(x1, . . . , xkn−1) = Fn(xk, . . . , xk(n−1)), so Gkn is the downshift of G1. We
need to verify Gs = τx1,G1

(Gs+1) for all 1 ≤ s ≤ nk − 1.

If s 6= 0 (mod k), then s = k(i − 1) + j for some i and 1 ≤ j < k.
In this case, observe that Gs is the downshift of Gs+1 by definition of G.
Moreover, the polynomial Gs+1 (and also ) only depends on the variables
xj+1, . . . , x̂k(i−1)+j+1, . . . , xk(n−1)+j+1, and in particular, not x1. Hence, τ(Gs+1)
is the downshift of Gs+1, which is Gs as remarked above.

If s = 0 (mod k), then s = k(i − 1) + k for some positive integer i, and so
s + 1 = ki + 1. In this case, Gs = Fi(xk, . . . , x̂s, . . . , xk(n−1)+1) and Gs+1 =
Fi+1(x1, . . . , x̂s+1, . . . , xk(n−1)+1). Since (x,F) is a period 1 seed, we have
that τx1,F1

(Fi) = Fi−1. Hence, τx1,G1
(Gs+1) = Fi−1(xk, . . . , x̂s, . . . , xn) =

Gs.

6.1.2 Proof of Lemma 3.16

Let (x,F) be the period 1 seed whose intermediate polynomials are Fi, 0 ≤ i ≤
n − 1. Define Gi(x0, . . . , x̂i, . . . , xn−1) = Fn−i−1(xn−1, . . . , x̂i, . . . , x1) for all i,
and G = (G1, . . . , Gn). We show that (x,G) is also a period 1 seed generated
by G.

From the relation κF (Fn−i) = Fn−i+1, we have that replacing xn with
Fn−1|xn−i=0

x−1
in Fn−i and upshifting yields

Fn−i

(
x1, . . . , x̂n−i+1, . . . , xn−1,

Fn−1(x1, . . . , xn−1)|xn−i+1=0

x0

)
. (6.1)

Then, Fn−i+1 comes from dividing (6.1) by the largest power of Fn−1(x1, . . . , xn−1)|xn−i+1=0

that divides it, and adjusting by a monomial factor.

We show that (x,G) is a period 1 seed by verifying that τG(Gi) = Gi−1

for all i. Similar to before, replacing x0 with
G0|xi=0

xn
in Gi and downshifting
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yields

Gi

(G0(x0, x1, . . . , xn−2)|xi−1=0

xn−1
, x0, x1, . . . , x̂i−1, . . . , xn−2

)

= Fn−i−1(xn−2, . . . , x̂i−1, . . . , x1, x0,
Fn−1(xn−2, . . . , x0)|xi−1=0

xn−1
). (6.2)

Then, τG(Gi) comes from dividing (6.2) by the largest power of G0(x0, . . . , xn−2)|xi−1=0

that divides it, and adjusting by a monomial factor.

Notice that replacing xj by xn−j−1 for all j in (6.1) gives (6.2). There-
fore,

τG(Gi) = Fn−i+1(xn−1, . . . , x̂i−1, . . . , x1) = Gi−1(x0, . . . , x̂i−1, . . . , xn−1) = Gi−1.

6.2 Period 1 polynomials and their generated seeds

As remarked at the beginning of the section, we will show the seeds generated
by the polynomials P in Theorem 3.10. In all cases, we obviously have P0 = P
and Pn−1 be the downshift of P , so it will suffice to show the intermediate
polynomials Pi for 0 < i < n − 1.

6.2.1 Gale-Robinson seed.

We begin with the Gale-Robinson polynomial of the form (1) in Theorem
3.10. There are many cases to consider when writing the seed for P . As the
Laurent property for this polynomial is already well-known, we only write the
seed in the case that r < n/2 (the other cases q < n/2 < r, p < n/2 < r,
n/2 < p and where there are some equalities among some of these quantities,
are similar).

We first give the intermediate polynomials Pi for i ∈ {p, q, r, n−p, n− q, n−
r}:

– Pp = ABxqx2pxp+r + ACxrx2pxp+q + Cx0xp+rxn+p−r + Bx0xp+qxn+p−q.

