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Abstract

This thesis studies contemporary challenges arising at the market, system, and orga-
nization levels in the healthcare industry, and develops novel frameworks that allow
us to better understand cost and resource allocation for strategic decision making in
healthcare settings. The U.S. healthcare industry is going through a massive transfor-
mation process due to the increasing industry consolidation, and the implementation
of the recently enacted healthcare reform. These changes have completely transformed
the incentives in the industry, and traditional practices have become outdated, or are,
in general, inadequate to address the new challenges. Our frameworks combine real
data and statistical analysis with novel optimization-driven approaches (e.g., linear
programming, game theory) that capture the first order aspects of the dynamics of the
corresponding markets, systems, and organizations. Overall, this work has relied on
collaboration with industry partners in order to identify trade-offs, validate models,
and pursue practical innovation and implementation of the proposed frameworks.

In the first part, and motivated by real applications from the healthcare industry,
we consider a setting, where one firm provides a service to a second firm that is facing
stochastic demand for the service. The changes in the reimbursement system have
created new opportunities for business-to-business interactions between healthcare
systems and providers. Typical contracts in the healthcare industry are based on a
transaction fee per unit of service that is negotiated between the two parties. Unlike
traditional product-based 2-echelon supply chains, the two firms have opposing risks
with respect to the demand volume. We leverage this insight to design a conceptu-
ally simple two-price volume based contract, and analyze it within a game theoretic
setting. We show that a two-price contract can optimally ensure risk sharing. More-
over, although the resulting problem is non-convex, we are able to characterize the
unique equilibrium contract in closed form for a family of utility functions that cap-
tures firms' different risk behaviors, and general demand distributions. Moreover, at
equilibrium the new contract has two desirable properties: (1) it allows for better risk
reduction (measured by CVaR) for the two firms, and (2) it reduces the uncertainty
of the payment transaction.
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In the second part, we study the strategic cost and resource allocation in large
healthcare delivery networks and how these networks can, efficiently, integrate their
operations in order to attain network's welfare objectives. Strategic problems, such
as resource allocation, capacity placement, and portfolio of services in multi-site net-
works, require the correct modeling of network costs, network's welfare objectives and
trade-offs, and operational constraints. Traditional practices related to cost account-
ing, specifically, the allocation of overhead and labor cost to individual activities, as a
way to account for the consumption of resources, are not suitable for addressing these
challenges. These practices often confound resource allocation and network building
capacity decisions. In this part, we develop a general methodological optimization-
driven framework inspired by network revenue management models, specifically linear
programming optimization, that allows us to better understand network costs and pro-
vide strategic solutions to the aforementioned problems. We report the application
of this framework on a real case study to demonstrate its applicability and important
insights derived from it.

Finally, in the third part of this thesis, we study the nature and sources of vari-
ability in surgical activities in a large pediatric hospital. We use machine learning
techniques to quantitatively show that surgery time variability is high among pedi-
atric cases and, against common belief, this is poorly explained by surgeon effect
or other commonly considered characteristics. Our studies suggest that pediatric
surgery time has higher inherent variability making pediatric ORs necessarily more
costly and harder to schedule than adult ORs. They must therefore be sourced
accordingly. These findings are novel and will be useful in the management of busy
pediatric operating theaters. For administrators and policymakers, it provides a basis
for understanding some of the added costs inherent in caring for children.

Thesis Supervisor: Retsef Levi
Title: J. Spencer Standish (1945) Prof. of Management, Sloan School of Management
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Chapter 1

Introduction

The focus of this thesis is the development of novel optimization-driven frameworks

to better understand cost and resource allocations for strategic decision-making in

healthcare delivery systems and networks. The U.S. healthcare industry is facing a

fundamental transformation due to the changes in policy and regulations introduced

by the recently enacted healthcare reform. Providers and systems need to rapidly

adapt in this new environment. Hence, rethinking traditional practices, which are of-

ten inadequate to address the new challenges, is primordial for surviving in the post-

reform environment. Specifically, in collaboration with several industry partners, we

develop data-statistics and optimization-driven frameworks to study different chal-

lenges arising at the market, system (i.e., network), and organization levels within

the healthcare industry.

In the last several of decades, the U.S. healthcare industry has undergone a mas-

sive trend of consolidation [69]. In the past, academic medical centers, physicians

organizations, community hospitals and clinics used to work independently, and op-

erated under a fee-for-service type of reimbursement scheme. Under fee-for-service,

providers and hospitals are paid (prospectively and independently) based on the vol-

ume of services performed. Thus, early consolidation efforts were motivated primarily

by the need of building a large physician referral network to gain negotiation power

and market share in the industry. In contrast, current consolidation efforts have a

much different flavor and motivation. The new healthcare reform was signed into
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law in 2010, and with that, universal coverage, cost containment, and quality con-

trol initiatives, among many others, assented. One of the major changes introduced

by the reform was the migration from the fee-for-service reimbursement system to

different risk contracts, which consist of some variation of capitation plus quality tar-

gets. Under capitation, healthcare systems and providers receive a fixed budget per

patient to coordinate and deliver the entirety of the care needs in a specified time

period. Thus, healthcare systems and networks are now responsible for managing the

risks of their population under a limited budget, moreover, they will be penalized for

poor outcomes. Consequently, the need for risk mitigation in the post-reform era has

accelerated the industry consolidation trend, and the formation of large healthcare

delivery systems and networks.

The contemporary challenges faced by these large systems and networks require

the integration of the operations in multi-site networks, the identification of welfare

objectives, and the deployment of resources in order to guarantee an appropriate level

of access to care in a financially constrained environment. Appropriate levels of access

to care are critical to prevent the costly outmigration of patients to other networks.

Additionally, and in contrast to the pre-reform environment, these growing systems

will have to identify population's needs and manage its risks in a cost effective way.

Furthermore, while some of these systems and networks that will manage risk will

be able to provide the entire range of required services, a significant number of them

will not; these organizations and systems will have to purchase services from other

systems. This creates and expands B2B service-based supply chains in the healthcare

industry that did not exist before. The most challenging aspect of these business

interactions is that the networks that are purchasing services are very sensitive to price

since they are under risk contracts themselves. Unfortunately, traditional approaches

and practices in the healthcare industry are often outdated, or are in many cases

inadequate to address the new challenges arising in the post-reform environment. As

a summary, Figure 1-1 illustrates the new challenges that have motivated this thesis.

Our proposed frameworks are based on a quantitative optimization-driven ap-

proach that allows us to capture multiple and important trade-offs and systems in-
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Figure 1-1: Summary of new challenges in the healthcare industry.

Under Risk Contracts

Healthcare Network
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AcidemiicPyiins
\Medical Center r niain

Risk Contracts
Capitation + Quality

-Systemn Design and Resource Deployment to meet
Network's Objectives

-Identifying Population and its Needs

teractions in healthcare settings. In the first part of the thesis, we study the problem

arising at the market level that involves the pricing of referrals services between

healthcare systems. Specifically, we study how to better share and mitigate risk in a

business-to-business (B2B) service based supply chain via appropriate pricing design.

In the second part, we address challenges arising at the system level. In particular,

we develop an optimization-driven approach to better understand the cost of service,

and guide resource allocation and system capacity building decisions in healthcare de-

livery networks. Finally, in the third part (organization level), we empirically study

sources of variability in operational scheduling of surgical activities in a large pedi-

atric academic hospital. In the following sections we provide a summary of the three

parts, which conform chapters 2-4 of this thesis.
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1.1 Market level: A risk-sharing pricing contract in

B2B service-based supply chains

In collaboration with a large tertiary healthcare system, we studied the pricing of

referral services between two healthcare systems under demand uncertainty. Our

partner has been recently facing a dilemma related to one of its main referring net-

works (both a provider and an insurance carrier) requesting a discount on the per

unit transaction price of advanced care services. Moreover, the referring system were

threatening that it would take its volume to another competitor if no discount is

offered.

Motivated by this situation, in the first part of this thesis, we study service-based

B2B supply chain interactions under uncertain demand. Traditionally, healthcare

and other service industries use single unit-price contracts. Under such contracts, the

firm requesting service pays a unit-price per unit of demand that the provider serves.

Unlike product-based supply chain settings, demand uncertainty induces opposite

risks to the firms. Specifically, large demand results in larger revenues for the service

pouviuer, but higher cost fur tie firm requesting service; the single-price contract

ignores these opposing risks. We leverage this insight, and propose a simple yet

richer pricing contract that consists of a two-price incremental discount contract. We

modeled firms' interaction within a game theory framework where firms are modeled

as utility-maximizing agents, and their utility is defined according to the principles

of Prospect Utility Theory [551 using the single price contract as a reference point.

In more detail, we consider piecewise linear incremental discount contracts (non-

negative and non-increasing marginal cost of service) which in its simplest form corre-

sponds to a two-price contract. Indeed, although the resulting problem is non-convex,

we can show the optimality of the two-price contract for a family of utility functions,

and general demand distributions. Therefore, the service provider, who decides the

structure of the contract, does not need to consider more complex contracts in order

to guarantee risk sharing. At equilibrium, the two-price contract results in better

risk reduction (measured by the CVaR of the payment transaction) for both players.
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In addition, we also show that the transaction payment of the new and standard

contracts are in Dilation and Lorenz stochastic order [78]. This structural property

implies lower variance and lower coefficient of variation of the overall payment trans-

action. Interestingly, trade-offs captured by this model are general, and common to

other service settings, such as post-sale reparation, maintenance, car insurance, and

others. This work is included in the paper [61.

1.2 System level: Optimization-driven framework to

understand healthcare networks cost and resource

allocation

Healthcare delivery systems and networks are facing new challenges due to the increas-

ing industry consolidation trend, and the changes in policy and regulations introduced

by the recently enacted healthcare reform. With the implementation of different risk

contracts, networks will be responsible for coordinating care and managing the risks

of a growing population under a limited budget. Hence, defining population welfare

objectives have become a priority. Ensuring appropriate levels of care access, and

avoiding the patient outmigration phenomenon, are also crucial to guarantee quality

and continuity of care in the financially constrained post-reform environment. Fur-

thermore, the expansion of networks demands the integration of the operations across

a multi-site network in order to make an efficient use of the available resources. It

also requires identifying network's welfare objectives and deploying resources across

the network according to these global objectives, and not based on individual groups'

goals, which has been the common practice until recently. Overall, networks need

now, more than ever before, to understand the cost of service, and the cost effec-

tiveness of the care that they provide. Unfortunately, common practices around cost

accounting, specifically, the allocation of overhead and labor costs to activities as a

way to account for the consumption of resources, are often inappropriate for this,

and other strategic purposes. In particular, such cost allocations do not capture the
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opportunity cost of resources, and they tend to confound decisions related to resource

allocation and capacity expansion.

In the second part of the thesis, we develop a general optimization-driven frame-

work, inspired by network revenue management models, to address strategic and

operational problems, such as resource allocation, capacity placement, and designing

a portfolio of services in a multi-site network. This work was performed in collab-

oration with the Department of Surgery of a large healthcare network in Boston,

Massachusetts. Contrary to the current cost accounting practice in healthcare or-

ganizations, our framework distinguishes between two sources of cost: (i) network

capacity cost (e.g., labor and overhead) and (ii) service cost (e.g., supplies, medicines,

medical exams). We noticed that the first source of cost is unlikely to vary with

changes in the portfolio of services performed, and used this insight in our model.

The optimization model can incorporate different networks' welfare objectives, such

as maximizing profit, throughput, or access, or minimizing costs, or a combination of

any of these. In addition, the model can capture many constraints that reflect the op-

erational aspects of the care delivery process, such as surgeon capabilities, resources

capacities, block time allocations, and many more. In particular, we model resources

that are shared across the network, e.g., surgeon time, which allows us to capture

global trade-offs, and the opportunity cost of resources in a network environment.

Case study: we evaluated this framework in our partner hospital network. The

managers were concerned about two main issues. First, there was an imbalanced

use of surgical capacity across the hospitals. Surgeons at the main campus were

perpetually requesting more operating room (OR) time, however, all ORs were fully

booked. On the other hand, community hospitals had reported spare OR capacity.

The second issue was increasing leaked demand. The integration between our partner

and a large payer allowed us to quantify this leaked demand, which corresponds to the

volume of patients that received surgical care outside the network. We calibrated the

model for about 60 procedure types, including more than 150 resources at 3 hospital

locations. Preliminary results suggest that by allowing surgeons to make use of the

spare OR capacity in the community, significant improvements can be obtained in
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terms of access, as well as in hospital's bottom line (conservative scenarios result in

more than 25% increase). In addition, we use the model to determine priorities for

procedures in order to maximize hospital's bottom line, and show how this differs

with the traditional way in which hospitals' managers prioritize surgical procedures

(profit-base, using the traditional cost allocations). This work is part of paper [4].

1.3 Organization level: The nature and sources of

variability in pediatric surgical case duration

Surgery is typically a hospital's most costly activity, and the number of surgical suites

is limited, so efficient scheduling of operating room (OR) time is an ever-present goal.

Unlike adult hospitals, pediatric hospitals have the additional burden of managing

extremes of variability that arise from an especially unpredictable patient population.

Wide ranges in patient age, size, weight, and developmental level are superimposed

upon an even wider range of pathology. In this setting, it is unclear what variability

can be removed, and what can be better managed.

In the third part of this thesis, we study sources of operational variability in the

operating room. Specifically, we focus on identifying sources of variability in surgical

case time. Case time variability confounds surgical scheduling and decreases access

to limited operating room resources. Variability arises from many sources and can

differ among institutions serving different populations. A rich literature has devel-

oped around case time variability in adults, but little in pediatrics. Thus, we study

the effect of commonly used patient and procedure factors in driving case time vari-

ability in a large, free-standing, academic pediatric hospital. We analyze over 40,000

scheduled surgeries performed over three years. Patient and procedure factors include

patient's age and weight, medical status, surgeon identity, and ICU request indicator.

We use conditional inference regression trees to analyze these factors and evaluate

their predictive power by comparing prediction errors against current practice. We

found that pediatrics case time variability, unlike adult cases, is poorly explained by
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surgeon effect or other characteristics that are commonly abstracted from electronic

records. This largely relates to the "long-tailed" distribution of pediatric cases and

unpredictably long cases. Surgeon-specific scheduling is therefore unnecessary and

similar cases may be pooled across surgeons. Future scheduling efforts in pediatrics

should focus on prospective identification of patient and procedural specifics that are

associated with and predictive of long cases. Until such predictors are identified,

daily management of pediatric operating rooms will require compensatory overtime,

capacity buffers, schedule flexibility, and cost. This work is published in [5].
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Chapter 2

Risk-Sharing Pricing Contract in B2B

Service Supply Chains: An

Application to Healthcare

2.1 Introduction

In this chapter we study a general 2-echelon B2B service based supply chain and focus

on the issue of risk sharing through the appropriate design of pricing contracts. The

research was initially motivated by a collaborative work with an industry partner, a

tertiary healthcare network, which was under pressure to provide price discounts on

referrals to a smaller network on several tertiary care service lines. Specifically, we

propose an alternative contract that better captures the risk averseness of the respec-

tive parties. The contract is richer, but conceptually simple. Inspired by the pricing

of services in practice, we consider incremental discount contracts (non-negative and

non-increasing marginal cost of service), and focus on piecewise linear contracts. Fur-

thermore, we consider the traditional (existing) single price contract as a reference

point, and leverage Prospect Utility Theory ([55]) to model the risk behavior of the

respective parties. We model the interaction between the parties as a full information

Stackelberg game in which one party proposes acceptable risk levels and the other
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specifies an alternative contract. Using this, we show that risk sharing can be achieved

optimally with a two-price contract. The resulting equilibrium two-price contract is

characterized via a tractable optimization model that, for interesting special cases,

can be solved in closed form. A major insight we derive is that the new contract

results in lower variability in the payment transaction between the two parties, which

actually coincides with providing lower risk for both of the parties in the supply chain.

Indeed, the recent changes in the healthcare industry in the U.S. have created

an increasing number of networks that assume risk and manage specified patient

populations for their entire care under a capitation budget. Many of these systems

do not have all the in-house expertise to provide the entirety of care required by

patients' needs, and must outsource some of the more specialized care (e.g., tertiary

care) from another care provider. Contrary to the pre-reform environment, healthcare

networks that are in charge of populations have the legal freedom to contract with

other providers (outside the network) in order to cover the population's needs. As

a result, networks are able to mitigate risk by controlling their referrals patterns

(ACO Toolkit, [35]). Following the transactional pricing approach commonly used
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that is paid for each unit of service provided. The main advantage of this type of

contract is its simplicity. Moreover, these contracts also match the traditional 'DNA'

of the healthcare industry in the U.S., that is used to a fee-for-service environment.

However, it does not consider any of the risk-related issues that arise because one of

the parties in the supply chain is now under a capitated budget, and the fact that the

underlying demand for the purchased services is typically stochastic. In particular,

the smaller network, which purchases the service, is typically very risk averse with

respect to the scenarios that exceed its capitation budget. On the other hand, the

larger network, which provides the service, is typically concerned with guaranteeing

a minimum level of revenue to cover its large fixed overhead costs. While the initial

motivation of this work comes from a healthcare application, the model that we

consider captures general service based supply chains. For instance, the auto repair

insurance industry, where the insurance company refers the enrollees to specific car
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repair dealers (service provider), and pays some portion of the cost of the service

depending on the enrollees' plan. Another example is distribution/mailing/delivery

services, where a firm outsources the delivery to a third party company, such as UPS,

FedEx, or USPS.

2.1.1 Model framework, and assumptions

We consider a firm requesting service or service requester (SR, whom we refer to

as 'her') that contracts with a service provider (SP, whom we refer to as 'him') to

purchase a specified service in a defined time window, whereas the demand for the

service is a-priori stochastic with known (common knowledge) distribution. The latter

assumption is relatively realistic in the healthcare industry, specifically as more states

mandate to make claim information publicly available. Motivated by the healthcare

application, we assume that any demand must be satisfied by the SR and the SP.

Moreover, the SR operates under a (soft) budget to cover the cost of the service over

the duration of the contract, and the SP has large capacity, which for all practical

purposes is considered a sunk cost. Within the service B2B supply chain, we consider

two types of contracts. The first is a negotiated single price contract, in which the

two parties agree on a single price per unit of service, independently of the actual

volume of service that will be purchased. (This is the current standard contract in the

healthcare industry.) The second contract is a piecewise linear incremental discount

contract which, in its simplest form, corresponds to a contract with two prices (high

and low) and a single breakpoint. Under a two-price contract, the first (higher) price

is charged for each service transaction as long as the total volume does not exceed

a predefined threshold, and the second (lower) price is charged for each additional

transaction once the total volume exceeds the threshold.

We develop a modeling approach to capture the asymmetry in the core risks that

the uncertain demand imposes on the two parties in the supply chain. Under the

commonly used single price fee-for-service contract, the SR is primarily concerned

with high demand scenarios that could lead to payment transfers that exceed its

capitation budget, while the SP is mostly concerned with low demand scenarios, in
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which its sunk cost is not covered. It is evident that the current single price contract

does not address these risks. (One reason for that is that, traditionally, both parties

were under fee-for-service payment schemes so that higher demand was beneficial to

both.) On the other hand, an incremental discount contract (e.g., two-price contract)

can yield some overpayment in the low demand scenarios compared to the single price

contract, but at the same time, it induces relatively lower payments (compared to the

single price contract) under high demand scenarios (underpayment).

Specifically, we consider two approaches to model the firms' risk preferences. On

the one hand, we incorporate prospect utility functions to model how firms value the

new contract as compared to the the current practice. In addition, we also include

specific financial risk constraints to control the risk induced by the new contract.

These constraints are specified as acceptable levels of risk that the new contract must

guarantee. Thus, using Prospect Utility Theory ([55]), we model the utility of the

respective parties in the supply chain taking the existing single price contract as a

reference point. Specifically, we model the SR as having non-decreasing marginal

utility in the induced savings (in large demand scenarios), but an increasing marginal

dis-utility in the induced overpayment. The intuition behind this modeling choice

is that the SR is willing to use some of his budget to cover overpayment. However,

when the overpayment becomes too large, the contract rapidly loses its attractiveness

due to the opportunity cost of the budget. In addition, we assume that the SP is

loss averse, hence, revenue losses under large demand scenarios are perceived more

negatively than equivalent gains. By comparing against the commonly used standard

contract, we implicitly account for the status quo bias that decisions makers often

experience in practice, [77]. This bias suggests that decisions makers are inclined to

choose current practices over other, equally beneficial, alternatives.

In order to capture the SR acceptable financial risk levels, we use the expected pay-

ments and the Conditional Value at Risk (CVaR). This metric has gained significant

attention, for example, in the design of insurance policies and portfolio optimization

(see [75, 62}), due to its properties as a coherent risk measure. Specifically, the SR

is at risk for high cost, and we measured this risk by the CVaR. In our context, the

26



CVaR has an intuitive interpretation because it coincides with the expected payments

above the specified budget. Thus, since the SR must refer all demand, she is particu-

larly concerned with large demand because additional funds would be required. The

CVaR captures exactly this risk.

Finally, we model the interaction between the parties as a full information, non-

cooperative Stackelberg game. Specifically, the SR will act as the leader and the

SP as the follower. This framework has been widely used to model the well-studied

seller-buyer interaction in various product-based supply chain settings (e.g., [37, 94]).

In the first stage of the game, the SR decides on the acceptable risk levels that the

new contract should guarantee. Then, in the second stage, the SP decides the param-

eters of the new contract (e.g., prices and breakpoints), such that this satisfies the

SR's requirements. The players decide their parameters sequentially by maximizing

their own individual utility. We believe that the dynamics of this styled game are a

reasonable approximation to negotiation dynamics in the healthcare industry.

2.1.2 Contributions

Novel modeling framework to analyze service supply chain contracts. We

develop a novel game theoretic based framework that captures the main trade-offs in

a service based supply chain in which the parties experience opposing risks due to

demand uncertainty. Moreover, we allow the parties to have different risk behaviors

and incorporate financial risk budgets explicitly.

Simple pricing contract that allows better risk reduction and less vari-

ability in the payments. We leverage the insight that the parties are at risk for

opposite extremes of demand into our model to optimally characterize an incremental

discount contract. We show that, at equilibrium, a two-price contract can induce op-

timal risk sharing, hence, there is no need to consider more complex contracts. This

new contract reduces the risk of large payments (measured by the CVaR of the single

price contract) for the SR, and increases the revenues for the SP in the low demand

scenarios, as compared to the single price contract. Furthermore, we show that the
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payments induced by the new contract are in Dilation and Lorenz order ([78]) with the

single price contract, which implies the reduction of the overall payment uncertainty.

Closed form solutions for general utility functions, and demand distri-

butions. Although the resulting problem to identify the parameters of the new

contract is non-convex, we are able to characterize the unique two-price equilibrium

contract in closed form for general utility functions, and demand distributions. This

is important because it provides a new contract that can be communicated in prac-

tice, and it also facilitates the derivation of additional properties and insights from

it.

2.1.3 Literature review

This work relates to different pieces of literature, the product based supply chain and

risk management, the service operations management, and the healthcare economics

literature.

