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Abstract

I discuss several novel topological phases in correlated electron systems, realized
through spin-orbit interactions and lattice effects especially narrow-band systems.
The first realizes the fractional quantum Hall effect using geometric frustration and
ferromagnetism to obtain a nearly flat band with a large bandgap and non-zero Chern
number. This system can support this effect at high temperatures upon partial filling
of the flat band. The second proposal builds upon this system: as the ground state is
a fractional quantum Hall state, excitations of this state are anyons when there is an
incommensurate filling. The underlying lattice allows access to a new regime in which
the anyon gas can form a charged superfluid, including states with instrinsic topolog-
ical order or that similar to a BCS-type state. The third proposal studies topological
crystalline insulators and strain as an effective gauge field on the surface state Dirac
fermions. The zero-energy Landau orbitals form a flat band where the high density of
states gives rise to the interface superconductivity observed in IV-VI semiconductor
multilayers at high temperatures, with non-BCS behavior. A discussion of supercon-
ductivity in flat band systems concludes and is contrasted with classic results for a
typical electron gas. This work closely parallels that in references 11, 2, 3j.

Thesis Supervisor: Xiao-Gang Wen
Title: Cecil and Ida Green Professor of Physics
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Chapter 1

Introduction

Topological phases are new states of matter with unconventional properties, such as

an unusual edge (or boundary of the material sample). Topology has typically de-

noted the mathematical study of spaces and shapes, and more recently turned out

extremely useful in physics, such as to describe the winding of an electron's wave-

function. Remarkably, subtle changes to the topology of the electron's wavefunction

(which may appear as just additional complex phases), can give rise to different phys-

ical states. Such states are often accompanied by clear visible signatures that help

them to be distinguished experimentally.

For decades, the main realization of topological phases were the integer and frac-

tional quantum Hall effects (IQHE and FQHE respectively). These landmark discov-

eries made in the 1980s became favorite and well-examined experiments, in their host

semiconductor systems of two-dimensional electron gases (2DEGs). In this thesis, we

discuss an extension of the FQHE in a completely different system from semiconduc-

tors, by mimicking the relevant properties of this state such as a flat band. This is

discussed in chapter two.

The FQHE remains beloved by many physicists because of its fascinating prop-

erties. It is a strongly correlated state, containing quasiparticles (gapped collective

excitations) with unusual statistics. The existence of this state in two-dimensions

allows these quasiparticles to possess intricate braiding statistics and host additional

exotic topological phases. The proposal we introduced of the FQHE on a lattice gives
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rise to a new regime, in which these quasiparticles can interact to form an anyon su-

perfluid. The formalism we develop to describe such a state reveals a unique algebra

between new types of quasiparticles - as shown in chapter three.

Our knowledge of materials and experimental systems that support such phases

received a huge boost with the discovery of topological insulators this past decade.

These systems provide analogs and a generalization to other dimensions, while re-

taining several commonalities including anomalous edges (e.g. that are chiral), and

twisting of the electron wavefunction. In chapter four we explore a new class of such

materials, topological crystalline insulators, that additionally utilize crystal symme-

try for protection of its topological properties. In particular, lattice effects combine

with the surface states to result in partially flat bands. This supports an entirely new

state, superconductivity, the origin of which is otherwise difficult to explain in these

systems.

In these examples, the combination of lattice effects and flat bands can give rise

to radically new states, often because interaction effects dominate in a flat band (over

the kinetic energy). In chapter five we see this unusual regime gives a new prediction

for the renormalization of the Coloumb repulsion in a superconductor. In the limit

of a partially flat band, we obtain a result governed now by the flatband bandwidth,

which modifies the classic result for an electron gas (as obtained by Anderson, Morel

and others).

1.1 Topological phases

The standard theoretical concept in the classification of phases and transitions be-

tween them, has been that of Landau symmetry breaking[5, 61. However, this theory

turned out to be inadequate when the fractional quantum Hall (FQH) state[7, 8]

was discovered. Such highly-entangled quantum states are not distinguished by any

symmetries as that framework had dictated, but are characterized by new topological

quantum numbers such as a ground state degeneracy[9, 10] and non-Abelian Berry's

phases[11J of the ground states[12]. The robustness of these quantum numbers is
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topologically protected, i.e. only global (e.g. macroscopic) and not local changes can

destroy them.

The new kind of order revealed in these topological quantum numbers is named

topological order.[12, 13j Recently it was realized that topological order can be in-

terpreted as patterns of long-range quantum entanglement[14, 15, 161. This en-

tanglement has important applications for topological quantum computation: the

robust ground state degeneracy can be used as quantum memory[17]. Fractional

defects from the entangled states which carry fractional charges[8 and fractional

statistics[18, 19, 201 (or non-Abelian statistics[21, 221) can be used to perform fault

tolerant quantum computation[23, 241.