– Pq = ABxq−pxpx2qxq+r + ABx0x2q−pxp+qxq+r + ACx0xr+q−pxp+qx2q+
BCxq−pxrxp+qx2q + Cx0xq−pxq+rxn+q−r.

– Pr = ABx0xr−pxp+r−qxq+rx2r+ACxr−pxpxr−qxq+rx2r+ABx0xq+r−pxr−qxp+rx2r+
BCxr−pxqxr−qxp+rx2r+ACx0xr−qx2r−pxp+rxq+r+BCx0xr−px2r−qxp+rxq+r.

– Pn−r = ABxqxp+q−rx2pxn+q−r+ACxqx2p+q−rxpxn+q−r+Cx0xp+q−rxn+p−rxn+q−r+
ABxp+q−rx2qxpxn+p−r + BCxqxn+q−2rxpxn+p−r.

– Pn−q = ABxrxpxn+p−2q+ACxrx2pxp+r−q+Bx0xp+r−qxn+p−q+Cxpxr−qxn+p−q.

– Pn−p = Ax0xn−2p + Bxq−pxr + Cxr−pxq.
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For the remaining polynomials Pj , pick the largest i < j in the set {0, p, q, r, n−
p, n − q, n − r}, and let Pj be Pi after upshifting j − i times.

6.2.2 Symmetric with second powers seed.

If P is of the form (2) in Theorem 3.10, the intermediate polynomials are
Pi = P (x0, . . . , x̂i, . . . , xn−1) for all 0 < i < n − 1.

Example 6.1 When n = 3, these family of polynomials accounts for the fam-
ily (6) in Theorem 3.4.

6.2.3 Sink-type binomial seed.

If P is of the form (3) in Theorem 3.10, the intermediate polynomials are

Pi =

i−1∏

j=0

x
an−i−j

j +

n−i−1∏

j=1

x
aj

i+j for all 0 < i < n − 1.

Example 6.2 When n = 6, the polynomial P = x2
1x

3
3x5 + 1 generates the

period 1 seed

{x0, x
2
1x

3
3x5 + 1}, {x1, x

2
2x

3
4 + x0}, {x2, x

2
3x

3
5 + x1}, {x3, x

3
0x2 + x2

4}, {x4, x
3
1x3 + x2

5}, {x5, x
2
0x

3
2x4 + 1}.

6.2.4 Extreme seed.

If P is of the form (4) in Theorem 3.10, the intermediate polynomials are
Pi = xi−1 + xi+1 + A for all 0 < i < n − 1.

Example 6.3 When n = 4, the polynomial P = x1x3 + 3(x1 + x2 + x3) + 2
generates the period 1 seed

{x0, x1x3 + 3(x1 + x2 + x3) + 2}, {x1, x0 + x2 + 3}, {x2, x1 + x3 + 3}, {x3, x0x2 + 3(x0 + x1 + x2) + 2}.

6.2.5 Singleton seed.

If P is a single variable polynomial of the form (5) in Theorem 3.10, the

intermediate polynomials are Pi = P
(
xi+ n

2 (mod n)

)
.

Example 6.4 When n = 4, the polynomial P = x2
2 + 2x2 − 7 generates the

period 1 seed

{x0, x
2
2 + 2x2 − 7}, {x1, x

2
3 + 2x3 − 7}, {x2, x

2
0 + 2x0 − 7}, {x3, x

2
1 + 2x1 − 7}, {x4, x

2
3 + 2x3 − 7}.

Remark 6.5 These polynomials correspond to (n
2 )-expansions of the period 1

polynomials found in Theorem 3.1.
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6.2.6 Chain seed.

If P is of the form (6) in Theorem 3.10, the intermediate polynomials are

P2j−1 = x0 + xn−1 + A, for all 0 < j ≤ (n − 1)/2

P2j = F (x0, . . . , x̂2j , . . . , xn−1), for all 0 < j < (n − 1)/2.

6.2.7 Multilinear symmetric seed.

If P is of the form (7) in Theorem 3.10, the intermediate polynomials are

P2j−1 = E1(x0, . . . , x̂2j−1, . . . , xn−1) + A, for all 0 < j ≤ (n − 1)/2

P2j = F (x0, . . . , x̂2j , . . . , xn−1), for all 0 < j < (n − 1)/2.

