
INVESTIGATION OF THE CAUSES OF

NEGATIVE DAMPING OF SYNCHRONOUS MACHINES

by

CHUNG, SHIH--MU

S.B., Chiao Tung University

(1936)

S.M., Massachusetts Institute of Technology

(1945)

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

(1947)

Signature Redacted
Signature of Author .....

Department of Electrical Engineering, May 1947

Certified by Signature Redacted

7hesis Supervisor
Signature Redacted

Chairman, Departmental Committee on Graduate Students

I

~ /



MITLibraries
77 Massachusetts Avenue
Cambridge, MA 02139
http://Iibraries.mit.edu/ask

DISCLAIMER NOTICE

Due to the condition of the original material, there are unavoidable
flaws in this reproduction. We have made every effort possible to
provide you with the best copy available.

Thank you.

The images contained in this document are of the
.best quality available.



Graduate House
Mass. Institute of Technology
Cambridge, Massachusetts
May 1, 1947

Professor Joseph S. Newell
Secretary of the Faculty
Massachusetts Institute of Technology

Dear Professor Newell:

In partial fulfillment of the requirements for

the degree of Doctor of Science from the Massachusetts

Institute of Technology, I hereby submit my thesis

entitled, "Investigation of the Causes of Negative

Damping of Synchronous Machines."

Respectfully yours,

Signature Redacted

Chung, Shih-Mu



ACKNOWLEDGMENTS

The author is especially grateful to

Professor Waldo V. Lyon, under whose supervision

this thesis was carried out, for his constant

guidance and encouragement and for various sugges-

tions and corrections throughout the course of

the work.

The writer is also indebted to Professor

Charles Kingsley, Jr. for helpful suggestions

and for permission to use the machine constants.

To Professor Harold L. Hazen and other members of

the Department of Electrical Engineering he extends

his sincere thanks for their interest and help during

the research.

28772G



TABLE OF CONTENTS

Page

ABSTRACT .................................................. 0

CHAP. I INTRODUCTION .................................. 1

CHAP. II A WOUND-ROTOR INDUCTION MOTOR OPERATED
AS A SYNCHRONOUS MACHINE IN OSCILLATION
(WITH SYMMETRICAL FIELD EXCITATION) ........... 6

2.1 Assumptions for the Analysis .......... 6

2.2. The Fundamental Equations for the
Analysis .............. ............. 7

2.3 Method of Successive Reflections
for Coupled Circuits .................. 10

2.4 Solutions of the Stator and Rotor
Currents when the Machine is in
Steady Oscillation .................... 15

2.5 Electromagnetic Torque Produced
During the Steady Oscillations ........ 33

2.6 Criterion for Negative Damping ........ 37

2.7 Discussions and Conclusions ........... 39

CHAP. III A CYLINDRICAL-ROTOR SYNCHRONOUS MACHINE
WITHOUT DAMPER WINDINGS IN OSCILLATION .0...... 41

3.1 The Differential Equations ............ 41

3.2 Solutions of the Stator and Rotor
Currents when the Machine is in
Steady Oscillation .................... 42

3.3 Electromagnetic Torque Produced
Daring the Steady Oscillations- ........ 49

3.4 Criterion for Negative Damping ........ 52

3.5 Discussions and Conclusions ........... 54



TABLE OF CONTENTS (continued)

Page

CHAP. IV A SALIENT-POLE SYNCHRONOUS MACHINE WITHOUT
DAMPER WINDINGS IN OSCILLATION .................. 56

4.1 The Fundamental Differential Equations 56

4.2 Solutions of the Stator and Rotor
Currents when the Machine is in
Steady Oscillation ...................... 59

4.3 Electromagnetic Torque Produced
During the Steady Oscillations .......... 72

4.4 Criterion for Negative Damping .......... 82

4.5 Discussions and Conclusions ............. 83

CHAP. V OSCILLATION OF SALIENT-POLE SYNCHRONOUS
MACHINES WITH FIELD WINDINGS IN BOTH AXES ....... 87

5.1 The Fundamental Equations ............... 88

5.2 Solutions of the Stator and Rotor
Currents when the Machine is in
Steady Oscillation ...................... 91

5.3 Electromagnetic Torque Produced -
During the Steady Oscillations .......... 103

5.4 Criterion for the Negative Damping ...... 109

5.5 Discussions and Conclusions ............. 110

CHAP. VI LABORATORY EXPERIMENTS .................... 115

6.1 Machine Constants ....................... 115

6.2 Connection Diagrams ..................... 119

6.3 Power-Angle Measurements ..... ,.......... 121

6.4 Numerical Computations and
Comparison of Results ................... 125

6.5 Discussions............................. 154

BIBLIOGRAPHY ..... ............................... 156

BIOGRAPHICAL SKETCH ..................... 157



INVESTIGATION OF THE CAUSES OF
NEGATIVE DAMPING OF SYNCHRONOUS MACHINES

ABSTRACT

The investigation of the causes of negative damping of

synchronous machines is taken in two parts - the mathematical

analysis and the experimental verifications. For the mathematical

analysis the following important assumptions are used:

(a) The machine is connected to a very large source.

(b) The machine constants are constant.

(c) The core losses are disregarded.

(d) The machine oscillates steadily with small
amplitude and small frequency.

With these assumptions the differential equations based upon

the Kirchhoffts laws are established for both the armature and the

field windings. All the voltage and current quantities in them

are expressed in terms of symmetrical components of instantaneous

values. Thus we are dealing with complex quantities, and we have

similar advantages to those obtained by using complex numbers in

alternating-current circuits. In solving the differential equations,

the method of superposition and the method of successive reflections

are employed. The former method is used to handle the armature

and field sources separately, while the latter one is used to

avoid the difficulty of solving the equations simultaneously.

For the purpose of simplification, the replacement of the armature-

circuit resistance by an imaginary inductance has also been used
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somewhere in the analysis. From the solutions of the currents

the expressions of instantaneous electromagnetic torque are

obtained. As the machine under investigation is in steady

oscillation in addition to its synchronous speed, we have the

angle displacement between the stator and rotor as

e=o9 + ot + b sin bt (1)

where

e, is the initial angle

a) is the synchronous velocity

b is the amplitude of oscillation

b is equal to 21Z times the frequency
of oscillation.

Hence the velocity of the machine is

dQ = o) + b b cos bt (2)
dt

From the expression of the electromagnetic torque we may select

all the terms containing the factor bbcosbt and collect them

together as

Td = B b b cos bt (3)

where Td is the damping torque due to the electromagnetic action,

and B is the corresponding damping coefficient. When B is

positive, the damping torque Td will act in such a way as will

tend to increase the amplitude of oscillation. Therefore it

contributes to the negative damping of the oscillation. On the

contrary, if B is negative, it contributes to the positive



damping. If B is zero, there will be no effect on the damping

due to the electromagnetic action at all. Hence the object of

the-mathematical analysis is to determine the expressions of B

for the different types of constructions of synchronous machines.

In the experimental test, due to its inherent character the

synchronous machine can self-oscillate after any electrical or

mechanical disturbance is introduced. If there is no net damping

on the oscillation, the amplitude will remain constant and the

frequency will be fixed by the moment of inertia of the moving

system and the synchronizing torque of the synchronous machine.

Thus the frequency of oscillation is usually very small in com-

parison with line frequency, and the amplitude of oscillation

can be adjusted at will. When a machine oscillates, besides the

damping due to the electromagnetic action there is always some

extra damping due to the effects of load, windage, friction,

hysteresis and eddy currents, etc. This extra damping is usually

positive, i.e., it tends to diminish the amplitude of oscillation.

Throughout the test the machine is adjusted for the condition of

no net damping; then the damping due to the electromagnetic action

is always negative and just enough to compensate the extra positive

damping. In the extra damping, the part due to electromagnetic

action of the coupled d-c machine can be expressed analytically as

Bd.c. 2R

where

B is the damping coefficient due to the electro-
.c. magnetic action of the d-c machine
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k is equal to for the practical units,
71+6

0 is a constant and equals the ratio of

e is the induced emf of the d-c machine,

R is the resistance in the armature circuit
of the d-c machine,

p is the number of poles of the synchronous
machine under test.

This formula is derived without considering the effect of

inductance in the armature circuit of the d-c machine.

If the d-c machine is operated as a motor (i.e., the

synchronous machine is operated as generator), R is nearly

equal to the armature resistance only; then the damping of the

d-c machine will be too large to make the net damping of the

system zero or negative. This explains why it was necessary to

test the synchronous machines as synchronous motors. The coeffi-

cient of the extra damping, excluding the electromagnetic action

of the d-c machine, should be practically constant in the tests.

It is confirmed fairly well from the obtained results.

The condition of zero net damping of a machine in oscillation

can be clearly indicated by the steady oscillation of the reading

of a voltmeter which is connected as shown in Fig. 10. If a brush

oscillograph is used instead of the voltmeter to record any varia-

tion of the amplitude of oscillation, we may also test the machine

with either positive or negative resultant damping. The variation

of the amplitude should follow the following formula:



B' (t2...t)
b2 = bl (5)

where

b2, are the amplitudes of the oscillation at
time t2 and t1 , respectively,

B is the resultant damping coefficient,

J is the quotient of the moment of inertia
of the moving system divided by the number
of pairs of poles of the synchronous machine.

In order to have good verification, B' should not differ very

much from zero, and any disturbance in the period between t2

and t- must be avoided.

From the mathematical analysis, the damping coefficient due

to the electromagnetic action of cylindrical-rotor synchronous

mqchine without damper windings may be shown as

B = 2K 2s sin a cos 2a

3x V 2sin(a - )
+ m 11i 0 (2E sin a - V sin(a - bo) (6)

rbZw(1 + b2

If the field terminals are short-circuited instead of connected

to the d-c source, E is zero, and the damping coefficient is

6K x V2 k4sin 2 @ - )
B = - - (7)

rbZ o( + b2

Hence B is always negative or the electromagnetic action always

produces positive damping. Professor H. E. Edgerton explained,



in the discussion of the paper, "Effect of Armature Resistance

Upon Hunting of Synchronous Machines," by C. F. Wagner, in A.I.E.E.,

July 1930, that the cause of negative damping of the synchronous

machines might be due to the single-phase secondary (field winding)

induction-motor action. According to the formula 7, however, that

action could not be the cause of negative damping under the assumed

conditions.

Andreas Timasheff emphasized strongly in his paper, "Eine

ErklJrung der Schwingungsanfachung bei Synchronmaschinen," in

Siemens Zeitschrift, vol. 15, No. 6, June 1935, that the phenomenon

of negative damping of the synchronous machines may be explained

by using the analogy of the relation between the speed and the

induction-motor torque near standstill (considering short-circuited

armature windings as secondary). He derived a formula for the damp-

ing coefficient of round-rotor synchronous machines with the nota-

tions used in this thesis as

B K 2sin a cos 2a (8)
0) xm Zm s

By comparing the formulas 6 and 8, it is noticed that formula 8

is a part of formula 6. Hence, Timasheff' s result explains only

a part of the causes of negative damping of cylindrical-rotor

synchronous machines without damper windings.

In the paper, "Stability of Synchronous Machines," by

C. A. Nickle and C. A. Pierce, in A.I.E.E., vol. 49, January 1930,

they analyzed the problem of damping of synchronous machines from
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the vector diagram and gave an analytic expression for the

damping coefficient. If it is expressed with the notations of

this thesis, we have the damping coefficient of a round-rotor

synchronous machine without damper windings as

6K x v k2sin(a - b0 )
B = bM+ 0 2E sin a - V sin(a - b ) (9)

r'Z&(4 + b2)

This expression is entirely different from the formula 8.- It is

the other part of the formula 6. Therefore, C. A. Nicklets and

C. A. Pierce Is result also explains only a part of the causes of

the negative damping of synchronous machines.

From the mathematical analysis of this thesis, the coefficient

of damping due to the electromagnetic action of salient-pole syn-,

chronous machines without damper windings may be given as:

6Kx v k q
B = m q___ _____

( rb k2 + b2 * (r 2+ xdq

Z d
2E sin a - V sin(a2 - bo)

q

L + dZ z - g sin a 1 os(a, -bo ) i~a

q

4K E2ra(xdq -r

(o x(r + xed

4K E r (E a V cos b )(2r 2 xdxq

+ x (r2 + xx)3 + (V sin 6 a (2xq 2- )r (10)
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From the results in the paper by C. A. Nickle and

C. A. Pierce, we have

6KxV 2
B m q

o) rb k +b 2 (r + xdq)3

2E sin a - ZdV sin(a

qI[ I sin(a 1 - (0)

.xd ~ q
+ Z V sin a cos(a1 - b)

q

This expression is still only a part of the formula 10.

For the case of salient-pole synchronous machines with

damper windings, the mathematical analysis is given in the

Chapter V. The expression of the damping coefficient is very

long, and it is not repeated here.

The analytic expression for the damping coefficient of a

wound-rotor induction motor operated as a synchronous machine

with the symmetrical field excitation may be given as:

B = 2K E2 sin a cos 2a

m s

2K x k 2E V sin a sin(a + 20 - - b)
+ 2 2 2 -V 2 cos(s- )rbZ o kb+ b cs

.00 (12)
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And Dr. L. Dreyfus gave the corresponding damping coefficient

in his paper, "lEinfhrung in die Theorie der selbsterregten

Schwingungen synchroner Maschinen," in E.U.M., vol. 29, nos. 16

and 17, April 1911, as (with the notations used in this thesis):

B 2K E2 sin a cos 2a

mZ

2K x
+ - 2E V sin a sin(a -b 0 )- V2 (13)

rb sO

By comparing the formulas 12 and 13, we can see that if we let

b = 0 (14)

then 
2
b = 1 (15)

k2+ b2

and

2P - X =0 (16)

and the two expressions of B will be identical except that

where it is x in the formula 13, it is x in the formula 12.s m

After investigating all the expressions of the damping

coefficient B which have been obtained from the analysis, we

can conclude that if there is no resistance in the armature

circuit, any kind of synchronous machines will be inherently

stable (i.e., with positive damping).



INVESTIGATION OF THE CAUSES OF

NEGATIVE DAMPING OF SYNCHRONOUS MACHINES

CHAPTER I

INTRODUCTION

-The existence of synchronizing torque and moment of inertia

of synchronous machines can only provide the ability to keep the

machines in oscillation about their equilibrium positions after

some momentary disturbance has been introduced. In order to bring

themselves back to their exact synchronous speed, it is necessary

to have some positive damping torque to damp off the oscillations.

The inherent windage, friction, and eddy currents, etc. will always

supply some positive damping, but the electromagnetic action between

the field and armature windings may produce either positive or nega-

tive damping, depending upon the load conditions, machine constants,

and excitation. If the resultant damping effect is negative, the

machine will then oscillate with larger and larger amplitude. Such

cumulative oscillations will cause instability of the machine. For

the treatment of any stability problem of synchronous machines, there-

fore, the condition of negative damping should be avoided. In the

ordinary textbooks treating steady-state stability and transient-

state stability of power systems, the synchronous machines in the

system have already been assumed to provide enough positive damping

to prevent the cumulative oscillations. In practice, fortunately,

the amortisseur windings which may have been installed for other



reasons usually furnish enough damping for stability except for .

abnormal conditions. In theory, however, the causes of the negative

damping have never been completely examined and satisfactorily ex-

plained. This thesis attempts to accomplish this purpose.

As early as 1902, C. P. Steinmetz did first announce the possi-

bility of negative damping of synchronous machines. In the follow-

ing year, B. Hopkinson noticed the phenomenon of negative damping

and pointed out that it was due to the presence of armature resist-

ance. In 1911, Dr. Ludwig Dreyfus made an analysis on uniform air-gap

synchronous machines with a damping winding in the quadrature axis

having the same constants as that of the d-c field winding. He

showed that the high excitation, large value of armature circuit

resistance, and low line frequency are the favorable conditions for

negative damping. In 1930, C. A. Nickle and C. A. Pierce made a

more detailed analysis based on the vector diagram and gave the re-

oults that "the damping torque of any synchronous machine can become

negative, giving instability, if the armature resistance is increased

beyond a critical limiting value. ...... This value, for a salient-

pole generator with normal excitation and no amortisseur winding, is

r = xq tan b

where r is armature-circuit resistance, xq is quadrature syn-

chronous reactance, and b is the steady-state displacement angle.

If r is less than this critical limiting value, the damping torque

is positive; if greater, negative. ...... The damping of a generator
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increases in the positive direction with increase in load." In

the same year, C. F. Wagner - with the energy point of view --

also obtained the same limiting value for armature resistance to

make a generator stable. In 1935, A. Timascheff in Germany gave

an explanation for the phenomenon of negative damping of synchronous

machines by the analogy of induction-motor torque at starting, and

gave a very simple expression for the damping coefficient of round-

rotor synchronous machines as

E2
T E 2 sin 4pTd 4

where Td is the damping coefficient (it is positive for positive

damping), E is excitation emf, x is synchronous reactance, and

p is the complement of the synchronous impedance angle. From this

expression we can see that the damping coefficient does not depend

on the load, and it is always negative except that the ratio of

armature resistance to synchronous reactance is too large.

According to the different results shown above, we can see

only one point common to them all, i.e., the armature-circuit

resistance is to be blamed for the negative damping of synchronous

machines. As to how it depends, the different authors claimed

differently. Their disagreement seems to the present writer to be

due to the fact that their methods of analysis are not rigorous

enough. A more complete and rigorous solution is attempted by the

writer in this thesis. He starts the mathematical analysis from

the differential equations with self- and mutual inductances of the



armature and field windings. The speed of the machine is assumed

to vary sinusoidally of small amplitude about its synchronous

speed. (The method of analysis can be extended to the cases of

large amplitude of oscillations.) The voltages and currents are

all expressed in terms of symmetrical components of instantaneous

quantities (i.e., they are in complex quantities). The advantages

of using such components are the same as the advantages in using

complex numbers to solve steady-state problems in a-c circuits.

By applying the method of superposition and the method of successive

reflections, we are able to find the armature and field currents

with each in terms of the first few terms of a Fourier series. In

the analysis the stator resistance will be approximated by an

imaginary inductance after a few reflections between the armature

and field have been taken into account. Then, from the expressions

of the currents, we can get the expression of the electromagnetic

torque produced during the assigned oscillations. This expression

of torque is also in terms of a Fourier series, and that term which

is of the same frequency and is in phase with the variation of speed

contributes to the damping action under investigation.

It is planned to begin the analysis on the simplest case first

(the machine is symmetrically excited and has a uniform air gap).

The analysis is then extended to the most complex case, in which the

machine has salient poles with damper windings in both axes. By

doing it in this way, the method of analysis is understood more

easily and the causes of negative damping of synchronous machines

more clearly defined. In the analysis, in order to normalize and
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simplify the problem, some assumptions and approximations have

been introduced; to justify them, therefore, some experimental

verifications are also included in this thesis. The machines to

be analyzed are limited to polyphase machines only.



CHAPTER II

A WOUND-ROTOR INDUCTION MOTOR OPERATED
AS A SYNCHRONOUS MACHINE IN OSCILLATION

(WITH SYMAETRICAL FIELD EXCITATION)

A uniform air-gap synchronous machine with a damper winding

in quadrature axis having the constants the same as those of a

d-c field winding can be imitated by a wound-rotor induction

motor with symmetrical excitation, so far as the theory is

concerned. Then, the machine really provides polyphase windings

on both stator and rotor. This facilitates the analysis to a

great extent. We shall start to analyze this case first.