1.2 New advances and materials

The past decade has seen the discovery of a new group of materials exhibiting

such topological phases, driven instead by spin-orbit coupling, called topological

insulators[251. Similar to quantum Hall states, topological insulators are gapped

systems that contain gapless states on the surface or the edge in two dimensions.

However unlike quantum Hall states, they require the existence of a given symmetry

(such as time-reversal) to protect their topological nature, without which the state

would simply be an ordinary insulator. The existence of these states and their Dirac

edge modes were demonstrated experimentally using angle-resolved photoemission

spectroscopy.

Even more recently proposed and discovered, topological crystalline insulators host

novel topological surface states that are protected by the symmetry of the underlying

crystal[26, 27, 28, 29]. At low carrier energy, these surface states consist of multi-

valley massless Dirac fermions, whose characteristic properties are highly tunable by

external perturbations. Breaking the crystal symmetry at the atomic scale generates

a Dirac mass and leads to gapped phases[26, 30] with potentially novel functionalities

in low-power electronics and spintronics[31, 32, 33].

A main focus of this thesis is to explore the interplay of complex mathematical
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structures that predict such states with physical systems - by considering lattice

structures and the interactions between electrons. In particular I studied fractional

quantum Hall and superconducting states in topological systems.

One example of this is the proposal of fractional Chern insulators, in chapter

two. In the FQHE, many electrons cooperate to form a state whose excitations carry

a fraction of the fundamental charge and fractional statistics. While this physics

has been seen until now only in very clean 2DEGs and graphene at high magnetic

fields and extremely low temperatures, we proposed it can also be realized in lattice

systems at much higher temperatures and more accessible conditions. We achieved

this by devising an analog of every needed ingredient, in particular to note the right

combination that could give rise to a flat band.

1.3 With lattice effects: novel states

Furthering the dialogue between theory and realistic systems can allow us to design

new states or shed light on mysterious physical phenomena. For instance, interface

superconductivity in the IV-VI semiconductors was a long-standing puzzle that could

not be adequately explained by traditional methods. In this thesis, I developed a

more comprehensive theory by combining lattice properties and interactions between

electrons within a topological framework.

An example is that of intrinsic topological superconductivity. Flat bands support-

ing the FQHE would contain excitations with fractional statistics, and we became cu-

rious about what ground state such particles would form - as neither a Fermi liquid

or a Bose-Einstein condensate are certain. Further, the underlying lattice now allows

for finite kinetic energy for the excitations, unlike in 2DEGs where the completely

flat band would only have localized excitations. Upon investigation, we found that a

finite density of such excitations could condense into a superconducting state - one

with extremely unusual topological order and driven purely by strong repulsions.

This new gapped topological order comes together with a gapless (superfluid)

mode, so we had to extend the usual tools of K-matrix theory (for describing gapped
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topological order) to this context. To do this we isolated a gapped sector in which

quasiparticles {4'i} can be identified using a set of 1-vectors and their statistics cal-

culated with

01 = 7rlK-l. (1.1)

Moving a quasiparticle excitation around an electron excitation 0e induces a phase of

multiple 27, a useful criteria to distinguish between the trivial and fractional quasi-

particles emergent in the system. The different emergent quasiparticles and the par-

ticular algebra between them are signatures of the new topological order we found -

distinct from the bosonic topologic order characteristic of purely fractional quantum

Hall systems.

Another example is of interface superconductivity in topological crystalline in-

sulators (TCIs). Topological theories can provide a more complete description of

experiments, particularly in the case we studied of interface superconductivity in IV-

VI semiconductors. After identifying the materials as TCIs, it was crucial to observe

that strain caused by dislocations could act on the surface Dirac fermions to macro-

scopically alter the electronic properties. This is unusual as strain due to dislocations

is often viewed as an uncontrollable or messy contribution, instead we showed that the

spontaneous formation of a regular dislocation array actually contributed to partially

flat bands forming across the system. The large density of states from these partially

flat bands favor superconductivity with a non-BCS dependence of Tc - which is in

good agreement with the experimentally observed variation of Tc with the dislocation

array period.

1.4 Flat bands open new possibilities

Evidently, the study of flat bands is motivated from various angles. While quite

simply they can mimic Landau levels and support states in which interaction effects

dominate, our work has found that flat bands enable a variety of new states and
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effects. Existing topological phases in combination with such novel platforms interact

in surprising ways to give results qualitatively different from those in former regimes.

This suggests much potential for future work in the intersection of strong lattice

effects, especially flat bands, with novel topological phases.
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Chapter 2

High temperature fractional quantum

Hall states

We show that a suitable combination of geometric frustration, ferromagnetism and

spin-orbit interactions can give rise to nearly flat bands with a large bandgap and

non-zero Chern number. Partial filling of the flat band can give rise to fractional

quantum Hall states at high temperatures (maybe even room temperature). While the

identification of material candidates with suitable parameters remains open, our work

indicates intriguing directions for exploration and synthesis.