6.2.8 r-Jumping seed.

Let r, n,A ∈ N be constants and P a polynomial in the setup of (8) of Theorem
3.10. For any a ≥ 0 such that a + r < n, define

Fa =

bn−a
r
c−1∑

k=0

xa+rk · xa+rk+r−1 + A.

With this definition, notice that P = F1. The intermediate polynomials are:

– Pj =
( j+1∑

i=1

aj
i · Fj+2−i

)∣∣
xj=0

and Pn−j−1 =
(
bj
0 ·F0 +

j∑

i=1

bj
i · Fr−i

)∣∣
xn−j−1=0

for all 1 ≤ j ≤ r−2, where aj
i =

j−i∏

k=0

xk·
i−2∏

k=0

xn−r+j−k and bj
i =

j−i−1∏

k=0

xr−j+k·

i∏

k=1

xn−k.

– Pj = (

r∑

i=1

ai · Fr−i+1)
∣∣
xj=0

for all r − 1 ≤ j ≤ n − r, where ai =

r−1−i∏

k=0

xk ·

i−2∏

k=0

xn−k−1.
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Example 6.6 When n = 7, the polynomial P = x1x3 + x4x6 generates the
period 1 seed

{x0, x1x3 + x4x6},

{x1, x0x2x4 + x4x5x6},

{x2, x0x1x3x5 + x1x3x5x6 + x4x5x
2
6},

{x3, x2
0x1x2 + x0x2x4x6 + x4x5x

2
6},

{x4, x2
0x1x2 + x0x1x3x5 + x1x3x5x6},

{x5, x0x1x2 + x2x4x6},

{x6, x0x2 + x3x5}

Observe that this is an example of a binomial that generates a period 1 seed
whose intermediate polynomials are not all binomials. Jumping polynomials
are not classified by Theorem 3.6.

6.2.9 r-Hopping seed.

Let r, n,A,B ∈ N be constants and P a polynomial in the setup of (9) of
Theorem 3.10. For any 0 ≤ a < n − r, define

Fa =

bn−a
r
c−1∑

k=0

xa+rk · xa+rk+r−1 + A

bn−a
r
c−2∑

k=0

xa+rk+r−1 · xa+rk+r + B.

With this definition, notice that P = F1. The intermediate polynomials are:

– Pj =
( j+1∑

i=1

aj
i · Fj+2−i

)∣∣
xj=0

and Pn−j−1 =
(
bj
0 ·F0 +

j∑

i=1

bj
i · Fr−i

)∣∣
xn−j−1=0

for all 1 ≤ j ≤ r−2, where aj
i =

j−i∏

k=0

xk·
i−2∏

k=0

xn−r+j−k and bj
i =

j−i−1∏

k=0

xr−j+k·

i∏

k=1

xn−k.

– Pj = (

r∑

i=1

ai · Fr−i+1)
∣∣
xj=0

for all r − 1 ≤ j ≤ n − r, where ai =

r−1−i∏

k=0

xk ·

i−2∏

k=0

xn−k−1.

Remark 6.7 In the definitions of aj
i , b

j
i and ai in the jumping and hopping

seeds, a product

M∏

k=L

Xk is defined to be 1 if M < L.
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6.2.10 Flip-symmetric binomial seed.

These are the seeds discussed on Section 4. We give an explicit description
here for consistency.

Let L,R ⊂ [n − 1] be disjoint subsets, a : L ∪ R → N a map and P a
polynomial in the setup of (10) of Theorem 3.10.

Let a = (a0, a1, . . . , an−1) ∈ Zn
≥0 be the vector with nonnegative entries such

that ai = a(i + 1) if i + 1 ∈ L, aj = −a(j + 1) if j + 1 ∈ R and ak = 0 for the
remaining indices k. Define the vectors b(1), . . . ,b(n−1) recursively as follows.