It is insightful to contrast the setting studied in this paper with the well-studied
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no order quantity or inventory are required in the service setting studied in this pa-

per. Instead, all demand must be served upon request. Furthermore, firms in our

setting are affected differently by extremes of demand. In contrast, both parties in

the product setting benefit from large demand scenarios, and are risk averse towards

low demand realizations. Coordination contracts have focused on how to better share

the risk in low demand scenarios, to address the effect of double marginalization, and

to align selfish behaviors in order to attain the outcomes of the centralized supply

chain. Although extensively used in practice, price-only contracts cannot coordinated

capacity investment and inventory decisions in supply chains ([9, 63]). Moreover, the

efficiency loss has been quantified in [72]. Alternative contracts have been proposed.

For a complete review of the different supply chain settings and alternative contracts

see [8], and [47]. For instance, quantity discount contracts have been studied exten-

sively for the coordination of specific supply chain environments, see [31, 99], and [7].
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In our setting, on the other hand, the supply chain dynamics have a zero-sum nature

whereas the notion of a centralized system is not relevant, hence, we are not inter-

ested in comparing against it. Moreover, the parties have opposing risks to high and

low demand scenarios. These fundamental differences make prior results on product

supply chain not applicable to our setting.

The conflicting firms' incentives in our setting are similar to those described in

[20, 21]. In these, the authors study the B2B interaction between a buyer and a

supplier of an indirect material (e.g., chemical substances) that is required for the

buyer's production process. The supplier wants to maximize the transaction volume

while the buyer wants to minimize the consumption, and parties' efforts drive the

needed volume. Authors show that shared-saving contracts, which allow parties to

benefit from reducing consumption, can achieve higher profit and reduce resource

consumption, however, effort levels are not first best optimal. In a more general

setting, and considering general cost-of-effort functions, for some cases, the supplier

can implement the first-best contract. Similarly, [521 studies the double moral haz-

ard problem arising in the outsourcing of equipment repair and restoration services

when the vendor experiences financial distress. It shows that the firm contracting the

service can attain the first-best outcomes by implementing performance based tiered

and linear (only when the service provider has high tolerance to financial distress)

contracts. [91] studies contracts for the outsourcing of maintenance services when the

contractor presents risk aversion to certain repair costs. It shows that channel coor-

dination is not always possible in this setting. Contracts for collaborative services is

analyzed by [76]. Our work differs from these service settings in several ways. Firstly,

we assume that demand (stochastic) is exogenous and must be served upon request;

hence, optimal effort levels and moral hazard are not our concern here. Instead, we

focus our attention on risk sharing pricing contracts that can allow parties to balance

their asymmetric risks due to demand uncertainty. In addition, we confine firms' de-

cisions to a specific contract structure (for the service provider) and acceptable levels

of risk (for the service recipient). Finally, we also consider different firms' risk be-

haviors (e.g., risk-averse, risk-loving) by incorporating Prospect Utility Theory ideas
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and using the current practice as a benchmark.

By incorporating different firms risk behaviors, our work connects to the product

supply chain with alternative risk behaviors, and to the risk management literature.

According to this literature, there are few approaches to incorporate alternative risk

preferences into supply chain settings. The utility based approach captures agents'

preferences through non-linear utility functions. The main idea of this approach is

that different risk behaviors (e.g., risk aversion, loss aversion, risk loving, etc.) is

represented using different (shape) utility functions (e.g., CARA/DARA/IARA or

prospect utility functions). For example, see [98] for newsvendor models with alter-

native risk preferences. Alternatively, the mean-variance approach in risk manage-

ment (in hedging) is used to incorporate the agents' risk sensitivity, see for example

[41, 11, 30], and the technical review [16]. Another approach is the value-based

approach, which incorporates a metric of downside risk (e.g., Value at Risk (VaR)

or Conditional Value at Risk (CVaR)) either in the objective (e.g., [101]) or in the

constraints (e.g., [104]). For general newsvendor models with downside risk consider-

ations see [53]. In our work, we integrate two of these approaches. We model firms'

risk preferences by specific utility functions (Prospect Utility Theory), and explicitly

include financial risk constraints to model maximum levels of risk that a player is

willing to accept.

From a healthcare economics perspective, the analysis of contractual arrange-

ments has mostly focused on studying the incentives of different pricing contracts in

terms of efficiency and quality of care. The general setting consists of a purchaser

(e.g., government or insurer) and a service provider (e.g., hospitals and physicians),

and the main question of interest has been around how different pricing mechanism

(e.g., fee-for-service, capitation, cost sharing, payment-by-performance, etc.) can

help to balance the efficiency and quality of care trade off under different information

settings. The principal-agent framework is the dominant tool for analysis in these

studies. For a review of payment systems and incentives in healthcare see [70]. For

instance, cost sharing contracts can result in higher quality of care ([34]), however,

they can also result in lower production efficiency ([14]). [15] empirically studies the
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benefit of implementing cost sharing contracts in the case where there is asymmetric

cost information. It shows that for DRGs with hight cost variation, cost saving can

result in up to 60% lower cost for the purchaser. The study of cost sharing contract

usually assumes universal prices for all providers and lump-sum transfers to ensure

participation. Under no lump-sum transfers, [681 studies the optimal price adjust-

ment for hospitals assuming that prices differ due to observable cost differences. It

characterizes the conditions under which positive/negative price adjustments to the

high/low cost provider are optimal. In a different information setting, [51] charac-

terizes optimal cost sharing contracts under physicians altruism private information.

The incentives under pay-by-performance contracts have been studied, for example,

in [40, 54, 65, 67]. [40] considers a dynamic principal-agent problem for the interac-

tion between a purchaser of medical services and a specialized provider. Inefficiencies

arise because the purchaser cannot observe the provider intensity of care. The op-

timal outcome-adjusted payment system consists of a pre-payment per patient and

a ex-post payment adjusted based on short-term outcomes. This payment system

generalizes capitation. [54] also uses the principal-agent framework to model the in-

teraction between a purchaser, who cares about minimizing cost while ensuring a

quality performance target, and a service provider, who makes decisions on how to

allocate capacity among the different streams of patients. Under adverse selection and

moral-hazard, they show that commonly used contracts do not coordinate the system

and that this can be achieved by a threshold-penalty performance-based contract.

As we mentioned previously, in this work we are not concerned with agency prob-

lems, instead, we are interested in how agents can share the opposing risk that they

face due to demand (referrals volume) uncertainty. Moreover, we consider the cur-

rent practice (single price contract) as given, and propose an alternative contract by

explicitly using the current practice as a benchmark. One of the implication of this

modeling feature is that information regarding the cost of service is not relevant to

our model. Thus, in our setting the SP's main concern is designing a pricing contract

that is in compliance with the SR's acceptable levels of risk which will ultimately

allow the SP to maintain the referral volume.
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2.2 Modeling approach

In this section, we describe the elements and main assumptions of our model. Specif-

ically, we introduce an alternative new contract, we define the firms' utility and risks

behaviors, and their risk participation requirements.

2.2.1 Pricing contracts

We start by describing the standard single price contract (current practice) and its

induced risk due demand uncertainty from both the service requester and the service

provider perspectives. Then, we introduce an alternative new contract, and provide

some intuition on how this can mitigate the players' risks against uncertain demand

volume. Throughout this paper, we model uncertain demand by a continuous, non-

negative random variable D with known (common knowledge) probability density

function (f : R' - R+), and cumulative distribution function (F : R+ - [0,1]).

We use the short hand notation Dd = E[DID > d] and DD = E[DID ; d]. The

overall payment, under a given contract, is denoted by C(D), and note that the exact
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Based on the extensively used fee-for-service, the single price contract is considered

as the standard contract between the SP and the SR. Under this, the SR pays a fixed

price per unit of demand that the SP serves. This price is negotiated beforehand, i.e.,

before the uncertain demand is revealed, and remains fixed for the entire duration of

the agreement, e.g., usually a year in healthcare settings, regardless of the posterior

demand realization. In addition, the overall payment is perceived differently by the

two parties: it corresponds to cost for the SR and to revenue for the SP. Given this

difference, the SR and the SP perceive the risk associated with demand uncertainty

in opposite ways. While the SR is at risk for large demand realizations (which results

in large cost), the SP would be better off on those scenarios (large revenue), and the

contrary occurs in low demand realizations. By construction, single price contracts

put all the risk of extreme demand values on one of the parties. However, alternative

pricing contracts can induce different levels of risk on the firms. For instance, a lump
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sum money paid upfront, that guarantees service to all demand, puts all the risk of

large demand realizations on the SP, who will take care of any demand realization,

regardless of its size.

Motivated by the asymmetric risks, we propose an alternative contract that will

allow players to share their opposing risks. As commonly observed in the pricing

of services in practice, we consider contracts with non-increasing and non-negative

marginal cost of service. In particular, we focus on piecewise linear incremental dis-

count contracts because they resemble quantity discount contracts (see [45] for a full

description of quantity based discount contracts), and they can be easily communi-

cated and implemented in practice.

For illustration purposes, let us focus on a two-price incremental discount con-

tract, but later on we will show that this is, in fact, enough to guarantee optimal risk

sharing. Thus, under a two-price incremental discount contract the first b (break-

point) units of demand are charged at an initial price P1 , and demand units beyond

this threshold are charged at a discounted price P2 < P. The design of this new con-

tract, i.e., prices and breakpoint, must be such that, taking into account the parties'

different risk behaviors, risk sharing is promoted. In Figure 2-1 we present the pay-

ments under the two contracts as a function of the demand. We consider a standard

single price contract with fixed price P. The overall payment under this contract

is Cstd(D) = Po D. Similarly, the total payment under the two-price contract cor-

responds to Cflw(D) = P min{b, D} + P2(D - b)+. By comparing the payments

under both contracts, we notice that the new contract induces lower payments in

large demand scenarios, i.e., reduce the risk for the SR. However, the new contract

also increases payments in low demand scenarios, which are exactly those scenarios in

which the SP is at risk for receiving low revenue. Intuitively, the new contract serves

as an insurance policy for the SR; it ensures some risk reduction in large demand

realizations at expenses of a premium in the expected payment. In order to have

this, the prices of the new contract must satisfy 0 < P2  PO < P1. Additionally,

we also identify the demand break even point (denoted by d*), at which the payment

of both contracts coincide. Thus, the two-price contract results in overpayment in
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those demand scenarios to the left of the demand break even point d*, and results in

underpayment when demand is above d*.

Figure 2-1: Comparison of the cost of the standard and two-price contracts.

Payment
C td(d)

C""(d )

P2 I

b* Demand d

The prices of the standard (Po) and new contract (P and P2), as well as the
breakpoint b, and intersection point d*, are explicitly shown. The area in checked

red corresponds to the overpayment, and the area in striped green to the
underpayment.

Another advantage of the incremental discount contract is that it provides in-

centives to the SR to promote more volume to the SP. In the healthcare industry,

selective contracting between providers was considered an illegal practice in the past

(providers were not responsible for the cost of referrals and these should only be based

on patients needs). However, there was still empirical evidence supporting such prac-

tices between healthcare providers, see [36, 38, 102], and [60]. In the new regulatory

environment, on the other hand, healthcare systems and providers are responsible

for cost and have the autonomy to engage in preferential contracts with other sys-

tems. Thus, a SR can engage in various contracts with different tertiary care service

providers, and can control referrals depending on these contracts. Different contracts
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provide different economic incentives, and the proposed incremental discount contract

provides incentives for the SR to refer volume for a specific condition to a single SP.

This is of tremendous value to the SP who, as previously described, is highly sensitive

to low demand volumes.

2.2.2 Valuation of an alternative new contract

As previously described, the new pricing contract induces overpayment and under-

payment relative to the standard contract, and the SR and SP value these quantities

differently. While the SR perceives overpayment and underpayment as losses and

gains, respectively, the SP perceives them as gains and losses, respectively. Moreover,

the exact valuation of gains and losses depends on the players' risk behavior. In this

paper, we model players' preferences (of a contract) in terms of the changes in the

overall payments relative to the status quo, i.e., the single price contract. Thus, we

consider utility functions that, based on the players' specific risk behavior, attach a

value to the overpayment and underpayment. Utility based on a reference point has

been introduced in Prospect Utility Theory [92]. Motivated by empirical anomalies in

decision making, and the failure of traditional Expected Utility Theory ([95]) to ex-

plain those behaviors, Prospect Utility Theory proposes that agents value alternatives

based on gains and losses, relative to the status quo, as opposed to based on their net

reported value. In addition to the reference point effect, this theory also considers

that agents value gains and losses differently. For instance, loss averse agents tend

to discount losses higher than gains. Another relevant feature of this theory is that

it explains changes in the valuations of gains and losses as they move farther from

the reference point. This behavior can be captured by utilities that have diminishing,

increasing, or constant marginal returns, i.e., by introducing utility functions that are

concave, convex, or linear in the gains and losses. We incorporate this type of utility

functions into our model using the single price contract as a reference point.

In order to model the different risk behaviors, we consider the power family of

utility functions which has been previously introduced in [92].
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Definition 2.1. Consider a variable x E R that represents gains (x > 0) and losses

(x < 0), relative to a predefined reference point. Then, the agent's valuation is defined

by

x^ X > 0
u(x) = (2.1)

-V (-x)o x < 0

Where A > 0 measures the risk aversion in gains, 0 > 0 captures the risk aversion in

losses, and v > 0 relates to the sensitivity to losses, i.e., how losses compare against

equivalent gains.

For instance, a loss averse agent can be modeled by setting the utility parameters

to be v > 1 and A < 0 < 1. Later on, we will specify the value of these parameters

in order to model the specific risk behaviors previously described.

Service Requester (SR). We recall that, in absolute terms, the payment for ser-

vice is a source of cost for the SR, hence, overpayment and underpayment are per-

ceived as losses and gains, respectively. Thus, the expected utility derived from the

new contract can be written depending on whether overpayment and underpayment

exist, i.e., depending on whether demand is below or above the demand break even

point d*. Namely

E[USR(Cstd(D) - Cnew(D))] =E uSR (Cstd(D) - Cnew(D)) D < d* F(d*)+

E [USR (Cstd(D) - Cnew(D) D > d*1 (1 - F(d*))

(2.2)

Generally, the utility is assumed to be increasing in the underpayment, but de-

creasing in the overpayment. We recall that in our motivating setting, and actually

in most service settings, the SR operates under a limited budget (exogenous to our

model). This makes the SR very sensitive to large demand scenarios because the

total payments might surpass the initial budget allocation. If this is the case, the SR

will have to obtain additional funds to cover the cost of service. On the other hand

when demand is low, the SR will only spend part of her budget to cover the cost of

service. Taking all this together, we consider that the SR's risk preference is driven
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by increasing loss aversion ([43]). Under this, although overpayment in low demand

scenarios is not desired (dis-utility), it is unlikely that a small overpayment will result

in significant financial pressure. However, when the overpayment becomes too large,

it cannot longer be financially absorbed and results is larger dis-utility. Hence, due to

the opportunity cost of the budget, the SR will experience larger dis-utility as a larger

portion of the budget is consumed to cover overpayment. In terms of underpayment,

we consider that this generates positive utility with non-increasing marginal returns.

This utility choice was motivated by our conversations with managers in the

healthcare industry. The intuition behind is that, given a capitation budget and

the current contract, the SR values a reduction in the cost of service (underpayment)

in large demand scenarios much more than a unit of unspent budget in low demand

scenarios (overpayment). However, if the alternative contract increases payments

significantly in the low demand scenarios (i.e., overpayment consumes more of the

budget), the valuation may be reversed. We believe this modeling choice applies to

general service settings with similar budget considerations.

Service Provider (SP). The overall payment collected from serving the SR de-

mand is a source of revenue for the SP. Therefore, contrary to the SR, overpayment

is perceived as a gain and underpayment as a loss. The expected utility is written

conditioning on the occurrence of overpayment and underpayment, namely

E[Usp(Cnew(D) - Cstd(D))] =E USP (Cnew(D) - Cstd(D)) D < d* F(d*)+

E [uSP (Cnew(D) - Cstd(D)) D > d*] (1 - F(d*))

(2.3)

The SP utility is increasing in the overpayment and decreasing in the underpayment.

In addition, we consider that the SP predominant risk behavior is loss aversion, mean-

ing that, losses are always perceived worse than equivalent gains. This asymmetry in

the valuation of gain and losses is inspired by our motivating example, and represents,

for example, the extra effort that the SP will have to incur in order to coordinate

activities and deliver the service under large demand scenarios. In addition, and ac-
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cording to our motivating example, the SP represents a large and diversified tertiary

care provider. Thus, the revenue perceived from this stream of demand is one of many

sources, and potential revenue losses, although negatively perceived, will unlikely re-

sult in financial pressure for the SP. Therefore, we only consider loss aversion, and

not increasing loss aversion, as the primal risk behavior of interest.

2.2.3 Financial constraints: acceptable levels of risk

In this section we define the acceptable levels of financial risk that the new contract

must satisfy from the SR's perspective. We emphasize that, in this paper, the focus

is on settings where the SR perceives demand as a pure cost source. Moreover,

although the SR has a limited budget to cover the cost of service, all demand must

be referred to the SP upon realization. Thus, if demand happens to be larger than

budgeted, the SR must still refer all the demand to the SP, and obtain additional

funds to cover the overall cost of service. Therefore, we consider that, under the

standard contract, the SR is particularly concerned with high cost scenarios. In

order to capture the SR's sensitivity to large cost, we include a critical cost value,

V %-,WhihA tIe crrespodig p-IaymUtIs Will reskiu iii s 6  iniianU f1inanc'1'aL presur.

The critical cost value is exogenous to our model, and it is related to the SR current

contract and financial structure, the capitation budget, as well as the specific practices

in the industry.

We define the critical cost value in terms of a confidence level # E [0, 1] of the

total cost of service. We recall that, for any contract, the total cost of service C(D)

is a-priori uncertain due to the uncertain demand. Thus, for example, if 0 = 90%,

the SR has enough budget to cover up to 90% of the lowest cost realizations. If the

cost is larger than this (top 10% of cost distribution), the SR will have to obtain

additional funds to cover the cost of service. In order to measure the risk of a given

contract, we use the Conditional Value at Risk (CVaR). This metric captures the

expected payments above the critical cost value and it is of particular interest of the

SR since, as we mentioned above, she will have to cover the total cost of service, even

if this surpasses the initial budget allocation.
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Definition 2.2. For a given contract, consider the induced payment C(D) and a

confidence level # E [0,1]. The critical cost value corresponds to the Value at Risk of

the payment A8 = VaR3(C(D)) = min{A E R'IP(C(D) > A) < 1 - #}. Then, the

Conditional Value at Risk is defined by CVaRB(C(D)) = E[C(D)IC(D) > A8].

Assuming C(D) continuous and non-decreasing in the demand, the CVaR cor-

responds exactly to E[C(D)ID > d3], where d,3 C-1 (A8), and it is such that,

P(D > da) = 1 - /. Given the current contract, the demand at risk corresponds to

the top (1 - #)-percentile of the demand distribution. Moving forward, we use this

latter definition to refer to the risk of a pricing contract and consider # as the demand

risk sensitivity. In particular, we are interested in cases where / > F(D), that is, the

demand at risk is strictly less than the mean demand.

From the SR perspective, a new contract will result in different levels of risk

compared to the standard contract. In order to control for this, we introduce two

financial risk constraints that will ultimately allow the SR to select limits on the risk

that she is willing to face under a new contract. These constraints were extrapolated

from our conversations with healthcare managers and executives, and they, intuitively,

act as an insurance policy against demand uncertainty. Thus, let us introduce a

discount parameter a E [0, 1]. The risk reduction requirement is modeled as a discount

on the risk of the standard contract, that is, the risk of the new contract must be at

least a% lower than the risk of the standard contract; namely

E[C"lw(D)|D > d,3] (1 - a) E[Cstd(D)|D > d6] (2.4)

In order to compensate for the risk reduction, and according to the insurance

policy interpretation of the new contract, an increase in the expected payments is

required. The level of extra-payment induced by the new contract must be according

to the SR willingness to pay. Thus, let us introduce a premium parameter -y > 0, so

that the expected payment under the new contract is no more than 7% the payment
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under the standard contract; namely

E[C"new(D)] <; (1 + 7) E[Cstd(D)] (2.5)

Both the discount and premium parameters are chosen by the SR and depend

on her specific risk situation and her (soft) budget to cover the cost of service. For

instance, if the SR is extremely averse to high cost in large demand scenarios, she

might be willing to pay more in order to control the risk. We capture the SR's specific

risk limits through the parameters of her utility function.

2.3 Characterization of the new contract

In this section we describe the dynamics between the SR and the SP using a game

theoretic framework. Then, we characterize the equilibrium new contract and the

acceptable levels of risk demanded by the SR.

2.3.1 B2B dynamics

We employ a full information game to model the interaction between the SR and the

SP. Specifically, we use a Stackelberg game where the SR acts as the leader. The

motivation for this dynamic comes from what we observed in the healthcare indus-

try; our partner, a tertiary care center, was approached by a network of community

hospitals requesting a discount in the price of specialized services, claiming that they

would otherwise refer their complex-care cases to a different tertiary care center. In

most service industries, and now in healthcare, the firm requesting service chooses

where to get service from (or where to refer its demand to), and can usually use this

to negotiate better pricing agreements.

As we previously mentioned, we restrict our analysis to incremental discount con-

tracts, and consider that, under the standard single price contract, the SR is at risk

for the top 1 - % percentile of the demand. The demand sensitivity parameter

# E (0, 1) is exogenous to our model and known to both players. Thus, in the first
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stage the SR chooses her desired level of risk reduction (discount parameter), and

the maximum level of extra-payment (premium parameter) that is willing to incur

for that risk reduction. Specifically, the SR selects the discount and premium pa-

rameters that maximize her utility, and communicates these to the SP. In the second

stage, the SP uses this information to characterize the parameters of the new contract

(i.e., prices and breakpoint). The players' interaction and their respective decisions

take place prior to demand realization. Moreover, we assume that both players are

utility maximizers, and optimize their own expected utility as defined in equations

(2.2) and (2.3), respectively. Later on, we incorporate a minimum reservation utility

for the SP as a way to counterbalance the leader advantage of the SR.

2.3.2 Service Provider's problem

We start by solving the lower level problem. Here, the SP designs a new contract

such that his expected utility is maximized. The optimal contract must guarantee

the risk reduction and maximum extra-payment requirements (equations (2.4) and

(2.5), respectively) quoted by the SR. In concrete, let a E [0, 1] and -y > 0 be the

discount and premium parameters, respectively, quoted by the SR in the first stage.

Then, the SP optimization problem corresponds to

max E[Usp(C"e(D) - C"'d(D))] (PSP)

s.t. E[Cnew (D)ID > do] < (1 - a) E[Cgtd(D)ID > d3] (Risk reduction, eq. (2.4))

E[Cnelw(D)] ; (1+ -y) E[Cstd(D)] (Extra-payment, eq. (2.5))

Observe that this is a general formulation since we have not specified the functional

form of the new contract, except in that we are implicitly restricting to contracts with

non-negative and non-increasing marginal cost of service. This assumption implies

that the total payment curves of the new and standard contract cross in at most one

point. Moreover, we notice that the above optimization problem is non-convex even

if we restrict ourselves to incremental discount contracts (with two or more prices),
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and assume a piecewise linear utility function. As specified in equation (2.3), the

expected utility is the sum of conditional expectations based on the demand break

even point, d*. This point is an auxiliary variable that depends on the parameters

of the contract in a, potentially, non-convex way. For example, for the two-price

contract d* = (I2) b.