2.1 Assumptions for the Anali

The machine used for the anal

nection diagram as in Fig. 1, wher

can be considered as balanced infix

a

C

Power system Stator wind

ysis

rsis can be shown with a con-

e the power system is large and

ity bus of sinusoidal wave form.

dc
d

ings' -3%otor. windings

Fijrure 1, ^onnection Diapram.
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The machine is oscillating sinusoidally with small amplitude and

frequency about its equilibrium position in addition to its

synchronous speed. By small amplitude it means that the sine of

the amplitude does not differ very much from the amplitude. By

small frequency it means small in comparison with the line frequency.

The exciting source has a constant emf E d.. which is independent

of the machine oscillations. The flux distribution in the air gap

is assumed sinusoidal, and the iron losses are neglected. As the

machine is under operation of constant applied voltage throughout

the investigation, we may consider that the magnetic saturation is

nearly fixed at a certain value; then the machine constants used

can be considered constant corresponding to the saturation. With

these assumptions in mind, we can develop the fundamental equations

for the analysis.

2.2 The Fundamental Equations for the Analysis

For three-phase induction machines we have the fundamental

differential equations as follows:

al (ra + L d l + i ( a (1)

vbl (rb + Lb+ t) (bl +) (2)

T = j K ( 1iia2 - ib2 als) (3)

where

v al vbl are the stator and rotor positive-sequence volt-

ages in terms of instantaneous values referred to phases a and

b, respectively.
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i , b are the corresponding positive-sequence currents,

and ia al 2 1 b

r , L are the stator resistance and stator self-inductance
a a

at line frequency.

rb , are the rotor resistance and rotor self-inductance

under d-c conditions.

M is the maximum mutual inductance between one stator phase

and one rotor phase.

G is the position angle between the stator and rotor. It can

be any function of time.

T is the electromagnetic torque produced.

j is equal to .

K is a constant depending upon the units used. If the units

of currents, inductance, and torque are in amp, henry, and lb. ft.,

respectively, we have

no. of-poles 550 M 3~ 2 746' 2

The relative directions of e and T can be shown as in Fig. 2.

C
a Stator wind.incrs

e

b f
(TT

d Rotor win in s

Firrure 2, Windinr Positions.
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Although the eqs 1, 2, and 3 will hold good for 9 being

any function of time, yet, as we know, there are solutions of

elementary functions only when 0 is a linear function of time

(i.e., the machine is operated at constant speed). For the

problems which we are going to investigate, the speed of the

machine is not constant but is pulsating. Based upon the assump-

tion we have made,

9 = 9 + ot + b sin bt..... (4)

i.e.,

dO = o + bb cos bt ........ (4)
dt

where

9 is the initial angle.

co is the synchronous angular velocity.

b is the amplitude of oscillation. It is assumed less
than 0.2 rad.

b is the angular velocity of oscillation. It is about
3 per cent of co .

Since the applied voltage is balanced and sinusoidal, we have

V =l V F, ......** (5)

where V is a known complex constant. Its magnitude is equal to

half of the maximum value of the applied phase voltage, and its

argument is equal to the initial phase angle of the voltage applied

to phase a . Due to the fact of symmetrical field excitation, we

have

vd vf

and

vb vd = Ed.c.
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Hence Ed C (6)

Substituting the values of 0 , val y vbl into eqs 1 and

2, we have

ot d d i Jr(Got+bsinbt) (
( ='a a +t2M 'al I (8)

d.= (rb + Lb t' + 2 M L al

By solving the eqs 7 and 8 simultaneously for ial and :bl

and then substituting into eq 3, we can get an expression for the

electromagnetic torque produced. From this expression we shall see

what the damping depends upon and whether it is positive or negative.

2.3 Method of Successive Reflections for Coupled Circuits

Before solving eqs 7 and 8, a method which I call a method of

successive reflections may be introduced. This method may be used

to solve problems of coupled circuits when it is difficult to solve

the differential equations simultaneously. It is a method of solving

the differential equations one at a time for an infinite number of

times. The solutions obtained are, then, in forms of infinite

series. If the original equations have solutions of elementary

functions, the series so obtained will converge to the same func-

tions. Otherwise there is difficulty in summing up the series.

Nevertheless, because of the characteristics of most coupled cir-

cuits the series will converge very rapidly. Then we may either

sum up the first few terms of the series only, or approximate the

sum of all the remaining terms in addition to the first few terms,
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to give the required solutions. The approximate value of the

sum of all the remaining terms of the series may be found by

solving the equations simultaneously after introducing some

simplifying approximations (on the equations themselves after

the corresponding reflections have been taken).

To illustrate this method, we may take, for example, a simple

case of a static transformer with its secondary short circuited

and its primary connected to a source as shown in Fig. 3, where

Za, Zb are the self-impedances.

Z is the mutual impedance.

V is the applied voltage.

I'b are the currents to be solved.

I Z m b

a b

Figure 5, Short-circuited Transfornier,

Applying the Kirchhoff' s Laws to the two windings of the

transformer, we have

V =IaZa + IbZm (9)

0 =IaZm + IbZb (10)

These two equations could be solved simultaneously and have exact
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solutions as

I V Zb

a Z- Z
ab m

-Z
I = V zbm . .... (12)

If we want to solve them by the method of successive reflec-

tions, we can do it as follows:

First step: Assume the circuit b open and with applied volt-

age across circuit a, as shown in Fig. 4.

~Tbal -- bl

al Za m :>b bl

a b

ip-ure 4, Transformer at 'o LoQd.

We have

V Val-

al. Za

11 = 0

V = ZZ
bl a m Za m

where the number following the letters in the subnotations in-

dicates the component considered in each step.

Second step: Assume now circuit a open and a voltage of (-Vbl)
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is applied to the circuit b , as shown in Fig. 5.

Ta
2

a2 a t

a

b b2

b

- Vbl

Pi-,ure 5, Transfoi.rmer at Io Load.

We have, then,

V
V

=-V bl= - - Zb Za m

b2 Zb

I
a2

V

Za

Z-m
Zb

= 0

V = I Z = -
a2 b2 m ZT :; M

Third step: Assume now circuit b open again and a voltage of

(-V ) is applied to circuit a (i.e., the total voltage now acting

on circuit a is V + V - 2). As is shown in Fig. 6, we haveal a2 a2

'a3

a3 Za Zm

a

7F
b Vb3

b

Figure 6, Transformer at No Load.

Va2
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V mnV -V a Zb ma3  a2  Z.L-Tb-Z

V z z
3- V m Z

a3 kZ a* b"Z

Ib3 =0
Z Z

v =Iz V Z = . Z
b3  a3 m Z ZbZa m

Continue on the cycles again and again an infinite number of

times. We shall then have the total values of currents and voltages

as follows:

Ia =I +I +I + .....
a a1 a2 a3

Z 2 L2 2

y Z2  2 ~

Za ZA ZaZb

V
Za Z2

1-ZZb

Zb

ZZ1 -am

Ib bl + Ib2 + Ib3 + ....

ZM

+ 0 + - -m
Za Zb

+ -Z a Zb Za b,

Z 2 Z2

_m- . + .....
ZA b ZaZb)
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Z z2 z2 2

-V --- ) + ....
Za Zb ZaZb ZaZb 

Z Z Zm
Zb Z Z - Z

- - a m

ZaZb

Va Val + Va2 + V 3 +.

=V + V -V +v -v +....= V
a2 a2 + a47 a.4

Vb Vbl + Vb2 + b3 +...

Vb - Vbl + Vb3 Vb 3 +... 0

We can see that the currents are the same as given by expres-

sions 11, 12, and the voltages satisfy the given conditions of the

original problem (i.e., with a voltage V applied to the circuit a

and with the circuit b short-circuited). For a simple problem like.

this, of course, the method of successive reflections does not show

any advantage at all, and gives an impression of tedious work in-

stead. But for the problems which we are going to investigate, this

method will serve as a powerful tool.

2.4 Solutions of the Stator and Rotor Currents
when the Machine is in Steady Oscillation

To solve eqs 7 and 8 for ial and i , the method of succes-

sive reflections will be used to obtain the components of currents

of the first few reflections. After a few reflections have been

taken, we can solve the equations simultaneously by approximating the

stator resistance with an imaginary inductance to obtain the sums of

the remaining components of the currents. That is, ra is replaced
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ra
by an imaginary inductance equal to . This is justified, as

the machine is under steady oscillation of small frequency, and

since under such conditions the components of stator currents will

have frequencies very near to the line frequency. With line fre-

quency, such replacement introduces no error at all. This method

was first used by Professor W. V. Lyon to take into account core

losses in electric machinery, in the paper "Transient Conditions

of Electric Machinery," A.I.E.E. Transactions, 1923.

In order to get the solutions clearer and easier, the method

of superposition is also used to handle the stator and rotor

sources separately. The difficulty of solving the eqs 7 and 8

arises from the factor sIjtinbt is advisable to express

this factor as a Fourier serieswith Bessel coefficients.

2 + +
2 24+

Then

jbsinbt 1 + jb sin bt - sin2bt

- j sin bt + 7 sin t +
24

=1 + jb sin bt - (1 - cos 2bt

- j si bt (1 - cos 2bt)

b (1 - cos 2bt) +

+ -? \ o 2b 2 +..

2 2
=1 + jb sin bt - + cos 2bt

- j g sin bt + j 3 sin bt cos 2bt

+ - cos 2bt + cos2 2bt +...46 ; 8 96 co
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b2 b2
=2+ b sin bt - + cos 2bt

- 3 sin bt + j sin 3bt - j sin bt

12 24 4 24

+6-4 cos 2bt +b + cos 4bt +

b2 _ 4 _96 - + Y9z 9619+2*
(1 - + -+ +.

+ (- - Y2 +... ) sin bt
2 2

+ -- ( - + ... ) cos 2bt

b3
4

+ j sin 3bt + - cos 4bt +

( 1  + - )4~ 64

+ ( - + .. ) sin bt8

2 12+ (i - + ... ) cos 2bt

63
+ JL sin 3bt + - cos 4bt + ...

11( + - + +. + 2 ) cos 2bt4 T4 + 4(1- 12+

+ - cos 4bt + .. J192

+ j Ib( - +.. ) sin bt + sin 3bt + ... (13)

As we have assumed that b is small, then, from expression 13,

by neglecting high harmonics, we can have

e jbsinbt = M + jbn sin bt ..... (14)



where

b2
m = 1 - -+ + . =4 64 0

n = 1 - +

For simplicity, we even may use

(15)

(16)= J

e= 1 + jb sin bt .... (17)

However, in order to show the principal effect of the value of

b on the damping under investigation, the relation 14 is advisable.

If the amplitude b is too large, we have to take more terms of

higher harmonics; then the analysis becomes much more complex.

By applying the method of superposition, we can proceed with

the analysis as follows:

A. Due to the field source alone

At present we may consider that there is field source only

and the armature terminals are short-circuited. Then, from eqs 7

and 8 we have

0 (r + LaD)i + bM1D)..

Edc (
d-c _. (rb + LDi + IMi ''

(18)

(19)

where

() = + cot + b sin bt

D dt

Then, applying the method of successive reflections, we have:

First Step. Assume at present the stator terminals open.

(From now on, we shall use a second number in subnotations to

18
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indicate the components in each step, while the first number still

denotes the sequence components.) Hence

i = 0 (20)
all

E dc

vbEl = (rb + LbD) ibll
Vbee3

i.e.,
E dc

ib E 3c. (21)

Also

= MD(i P") - d.c. ejo) (22)all 2 b~) 2rb

Second Step. Assume that the rotor terminals are open and a

voltage of (-v ) is applied to the stator. We have
all

ME
v =-V =- d.c. D(def) = (r + L D)i (23)a12  all 2 rb a a a(3

Let
r
aLk a = (24)

a

We have the solution of equation 16,

i -- ME d.c. -ktr ekat i)(5
a12 2r . - d(eJS) (25)

As

ejo = j(G-foft+bsinbt)

J (g-ot) jbsinbt

= J (90 (m + jbn sin bt)



20

Then

j9a joeJ(90-kot)
) (m + J b n sin

+ J b n b L# 9040A cos bt

=s(90-t) ( o m - o b n sin bt + j b n b cos bt) dt

kat d(s ) = ja m io

- o) b n ejeo J (ka+jo)t sin bt dt

+ j b n b ei 0 (ka+jo)t cos bt dt

j co (ka+JCO)t+Jg%

ka + JO

(QA n e(ka+jao)t+Jeo +

+ j2 + b2 (ka+jO)sinbt-bcobt

j b n b e(ka+o))t+j8
+ (k+jo)2 +b 2  [(ka + Jco) cos bt + b sin bt

j o, me(k +Jco)t+j%

ka + JO

ne(ka+J(O)t+J~o
+ j b n)ao(ka + Jo) + b2 sin bt

(ka + jO) 2 + b2

b n b (ka+aw)t+ieo
+ j cos bt

(ka+ Jo)2 +b2

Then, substituting into eq 25, we have

bt)
dt

and

ii
(ka+jco)t dt



M d.c.

2rbLa

j (o m j(cot+90 )
ka + jo

b n (Jco(ka + jo) + b 2)

(ka + jo)2 + b2

j(cot+00)
+ sin bt

b n kab (ct+%)

(k a +jco)2 2cos bt

a 1 i S-J(G+ot+bsinbt)
a12

(Ut (m - j b n sin bt)

- dLC. m - j b n sin bt)2rbLa

I +[oka+ o
a

bn jo(ka+ jco) +b 2

(ka + jo)2 + b2

b n k b

+ a 2 +1b2
(ka+jcO)+

ME dc.

2rbLa
j m2

ka + 40 + 4

b n m kab
+ 2

(ka+ jo)2 +1,2

n m jco(ka +

(k + jo) 2

cos bt + n
ka + jo

b2n2 (icoka + j4o) + b2)
+ + 2

(ka + Jo) + b

2
sini bt

+ b2 25cos bt sin bt
(ka + JO)2 +0 1

21

and

(26)

sin bt

cos btj

Jo) +

+ b 2
sin bt

sin bt
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Considering the fact that b<::-o , we have

2 _
Jm2 bnmosin bt
ka + JW ka + jW

bnmkb

2 Cos
(k + jw)

ka + jCO

O2 b
+ a

2(ka + jco))2

+ n m obt+k + jco
a

-cos 2bt)-
2

sin 2bt

j W
k + jio (M

22+n
b n m kab

+ j A cos bt
(ka + jo)

,2n2b n j)
(k a + JO)) C08

2nN b
2bt + a 2

2(ka + jco)
sin 2bt -

From relations 15 and 16 we have

2 2
( + b+ -) = (1 - b

4

b2

= 1-2

+F (1

+ b4

16+

b- + .)

4

32 8

=1-b4 +..=
32

i 8-joa- ON
Al2

d.

2rbLa

sin bt

d.c.
-2r I.

b a

(27)

. . ) 2 + b - + 2
2.)+~( 8 *

b4

32 +*

(28)
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Substituting this relation into eq 27, we get

-j M d.c. j ( + n m kab2rb = + j 2 o b2 rbLa ka +ico i(k + jo) o

- 2n2 b2n~k 2bJ (2

b nop cos 2bt + a sin 2bt (27')
2(k + 2~ ( w

2(ka + jo)

Then the rotor voltage will be

2 

2MD(i12 
-ji

vbl2 a2

3M Ec n fm k b
- - dc. +a b 2  sin bt

I4rbLa ka + 2

+ n 6D sin 2bt

b2n2k b2

+ a 2 cos 2bt .... (29)

(k a + jo)

and

ib2 =0 (30)

Third Step: In order to obtain the sum of the remaining parts

of i and ib , respectively, we now consider that a voltage of

(-vbl2) is applied to the rotor while the stator terminals are short-

circuited. Then we have

0 =(ra + LaD) i' + 2 )MD( ) (31)-ba a 2 )(

I MD(i' 9ejo(32-vb2 = rb + LbD)i, + 2 aj 32
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where

i' =i - (i +i )
a1  a1  al a12

= b~ ii+ bl2)

and vbl2 is given by expression 29.

It is actually as difficult to solve eqs 31 and 32 simultaneously

as to solve the eqs 18 and 19 in the beginning. But in eqs 31, 32,

the currents and voltages are all small quantities in comparison with

the corresponding terms in eqs 18 and 19. In other words, the prin-

cipal parts of ial ib have already been obtained from the first

two reflections; so we may apply some simplifying approximation in

solving eqs 31 and 32 and introduce little error into ial and *

at all. By noticing the fact that b is usually about 3 per cent

of co , we may approximate the stator'resistance ra by an imaginary
r

inductance . Hence we have, from eq 31,

r j
0 =( + La) D i' + 2 M)( 00= ) a a1  2 (b

or

( + L i + 2 Mibs 0 (31)

Let
r

L = + L (33)

We have

ie-jo 2 
(



Substituting eq 34 into eq 32, we get

-vbl = (rb b bL D
e

V (

Lb
L i

I1

( M 2

LbLe
(35)

(IM)2

LbLe

rb
kbO'bLb

Then, from eq 35, we have

v

- =a (kb + D)ib
bLb

-kt fkbt( )--- ) dt

Then, from eqs 29 and 351, we get

= 3M2 Ed..

4rbLaab

Sn m kb2

a

(k a+ jo) 2

(b cos bt

2k b

- kbsin bt)

+ b2

3M2Ed..
4rbLa' Lb

b22m2n cob

ka + Jo'

(2b cos 2bt - kboin 2bt)

k + 4b2

+3M2Ed.3+Ed.c.
41bL b

2n~k b2
a

(k a + jco) 2

(kbcos 2bt + 2b sin 2bt)

k + 4b2

25

or

Let

(36)

(37)

or

b
i

(35 )

(38)

ab =
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Substituting eq 38 into eq 34, we get

9Ad.c. n m kab2

bLacbLbL e * (ka + jo)2
*
(kb sin bt - b cos bt)

k 2+ b2kbb

9M3 Edc.
8rbLaLbLe

9M3Eadc.

rbLabLbLe

2n2

ka + jo*

b2n2k b 2

a

(ka + jo)2

(2b cos 2bt - kbsin 2bt)

k + 4b2

(kbcos 2bt + 2b sin 2bt)

2 2k7 + 40

Therefore, due to field source aloney from eqs 21, 30, and 38 we have

S=bll + 12 +Il

E 3M2Ed.c. b n
3rb + 4r L L (k +

3M2Ed.. b2n2.b

IbLaabLb ka + j*

3Ed.. 
2n2k b

2

42bLaa;b * (ka + JW)

m kab2 (b cos bt - kbsin bt)

22 2
Jo) (kb + b

(2b cos 2bt - kbsin 2bt

k + 2
(K+ 4~b

kbcos 2bt + 2b sin 2bt

2 2
(K + 44b )

and from eqs 20, 2 7r, and 39 we get

- j-je , -+ -j
ial all + ia12 + ial

d.c. j(0 n m kab Ed..M
2rbLa *ka + Jo ~ ka + jo)2 2rbLcos bt

SME 2 2 ME r2 b
+ d.c. n (0 cos 2bt - -d.c. n a sin 2bt

2rLa a b a 2(ka + j)2

-jQ

(39)

(40)



39M Ed.c . . n m kab 2

+ 8r L a L L *(ka + jco) 2
Ed c a

+j9ME Ed.c. 62n2ob
8bLabLbL e (ka + j2

9M Ed.c. 2n2kab2

rbLacbLbLe (k + jO))

(kbsin bt - b cos bt)

S (k + b 2)

(2b cos 2bt - kbsin 2bt)

K + 4b2

(kbcos 2bt + 2b sin 2bt)

2 2
(K + I4b)

Equations 40 and 41 may be represented in short by

ibl = B0 + B1 sin(bt + Pl) + B 2 sin(2bt + P2)

iale = A0 + A, sin(bt + a,) + A2 sin(2bt + a2

(40')

(41 t

where B , B , B2 , A0 , k , A2 are constants which can be

determined easily from eqs 40 and 41.