Let b(i) = (b
(i)
0 , . . . , b

(i)
n−1), c(i) = (c

(i)
0 , . . . , c

(i)
n−1) for all i and begin defining

b(1) = a. Then let c
(i)
0 = −b

(i−1)
0 and c

(i)
j = b

(i−1)
j + b

(i−1)
0 · |aj | · 1{an−iaj<0}

for all 0 ≤ j ≤ n − 1 and i > 1 (the indicator function 1{an−iaj<0} is 1 if

an−iaj < 0 and is 0 otherwise). Finally, let b(i) be the vector that comes from
permuting c(i) with the permutation (0, 1, 2, . . . , n−1) → (1, 2, . . . , n−1, 0). We
can now show the intermediate polynomials Pi for 0 < i < n − 1. Polynomial
Pi is derived from vector b(n−i) as follows: let Li (resp. Ri) be the set of

indices 0 ≤ k ≤ n − 1 such that b
(n−i)
k > 0 (resp. b

(n−i)
k < 0). Then Pi =

∏

k∈Li

x
b
(n−i)
k

i +
∏

k∈Ri

x
−b

(n−i)
k

i .

From Theorem 4.10 and the definition of B-matrix mutation in (4.1), the
resulting seed (x,P) is a period 1 seed.

Example 6.8 When n = 8, the polynomial P = x3
1x

2
7 + x3

4x2x6 generates the
period 1 seed

{x0, x
3
1x7 + x2x

3
4x6}, {x1, x

2
0x3x

3
5x7 + x5

2x
6
4x

2
6}, {x2, x0x

5
3x

6
5 + x5

1x4x
3
6}, {x3, x1x

5
4x

6
6 + x5

2x5x
3
7},

{x4, x
3
0x2x

5
5 + x9

1x
5
3x6}, {x5, x

3
1x3x

5
6 + x9

2x
5
4x7}, {x6, x0x

3
2x4x

3
7 + x3

1x
9
3x

5
5}, {x7, x

3
0x6 + x1x

3
3x5}

We now demonstrate how to obtain b(5) from b(4). We have a = (0, 3,−1, 0,−3, 0,−1, 2)
(corresponding to polynomial P ) and b(4) = (3,−9, 1,−5, 0, 5,−1, 0) (corre-
sponding to polynomial P4).

Notice that a5 = −3 implies a5aj < 0 if and only if aj > 0. The only indices

j for which aj > 0 are 1 and 7. Then c
(0)
1 = −b

(4)
1 , c

(5)
1 = b

(4)
1 + b

(4)
0 · |a1| =

−9 + (3)(3) = 0, c
(5)
7 = b

(4)
7 + b

(4)
0 · |a7| = 0 + (3)(2) = 6 and c

(5)
j = b

(4)
j

for the remaining indices j. Thus c(5) = (−3, 0, 1,−5, 0, 5,−1, 6) and b(5) =
(0, 1,−5, 0, 5,−1, 6,−3). This corresponds to P3 = x1x

5
4x

6
6 + x5

2x5x
3
7.

6.2.11 Balanced seed.

Let L,R ⊂ [n − 1] be disjoint subsets, a : L ∪ R → N a map, M1,M2 mono-
mials, m > 1 an integer and P a polynomial in the setup of (11) of Theorem
3.10.
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Notice that P ′ = Mm
1 + Mm

2 is a binomial with flip-symmetry seed, so it
generates a period 1 seed. Let P ′j be the intermediate polynomials of this seed.

From the analysis in 6.2.10, we see that each P ′i is a binomial of the form M
(i)
1 +

M
(i)
2 , where each of the monomials M

(i)
1 ,M

(i)
2 is an m-th power of a monomial.

Say that (N
(i)
1 )m = M

(i)
1 and (N

(i)
2 )m = M

(i)
2 , then the intermediate polyno-

mials are Pi = (N
(i)
1 )m+(N

(i)
2 )m+

bm/2c∑

k=1

(Ai · (N
(i)
1 )k(N

(i)
2 )m−k + Ai · (N

(i)
1 )m−k(N

(i)
2 )k).