Nevertheless, for specific utility functions, the optimal solution (contract) of this

general problem has a interesting structure that we can take advantage of. Specifically,

we assume that the SP is loss averse and has a piecewise linear utility function. This

specific utility function is modeled based on the general utility function, equation

(2.1), by setting Asp 1, Osp 1, and Vsp > 1. In the following result we provide

the structural properties of a utility maximizing contract.

Lemma 2.1. Assume that the SP is loss averse and has a piecewise linear utility

function. Then, for given discount and premium parameters a - [0,1] and >y 0, a

new contract maximizes the SP utility if and only if

(i) The risk reduction constraint (2.4) and extra-payment constraint (2.5) are tight

(ii) ThP demnnd blreak oiem nnint d* d.

Moreover, the SP maximum expected utility corresponds to

EUSp(a,y) = -yE[Cstd(D)] - (vsp - 1)aE[C8td(D)ID > d,](1 - 3) (2.6)

The proof of this Lemma (in Appendix A.1) is straightforward and basically shows

that any feasible new contract that does not satisfy (i) and (ii) can be improved. From

equation (2.6), we observe that the SP maximum expected utility decreases in the

discount level a since lower payments will be received in large demand scenarios. On

the other hand, the maximum expected utility increases in the premium y as larger

expected payments will be obtained.

Given our practical motivation, in this paper we are interested in characterizing

simple contracts that can be easily communicated between the SP and SR. In particu-

lar, we focus on incremental discount contracts. We analyze a two-price contract first,
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and later on we will argue that, under certain conditions, there is no need to consider

more complicated contracts. We also recall that even if we restrict the problem PSP

to a two-price incremental discount contracts, the resulting optimization problem is

still non-convex. However, we can use the structure of the utility maximizing contract

in Lemma 2.1 to characterize the optimal two-price contract.

Lemma 2.2. Under the same assumptions as in Lemma 2.1. For any given discount

and premium parameters a E [0, 1] and -y > 0, there is a family of candidate two-price

incremental discount contracts that satisfies (i) from Lemma 2.1.

Moreover, the family of candidate contracts is characterized in closed form as a

function of the breakpoint and is such that

- The first price P1 is continuous and non-increasing in the breakpoint b, and

greater than the price of the single price contract (PO)

- The second price P2 is continuous and non-increasing in the breakpoint b, and

smaller than than the price of the single price contract (PO)

The proof of Lemma 2.2 is presented in Appendix A.2. The family of candidate

contracts (b, P1 (b, a, ), P2(b, a,7)) is parametrized by the breakpoint b (equations

(A.3) and (A.4) in Appendix A.2). The set of feasible candidate contracts is reduced

to S(a, 7) = {bI0 < b, 0 < P2(b, a, y)}. In the following numerical example, we

illustrate how the prices of the family of candidate contracts behave as a function of

the breakpoint.

EXAMPLE. Let us consider a log-normal demand distribution with mean 2000 and

standard deviation 600. Suppose the SR is at risk for the largest 30% scenarios of

the demand distribution (0 = 0.7). The SR would like to reduce the risk by at least

5% (a = 0.05). In exchange for the risk reduction, she allows extra-payment of up to

3% (y = 0.03). Figure 2-2 shows the prices of he two-price contract as a function of

the breakpoint. We observe that as the breakpoint becomes larger, the prices of the

family of candidate two-price contracts become smaller. This behavior is intuitive.

Specifically, as the breakpoint increases, more units of demand will be charged at the
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higher price P1. Consequently, the two-price contract can support lower prices and

still meet the risk reduction and extra-payment requirements.

Figure 2-2: Example of family of candidate two-price contracts.
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For any breakpoint, the resulting two-price contract (b, P, P2) satisfies risk
reduction and extra-payment constraints with equality. Demand follows a

log-normal distribution of mean 2000 and std 600. Discount is 5% and premium 3%.
Demand at risk corresponds to the top 30% of the demand distribution.
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pricing contract. This contract consists of an upfront lump-sum fee, as well as a

per-unit charge, and it has been extensively studied in product supply chain settings.

Specifically, it has been shown that this contract coordinates the interaction (order

quantity and profit) between a supplier and a newsvendor retailer, see [10]. Thus,

given the closed form expressions of the prices of the two-price contract, we observe

that, as the breakpoint approaches zero, the second price reaches its maximum level,

which coincides with the per-unit price of the two-part tariff contract that satisfies risk

reduction and extra-payment constraints with equality. On the other hand, although

the first price of the new contract grows to infinity as the breakpoint approaches zero,

the payment of the first b units (Pib) converges to a constant. This constant is exactly

the lump-sum fee of the two-part tariff contract that meets the risk constraints with

equality.

Thus, the equality of the risk reduction and extra-payment constraints helps us to
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reduce the search for a two-price utility maximizing contract to the family of candidate

contracts. However, even this simplified unidimensional (breakpoint) optimization

problem is still non-convex. In order to find the best breakpoint, we use the second

property of a utility maximizing contract ((ii) in Lemma 2.1).

Theorem 2.1. Under the same utility assumptions as in Lemma 2.1 and considering

discount and premium parameters a E [0,1] and -y > 0, such that1

(a) a < 1 -d6

(b) <a.
Do(d,6-D) -

There is a unique utility maximizing two-price contract. The breakpoint of

this contract, b* = b*(a, y), is non-negative and solves

lb* (1 D -y (D - dP)D
b ) f(t)dt = 1 - D_ )(2.7)

0  b* d3 a Ddd 3

Additionally, the prices of this contract are given by

P1(b*, a, )Po1 + - d,6 1))
(D73 d ) b*

(2.8)
P~b*~(1 - a)Dda - dP2(b* ,a,'Y) =PO a-

Dd,- d,3

Thus, from the SP perspective, a two-price contract attains the maximum possible

expected utility, hence, there is no need for considering more complex contracts.

The proof of the Theorem is presented in Appendix A.3. Equation (2.7) deter-

mines the breakpoint of the contract such that condition (ii) in Lemma 2.1 is satisfied.

Namely, under conditions (a) and (b), the SP can obtain the maximum expected util-

ity by offering a two-price incremental discount contract. These conditions guarantee

the feasibility of the two-price contract. In fact, condition (a) is rather general, and

'The demand sensitivity parameter 0 is exogenous and defines the SR's risky scenarios of demand
(D > df6), where d,6 is the #-quantile of the demand. The parameter P is the price of the single

price contract. We use the short hand notation Dd, = E[DID > d,] and Dd3 = E[DID < d6].
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corresponds to the maximum risk reduction that the SP can support with any util-

ity maximizing contract that has non-negative and non-increasing marginal cost of

service. Condition (b), on the other hand, is specific to the two-price incremental dis-

count contract, and it imposes a minimum risk reduction for any given extra-payment

allowance (premium -y) quoted by the SR. Notice that, quoting discount and premium

parameters that do not satisfy condition (b) will be detrimental for the SR who will

be paying more (than needed) for the desired risk reduction. Therefore, condition (b)

is non-restrictive from the SR perspective.

Thus, given the optimality of the two-price contract, we conclude that the SP does

not need to consider more complex contracts (with multiple breakpoints) in order to

guarantee the SR's acceptable levels of risk. Hereafter, we restrict the analysis to

two-price contracts. In the next Corollary, we describe the SP's optimal strategy. We

incorporate a reservation utility parameter, Rsp > 0, to capture the SP market power.

This modeling feature has been previously used in product supply chain settings to

model retailer's opportunity cost or market power (e.g., [63]).

Corollary 2.1. For any given discount and premium parameters a E [0, 1] and -y > 0,

the SP will offer the utility maximizing two-price incremental discount contract, as

long as condition (a) and (b) in Theorem 2.1 are satisfied, and the maximum expected

utility is at least Rsp. The SP's will offer

b* (a, -y), P(b*, a, ), P2(b*, a, -y) if (a, Y) E J

Cnew*(a, 7) = and EUp(a, -y) Rsp (2.9)

No contract otherwise

Where J - { '(a, -)10 < (< a - }er-kY I ' Dd,3 (d,3 -D) - 73d,8

This Corollary is directly derived from Theorem 2.1 (see Appendix A.4). Finally,

in Figure 2-3 we provide an illustrative numerical example of the SP's acceptance

region, i.e., the discount and premium parameters for which the SP will offer a two-

price contract for different levels of demand at risk (1 - 0%). We observe that as the
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Figure 2-3: Example Service Provider's acceptance region.
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portion of the demand at risk (1 -#%) increases (darker region), the feasibility region

stretches in the discount direction but shrinks in the premium dimension. Intuitively,

when there is more demand at risk the portion of total payments derived from that

demand is larger, hence, the allowable discount that the SP can support increases as

well. To explain the increase of the premium lower limit, note that as the portion of

the demand at risk increases (darker region), less volume will result in overpayment.

Thus, the contract requires slightly larger premiums in order to guarantee the SP's

reservation utility. At the same time, the premium upper limit is smaller. The reason

for this is that when the 'safe' portion of demand is smaller, there is just a limited

potential for overpayment.

2.3.3 Service Requester's problem

As the leader, the SR anticipates the new contract that the SP will offer for any dis-

count and premium parameters a E [0, 1] and -y > 0. As we have identified in section

2.3.2, under the loss aversion and piecewise linear utility assumptions, without loss

of generality the SP will offer the utility maximizing two-price contract characterized

in equation (2.9). Thus, the SR chooses discount and premium parameters a C [0, 1]
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and ' > 0 to maximize her expected utility (given by equation (2.2)), while ensuring

the participation of the SP. Namely, we can write the SR's problem as

max E[USR(C""*(D,a,-y) - Cstd(D))] (PSR)
(a,-) CJ

s.t. EUSp(a, y) Rsp (2.10)

Here we consider that the SP participates in the agreement if the maximum ex-

pected utility he obtains is, at least, his reservation utility, and the discount and

premium parameters satisfy conditions (a) and (b) in Theorem 2.1 (i.e., discount and

premium are in J).

As foretold in section 2.2.2, we assume that the SR's risk preferences are driven

by an increasing loss aversion behavior. Under this assumption, the SR is willing

to tolerate small overpayment (losses) in order to reduce her risk in large demand

scenarios. However, as the overpayment becomes larger, the disutility from losses

rapidly increases. Spending the budget in overpayment is not desirable due to its

opportunity cost. The increasing loss aversion behavior has been observed empirically,

see [43], where the authors conducted a series of experiments to show that agents

experience loss aversion in relation to the size of the losses: agents discount small

losses, and tend to emphasize small gains instead. Thus, based on the general utility

definition (equation (2.1)), we consider the utility parameters 9 SR > 1 and uSR > 0,

small, and for simplicity, we consider ASR = 1.

Under the increasing loss aversion behavior, the SR's optimization problem is a-

priori hard to solve due to the non-linear dependency of the two-price contract param-

eters (i.e., breakpoint and prices) on the discount and premium variables. Specifically,

we recall that the breakpoint of the contract is the solution to the non-linear equation

(2.7) which is a function of the discount and premium variables. Nonetheless, we are

able to identify the structure of the optimal solution, and characterize it, in closed

form, for special cases. The next result states the conditions under which the problem

PsR admits solution, and it shows that this solution is, in fact, unique.

Theorem 2.2. Assume that the SP is loss averse and has a piecewise linear utility
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function, and that the SR has an increasing loss aversion behavior. If the parameters

of the model satisfy

(a) VSP <1+ - do-D
(a) SP <1 0(Dd-dp)(1--0)

(b) Rsp: Po ( (d, - D - (vsp - 1) (d, - d8 (I - 8)

Then, there are unique acceptable risk levels (i.e., discount and premium) that maxi-

mize the SR utility.

The proof of Theorem 2.2 is presented in Appendix A.5. Conditions (a) and (b)

guarantee that the problem PS' is feasible. As usual in leader-follower setups, the

SP utility constraint is tight at optimality, that is, at equilibrium, the SP obtains

exactly his reservation utility. Given this, the premium is expressed in closed form

as a function of the discount, see equation (A.12) in Appendix A.5. In the proof of

Theorem 2.2, we use this feature to reduce the SR problem to a concave optimization

problem where the discount is the single decision variable that is constrained to be in

an interval. Thus, the uniqueness of the acceptable risk levels follows directly from

the strict concavity of the objective, and we conclude that the game between the

SP and the SR has a unique equilibrium in the family of two-price contracts. In

particular, when the reservation utility is zero, we can characterize the equilibrium

in closed form.

Corollary 2.2. Under zero reservation utility, the breakpoint of the contract is in-

dependent of the discount and premium variables (see equation (A. 13) in. Appendix

A.5). The unique unconstrained maximal discount, & corresponds to

/ 1
OSR--1

ODd ,3 -( (D ,8-d)(1-0)

PODd VSROSR ( b 1)t)OsRf(t) dt + fb*(d,_-tOsnft)

Where the breakpoint b* is the solution to (A. 13) in Appendix A.5.

For positive reservation utility the problem psR is significantly more challenging

given that the breakpoint is still a function of the discount variable. Thus, finding
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the optimal discount requires solving a system of non-linear equations that, for all

practical purposes, can be solved numerically.

2.3.4 Statistical properties of the equilibrium new contract

So far we have established the existence and uniqueness of an equilibrium two-price

contract. We now explore the distributional properties of the resulting payments

under this equilibrium new contract. For this analysis we consider that the parameters

of the model satisfy conditions (a) and (b) from Theorem 2.2.

We first recall that the equilibrium new contract induces larger expected payments

than the standard single price contract. Namely,

E[Cnew(D) - Cstd(D)] =a Dd,(1 - 3) Rsp
=I7=T (VSP ~ I) -21

E[Cstd(D)] D PO D

From the SR's perspective, the risk reduction induced by the new contract comes with

the price of facing larger overall expected payments. The larger expected payment

is required in order to compensate for the SP's degree of loss aversion and market

power (reservation utility).

Interestingly, the new contract not only guarantees lower risk for the SR, it also

reduces the likelihood of receiving low payments (for the SP) in the lower scenarios

of demand. In fact, we can show that, at equilibrium, the new contract reduces

the uncertainty in the overall payments. Specifically, we show that the equilibrium

payments induced by the new contract and the standard contract satisfy the Dilation

and Lorenz stochastic orders. The following variability order definitions are required

for this analysis.

Definition 2.3. ([78], definition 3.A.1)

* Convex order: Let X and Y be two random variables such that E[#(X)] <

E[4(Y)] for all convex functions # : R -+ R provided that the expectations ex-

ist. Then X is said to be smaller than Y in the convex order (denoted as

X Y).
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e Dilation order: X dil Y if X - E[X ] cx Y - E[Y]

* Lorenz order: X Lorenz Y if X and Y are non-negative and x -_E[X] c E[Y]

These definitions allow us to compare random variables according to their dis-

persion. Thus, we compare the normalized cost of the new and standard contract,

and show that the equilibrium new contract reduces the variability in the overall

payments. The next theorem summarizes this result.

Theorem 2.3. Under the same conditions as in Theorem 2.2, the equilibrium new

contract is such that,

1. C"new(D) <-di Cstd (D)

2. Cnelw(D) Lorenz Cstd(D)

The proof of this Theorem is in Appendix A.7. These variability orders imply

that the variance and coefficient of variation of the payments induced by the new

contract are smaller than those induced by the standard contract. The reduction

in the payments uncertainty is beneficial for both firms. Indeed, in the proof of

Theorem 2.3, we show that the CDF of the payments under the new contract crosses

(from below) the CDF of the standard contract in exactly one point. Thus, the

equilibrium new contract tends to concentrate the CDF of the payments, so that

extreme payments (high and low) are avoided. Therefore, the new contract reduces

the likelihood of facing very large and very small payments, which benefits both, the

SR and SP, respectively.

2.4 Equilibrium numerical analysis

To study how changes in the model parameters affect the equilibrium contract and

acceptable financial risk levels, we analyze the influence of each parameter at the

time. In some special cases we can analyze the equilibrium behavior analytically, but

in the more general cases the interdependence between the risk levels and the contract
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parameters makes the analytical analysis intractable, hence, we provide a numerical

equilibrium analysis.

For the numerical analysis, we consider a baseline case which assumes that the

demand follows a log-normal distribution with mean 2000 and standard deviation

600. The single price of the standard contract is P = 10. The SP's utility function

is modeled by a piecewise linear utility function, and the loss aversion sensitivity

parameter usp = 1.2 > 1. The SP's reservation utility is assumed to be zero (Rsp =

0). The SR's utility function is assumed to have increasing loss aversion (Osp = 1.6 >

1), and the sensitivity to losses parameter VSR = 10-2. The portion of the demand

at risk is 1 - # = 30%.

2.4.1 Influence of the SP's loss aversion and reservation utility

in the equilibrium contract

The degree of loss aversion (vSp) and reservation utility (Rsp) affect both, the con-

tract parameters (i.e., prices and breakpoint) and the SR's financial risk levels (i.e.,

premium and discount). Intuitively higher degree of oss. aversin and reseratio.n

utility imply that the SP will require larger expected payment in order to offer a new

contract that meets the SR desired risk reduction. However, increasing the expected

payment is detrimental for the SR. Indeed, our model suggests that if the reservation

utility is zero, the SR will avoid the premium increase when dealing with a highly loss

averse SP by lowering the level of risk reduction (i.e., by asking for a smaller discount).

This strategy allows the SR to maintain an stable premium allowance regardless of the

SP level of loss aversion. Equilibrium discount and premium parameters are shown

in Figure 2-5(a) plus-sign and star-sign curves, respectively.

On the other hand, when the reservation utility is non-zero, the equilibrium new

contract has to yield enough extra-payment to cover both, the disutility from reducing

the risk in high demand scenarios and the higher SP's reservation utility. The model

suggests that when the SP degree of loss aversion is low, the level of risk reduction

(discount) must decrease and the extra-payment allowance (premium) must increase
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relative to the case with zero reservation utility. (plus-sign vs. diamond-sign and

star-sign vs. squared-sign curves in Figure 2-5(a) for VsP small.) Moreover, as the

SP degree of loss aversion increases, the SR will have to increase her extra-payment

allowance (premium) significantly. Interestingly, the premium increase will also allow

the SR to increase the risk reduction that she is requesting from the new contract

(diamond-sign curve in Figure 2-5(a)).

Figure 2-4: Influence of the SP's degree of loss
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The SR expected utility at equilibrium is shown in Figure 2-5(b). Higher degree

of loss aversion and reservation utility reduce the maximum utility that the SR can

obtain with the new contract. In particular, when the reservation utility is zero, that

is, all the market power is on the SR, the SR can obtain positive utility (plus-sign

curve) even if the SP is highly loss averse. However, when the SP has some market
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power (diamond-sign curve), and is also highly loss averse, the SR will not be able

to obtain positive utility. In such cases, no new agreement will occur between the

players and the standard contract will prevail. In practice, this corresponds to the

case where the SP dominates the interaction and is not willing to loose revenue in

large demand scenarios.

In terms of the prices and breakpoint of the equilibrium two-price contract (Figures

2-5(c) and 2-5(d), respectively), they respond to changes in the utility parameters

indirectly through the discount and premium parameters. If the reservation utility

is zero, we observe that the first (higher) price of the contract is generally stable,

and most of the contract adjustment is done through the second (lower) price and

breakpoint. Intuitively, a SP with higher degree of loss aversion and reservation utility

requires a contract that induces larger extra-payment (relative to risk reduction). This

can be obtained by increasing the second price and lowering the breakpoint of the

two-price contract, which is exactly what we observed numerically. Interestingly, the

second (lower) price in the case where the reservation utility is non-zero decreases for

SPs that are highly loss averse (square-sign curve in Figure 2-5(c)). This behavior

is direct consequence of the higher risk reduction (discount) shown in Figure 2-5(a)

(diamond-sign curve).

Finally, we also study what the effect of the SP utility parameters is the mean

and variability of the new contract total payments. The relative change in the mean

of total payments corresponds exactly to the premium parameter (shown in Figure 2-

5(a)). The new contract induces higher expected payment in large reservation utility

and high loss aversion regimes. In terms of variability of total payments, we notice

that the variability reduction offered by the new contract can be significantly larger

than the increase in the expected payments (ratio is much larger than one). This effect

is lessened with the SP degree of loss aversion and reservation utility (see Figure 2-5).
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Figure 2-5: Ratio of the standard deviation reduction over expected payment increase.
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2.4.2 Influence of the SR's rate of loss aversion and demand

at risk in the equilibrium contract

In this section, we analyze the influence of the SR utility parameters in the equilib-

rium risk levels and contract parameters. Specifically, we study how the equilibrium

changes relative to the rate at which the SR becomes loss averse, and to the portion

of the demand that is at risk. We interpret the rate at which the SR becomes loss

averse as her tolerance to overpayment, thus, a lower rate is equivalent to a high

tolerance. We purposely maintain the SR valuation of losses (VSR) constant, since

the influence of this parameter can be directly (and intuitively) analyzed from the

closed form solution of the discount parameter detailed in Corollary 2.2.

Let us consider a fixed 3 = 70%, then if the SR tolerance to overpayment in the

'safe' portion of the demand is high (i.e., smaller OSR), the SR is able to attain the

maximum risk reduction (plus-sign curve in Figure 2-7(a)) while paying a very low

premium. However, when the SR tolerance to overpayment is low (i.e., larger 9sR),

she would prefer to limit the amount of overpayment by reducing her premium (star-

sign curve goes to zero). Consequently, the level of discount that the SR can afford

with such low premium decreases as well. Similar behavior is observed when the

portion of the demand at risk is smaller (i.e., # = 80%). However, since in this case

a smaller portion of the demand is subject to risk reduction (underpayment), a lower

55



premium is required in order to afford the maximum level of discount (squared-sign

vs. star-sign curves). Interestingly, when the tolerance to overpayment is low (i.e.,

larger OsR), the SR maintains similar levels of premium, regardless of the portion of

the demand at risk, but compensates by asking for a higher discount when there is

less demand at risk (compare plus-sign curve vs. diamond-sign curve for larger OSR

in Figure 2-7(a)).

In terms of utility, the maximum expected utility that the SR can obtain with

the new contract decreases with the rate at which the SR becomes loss averse (see

Figure 2-7(b)). The decay in the utility is due to the discount behavior observed in

Figure 2-7(a). Furthermore, we observe that the maximum expected utility is higher

when there is more demand at risk (,3 = 70%) and the SR has high tolerance to

overpayment. However, the difference in expected utility fades away for SRs with low

tolerance to overpayment.

The new contract parameters are adjusted according to the changes in the discount

and premium risk levels. Based on the prices behavior shown in Figure 2-7(c), we

notice that when the SR has low tolerance to overpayment, she will prefer to continue

operating under the single price contract. This behavior can he directly obtained from

the prices closed form solution (2.8) in Theorem 2.1. On the other hand, if the SR has

high tolerance to overpayment, the equilibrium second price is set to be zero so that

the new contract guarantees maximum discount level. In addition, we recall that,

under the zero reservation utility assumption, the equilibrium breakpoint is uniquely

determined, regardless of the discount and premium values, hence we do not show it

here.