Since the electromagnetic torque is

-je j
T =j K (i bl'a26_j %2 alp- - (3)

then, if only that part of the torque which is varying with the same

frequency as the speed is of interest, we may disregard the terms

of second harmonics in the expressions 40t and 41' so long as

B2  B 0

A 2 <<A0

(42)

(43)

For small values of b , from eqs 40 and 41, we know that the con-

ditions 42 and 43 are satisfied. So we may express and

27

(41)
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ial S as

i = B 0 + B, sin(bt + Pl) (40")'

iAal A + A  sin(bt + a) (41")

and introduce little error into the first harmonic torque to be

investigated. Then we have

Ed.c 3M2E d.c n m k b2  (b cos bt - kbsin bt) 4
ib 3rb bLab (ka + jo)2 (k + b2

-je - Ed.c.M Edoe.M kab n m b
i al = -J - a'cos bt

(ka + Jo)2 2rbLa

9MEdec. n m k b2(kbsin bt - b cos bt) (45)
8bLaa~bLbLe(a+c) 2 2er (ka + Ja)2 (kb + b2)

B. Due to the armature source alone

Now we imagine that the armature source alone is applied and

the rotor terminals are short-circuited. Then, from eqs 7 and 8,

VSjot =(r +LD)i +IDi J9 (46)
a a al 2 bl )

0 (rb +LbDib + 2 )al

In order to solve eqs 46 and 47, we may still use the method

of successive reflections as in the case when the field source

alone is applied. But for this case, as the frequency of the

applied source is of line frequency, the replacement of stator
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ra
resistance r by inductance - gives no error for the firsta O

reflection. Hence the results obtained will be the same by approxi-

mating the stator resistance with an imaginary inductance in the

beginning and then solving them simultaneously as follows:

From eq 46 we have

V i =L D i a MD 5 e al 2  (b1

where
r

L = +L
e jco a

i.e.0

fve t dt L D il+ D( j) dt

or

V jCOt L i IMO =L al+2 ibls

Then

-JE) 1 V (Cot-9)
is =- -+-s l aal L Je I2 Mb

v J 2
- 8 L Libi (48)
Je e

where

=ot -(49)

Substituting eq 48 into eq 47, we get

(rb +LbD)ibl + 2 [J oL sLiblJ

or

(Ib b+ D 3 2i D 
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Hence

bMV -kt kbt J(
bl ~ 2 jo LQb e d( ) (50)

Since

$=ot - =t- (60 + t + b sin bt) = ( + b sin bt)

Then

-kbt kbt oi G -j b n e-j'9 2
ktk d(z ) 2 2 (b sin bt + b kcos bt) (51)

k+ b

Substituting eq 51 into eq 50, we have

- 3Mvb&n sJ (bsi
bl2 2 (b2sin bt + bkbcos bt) (52)

2co Lebb (kb + b

Substituting eq 52 into eq 48, we get

-o 2 M )2 V b - 2

al JoL L2 2 2 (bsin bt + b kbcos bt) (53)
e oLeobLb(k + b)

C. Both the armature and field sources are aoplied

By applying the principles of superposition, we know that

the rotor and stator currents, when both armature and field sources

are applied, are equal to the sums of the respective currents when

the two sources are applied one at a time with the other short-

circuited. Then, from eqs 44, 45, 52, and 53 we have

Ed.e dc. a b n m (b cos bt - kbsin bt)

'b1 r 2 2 23rb 4rbL bLb(ka + jo) (k + b

+3MV n e Jo(b2sin bt + b kbcos bt)

2o LeLbc'b(kb + b2 )
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-je E d. a.M E d.00.M k ab n m b
ialS 2r L a cs

b e 2rbL (k + jo)

9M3E . b2 b n m(ksin bt - b cos bt)

NrbLaIbLe(ka + jo)2(k + b2

V 9O qM2V 6-J'o b n(b2 sin bt + b kbeos bt)
+ co (55)

L 4o LabLb (kb + b )

Let b be the power angle or displacement angle when the

machine is in steady synchronous speed, and assume it to be positive

for excitation emf leading applied voltage. We have

J( +90-60)
V (va) = V s

t=o

= j i(Go~bo) (56)

Let the exponential forms of the constants be

1..... 1 =ja)
L --- 1 e (57)

e #+L e
JO a

1 1 ()j

1 - Lb

rb j

kb ob9- 1kb!E(9

k2 + b2 = i + JX (60)k b kb +b I (0



r
k+ jo=a +
a UL

a

= C L
Li
a

(2
(k + jco)

ao+L

Sj ICO Le1 -e

a

L a 2 j2a

e

Then we can rewrite the equations 54 and 55 into exponential forms

as follows:

Ed. c.

ibi -r -1 3rb

3M2E d.c.kabb m n

4rbLaLb b(ka + j(0) 2 (k2 + b2 )

j (p+2a-)
8 cos bt

3Md.E.kb2kb m n

4rbLaLbb(ka + jo)2 + b2

3MV b2 b n

2o L Lbab(k + b2

3MV b k bb n

20o LTY (k + b2 )

9j (2p+2a-x)
e sin bt

j (a+f--bn)
8 sin bt

J(a+20-%-bo bt

SEd.ce M
2rbLe |

ja + j
E d.eM kab b n m

I + 2
2rbL a(k a + jco)2

j2za
e cos bt

9M3Ed kab b 2kbm n

rbLaLb (bL (k + jo)2 (k + b2)
e a (bb

9M3E dc.kab b3m n

2rb a) ( 2 2
8rbLaLbjIbL(ka + iQ)kb + b)

j (3a+2P-A)
sin bt

S cos bt

32

(61)

(62)

+ j

+ j

iale

(63)

- j

I

I

I
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+ I V J ( (m - j b n sin bt)
e

9M2V b b2 n j(2a+P-%-bo)
- j sin bt

co L (' + b

9M2V b b kbn J(2a+2p-A-b0 )
2 2 cosbt (64)

4o L o'bL (kb + b2 )

From the above expressions of currents we can see that they do

not depend upon 9 , the initial position angle between the stator

and rotor windings.

2.5 Electromagnetic torque produced during
the steady oscillation

For a machine of uniform air gap, the electromagnetic torque

produced can be generally expressed in terms of symmetrical com-

ponents as given by the eq 3 as

T j K('i'a2e J % al

Let bla2 = X + j y

where both x and y are real quantities. We have then

T = -2K y (65)

From the expressions 63 and 64, we get

c. sina + dc. m sin(b - a)

+ 3rc. b n cos(bo - a) sin bt

3rb O Le



Eac.
3rb

+E de
+ d.c.

3rb

E c.

3 rb

Ea0

-
3rb

-
3rb

2 Mkb b mn
2 a

La (ka + j()2

2 M)2V b2b n
2

o L ebLb(kb + b2 )

2 M)2V b kb2 n

0 L %Lb(k + b2

M)2  b2b n

2 b

0) L abLb(k + b2

2M)2 V b kb n

aL obLb(k + b2

cos 2a cos bt

cos(2a + p - X - bo) sin bt

cos(2a + 2p - - ) cos bt

cos (- - ) sin bt

cos(2p - - cos bt

2 M V 2b2 b m n
2 2 cos(p-X) sin bt

2L %bLb(kb + b2

M VSb kbb m n
% 2 +cos(2P - cos bt

eabLb(k +

+

E .2 M) 3 k b3b m n
+2~e 2 2 2
3rb L LaabLb(ka + jco) 2 (k + b2

/ B 2 M)3k bb m n
.. d.c. 2 a 2k

3r LLabLb(ka + jo) 2k + b2 )

Ed.c2 L M)3kab2kbb m n

rb L LaLbab(ka + jo)2 (k2 + b2 )

cos(p + a - X) cos bt

cos(2p + a - X) sin bt

cos(3a + 2p - X) sin bt

34
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S "d. c.
3 rb

Ed c.
3 rb

+ d.c.

3b

* M)3k b3b m n
2 a 2 2 2  cos(3a + -X) cos bt

L LaLbb (a + w(cK + b)

2 M)2V k b b m2n
2 a  cos(P + a- X + b ) cos bt

e aLaLbab(ka + (kb + b2

I M)2V k b 2 b m2n2 a cos(2p + a - X + b 0 ) sin bt
o L LaLbb a + jco)2 (k + b2

(66)

where F is the sum of terms of small quantities having the factor

and can be neglected in our analysis.

Let Z be the magnitude of the synchronous impedance

line impedance up to bus). We have

Io LI = ZS

k
a 2 sin a

La(ka + j) 2 s

Let X = O (I M)M 2

(including

(67)

(68)

(69)

and E be one-half of the maximum value of the excitation emf.

We have

B d c =E d -C -E( 2 M 3rb m rb (70)

Substituting these relations into eq 66 and rearranging, we have

then, with V in real value,



y = sin a +
m 8

m sin(b0 - a)
m s

+ EV n cos(b - a) sin bt
ms

E2 bZ mn sina cos 2a cos bt
m 8

E V x b b

rbZ2

b kbl
12 21 n sin a sin(a+p - - ) sin bt

kb + b

E V x b
-2 m

rbZ2

V2 x 6 b
+ m

rZ2 o
rbZe

2 2

Vx b b

E x b b2
+ 2 M

rbZe 
k2

E2xc ?b2

+2 2S b
2 m

r Z202
b s

E v x mb b 2

rbs

EV x bb 2

+ rZm

b .

2

2+b 2n sin a sin(a+2p - -
Y+ b2

Skb

+ b

k2
kb

+ b2

b kb
2 2

k + b2

kb b

k2 +b2~2

kb

2 2

k + b

6 ) cos bt
0

m n cos(p - X) sin bt

m n cos(2p - X) cos bt

m n sin2 a sin(2a + p - X) cos bt

2m n sin a sin(2a + 2p - +) sin bt

m 2n sin a cos(p + a- X + b 0) cos bt

m n sin a cos(2p + a - X + b ) sin bt

36

-2

...... (71)
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For small values of b , the values of .m and n are each

substantially as unity. In eq 71, then, we can see that the first

two terms give the constant torque; the third term contributes the

synchronizing action according to static characteristic; all the

other terms having the factor sin bt will cause a modification

of the synchronizing torque due to the machine oscillation; and

all the terms having the factor cos bt give the damping action

on the oscillation. In our analysis, therefore, only those terms

having the factor cos bt are of interest.

2.6 Criterion for Negative Damping

As stated above, the damping torque of a synchronous machine

comes from the terms having the factor cos bt in eq 71. Hence,

if we let Td be the damping torque due to electromagnetic action

by neglecting eddy-current and hysteresis losses, and B be the

corresponding damping coefficient, we have

Td =B b b co bt

=-2K b cos bt - E 2 - Zsin a'cos 2aI) x Zms

2E Vx 2

+rbZ cO k+ b2  cs23-X

ixb Ibk 1 2
+ 2 2 22 sin a sin(2a + p - )

rbZ o kk + b



E V x b b kb
- n ID o(p+

rZ2a2 1 2+b2 0iao(+-+)
rbZ 2 lk + b2

-2K b b cos bt E2  sin a cos 2a

x0

+ 22 2 2E V sin a sin(a + 2P - -X )
rbZ o k + b _ V o ( p -%

+ xm bkb E V sin a cos(P + a - + )
rbZ .0 Yb + b?

- 2E2sin2a sin(2a + p )(72)

and

B =2K( E2 sin a cos 2a
m 8

+ 2m 2E V sin a sin(a + 2P - b)
rbZe Y k + b2

- V2 cos(2p -

x b kbb
2 2 21 E V sin a cos(P + a - + b )

rbZ t)2 k-+ b2
- 2E2sin a sin(2a + (73)

When B is positive, Td acts in the same direction as the

increment of velocity; then it produces negative damping. If

B is negative, Td acts in the opposite direction as the in-

crement of velocity; then it produces positive damping. And there

will be zero damping due to the electromagnetic action only when

B = 0 . In other words, the criterion for negative damping of a
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symmetrically excited machine due to the action between the

currents in the windings is

E 2
x Z sin a cos 2a

m s

2x kb

+ 2 2 2
rbZ sc kb + b

xmb b kb
+ m ___

+ 2 2 2 2
rbZeo kb + b

2E V sin a sin(a + 2P - - )

- V 2cos(2p - x)

(E V sin a cos(P + a - +0)

2E 2sin sin(2a + P %) > 0

2.7 Discussions and Conclusions

(a) If the armature-circuit-resistance were zero, i.e.,

sin a = 0 , there would be no possibility of having negative

damping.

(b) If the excitation emf is zero, the damping is always

positive.

(c) In expression 73, the last part is quite small in com-

parison with the other parts because of the fact b << o . Hence,

for simplicity we may have

B = 2K E Z sin a cos 2aCO Em ZcoxZ

x

+ 2
rbZ ?

2

2 2
kb+ b

(2E V sin a sin(a + 2P - X - b )

- V2 cos(2P - %)I } (75)

(d) If the armature terminals are short-circuited (i.e.,

V = 0), according to eq 75 the machine has always negative damping

(74)
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for non-excessive armature resistance. Since, with respect to the

field flux, the torque-speed relation is similar to that of an

induction motor at 100 per cent slip, at that speed the damping of

an induction motor is negative if the resistance of secondary wind-

ings is not excessively high.

(e) In expression 75 the term proportional to the product EV

will contribute to negative or positive damping as sin(a + 2P - X - 0 )

is positive or negative. Physically it represents the interaction

between the two sources when the machine is in oscillation.

(f) In expression 75 we can see that the term proportional

to V2  is much larger than the others except under abnormal con-

ditions; then we can conclude that a symmetrically excited synchronous

machine does not ordinarily have negative damping.

(g) From the expression 71 we can see that the modification

of synchronizing action due to machine oscillation is principally

due to the term

V2xb b b kb
2 2 2 cos(p -X) sin bt

rbZ,) kb + b

It makes the synchronizing action stronger during oscillation than

at constant speed.
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CHAPTER III

A CYLINDRICAL ROTOR SYNCHRONOUS MACHINE

WITHOUT DAMPER WINDINGS IN OSCILLATION

The method of analysis used for this case will be the same

as that in the second chapter. But since there is a single-phase

winding on the rotor instead of a polyphase winding, the differential

equations for currents and voltages will be different and also the

dampings under investigation.

3.1 The Differential Equations

If we express the voltages and currents in terms of symmetrical

components of instantaneous quantities and imagine that there are

two-phase windings on the rotor with one winding open (it is then

actually a single-phase winding), we have, for a three-phase machine,

va = (r a + L aD) i a, + M D ( 'bi j) (1)

M D(i -je 2
vbl = (rb + LbD) bl 2 MD(il ) (2)

and

al V e (3)

vb =bl + vb2 = Ed .(.

ib(5
ibl = ib2 -2()

From the eqs 1 and 2 and the conjugate of eq 2, together with the

relations 3, 4, and 5, we have
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jcot IA j
V s = (ra + LaD) i + D(i & ()

Ed = (rb + LbD) b + M D (118 + i Ej ) (2")

and the electromagnetic torque produced is

T j K (i a2 ialE b lb.ft. (6)

where K = .les . if the currents, inductance, and
2 '746 2

torque are in amperes, henries, and lb.ft., respectively.

The eqs 11, 2', and 6 are the fundamental equations of the

analysis for a three-phase cylindrical-rotor synchronous machine

without damper windings.

3.2 Solutions of Stator and Rotor Currents when
the Machine is in Oscillation

The solutions of currents of eqs 1' and 2' can be obtained

by applying the method of superposition to handle the armature and

field sources separately.

A. Due to d-c source alone

The currents due to d-o source alone should satisfy the

following two equations.

M je
0 = (ra + a) i + D(ib (7)

Edoc (rb + D)ib + MD(ial +)

where

= + wt + b sin bt
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To solve eqs 7 and 8, we may again apply the method of succes-

sive reflections as follows:

First step: Assume the stator terminals open. (From now on,

we shall use the same notations for stator current as in the second

chapter. For the rotor current, since we shall deal with the total

quantity instead of the symmetrical components, the numbers in the

subnotation will indicate only the components in each step of the

successive reflections.) We have

and iall = 0 (9)

Edoc. = (rb + LbD)ibl

or
Edc

bl rbde (10)
rb

where bl is the component of ib in the first step; it is not

the positive-sequence component of 'b

all i D(ibl )

M Ed~c
= E d D(e ) (11)

2b

Second step: Assume rotor terminals open.

ib2 =0 (12)

and

M EdesD(e )= (r + L D)ia12 (13)

By discarding the small terms of second harmonics, we have

from the solution of eq 13,



-JO M Ed.c.
i al2e 2rbL a

'b2 = 2 M D ia1 2aje

k + jo
+ n m k ab2

(ka + Jo)

+ ia22S

3M2 Ed.c.
2rbL a

Third step:

kab b m n

2 2 sin 2a

ka + O

rhe remaining parts of the currents should satisfy

the following equations:

0 (r + LaD)i +MD(iY )
a a al 2

D~i' D~i'-je
-vb2 (rb + LbD)i +M D(i s +

By approximating the stator resistance
r

inductance a and letting

ra with an imaginary

r
L a- + L
e jo a

eq 16 becomes

= L D + D(is )

i'
al

al

M

e

M
2Lb

SJe
ia2 )

44

cos btj (14)

sin bt (15)

(16)

(17)

i.e.,

(16 )

or

(18)
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Then

Ial 1 + I t = M cos a
al. a2 IL el b (19)

Substituting eq 19 into eq 17, we have

-vb 2 (rb + LbD)ib + M D(- M

2M cos a

= rb + Lb( _ 2 a)
ILel L~b )P

S2
2 M cos'a

ab 2 L eI

rb

kbLb

(20)

(21)

(22)

where %b , k b are all real quantities. With eqs 21 and 22

we can rewrite eq 20 as

- (kb + D)i
C'bk,

Hence

= kbt kbt

(20')

(23)
- dt

abLb)

Substituting eq 15 into eq 23, and then integrating, we get

3M2Ed ,,

= - 2 rbLda L *

k ab2 m n- sin 2a
y 2 (kb in bt - b cos bt)

(2 + 2\)( 2 b
a W k~b- +bJ

(24)

Substitute eq 24 into eq 18 and get

3M3  2
-JIB 31Ed.E. kab2b m n sin 2a

al -4baLbb * (k2 + 2)( + b2) (kbsin bt - b cos bt) (25)

Let
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Therefore, from eqs 9, 10, 12, 14, 24, and 25, we have the currents

due to the field source alone as

'b bl + 'b2 + '

Ed._. Ed.. ka b26 m n sin 2a
- . (kbsin bt -b cos bt)rb 2 rbLaLb (k2 + w2)(k+ b2 )

s... (26)

and

-je -je -je , -Jo
i al 6 al16 + i a12e + i al .

M Edce * b n mkab
- +j a co bt2rbLa ka + jO + 2

3Ed.c. k ab b2m n sin 2a
+ . 2)(2 Y (kbsin bt - b cos bt)

aebLLb (k + o k + b2

.... (27)

B. Due to the armature source alone

The currents due to armature source alone with field terminals

short-circuited should satisfy the following two equationst

jQOt M je
V = (r + L D)i + - D(ie ) (28)

a a al 2 b

0 = (rb + bD) + D(i o+ ) (29)b 'h b 2 al a28a2

Since for the exact line frequency of current in stator winding

the replacement of the stator resistance ra by an imaginary
r

inductance k introduces no error at all, then for this case we
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can obtain the same results by making this replacement in the begin-

ning and then solving the equations simultaneously instead of apply-

ing the method of successive reflections.