6.2.12 Vector sum seed.

Let a1, . . . , an−1 ∈ N be constants, B a finite set of vectors Nn−1 and P
a polynomial in the setup of (12) in Theorem 3.10. For ease of notation,
let B′ = B ∪ {(0, . . . , 0)} and C(0,...,0) = 1. The intermediate polynomials
are

Pi =
∑

b∈B′

(Cb · x
bn−i

0 . . . x
bn−1

i−1 xa1−b1
i+1 . . . x

an−1−i−bn−1−i

n−1 )

+
∑

b∈B′

(Cb · x
an−i−bbn−i

0 . . . x
an−1−bn−1

i−1 xb1
i+1 . . . x

bn−1−i

n−1 ), for all 0 < i < n − 1.

Example 6.9 The polynomial P = 1 + x3
1x

2
2x

4
3x

2
4 + 2x1x2x

2
3x4 + 2x2

1x2x
2
3x4

generates the period 1 seed

{x0, 1 + x3
1x

2
2x

4
3x

2
4 + 2x1x2x

2
3x4 + 2x2

1x2x
2
3x4},

{x1, x2
0 + x3

2x
2
3x

4
4 + 2x0x

2
2x3x

2
4 + 2x0x2x3x

2
4},

{x2, x3
3x

2
4 + x4

0x
2
1 + 2x2

0x1x
2
3x4 + 2x2

0x1x3x4},

{x3, x3
4 + x2

0x
4
1x

2
2 + 2x0x

2
1x2x

2
4 + 2x0x

2
1x2x4},

{x4, 1 + x3
0x

2
1x

4
2x

2
3 + 2x0x1x

2
2x3 + 2x2

0x1x
2
2x3}

6.2.13 Little Pi Seed.

Let k, n ∈ N be constants and P a polynomial in the setup of (13) of Theorem
3.10. We show the intermediate polynomials Pj for j ∈ {k, 2k, n − 2k, n − k}.
For the general Pi, if j is the largest integer with j < i and j ∈ J , then Pi

comes from i − j upshifts to Pj .

Case 1: If n > 4k, so that k < 2k < n − 2k < n − k, then

– Pk = Ax0x2k + Ax2kxn−2k + x0x3kxn−k + A2xn−k

– P2k = x0x3k + xkx4k + A2

– Pn−2k = Axkxn−3k + Axn−3kxn−k + x0xn−4kxn−k + A2x0
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– Pn−k = Ax0 + Axn−2k + xkxn−3k.

Case 2: If n = 4k, so that k < 2k = n − 2k = 2k < n − k = 3k, then

– Pk = Ax0x2k + Ax2
2k + x0x

2
3k + A2x3k

– P2k = Ax2
k + Axkx3k + x2

0x3k + A2x0

– P3k = Ax0 + Ax2k + x2
k.

Case 3: If 4k > n > 3k, so that k < n − 2k < 2k < n − k, then

– Pk = Ax0x2k + Ax2kxn−2k + x0x3kxn−k + A2xn−k

– Pn−2k = x0xn−3kxn−k+x0x2n−5kxn−k+xn−3kxkx2n−4k+xn−3kxn−kx2n−4k+
Ax0x2n−4k

– P2k = Axkx5k−n + Axkx3k + x0xkx3k + A2x4k−n

– Pn−k = Ax0 + Axn−2k + xkxn−3k.

Case 4: If 3k > n > 2k, so that n − 2k < k < n − k < 2k, then

– Pn−2k = x2n−4kxk + x2n−4kxn−k + x0x2k + x0x2n−3k

– Pk = x0xn−kx4k−n+x0xn−kx2k+x0x3k−nx2k+xn−2kx3k−nx2k+Ax3k−nxn−k

– Pn−k = xn−2kxk + x2n−3kxn−2k + x0x2n−3k + xkx2n−4k

– P2k = Ax3k−n + Axk + x0x4k−n.

6.2.14 Pi Seed.

Let k, n, a, b ∈ N be constants and P a polynomial in the setup of (14) in
Theorem 3.10. We show the intermediate polynomials Pj for j ∈ {k, 2k, n −
2k, n − k}. We obtain the remaining intermediate polynomials Pi as before.
Without loss of generality, assume a2 ≥ a1 and b1 ≥ b2.

Case 1: If n > 4k, so that k < 2k < n − 2k < n − k, then

– Pk = Axa2+b2
2k xb1

n−2k + Bxa2+b2
2k xb2

n−2kxb1−b2
0 + xb1

0 x3kxn−k.