2.1 Desirability of FQH states at high temperatures

Presently, highly entangled gapped phases in FQH systems[7, 81 are only realized at

very low temperatures. Here we present a proposal to realize these states at high

temperatures (even room temperature). The ideal is to combine spin-orbit coupling,

ferromagnetism, and geometric frustration. Both spin-orbit coupling and ferromag-

netism can have high energy scales and can appear at room temperature. In some

cases, combining them leads to energy bands with non-zero Chern numbers and fill-

ing such an energy band will give rise to integer quantum Hall states. Further, in

geometrically frustrated systems - lattices on which hopping is frustrated - some

of these topologically non-trivial energy bands can be very flat[34, 351. These would
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Figure 2-1: The kagome lattice is a triangular Bravais lattice with a 3-point basis

labelled 1 = 1, 2, 3; a, = and a2 = ( + 59)/2 are the basis vectors. In the metallic

kagome lattice Fe3 Sn 2, spin-orbit coupling arises from the electric field due to the Sn

ion at the center of the hexagon.

mimic Landau levels in free space. When such a flat band with a non-zero Chern

number is partially filled (such as 1/3 or 1/2 filled), FQH states can appear. Here we

study a simple example of this idea oil the geometrically frustrated kagome lattice.

Several aspects of these ideas have been active in recent research. Spin-orbit cou-

pling can lead to a topological insulator in various geometrically frustrated systems, [36,

37, 38, 39] and non-collinear magnetic order can lead to integer quantum Hall states.[40,

371 Alternatively, interactions in geometrically frustrated systems can break time-

reversal symmetry[41, 42, 43, 44, 45, 46, 47, 48, 49] which again can give rise to

integer quantum Hall states. Here we show that an extension of these ideas may set

the stage for FQH states and other highly entangled states with fractional statistics

and fractional charges - possibly even at room temperature.
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2.2 Nearly flat band; non-zero Chern number

We consider nearest and next-nearest neighbor hopping on a kagome lattice with

spin-orbit interactions in the Hamiltonian

H = -ti E ci.cj, + i\ E (Eij x R-1)- scpacj
(Oha (Ojala

-t 2 1: cicj + i\ 2 E (Eij x Ri). ooaoc'cj3 (2.1)

where c! creates an electron with spin a on site ri. Here (ij) denotes nearest neighbors

and ((ij)) next-nearest neighbors. The second and fourth terms are time-reversal

invariant and describe spin-orbit interactions. Rij is the distance vector between sites

i and j and Eij the electric field from neighboring ions experienced along Rij.

To obtain FQH states we need to break time-reversal symmetry. This is likely to

happen spontaneously from exchange effects in the flat band that cause ferromagnetism[41,

42, 43]. Alternatively, one can apply an external magnetic field or couple the system

to a ferromagnet. In the extreme limit the electron spins are totally polarized within

the partially filled band - the case we examine here. Hence we consider spin-orbit

coupling that also conserves S,, i.e. the electric field on each site is in the 2D plane.

First studying just nearest-neighbor hopping (t2 A2 = 0), in momentum-space Eq.

2.1 is

0 cos k1 cos k2

Hk -2t, cos ki 0 cos k3

cos k 2 cos k3  0

0 cos k1  - cos k2

i2A - cos k, 0 cos k3  (2.2)

cos k2  - cos k3  0

where a, = x, a2 = (. + v/3)/2, a3 = a2 - a1 and k = k - a,. We use units where

the hopping parameter t1 = 1. The +(-) sign refers to spin up (down) electrons;
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from here we focus on just the spin up electrons.

The spectrum consists of three energy bands and is gapless at A = 0, V3. At all

other points the spectrum is gapped and the top and bottom bands have unit Chern

number with opposite sign while the middle band has zero Chern number. The Chern

number is defined as[50]

C= - 2kF12(k) (2.3)
27r fBz

where F12 (k) is the associated field strength given by F12 (k) = A 2 (k) - -A 1 (k)

with the Berry connection A,(k) = -i(nkg-f)nk. In the above )nk is a normalized

wave function of the respective band.

Focusing on the lowest band which has a non-zero Chern number, we look for

where this band is very flat compared to the bandgap and the energy scale of inter-

actions. We denote W as the maximum bandwidth of the lowest band, A 1 2 as the

minimum bandgap between the two lowest bands and U as the strength of electron-

electron interactions. When U >> W, interaction effects dominate kinetic energy and

partially filling the flat band would favor the Laughlin state.[8J Since band mixing

could destroy band flatness, ideally A 1 2 > U. Hence we aim to maximize the ratio

A12 /W in order to obtain FQH states. As the middle band has zero Chern number,

any mixing between only two of the bands would not change the Chern number of the

lowest band. If the lowest band remains flat even with mixing then A 13 , the minimum

bandgap between the lowest and highest bands, (and consequently the ratio A 13 /W)

is also of interest.