From eq 28 we have

j ot +M j
V s = Let ial+ 2 D ;T

or

1 V s M
al E jo 2 b ]

e

that is,

where

=t-O=-9 - sin bt (31)

J(90+0-40)
V (v al) ts (o-e

j IV lv Ji (%o-b) 0(32)

S ja
- (33)

Substituting eqs 31, 32, and 33 into 30, we have

-j= V j(a-bO-bsinbt) ja
al co Le 2LI

o L J(a-o)(m - j n 6 sin bt) - I (34)
ee

Hence

2 M D,(i +i S )

= 3M n b b sin(a - bo)cos bt - 3M2cos a D ib (35)
8
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From eqs 29 and 35 we get

3M2rb +) D
r+ L( 2Lb I

- 3M n b bI
e

(k% + D)ib = 3M n b b
ab b

sin(a - bo)cos bt

vL sin(a - b )cos bt
coLe10

i.e.,

ib*~34 n bb v
ib - %Lb I)L e

3M n b L V
bLb o L e

sin(a - bo)

sin(a - 60 )

S-kbt kbt cos bt dt

kboos bt + b sin bt

. 2
(K + b2

Substituting eq 36 into eq 34, we get

i -j V J(a-b') j n b sin'bt)i co -

+ -3-n b b I sin(a - 6 )s
2%Lbc L2 0e

kbcos bt + b sin bt

2 2(kb + b)

....... (37)

C. Both the armature and field sources are applied.

From expressions 26, 27, 36, and 37, we have then the stator

and rotor currents, when both the armature and field sources are

applied, as follows:

or

(36)



E
dc. ~

3M2Edc
2rbLaabLb

k b2b m n sin 2a

(k2 + 2) ( + 2 (kbsin bt b cos bt)

o L Isin(a.- b0 )
e

kbcos bt + b sin bt

(k + b2 )

M Ed.ce

- 2 rbLe
al-je

M Ead.cb n m kab

.2 rbL (k + jo)

3M3E k b2  m n sin 2ad.c. a

4bLaLabb(ka + m2) (k + b2)
(kbsin bt - b cos bt)

+ H e-(a-6i) (m - j n b sin bt)
e

+ 3M2n b b
2cbLb(o

sin(a - b ) e
(kbcos bt + b sin bt)

2 2
Kl~ -+ b)

Oeo (39)

3.3 Electromagnetic Torque Produced During
the Steady Oscillations

Since the expression of electromagnetic torque is given by

eq 6 as

T = j K(i a2e - i )

then, if we let

ib al-J
= x + j y

49

3M n b b

abLb

.... (38)

cos bt

(40)



we have

T = 2K y

From eqs 38 and 39 we have

( do) -
I2L sin a + Edoe

rb,
m sin(- 

o)L

n b cos(a
e

- 6 ) sin bt

+Ed). 2
M kab-b m n
2a

2L (k 2+a))2
a a

cos 2a cos bt

3M2Ed.c. b b

rbabLbo'
L2V iY

sin a sin(a - b )0
(kbcos bt

(k

+ b sin bt)

+ b2 )

3M m n 6 b
2

ab~bo
Le

2
sin2 (a - 6 )

(kbcos bt + b sin bt)

2 2
(K + b)

3M3E2  k b2 b m n sin a sin 2a
+ d.c.a (kbsin bt - b cos bt)
2 LI L1 abLb(k2 + 2)(k + b 2)

3M 2Ed.c. ab2b m2n sin 2a sin(a - b )

2rbLabLbo(k2 + 02) (kc + b2)
L I(kbsin bt - b cos bt)

e

(42)

where F is the sum of terms of small quantities having the

factor 62 and can be discarded in our analysis.

(41)

E d. a.
rb
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Let V represent its magnitude and

Z= Ll

xm = COM

m
E

E =e(o M) ec.

Then, from eq 4+2, with all in real values, we have

y 2-Z sin a
m s

-2 n cc
x Zm s

+ 2 m sin(a -
m s

)(a - 6 sin bt

+ 2E mnbsin acos
m s

2a cos bt

6E V xk b b
+ 2

rbZ2 ?

3V2 xmkbb b

2 m

rbZ so 
m

6E 2x kbb 2
+ 2

rbZ2

n sin a sin(a - b )

n sin2 (a - b0 )

SS in a sin 2a

(kbcos bt + b sin bt)

(k + b2 )

(kbcos bt + b sin bt)

.2
(k + b2

(kbsin bt - b cos bt)

K + b2 )

3E V xMk bb2 2 . . .
2 2 m n sin a sin 2a sin(a -)

rbZ S ( 0

(kbsin bt - b cos bt)

2 2
(kb + b )

.... (43)

b0)
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From eq 43 we can see that the first two terms contribute the

steady-state constant torque; the third term causes the synchronizing

action according to the static characteristic; all the other terms

having the factor sin bt give the modification of synchronizing

action due to the presence of oscillations; and all the terms having

the factor cos bt produce torque varying in phase with the velocity

and thus represent the damping action.

3.4 Criterion for Negative Damping

The angular velocity of the machine is

dO
= o + 6 b cos bt

Then, if we let Td and B be the damping torque and damping

coefficient, respectively, we have

Td = B b b cos bt (44)

From eqs 41 and 43, therefore, the damping coefficient due to the

electromagnetic action is

B =2K mn sin a cos 2a
m s

3x V n k2
+ n 2 2 sin(a - 0) (2E sin a -m V sin(a 0- )

r, Z k + bbs s

3x ME m n b kb
+ 2 2 2 2 sina sin 2a m V sin(a - ) 0 2E sin a

rbZo kb + b
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2K 2E2 n sin a cos 2a

2

+ m Vnk -[sin(a - ) E b sin a sin 2a
rbZS o((k+b) Vob

. 2E sin a - m V sin(a - b0) (45)

For small values of b , both m and n are substantially equal

to unity, and for an ordinary synchronous machine b <<O Hence

we can simplify the expression 45 as

B = 2K 2E2 sin a cos 2a
M S

3xm k
+ 2 2 2 sin(a - 6 ) [2E sin a- V sin(a - 6)1 (4 5 ')

rbZ s )(kl + b )

When B is positive, we have Td > 0. That means the damping torque

acts in the same direction as the change of the velocity of the

machine. Hence, if the machine starts to oscillate, the electro-

magnetic action tends to enlarge the amplitude of oscillation. It

is then negative damping. Therefore the criterion of negative

damping due to electromagnetic action of a cylindrical-rotor

synchronous machine without damper windings is B> 0 , or

2E2 sin a cos 2a(I) x Z5
m s

3xV k
+ 3 2 sin(a - ) 2E sin a - V sin(a - b ) 0

rb Z so)(k + b2)

.... (46)



54

3.5 Discussions and Conclusions

(a) If the resistance of the armature circuit were zero

(i.e., a = 0), there would be positive damping.

(b) From eq 46 we can see that the damping coefficient

consists of three parts, namely, (1) a part proportional to the

square of the excitation emf, (2) a part proportional to the

product of the applied voltage and excitation emf, and (3) a part

proportional to the square of the applied voltage. The first part

always contributes to the negative damping except when the armature

resistance is greater than the armature reactance. It exists even

when the armature terminals are short-circuited. Hence it repre-

sents the electromagnetic action which is similar to that of an

induction motor at about 100 per cent slip.

The second part represents the damping due to interaction of

the two applied sources during the oscillation of the machine. It

is zero when either the armature or the field terminals are short-

circuited. It is positive or negative, depending on a being

greater or less than .

The third part represents the electromagnetic action of an

induction motor with single-phase secondary near zero slip. It

always causes-positive damping.

(c) If, the machine has positive damping at small loads, it

will have positive damping at larger loads also.

(d) High excitation promotes the negative damping when the

machine runs as a motor.
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(e) From (c) and (d) we can see why the damping of an

over-excited synchronous condenser without damper windings may be

negative.

(f) From eqs 41 and 43, with m and n both equal to

unity, the additional synchronizing torque due to oscillations of

the machine is

- 2K { r m b 2E sin a - V sin(a - b)l X

rbZ s>(kb + b)

bsin(a - + ) + sin a sin 2a sin bt (47)

(g) From eq 46, if we could disregard the first term, we

would have the conclusion that a cylindrical-rotor synchronous

generator without damper winding will not have negative damping

if the armature resistance does not exceed a certain limiting

value, which is

ra = Zssin b0 (48)

or

sin a = sin b0

i.e.,

a = bo(48')

And if the machine is operated as a motor, the value of excitation

emf to insure positive damping due to electromagnetic action is

V sin(a - 6 )
2 sin a
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CHAPTER IV

A SALIENT-POLE SYNCHRONOUS MACHINE

WITHOUT DAMPER WINDINGS IN OSCILLATION

The saliency of the pole structure of salient-pole synchronous

machines introduces much difficulty in the mathematical analysis.

Then, in order to normalize the saliency effect on the analysis,

we shall use some simplifying assumptions as follows:

(a) The flux produced by the field current alone is distrib-

uted sinusoidally along the air gap; or, in other words, the mutual

inductance between any armature winding and the field winding varies

as the cosine of the position angle between them.

(b) The self-inductance of any armature phase and the mutual

inductance between any two armature phases have each a constant

value and a second harmonic variation with respect to the position

of the poles.

With the above assumptions and the othersacused for cylindrical-

rotor machines, we can develop the fundamental differential equations

for our analysis.

4.1 The Fundamental Differential Equations

For three-phase salient-pole synchronous machines without

damper windings, the fundamental differential equations for voltages

and currents in terms of symmetrical components of instantaneous

quantities are as follows:

V 1 =(r + LaD)ia + L3D(i j29) + M D(i ) ()



v = (r + L D)i + LD(i 2 + M D( j) (2)

-je
bl (rb + LbD)ibl + 2 M i (3)

Vb2 = (rb + LbD)1b2 + M tD(ia2e ) (4)

where L and L t may be expressed in terms of constants in two-
a a

reaction theory as

x + x
L =d q (5)

a 2rco

t x d- xqxd~La " (6)

while xd and x are synchronous reactances referred to d-axis

and q-axis, respectively. Now

val V

va2  V2s ()

i = = b (9)bl b22

Vbl +vb2= Ed.c. (10)

where V1  is a constant complex quantity having a magnitude equal

to one-half of the maximum value of the applied voltage, and V2 is

the conjugate of V1
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From eqs 1, 2, 3, 4, 7, 8, 9, and 10 we have, then,

j ut t j29 j j6
vlE (ra + LaD)ia + LaD(ia2 S + 24 D E i(11V~s =(a a al a a2S ) 2Disj)()

... jwt _ j29 M J9
V (r + LaD)i + L)D(i lD(ib (1)

Ed.c. =(rb+ b + 2 MD~ials + ia26 13)

Although these equations hold good for e being any function of

time or, in other words, for any kind of motion of the machine,

it is not always easy to get solutions.

The electromagnetic torque produced by a salient-pole

synchronous machine without damper windings can be expressed in

terms of symmetrical components of instantaneous quantities of

currents as follows:

T =1j K b ) al

2La 62 j
+ ( [ja26  - (l))23} (ale14)

where K = 2e 746 2 if torque T is in lb.ft. and

currents, inductance in amperes, henries, respectively.
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4.2 Solutions of the Stator and Rotor Currents

When the Machine is in Steady Oscillation

The solutions of eqs 11, 12, and 13 can be obtained by

applying the method of superposition to handle the armature and

field sources separately, and the method of successive reflections

to avoid the difficulty in solving the equations simultaneously.

A. Due to the field source alone

The currents due to the field source alone (i.e., armature

terminals short-circuited) should satisfy the following equations:

j29 M 3
0 = (r + LaD)i + L'D(i s )+ D(ie ) (15)

a a al a a2 2b

S -j29 M -j
0 = (ra + LaD)i + LaD(iajS )+ LD(is ) (16)a a 2 a ale2 b

Ed.c. rb+LbD 2ib + 2 ale a2

In order to solve eqs 15, 16, and 17, we then apply the method of

successive reflections as follows:

First step: Assume the stator terminals open, we .get

iall 0 (18)

i Ed.c. (19)
bl r b

where ibl is the component of ib in the first step of the

reflection. It does not represent the positive-sequence component

of i now and later.
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Then, with m=1, n=1 , we have

M Jg M Ed.c. jo
all ~ 2 bl8  / = 2r D( )

b

M Ed.c.
2
rb

M Ed.C.
2rb D

M Ed.c.
2rb
b

j (%wot+bsinbt)

j (ot)
0 (1 + jbsin bt)

. (-%ot) (o + b)b j(0+ot+bt)jO + o)2

>- b) j(90 ot-bt)
- 3 2 (20)

Second step: Assume field terminals are open and a voltage

of (-vall) is applied to the armature. Then we get

ib2 .= 0 (21)

where I b2 is the component of ib in the second step of the

reflection. The component of ial should satisfy the following

two equations.

- V 1  = (r + L D)i + L'D'(i j2
all a a a12 a a22

- V 2 =(ra + LaD)i + L D(i e-j29)
a~ a a a22 a a12

(22)

(23)

where va2l and ia22 are the conjugates of vall and I ,

respectively, and vall is given by the expressiori 20.
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In order to solve eqs 22 and 23, it is advisable to put

vall into three parts as

with

(20')S =L + L +L
all o coLb o-b

M Ed. (. (G%ot)
%) = Jo 2rb

(o + b~h M Ed.c. j(90 cot+bt)
LL*b~ 2 2rb

((o - b) M Ed.c. j(GoRoOt-bt)
Lco-b 2 2rbb

(24)

(25)

(26)

Then, applying the principle of superposition again, we may handle

L, L *b , and o-b , separately.

coo
By substituting L alone f or val and the con jugate of

L for va2l into eqs 22 and 23, we have
c)o~

M Ed.c. j(0-ot)
- jo 2rb F,

. M Ed.
jO - 2 rb

=(ra + LD)i + L'D(i 6 J2)a a a12 a6 a22

F(Q*t) = (ra + LaD)ia22 + LID(i 2 s- )

(27)

(28)

Now we can replace D by jo in eq 27 and by -jco in eq 28 with

the introduction of a very small error. The error will be absent

when b , b , L , or r is zero. Thus we geta a



M E d.C e ( t)

b
2rb

,j2e=(r + jo L)i + jo L'i 2a a a12 a a22

. 0 0 * (27')

M Ed.. -j(c%+t) -f (r
jCO 2r arb

jco L ) i,a a22 - j Li a12

..... (28')

Multiplying eq 271 by s

them simultaneously, we have

and eq 281 by se and then solving

jbsinbt _ -jbsinbt
(LeS La

L 2 - (L') 2
e a

(Le - L') + J(Le + L')b sin bt

L 2 (L1)2

r
L = a + Le jco a

With the substitution of L *b alone for vall and the conjugate

of L -for v
Lab a21 into eqs 22 and 23, we have

(co + b)b M Ed.c. = (r + L D)i + LD(i j29
2 2rb a a a12 a a22

..... (31)

M Ed.c. -j(e)0-t+bt)

* 2r b
(rI +LD)i 2 L'D(i -j2e

a + L a22 +a a

..... (32)

Replacing D by j(o+b) in eq 31, and then multiplying the equation

62

M Ed.
2
rb

a22

M Ed..
2
rb

where

(29)

(30)

(o + b) i
2
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by -,I j we have
j (co +b)

M Ed.c. j(bt-bsinbt)

2rb

ra 1 -je

j(Co + b) a] a1

..... (33)

2
From eq 33, disregarding the small term having the factor 2

we get

a +b)+ LM Ed.c. jbt
2' 2rb

i -je + Li j
al.2 a a22

..... (33')

Correspondingly, we have its conjugate as

dcM Ed c -jbt = ra +La)
2 2r -j(o + b)+L i + L'ia22 a al2

so*** (34)

Solving eqs 33' and 34 simultaneously, we get

M Ed.c.
2 rb

( r b) a+ -jbt _ L, jbt

r 2 (L)

j(co + b) + a 
L)

.... (35)

imilarly, with the substitution of Lo-b alone for vall

and the conjugate of L,>-b for v a2 into eqs 22 and 23, we shall

~2Z + L a ia22 6j

a22

*
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have the solution as

M Ed.c.
i * 2rb { r

a
jL)-b)

r

j((o a- b)

+ La]

2
+ L a

jbt I-jbt
s a

- (L ')2a

. 0 9 * (36)

Therefore, with the substitution of (L +La)b+Lo-b) for

vall and the conjugate of (LU+LQub+>b) for va21

eqs 22 and 23, the solution of i a22 e should be the sum of the

expressions 29, 35, and 36. That is,

i 2e =
a22

M Ed (L - La) + j(L + LA)b sin bt

2rb
IL 2 - (L )2

r

[ + + La

r i2
r a b+ L

j(c) + b) al

- L cos bt

- (La)

I + LJ sin bt

r

j(o + b) +

r
a

lf(Q - )-
r a L2

I J(co - b) +La

2 2
a - (a)

+ L- L cos bt; a a

- (L )

r
a

j (a b ) + L + L I sin bt

I ___ 
2

ra +L2
Sj(o - b) al

a22

M Ed. c.
* 2 rb2

M Ed.c.
2rb

rW

. ~ b

2

M Ed.c.

2rb
+

b
2

M Ed.c.

2rb

2
- (La)



M E
2
rb

L -L
e a

1L 12 _-Lt

M E d.
- M2dc. C b sin bt

b

M Ed
- 2d.c. 026 cos

2r b 2
bt

where

L +L

1 IL 12 _ (L 1)2
e a

1
2
I

+

ra + L + L
j(o b) a a

r a + 12 (' 2
I j(o + b) + LI - a

r

( - b) + Lj 0 ) a a 1
ra + L1

1 j(o) - b) al - (LIa
2

) .4

ra
j(o + b)

ra

j(o + b) +

+ La

2

_al

- La

- (L') 2

a
j((o-b)_ a

- ra

j(o - b) + Lal

By considering the fact b << , we may simplify the above expres-

sions with

ra
j w+b+) a

r
L t a + L + L'

a j(o + b) a a

- (L') 2 (ra)2 + L - (Lt)2

3r
CO E

ra +L + L
jo a

2

a

(Lt) 2

r
a + L + L

jCO a a
2

+ L2 - (L ) 2
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(37)

and

C = 1
2 2

L ta

- (L
2

r 2

ao + L

"a
+ L2 -



b a
L + L

- (L 1)21el 2 a

ra +I
j(o - b) + La + La

ra + L - (L )2j(co - b) al

L +L
e a

IL'e1 - (La)

L + L
e a

L 12 - (L 1)2J

2)

L + L'
+ e a

lLeI2 - (L') 2

r

j(o b) + La - La

r 2

j(o ) + l
- (L') 2

a

L - U'= b 2  a
L -2(L )

L -L'
+ - a

L 12 -(L 1) 2
0 a00

r

jao - b) + La - La

j(o- b) al

L - LI
e a

ILef 2 (L' )2,(L')2

L -L'
+ e a

L 12 - (L')2

Hence

L + La
C a (

Ci =IL 12 _ (L' )2 2
L +L'

S - (L)2 +
IL el 2  aL

L +L

L -2_ (L )2 +e a

L + Le a

ILe 12- (U )2

L + L'L 2a

ILel 2 _(, ) 2
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(A)

(B)

and

(C)

(D)

I

.. .6

b -

-b )

= - b



L + L'e -
)2

IL e2 (L-

L -L
e a

IL 12 - L )2(La

}
L -L
e 

1L12 -(L )2]

L -LI
+ e a

IL 2 (L')2

L -L'
e a

ILe1 2 - (L )2

-b a
a o

L - L'
e a

jL1 F (L t)2 J

( +L -L')jo a a

r
ab .