– P2k = x0x
a2+b2
3k + xa1+b1

k x4k.

– Pn−2k = Axa1

k xa1+b1
n−3k xa2−a1

n−k + Bxa2

k xa2+b2
n−3k + x0xn−4kxa2

n−k.

– Pn−k = Axa1
0 xb1

n−2k + Bxa2
0 xb2

n−2k + xkxn−3k.

Case 2: If n = 4k, so that k < 2k = n − 2k < n − k = 3k, then

– Pk = Axa2+b1+b2
2k + Bxa2+2b2

2k xa2−a1
0 + xb1

0 x2
3k.

– P2k = Ax2a1+b1
k xa2−a1

3k + Bx2a2+b2
k + x2

0x
a2

3k.

– P3k = Axa1
0 xb1

2k + Bxa2
0 xb2

2k + x2
k.
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Case 3: If 4k > n > 3k, so that k < n − 2k < 2k < n − k, then

– Pk = Axa2+b2
2k xb1

n−2k + Bxa2−a1
0 xa2+b2

2k xb2
n−2k + xb1

0 x3kxn−k.

– Pn−2k = Ax0x
a1

n−3kxb1
2n−5kxa2

n−k+Bx0x
b2
2n−5kxa2

n−3kxa2

n−k+Axb1
n−3kxa1

k x2n−4kxa2−a1

n−k +

Bxb1
n−3kxa2

k x2n−4k.

– P2k = Axa2−a1

3k xa1

5k−nxa1+b1
k + Bxa2+b2

k xa2

5k−n + x0x4k−nxa2

3k.

– Pn−k = Axa1
0 xb1

n−2k + Bxa2
0 xb2

n−2k + xkxn−3k.

Case 4: If 3k > n > 2k, so that n − 2k < k < n − k < 2k. Two cases will
arise; for simplicity, let us only do the case a1 ≤ b2.

– Pn−2k = Ax2n−4kxa1

k xb1−a1

n−k +Bx2n−4kxa2

k xb1−a2

n−k +Ax0x
b1
2n−3k+Bx0x

a2−a1

n−k xb2
2n−3k.

– Pk = Axb1
0 xa2−a1

2k xa1

4k−nxn−k+Bxb1
0 xn−kxa2

4k−n+Ax3k−nxb1
n−2kxa2

2k+Bxa2−a1
0 xb2

n−2kxa2

2kx3k−n.

– Pn−k = Axa1
0 xb1−a1

n−2k x2n−3k+Bxa2
0 x2n−3kxb2−a1

n−2k +Axkxb1
2n−4k+Bxa2−a1

n−2k xb2
2n−4kxk.

– P2k = Axa1

3k−nxb1
k + Bxa2

3k−nxb2
k + x0x4k−n.

Example 6.10 When n = 8, k = 2 (Case n = 4k), a = 3 and b = 2, the
polynomial P = −2x3

2x
2
6 + 3x2

2x
3
6 + x2

4 generates the period 1 seed

{x0,−2x3
2x

2
6 + 3x2

2x
3
6 + x2

4}, {x1,−2x3
3x

2
7 + 3x2

3x
3
7 + x2

5}, {x2,−2x0x
7
4 + 3x8

4 + x3
0x

2
6},

{x3,−2x1x
7
5 + 3x8

5 + x3
1x

2
7}, {x4,−2x8

2 + 3x7
2x6 + x2

0x
3
6}, {x5,−2x8

3 + 3x7
3x7 + x2

1x
3
7},

{x6,−2x3
0x

2
4 + 3x2

0x
3
4 + x2

2}, {x7,−2x3
1x

2
5 + 3x2

1x
3
5 + x2

3}.