Finally, we analyze the effect of the SR tolerance to overpayment and the portion

of demand at risk in the expected payment and its variability. As we have already

noticed, the equilibrium new contract approaches the single price contract when the

SR has a low tolerance to overpayment. The premium parameter corresponds to the

relative change in the expected payment induced by the new contract. In Figure 2-

7(a), we observe how the premium approaches zero when the overpayment tolerance

is low (i.e., larger 6 sR). In terms of variability, we observe that the variability reduc-
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Figure 2-6: Influence of the SR's increasing loss aversion and portion of demand at
risk on the equilibrium.
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tion per unit of expected payment increases (see Figure 2-7). The reason for this is

that, although the variability reduction offered by the new contract vanishes as the

new contract approaches the single price contract, the additional expected payment

vanishes at a much faster rate.

2.5 Conclusion

In this work, we studied a 2-echelon service based B2B interaction in which one firm

requests a service from another firm, where the demand for that service is stochastic.

We showed that better risk sharing between players of opposite risk interests can be

achieved by appropriate contracting.

In practice, the pricing of services in most of these applications is based on a per

transaction single price contract. Under this contract, firms are at risk for opposite

extremes of demand. Specifically, the risk of large demand realization is fully bore

by the firm requesting service. On the other hand, low demand realizations result

in lower revenues for the firm providing service. In order to balance this risk asym-

metrv. we consider piecewise linear incremrntal discount contracts. py we

proposed a simple, yet richer, pricing contract consisting of a two-price contract, and

we characterized the equilibrium contract within a game theoretic framework using

the single price contract as a benchmark. Moreover, we show that, from the service

provider perspective (who decides the structure of the contract), a two-price con-

tract can optimally guarantee risk sharing, thus there is no need in considering more

complex contracts.

Although the non-convex nature of the resulting problems, we determined the

unique equilibrium contract in closed form for general firms' risk behaviors and de-

mand distributions. At equilibrium, the new contract will result in larger expected

payments due to its insurance policy nature; it reduces the risk of large payments for

the firm that is paying for the service. However, the new contract ultimately allows

better risk reduction for both firms. Intuitively, the equilibrium new contract con-

centrates the distribution of the payments such that the likelihood of facing extremes

58



payments (low or high) is decreased.

From a practical perspective, the two-price contract is simple, and can be easily

described to firms. Moreover, it has a very intuitive interpretation as an insurance

policy against demand uncertainty. Thus, the firm requesting service is able to reduce

the risk by paying a specific premium in order to do so, and this premium payment

compensates the service provider for offering a lower risk contract.

2.5.1 Future research

One potential extension of this work is the relaxation of the full information as-

sumption. Specifically, the SR has better visibility of the demand than the SP. The

question of interest here is how to design a contract that provides the SR with the

incentives to reveal the true demand distribution? Alternatively, one can also study

how to incorporate preventive measures that the SR may exert in order to partially

control the volume of demand. This extension allows us to capture the current pre-

ventive care initiatives that many healthcare systems are putting into place in order

to avoid tertiary care referrals. Finally, adding competition on the service provider

side is also of great interest, specially in the healthcare industry, where tertiary care

systems largely compete for the volume of referrals that they can obtain from other

small systems and providers.
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Chapter 3

Optimization-Driven Framework to

Understand Healthcare Networks

Cost and Resource Allocation

3.1 Introduction

In this work, we develop a general methodological optimization-driven framework in-

spired by network revenue management models ([901), specifically linear programming

optimization, that allows us to provide solutions to strategic challenges in health-

care settings. In particular, our framework introduce a new way to understand, and

quantify healthcare costs in a network environment. Instead of allocating labor and

overhead costs to activities, we directly model resource consumption and capacities,

and obtain shadow prices as the opportunity cost of resources from the optimization

model. The model can support several decisions related to the allocation of exist-

ing resources and portfolio of services across the network, and the identification of

growing opportunities (based on leaked demand), and network building. Finally, we

report the application of the model to a network of hospitals, and describe the ben-

efits and differences with current practices, and the main insights that the managers

and executives derived from it.
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Over the last several decades, the U.S. healthcare industry has undergone a mas-

sive trend of consolidation, ([69]). This, among other factors, has led to the creation

of large healthcare delivery networks, which consist of multiple locations of clinics

and hospitals with distinct capabilities (e.g., academic hospitals, physicians organi-

zations, community hospitals, and outpatient clinics). The typical reimbursement

system in the industry is fee-for-service, where hospitals and providers are paid by

the volume of services performed. In this context, early consolidation efforts and

motivations were primarily to gain market power and positioning in the industry, and

most networks remained decentralized and disintegrated. However, the recent health

care reform in the U.S. has fundamentally changed these incentives and motivations.

With the implementation of different risk contracts, networks will have to now man-

age the health of populations of different risks (health needs and financial) profiles.

In order to satisfy population's needs and objectives, networks will have to guarantee

an appropriate level of access to care, and deliver integrated care in a patient centric

manner. In this environment, the leakage phenomenon, i.e., outmigration of patients

to other healthcare systems and networks, can be problematic for the continuity of

care, as well as from a economic perspective. In order to ensure appropriate levels of

access to care, networks will have to integrate their operations and deploy resources

efficiently across their facilities. Specifically, a typical large system offers various pro-

cedures (medical or therapeutic) and services, each requiring a bundle of resources,

and incurs costs and collects payments or value with their realization. The strategic

design and optimization of these complex healthcare delivery systems is challenging.

Strategic problems such as resource allocation, network building and capacity place-

ment, and designing location-specific and overall network portfolio of services, require

the correct modeling of network costs, network trade-offs, and operational constraints.

Moreover, the related decisions should center on attaining network's objectives, such

as profit, access, and throughput, rather than focusing on individual activities and

services, as is the common practice for most healthcare organizations. Overall, net-

works need now, more than ever before, to understand the cost of service, and the cost

effectiveness of the care that they provide. Unfortunately, common practices around
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cost accounting, specifically, the allocation of overhead and labor costs to activities

as a way to account for the consumption of resources, are often inappropriate for

this, and other strategic purposes. The problem is that the allocation rules used are

somewhat arbitrary, and do not allow for an easy way to understand the true cost of

activities and services that are subject to complex interactions. In particular, such

cost allocations do not capture the opportunity cost of resources, and they tend to

confound decisions related to resource allocation and capacity building.

3.1.1 Our framework

We propose a general optimization-driven approach, based on linear programming,

that can be tailored to address many strategic decisions related to network design, re-

source allocation, and capacity placement. Specifically, our approach is built around

three major concepts. (a) We distinguish between two sources of cost: network ca-

pacity cost and service cost. Network capacity cost captures all the costs related to

building network capabilities including physical infrastructure, as well as manpower

(e.g., labor and overhead). Service cost corresponds to cost directly related to pro-

cedures and activities, and includes all the costs that would not be incurred if the

service is not performed (e.g., supplies). We note that the network capacity cost is not

likely to change significantly because of operational or tactical decisions to perform or

not to perform certain procedures or activities in a specific location. Hence, we only

include service cost and capture resource consumption of network capabilities directly

in our model. This approach stands in marked contrast to the current practices of cost

accounting; by directly accounting for the consumption of resources and capacities,

our model implicitly captures network building costs through shadow prices. (b) We

guide the network design and optimization decisions to maximize a welfare objective

that considers the entire network and not just a single activity/service or location at

a time. (The goal could be any combination of financial metrics, access metrics, and

potentially other network level metrics). (c) We separate the network resources into

fixed and flexible. Fixed resources are set in a predetermined location in the network,

whereas flexible resources can be allocated to various locations as part of the overall
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resource allocation.

On a practical level, our approach can support decisions about how to use a

multi-site healthcare network in order to meet demand, which procedures to offer at

each location, and the corresponding capacity, are just some examples. In terms of

resources, our approach can guide decisions on how to allocate limited resources (e.g.,

operating room time, surgeon time, and specialist time.) across the various procedures

and activities in alignment with network's objectives. Additionally, decisions, such as

which growth opportunities to pursue, how much capacity to reserve for them, and

what surgeon expertise to bring into the network, can be supported as well. Finally,

by incorporating specific operations constraints, our framework can also be used to

analyze current operations, identify bottlenecks, and evaluate the effect of changes in

capacity, payments, and the portfolio of services offered on the network's objectives.

Case study. In collaborative work with a major academic medical center (AMC),

we employed this framework to support a range of decisions and analysis of the alloca-

tion of surgical resources across its network, which consists of a teaching hospital and

two community hospitals. The current model, in which each hospital manages its sur-

gical capabilities independently, has resulted in two undesirabin situations: (i)

demand that is mostly due to a lack of access for surgical activities, and (ii) the im-

balance use of surgical capacity across the network, specifically, there is spare surgical

capacity in the community, while the AMC is fully booked. We used our framework to

recommend our partner network how to make use of the surgical spare capacity in the

community in order to improve access, recapture leaked demand, while maximizing

revenue net of variable cost (RNVC). This metric corresponds to the difference be-

tween total revenue and service cost. The study involved 57 surgical procedure types

(across 3 surgical specialties (85% of volume)), and included hundreds of resources

across the network. We used historical data to estimate capacities, utilizations, and

financial parameters of the model. Among other analyses, we quantified the impact

of recapturing leaked demand using existing network capacity. Our estimates suggest

that the network can increase RNVC in up to 12%. Furthermore, the reallocation

of current volumes, from the main campus to the community, is responsible for an
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additional 1-4%, compared to the case with no reallocation. Notice that the increase

in networks' bottom line is much greater since the RNVC metric does not include

network building cost (fixed cost). Additional managerial insights are derived from

these results. The optimal portfolio of procedure types unveils important business

information on which procedures should be emphasized/de-emphasized and which

should be reallocated to the community. We compared the optimal changes in the

portfolio of procedures to the current priorities, which are based on the traditional

cost accounting practices; notable differences demonstrated the power of our approach

over current practices to the executives and managers at our partner institution.

3.1.2 Contributions

Our work contributes to the understanding of cost and resource allocation, and to

the practice of management in healthcare settings in three different ways.

Modeling framework to support strategic cost and resource allocation in a health-

care network environment. We use linear programming to model the interaction

between limited resources and the services that consume those resources in a multi-

site network environment. In particular, we are able to optimize network's welfare

objectives instead of individual hospitals or departments goals. Additionally, we in-

corporated different resources, fixed and flexible, the former ones belong to specific

location, whereas the later ones can be allocated across different locations. All this,

allowed us to support strategic decision making (e.g., case mix, capacity expansion,

resource allocation) from a network perspective.

New way of quantifying cost of service in a network environment. Contrary to the

traditional approach of (arbitrary) allocating labor and overhead costs to individual

services and activities as a way to account for resource utilization, we incorporate

the consumption of those capacitated resources directly into our model through con-

straints. This results in a novel way to quantify the cost of service in a network

environment, specifically, by incorporating the opportunity cost of resources through

the shadow prices of resources constraints.
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Case study in partnership with a real hospital network. In collaboration with a

large hospitals network, we used our framework to inform surgical portfolio of pro-

cedures, resource allocation, and capacity placement in order to recapture leaked

demand while maximizing network's RNVC. We estimated the parameters of the

optimization model using real financial, inventory and capacities, and resource con-

sumption data. The estimation methodology can be used to guide the implementation

of our framework in different healthcare networks. In particular, we compared the

model outputs to the traditional way in which surgical procedures are prioritized, and

demonstrated how the model decisions differ from it. Insights from these studies were

highly valued by the managers and executives in our partner network.

3.2 Current cost accounting and resource allocation

practices

In this section, we describe common practices in capacity and resource allocation, and

cost accounting in healthcare settings, and discuss their drawbacks for supporting

strategic decision making. Specifically, we illustrate how current practices hinder

understanding the true cost of services and the cost of building network's capabilities,

which can ultimately lead to the sub-optimal decisions.

(a) Decentralized operations and short-sighted capacity allocations. For

the most part, hospitals and clinics, that form part of a healthcare network,

manage their resources and finances independently. Instead of operating as a

unified system, hospitals and clinics provide services, and allocate resources,

according to their local objectives, even though, these may be in impairment

with network's objectives. The problem of this approach is that networks are not

able to use resources efficiently, nor to integrate care, and are also not capable

of growing organically due to the difficulty in evaluating, and implementing,

network level decisions.

Moreover, within each hospital and clinic, the allocation of capacity to the spe-
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cific departments, services, and surgeons is, for the most part, based on historical

utilizations. This approach ignores the capacity implications of such allocations

on other resources across the network. For example, the allocation of OR time

to individual surgeons based on past block time utilization does not account for

the effect of the resulting allocation on the intensive care unit and floor beds

capacity. These units might become overcrowded, which will result in delays,

and potentially compromise the quality of care. As [97] and others have argued,

allocating resources based on historical utilization does not maximize efficiency;

moreover, it can potentially result in higher costs. Alternatively, mathematical

programming based methods have been proposed. A large portion of the liter-

ature has centered around improving efficiency for the utilization of resources

in single hospital departments. For a general review of the last two decades see

[50] and [82]. Typical topics include the hospital bed allocation problem (e.g.,

[42, 44, 57, 103]), and the OR time allocation and scheduling problems (see gen-

eral review [13]). For example, [71] uses Data Envelope Analysis to tactically

decide on the allocation of additional OR time to surgeons (sub-specialties)

based on contribution margin. Their analysis considers a single hospital, and

ignores limiting resources outside the OR by arguing that no cancellations have

been recorded due to limited capacity. [2, 3] report on the use of linear and

integer programming for the allocation of OR time to surgeons in a single hos-

pital. The model chooses the optimal case-mix to be within the OR and floor

beds capacities, and to preserve current doctors' income level. Recently, [66]

proposes a multi-level optimization model to the planning problem in a single

hospital, where the goal is to maximize hospital resource efficiency, and improve

patients' service level. Although all these models have proven better than ad-

hoc allocations, they only approach capacity and resource allocation (single or

couple of resources) in a single facility or location.

(b) Ad-hoc cost allocation. Estimating the cost of care is a significant chal-

lenge for healthcare organizations. Their financial structure is characterized
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by large fixed and indirect costs due to the large investment in infrastructure,

manpower, and equipment. Hence, a large portion of the network's cost is re-

lated to capacity building. This cost is incurred to support various activities

across the network, and can not be directly attributable to specific services or

activities. The allocation of the these costs is difficult. The difficulty is that the

corresponding network capacity is used in a non-homogeneous and case-by-case

basis by hundreds (or even thousands) of different activities and services. In

practice, healthcare organizations employ principles from activity-based cost-

ing to allocate the cost of network capacity to individual services and activities.

Activity-based costing, or ABC, is an accounting method to understand and

allocate indirect expenses (e.g., labor and overhead) based on resource con-

sumption, see [17, 18, 191. In healthcare, [12, 391 describe the benefits of using

ABC in this specific setting, and [1, 931 describe the implementation of ABC

in hospitals. Complementing this stream of literature, [64] shows the value

of distinguishing between the cost of used, and unused capacity in a radiol-

ogy facility, and pinpoint the most common mistakes in the cost allocation of

capital investments. More recently, approaches are tailoring ABC to account

for the complex resource interactions and consumption patterns in healthcare,

e.g., time-driven ABC by [58, 59j. Although cost accounting principles have

provided substantial benefits in informing profitability analysis, we argue that

strategic network decisions related to the portfolio of services, resource and ca-

pacity allocations, should not be blindly based on such cost allocations. The

problem is that the resulting service and procedure allocated cost obtained from

cost accounting practices do not capture the opportunity cost of the resources

consumed. Furthermore, allocated cost can make services look arbitrary more

or less costly depending on arbitrary allocation rules used.

We present the following illustrative example to show how current practices related

to cost accounting and capacity allocation can result in sub-optimal decisions, even

in a simplified healthcare setting.
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ILLUSTRATIVE EXAMPLE. Let us consider an OR department. The capacity of

this OR has been increased in one additional room for next year, and the manager

has already hired a nursing team to staff the additional room. The corresponding

labor cost adds to $300K per year. Historical performance suggests that the extra

operating room will effectively add 1500 operating hours per year. Thus, using ABC,

the labor cost per OR hour is $200. For simplicity, we consider that there are only

two procedures types, I and II, and both have the same reimbursement rate, $1500

per procedure. The specific surgery duration and cost of surgery supplies, for each

procedure type, are detailed in the first two columns of Table 3.1. Additionally, there

is floor-bed capacity for 800 days, and both procedure types have the same length

of stay, 1 day. The manager is interested in deciding which procedure should be

prioritized in order to maximize profit.

Table 3.1: Traditional cost allocation.
Procedure OR Supplies Labor Allocated

Type Time [min] Cost [$] Cost [$] Total Cost [$]

I 120 100 400 500
II 60 200 200 400

Procedure type I uses twice as much operating time as procedure II, hence the

labor cost allocated to the former is twice as large. The cost allocation in Table 3.1

suggests that procedure II is more profitable (1500 - 400 > 1500 - 500), hence, the

manager would give higher priority to it.

Let us assume that the demand at end of the year is 500 patients type I and 400

patients type II. The manager's priority rule would result in 400 patients for each

procedure type accepted. The floor-bed capacity would be fully utilized, and the OR

would be 80% utilized. In terms of demand, 100 patients type I would have to be

referred somewhere else because the depletion of floor-bed capacity. The total profit

would be $780K 1. Unfortunately, this is not the best the manager could do. At

the time of deciding the priorities, the cost of the nursing team (network capacity

cost) has been already committed. This cost will be incurred regardless of the type

1400 x (1500 - 100) + 400 x (1500 - 200) - 300K
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Figure 3-1: Comparison of 'allocated' cost vs. the cost of the service.
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Note: The cost figures have been scaled for confidentiality. Procedure type I
corresponds to Laparoscopic Gastroenterostomy, and procedure type II to

Cholecystectomy.

of procedures and volume performed. Thus, priority decisions should be only based

on the relevant costs, those that will vary with changes in the case-mix. If instead,

we define priorities to maximize revenue net of variable cost (revenue - service cost).

Then, the optimal priorities are reversed. Without changing the overall volume, the

optimal capacity allocation is 500 procedures type I and 300 procedures type II, which

results in a profit increase of $10K.

The previous example demonstrates that allocated costs do not capture the in-

teraction between resources and the procedures that consume those resources, and

shows how they can mislead capacity allocation decisions. In Figure 3-1, we show a

real example of how the allocated cost can distort the relative value of procedures.

We compare allocated cost versus service cost (no labor and overhead allocations) for

two procedure types that have similar reimbursements rates. When compared based

on allocated cost, the mean cost ratio of the two procedures is 1.29, however, when

we compare procedures based on service cost, the ratio increases to 4.45, making pro-

cedure type II significantly more attractive (cheaper). This difference can significant

influence priorities and case-mix decisions.
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In reality, capacity and resource allocation decisions are significantly more com-

plex; healthcare networks offer multiple procedures types in several locations. Activ-

ities and services consume various resources at different rates, incur different costs

while yielding different revenues. Thus, the complexity of this environment makes

commonly used ad-hoc approaches inadequate to support strategic network level de-

cisions. Specifically, current practices have a shortsighted view of networks resources

and capacities, and completely ignore the interaction among activities and services

that compete for these resources, moreover, they do not prioritize network's welfare

objectives. This makes the integration of multi-site networks very challenging. In

addition, cost accounting practices make almost impossible to understand the ac-

tual cost of providing care. The allocation of network capacity costs (e.g., labor and

overhead) to individual activities and procedures, as a way to account for resource

consumption, confounds the actual cost of providing service. However, network ca-

pacity costs are, for the most part, committed regardless of the actual utilization

levels, and portfolio of services provided. Therefore, the resulting cost allocations do

not represent the actual cost of providing service, and neither capture the opportunity

cost of scarce resources. Moreover, when used for strategic decisions, they tend to

mix network capacity building and resource and capacity allocation decisions, which

most likely results in the inefficient utilization of resources.

3.3 General model

In this section, we introduce our general optimization driven framework, which has

been inspired by network revenue management models, [90]. Specifically, we consider

a multi-site healthcare network that consists of different hospitals and clinics, sev-

eral capacitated resources, and various activities and services that can be performed

across the different locations. We model the entire network of resources and capac-

ities, and include network's welfare objectives, e.g., maximizing profit, throughput,

access, or minimizing cost, or any combination of them. In contrast to current cost

accounting practices, we only incorporate expenses that are incurred with the real-
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ization of the service or activity ([49, 741 use a similar insight for short term case-mix

planning), and model the resource consumption of overhead and labor through ca-

pacity constraints. As a result, our model dissociates from arbitrary cost allocations

and presents a novel way to allocate cost in a network environment, specifically, by

looking at the opportunity cost of resources (i.e., shadow prices). In practice, our

model can support network building and capacity allocation decisions that take into

account the interaction among activities and resources, and it can also facilitate the

integration of the operations across the healthcare delivery network.

3.3.1 Elements of the model

In this section, we describe the general elements of our framework.

" Locations. These refer to hospitals or clinics located in a specific geographical

area. Each location can provide different level of care, for example, academic

medical centers can provide a wide range of care, from the most advance and

complex type of care to simple and routine visits. Community hospitals and

clinics, on the other hand, typically can only treat moderate, simple and routine

health conditions.

" Resources. These include physical infrastructure (e.g., operating room, floor

beds.), equipment, staff, and supplies, whose capacity is limited. We distinguish

between fixed and flexible resources. Fixed resources are specific to a particular

location and can only be used to deliver care at that location (e.g., surgical sup-

plies, operating room, etc.). Flexible resources, on the other hand, are shared

across the network, and can potentially be mobilized from one location to an-

other. Thus, these resources can either be allocated among different hospitals

(e.g., surgeons who spend two days in the community hospital and three days

at the main hospital) or can be used by patients from various locations (e.g.,

CT scan is at the main hospital but patients from other hospitals can use it

too). In addition, we identify a subgroup of resources that are substitutable,

and they can be safely exchanged for each other (e.g., two general surgeons
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with overlapping surgical capabilities).

* Activities. In order to treat a specific procedure type, a standard set of activ-

ities must be executed. For instance, a patient with breast cancer (procedure

type) may require a breast surgery (activity 1) and post-radiation or chemother-

apy (activity 2). Activities consume a vector of resources, e.g., breast surgery

requires a general surgeon for a specific time, an operating room, equipment,

and supplies, etc. Moreover, some activities can be demanded by various proce-

dures types, (e.g., chemotherapy) but the resource consumption may be different

depending on the specific procedure. Since our model considers volume in an

aggregate level, we consider a typical (e.g., mean, median) resource consumption

per activity and procedure type. In general, resource consumption is measured

in terms of quantity, duration, or time equivalent units (quantity x duration),

depending on the specific resource.

" Procedure types. We consider a general set of procedures that can be of

medical (e.g., diagnosis) or therapeutic (e.g., surgical, rehabilitation) nature.

Locations, resources, activities, and procedure types are connected in the following

manner: each procedure type requires the execution of various activities in order to

be performed and each activity consumes a certain bundle of resources in order to

be executed. Thus, procedures types can be performed at any location as long as

the required resources are available for the corresponding activities to be executed.