Cl)

ra
= b

ra
*JCi

2
+2

I
L - (L') 2

e a

r

- (L - L) +

IL 2 - (L )2J

r
- a L'

(L t) 2 2
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L + L'e a

and

IL 12 - (L')2
=0 (E)

C-2 2
b

r

2

+

L - La a

L2a
2

- (L )a

S ()

I
+L2

a

(ra,

(L a) +
2r 

2

a

T

2+ L2 -
a (L')2} 2

L
-(' 2
-(L)I

2

(F)

a

-

+ b

-b

.
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Substituting expressions E and F into eq 37, we have

j M Ed . L -L

a.22 2rb L 12  (L )

r
e aa

M E r b L2- (L )2 - 2 rL a 
doc. a e a JC aco)

2rb O L -I(L')2 c

(38)

From the results of the preceding chapter we can see that

the effects due to the components of currents of the further

reflections are small and can be neglected for the sake of

simplicity. Hence, due to the field source alone, we have

E
i E dSe (39)

brb

M E L-L t
jig - d.c. e a

a2 2rb IL 12  -(L1)2

2 a

M Ed~. rbb L - (L )2 -2 aL'dc a cos bt
2rb 2 * I1 2 - (LA)2 2

(40)

B. Due to the armature source alone.

The currents due to the armature source alone, with the field

terminals short-circuited, should satisfy the following equations:

Ve jCOt = (r + L D)il + LD(i J i29) +A D(ibe6 9) (41)



V ~ = (r + LD)i + L'D(i -j29+) + D(i,&G)
2  = (ra + LbD~ib a al +2

0 =(rb + LbD)i'b + :32 MD(i se-j + ia2j)

(42)

(43)

With the same reasoning as in the preceding chapters, we can

-solve eqs 41, 42, and 43 simultaneously by replacing ra with an
r

imaginary inductance t . Thus, from eqs 41 and 42 we have

V 2

a2 
L 2 -

V 1S
a ) ( - L') Mia 21

IL 12 - (L )2

Lra
L e + L a

- --sin bt

= V1 e J(9o 0 +00-b 0)

= jV SE (- )

i ~ ej a =
al a2

1

IL 2  L ) 2

e I a
( (L e a -jCO

+ (L -L ) -
Ae a j ()

L +L
e e

-L9 Mibj

..... (48)
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where

(44)

and

(45)

(46)

Hence

(47)
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Let

L -L -
t ~ a e, -a 1 -jal

e a
ILe - (L )

where both L and a1 are real values.

(49)

Then

L - (
Ae a d ~al

IL 12  _ (L)2 L

L +Le Ae _ Ic s a2 a cosa1

L -2 (L') 2 L
e a

(50)

(51)

And the eq 48 can be written as

i als + ia e JOs= 2- c - 2sin bt) - it cos a bal. a2 -Cs. L b

From eqs 43 and 52 we get

0= (rb + LbD)ib + D cos(a
3M2 cos a 1
2L~ D ib

i.e.,

Lrb + Lb (1
2 M0o0a)
2 LbL)D

or

(kb + D)ib L oa bD

=- D cos(a - 6- 6

Co8(al - 60 - 6 sin bt)]

where 2 1

a = (1-2 Mcos a
2 LbL

k b rb
Lb a

ib, sin bt)

(53)

(54)

(55)

- 0 sin bt)
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The solution of eq 53 is

i ~ 319V 6-kbt 6kbtdcs(, i t
b Lo s d cos -L -

b sin(ca -b6)

= - L6a 2 0 (b2sin bt + b kbcos bt)

...... (56)

Substituting eq 56 into eq 44, we get

5 V =j(ai-bo-bsinbt)+ j 2LaV sin(b + 6 sin bt)
a2 L o co L 2 - (L )2 0

+ a (b 2 sin bt + b kbcos bt)
2Lo a Lb k + b2

..... (57)

C. When both the armature and field sources are applied.

By the method of superposition we know that the stator and

rotor currents, when both the armature and field sources are applied,

are respectively equal to the sum of the corresponding currents when

the sources are applied one at a time. Therefore, from expressions

39, 40, 56, and 57, we have

E a irb sin(a - 0 ) 2

b rb L w a Lb k + b2 (b sin bt + b kbcos bt)
k.. (

*000 (58)
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jo M Ed.c. -ja
a2 - 2L rb

r
M E r b 'L - (L) - 2 -a L

_ d.c. a e a Ro a cos'bt
.2 rb 2 L2 (L )2 2

V -J(ai-bo-bsinbt) 2LIV
+ - 2 + j a sin(b 0+ sin bt)

L o o |Ll2- (L )

+ 3M2V 5 -jal sin(a1 - 0)) 2
2 2 2 (b sin bt + b kbcos bt)2Lo a Lb kb + b

.0.* (59)

4.3 Electromagnetic Torque Produced
During the Steady Oscillation

When a salient-pole synchronous machine without damper

windings is in steady oscillation of small amplitude, the currents

i b and ia2 are given by the expressions 58 and 59. By sub-

stituting them into expression 14, we can get the electromagnetic

torque in terms of the applied voltages, machine constants, and

displacement angle, etc. Before making the substitutions, it is

advisable to express ib ia2 E9 and (ia2ej )
2 in rectangular

co-ordinates as follows:

ib a2S x + j Y, (60)

and

(i 2 s)2 2 + j y2  (61)

where x1 , x2 ' yl , and y2 are all real quantities. Then



the expression 14 can be written as

2L'
T = -2K(y + May2 ) (62)

From expressions 58 and 59, by neglecting the small terms

having the factor 2 w t

Y d,. M sin a .
l rb2L 1 rb

2 M r b-b
a.

2o

r 222

- _a + L 2  2 (o b)

|IL 12 - (L' )2 2 U

- d.c. . sin(a - - b sin bt)
rb L a 1 0

E 2L V
+ d.c. *2 a si2 s 0 + 6 sin bt)

rb o IL - (L) 2 +

Ed.c 3M2V sin a1  sin(al -b) 2

- r * 2 * 2 2 .(b sin bt + b kbcos bt)
b Lo c Lb kb + b

+ 2 m bsin2 1 -b 0 2
k+b 2 (b sinbt +b

kbcos bt)

6 sin b0 sin(a - bo)_
2 2kb +b.

2
(b sinbt+bkbcosbt)

*.... (63)

73

2 Ll2 (L )2)

6M L'

La b
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2 M Ed.c sin 2a, -

M V Eda

+ 2r. sin(2a - b -b sin bt)

b

2M L'V Ed.c.

o L rb ( IL, 12 - (L )2)
cos aisin(bo + b sin bt)

3M3E V
+ d.c.

2rbL3co a Lb

b sin 2a sin(a, - 60)

2 2
k + b

( b2sin bt + b kbcos bt)

4LIV2a

o)2L fLI2 - (L)2]
cos(al - b - b sin bt)sin(bo + b sin bt)

b sin(al - bo)sin(2a1 - bo)

k 2+ b2kbb
(b2sin bt + b kbcos bt)

+
6M2V2L'cos a,

o 2L2 a L ILI 2 (La) 2

Edec. 2 M
2 ra b cos a,

+ rb 2co2L

b sin(a - b )sin 6
1 20 0
2+ b

r 2
-+ L2 - (L )

(b2 sin bt + bkbcos bt)

coSa bt

+

3M2V2

O)2L3a Lb

6l sin 2(a - b, -0 sin bt)

.
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(Edc. rab b sin a 2 (La-L)
Idaw a.cos bt

r 2A L 2 2 2

r
M V rb b cos(a - b) - ) 2 + L2 - (L )2

a 2 o ' oa a (a) 00 t
-o L rb IL I2 (L' )2  2

2r
M Ed.V rab b sin(a1 - b0) a(L - L')

+ a a a cos bt
oe L rb 1L, 2 -(L ) 22

2r
2M L'E V r b b sinb -a (L - L')ad.c. a 2 CO a a O5 bt

re (I L, 12 - (L 1)) 3

.... (64)

From expressions 62, 63, and 64 we can see that the electro-

magnetic torque produced during the steady oscillation of small

amplitude can be grouped into three parts, namely,

(a) A part with each term having a factor b b cos bt,

(b) A part with each term having a factor b b2 sin bt,

and (c) A part including all the other terms.

The third part represents the sum of synchronous torque and

synchronizing torque according to the static characteristic. The

second part causes the modification of synchronizing torque due to

the presence of the oscillations. The first part varies in phase

with the variation of the machine speed and causes either positive

or negative damping action. Hence, in this analysis, only the
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first part is of interest, and it will be denoted by a symbol Td

Thus we have

(Ed. 2

;b
Td = - 2K b b

Ed.c.

rb

\ ,

3M2 V sin a,

.? aLb

a Lb

M r
a

22

(7) ) - (L )2

S 2 - (L) 2 2

.2 . sin(ai -
"b+b

6 )0

kb 2
. sin (a,-b)

+b2+ b

V2  6M L'

2 Li 2 - (L )2 * L a Lb
kbb

+ b 2 sin 6 0sin(a, 
- bo)

3M2 L'E V kb
+ a2d.c. V 2 . sin 2a sin(al - bo)rbLco a Lb 2+b

6M LYV kba b2 sin(al - bo)sin(2a1 - bo)

A~Lb kb +b,

12M(L )2V2cos al

+2L2 a Lb(I L 2 _ (LI) 2 .__ . sin(ac - bo)sin b.
2+ b2
kbb

+ (dr c-)

2 M L Or cosa a
~2L

_( ra) 2tL2
I a

jLj 2 - (L ) 2 3 2

(L)



2r
2 a(La - L )
Co a a

(ILe12 -(L') '12

r2
+ L2 - (La)2

cos(a1 - b0)
- (L')23 2

2L'Ed c
+) L rb

4(Lq)2Edoc.

rea

ra

* a *

.r
2

0

2r

-l ol2 )2 2 sin(a l -
IL -(La

2r

-- (La - L')
2 ( sin b0

LN 2_ (, )2) 3 o

0 )

cos bt

(65)

Since

x +x
oa 2

d -xq
La 2

we have

L 12 r a 2+ L2 =
a 2

Co

2
ra + xdq)

2

|L 2 - (q)2 1 2
IL 2 (rD

)+ L2

+ xdq)

(La ) 2 (X q

IL - L

L L 12 - (L'1)2

Co r2 + x

r2 + x xa d q

M Lir sin aa a

C2L

77

2L'Ed cv

. L rb

ra

Co
0

ILei 2

-r )

Co Z
q

r2 +xxe
a d

rb '
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a1 =tan Li(L - La 
a a q

Let

X= M w (66)
m

E Edc (67)
rb 2

Substituting all these relations together with = rb into

expression 65, and rearranging, we have

Td =6K-. 2 2 b sin(a -
rb (ra + xd 2

V2 (xd q)
S2E V sin a - V2sin(al - bo)+ Z. sinb0q

E V Z q(xd - xq VZ q(xd - Xq)
- 2 sin 2a+ 2 sin(2a - b )

a d q ra+xdxq

V2 x (xd _q

-q2 2 sin b 0 cos bt.
Z (r +xx o

b b E~a dq a
+ 4K - r xq

q a d a

+ (2 +x 2

ra d q 2

x (ra + ) x Ox(rqq
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+ E V Z (xd q - r )cos(al - bo)

- E V Z raxqsin(al - bo)

+ E V ra q (xd - q)sin b 0 co bt (65')

Let

2 22
Zd + r (68)

and
r

a2 tan 1  a (69)
2 Xd

Then we can rearrange eq 65' with

2E V sin a, - x2 x i2

r? + x q pin2aj
a dq

2
xx -x

= 2E V sin a, (1 2
ra +xx

a dq

2E V Z
q

2 sin a, (70)
a d q

xd q j
-sin (a1 0 A si 0-q

"d r a
sinb - coab (71)z 0 Z 0

q q



din(2a1 - bo) =

( sin(2a 1

2x r x2 r

zq Co q sin e
q q

- b ) - Xq(Xd -in
0 Z2n

qi

2x rq a
= 2-

z 
2

q

-V2sin(a1 60)

Vx q(xd -

Z 2
Z(ra +x

VZ
S q

(r2 + xdX)

COS

XX
b-d q - ra

0 - sin

q
(73)

2 (xd - x) V2Zq (xd x)+ v z sin b + 2  sin(2a - b 0 )

q r a + xdq

q sin bI

q2

Z2  sin b aCos b
q q

2x r (xd - x)
+ ci q Cos 0 -0

zq

Xq - r )(xd - xq)

Z2
q

VZ2 2 2
. Z xd~r + x )r(d~qq_____ Xd(ra+q + ra(xd -xq i

(r2 +x 2
a d q q q

r (r2 + x 2) x ra (d -q )

2 22
q q

0i b

sin bj

6A

(72)



V2Z
q

(r2 + :xq [(xd sin b - ra cos 6 0 )

ra (xd - x )
+ 2 Q (ra sino + x Cosb0 )

q

( Z
29

(ra + xd [ Zd sin(bo - a2 )

+ (xd - xq)sin a, cos(al -

V2Z2
q

(r2 + Xaeq) kZd
o- sin(b

q q

...... (74)

Z(xx - r )cos(a - bo) - Z rax sin(a - bo)q deq a qo

+rxd --x) sin boaq q q

=((xdq - r )(x cos b + ra sinb)

-a q(ra cos&00 ~q sin0) +ra q d ~xq) s 0nb0

=((xdq - 2r )x cos b + (2xdx - r2)r sin ba q d q a a 0

...... (75)

Substituting eqs 70, 74, and 75 into 651, we have

I

b0 )

cos(a. - b )



4 2

T 6 m . 32. . sin(al - o)
rb (r2 + x x )3 + 2

x 2EV sin a - V2 sin(a2 - + V2 sin acos( - cos bt
z q 0q 0

Er E (xq - ra)
+ 4 b a q a

adK(r + r d 2

E ra(xd x) E Vob)2 2
+ 2 3 ( d q qxm (ra + xq)

+ (2xdq - r )r V sin b cos bt (76)

4.4 Criterion for Negative Damping

If the damping torque is expressed in a product of a factor B

multiplying the change of the machine speed as

dO
Td B( - o) (77)

then, in our case, we have

Td = B bb cos bt (78)

When B is positive, the torque Td tends to increase or decrease

the speed of the machine according to whether the speed is above or

below its average value. Then, if the machine once starts to oscil-

late, the amplitude will tend to become larger and larger. This



condition is called negative damping. On the contrary, if B is

negative, the amplitude of the oscillation will tend to become

smaller and smaller. The condition is then called positive damping.

If B is zero, the machine tends to oscillate with constant ampli-

tude, with.zero damping.

Comparing expressions 76 and 78, we have

2
6K m k

B =K . . q . sin(a, - bo)

ra +xd q)k +b

x2EV sin a, - V2 sin(a2 - Y + _1 sin alcos(al - bJ
q q

+ K E2r a&de - r2
a q a

X: ( 2 2
*m. a + xdq)

E ra d - Xq [

2 (E - V Cos b)(2r

+(2x -r)rV sinb (79)d7q a a 0

Therefore the criterion for the negative damping of salient-pole

synchronous machines without damper windings is for expression 79

to be greater than zero.

4.5 Discussions and Conclusions

(a) The assumptions in our mathematical derivations dis-

regarded all the core losses. Then the expression obtained for



either total torque or damping torque does not include the effects

due to the hysteresis and eddy currents in both the armature and

the pole structure.

(b) If the armature resistance of a salient-pole synchronous

machine without damper windings were zero, we should have

2 2
B 6K b -sin2 b

B rb xd + 2 o

The value of B would be always less than zero for any value of

b, and the machine would always provide positive damping.

(c) If the machine runs with the field source short-circuited,

we have

Z3 k 2
B 6K . . sin(a - )

0 rb * (r2 + i3 2+ b2 )
a axq) Wb

XV2(d - xq)sin alcos(al - bo) - VZdsin(a2 - bo) (81)

There will be negative or positive damping as the factor

(xd - xq)sin a cos(a1 - be) - Zdsin(a2 - b0)] sin(al - bo)

is greater or less than zero. Therefore, for negative values of

b 0 (i.e., motor action) the damping is always positive.

(d) In expression 79, the last part is small under ordinary

operations. So B. may be expressed essentially as follows:
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x Z4 2
B = 6K .- m 9 . .b sin(al - b.)

C rb (r+ -,+2
a dqb

Z xs c
X 2EV sin a, - V2  sin(a2 - b)) +V 2  Zx b0 )]

q q

E2r(xdq _ -r2

+ OD . 2 2 (82)

m (ra +xdq

where the term proportional to E2 is always positive unless

r 2> xdq ; and for E=V and bo being positive, the sum of the
a0

other terms is always positive when a, is greater than bo or

ra > q tanb 0 (83)

In other words, an ordinary salient-pole synchronous generator with

normal excitation and no amortisseur winding will have negative

damping due to the electromagnetic action between the armature and

field windings when the relation between the armature resistance

and the q-axis synchronous reactance satisfies the expression 83.

(e) The favorable conditions for the negative damping of a

synchronous motor without amortisseur winding are high excitation,

large armature resistance, large rati af x e , and small

power angle.

(f) From expressions 63 and 64, we can conclude that the

additional synchronizing torque to that calculated from the static

characteristic is



ATx 
Z4- . kbb

q q
A T = 6. mi. 2 3 2 2 . sin(a - b)sin bt

b (r.a + xq) + b

2EVsina -V2 sin(a2 ~ - + d qsin alcos(a-

.... (84)



CHAFTER V

OSCILLATION OF SALIENT POLE SYNCHRONOUS MACHINE

WITH FIELD WINDINGS IN BOTH AXES

The relative positions of the windings of a three-phase

synchronous machine with auxiliary field winding in q-axis can be

shown as follows:

Cl tatol

-- 12.

where a is one phase of the armature windings,

b is the main field winding,

c is the auxiliary field winding in q-axis.

Windings b and e are in space quadrature, and they have differ-

ent circuit constants. Hence they do not form a balanced two-phase

system together. In our analysis, then, we shall consider that each

rotor winding is a phase of a system of two different but balanced

two-phase systems with the other phase open-circuited. Thus the

methods used before can be applied to this case also.

- 87 -
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5.1 The Fundamental Ecuations

The fundamental differential equations in'terms of symmet-

rical components of a three-phase salient-pole synchronous machine are:

v (ra + LaD)il + L D(i sJ29

+ MdD (iblep) + j M D(icl e) (

Vbl = (rb + )ibl 2 d ialC) (2)

Vcl = (r + L D)i - J M D(i lS* (3)

where

Md is the maximum mutual inductance between the main field

winding and any phase on the armature.

M is the maximum mutual inductance between the auxiliary
q

winding in the q-axis and any phase on the armature. (The mutual

inductances between any rotor winding and any phase on the armature

are assumed to vary as the cosine of the position angle between them.)

r is the resistance of the 4ampei 4vinding.

Le is the self-inductance of the auxiliary winding.

vcl and i are the positive-sequence voltage and current

of the auxiliary winding in terms of instantaneous quantities.

All the other notations represent the same quantities as before.

Since the armature terminals are connected to a balanced three-

phase source, the field winding is connected to a d-c source, and

the auxiliary winding is short-circuited, we have
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V = Vs j(Ot

vbl + Vb2 = Ed.c.