7 Conserved quantities and k-invariants

In this section, we investigate the integrability of the recurrences which gen-
erate some period 1 polynomials. Our general approach, for each recurrence,
is to find a conserved quantity, which we will denote by J . A conserved quan-
tity is a rational polynomial function depending on any n consecutive terms
of the sequence, i.e., Jm,n = J(xm, xm+1, . . . , xm+n−1), which is independent
of m; in other words Jm+1,n = Jm,n = J . Using this conserved quantity, we
multilinearize the recurrence xm+n = P (xm+1, . . . , xm+n−1)/xm by writing it
in the equivalent form

xm+n = L(xm, xm+1, . . . , xm+n−1),

where L is a multilinear polynomial with coefficients in Q[x0, . . . , xn−1]. If L
is linear, we say that the recurrence has been linearized. Notice that when
the coefficients of L are all Laurent polynomials in x0, . . . , xn−1, this multi-
linearization provides an alternate proof of the Laurent phenomenon for these
sequences. In some cases, we find a k-invariant instead of a conserved quantity.
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This is a rational polynomial function J such that Jm,n = J(xm, xm+1, . . . , xm+n−1)
depends on the residue of m modulo k; in other words Jm+k = Jm,n.

In addition to finding conserved quantities, we also perform the singular-
ity confinement test which, although insufficient for proving integrability, is
commonly used to identify integrable discrete systems. We refer to [10] for a
discussion on the singularity confinement test.

In the setting of rational recurrences, integrability corresponds to the dis-
crete version of Liouville integrability, as first described by Maeda [11]. To be
clear, the results in this section should be regarded as the first step towards
the investigation of the integrability of the recurrences in Theorem 3.10. Fully
proving the integrability of a recurrence is technical and involves more detailed
discussion for each sequence than we provide here. For a more detailed dis-
cussion on integrability of recurrences, including cluster algebras and Poisson
geometry, we refer to [12, 13, 14, 15].

7.1 Special case of symmetric with second powers polynomial

We obtain a conserved quantity for the recurrence defined by

P =

n−1∑

i=1

x2
i + A

n−1∑

i=1

xi + B.

The recurrence at indices m + n and m + n + 1 are:

xm+nxm =

n−1∑

i=1

x2
m+i + A

n−1∑

i=1

xm+i + B

xm+n+1xm+1 =

n−1∑

i=1

x2
m+i+1 + A

n−1∑

i=1

xm+i+1 + B

After subtracting the former from the latter and rearranging, we obtain

xm+1 + xm+n+1 + A
∏n−1

i=1 xm+i+1

=
xm + xm+n + A

∏n−1
i=1 xm+i

.

Therefore
xm + xm+n + A

∏n−1
i=1 xm+i

is a conserved quantity for our recurrence that we

will write as Jm,n. By multiplying the numerator and denominator by xm, and

using xm+nxm =
∑n−1

i=1 x2
m+i + A

∑n−1
i=1 xm+i + B in the numerator, we see

that Jm,n can be written as

Jm,n =

∑n−1
i=0 x2

m+i + A ·
∑n−1

i=0 xm+i + B
∏n−1

i=0 xm+i

.
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Then we have

Jm+1,n = Jm,n = J =

∑n−1
i=0 x2

i + A ·
∑n−1

i=0 xi + B
∏n−1

i=0 xi

,

and the mutilinear recurrence

xm+n = J ·
n−1∏

i=1

xm+i − xm − A, m = 0, 1, 2 . . . (7.1)

We show that the recurrence generated by P passes the singularity confinement
test described in [16]. Assume we had a singularity at xm+n, i.e., xm+n =
ε → 0. Then we have εxm = P (xm+1, xm+2, . . . xm+n−1) = O(ε). From (7.1),

xm+n = J ·
∏n−1

i=1 xm+i − xm − A, we can show inductively that xn+m+i =
−xn+i −A+O(ε) for i = 1, . . . ,m−1. It is therefore clear that xn+2m = O(1),
that is, the singularity is confined. It is interesting to observe that, even though
the sequence passes this singularity confinement test, it is not Diophantine
integrable, as shown in [16].

Another interesting fact is that if we define a sequence (ym)∞m=0 such that

y0 = y1 = . . . yn−1 = 1 and ym+n = (
∑n−1

i=1 y2
m+i + A

∑n−1
i=1 ym+i + B)/ym

for all m ≥ 0, then any successive n-tuples (ym, ym+1, . . . , ym+n−1) are integer
solutions of the the following quadratic Diophantine equation

n−1∑

i=0

x2
i + A ·

n−1∑

i=0

xi + B = (n(1 + A) + B) ·
n−1∏

i=0

xi,

which is closely related to the Markoff-Hurwitz equation

n−1∑

i=0

xi = a

n−1∏

i=0

xi.