Finally, there is demand for the different procedure types, and each of them generates

specific revenue and cost with their realization. Figure 3-2 illustrates the interaction

between procedures, activities, and resources.

e Demand for procedure types. We consider demand across the network

and at each location. Network demand corresponds to the total volume, per

procedure type, within the network's geographic area. There is minimum and

maximum volume limits that we use to control the demand that the network

can serve. These limits aim to capture the extent up to which the network can
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Figure 3-2: Diagram of the interaction among procedure types, activities, and re-
sources.

Demand Procedures Activities Resources
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Note: Assuming a specific location, procedure pi requires activities a, and a3 .
Activity a, uses fixed resources ri, flexible resource rIRI, and substitutable resource

(gray circle) that can be either rk-1 or rk, or a combination of both.

decide on the combination of procedures types to treat. For example, hospitals

in the network cannot just focus on the most profitable patients, they must offer

a wide variety procedures, even less profitable ones, in order to cover the needs

of the population. [61] shows empirical evidence on how merging hospitals tend

to redeploy resources to focus on high-profit services but they still maintain a

share of non-profitable service lines.

The location-specific demand corresponds to the portion of total volume that

must be seen at each specific location. We consider a minimum and maximum

demand requirement per location. The goal of this feature is, for example, to

control for demand reallocation at a specific hospital or to enforce hospitals

to meet minimum volume for specific procedures types. Moreover, this feature
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can also be used to ensure diversity in the portfolio of procedures at each loca-

tion preventing hospitals from converging to uniform services, which has been

observed in hospital systems, [32].

As a side note, notice that modeling demand limits requires to quantify ex-

isting volumes, as well as the ability to grow demand for specific procedures

across the network. The latter task can be significantly hard due to the lack of

data. Fortunately, as we will see in the application of this model, the leakage

phenomenon will provide us with a good source of information for a realistic

estimation of the network's opportunities to grow. Specifically, we can evaluate

different scenarios of leaked demand recovery and use that, together with the

existing volumes, as a proxy for demand limits.

e Revenue and cost. For each procedure type performed, the network collects

some revenue, which depends on the reimbursement, and incurs some cost.

We consider a typical (e.g., mean, median) revenue and cost per each proce-

dure type. Revenue can be estimated by the payments received by procedure

type. Observe that by using typical quantities, we are factoring in differences

in payments due to patient insurers, intensity of care delivered, and payment

delinquency.

From the cost side, we distinguish between two sources of cost; the network

building capacity cost and the service cost. The former one includes the costs

attributable to infrastructure, equipment, and labor, which determine the op-

erational capacity of the network. At the time one makes resource allocation

decisions, these costs are already committed (sunk), and will be incurred re-

gardless of the actual combination of procedures and services performed. The

second source of cost corresponds to expenses incurred with each extra unit of

service activity or procedure (e.g., supplies, medications, disposable kits, etc.),

but otherwise unspent. In terms of the economic cost definition, the first group

of costs includes fixed and indirect costs, while the second one only encompasses

direct variable costs. Under this distinction, the cost of providing one extra unit
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of service only includes the cost of expenses that can be directly attributable to

it. This is in contrast to the use of allocated cost resulting from cost accounting

principles that most hospitals use in practice; our service cost does not include

any cost portions related to network building capacity. Thus, instead of in-

cluding the cost of network capacity through arbitrary allocations, we directly

model the consumption of this capacity and obtain opportunity cost as shadow

price as an output of.the optimization model.

3.3.2 Mathematical formulation

The mathematical formulation corresponds to a linear programming model which

was inspired by the deterministic version of the network revenue management model.

In concrete, the model considers a specified time horizon over which it decides on

the volume level of each procedure type, at each location, to maximize profitability.

Decisions are subject to specific business, and operational constraints, that ensure

that a particular combination of procedures can be performed in practice.

Based on the elements previously described, we introduce an index notation, that

i, set 01, luoauions, resources, activities, and procedure types, in Table 3.2. In our

model, a specific procedure type can only be performed at a given location if all the

resources needed for the execution of the corresponding activities are available.

Table 3.2: Definition of sets and indexes.
Set Notation

Locations 1 E L
Procedure types p C P
Activities a c A
Fixed resources r E RFix

Flexible resources r E RFlex
Substitutable resources r E Rsubs, s C S(r)

Note: The subset S(r) corresponds to set of substitute resources for resource r. The
complete set of resources R = RFx U FLex

The parameters of the model, that is, the revenue and cost, resource usage, ca-

pacities, and demand, are described in Table 3.3.
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Table 3.3: Parameters of the model.
Parameter Notation Description Units

Contribution (Revenue - service cost) ob-
agirp tained by performing proce- Dollars

dure type p at location 1
Amount of resource r re- Units or time
quired by activity a to pro-Resource usage Upari vid poeuetepato-equivalent
vide procedure type p at lo-unt
cation u
Amount of fixed, flexible, Units or time
and substitutable resource .
r available at location 1 or uis
across the network

Network de- Minimum and maximum

mand + network demand for proce- Cases
dure type p

Individual hos- 6Minimum and maximum
.iv dua o- 6+ demand for procedure type Cases

pital demand P' P
p at location 1

We define two sets of decision variables; xpl: number of cases of procedure type

p to be performed at location 1, and yral: amount of substitute resource r allocated

to activity a at location 1. The second set of variables is necessary in order to assign

the correct amount of substitutable resources to activities and to avoid double alloca-

tion. Observe that since we are addressing the network optimization from a strategic

point of view, the decision variables are assumed continuous, without affecting the

interpretation of the optimal solution. The formulation of the network optimization
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problem (P) is

(P) maximize
x,y>O

subject to

E E7rPlxpi
lcL peP

>1 Upar~pil " Cr1 VreR Fix 1 1 E L
pGP acA

SE 5 UparlXpl Cr Vr E R Fex

IEL pC-P aEA

E UparlXpl a Vr E Rsubs, a E A, 1 C L
pEP sES(r)

S EYral < r V r E Rsubs
ac-A lEL

A-~ < X( x:i A+ V P G P

1EL

6- xl < J+ VpEP,lCL

In problem (P), constraints (3.1) and (3.2) ensure that the amount of required re-

sources does not exceed the available capacity at each location (fixed resources) and

across the network (flexible resources). The left hand side adds up the total amount

of resource across procedure types, activities, and locations (only for (3.2)) required

to serve the optimal volumes. The right hand side accounts for the total capacity of

resources available at each location in (3.1) and across the network in (3.2) in the

studied time horizon. The third constraint guarantees the correct allocation of sub-

stitute resources across activities and locations. For each substitute resource, the left

hand side adds up the total amount of resource required to execute a specific activity

across procedure types at a given location. The right hand side corresponds to the

total capacity that the model will assign, from the pool of substitutes alternatives, to

the specific activity and location. Since substitute resources are modeled as flexible

resources, constraint (3.4) guarantees that the allocated capacity across activities and

locations does not surpass the network resource capacity for each substitute resource.

Finally, constraints (3.5) and (3.6) are demand related. The first one ensures that

the network volume for a specific procedure type satisfies a minimum and maximum
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demand limit while the second one imposes similar bounds by procedure type and

specific location. Observe that the modular structure of the formulation allows us to

easily extend this model by incorporating more resources, activities, procedure types,

and locations. Moreover, specific constraints to control for operational restrictions,

access requirements at each hospital or across the network can also be easily included.

A natural interpretation of the optimal decisions is as capacity budgets; optimal

volume levels can be used to derive the corresponding capacity and resource alloca-

tion that will be reserved for each procedure type at each location. Moreover, as

we will show in the application section, the optimal volumes can be also used to

determine utilization of resources, bottlenecks, and to inform acquisition of capac-

ity and the decanting of demand, among many others. In summary, our approach

is surprisingly, in stark contrast with current practice; the contrast lies in how one

'prices' the use of resources which must be provisioned well in advance of serving

procedures. Existing practice will frequently 'amortize' the real dollar cost of these

resources across activities in an ad-hoc fashion based on cost accounting principles.

Our approach prices each resource according to the opportunity cost for an additional

unit of that resource. This opportunity cost corresponds to the shadow price of the

resource and is computed while acknowledging all of the operational constraints one

faces in providing services and the demand for those services across the network.

3.3.3 Alternative applications of our framework

A recurrent concern among managers of healthcare systems and networks is how

should they strategically use its limited resources to maximize profitability while up-

holding the organization's founding mission? The network optimization model can be

used for this and other purposes. For instance, the integration and consolidation of op-

erations, expansion of services, recovery of leaked demand, and improvement of access

to care, they all require the optimal management of scarce resources. Our approach

addresses these challenges from a strategic and operational (through constraints) per-

spective. In particular, some of the potential applications of our framework include:
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" Business development applications. Evaluate how to better use spare ca-

pacity across the network; which services should be offered at each location.

Determine the priority in which types of leaked procedures should be attacked;

which leaked demand is most valuable for the network.

* Operations Applications. Determine the extent to which we can meet (or not

meet) expected demand with the existing resources, and how capacity should be

deployed. Evaluate the financial impact of shifting capacity across the different

locations in the network. Identify which resources are limiting and whether it

makes financial sense to expand capacity.

In addition to the above applications, the model can also support network building

decisions. By incorporating resource consumption and capacities directly, we can

resources. These estimates can be used to evaluate the marginal benefit of capacity

investments. Moreover, our model can also inform operational decisions. The capacity

and resource allocation in the short term is difficult due to variability in demand

arrivals, durations, and resource consumption. Thus, solutions at the aggregate level

need to be translated into an operational plan that can guarantee an efficient use of

resources. Our model can be easily adapted to account for this operational variability.

For instance, in estimating the resource consumption parameters, instead of using the

mean or median duration of an activity as the typical consumption, we can simply use

higher quantiles. Alternatively, we could also add or modify constraints, for example,

by adding buffer capacity to account for the variability in durations, or by reserving

capacity for emergency cases, and so on. With these simple adjustments, we will

obtain solutions that can better complement and guide the subsequent operational

decisions, such as scheduling, staffing, and others.
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3.4 Case study

In this section, we describe the application of our framework to a healthcare network

consisting of two community hospitals and one Academic Medical Center (AMC).

We worked in collaboration with a leadership team from the surgical department at

the AMC to estimate the parameters of the model and to study how this network

can efficiently use its surgical capabilities to maximize profitability. Specifically, we

employ the model to address two fundamental issues; (i) leaked demand, and (ii) the

imbalance use of surgical capacity across the hospitals in the network.

Until now, the hospitals in this network have operated independently; each hos-

pital manages its own patient volumes and surgical capabilities. The AMC offers the

most advance care, and provides various surgical procedures that are not typically

provided in the community setting due to limited resources, surgeonsaA2 expertise,

and other capabilities. The AMC's surgical volume is highly dependent on refer-

rals derived from affiliated primary care physicians within the network's geographical

area. Unfortunately, in the last few years an increasing trend of volume being referred

outside the network (leakage phenomenon), and the corresponding revenue loss, has

been observed. Lack of timely access to care at the AMC has been conjectured as a

driver of leaked demand, specifically, patients being unable to schedule surgical ap-

pointments. On the other hand, surgeons at the AMC perpetually request additional

operating room time, however, hospital managers claim that operating room capacity

is already at maximum levels. At the same time, surgical resources in the commu-

nity hospitals are not fully utilized. This raised the issue of whether offloading the

volume of certain procedures, from the AMC to the community hospitals, would be

an effective approach to free up capacity at the AMC, and potentially recover leaked

demand, and ultimately create better access across the entire network. Addressing

access issues and leaked demand recovery requires a better coordination and visibility

of resources across the hospitals in the network. For instance, deciding which surgical

procedures to perform at each location depends on several factors. First, not every

single procedure type can be provided in a community setting; hospitals handle differ-
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ent levels of procedure complexity depending on available resources and capabilities.

Furthermore, revenue and cost might differ across locations due to fluctuations in

the reimbursement rates based on location and the kind of institution. We used our

model to study the feasibility of recapturing leaked demand, and quantify the impact

of this on utilizations and network's profitability. To be more precise,

" We use real network's data to estimate the data inputs of the model

" We calibrate the model by imposing 'current' constraints to capture existing

state (baseline)

" We perform two analyses: (1) Estimate the value of capacity at the AMC, (2)

Quantify the value of recapturing leaked demand using existing network capac-

ity. We compare our insights against a baseline scenario and current practices.

Additionally, we provide insightful information on which procedures to offload to the

community, what the best use of spare capacity is, and how this should be allocated

to the AMC's surgeons. Finally, we also analyze changes in utilization as a proxy for

access improvement.

3.4.1 Data collection and estimation of model parameters

Our work focuses on a family of 57 surgical procedures from three service lines at the

AMC (85% of their 2012 volume), and all data entries have been estimated based

on 2012-2013 operations. Historical data on surgery duration, length of stay, and

required resources were retrieved from the AMC operational and administrative data-

bases. Since hospitals IT systems are not integrated, the AMC's data-bases only

contain historical records of surgical patients at this location. Thus, data for the

community hospitals had to be collected manually through surveys and interviews.

In this application, we considered a time horizon of one year. We included re-

sources (i.e., equipment or supplies, physical infrastructure, and staff), and activities

across four phases of the surgical path: (i) preoperative, (ii) operating room, (iii)

post-anesthesia, and (iv) ward beds. These phases can be interpreted as a single, or
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a collection of activities in the general formulation. The modeling incorporates more

than 150 different resources, and surgeon is the only resource that can be shared across

locations (flexible resource). Resource consumption and capacities are measured in

time equivalent units. This corresponds to the multiplication of two components; the

quantity (e.g., a c-arm) and the time the resource is used (e.g., 1 hour in the OR).

Based on the AMC's historical data, we computed estimates of typical (average or

median) resource consumptions, and we assumed they are the same across hospitals.

These estimates are likely to remain valid for future surgical cases, unless significant

changes in technology or surgery technique occur, in which case estimates must be up-

dated. Estimates of capacity, on the other hand, are based on the most recent year of

data. Limiting the analysis to a subset of procedures types introduces a unique chal-

lenge in capacity modeling. Specifically, resources are being used by all procedures

types, including those that are not part of the model. To reconcile this discrepancy,

we approximately segmented the capacity into the portion that is available for the set

of studied procedure based on current utilizations, block time allocations, and volume

shares. Revenue is estimated from payments data by procedure type and location.

Cost is estimated from the AMC's cost reports, and includes expenses related to sur-

gical supplies and disposable equipment, pharmacy, and other minor expenses, and

we assume that it is the same across hospitals. Network capacity costs (fixed cost

allocations) are excluded from these estimates, since they are basically committed

well in advance. In terms of demand, we consider existing and leaked demand in the

most recent year. Existing demand is estimated based on AMC's volumes and is con-

sidered as the baseline demand. Leaked demand was estimated by analyzing claims

data of in-network patients that received care outside the network. These estimates

of existing, and leaked demand, are used to determine the various demand bounds in

the model. For a detailed description of the estimation of the model parameters see

Appendix B.
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3.4.2 Results

In this section, we present the main analyses and insights derived from the appli-

cation of our framework. We start by describing the baseline scenario that aims to

replicate the current operations at the AMC. We later use this as a benchmark for

the subsequent studies of (1) the value of capacity at the AMC, and (2) the value of

recovering leaked demand in the network.

We recall that in the model we value cases based on contribution margin (revenue

- service cost), and the objective is to maximize revenue net of variable cost (RNVC)

(sum of volume times the contribution margin) across the set of studied procedures.

We compare our results against the traditional net contribution (revenue - allocated

cost (from cost accounting)) ranking of procedures, where allocated cost includes

portions of overhead and labor costs that are allocated based on resource consumption.

The net contribution ranking closely represents the way in which executives and

managers traditionally value and prioritize procedures in the healthcare industry.

Baseline

In this scenario, demand is fixed according to the existing volumes at the AMC, and

community hospitals capacity is excluded from the model. Thus, the entire demand

is served at the AMC. To have a better understanding of the importance of the

different procedure types, Figure 3-3 shows the cumulative RNVC, and cumulative

volume based on the baseline volumes. We observe that there are 10 procedures types

that account for 50% of the network RNVC, while their volume account for about

31% of the studied volume.

We obtain utilizations from the outputs of the optimization model; the operating

room has the largest utilization, about 82%, followed by 62% and 35% in the preop-

erative and post-anesthesia bays, respectively. The overall surgeon time utilization is

62%. For the ward-beds capacity, we did not have a hard capacity constraint in the

model, but we obtained a lower bound based on the existing volumes. The model

suggests a minimum of 26.23 beds per year for the set of studied procedure types.
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Figure 3-3: Baseline cumulative revenue net of variable cost and volume.
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Note: Stagged bars represent procedure types. The highlighted dark area
correspond to the top ten largest contributors of RNVC. They account for close to
50% of the revenue net of variable cost, and for about 30% of the volume in the set

of procedure studied. Data based on FY2012.

Based on our conversations with the managers at the surgical department, these

results agreed with the current operating point at the AMC. Moreover, we also con-

cluded that the operating room utilization is already high and could not be signifi-

cantly increased without a major risk of negatively affecting the daily performance

(e.g., excessive overtime, delays in the schedule, etc.). In addition, ward-beds ca-

pacity is also considered as limiting resource. Therefore, we consider ward-beds and

operating rooms as bottlenecks in the current AMC operations. Conversely, surgeon

time utilization could still be increased. Note that surgeons demand for additional

OR time at the AMC, and the issue of leaked demand, and spare surgical capacity

in the community, motivated our work to start with.

To have a better understanding of the diversity of procedures types studied, Figure

3-4 shows a comparison of the different procedures types based on resource consump-

tion and contribution. Overall, we observe that procedures types that consume more

resources than the average procedure type, also tend to report higher contribution
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margin (larger bubble sizes). In addition, we also observe that procedure types with

high contribution margin are, although not in the same order, at the top of the net

contribution ranking (i.e., dark large bubbles).

Figure 3-4:
itability.

Comparison of procedure types based on resource consumption and prof-
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Note: Each point corresponds to a different procedure type. The x-axis an y-axis
correspond to the ratio of operating room and ward-beds consumptions,

respectively. The size of the bubbles represents the ratio of contribution margin

(revenue- variable cost) over the average contribution margin in the studied set of
procedures. The color of the bubbles resembles the ranking of procedure types based
on net contribution margin (revenue- allocated cost), where darker is higher priority.

Finally, the contribution of surgeon's sub-specialty in terms of RNVC as well as

volume is shown in Table 3.4. According to the baseline volumes, general, colorectal

and breast surgery are the largest business lines. On an average per case, the sub-

specialties are ranked as HPB, esophageal, colorectal, bariatric, general, endocrine,

and breast.
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Table 3.4: Sub-specialty contribution in baseline scenario.

Sub-specialty % Revenue net of variable cost % Baseline volume

Bariatric 4% 4%
Breast 12% 21%
Colorectal 27% 22%
Endocrine 9% 10%
Esophageal 2% 1%
General 36% 39%
HPB 11% 3%

Analysis 1: The value of capacity at AMC

The goal of this study is to determine the potential gains that the AMC can obtain

by choosing an optimal, but not significantly different, portfolio of services. The

output of this analysis could be used, for example, to quantitatively identify which

procedures should be grown and which should be de-emphasized at the AMC in order

to improve RNVC.

As in the baseline scenario, we restrict this analysis to the AMC. We assume

that capacities and utilizations are fixed according to the baseline scenario, but we

allow small changes in volume within a small range around the baseline volumes.

Specifically, for each individual procedure type, we allow an tx% volume change

while overall network volume stays within y% of the baseline volume. Figure 3-5

shows the potential gains in RNVC for different scenarios. By changing individual

procedure types volume in up to t5%, a 1% increase in RNVC can be obtained. We

estimate that 1% increase in RNVC will approximately 2 result in a 15% increase in

hospital's bottom line.

We also analyze how the portfolio of services changes relative to the baseline

volumes. We compare the outputs of the model against the traditional approach of

prioritizing procedure types based on'net contribution'. This ranking resembles the

way in which hospital' managers and executives strategically prioritize procedures. In

Figure B-3, procedure types are ordered based on the net contribution valuation. We

observe that the model suggests to decrease the volume of several procedures at end of

2 Assumption: hospital margin is 4%, and variable cost is 40% of total cost.
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Figure 3-5: Revenue net of variable cost increase at the AMC.
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the ranking (less profitable procedures). This recommendation was in agreement with

the expectation of the executives and managers at our partner institution. On the

contrary, the decrease of the volume of procedure types 6, 7, 9, and 10 was somehow

counterintuitive for them. The main difference is that the model explicitly accounts

for the consumption of resources and their limited capacity. For example, procedure

6 reports a very high revenue, however, it is also a very expensive procedure in terms

of usage of bottleneck resources (highest bubble in Figure 3-4). When there is limited

capacity, net contribution ranking of procedures does not capture the interaction

among procedures that compete for that capacity, moreover, it can lead to sub-optimal

decisions. As we see in this case, instead of increasing the volume for this procedure,

the optimization model reduces its volume, and use that capacity to increase the

volume in several other 'less profitable' procedures.

Analysis 2: Recapturing leaked demand

In this study, we use our model to determine how surgical activities should be allo-

cated across the network of hospitals in order to generate access that will allow the
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network to recapture leaked demand, while maximizing RNVC.

Contrary to the previous study, we assume that the entire network's surgical

capacity is available. However, we restrict the utilization of bottleneck resources at

the AMC according to the baseline scenario utilization. Preliminary runs of the model

suggest that most of the resources, especially equipment, have very low utilizations,

hence, we did not restrict their utilization to the baseline levels. These resources

are not significantly constraining volumes at the AMC; nonetheless, coordination and

scheduling of these resources will be crucial in order to ensure availability at the

operational level. The capacity in the community is fixed, except for the ward-beds,

for which we will explicitly report the capacity needs. In addition, we also assume

that baseline demand can be reallocated to the community, and leakcd demand can

be recovered across the network. Thus, instead of restricting baseline demand to be

performed at the AMC, we allow for reallocation to the community. We run scenarios

for different reallocation and recovery levels.

In terms of RNVC increase, we estimate that, reallocation of the AMC volume

across the network can result in significant gains. In Figure 3-6 we observe that by

simply reallocating volumes (0% leaked demand recovery curve), RNVC can be in-

creased by up to 1.2%. This effect becomes even more significant when we allow for

leak demand recovery. Thus, if the network is able to backfill reallocated volumes by

recovering leaked demand, the RNVC can be increased by up to 12% (100% volume

reallocation and 100% leaked demand recovery). Additionally, we also observe that

volume reallocation has decreasing marginal returns. Observe that these incremental

gains correspond to much greater bottom line impact (1% increase in RNVC corre-

sponds to approximately 15% in network's bottom line). Also, note that these gains

do not require extra capacity at the AMC since spare community hospitals capacity

is used instead.