(4)

(5)

(6)V l + v = 0

Since the rotor windings belong to the different balanced

two-phase systems with one phase of each system open-circuited,

we have

ibi : b2 2

i

ici e2 2

(7)

(8)

where i is the

negative-sequence

their conjugates,

current in thi winding, and i.2 is its

component. Therefore, from eqs 1, 2, 3, and

together with the eqs 5 to 8, we get

V e = (= a a+ LD)i + L D(i SJ29

+ D(ibce )'+ j MD(i

V eC = (ra + LD)i + L'D(i s-j292 a 2 a

+ D(ibs 9) - 2 q D(iac 3 )

Ed.c. = (rb + LbD)ib + 2 MdD ial + e

0 = (r + L D)ic- j M D i e - ie9'9

(9)

(10)

(11)

(12)
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These four equations are sufficient for solving the currents in

the different windings. After the currents are determined, we can

get the electromagnetic torque by the following expression:

T = j K { ibi je a eSie)

+ j aj22 s + i als )3

2L I j
+ a U a)2 - je )2J

where K = poles - d if T is in lb.ft. and currents and2 746 2-Zd

inductances are in amperes and henries, respectively.

Let

ibia2  = X1 + Jy (14)

(a26 j)2 2 + j y2  (15)

iia2s + jy3  (16)

Then we have

M 212
T -2K(y + x3 21 d )A Md 2/(7
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5.2 Solutions of the Stator and Rotor Currents
Then the Machine is in Oscillation

The method of superposition and the method of successive

reflections will still be used for solving the currents from the

equations 9 to 12. However, due to the presence of the additional

winding on the rotor, the process will be much more involved.

A. Due to the field source alone

By applying the method of superposition, we are now consider-

ing the field source to be applied alone with the armature terminals

short-circuited. The currents, then, should satisfy the following

equations:

0 (r + LaD)i + L D(i e 20
a a al a A2

+ D(ibe G) + j M D(i je) (18)2. 2

O (r + L D)i + L'D(i e-J29a a a2 a a

Md i

+ 2 D(ib -

Ed.c. (rb + 0 +2 MdD a2 + t al (20)

0 = (r + LD)i -j 2 M D (i - i o (21)a acc 2 Mq 'a2 al

It is difficult to solve them simultaneously. However, the method

of successive reflections can be used to obtain the principal parts

of their solutions. We proceed as follows:
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First step: We assume the armature terminals are open.

-Hence we have

E
1b1 d.c (22)

rb

iall 0 (23)

i21 ~ all =0 (24)

ic= 0 (25)

Md ja M dEd.c. K(eoe+bsinbt)
al TD('bl 2rb D

MdEd e. J(190ot) + J(G0-Iot+bt) ( - (e 0 ot-bt)J
2r 2 2
b

SVa 21  
(26)

A

where 1bl and i 1 represent the components of ib and i ,

respectively, in the first step of the method of successive reflec-

tions. They do not and will not represent the positive-sequence

components now and later.

Second step: Assume now both the main field winding and the

auxiliary winding are open and a voltage of (-vall) as its

positive-sequence component is applied to the armature. Then we

have

%2 = 0 (27)

c2= 0 (28)
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and

- all = (ra + LaD)i 2 + L D(1 i2e)

-v =r + L)i + L'D( l -2e)
a2l a +a )a22 a L(a12e

(29)

(30)

From eqs 26, 29, and 30, by the same method as that used in the

preceding chapter, we get

i _ Md Fd.c. ,-jal
2g 2Lrb -

Md d.c.

2rb

r b ba
2 C

L2 - (L')2 - 2 & Lt

e a
cos bt

..... (31)

Vb2 2 Md \a22 + 'al2

dd.c.
2rb
b

2
* 2

CA)

v 2 =2- * M D j o

3M Q M E *
1 dd.c.
2rb

rab 2
2

0

r
2 -(L -L')

0) a a sinbt( F2 -(L') 
2J 2

a) - (L )

r~K 2
-7 + a -aL). asin bt

(L, 2 -(L) 2 2

(32)

0... (33)

'

*
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where vb2 c2 ' b2 , and 1 c2 represent the components vb '

v C b , and i. in the second step. They are not the negative-

sequence components.

Third step: Now we can solve the remaining parts of the currents

by considering that voltages of (-vb2) and (-v,2 ) are applied to

the main and auxiliary field windings, respectively, with the armature

terminals short-circuited and replacing the armature resistance by

imaginary inductances. Thus, if we let i , i ,and i' be the

remaining parts of the respective currents, they will satisfy the

following equations:

0 = L D i + L'D(i 'sJ2 )

+ D(Ids ) + j D(i e ) (A)2 b2

0= L D i + L'D(it -J 20

+ !d D( ) - - D(i e ) (B)

-vb2  (rb + LbD)i + 2 MdD 2 + i-J (C)

-v 2 =(r + LD)i' -j M D i e 3  - (D)
02 C C a
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Then we have

Ed.c. + (34)
b

i = i' (35)
C C

je Sjo _Md d.c. -JCI 1ia2 a2 2L rb

-.dEdc r b L - (Lb 2 2 L
______ a e a Joa t

2rb 0L2 * 2 -(L )2 1 2  cos bt
e a

. 0 0 4 (36)

As b is small in comparison with o , the effective values

Of vb2  and v 02  as shown by expressions 32 and 33 will be small

in comparison with vd and v appearing later in eqs 57 and 5 8g.
1q

Therefore i , il , and (i ) may be disregarded so far as

their effects on the torque are concerned.

B. Due to the armature source alone

We can now consider the field source short-circuited. Then

the currents should satisfy the following equations:

Vejt = (ra + LaD)i + L D(ia2C j2)

+ Md D(ibaj) + j Mq D i") j (37)2 2-
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V2e (ra + LaD)ia2 + L'D(i 8 -2

+ D(ibe - tD(i )

o (rb + LbD)ib +2 M (ials-je + i'a2~ (39)

0= (rc +L c -j Mq(i s -i 5i0) (40)

By the same reasoning as in the preceding chapter, we may

use the simplifying approximations of replacing the stator resist-

ance ra- to the positive-sequence current by an imaginary induc-
r r

tance , and to the negative-sequence current by - Then
JO) -jCO

we have

r
(ra + LD)ia = ( + La)Di l (41)a a a] jo) a a.(

r
(r a + L aD)i2 = -a + La)D i a2(42)J(42

Substituting eqs 41 and 42 into the eqs 37 and 38, and integrating

with respect to time t , we get

V e (t 2 Md O MI aovL eial + L a a j29 + 
7 'c

or

- L i i- + L 8 je +M +
JO eal. a a2 2 'b (4J3)
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and

jo 'L ia2de + L'i Ciea al.

where
r

L + Le jo) a

and

= ot - 0 = - 80 - b sin bt

From eqs 43 and 44 we get

-L - -- (L -LI)a AD e a 22

ILeI2 _- L )
ib + j(L + La)

(45)

From eq 45 and its conjugate we have

+ i Sig = 1
a2 ILe1 - (L') 2 C (L e L') V +

a JO) (L - L 2
e a-3(i

r
- (L -L jMi + M ia aac q C

a2 83 = ILeI 2 - (L )2
(L + L')
e a

V#

3(i) (L + La)

- j(La + L )M i

+ M -'b j (44)

L 2
a2 ejo=

M
2 Ci c

i e-jg

and

ia).-j -

(46)

-j#

r d
+o -Ab (47)
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Let

V = V Ja (48)

L, - L a 2 -jal 
49

L '-L'
ILe 2 -(L )2 L

i.e.

L = L(49')

L +LL+La 1 -ja2
e a 2 32 (50)

Then

V2 - (51)

ra
tan a= xa (52)

q

r
tan a2 (53)

r
asin a,

IL e2 - (L )2 L, (54)

La - L cos a(

2- 2 (55)[L I . (LI) 2
e a

La +L cos a

L (La 2 L2 (56)
IL! a L)
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and eqs 46 and 47 can be shown as

-j
als + i e = V sin(0+a Mdcoo a

L, +

a....

jo JO- e 2V cos($+a +ca2)al ia2 0c L'
Mdsin a,

+

M sin a,

Li c

(46')

M cos a
ib + j L 2

.... (47')

Substituting eqs 46', 47', into eqs 39 and 40, and rearranging,

we have

(kb + D)b + 2 .d

3V Md

-'bLbLPO D

ih a ,

bLbL D

I sin(0 + a0 +

S -I MdMqsin a,
+ 2 CLC6

3V M

OCL Lco
Oos($ + a

~b 1

2 M2CO

Sco, a2
2 L2

and

a )

(k a

(57)

'Di-b

where

(58)

rb

r
ke
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Since

$ = wt - 6 = ot - (0, + ot + b sin bt)

-Q - b sin bt

= -(a + b -

7r - -
2 0 0

- b sin bt

sin bt

then

+ ao + al = 2 0 + a, - 6 sin bt

sin(O + a0 + a,) cos(bo - a1 + b sin bt)

= cos(b0 - a,) - b sin(b0 - a1)sin bt

D Isin(O + a0 + a, ) = - b b sin(bo - a )cos bt

Similarly,.

D cos( + a0 + a2 ) b bcos(b - a2 )cos bt

Substituting eqs 59 and 60 into eqs 57 and 58, we have

(kb+ D)ib+# MdMqsin a,
(g+Dib +2 * ab jj D o

3V Mdb b

'AbL.c-)sin(b0 - a1 )cos bt

vd

(59)

(60)

(57')
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I(k + D)i-. MdMq sin a 1 Di(k + 2 a La L D ib

3V M b b

a 0L~e cos(bo - a2 )cos bt

(58')
0 L -

where

3V Mdb b

d ~ 7Lp sin(b

3V M b b*
V q= L cos(b

- a )cos bt

- a,)cos bt

Equations 57' and 58t can be easily solved by using the ordinary

method of complex numbers in alternating-current circuits. Thus

we can get

'b = Ibcos(bt + Ob)

i = Iacos(bt + p0)

(61)

(62)

where the constants b '

following expressions:

,bepb _

I =

I a I b , and P. are given by the

MdL2 (r + Jb aL)sin(bo - a)- jb M Mq L cos(b0 - a2) 3V b b
(rb + Jb abLb) (r. + jb 'cLe) - b2M2 L L2 o

(63)

3V b b
L L o

(64)

(rb + jb ab'b)(r. + jb acLc)- b2M2

.**00

0 a*0

MqL (rb + jb abLb)cos(bo - a2 )+ jb M MdL2 sin(b - a,)
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3Mdeqsin a,
with 2L =(65)

Then, from eqs 45, 61, and 62 we have

L V e-j + L V siod
i ed= e 2 a 1 Md1 - oja +p

Jo(IL 2 -L)21 2L b

MI
+ j e cos(bt + ) (66)

2

C. When both the armature and field sources are applied

The solutions of the rotor and stator currents, when both

the armature and field sources are applied, will be the sums of

the respective solutions when each source is applied alone. Thus,

from expressions 34, 35, 36, 61, 62, and 66, we have

I E.c. + + Icos(bt+ b- 
(67)

1 = I 0cos(bt + p 0) (68)

= Ed.c.Md -Jac
a2 2Llrb

2 r

MdEd.c. rabb L2 - (L') 2 -L
-aj 2r * a* ( a i a cos bt

bIL ef-(L'

L V + L'V es
+ e 2 a l-Jw' ,LJ 2 _ (L' )2]
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Md'b -Jai1
- 2 -., i cos (bt +

VC -3a2  (9+ J 2L2 S cos(bt + PC)

5.3 Electromagnetic Torque Produced During
the Steady Oscillations

The electromagnetic torque of a salient-pole synchronous

machine with an auxiliary field winding in the q-axis has been

expressed in terms of stator and rotor currents by expression 13

or 17. The currents when the machine oscillates steadily are

given by expressions 67, 68, and 69. Therefore the electromagnetic

torque produced during the steady oscillations can be determined

as follows.

By neglecting the small terms having the factor 2  we get

E d sin -(Ed.c. 2 Mdrab b - 2 La- (L')2

d c Md P

+ r -b-l 
2bsin a>,os bt 

b

b b |Le (L a

- d.* . sin(a -- -0 sin bt)

E 2LV
+ d.c. a sin(b + sin t)

rb C | 2c-s(bt

+ E dbL b sin alcos(bt + Pb)

+f 2rb E o*M os a cos(bt + p
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+ v Ib sin(b0 - ac)cos(bt + sb

+
C(ILel

2L'V
a l I in b cos(bt + s)

2 (La)23 b 0 +h'

x3 d I aCos acos(bt +

+ I cos(b - a1)cos(bt + t )

2

(70)

(71)

Y2 ( . L ) sin 2a, - (o) 2 sin 2(al - bo - b sin bt)

+ 2 * sin(2a - bo - b sin bt)
o Llrb

2 'V Ed.-MdLaV E cos asin(bo + b sin bt)
) Llrb ( I - (La

4L V2
+ 2  L a 2 7L) cos(al - bo - b sin bt)sin(b0 + b sin bt)

2o (L,) a o~i.

E

*rb

2 M2rab b cos a, + L - (L')2

(L 12 _ (L')2 2
008 ot



Ed.e) 2  Mdrab b sin a,

rb 2u2L

Mdd LV
0)L rb

rab b cos(a - 60)

02

MdEd.c.V rab b sin(al - b )
+ . a2

0) Lrb o

2r
- (L -L')

0) a abt
(lL82 - (L) 232

r 2

L |2

+ La - (

-a

2r
a (L - L')

0o a a vib

(* Le !2 2 005 bt

2MrL'Ed .Y
rbo)

r b b sin b

*2
(0)

2r
~.A(La - L')
(* a a cos bt

jIL8! 2 -(Lt~) 
2 3

IEd d.c.
- 2 lbin 2a cos(bt + sb

2 Lrb

dM E d.c. . + a +
2L L2 rb C + )

Md+ 2. Ibsin(2a1 - 0 )cos(bt + sb)Li

M V
+ q I2cos(a + a2 - bo)cos(bt + pC)

2MdV L'sin 6 cos aa 0 1

L, L( L I2 - (L' )2

2M V L sin b sin a2
qi a 0

co L2 LI- (L )2

Ibcos(bt + sb

I cos(bt + p) (
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+ (72)
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Then, as shown by the formula 17, the electromagnetic torque

:roduced is

Mq 2L'
T= -2K(y + x3 + y (73)

with yj x3  y2 given by the above expressions. If we

expand the factors cos(bt%b) and cos(bt+ 0c) , we can see

that the torque still consists of the three parts, namely:

(a) a part proportional to bb cos bt ,
causing the damping action,

(b) a part proportional to bb 2sin bt ,
causing the modification of synchronizing
action,

(c) a part including all the other terms to
represent the sum of the synchronous
torque and synchronizing torque according
to static characteristics.

For the purpose of our investigation, only the part causing

damping action is of special interest. If we let

-(r)2+ L - (L )2
a (74)

LI 2 - (L1)2 2  L

2r
-a(L -L)
co a a 1 (75)

IL 2 (L)2) 2 L

2L'
a = .-l(76)

IL 2 - (L )2  L5

and

Ed c
C L) Md E (77)

2b
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then we have the part of the torque causing damping action, or

the damping torque, as

2K 2E2r b 2E

Td a L 2bOS Pbsin al
dbinb -3

E M
- cos-P cos a OS

OL2 Md' Co ~oe 2  L, -1

E M
- IbC sin o o d Cos

Pbs'nb a1

Pecos a,

V M q4E2Lr b b cos a,C q d ccos(b - aa) a 1 20) LlId C04 I 0 d ~ L 3

4E 2L rab b sin ai 4E V

0EL 2

4E V L 1r b b sin (a, - bo)

0i 2

2E L
+ a bCos

I oL Pbsin 2a1

Lir b b cos(al - 60)a a ~

4E V L'r b b sin b
+ aa 2 0

0)4dL 5L4

2E L IM
+ -L2II aCos a cos(a, + a2)

0LlL2 Md C C .

2V L' 2V L M
a Icos Psin(2al ) o cosco2oL 0b bOlLM (0 - IaCs C cs(cs + a2 - b)

2V L'
+ a b 0 s asin b
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2V L M

- 2 0 ~osin a2 sin bl Cos bt

2E2r b b E M
_2K .O L2 2oE bcos Pbsin a, - 5 d Ic 0o

d1 53
PC

- Ibcos Pbsin(bO -
M

Td+j ~oPcos(b -

4E Ltr b

#LaMdL 2 E cos a, - V cos(a - 6
1 d 3

4E L'r b
+ a a

0)4LM 2
1%d/

E sin a - V sin(al - 6 )

2 L Ib OB
+ E sin 2a - V sin(2a -b)J

2LaM Iccos P
+ LiL2Md E cos(a + a2 ) V cos(al + a2 - 6))

- Ibcos p sin b +a)L5 b

4E V L'r b b sin ba a 0
2

0( ML5L4

2V L'
+ 0 a5 Ibcos Pbcos aisin boLlL0

2V L M
- q L25 .o S sin a 2 in o cos bt

0)L2L ?d a
(78)
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5.4 Criterion for the Negative Damping

If we put the expression for the damping torque in the

following form,

Td= B b b cos bt , (79)

then, by the same reasoning as before, we can conclude that the

machine will have negative damping due to the electromagnetic

action only when B ' 0 . In other words, the criterion for the

negative damping of a synchronous machine is

2E2ra Ibcos Pb E Mq IcCos PC

SL 2 L * b b sin a - o L5Md bb

Cos b MI cos PCS b sin( 0 - a,) + Mdb b Cos a,)

4E L 'raa 2 E cos a - V cos(a1 - by)

4E L'r
+ a a E sin a - V sin(a - bo)

(6L M d L2 + 4

2L 'Ib""O
+ 2LaIboos b E sin 2a, - V sin(2a, - bo)

a) L 2

2L'M I cos c
+a 9 2 a E cos (a + a) - V cos(a + a2 - bo
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I-b'Os b 4E V L'r
- sin + A a sin

(oL b 0 4 2 0
5 aMd L5 4

2V L I
+ b b cos %Asinb0CD L1 L<

2V L'M I cos P
aq C 0 sin a2sin bo > 0 (80)W L 2L 5 d bb2f~

5.5 Discussions and Conclusions

(a) Since the assumptions in the analysis disregarded the

core losses in both the armature and the rotor, the damping action

due to the hysteresis and eddy currents is not included in the

results which we have obtained.

(b) If the machine has two or more rotor windings in each

axis, the formulas 78 and 80, etc. still hold, provided that the

constants of the main and auxiliary field windings are replaced

by their respective equivalent constants.

(c) If the armature resistance is zero, the formula 78 will

be changed to

Td= 2K - I L d Cos c V bos Pbsinb + IcCos P Cos
Td= K{CO co 5M - Md c cob01

2L Ib b 2Lt M Icos P
+ V sin b0  (E - V cos

2i Vi W L L2Md

- V 2V I } bt
- Cos sbin 40 +1 bO bi cos bcoL5 I b 0 ( 15bo bnb



i1

EM 2 1

m
q v

Md ohL
I cos P s 6 0 (1 +

V Ibcos Ob bo 2L-
+ L

L 

2L1f

L12

12L
+ ---

L 5 ) }cos bt

And, from formulas 49, 50, 63, 64, 65, and 76, with ra

we have

2L (L -a a +L')(La

(L) )

2L'
a

a a 11)

(81)

= 0

L ) 21

L - (L )2La a

2L 1

2 - ( 2 0
a a

L2 - (L )2 + 2L'(La + L )aa a a a
2 12La - (L )2a a

Lit
-1 L 5 

L L5
) a

L-

2L'(L - L')a a a
2 2

L2 - (L')2a a

a a
L + L'a a

L + L'a a
L - L'
a a

-1)(1 +

- 1J

La + L'a a
L -1La a

2L
x + - Ll

a a.