We refer to [17] ot the study of the solvobility of the Markoff-Hurwitz equa-
tion.

7.2 r-Jumping polynomial

A conserved quantity for the r-Jumping polynomial

P =

n−1
r
−1∑

i=0

xri+1 · xri+r + A,

when n ≥ 2r + 1 and n ≡ 1 (mod r), is

Jm,n =
xm+1 + xm+n+r∏n

i=r+1 xm+i
.
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We then have

Jm+1,n = Jm,n = J =
x1 + xn+r∏n

i=r+1 xi
,

as well as the multilinear recurrence

xm+n+r = J ·
n∏

i=r+1

xm+i − xm+1, m = 0, 1, 2 . . .

7.3 Special case of sink-type binomial

This is the first example of polynomial for which we find a k-invariant instead
of a conserved quantity. For the polynomial P = xkxn−k +1, where 0 < k < n,
there is a (n − k)-invariant which is

Jm,n =
xm + xm+2k

xm+k
.

We then have
Jm+n−k,n = Jm,n.

The quantity Jm,n will depend on the residue of m modulo n−k; more specif-
ically:

Jm,n = Ji =
xi + xi+2k

xi+k
if m ≡ i (mod n − k) and 0 ≤ i < n − k;

moreover, we obtain the linear recurrence

xm+2k = J(m mod n−k)xm+k − xm, m = 0, 1, 2 . . .

This recurrence is thoroughly discussed in [2], where it is shown that the se-
quence is given by its initial values and a recurrence xm+n = G(xm, xm+1, . . . , xm+n−1)
for a linear function G. Moreover, it is shown in [12] for k = 1, and in [13] for
general k that the sequence is completely integrable.

7.4 Extreme polynomial

A (n − 1)-invariant for

P = x1xn−1 + A ·
n−1∑

i=1

xi + B

is

Jm,n =
xm+2 + xm + A

xm+1
.
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We then have
Jm+n−1,n = Jm,n.

The quantity Jm,n will depend on the residue of m modulo n−1; more specif-
ically:

Jm,n = Ji =
xi+2 + xi + A

xi+1
if m ≡ i (mod n − 1) and 0 ≤ i < n − 1;

moreover, we obtain the linear recurrence

xm+2 = J(m mod n−1)xm+1 − xm − A, m = 0, 1, 2 . . .

7.5 Chain polynomial

A 2-invariant for

P =

n−2∑

i=1

xixi+1 + A ·
n−1∑

i=1

xi + B,

when n is odd, is

Jm,n =
xm+n−1 + xm + A

∏n−3
2

i=0 xm+2i+1

.

We then have

Jm+2,n = Jm,n = J0 =
xn−1 + x0 + A
∏n−3

2
i=0 x2i+1

, 2 | m

Jm+2,n = Jm,n = J1 =

∑n−2
i=1 xixi+1 + A

∑n−1
i=1 xi + x1 + A + B

∏n−3
2

i=0 x2i+2

, 2 - m

and the mutilinear recurrence

xm+n−1 = J〈m mod 2〉 ·

n−3
2∏

i=0

xm+2i+1 − xm − A, m = 0, 1, 2 . . .

7.6 Multilinear symmetric polynomial

A 2-invariant for

P =
∑

1≤i<j≤n−1

xixj + A
n−1∑

i=1

xi + B,

when n is odd, is

Jm,n =

∑n−1
i=0 xm+i + A

∏n−3
2

i=0 xm+2i+1

.
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We then have

Jm+2,n = Jm,n = J0 =

∑n−1
i=0 xi + A

∏n−3
2

i=0 x2i+1

, 2 | m

Jm+2,n = Jm,n = J1 =

∑
0≤i<j≤n−1 xixj + A

∑n−1
i=0 xi + B

∏n−1
2

i=1 x2i

, 2 - m.

and the mutilinear recurrence

xm+n−1 = J〈m mod 2〉 ·

n−3
2∏

i=0

xm+2i+1 −
n−2∑

i=0

xm − A, m = 0, 1, 2, 3 . . .
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