In terms of utilization, we track the utilization of the AMC's resources. The

operating room and ward-beds capacity utilization (see Figure B-2) decreases as more

flexibility (reallocation) is permitted. Figure B-2 (a) shows the changes in the AMC

operating room utilization; it decreases with reallocation but increases again with the
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Figure 3-6: Revenue net of variable cost increase obtained
mand across the network.
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recovery of leaked demand. Interestingly, ward-beds capacity seems to be the most

limiting resource in the recovery of leaked demand. We observe in Figure B-2(b) that

the capacity of ward-beds becomes fully utilized (reaching baseline capacity level)

when more than 50% of leaked demand is recovered.

In terms of volume, this is now redistributed between the community and the

AMC depending on how much reallocation and recovery is assumed in the model.

For example, let us assume that reallocation is allowed for up to 10% of the baseline

volumes, and that leaked demand can be recovered completely across the network,

Figure B-4 summarizes the change in volumes at the AMC and in the community.

Procedures are ranked from highest to lowest net contribution, remember that, this is

the traditional way in which procedures are valued by executives and managers. The

model suggests to move procedures at the end of this ranking to the community. This

was in agreement with our partner's expectations. However, the model also suggests

to move procedures at the top of the ranking (procedures types 2, 3, 6, and 7). This

was surprising and somehow counterintuitive for the executives and managers. The

reason is that these procedure types consume a large quantity of bottleneck resources
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(they correspond to the largest and darkest bubbles in the upper middle area in

Figure 3-4). Thus, by offloading cases of these procedures to the community, the

model is able to free capacity and backfill it with cases of procedures that, under

the traditional view, are seemingly less profitable, which ultimately results in better

value out of the entire network capacity.Another interesting output of the model

is the allocation of surgeons' time across the network. In Figure 3-7, we show an

example of how the surgeons' operative time allocation changes in the AMC and

across the network assuming a 10% volume reallocation, and full leaked demand

recovery. Even in the case where all leaked demand is recovered, the overall surgeon

time utilization is below 70% (in the baseline the utilization is 62%). In general, we

observe that sub-specialties, such as breast, endocrine and HPB transfer operative

time from the AMC to the community, while the other sub-specialties increase or

maintain their presence at the AMC. According to the baseline volumes, breast and

endocrine have the lowest average contribution per patient, and HPB has the highest.

This latter recommendation was, again, somehow counterintuitive for the managers

and executives, but it demonstrated them how traditional approaches might fail to

capture complex interactions in a network environment. On the other hand, at this

point in time and independently, of this study, our partner started to offloading some

breast and endocrine procedures to a recently acquired clinic, our analysis was in

agreement with such strategy.

3.5 Conclusion

In this paper, we proposed a general framework to support strategic decision making

in healthcare delivery network. Specifically, we developed a linear optimization model

akin to revenue management approaches. The model captures relevant operational

constraints, thus ensuring that a particular mix of surgical cases can actually be

performed in practice. Using this model, healthcare networks can budget capacity and

resources to specific services, such that network's welfare objectives are maximized.

Our model overcomes some of the main difficulties of common approaches. Heuris-
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Figure 3-7: Example of total surgeons' operative time by sub-specialty at the AMC,
and across the network.
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Note: The final allocation assumes up to 10% reallocation, and full leaked demand
recovery. The 'AMC baseline' scenario corresponds to baseline volumes performed

at AMC. The 'AMC final allocation' is the optimal total operative time at the AMC
and the 'Network final allocation' is the total operative time across the entire

network (AMC + COM), both assuming 10% reallocation and full leaked demand
recovery.

tics often fail to properly capture the opportunity cost of alternative actions; this is

particularly true when the space of alternatives is large. Moreover, ad-hoc approaches

often include fixed cost of capacity, which is arbitrarily assigned to procedures and

activities, and use this to support various strategic decisions. This approach incor-

rectly favors (diminishes) procedures which superficially appear to have low (high)

overhead; our approach strictly model the consumption of resources and only include

direct and variable cost of providing the service.

We presented an application of the model to a network of hospitals that consists of

two community hospitals and one academic medical center. The goal was to determine

how to better use the spare surgical capacity in the community in order to recapture

leaked demand while maximizing RNVC across the network. We conducted several

analyses that demonstrated how the model outputs differ from traditional practices,
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specifically, the way in which procedure types are prioritized. The results revealed

significant and practical managerial insights to the executives and managers in our

partner network. Our approach has the potential to radically transform the way in

which healthcare networks understand cost and allocate resources in practice.
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Chapter 4

The Nature and Sources of Variability

in Pediatrics Surgical Case Duration

4.1 Introduction

Understanding and predicting surgery duration has motivated extensive research in

operating room (OR) management, statistics, and operations research. Despite this,

uncertainty in case duration continues to affect efficiency and productivity by causing

long waiting times, misallocation of resources, and difficulties with team coordination

[27]. In addition to the obvious operational implications, there are also research

implications since variability can distort retrospective periopeative outcome studies

that use actual case duration, rather than scheduled surgery time, as an independent

variable in logistic regression models [23].

A large body of work aims to support various decisions in the OR [27] by providing

accurate estimates of surgical time medians, bounds, and remaining surgery time

[26, 28] for individual cases or lists of cases. These decisions may include whether

to perform a specific case, how to sequence cases in a specific suite [29], how to

swap cases between suites [81], how to update estimates of remaining surgery time

[26], or how to address specific issues such as add-on cases [105], cancellations, and

staffing necessary to complete a list of cases [46]. Research has sought to identify

factors associated with surgery duration, hoping to control for variability factors and
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support better decisions [33, 79]. Additionally, knowing which factors correlate with

surgery duration is also useful in retrospective outcomes studies.

Prediction methods are largely developed for adult surgery, but there is little cor-

responding work in pediatrics. Some studies have highlighted the importance of dis-

tinguishing pediatric from adult institutions [56, 96], but attempts have been limited

to single, simple procedures [811. Moreover, there is limited quantitative informa-

tion of any kind by which payers and policy makers can compare the complexity and

diversity of pediatric procedures to adults.

Unlike adult hospitals, pediatric hospitals have the burden of managing extremes

of variability that arise from an especially unpredictable patient population [56]. Wide

ranges in patient age, size, weight, and developmental level are superimposed upon

an even wider range of pathology. We hypothesized that the predictive power of

commonly used patient and procedure factors is less substantial in pediatrics. To test

this hypothesis, we explored the nature of case time variability within a wide range of

surgeries carried out over several years in a large, urban, academic pediatric hospital.

Our analysis introduces two original pieces. We begin by offering the first quantitative

description of case-time variability across a wide range of pediatric surgeries. We then

use a regression tree method [84] to test factors found to influence case time among

adults, and evaluate the quality of those predictors by comparing improvement against

the standard surgery time allocation method in place.
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4.2 Methods

This research was conducted under the Quality Improvement initiative at the De-

partment of Anesthesiology, Perioperative, and Pain Medicine of Boston Children's

Hospital.

4.2.1 Data description and current prediction method

Data description

We examined all scheduled surgeries over three years (43,000 elective non-cardiac

procedures) using information obtained from the administrative database of a large,

urban, academic pediatric hospital. Procedures were indexed by the internal coding

system that forms the basis of managerial decisions in our institution [100]. Overall,

records represented more than 1,500 different in-house procedure types, performed in

21 ORs by more than 300 surgeons from 16 surgical departments.

We define case time as the time from patient entry-to-exit from the OR ("wheels

in" to "wheels out"). For each procedure type, extreme values (most likely due to

data entry errors) were filtered through logarithmic transformation [87] and removal

of all observations falling more than three standard deviations from the mean. In

this process, fewer than 1% of data was lost, leaving 42,505 records. Additionally,

non-identifying patient characteristics including age, weight, ASA (American Society

of Anesthesiologists physical status), and ICU request indicator were available for

65% records. The volume was further split into train (FY2008 and FY2009) and test

data (FY2010). Train data is used to build models while test data is used to evaluate

the performance of the methods.

Standard surgery time prediction method

In this hospital, and many others, the prediction of case time is based on a surgeon-

procedure specific moving average with rolling horizon of 5 observations. After re-

moving extreme values, this method assigns as predicted time the average of the

five most recent surgeries performed by each surgeon. Extreme values are identified
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according to the previous definition, and observations were collected until the most

recent 5 non-extreme values are obtained. When a surgeon has performed fewer than

5 surgeries for a given procedure, predictions are based on historical average.

At our institution, the rolling prediction can be modified by surgeon requests

for more or less time. Although such adjustments have improved estimates in some

settings [33, 86, 100] changes to the rolling average estimates are restricted at our

institution due to experience with large underestimation bias. We consider this as

the "standard" prediction in the current system and use it for later comparison to an

alternative prediction method.

4.2.2 Analysis 1: Case time variability and performance of the

standard method

We study 249 procedure types for which 30 or more observations exist. This encom-

passed 33,302 scheduled procedures (78.4% elective volume). For each procedure, we

computed bootstrap point estimates [80] for the mean, median, standard deviation

(SD). minimum/maximum, and niantiles of case time. Shapiro-Wilk test of normal

ity revealed that most do not distribute normally. The null hypothesis of normality

was rejected for 209/249 procedure types while log-normality was only rejected for

83/249 procedure types [88, 87]. Given this, and that sample size varies significantly

among procedures, we used a bias-corrected and accelerated bootstrap method [80]

with 10,000 re-samples to compute statistics and confidence intervals.

To understand the diversity of these procedures, we compared the duration and

variability statistics using plots and linear regression. To measure the performance

of the standard prediction method, we compared the Mean Absolute Error (MAE =

e Zi , where ei = yi -y2 is the error of the prediction Di, and yi is the actual

duration of observation i), and the Mean Absolute Percentage Error (MAPE =

100% 1 E ) of the test sample predictions for 195/249 procedure types. We limited
n yi

this analysis to 195 procedure types (72% elective volume) so that train data contained

at least 20 observations and test data at least 10.
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4.2.3 Analysis 2: Prediction of surgery duration based on

commonly used factors

To evaluate predictive factors, we applied conditional inference regression trees (RT)

to individual procedure types. This is a non-parametric learning technique whereby

trees are formed based on factors within the modeling dataset. Based on train data,

trees are constructed iteratively, such that rules based on independent factors are

selected to provide the best split along a dependent variable (case time). When

significant relationships exist between the independent and dependent variables, data

is split into two groups that maximize differences in the dependent variable. The

branching criterion is such that the variable with stronger association to case time is

chosen. The stronger associated variable is identified by constructing a permutation

test, for the independence between case time and the prediction variables to then

select the variable with the minimum Bonferrroni adjusted p-value [48, 73]. Once the

splitting variable is chosen, a binary split occurs that is defined to make the resulting

daughter nodes more dissimilar. Hence the splitting criterion is given by the splitting

value that maximizes the test statistics measuring the discrepancy between the two

daughter nodes. This process is repeated recursively and the stopping criterion for

branching is met whenever the global null hypothesis of independence between the

dependent variable and the predictive variables cannot be rejected with confidence

level 5%. This statistical approach ensures that no pruning or cross validation is

needed (see [48]). The desired end result is the understanding of the combination of

variables that have strong association with case time for each specific procedure.

The final buckets in the tree contain train observations that are similar to each

other and the mean of their case time can be used to predict the duration for out-of-

sample surgeries. Thus, surgery time for a new patient is allocated by classifying the

patient into one of the buckets and assigning the mean of the bucket. Classification

is based on the patients specific factors following the tree's splitting criteria from the

root to the leaves.

The independent factors included surgeon, ICU bed request, ASA status, patient
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age, and weight. These parameters are easily accessible and have been offered as pre-

dictive elsewhere [33, 83, 89]. Complete information was available for 27,456 elective

surgeries. To obtain sample sizes containing no fewer than 20 train examples and

10 or more test samples, we further limited our analysis to 120 procedure types. To

insure that train and test samples come from the same distribution, we performed

a two-sample Kolmogorov-Smirnov (K-S) test for all 120 procedures. High p-values

returned for most procedures but null hypothesis was rejected for 12 procedure types.

As a result, this portion of the analysis was confined to 108 procedure types (55%

elective volume).

To evaluate the accuracy gained by incorporating these features, we compared

the prediction errors of the RT predictions against the standard method using test

samples. Notice that this is the most naive comparison possible since the standard

method is just a simple moving average of surgeon's most recent cases.

a) We compared the distribution of prediction errors using the two-sample K-S

test for each procedure type for which the RT finds correlation between case

time and the studied factors (i.e., procedure types for which the RT splits).

b) Secondly, we compared the global metrics MAE and MAPE, and the 10%-

quantile of prediction errors for procedures for which the RT splits using linear

regression. Each procedure type corresponds to an observation and we regress

the RT metric on the respective standard method metric. The slope of the

regression line is interpreted as the average prediction improvement of the RT

over the standard method for procedures included in the regression. For ex-

ample, if the slope is less than one, the RT provides more accurate predictions

than the standard method. Finally, we perform this same analysis leaving the

10% longest surgeries for each procedure type aside in order to quantify the

performance of the RT when extremely long cases are excluded.
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4.3 Results

4.3.1 Analysis 1: Case time variability and performance of the

standard method

Pediatric surgeries are widely variable and this variability does not cluster

Across all 249 procedure types, the SD of case time was 30% (25.8, 34.7) of the median

as defined by the regression slope (Figure C-1). The notation x(j,.T) corresponds to

the point estimates and the 95% confidence intervals (CI). As previously observed

in Strum et al. [89], we found that relative variability, as measured by coefficient of

variation (CV, Figure C-2), was greater for shorter than for longer procedures and

that some procedures (those above the regression line in Figure C-1) were significantly

more variable than others. In addition, Figure C-1 illustrates that most procedures

tend to cluster around the trend line but many are outside the 95% CI. The range

of variability was high, with procedures spanning wide ranges and others being fairly

narrow. For example, Open Gastrostomy, General Surgery had a median duration of

172(147, 213) minutes and SD of 140(91, 206) minutes. Conversely, Lefort I, Plastic

procedures were performed with a median duration of 315(285, 331) minutes and SD

of 115(96,142) minutes. Unfortunately, procedures with outlying variability did not

cluster by type, location, or specialty of surgery, making it difficult to identify them

prospectively.

Performance of the standard prediction method

In our population (195/249 procedures), the standard method performs poorly. In

Figure C-3(a), we observe that longer procedures present larger absolute deviations

from scheduled durations, i.e., large MAE. Overall, the current method results in

average deviations of 19.6(15.6, 24.8)% from the median case time (slope of the re-

gression line in Figure C-3(a)). In relative terms, MAPE (Figure C-3(b)) was greater

than 40% for 43/195 procedure types, that is, the predicted duration was inaccurate

on average in more than 40% for these 43 procedure types. This large relative de-
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viations are more common among shorter surgeries. Additionally, the MAPE was

between 20 and 40% for half of the procedures, and was below 20% in only 43/195.

Disappointingly, procedures in the final group accounted for only ~13% of the total

volume.

4.3.2 Analysis 2: Prediction of surgery duration based on

commonly used factors

We used surgeon identity, ASA status, patient age and weight, together with the ICU

bed request factor, to build RTs for each procedure type. As one example, Figure

C-4 shows the RT for the procedure Unilateral Orchidopexy, built using 265 train

observations. The overall mean SD of case time was 93.25 28.19 minutes. The

tree split the initial bulk of observations based on surgeon identity, ASA, and age

factors.

Overall, we found significant splits, along single factors or combinations, in only

39/108 procedures (36%). Most notably, surgeon identity correlated with case time

in only 27/108 procedure types (25%) and, for 9 of these, surgeon identity was not

the only relevant variable. ICU bed request was found to be relevant for only 3

procedures (ICU indicator is meaningful for 18 procedures), ASA status for 8, and

patient age or weight for 15 procedures. The Table C.1 presents a summary of the

39 procedure types for which the RT split, as well as the order in which factors were

used in the splitting process. For the 39 procedure types where case time and factors

did correlate, we measured the predictive performance of the RT:

a) Compare distribution of the prediction errors in test samples of the RT and the

standard method

i) Procedure types for which the RT split based on surgeon identity (27 proce-

dure types). The prediction error distributions were significantly different

for only 4/27 procedures (procedures 2, 3, 12, and 28 in Table C.1), as de-

termined by K-S test at the 5% significance level. Furthermore, we observe

that the RT reduced overestimation error but no significant improvement
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was observed in the underestimation error (i.e., actual time is larger than

predicted).

ii) Procedure types for which the RT split on factors other than surgeon

identity (12 procedures). As determined by the K-S test, there was no

significant difference between the prediction errors of the methods except

for two procedures, 35 and 43 in Table C. 1. In the former, RT reduces

the median prediction error, while in the later the median increases but

underestimation errors are reduced. Therefore, we found no significant

evidence of positive effect in prediction by controlling for surgeon identity

when using the standard method for this set of 12 procedures.

b) Compare the MAE and MAPE of the regression tree and the standard method

for 37/39 procedure types (procedure types 76 and 80 were excluded because

of outliers behavior). We regressed the MAEs of the RT on the MAEs of the

standard method, the slope was 0.82 (R-squared 0.78). When using MAPE

instead, the slope was 0.67 (R-squared 0.77). The performance is affected by

extremely long surgeries that will record large prediction errors and skew the

metrics. To investigate this, we compared the MAEs and MAPEs when ex-

tremely long cases are left aside. We found that by leaving out the 10% longest

cases for each procedure type, the MAEs of the RT become even smaller than

the standard method (regression slope decreases up to 0.67 (R-squared 0.53)).

The MAPEs also improved; the slope reduces to 0.61 (R-squared 0.67). Finally,

we compare the underestimation error by comparing the 10%-quantile of the

prediction errors of the two methods. We regressed the 10%-quantile underes-

timation error of the RT over the standard method, the slope of the regression

line decreases from 1.03 (R-squared 0.81) to 0.62 (R-squared 0.44) when the

10% longest surgeries are excluded.
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4.4 Discussion

Imperfect surgical scheduling results in idle time, overtime, and substantially in-

creased cost. Large variability from allocated surgical times and the inability to

anticipate such deviations present obvious challenges for operating room managers.

We found that a method of allocating surgery time based only on procedure type and

surgeon identity performs poorly in our pediatric population. Large deviations from

scheduled durations were observed as indicated by large MAEs and MAPEs (>20%

for 152/195, and >40% for 43/195 procedure types). To improve surgical schedul-

ing, we then studied the utility of commonly used patient and procedure factors in

predicting pediatric case times. Using regression trees, we determined that surgeon

identity, ICU bed request, ASA status, patient age and weight, alone or together

in any combination, had little association with case time in our large and diverse

population. Largely, the failed associations arose from high variability within each

procedure type and the long-tail behavior of case times. Future research in pediatric

OR operations should seek to prospectively identify cases that have extreme behavior.

Until better predictors can be identified, scheduling inaccuracy will persist.

Our findings differ substantially from similar studies of adult surgery. One poten-

tial explanation is that pediatric surgery is simply more variable than adult surgery.

We considered more than 40,000 pediatric surgeries and analyzed the most common

249 procedure types. Although no global metric can accurately capture all aspects

of case time variability, we can begin by comparing our calculations to adult reports.

Spangler et al. [83] report a CV for 574 procedure types for which there were at

least 27 observations. There, 98.4% had CV less than 0.76. Strum et al. [89] stud-

ied 40 CPT codes, finding that 92.5% of procedure types had empirical CV's below

0.5. Dexter et al. [251 estimated the CV for 354 procedure types, finding 90% to

have CV below 0.5 and 99.4% below 1.0. In our pediatric population, considerably

more of the most common procedures (53/249, or nearly one quarter) had CV above

50%. This fact, together with the observation that 160/249 procedure types did not

reject for log-normality (i.e. had a right heavy-tail distribution) suggest that high
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variability and unanticipated long surgeries are more common in pediatric than adult

populations.

Many investigators have studied case time variability in adult surgery. While an

exhaustive review of that literature is beyond our scope here, many studies [24, 33,

89, 86, 85] have sought single variables correlating with case time and concluded that

surgeon identity is one of the most important sources of variability. Some investi-

gators, such as Silber et al. [79], have considered more complex relationships and

sought to describe combinations of patient characteristics that associate with case

time. Dexter et al. [22], observed that procedure classification is important issue

and that uncommon procedures drive variability. One elegant approach is a Bayesian

method to create bounds on the estimates of uncommon procedures' time [28].

Despite all of the work in adult centers, pediatric case time variability is specifically

addressed in only a single study of endoscopy procedures [81]. We therefore used

regression trees to search for factors that associate with case time variability and

that might prove useful in scheduling. This powerful machine learning technique can

capture non-linear relations and rapidly test the predictive value of many variables,

alone or in combination, across large datasets. To our knowledge, this is the first

application of this technique to surgical scheduling. Surprisingly, none of the variables

previously associated with case time in adults were generally correlated with case time

in our pediatric population. In particular, although surgeon identity has frequently

been shown to correlate with case time in adult surgery [86, 89, 24], we found only

very limited association in some procedures and no association in the vast majority.

In fact, for procedures where association with surgeon identity did exist, the tree

always split along groups of surgeons and never on individuals. Importantly, these

groupings also failed to extend to other procedures. Our familiarity with the data

suggests that variability arising from the surgeon is inconsistent across procedures

here and is generally overwhelmed by other factors.

Our findings have four practical implications for pediatric surgery. First, man-

agerially, they suggest that attentions focused on individual surgeons may be largely

misplaced. Second, in scheduling, they show that algorithms using surgeon-specific
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case times are unnecessary. Third, for researchers, they suggest that retrospective

studies may be simplified and sample size issues resolved by pooling data from mul-

tiple surgeons and reducing the number of combinations (i.e. surgeon-procedure) in

statistical models. Finally, we show that case-time prediction accuracy can be sig-

nificantly improved by prospectively identifying extreme behavior cases. Although

the regression tree method was unable to isolate such cases using covariates studied

here, it is a powerful tool for screening additional variables and should prove useful in

future efforts. Until better predictors of pediatric case time are identified, daily OR

management in pediatric centers will likely require more overtime, capacity buffers,

and schedule flexibility than in adult centers.

4.4.1 Limitations

Our experience is that of a single large, urban, academic center and may not be

generalizable to other institutions. Rare and physiologically complex procedures are

common in pediatric hospitals [56] and we believe that this accounts for much of the

variability. To the extent that this is true, our findings should be applicable to institu-
f1b; ' . nV~~for c;TniLr ~ l~"~ A+ +Iig ____"j +,"r 1r ~ itons serving Iiia "-Itins Ath metmpcssndPeronelvaiale

unique to our institution may have increased or decreased differences that naturally

arise from the patient and procedure. If so, the analytical techniques employed are

broadly applicable and should prove useful in identifying such variables. This is an

active area of our present research.

Our work also involves the general limitations described in similar studies [33].

Most importantly, statistical analysis of historical experience requires sufficient num-

bers of cases with consistent and accurate naming of procedures. Here, we confined

our analysis to scheduled procedures where sufficient numbers were available to yield

statistical confidence. We used internal procedure names rather than names from

standardized systems (e.g. CPT codes) since this is the basis of operational decisions

at our institution. While we believe this was warranted, it is possible that naming

conventions led to aggregation or disaggregation of cases that could influence results

[22].
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Chapter 5

Concluding Remarks

In this thesis, we studied strategic and operational challenges arising at three dif-

ferent levels - market, system (i.e., network), and organization - in the healthcare

industry. Using a variety of techniques, such as optimization, game theory, and ma-

chine learning, we developed novel frameworks that allow us to better understand

cost and resource allocations for informing strategic decision making in healthcare

settings.