- 1

2La 1 )

2L Ia
La )

211
a

1
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3V b b Md rbsin bo
Ib COSPb Lo * 2 + (b rb

rb(bL )

3V bb ML r os b
IC Cos P a L2 * r + (b a L) 2

Hence the formula 81 can be rewritten as

3M2V b

MaL2

L + L'a a
L -La a

rc42r cos 2

r 2 + (baLc)2

3MdV 2 b b,
+

o L

rbsin2bo

2 + (b abLb)

6K M d 2 b
= -

(2L2J3 1 r -Mgq

Md

L + L' 2

La -aL

rcos2b0 rbsir2b.

+ 2 2cosbtr + (b o L) rb + (b obLb)

.*.. (81')

i.e.,

6K Md 2  M

2L2 MdCO1 (M

6K V2

Md (.

q2

x
q

L + Lt 2 r Cos b rbsin2ba- a / + b a

a r2+( CC b b bb

k cos26

k 2  2
+b

Md)

Xd

2 kbsin2b

2 2
k + b

(82)

The value of B is always negative, no matter what will be the

value of b . Therefore the machine always provides a positive

Td - 2K

cos bt
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damping due to the electromagnetic action.

(d) If the pole structure of the machine is nonsalient,

we have

1l 21'
La 0 = A = 0,

5 La-(La

and a, a
L1 L2 Z

where Zs is the magnitude of synchronous impedance. Then the

damping torque is

=2K {2E2r a bb 2Ed =2 L2 a) boos pbSin a1

V M

- L- IIbcos b sinbo - a) + I ccos Pcos(b - a,)) cos bt
dj

00*(83)

Thus we can see that the presence of the short-circuited windings

in the q-axis increases the positive damping action.

(e) From the expression of the total electromagnetic torque

we can also find that the additional amount to the static synchro-

nizing torque may be expressed in a similar form as expression 78

by simply changing kbcos Pb ' Iccos 00 , cos bt into -Ibsin Pb '

-I sin Pc , sin bt , respectively, and omitting all the other
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terms. It is, then,

E M
A T 2K BIb sin bsin a + -L 1 in

s C0 0,b P oL5M

r M
+ V Ib sin Pbsin(bo - a,) + , I)sin P cos(b- a,)

2L'I sin pb
b 2 E sin 2a , - V sin(2a , - b )

(o L

2L MI Isin N,a qM E cos(a + a) - V 0o8(al + a2() LlL2Md k2 csa

v 2L'
+ oL5  b bin b (1 - cos a,)

2V L IM
+ d S sin p sin a2sin bo sin bt (84)

(f) The formula 80 can be expressed directly in terms of

voltages, resistances, reactances, and power angle, etc., as we

have done correspondingly in the preceding cases. It remains as

it is only for the sake of simplicity.



CHAPTER VI

LABORATORY EXPERIMENTS

The criteria for the negative damping due to the electro-

magnetic action of synchronous machines have been derived analyti-

cally in the preceding chapters. It is advisable to have some

experimental verifications with the machines in the laboratory.

As the machines under test will be in oscillatory motion, any

flexible mechanical coupling between shafts must be avoided.

Otherwise, uncontrollable or unpredictable extra-damping would

be introduced. Hence, for our test, the M.I.T. Alternator No. 95

ig used. It is rated at 220 volts, 3 phases, 60 cycles, 118 amperes,

1200 rpm, and 49 kilovoltamperes. It has salient-pole structure

without damper windings. Rigidly coupled to its shaft there are

a d-c machine and a pilot 3-phase generator. The d-c machine may

serve either as a driving motor or as a load generator. The pilot

3-phase generator is used for power-angle measurement. In order to

reduce the damping due to the electromagnetic action of the d-c

machine, it is always advisable to operate it as a generator (i.e.,

to test the synchronous machine as a synchronous motor).

6.1 Machine Constants

The synchronous impedances of the M.I.T. Alternator No. 95 have

.
been accurately determined by Professor Charles Kingsleyby different

methods. They are:

115
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xd = 0.985 ohm

x = 0.53 ohm
q

x = 0.21 ohm

ra = 0.043 ohm

where Xd q are unsaturated reactances. The magnetization

curve or open-circuit characteristic is given on p. 117. As in

the analysis, the machine is assumed under almost constant satura-

tion. The saturation factor may be determined by assuming the

generated emf of 220 volts. Hence, from the open-circuit charac-

teristic we have the saturation factor as

k = = 1.18

Then, for simplicity, we may have the saturated reactances as

xd = 0.21 + 0.985 - 0.21
1.18

= 0.21 + 0.775
1.18

= 0.21 + 0.657 = 0.867 ohm

x = 0.21 + 0.53 - 0.21
q 1.18

= 0.21 + 1.18

= 0.21 + 0.271 = 0.481 ohm
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From the open-circuit characteristic we have also

,c oM 220 E2~~X =- (D i= 2 - . = 63 ohms
M J3 X 2.85

In the mathematical derivations we have excluded the effects

of the core losses. They, together with the effects of friction,

windage, etc., produce some extra damping. In order to meet this

condition more closely, the inductance of the field winding to be

used in computations should be the value corresponding to the

direct-current excitation. It can be determined appropriately

with the formula

Lb I I

where M' is the maximum mutual inductance between the field

winding and any one of the armature windings, and L is the self-

inductance of the field winding when the machine is at standstill

and the field is excited with a 60-cycle source. M and Lb are

the corresponding inductances when the machine is run at synchronous

speed and the field is excited with a d-c source. Since the leakage

coefficient is given as

Cr M2iCos a,
a'=1-2 * LbL

= .-6! ---.
2 Lb r2 + x x

a q d
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from formula 1, and by neglecting the stator resistance, we have

a = (2)
2 Xd

Thus, by measuring L , M', and with the values of xd and xm '

we get

Lb = 28.6 h

a = 0.258

and Co a. Lb = 377 x 0.258 x 28.6 2780 ohms

6.2 Connection Diagrams

Any electrical or mechanical disturbance could cause a

synchronous machine to oscillate about the equilibrium position

with respect to its rotating field. The amplitude of oscillation

will be constant, increasing or decreasing when the total damping

of the system is zero, negative, or positive, respectively. In

order to test the damping, then, the synchronous machine may be

connected as for normal operation except that the armature terminals

are connected to the bus through rheostats for adjusting the damping

due to the electromagnetic effect. Hence we can show the connection

diagram for our test as Fig. 8. Since the synchronous machine is

tested as a synchronous motor, the coupled d-c machine is operated

as a separately excited generator and delivers its load to a

rheostat (Fig. 9). The coupled pilot a-c generator is used for

power-angle measurements. It is connected to a two-pole phase

shifter as shown in Fig. 10.
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6.3 Power-Angle Measurements

The power angle of a synchronous machine is usually measured

with a pilot generator connected as shown in Fig. 11. The pilot

generator is rigidly coupled to the main synchronous machine with

their field axes in exact alignment. Thus their excitation emfs

are in phase with each other. If the pilot generator is excited

to a voltage equal to the applied emf, the voltmeter shown in the

figure will give a reading Vb such that

V =2V sin b (3)2

Armature Field D.C.source

Pilot Fenerator

A.C. Bus

Fi-rure 11.

Hence the value of b can be calculated from the voltage measure-

ment only. This method for measuring the power angle is very

simple but has the following disadvantages:

(a) The pilot generator and the main synchronous machine

cannot be easily coupled together with their field axes in exact

alignment.
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(b) The wave form of the emf of the pilot generator will

affect the result very much, especially for small values of b

(c) The voltage across the voltmeter shown in the figure is

uncontrollable. It is not suitable when the machine is oscillating

and the variation of the amplitude of oscillation is of special

interest.

In order to avoid these disadvantages, in addition to the

pilot generator a phase shifter is also used. The connection

diagram is shown as Fig. 10. The phase shifter has its secondary

windings mounted on a rotor which can be turned manually. We can

read the angle of rotation from a graduated disk with its smallest

division equivalent to one electrical degree. The pilot generator

is now excited to a voltage equal to the output voltage of the phase

shifter, and it may be coupled to the main synchronous machine with

an arbitrary angle between their field axes. Before we excite the

a-c bus, the synchronous machine is run at no load as a synchronous

generator with its excitation emf equal to the voltage to be applied

to the a-c bus. We may, then, turn the rotor of the phase shifter

to a position so that the shown voltmeter gives a reading suitable

for our purpose (as we might connect a brush oscillograph across

the voltmeter to record the variation of the power angle when the

machine is in oscillation). Then, with the a-c bus excited and the

synchronous machine loaded, the power angle will be equal to the

angle through which we have to turn the rotor of the phase shifter

to give the indicated voltmeter the same reading as before. It is,
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then, not affected by the wave form of the emf of the pilot

generator so long as the machine is not oscillating. Rhen the

conditions of the synchronous machine are adjusted to give zero

resultant damping, the machine could oscillate with constant

amplitude and a frequency fixed by its synchronizing torque and

the moment of inertia of the system. As the frequency is usually

a few cycles per second, the needle of the voltmeter will be forced

to oscillate correspondingly with constant amplitude about its

average position. In other words, the constant-amplitude oscilla-

tion of the reading of the voltmeter can serve as an indication of

zero resultant damping. Similarly, if the damping of the machine

is positive or negative, the reading of the voltmeter will oscillate

with deereasing or increasing amplitude, respectively. But if the

increment of the amplitude of the machine oscillation is of interest,

it is advisable to replace the voltmeter by a brush oscillograph

to record the corresponding variation of voltage. (The wave form

of the pilot generator's emf does affect the magnitude of this

variation.)

One record is shown in Fig. 12 to illustrate the phenomena

of negative, positive, and zero damping of the synchronous machine

by simply changing its excitation. When we are taking the oscillo-

graph, any electrical or mechanical disturbance should be avoided.

Otherwise, the record will contain irregularities.
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6.4 Numerical Computations and
Comparison of Results

From the mathematical analysis we have the expression of the

damping coefficient for synchronous machines of salient-pole struc-

ture without damper windings as follows.

3K XV
B ___ _____ q

o rb 2+ b2 2 3k7~ (ra+xdq

2E sin a, - V sin(a2 -b 1J sin(a , - b )

[ .V sin alcos(a - bo)
q

K 2E2r (x ~ 2
Co * 2m r + xd q2X (r xx)

m a dxq)

2E r (x(E C 2
K a d (E -Vcos b)(2ra -xx q
+E x x(r2 + 0 a d

m a + (V sin 6)(2xdx - r2)ro d q ara)

When B is positive, it means negative damping due to the electro-

magnetic action of the synchronous machine. Where

x
q

r

a2
2 t a~ d

rb r
(1 Tjb= ---- = Co
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b = 2 7r times the frequency of oscillation

E = excitation emf between lines in effective
value

V = applied voltage between lines in effective
value

K = . No. of poles Xm =
746 2 2o

B is in lb.ft. per elec. rad. per sec.

The units of voltage, current, impedance, and angular velocity

are volt, ampere, ohm, and radians per second, respectively. If

we let

3x V 2 z

b k2 + b2 (r + x X) 3
a d q

A2 = 2E sin a1 - Z V sin(a2 -

-( ~ q

d q V sin a cos(a - bo) sin(a b ) (5)+ z l~o~1 boJsna
q

2E2 r x 2)a d q a
A 3 = 22(6)

S(r + xdxq)

2E ra d q 
2A (E V cos b)(2ra Xa q)xq

Xm a d qo dq a }
+ V sin b (2xdx r)r (7)

Then we have

K
B = ; (A A2 + A3 + A4 ) (8)
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For the purpose of verifying this formula, the following two

tests are made.

Test 1. The object of this test is to show the relations of

the damping coefficient B' and the excitation emf E with respect

to the armature-circuit resistance ra when the machine is operated

as a synchronous motor at constant power angle and apparent zero

damping.

The machine is always operated at V = 226 volts, rb = 81.5 ohms,

and b = -110 . When it is adjusted to oscillate with constant

amplitude (i.e., zero damping), we have the following data:

Armature-circuit
Resistance

ra

0.125

0.141

0.155

0.174

0.185

0.228

0.281

Field
Current

I f

2.95

2.70

2.50

2.28

2.10

1.90

1.70

Excitation
emf

E

228

208

194
176

163

148

132

Angular Velocity
of Oscillation

b

0.0389 o

0.0367 o

0.0356 co

0.0333 w

0.0322 o

0.03311 CD

0.0289 )

Where the values of

oscillations.

(a) For ra =

and E =

b are obtained from the measured periods of

0.125 ohm

228 volts.

We have

a1 = tanrf1 012 = tan-1 0.259 = 14.50
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sin a, = sin 14.50 = 0.251

a= tan-1 =0.125 t~ O.44 = 8.20a2 tn 0,867 =tn .4 .

Z2=
q

0.1252 + 0.4812 = 0.4472 = 0.247

Z2= 0.1252 + 0.8672 = 0.8762 = 0.768

2
ra +x% =
ad q 0.1252 + 0.867 x 0.481

= 0.0156 + 0.417 = 0.433

xd ~ xq = 0.

2r - xx=
xd~q

867 - 0.481 = 0.386

0.031 - 0.417 = -0.386

2xd q - r2 = 0.834 - 0.0156 = 0.818

Xdrq - r = 0.417 - 0.0156 = 0.401

k= 0.0293 o

3 x 63 x 226 0.02932 0.242
A 1 ~ 81.5 * 2 2 2

0.0293 + 0.03892 0.433

524 x x 1 42237 815

A2  (2E x 0.25 - 0 76 x 226 sin 19.20

+ 86 4 x.0+ 8 X 226 x 0.251 cos 25.50)sin 25-500. 49 7
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-= (0.502E - 131 + 39.8) x 0.431

= (114.5 - 131 + 39.8) x 0.431

= 23.3 x 0.431 = 10.0

A3
22 x0.125 x 0.401 = 0.00846E2

63 x 0.433

= 0.00846 x 228 = 441

A/ -2E X 0.125 x 0.386 (E - 222)(-0.386) x 0.481
+ 63 x 0.4333 - 43.1 x 0.818 x 0.125)

2 x 228 x 0.125 x 0.386 (1.11 + 4.4) -23.8

63 x 0.4333

Therefore

K
B = '(142 x 10.0 + 441 - 23.8)

(1420 + 441 - 23.8) = 1837 = 0.895

(b) For ra = 0.141 ohm

and E = 208 volts.

We have

a = tan 1 0.481 = tan 1 0.293 = 16.30

sin a = sin 16.30 = 0.281

a2 = tan =0.861 tan~i 0.163 = 9.250
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Z2 = 0.142 + 0.4812 = 0.5012 = 0.251
q

Z2= 141 2 + 0.8672 = 0. 8772 = 0.768

r + xx = o.1412 + 0.867 x 0.481 = 0.437a dq

Xd ~ 7q = 0.386

2r - xdq = 0.0398 - 0.417 = -0.377a d

2xx - .0.834 - 0.0199 = 0.814

Xdrq 0.417 - 0.0199 = 0.397

kb = 0.0293 c

A, = 524 x 0.0293 x

0.02932 + 0.03672

524 x 8 x = 15420 835

A2 = (2E x 0.281 - * x 226 sin 20.350

00.386

+ 0.501 x 226 x 0.281 cos 27.30 )sin 2'.30

= (0.562E - 137 + 433) x 0.458

= (117 - 137 + 43.3) x 0.458

= 23.3 x 0.458 = 10.7

2E 2 x 0.141 x 0.397

63 x 04372

= 0.0093 x 2082 = 402

= 0.00930M2

0.2512
0.437 2

A3



2E x 0.141 x 0.386

63 x 0.4373
(E - 222)(-0.377) x 0.481

-43.1 x 0.814 x 0.141 )

2 x 208 x 0.141 x 0.386
63 x 0.0835 (2.54 - 4.94) = -10.3

Therefore

B = L (154 x 10.7 + 402 - 10.3)

(1645 + 402 - 10.3) = 2037 0.994

(c) For ra = 0.155 ohm

E = 194 volts

We have

a, = tan- 1  02 10
0.4+81 = tan 1 0.322 = 17.850

sin a, = sin 17.850 = 0.307

a2 = tan 1

Z2 = 0.1552
q

0,867 = tan-1 0.1785 = 10.10

+ 0.4812 = 0.506 = 0.255

Z = 0.1552 + 0.8672 = 0.8822 0.778

r + xx =a d q 0.1552 + 0.481 x 0.867 = 0.441

Xd xq = 0.386

2r - xXq = 0.048 - 0.417 = -0.369

dx x r2 = 0.834 - 0.024 = 0.810

4

131
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x -r = 0.417 - 0.024 = 0.393deq -a

kb= 0.0293 co

A1 = 524 x 0.02932 0.2552
0.02932 + 0.03562 0.4413

6524 x 6 x 50 = 161212 857

A2 = (2E x 0.307 - 0.0 x 226 sin 21.10

0.38 5o

+ 0506 x 226 x 0.307 cos 28.850 )sin 28.850

= (0.614E - 142 + 46.5) x 0.484

= (0.614 x 194 - 142 + 46.5) x 0.484

= 23.5 x 0.484 = 11.4

A = 2E2 x 0.155 x 0.393 = 0.00992E2-
3 - 63 x 0.4412

= 0.00992 x 1942 374

2E x 0.155 x 0.386

63 x 0.

(E - 222)(-0.369) x 0.481

- 43.1 x 0.810 x 0.155 J

2 x -19 x 0.0857 0,386 (4.96 - 5.42) = -1.97

Therefore

B = (161 x 11.4 + 374 - 1.97)

(1840 + 374 - 1.97) = 2212 =1.08
(0) co

4



For ra = 0.174 ohm

and E = 176 volts

al = tan 0.481 = tan' 0.361 = 19.850

sin a, = sin 19.850 = 0.340

a2 = tan-1

Z2 = 0.1742
q

0.174
0.867

" tan-l 0.201 = 11.350

+ 0.4812= 0.5122 0.262

zd= 0.1742 + 0.8672 = 0.8842 0.780

r + xx =ad q
2 + 0.417 = 0.4470.174+041=0,7

xd - Xq = 0.386

2r2 - x = 0.0606 - 0.417 -0.356
a d q

2xx - r = 0.834 - 0.0303 = 0.804

xxq
2

-ra = 0.417 -. 0.030.3 = 0.387

- = 0.0293 ci)

A1 = 524 x 0.02932 x=52x 2 2
0.0293 + 0.0333

0.2622

0.447~

= 524 x x688 = 175

(d)

133

We have
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A= (2E X 0.340 - 0*88. x 226 sin 22.3502 0,512

+ 0.386 x 226 x 0.34 0os 30.850 )sin 30.850

= (0.68E - 148.2 + 49.8) x 0.512

= (0.68 x 176 - 148.2 + 49.8) x 0.512

= 21.2 x 0.512 = 10.8

A
3

= 2E2 x 0.387 x 0.174 = 0.01055E2

63 x 0.4472

= 0.01055 x 1762 = 326

From the results shown in the preceding cases, A is very

small and can be neglected. Therefore

B = (175x 10.8 + 326)

(1890 + 326) = 2216 = 1.08

(e) For ra = 0.185 ohm

and E = 163 volts

We have

a, = tan 1  0.8
0.1481 = tan 1 0.385 = 210

sin a, = sin 210 = 0.359

a2 = tanl 0.8 - tanl 0.213 = 120

Z2 = 0.1852 + 0.4812 = 0 5162 = 0.266q
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z2 = 0.1852 + 0.8672 = 0.889 2 = 0.788

r + x = 0.1852 + 0.417 = 0.451a d q

Xd - xq = 0.386

Xd q - r2 = 0.417 - 0.0342 = 0.383

kb = 0.0293 o)

A = 524 x 2x 0.266

0.02932 + 0.03222 0.4513

= 524 x x = 183

A2 = (2E x 0.359 - 0*:6 x 226 sin 230

+ o3 x 226 x 0.359 cos 33 0)sin 330

= (0.718E - 152 + 51) x 0.545

= (0.718 x 163 - 152 + 51) x 0.545

= 16 x 0.545 = 8.72

_ 2E2 x 0.185 x 0.383 = 0.0111 E2

63 x 0.4512

= 0.0111 x 1632 = 295

A is neglected.