The U.S. healthcare industry is undergoing a massive transformation process. The

policy and regulation changes introduced by the recently enacted healthcare reform

have resulted in the formation of large healthcare delivery systems. Moreover, the

change in the reimbursement system and the focus on quality of outcomes has resulted

in a whole new set of incentives which is driving the delivery of care towards a more

patient centric one. Unfortunately, traditional practices in the industry are often in-

adequate, or outdated to face the new challenges. The transformation of the industry

requires understanding markets, systems, and organizations trade-offs, and it needs

now, more than ever before, novel approaches to address contemporary operational

and strategic challenges in the post-reform era. We believe that operations manage-

ment frameworks, like the ones developed in this thesis, can significantly contribute

to this purpose and improve decision making in healthcare settings.
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Appendix A

Proofs Chapter 2

A.1 Proof of Lemma 2.1

Proof. We consider discount and premium parameters a E [0, 1] and -y > 0. We as-

sume that the SP is loss averse and model his utility using a piecewise linear function.

That is, the utility parameter vSp > 1 discounts losses heavier than equivalent gains

(which has discount factor 1). In this Lemma we consider a general new contract

Ce"(D) with non-negative and non-increasing marginal cost of service. In addition,

for a contract to be feasible, it must satisfy the risk reduction and extra-payment

constraints. Thus, under this conditions, the total payment curve induced by a fea-

sible new contract must cross the payment curve of the standard contract in exactly

one point, d*.

Let us consider a feasible contract that does not necessarily satisfy risk reduction

and extra-payment constraints with equality. Thus, we consider K, > 0 and K2 > 0

such that

E[Cnw (D) - Cstd(D)] =-yE[Cstd(D)] - K, (A.1)

E[Cnew (D) - Cstd(D)|D > do] = - aE[Cstd(D)|D > do] - K2

The new contract induces demand break even point d*, and we compute the

resulting expected utility respect to it. The new contract induces demand break even
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point d*, and we compute the resulting expected utility respect to it.

* Case 1: d* < do

Using the equalities in (A.1),

E[Cnew (D) - Cstd(D)|D < d*]F(d*) =

E[Cnew(D) - Cstd(D)|D < do]3

- E[Cnew (D) - Cstd(D)Id* < D < do](/ - F(d*))

= yE[Cstd(D)] - K1 - E[Cnew (D) - Cstd(D)ID > do](1 - 3)

- E[Cnew*(D) - Cstd(D)|d* < D < dp](3 - F(d*))

E[Cnew (D) - Cstd(D)|D > d*](1 - F(d*)) =

(-aE[Cstd(D)|D > do] - K2 )(1 -/)

+ E["- (D) - (Dd* < D < do](/3 - F(d*))

The expected utility induced by the new contract corresponds to

E[Usp(Cnew(D).- Cstd(D))] = E[Cew (D) - Cstd(D)|D < d*]F(d*)

- tspE[Cstd(D) - Cnew (D)|D > d*](1 - F(d*))

= -yE [Cst(D)] - (vsp - 1)aE[Cstd(D)ID > do](1 - i)

constant

- K1 - (vSp - 1)K2 (1 - 0)

+ (vSP - 1) E[Cnew"(D) - Cstd(D)|d* < D < do]( - F(d*))

<0

* Case 2: d* > do
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Similarly to the previous case,

E[Cnew"(D) - Cstd(D)|D < d*|F(d*) =

yE [Cstd(D)] - K1 - E[Cnew (D) - Cstd(D)|D > da](1 - 1)

+ E[Cnew (D) - C1d (D)Ida < D < d*]( F(d*) - 3)

E[C new(D) - Cstd(D)|D > d*](1 - F(d*)) =

(-aE[Cstd(D)ID > do] - K2 )(1 - /)
- E[Cnew"(D) - Cstd(D)| d < D < d*] (F(d*) - /)

The expected utility induced by the new contract corresponds to

E[UsP(Cnew(D) - Cstd(D))] =

yE[Cstd(D)] - (vsp - 1)aE[Cstd(D)ID > d(- #)

constant

- K1 - (vsp - 1)K2(1 - )

- (vsp - 1) E[Cnew (D) - C8td(D)|do < D < d*](F(d*) -/)

>0

With this on hand, we can show the properties of the utility maximizing contract;

(i) The risk reduction and extra-payment constraints are tight.

Note that the expected utility is, in both cases, decreased due to the constraints

not being tight, that is, K1 > 0 and K 2 > 0. Therefore, any utility maximiz-

ing contract must be such that, both, the risk reduction and extra-payments

constraints are met with equality, that is K1 = K 2 = 0.

(ii) The demand break even point d* = do.

Note that the expected utility is, in both cases, decreased due to d* $ dp. In

Case 1, if the demand break even point coincides with the threshold d3, the

term (vsp - 1)E[Cnew(D) - Cstd(D)jd* < D < d,3](# - F(d*)) is zero, and the
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expected utility (A.2) increases. Hence, any utility maximizing contract must

induce demand break even point equals to the demand threshold do.

Therefore, a contract is utility maximizing if and only if (i) and (ii) are both true.

Moreover, the maximum expected utility corresponds to

EUp(a, y) = yE[Cstd(D)] - (vsp - 1)aE[Cstd(D)ID > d,3](1 - 3)

F]

A.2 Proof of Lemma 2.2

Proof. Consider a two-price incremental discount contract. By setting the risk re-

duction and the extra-payment constraints to equality, we can solve the system of

equations to find P1 and P2 as a function of the breakpoint b, and the discount and pre-

mium parameters a E [0, 1] and -y > 0. To simplify notation we use Dd= E[DID > d]

and Rd= E[D < d].

ITne extra-payment constraint corresponds to E[Gc--(D)] PiD - (P1 -- F 2) (Db -

b)F(b) = (1 + ')PoD. Thus, solving for Pi

Pi(1 + y)PoD - P2(b, a, y)(Db - b)F(b)

D - (Db - b)F(b)
(A.3)

For the second price we solve depending on whether the breakpoint is above or

below the demand threshold do

Case 1: b < do

The left hand side of the risk reduction constraint can be expressed as E[Cnew (D)ID >

do] = Pb+ P2 (Dd, - b).

Case 2: b > do

The left hand side of the risk reduction constraint can be written as

ne[wD P(D D F(b)
E[C" (D)|D > do] =o P1 - + P2  F(b)

1-#
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Then, solving for P2 in each case,

(-ab (-D -b)_F(b)) -(1+y)Db b<d

P2(bav~ Dd (D- (Db-b)_F(b)> DbPA b > dP2ba,7)=(1-Q)Dd3 (1-n (a--(b -b)F(b)) -(1+y)t)(73d4(1-/3)-(Db-b)F(b))b>

0 (Db-b)F(b)(D-Dd (1-0))

(A.4)

Now, we show that the resulting prices are continuous and non-increasing in the

breakpoint and they satisfy P2 (b, a, y) < Po < P (b, a, 'y). To show continuity we just

need to evaluate the second price from both cases, b < do and b > do, as b -+ do.

Using the definition of P2(b, a, -y) for b < do,

(1 - a)Dd. (D- (Dd - d,3)(1 -3)) - (1 +y)Ddo
P2(d3, a, y) Po (D - DO(1 - /))(Ddo - do)

= P2 (b --* d, a, -y)

The last equality corresponds to the closed form of P2 (b, a, -y) in the case b > do and

we take b - do. Hence, the second price is a continuous function of the breakpoint,

thus, the first price is also continuous in the breakpoint. Next, we show the first order

behavior of the prices.

- P(b, a, -y) is non-increasing and greater than PO

Case 1: b < do

The first price is strictly decreasing in the breakpoint in this interval. We first replace

the closed form solution of P2(b, a, -y) into the closed from expression for P (equation

(A.3)),

PD(Dd, - b) + aDd,(Db - b)F(b)
Ddp(D - (Db - b)F(b)) - Db /

P'(b, a,-y) =-(a + -y)PoDDdF(b)(-Dd - Db)

(Dd,(D - (Db - b)F(b)) - Db)

Case 2: b > do3

Similarly, we use the closed from solution of P2(b, a, -y) for b > do to find P(b, a, -y) =
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pD + - d 1- 0)

PO1 + (1-3) > Po, constant in b. Therefore, the first price is non-increasing,

and its minimum value corresponds to the last expression which is greater than Po.

- P2(b, a, -y) is non-increasing and smaller than PO

Case 1: b < do

Po('y + a)DDdb12bF (b) <0
P2 (DyD=- (D - b)F(b)) - Db) 2

Case 2: b > do

PoQ(y + a)bD,(1 -p
P2'(b, a, -y) =O b -. OZ _ <(I

(Db - b) 2 F(b)(D -Dd,(1 - ))

Therefore, P2 (b, a, -y) is non-increasing, and

limb--oP2 (b, a, 7) = Po (I - Ddo+yD) < (1 -c)Po < Po.

A.3 Proof of Theorem 2.1

Proof. For given discount and premium parameters a - [0, 1] and y > 0, we show that

under conditions (a) and (b) in the statement of the Theorem there exists a unique

utility maximizing two-price contract. In order to show this, we look for the two-

price contract that satisfies property (i) and (ii) in Lemma 2.1. By Lemma 2.2, we can

focus the search on the family of candidate contracts that satisfies risk reduction and

extra-payment with equality, and show that there is a unique breakpoint that results

in a contract (from the family) with demand break even point do. Thus, using the

functional form of the prices given in Lemma 2.2, we first show that given condition

(b), there exists a unique breakpoint that results in demand break even point do.

This breakpoint is the unique solution to a specific equation. Then, we compute the

optimal prices in closed form and show that they are uniquely determined.

Hereafter, we consider a two-price contract from the family of candidates. In

order to induce demand break even point do, the breakpoint of the new contract
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must satisfy

Po - P2(b*, d (
P1(b* ), -y) - P2(b*, a, y)

Note that the order P2 (b, aI y) < PO < P1 (b, a, -y) implies that b < dB. Then, using

the functional form of the first price (equation (A.3)) given in the proof of Lemma

2.2, we can write

P1(b, a, y) - P2 (b, a,) = (+ -Y)P - P2)D (A.6)
D - (b - b)F(b)

We can plug (A.6) back into equation (A.5) to obtain

P2 (b,ay)=Po (do(D - (Db - b)F(b)) - (1 + -y)Db (A.7)
d,3(D - (Db - b)F(b)) - Db /

We equal the latter expression to the second price functional form detailed in equation

(A.4) for the case b < d8. After rearranging terms, we obtain that the breakpoint of

the utility maximizing contract with demand break even point dB must satisfy

(D - (Db - b)F(b)) _D -y D(Dd,, - dB)
b dB + Dd3d8

jb D D(DdP - d,8)
> 1--f(t)dt = 1 - -a (A.8)

b d8 a Dd)d,8

This equation admits a non-negative solution if and only if the discount and

premium parameters a E [0, 1] and y > 0 satisfy condition (b) in the statement of the

Theorem. Moreover, this solution is unique. To see this, observe that the left hand

side is continuous and increasing in b (its derivative is fo' $f(t) dt > 0). In addition,

the left hand side is zero at b = 0, and as b -+ d,8, it approaches d ( - The

right hand side, on the other hand, is a non-negative constant (under condition (b))

which is smaller than (I - < (i - - . Hence, there is a unique solution for

this equation in the interval [0, dp). Let us denote this breakpoint by b* = b*(a, ).

To characterize the resulting prices, we can plug equation (A.8) into (A.7) to

obtain the following expression for the second price P2 (b*, a, = _y.

Then, replacing this back, together with (A.8), in the definition of the first price
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(equation (A.3)), we obtain Pi(b*, a, y) = Po (I + Dd.

Observe that the second price is non-negative if condition (a) in the statement

of the Theorem is satisfied. The uniqueness of the contract is guaranteed by the

decreasing behavior of the prices in the interval [0, d3] stated in Lemma 2.2.

Finally, we conclude that, given the existence of a utility maximizing two-price

contract, the SP does not gain anything by considering more complex contracts (i.e.,

contracts with multiple breakpoints). Hence, the SP can restrict to two-price incre-

mental discount contracts in order to ensure the acceptable levels of risk quoted by

the SR while obtaining his maximum possible utility. l

A.4 Proof of Corollary 2.1

Proof. Under the same assumptions as in Theorem 2.1, the SP will offer the two-price

utility maximizing contract, as long as the discount and premium parameters are such

that, the breakpoint and prices are non-negative, and the resulting SP's utility is at

least his reservation utility.

The conditions on a C [0,1] and -y > 0 in Theorem 2.1 induce non-negative

breakpoint and second price, that is

- b* > 0 D < a

Where the equivalence follows from equation (2.7)

- P2(b*, a, -) > 0 <+ a < I -=
_ - Dd'a

Where the equivalence follows from the second price closed from solution in

Theorem 2.1.

Thus, the SP will offer a contract if the premium and discount are in the feasible

region

J= (a7)10 < (yy DDde < a < d_8

Dd, (df3 - D) --~1-D ,

Finally, the SP will participate in the agreement, if in addition to (a,y) E J, the

utility he obtains is at least his reservation utility, that is EUjp(a, -y) Rsp. l
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A.5 Proof of Theorem 2.2

Proof. The proof of the Theorem is organized in steps (i)-(iii). In step (i) we show that

under conditions (a) and (b) of the Theorem, the SR's optimization problem is feasible,

and express the feasibility region in terms of the discount and premium variables. In

step (ii), we show that at optimality the SP utility participation constraint (2.10) is

tight. This allow us to write the premium as a closed form expression of the discount.

By restricting the SR problem to the set of feasible solutions that meet (2.10) with

equality, we can rewrite the SR's problem as an alternative optimization problem

that only depends on the discount variable, which is constrained to be in an interval.

To conclude in step (iii), we show that the objective of the reformulated problem is

strictly concave in the discount.

We assume that the SP is loss averse and his risk behavior is modeled by a piece-

wise linear utility function. As the leader, the SR anticipates the outcome of the SP

problem (lower level), thus, for (a,-y) E J, the SP's utility maximizing new contract

corresponds to the one specified in equation (2.9).

(i) Assume that condition (a) and (b) are satisfied. The problem pSR is feasible if

we can find (a, -y) E J that also satisfy the SP utility participation constraint

(2.10). Mathematically,

Dd, (I B Rsp
EUSp(o,y) > Rsp <- a(vsp - 1) L + - < Y

D POD

This, together with the premium bound specified in J, restrict the premium

variable to

Dd,(I Q Rsp Ddod -D
a(vsp - 1) - + - < D < a, -_(A.9)

D PO D --- D (Dd, - do)

In this last expression, the upper bound is greater or equal to the lower bound

if condition (a) is true, and imply that the discount variable is above a specific

threshold. Putting this threshold together with the discount upper bound (from
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J) implies

Po ((do - D) - (VsP (5 16(a - do) (I - p Dd, -~ DdS

min amax

(A.10)

The last set of bounds in the discount is only true under condition (a) and

(b). Thus, under conditions (a) and (b) the inequalities (A.9) and (A.10) define

the feasible region of problem pSR, which corresponds to a polyhedron. To

simplify notation, hereafter we use [a"min, a"] as the feasible range for the

discount variable.

(ii) We now show that at optimality the utility participation constraint (2.10) is

tight.

Let us rewrite the objective function of problem pSR. To simplify the notation,

we omit the dependence of the breakpoint and prices of the new contract in

(OZ, -y), and denote them as (b*, P*, P2*). Given the optimal contract specified in

Theorem 2.1, and that its induced demand break even point d* = do, the utility

of the SR can be written as

(Cs~d new* V __ _

E [UsR(Cst(D) - Cne"*(D, ,3))] s( d( 1) t) f(t) dt

" Ib USR( o - _Od (do - t)) f(t) dt
b* Ddo - dop

" jUSR ( (t - do)) f (t) dt (A.11)

The latter expression is derived by using the functional form of the optimal

prices from equation (2.8) in Theorem 2.1 to write Po - = -D"- ( -

1) and Po - P2* = d

From equation (A.11), note that the SR's expected utility does not depend on

the premium variable directly, but through the breakpoint b* (a, -y) (solution

118



to equation (2.7)). We also observe that the SR's expected utility is increas-

ing in the breakpoint b*. To see this, we recall that the SR's increasing loss

aversion behavior is modeled by uSR(X) - -VSR (X)SR with 9 SR > 1 and

1 SR > 0 for x < 0. Specifically, we have that aE[USR] __ ' R ( (d-

(01 ~ o 0_ tf (t) dt > 0.

In order to show that the utility participation constraint is tight at optimality,

we first need to determine how b* (a, -y) behaves as a function of the discount

and premium variables. We recall that the optimal breakpoint satisfies equation

(2.7). The left hand side of this equation is increasing in b*, and the right hand

side in increasing in a and decreasing in -y. Hence, the unique b* that satisfies

this equation is increasing in the discount a and decreasing in the premium -Y.

This, together with the previous observation that the expected utility of the

SR is increasing in b*, allow us to conclude that the SP's utility participation

constraint must be tight at optimality.

In more detail, let us suppose that there exists an optimal solution (d, i), such

that the utility participation constraint (2.10) is not tight. That is, the lower

bound in (A.9) is not tight. Thus, by decreasing ' by 6 > 0 small enough, such

that ~ -c is still feasible, the new breakpoint is such that b*(&, '5-E) > b* (d, ) >

0. Consequently, by decreasing the premium ' slightly, the SR's expected utility

is strictly increased. This contradicts the optimality of (d, i). Hence, any

optimal solution of problem pSR must satisfy the utility participation constraint

with equality, namely,

Dd 3 (1 -/3) Rsp
*(a) = a(vsp - 1) - + (A.12)

D PO D

This last expression shows that the premium is uniquely determined by the

discount.

(iii) Finally and given (ii), we show that the objective of problem pSR in concave,

hence, there is a unique optimal solution.
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By (ii), we replace y* (a), and notice that the breakpoint b* becomes indepen-

dent of the premium variable. Thus, problem psR becomes a single variable

(discount a) optimization problem and the feasible region corresponds to (A. 10).

We show that the objective of this single variable optimization problem is con-

cave in the discount variable a. The SR's optimization problem is reduced to

the following formulation

max E[UsR(Cstd(D) - C" **(D, a, y*(a)))]
a,b*

s.t. I - f (t)dt

Do (b, d)(-B b(a-d)

D - (vSP - 1) (A.13)
d)3 d,8 a PO Ddod)3

ae E_ [a min, Iaemax]

Effectively, this optimization problem is a single variable optimization prob-

lem. The equality constraint (A.13) corresponds to equation (2.7) after re-

placing for -y*(a). The breakpoint b* = b(a) is a function of the discount

variable and is uniquely determined by the equality constraint (A.13). We

use this constraint to determine the first order behavior of the breakpoint as

a function of the discount level a by taking total derivatives in both sides,
= 2~) s PODdp

b'(a) = RSH > 0, where H = - is a constant. The ob-

jective of the SR's optimization problem can be written as E[UsR(Cstd(D) -

Cnew*(D, a, «*(a)))] = -vsR(aH)0 (I'(a) + I (a)) + aH(Dd, - d,)1 - ).

In this last expression, we consider the SR's utility function previously spec-

ified. To simplify notation, we omitted the lower script SR from the loss

aversion parameter 0, and also introduce the notation I(a) = f do ( -

1) tof(t) dt and I(a) = fbc)a (do -t) 0 f(t) dt.

To show that the objective function is concave in the discount variable a, we
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take second order derivatives.

E[UsR(Cstd(D) - C" *(D, c, 7*(a)))]" =

-VSRHc (0-2) (0(0 - 1)(I (a) + I (a)) (A.14)

+20a(If (a) + I (ce))' + a2(4O(a) + I20(a))")

Using Leibneiz's rule, and the definition of b'(a), we obtain (If(i) + I(a))'
0R~p I'0 (c)

I T(a) and

(I (a) + I (ce))" = R-s-P- (210 (a)I (a) + (0 - 1) 'sP (a

+a (d3 - b(ce))f(b(a))b'(a) (I (a) - (do - b(a))(0-0Il(e) .

Plugging these back into the second derivative of the objective (A.14),

E[UsR(Cstd(D) - Cne.*(D, a, y*(a)))]"1 =

- VSRH 0ae-3)

+(0 - 1)I (a)
>0

+ Rsp a(da
H11 (a)2

(0 - 1)IO(a) - 2(0 -
Rsp I' (a)

H I'(a)

Q

- b(a))f (b(a))b'(a) (I (ce) - (d8 - b(a))(0-1 I (a)

>0

In order to conclude that E[UsR(Cstd(D) - Cne.*(D, a, y*(a)))]" < 0, we notice

that Q =0-)) (aHI(a)-Rsp)2 > 0. Hence, given the increasing loss

aversion assumption, i.e., 0 > 1, the objective function is a strictly concave

function of the discount variable. Thus, since the discount feasible region is

an interval, the SR's optimization problem admits a unique optimal solution in

this interval.

Given the concavity of the objective, we obtain the unconstrained utility max-
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imizing discount, & by the first order condition

E[UsR(Cstd(D) - C""'*(D, a, *(a)))]'Ia=& = 0

1/(OSR-1)

SSROSR 6ZR + IOSR(d) - I

Thus, as for any concave function optimized over an interval, the optimal solu-

tion corresponds to

0* ={ max

Cemin

c amin, amax]

> >max

< min

1:

2.2

Proof. Proof:

In the case Rsp = 0, the unconstrained discount reduces to

Po DdO ( (Do -do) (I-

VSROSR (fob* -))Oftd

I
(OSR-1)

6'. (do- t)OSRf (t) dt)

Where b* is unique solution to (A.13) after replacing Rsp = 0. Note that the un-

constrained discount might not be feasible. In order for it be feasible, it must satisfy

(A. 10), otherwise the equilibrium discount corresponds to one of the extremes values

of the discount feasible range.

0
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A.7 Proof of Theorem 2.3

Proof. Proof: We begin by characterizing the distribution of the normalized payments

under the new and standard contracts. Based on this, we show that these distributions

cross in exactly one point (in the common support), and using the fact that they have

the same mean, we conclude that they satisfy the Dilation and Lorenz stochastic

orders.

1. Dilation order

Based on Definition 2.3, consider the normalized random variables Cstd(D) -
fstd and Cnew(D) - One" (both with finite mean). We derive the distribution

of the normalized random variables based on the demand CDF (F)

Fstd(t) =p(Cstd(D) - Ostd < t) - F (t ,OD PoD< t
PO

F new(t) = P(Cne (D) - ew < t)

F -Onew Onew < t < Plb + Cnew

F ( -opne _(1- b Plb + Onew < t

We proceed to show that at equilibrium the CDFs cross in exactly one point,

and at this point, the CDF of the new contract it does it from below. Recall

our initial assumption on the demand CDF being monotonically increasing.

In addition, recall that at equilibrium the expected payment under the new

contract is larger than the standard contract, i.e., POD < Conw, by equation

(2.11). Thus, for POD < t < Onew, we have that 0 = Fnew(t) < Fstd(t).

Similarly, for Onew < t < Pib+ nm' we also have that Fnew(t) < Fstd(t) since

PO < P1 . Finally, since both normalized random variables have zero mean, we

know that the CDFs must cross at some point i > Pib + Onew. The CDFs

intersect at i = (P1'P) ((P1 - P2 )b + Onew - P2 D)

It is straightforward to see that i > Pib+Cnew. Then, there is a unique crossing

point, and at this, the new contract CDF cross the CDF of the standard contract
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from below. In order to show the convex order between the normalized payment

random variables, we observe that they satisfied condition 3.A.8 in [78].

Let 0 < x < <, we have that fJ Fnew(t)dt < fx Fs(t)dt.

Let x > i. Then using the fact that the normalized distributions have the same

mean,

j Fn(t)dt - j Fstd (t)dt

j Fnw(t)dt + j F nw(t)dt = j Fstd(t) dt + F Fstd(t) dt

-> F new(t) dt < J F std(t) dt

The last inequality follows from F"w(t) > F sd(t) Vt > i. Then, by Theorem

3.A.1 (b) in [78], the normalized payment are in convex order, or equivalently

Cnew dil Cstd.

2. Lorenz order

Based on Definition 2.3, consider the normalized non-negative random variables

Cs(d and C(, and their CDFs are given by

F std(t) -P (Cstd(D) t =F(tD), 0 t

C*new(D F (tone 0 < t < P

F new(t) =P C - (D)' <( t ={F P1 /
Cnew F (tone ' - 1~P2)tb ___ < t

P2  P2 Ce

Now, we show that at equilibrium the new contract CDF cross the CDF of

the standard contract in one point, and at this point, it does it from below.

Recall our initial assumption on the CDF of the demand being monotonically

increasing. Thus, for 0 < t < Plb , we have that 0 = F"ew(t) < Fd(t).

This is derived from the fact that One, < PID which is directly implied from

P 2 < PO < P1 . Hence, since both normalized random variables have mean

equal to one, we know that the CDFs must cross at some point i > it . The
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CDFs intersect at t = P;P2). It is straightforward to see that t> P".

Then, there is a unique crossing point, and at this, the new contract CDF cross

the CDF of the standard contract from below. Following the same idea we

did for the Dilation order, we can show that the normalized payment random

variables satisfy condition 3.A.8 in [78]. Then, by Theorem 3.A.1 (b) in [78], the

normalized payments are in convex order, or equivalently Cnew <Lorenz 0 std*

nI
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Appendix B

Additional Material Chapter 3

B. 1 Data description and estimation of parameters

We summarize the methodology we used to estimate the parameters of the model in

the application of our framework. The steps listed below do not need to be followed

strictly, but they can be used as guidelines for different applications of our framework.

In terms of data, we used historical financial, surgical records, and capacity data from

the AMC and community hospitals (where available) from years 2009-2013. However,

most of the parameters were estimated using the last complete year of data, that is,

2012 as a way to represent the current operations.

1. Selection of procedure types: Procedures types are identified by the AMC's

internal surgical coding system, and we used minimum volume as the criteria

to select procedures types. Specifically, we focus on surgical procedures across

three surgical departments (general, colorectal, ), and select those that were

performed at least once a month according to the AMC's surgical volumes

in 2012. Although this threshold is arbitrary, it allows us to have minimum

data to compute statistics on the usage of resources, and revenue and cost.

Infrequent procedure types tend to have highly variable resource consumption

patterns, moreover, the benefit of including these procedures from a managerial

perspective is unclear since they are rarely performed. Hence, we exclude them
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to avoid introducing noise and skewing results. This criteria resulted in the

selection of 57 surgical procedures types.

2. Selection and classification of resources: In order to identify the relevant

resources for the studied procedures, we mapped the resources used along the

surgical path. Figure B-1 shows the phases of the surgical path included in

this study. Patients move along phases I-IV, but phase V is required for every

patient after phase II is performed.

Figure B-1: Phases of surgical path.

Phase I Phase I Phase III Phase IV

Preoperative Operating Post-Anesthesia Ward
Holding Area Room Care Unit Recovery Beds

Phase V

---- Turno ver

Generally, resources can be of three types: equipment or supplies (type A),

physical infrastructure (type B), and staff (type C). The choice of type A re-

sources was based on minimum usage according to the AMC's surgical records.

Specifically, items that are not critical, and used in less than 5% of the cases of

each procedure type are excluded. Furthermore, we reduced this list by elimi-

nating low-cost items that are included within the physical infrastructure (e.g.,

surgical table is part of the operating room). This selection process resulted

in a final list of 197 type A resources. Type B resources correspond to oper-

ating rooms, preoperative and post-anesthesia bays, and ward beds. Type C

resources broadly include different nurses, anesthesiologists, and surgeons. We

assumed that most type C resources (except for the AMC's surgeons) are in-

cluded as part of the physical infrastructure. The reason behind this is that,

as it is a common practice in many hospitals, anesthesiologists and nurses are

staffed on an aggregate per operating room basis. Moreover, preoperative and

post-anesthesia bays also follow a similar staffing model. Thus, having one op-
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erating room available in our application means that the surgical team (except

for the surgeon) is guaranteed for that room. Hence, the only type C resource

that is explicitly included in the model is the surgeon.

Within the surgeon resource, there are different sub-types depending on sur-

geons' skills. We designed surgeons' classes, such that each individual surgeon

belongs to exactly one class. Each class corresponds to a set of surgical sub-

specialties. We start by identifying individual surgeons who can perform the

studied procedures. In addition, we group procedure types into sub-specialties,

such that each procedure type belongs to exactly one sub-specialty; individual

surgeons can perform procedures from multiple sub-specialties. We classify in-

dividual surgeons into classes based on the sub-specialties they can perform.

For example, John and Jane specialize in procedures from two sub-specialties

bariatric and colorectal. Judy, on the other hand, masters procedures in col-

orectal and endocrine sub-specialties. We define two classes, {bariatric and

colorectal} and {colorectal and endocrine}. John and Jane belong to the first

class, and Judy to the second. Notice that colorectal procedures can be. pro-

vided by surgeons from both classes. We introduced this modeling in order to

cluster surgeons skills which will ultimately facilitate the estimation of available

operating time for the different procedure types. In our study we have a total

of 20 surgeons, 7 sub-specialties, and 10 surgeon classes.

In addition, we also identified resources according to the general model classifi-

cation, that is, whether they are fixed, flexible, and substitutable. Thus, resource

types A and B are assumed fixed to a specific location, while the surgeons (type

C) is flexible. This means that surgeons' time could be allocated to differ-

ent hospitals across the network. In addition, we consider surgeons (different

classes) as a substitutable resource since a single procedure can be performed

by surgeons from different classes.

3. Estimation of resource usage: Resource consumption is defined in time

equivalent units (i.e., the quantity of resource used times the length of the time
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that the resource is used). We assume that resources required in a specific

phase, are used for the entire duration of the phase.

Phase duration is defined as the total time that the patient spent on the specific

phase. For every procedure type, we computed the empirical distribution of the

duration of each phase according to the AMC 2012 volumes. For phases I-III,

we observed that the durations for different procedures differ in variability, and

right skew. Thus, we used the median of the empirical duration as the typical

duration. The duration of phase IV is modeled as the typical length of stay

(LOS). Since some procedures are performed in both inpatients and outpatients

settings, using median duration does not represent the typical duration of either

subset of patients. Hence, for each procedure type we estimated the empirical

LOS as the weighted average of the two subset of patients based on the AMC

2012 volumes,

Typical LOS - Inpatient cases x Inpatient median LOS
Total cases

We assumed that the duration of phases I-IV is the same across locations.

Conversely, the duration of the turnover (phase V) is not procedure specific

but location dependent, and it is defined according to the scheduling standards

at each individual hospital (e.g., 30 minutes at the AMC, 45 minutes at the

community).

Resource quantity corresponds to amount of resource used in each phase. The

typical quantity is modeled by the average quantity used according to the AMC

2012 volumes.

Although our general model allows for different resource usage at each location,

we assumed that the typical usage is the same across hospitals. According to the

local nursing teams, required resources and usage are inherent to the procedure

and are not expected to change significantly based on location. Differences in

resource requirements were exceptions and we handled them individually for

the specific procedures and locations. Thus, the typical resource usage (upari in
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general formulation) is defined as follow, for a given phase a, the typical usage

of resource r by procedure p is

Typical usagepa,= Average resource r used by procedure p in phase a

xDuration of phase a

Notice that phases can be interpreted as activities in the general formulation.

4. Estimation of capacity: At the AMC, the capacity and inventory of re-

sources is readily acquired from the IT system. At the community hospitals, on

the other hand, such a system does not exist, and we had to manually collect

data with the assistance of the local nursing teams. Limiting the analysis to

a subset of procedures types introduces a unique challenge in capacity mod-

eling. Specifically, resources are used by all procedures types, including those

that are not included in our model. To reconcile this discrepancy, we approxi-

mately segmented the capacity into the portion that is available for the studied

procedures.

We began by estimating the capacity of type B resources. The common practice

in most academic hospitals is to split operating room time into segments, or

blocks, that are assigned to individual surgeons. At the AMC, we use the 2012

block time allocation to determine the percentage of block time allocated to

surgeons who can perform the studied procedures. This allocation is scaled

further to account for the portion of time that these surgeons have historically

spent operating cases of the studied procedures.

Available OR capacity = Total capacity x Surgeons block time share(%)

x Studied procedures share(%)

We used the same scaling to derive an approximate estimate of the available

preoperative and recovery bays capacity. In the case of ward-beds capacity, we

directly estimated the capacity utilized according to the AMC 2012 volumes,
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and used this as the minimum capacity available and perform sensitivity analysis

with respect to it. For the community hospitals, we directly asked the operating

room managers to estimate the spare capacity for all the physical infrastructure

((B) resources).

The capacity of type A resources is more difficult to scale. Cleaning, trans-

portation and set-ups consume usable time. Moreover, scaling based on volume

or operating room utilization might not represent usage among different proce-

dures. Therefore, we adjusted total capacity proportionally to block time share.

Even though this is a conservative assessment, it is more realistic than assuming

that the entire capacity is available for the studied procedures. For type A and

B resources, we scaled capacity so this is measured in time equivalent units. The

daily availability corresponds to the normal operating hours of the respective

hospital. Preoperative bays and operating rooms are usually available between

9-10 hours, while recovery bays are usually available for longer hours (around

2 hours more than operating rooms). Ward-beds are available 24/7. For other

resources, we assumed the same daily availability as for the operating room.

The surgeons operating time (resource type C) capacity is computed on a sur-

geon class basis based on the AMC 2012 records. Thus, if multiple surgeons

belong to a class their capacity is pooled. To estimate individual surgeons op-

erating time capacity, we began by computing the total operating time (TOT)

spent on the studied procedures. TOT includes all the operating time, regard-

less of whether the case was performed within surgeons' own block time. This

consideration is particularly relevant for those surgeons who do not own block

time and only schedule cases through the waiting list. (Note that this is a con-

servative estimate of the time each surgeon could spend operating cases of the

studied procedures.) In addition, we estimated individual surgeon's adjusted

block time (ABT). This corresponds to the surgeon's individual block time al-

location, but scaled by the share of surgeon's actual operating time spent on

the studied procedures, plus the time from group blocks. Group blocks are
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standard blocks that are shared by a group of surgeons, and we allocate this

time based on historical usage. Again, ABT is a conservative estimate of the

time surgeons could spent operating cases of the studied procedures. Finally,

surgeon's available time is defined as the maximum between the actual time

spent on studied procedures, and the adjusted block time. Then, the class time

is just the pooled capacity across the surgeons in the class,

Surgeon Class Time = max{TOT, ABT}
ieSurgeon Class

5. Estimation of revenue and cost: As we have done for other non-deterministic

inputs, we consider typical profitability as the average (revenue - variable cost)

collected by procedure type and location. We used payments as a proxy for rev-

enue. Unfortunately, hospital payments are only recorded by patient encounter

using a different coding system, ICD-9 procedure codes, that does not uniquely

map to the internal coding system employed in our model. In order to compute

estimates of revenue by procedure type, we created a mapping based on the

empirical occurrence (weights) of ICD-9 codes using the AMC's payments data.

Each encounter can potentially correspond to multiple procedure types (e.g.,

patients having multiple surgeries) and multiple ICD-9 codes, however, we can

identify a primary ICD-9 code for each encounter. Consider a procedure type

x, and an ICD-9 primary code y. We estimated the conditional probability of

having a procedure of type x given that we observed the ICD-9 primary code y

as

P(Xly) -P(x, y) No. encounters of x and y
P(y) No. encounters of y

Thus, the revenue of a specific procedure type is simply the weighted average

of the payments received by primary ICD-9 codes.

Payment(x) = P(xly) x Avg. Payment(y)
yEICD-9
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In the case of community hospitals, payments data is also indexed by ICD-9

codes, and we use the above mapping to estimate the payment by procedure

type. Unfortunately, some ICD-9 are rarely performed in the community, or not

at all, resulting in sample size issues. In order to have meaningful estimates of

the average payments by ICD-9 in the community, we adjusted the average pay-

ment of ICD-9 codes that had less than 10 records using the AMC's payments.

Thus, for an ICD-9 with sample size n < 10

Adjusted Avg. COM payment = Avg. COM payment -
10

+y Avg. AMC payment (10 10)

Where y > 0 is the average payment differential between the community, and

the AMC, across ICD-9 codes with 10 or more records. For example, -y = 0.8

means that the payments in the community are on average 20% lower than at

the AMC.

Cost data is also indexed by encounter and ICD-9 codes, but further broken
A _v. A* 4- 1_ 1_ f-, ___1
"UWn1 inUU Upcii k ntZipa eUts. lAs previuUsly UescibIed, we 01ny incluue

variable cost in our model. This cost accounts for surgical supplies and dispos-

able equipment, pharmacy, and other minor expenses. Network capacity costs

(fixed cost) are excluded from the model since they are basically committed well

in advance and do not significantly vary with small changes in the case-mix. In-

stead, we model the consumption of this capacity explicitly in the model. We

estimated average cost by procedure type based on the AMC 2012 cost records

and we assume the cost in the community is the same.

6. Estimation of demand: We included two sources of demand; existing de-

mand and leaked demand. Existing demand corresponds to the AMC 2012

volume for the set of studied procedures. We considered this as the baseline

demand. Leaked demand was estimated by analyzing claims data of in-network

patients that received care outside the network in 2012. The leaked demand
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records are indexed by the Diagnosis-Related Groups (DRGs) coding systems;

the HCFA/CMS-DRG for Medicare cases and the AP-DRG for non-Medicare

cases. The mapping between this coding system and the hospital internal cod-

ing system is non-trivial because multiple DRGs can be assigned to a single

procedure type. Similarly to the ICD-9 mapping, we created a mapping based

on the empirical frequency of DRGs on existing demand. Consider a procedure

type x and an DRG code z, then using existing volumes, we estimated the

probability of having a procedure of type x given that we observed DRG z as

P(x, z) No. cases of x and z
P(xlz) - P(z) No. cases of z

Thus, the unmet demand for a specific procedure type x is simply the weighted

average of the leaked demand volumes

Unmet demand(x) = P(xlz) x Leaked demand(z)
zEDRG

The estimates of existing, and leaked demand, are used to determine the various

demand bounds in the model. Minimum network demand is defined as the

existing volumes. Notice that in the past, this volume was entirely seen at the

AMC, but in this study, we allowed for potential reallocation across the network,

if profitable to do so. Maximum network demand corresponds to the existing

demand plus some fraction of the leaked demand, and we do sensitivity analysis

with respect to it. In addition, we used a minimum volume requirement at the

AMC to control for how much of the existing demand could be reallocated to

other hospitals in the network. For instance, if the minimum volume is exactly

the existing demand, then no reallocation will be allowed in the optimal solution.

To model different reallocation levels, we considered different fractions of the

existing demand as the minimum volume requirement. In the case of community

hospitals, no minimum volume is required and cases will be allocated to these

hospitals only if larger benefit is obtained by doing so.
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Figure B-2: AMC operating
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Figure B-3: Changes in AMC's portfolio of services.
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Figure B-4: Changes in network's portfolio of services when recovering leaked demand.
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Appendix C

Figures and Tables Chapter 4

Figure C-1: Standard deviation vs. median case time.

Standard Deviation vs. Median of Case Time
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Note: Linear regression slope is 0.30 (0.26, 0.35), intercept 12.56 (7,77, 17.61). The
95% CI linear regression and R-Squared were computed via bootstrapping (BCa,
1000 replications). Each point corresponds to a procedure type, and the vertical

bars to the 95% bootstrap CI of the standard deviation and coefficient of variation,
respectively.
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Figure C-2: Coefficient of variation vs. median case time.
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Figure C-3: Performance of the standard method.
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(a) MAE of the standard method vs. median case time. The slope of the regression
line is 19.3 (15.6, 24.8)%, and the intercept is 10.2( 5.32, 14.69) absolute minutes.
The 95% CI linear regression and R-Squared were computed via bootstrapping
(BCa, 1000 replications).
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(b) MAPE of the standard method vs. median case time.
are markers at 20% and 40% MAPE.

The horizontal lines

Note: Each data point corresponds to a procedure type (195 different procedures).
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Figure C-4: Example: conditional inference regression tree for Orchidopexy Unilateral.
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Table C.1: Summary of case time statistics and RT results.
key I Procedure Type I N Mean Case Time [min] Sd. Case Time [min] CV I Srgn ICU ASA Weight Age

1
2
3
4
5
6
10
12
13
14
15
16
17
18
22
24
25
26
27
28
29
32
35
38
41
43
54
56
61
76
79
80
93
94
100
103
117
166
200

TONSILLECTOMY/ADENOIDECTOMY
TYMPANOSTOMY/TUBES
CIRCUMCISION
DIRECT LARYNGOSCOPY/BRONCHOS
ARTHROSCOPY KNEE
ADENOIDECTOMY
ARTHROSCOPY KNEE ACL RECONST
ORCHIDOPEXY, UNILATERAL
PORT-A-CATH INSERTION
HARDWARE REMOVAL BURIED PIN
ESOPHAGOGASTRODUODENOSCOPY
EXCISION LESION SMALL
BOTOX INJECTION
EXAM UNDER ANESTHESIA EARS
COLONOSCOPY
HERNIA REPAIR, INGUINAL/HYDROCEL
MICRODIRECT LARYNGOSCOPY/BRONCHOS
PORT-A-CATH REMOVAL
MEATOTOMY, URETHRAL
ARTHROSCOPY HIP OSTEOPLASTY
CYSTOSCOPY
GROWING SPINAL RODS LENGTHENING
CADD: DIRECT LARYNGOSCOPY/BRONCHOS
EPIPHYSIODESIS
STEROID INJECTION OF JOINT
ESOPHAGOGASTRODUODENOSCOPY
LYSIS OF PENILE ADHESIONS
LUMBAR PUNCTURE
HERNIA REPAIR, INGUINAL, UNILATERAL
SHUNT, VP INSERTION/REVISION/REMOVAL
ARTHROSCOPY HIP
LAPAROTOMY, EXPLORATORY
HARDWARE REMOVAL RADIUS/ULNA
TENOTOMY ACHILLES, PERCUTANEOUS
ARTHROSCOPY KNEE WITH OPEN MEDIAL
LACRIMAL DUCT PROBE, NO TUBES
EXCISION LESION LARGE
CHALAZION EXCISION
CHORDEE RELEASE MILD

753
2086
994
468
718
639
287
410
308
318
332
337
325
301
282
274
174
260
261
132
238
126
58
79
171
120
136
132
110
57
55
67
89
84
71
78
45
42
35

54.95(53.88, 56.12)
29.24(28.37, 30.16)
61.96(61, 62.99)
65.88(62.49, 69.74)
71.65(69.84, 73.62)
47.93(46.75, 49.19)
114.87(111.9, 118.26)
93.25(90.71, 96.13)
117.11(113.49, 121.09)
75.26(71.64, 79.31)
69.91(66.35, 74.06)
77.41(74.17, 81.03)
30.42(28.98, 32.05)
50.92(46.96, 55.63)
103.07(99.19, 107.38)
73.5(71.19, 76.18)
63.36(58.4, 69.21)
64.6(62.48, 66.98)
34.82(33.47, 36.33)
124.83(119.7, 130.79)
69.56(65.36, 75.92)
113.02(106.61, 122.47)
56(49.6, 63.72)
86.24(81.15, 91.67)
33.43(31.82, 35.35)
90.56(85.08, 97.18)
50.63(47.21, 54.32)
42.58(39.77, 45.79)
82.18(77.46, 88.13)
178.54(160.26, 202.11)
120.8(112.27, 132.2)
365.48(326.23, 413.12)
57.17(52.49, 62.36)
42.42(37.86, 48.89)
78.52(73, 85.72)
29.59(26.68, 33.76)
122.07(103.38, 159.6)
38.81(34.71, 43.36)
97.03(85.85, 110.16)

2
1

2
2

1

15.77(14.6, 17.29)
21.13(19.88, 22.55)
15.85(14.89, 16.99)
38.78(34.43, 44.64)
25.68(23.6, 28.08)
15.7(14.33, 17.41)
27.48(24.35, 32.02)
28.19(25.63, 31.32)
34.14(30.39, 39.46)
34.61(30.99, 38.89)
36.13(31.85, 42)
32.02(29.32, 35.45)
13.87(12.45, 16.15)
38.57(33.28, 46.31)
35.44(31.66, 40.2)
20.84(18.84, 23.96)
36.02(31.43, 41.99)
18.22(16.28, 20.83)
11.78(10.49, 13.44)
32.16(27.52, 38.39)
40.97(31.74, 55.22)
43.78(33.76, 57.08)
27.92(22.64, 35.85)
24.1(20.75, 28.55)
11.8(10.21, 14.34)
33.89(28.67, 41.15)
21.01(18.71, 24.06)
17.48(15.13, 20.53)
28.79(23.35, 38.73)
80.09(63.91, 101.09)
37.19(26.97, 51.09)
182.22(150.52, 228.85)
23.68(20.41, 29.22)
25.21(19.69, 32.3)
26.94(21.39, 34.18)
15.55(11.65, 23.77)
87.28(52.4, 160.92)
14.34(11.81, 18.04)
36.83(30, 49.92)

2
2 2

3

2
2 1

0.29
0.72
0.26
0.59
0.36
0.33
0.24
0.3
0.29
0.46
0.52
0.41
0.46
0.76
0.34
0.28
0.57
0.28
0.34
0.26
0.59
0.39
0.5
0.28
0.35
0.37
0.41
0.41
0.35
0.45
0.31
0.5
0.41
0.59
0.34
0.53
0.71
0.37
0.38

1
3
1

1
1
1
1
1
1

1
1

1
1

1
1
1
1
1

1
1

1

1

1

1

1
1
1

1
2

2

2

2
1

1

1
2

1
1

1

Note: This table includes the set of 39 procedure types for which the RT identified correlation between case time and the studied factors. The notation x(x-, +) represents

the point estimates and 95% confidence interval of the statistic. The last five columns correspond to the studied factors and the numbers indicate the order in which the RT

branched. For example, for the first procedure type, the RT split on surgeon identity in the first iteration then, the resulting daughter nodes are split based on Patient's Weight

and ICU request factors
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