K
Thereffore B Z3~ (183 x 8.72 + 295)

= (1592 + 295) = 1890 = 0.921



For r = 0.228 ohm

and E = 148 volts

We have

a, = ta-1 0.228
0.4+81 = tan-l 0.474 = 25.4o

sin a1 = sin 25.4o = 0.429

a2 = t an1

Z2
q

0.228 -1
0,867 -tan 0.263 1 4.70

0.2282 + 0.4812 = 0.5312 = 0.282

Z 2 = 0.2282 + 0.8672 = 0.8992 = 0.805

r2 +a xx =dq4 0.228 + 0.417 = 0.469

Xd ~ xq = 0.386

xdeq
- r2 = 0.417 - 0.052 = 0.365a

]cb = 0.0293 a)

A, = 524 x
0.02932

0.02932 + 0.03112

86 72
= 524 x x 21 = 190=(2 x3 1030 192

A2=(2E x b.429 - 0.$99- x 226 x sin 25.7*

+ 3 x 226 x 0.429 cos 36.4)sin 36.4*

= (0.858 E - 165.5 + 56.5) x 0.593

= (0.858 x 148 - 165.5 + 56.5) x 0.593

= 18 x 0.593 = 10.65

(c)

136

0.282
0.4693
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A 2E2X 0.228 x 0.365 = 0. 0 1205 2
3 63 x 0.4692

= 0.01205 x 148 = 262

A is neglected.

Therefore B = I (190 x 10.65 + 262)

==
-~(2030 + 262) = 2292 =1.12

For r = 0.281 ohm
a

and E = 132 volts

We have

a = tan-1 0.281
(11 tan 0.481 -tan1 0.583 = 30.30

sin a, = sin 30.30 = 0.505

a2 = tan-1 281 -1 0.324 =

Z2 = 0.2812 + 0.4812 = 0.5572 = 0.310
q

Z2, = 0.2812 + 0.8672 = 0.9102 = 0.825

17.95

2r a + xx= 0.2812 + 0.417 = 0.496

Xd - xq = 0.386

xxq - r2 = 0.417 - 0.079 = 0.338a

kb = 0.0293 o

(g)
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A, = 524 x 0.02932 0.3102
2230.0293 + 0.0289 0.496

524 X 86 = 209170Xy~ 122

A =(2E x 0.505 - 0 X0 x 226 sin 28.950

00.557

+ x 226 x 0.505 cos 41.30)Sin 41.300.557

(1.01 E - 179 + 59.5) x 0.660

=(1.01 X 132 - 179 + 59.5) x 0.66

= 13.5 x 0.66 = 8.91

A 3 2E2 x 0.281 x 0.338 = 0.01225 E2
63 x 0.4962

2= 0.01225 x 132 = 214

A is neglected.

Therefore B = I (209 x 8.91 + 214)

(1860 + 214) = 2074 - 1.01

Therefore, when the synchronous machine is operated at a fixed

power angle of (-11') and then it is adjusted to oscillate without

net damping, the damping coefficient due to its electromagnetic

action can be tabulated as follows:
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ra If B

0.125 2.95 0.895.
0.141 2.70 0.994

0.155 2.50 1.08
0.174 2.28 1.08

0.185 2.10 0.921

0.228 1.90 1.12

0.281 1.70 1.01

If there were no extra damping due to the load, windage,

friction, hysteresis and eddy currents, etc., the value of B

should be zero when the machine shows no damping on its oscillations.

As for reference, we may calculate the values of E which would

make B zero for the corresponding armature-circuit resistances.

From the above calculations, with A disregarded, we have

(a) For ra 0.125 ohm, and

B = /142(0.502 E - 131 + 39.8) X 0.431 + 0.00846 E I

= (0.00846 E2 + 30.7 E - 5520) 0

E = 170 volts or I f 2.21 amp

(b) For ra = 0.141 ohm, and

B = 154(0.562 E - 137 + 43.3) x 0.458 + 0.0093 E

= (0.0093 E2 + 39.5 E - 6600) = 0

E = 161 volts or if = 2.09 ohm



() For ra = 0.155 ohm, and

B = 161(0.614 E - 142 + 46.5) x 0.484 + 0.00992 E2

= (0.00992 E2 + 47.8 E - 7450) K= 0,

E = 151 volts or i = 1.96 amp

(d) For ra = 0.174 ohm, and

B = 175(0.68 E - 148.2 + 49.8) x 0.512 + 0.01055

= (0.01055 E2 + 60.9 E - 8800) K = 0 ,

E = 42 volts or I = 1.85 amp

(e) For ra = 0.185 ohm, and

B = [183(0.718 E - 152 + 51) x 0.545 + 0.0111 E23 K

2= (0.0111 E + 71.6 E - 10080) =0 ,

E = 137 volts or I = 1.77 amp

(f) For ra = 0.228 ohm, and

B = 190(0.858 E - 165.5 + 56.5) x 0.593 + 0.01205 E2

= (0.01205 E2 + 96.5 E - 12250) K = 0 ,

E = 125 volts or I = 1.63 amp

(g) For r = 0.281 ohm, and

B = 209(0.1 E - 179 + 59.5) x 0.66 + 0.01225 E2] K

2K
=(0.01225 E + 139 E - 16500)K = 0,

E = 117 volts or i= 1.52 amp
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From the results which have been obtained, three curves. can

be plotted as shown on p. 142. The curve I shows. the relation

between the field current and the armature-circuit resistance with

the data obtained from test. The machine is adjusted to oscillate

without damping. The curve II shows the same relation as curve I

but with the data calculated for the condition B = 0 . The curve III

indicates the values of B for the different values of ra when

the machine oscillates without damping.

Since the machine always possesses the extra positive damping

due to the effects of load, windage, friction, hysteresis and eddy

currents, etc., the curves I and II are not expected to coincide

with each other. The curve II has to be below the curve I as they

are shown.

As the machine is operated at constant average power angle 0 ,

its average load is practically constant throughout the test and

so the damping due to the load. Therefore the total extra damping

is practically constant. When the machine oscillates without damping,

the damping due to the main electromagnetic action should be equal

and opposite to the total extra damping. Hence the calculated damp-

ing coefficient B should be nearly constant. It checks essentially

the curve III.

In the region above the curve I, the machine is unstable, while

in the region below the curve I it is stable.
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Test 2. The object of this test is to show the relations

of the damping coefficient B and the excitation emf E with

respect to the average power angle b for constant armature-

cirduit resistance ra when the machine oscillates without damping.

The machine is always operated at V = 226 and ra = 0.141. When

it is adjusted to oscillate without damping, we have:

b

- 6.00
- 9.00

-11. 00

-13.5 0

-15.50
-17.0 0

I f

1.85
2.30

2.70

3.10

3.50

3.90

E

144
178

208

240

270

300

b

0.0311 )

0.0344 co

0.0367 o

0.0389 o)
0.0400 )

0.0422 co

where the values of

of oscillations.

a1 = tan 0.481

b are obtained from the measured periods

tan 0.293 = 16.30

sin a, = sin 16.30 = 0.281

a2 = t 0.867

2 2 2
z= 0.1412 + 0.4812
q

= tan 0.163 = 9.250

= 0.5012 = 0.251

Z = 0.1412 + 0.8672 = 0.8772 = 0.768

2 2r + xx 0.l41 + 0.867 x0.,481 =0.437a d q

Xd - X = 0.867 - 0.481 = 0.386
dq
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2r a - xx= 0.0398 - 0.4.7 = - 0.377

2xdeq - r = 0.834 - 0.0199 = 0.814

xdq a

A x 0

=32200 x

0.417 - 0.0199 = 0.394

2 2
x 226 x 0.2512 kb

04373 rb(k + b2

2

rb( 2+ b2

A2 = 2 x 0.281 E - 0.87 x8226 sin(9.250 - b )

+,38 x 226 x 0.281 cos(16.30 - b )0.501 0' sin(16.3 - 0)

= 0.562 E - 395 sin(9.25' - bo)

+ 48.9 cos(16.30 - bo) sin(16.30 - )

A3
2E2 X 0.141X 0,397

63 x 0.4372

A = 2E x 0.141 x 0.386
63 x 0.4373

= 0.00930 E2

( (E - 226 cos b 0 ) x 0.481 x (-0.377)

+ (226 sin b ) x 0.141 x 0.8141

= 0.00375 E(226 cos b - E) + 0.538 E sin 60

(a) For b , = -6.0O, E = 144 , we get

220 =,119

rLb ~1.85

= 119 a = 0.0428kb =2780 ~=002
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2
k 0.24L8 2

2 _ 2 = 0.00550
rb(% + b2) 119(0.04282 + 0.03112)

A, = 32200 x 0.0055 = 177

A2 = 0.562 x 144 - 395 sin 15.250 + 48.8 cos 22.30 sin 22.30

= (80.7 - 104 + 45.1) x 0.380

= 21.8 x 0.380 = 8.28

A3 = 0.0093 x 144 =193

A, = 0.00375 x 144 x 81 + 0.538 x 144(-0.1045)

= 43.7 - 8.1 = 35.6

KTherefore B = (177 x 8.28 + 193 + 35.6)

= (1460 + 193 + 35.6) = 1689 = 0.8280) co

(b) For 0 = - 9 . 0 0 ,

rb = 220
5 = 95.5

kb =7 = 0.0344 c

2
kb

rk2 +b2rb(k b )

E = 178 , we get

0.0344224 + - 0.00525
95.5(0.0344 + 0.03442)

A1 = 32200 x 0.00525 = 169

A = 0.562 x 178 - 395 sin 18.252 + 48.8 cos 25.3 j

= (100 - 124 + 44.2) x 0.427

= 20.2 x 0.427 = 8.63

sin 25.30
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A3 = 0.0093 x 178 = 295

A = 0.00375 x 178 x 45 - 0.538 x 178 x 0.1565

= 30.0 - 14.95 = 15

Therefore B = (169 x 8.63 + 295 + 15) K

(1460 + 295 + 15) = 1770 = 0.865

(c) For b = -11.0 0

220 81s5
rb 2.70

kb 8 = 0.0294 o

and E = 208 , we have

2kb

rb Nb+ 2

0.02942

81.5(0.0294 + 0.03672)

A, = 32200 x 0.0048 = 154

A2 = (0.562 x 208 - 395 sin 20.250 + 48.8 cos 27.30 )sin 27.30

= (117 - 137 + 43.8) 0.458

= 23.3 x 0.458 = 10.7

A3 = 0.0093 x 2082 = 402

A = 0.00374 x 208 x 14 - 0.538 x 208 x 0.19

= (10.9 - 21.4) = -10.5

Therefore B = (154 x 10.7 + 402 - 10.5) K

K==(1650 +402-10,5) =2041 K) -1.005

= 0.00480
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(d) For 0 = -13.50 and E = 240 , we have

rb = 71.0

2

rb(K%+ b)

0,02562 -= 0.00424
71.0(0.02562 + 0.03892)

A 1 = 32200 x 0.00424 = 136

A2 = (0.562 x 240 - 395 sin 22.750 + 48.8 cos 29.84)sin 29.80

= (134.5 - 153 + 42.4) x 0.497

= 23.9 x 0.497 = 11.9

A3 = 0.0093 x 2402 = 535

A = 0.00374 x 240(-21) - 0.538 x 240 x 0.234

= -18.8 - 30.2 = -49

Therefore B = (136 x 11.9 + 535 - 49) K
Cl0

= (1620 + 535 - 49) 2106 = 1.035) = 1= 3

(e) For 0 = -15.5 0

rb = = 63.0

kb = 2780 = 0.0227 o

and E = 270 , we have

= b
bk2 + b 2)

00227

63(0.02272 + 0.04002)
= 0.00390
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A, = 32200 x 0.0039 = 125

A2 = (0.562 x 270 - 395 sin 24.750 + 48.8 cos 31.8&)sin 31.8

= (151.5 - 165.5 + 41.5) x 0.527

= 27.5 x 0.527 = 14.5

A3 = 0.0093 x 2702 =677

A = -0.00374 x 270 x 52 - 0.538 x 270 x 0.267

= -52.5 - 38.8 = -91.3

Therefore

(f )

B = (125 x 14.5 + 677 - 91.3)

= (1815 + 677 - 91.3) = 2401 = 1.16

For 0 = -17.00 and E = 300 , we have

rb = = 56.5

ko = 0.0203 cb 2780

2)
rb( b )

0.02032

56.5(0.02032 + 0.04222)

A, = 32200 x 0.00331 = 106.5

A2 = (0.562 x 300 - 395 sin 26.250 + 48.8 cos 33.30)sin 33.30

= (168.5 - 175 + 40.8) x 0.548

= 34.3 x 0.548 = 18.8

A3 = 0.0093 x 3002 = 837
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A = -0.00374 x 300 x 84 - 0.538 x 300 x 0.293

= -94.3 - 47.3 = -141.6

Therefore B = (106.5 x 18.8 + 837 - 141.6) K(+.
K K= (2000 + 837 - 141.6) Z5 = 2695 55 = 1.325

The values of

follows:

- 6.00

- 900

-11.00

-13.5 0

-15.50

-17.0 0

B calculated above may be tabulated as

I f

1.85

2.30

2.70

3.10

3.50

3.90

B

0.828

0.865

1.005

1.035

1.160

1.325

For reference we may also calculate the values of E or

I which will make B zero for the corresponding power angles.

From the above calculations, with the small A neglected, we have:

(a) If b = -6.0 , and

B = 177(0.526 E - 104 + 45.1) x 0.38 + 0.0093 E

= ~ (37.8 E - 3960 + 0.0093 E2 ) = 0 ,

E =102 or I f 1.30
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(b) If b0 = -90 , and

B = 169(0.562 E - 124 + 44.2) X 0.427 + 0.0093 E

= (40.6 E - 5760 + 0.0093 E2) = 0,

E =137 or If= 1. 75

(a) If b = -11.0p , and

B = 154(0.562 E - 137 + 43.3) x 0.458 + 0.0093 ]
K (39.7 E - 6620 + 0.0093 E2) = 0

E =160 or If 2.05

(d) If 60 = -13.50 , and

B = 136(0.562 E - 153 + 42.4) x 0.497 + 0.0093 E2

= (38.0 E - 7450 + 0.0093 E2) =

E = 188' or I= 2.45

(e) If bo = -15.50 , and

B = 125(0.562 E - 165.5 + 41.5) x 0.527 + 0.0093 E2)

= K (37.1 E - 8160 + 0.0093 E2) = 0

E =209 or I= 2.70

(f) If b 0 = -17.0 , and

B 106.5(0.562 E - 175 + 40.8) x 0.548 + 0.0093 E2

. (32.8 E - 7830 + 0.0093 E2) = 0,

or If = 2.90E = 225
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Thus, from the results which have been obtained, three

curves can be plotted as shown on p. 152. The curve (a) shows

the relation between the field current I f and the power angle b

with the data from test (the machine oscillates without net damping).

The curve (b) shows the same relation as the curve (a), but with

the data calculated for the condition B = 0 . The curve (c)

indicates the values of B for the different values of b when

the machine oscillates without net damping.

On the curve (a) the resultant damping is zero, while on the

curve (b) the damping due to the main electromagnetic action alone

is zero. These two curves should coincide with each other if there

was no extra damping due to the effects of load, windage, friction,

hysteresis and eddy currents, etc. As the extra damping is always

positive, the main electromagnetic action alone for the condition

of the curve (a) should always produce negative damping (i.e.,

positive values of B ) to compensate it. Thus the curve (a) should

be above the curve (b), and curve (c) should be above the abscissa

as they are shown.

Since the d-c generator is separately excited and its excitation

is kept constant throughout the test, we have

e = ) (9)

(10)R R

where

e is the induced emf of the d-c generator.

i is the armature current of the d-c generator.
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R is the total resistance in the armature circuit
of the d-c generator.

$ is a constant (the effect of the armature reaction
is disregarded).

a) is the angular velocity of the machine.

If the effect of the inductance in its armature circuit is

neglected, the formulas 9 and 10 hold good even when a) varies.

Hence the electromagnetic torque (it is considered positive in the

direction of the speed) of the d-c generator is

p e i k pc
Tdc = )k 2

and the damping coefficient due to Td.c. is

dTdc kp$ 2

B - - .- k (12)d.c. d o 2R

where p is the number of poles of the synchronous machine under

test, and k is equal to for the practical units. As is

constant, the magnitude of Bd.c. is inversely proportional to R

or directly proportional to the average power of the d-c generator.

In the testing range the average power increases with the average

power angle of the synchronous machine. Therefore the total extra

damping of the system increases with the increase of the average

power angle. As the machine oscillates with constant amplitude,

the damping due to the main electromagnetic action must be equal

and opposite to the total -extra damping. Hence B should increase

with the increase of b . It is fairly confirmed with the curve (c).
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In the region above the curve (a) the machine is unstable,

while below the curve (a) it is stable. For the same power angle,

it is more stable with smaller field current; and for the same

field current it is more stable with a larger power angle.

6.5 Discussions

The experimental verifications for the analytic formula of

the damping coefficient B will be much better if there are some

simple methods to determine directly the extra damping due to the

effects of load, windage, friction, hysteresis and eddy currents, etc.

The damping coefficient due to the load of the d-c machine (i.e., due

to its main electromagnetic action) has been given by formula 12 as

kp$
Bdc. 2R , with %e

This is theoretically correct if the effect of the inductance in

its armature circuit can be disregarded. It is derived for the

condition that the d-c machine is operated as a generator deliver-

ing its load to a rheostat. However, it still holds good when the

machine is connected back to the d-c source either as a generator

or as a motor, so long as the voltage of the d-c source is constant.

With such an arrangement the value of R is nearly equal to the

armature resistance instead of the load resistance plus armature

resistance, and hence the magnitude of B d.c is much larger.

The moving system is not able to have negative or zero net damping.

This is the reason why it is advisable to test the synchronous

machine as a synchronous motor instead of synchronous generator.

The coefficient of the extra damping, excluding that due to the
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load of the d-c machine, can hardly be expressed analytically

or determined experimentally. However, in the investigation, as

the applied voltage is constant it should be practically constant.

Throughout the tests the synchronous machine is adjusted for

zero net damping. It oscillates with constant amplitude and a

voltmeter, as shown in Fig. 10, is used to indicate this required

condition. If we replace the voltmeter by a brush oscillograph

which is able to record the variations of the amplitude of oscil-

lation, we may also adjust the machine to oscillate with either

positive or negative damping, and then check the damping with the

value calculated from the derived formula. The amplitude should

vary exponentially with respect to the time as

S B/2J(t2~tl (13)-

where

1 and b2  are the amplitudes of oscillations at the
times t1  and t 2 , respectively.

Bt is the resultant damping coefficient, and it is
positive for a negative damping.

J is the quotient of the moment of inertia of the
moving system divided by the number of pairs of
poles of the synchronous machine under investigation.

In the mathematical analysis we assume that the machine does

oscillate with constant amplitude. Hence, in the test the resultant

damping should not be too far from zero in order to have good

verification.
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