We find that W ;> A12 always - as the bandwidth vanishes so does the bandgap

between the two lower bands (topological symmetry in real-space[51]), see Fig. 2-2.

Here we show the band structure for A = 1 where W = 1.3 and A13 /W = 3.7. As

A 12 /W < 1 always, the spectrum does not have a clear separation of energy scales.

When interactions are on the order of W, the bands will mix. This scenario is quite

different from Landau levels in free space that are flat and well-separated, which could

be due to limitations of this simplest model.
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2-2

A121 13 -

-2 0 kx 2

Figure 2-2: Results for nearest neighbor hopping as a function of A, (nearest neighbor

spin-orbit coupling). The bandwidth of the lowest band W vanishes at A1 = V';

however W > A 12 always where A12 is the bandgap between the two lowest bands.

Here we show the band structure for A = 1 where W = 1.3 and A 13/W= 3.7. The

spectrum does not have a clear separation of energy scales between A 12 , W and U,

the interaction strength, which could be due to limitations of the nearest neighbor

hopping model.
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Figure 2-3: With the inclusion of next-nearest neighbor hopping, we obtain much

higher bandgap to bandwidth ratios. We choose three values of A, = A2 = 0.3,0.5

and 0.7, and sweep A 12 /W with t 2 . For lower values of spin-orbit coupling, the ratio

peaks at negative t2 ; for relatively higher values of spin-orbit coupling the converse is

true.

For a more realistic scenario we include second-nearest neighbor hopping which

adds terms in the Hamiltonian

0

Hk = -2t 2

0

+ i2A2

cos(k2 + k3)

0

- cos(k 2 + k3)

0

cos(k3 - k1)

cos(k1 + k2 )

0

cos(k3 - k1)

- cos(ki + k2 )

0

In this larger parameter space the band maxima and minima are no longer fixed at

the same symmetry points. We find that the largest values of A 12 /W (and A1 3/W)

occur when A, and A2 are of the same sign - in which case the results are symmetric

under changing signs of both A's in this spin polarized case. In Fig. 2-3, A 1 2 /W is

plotted as a function of t 2 for three values of A, = A2 . We see that at negative values

of t2 a lower spin-orbit coupling is needed; while for positive values of t2 higher values

of spin-orbit coupling would maximize the bandgap to bandwidth ratio.
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Figure 2-4: A very flat lowest band - well-separated from the two higher bands -

is obtained with the parameters t 2 =-0.3, A = 0.28 and A2 = 0.2 (Case 1). The

bandgap to bandwidth ratios are high: A 1 2 /W = 52 and A13/W = 99 respectively.

We present two examples where A 12 /W and A 13/W reach high values at t2 =

-0.3. In Case 1, setting t2 = -0.3, A = 0.28 and A 2 = 0.2, we obtain a very flat

lowest band separated from the two higher bands by a large gap (see Fig. 2-4). The

values of A 1 2 /W and A1 3/W are 52 and 99 respectively. In another example, all

three bands are fairly flat (particularly the lowest one) and mutually well-separated.

The parameters used are t2 = -0.3, A = 0.6 and A2 = 0. In Case 2, we obtain

A12/W = 8.7 and A 13/W= 24 respectively (see Fig. 2-5).

Calculating the Chern number c of the lowest flat band in these two cases, we find

it is 1. This is expected as slowly turning off t2 and A2 does not close the bandgap

- and we have previously seen that in the absence of next nearest-neighbor hopping,

the lowest band always has unit Chern number. When A > U > W is satisfied,

partial filling of this flat band would favor the FQH state.

The distribution of the field strength F12 (k) in the Brillouin zone is plotted in Fig.

2-6. We observe there are no singularities or very sharp features but F12 (k) varies

fairly smoothly especially in the first case with the flatter band. The presence of

singularities - e.g. localized at the Dirac point - would have signalled a new (and

much larger) length scale in the system. In our case, both the magnetic length scale

(arising from spin-orbit interactions) and the variation of field strength F12 (k) are on
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Figure 2-5: Three fairly flat bands are mutually well-separated with bandgap to
bandwidth ratios of A 12/W= 8.7 and A 12 /W = 24. Parameters used are t2=
-0.3, A1  0.6 and A2  0 (Case 2).

0.01

k 0

Figure 2-6: Distribution of the field strength F12 (k) (Eq. 2.3) in the Brillouin zone for
the flat bands in Cases 1 and 2 discussed above. They do not contain sharp features
- especially Case 1 with the flatter band - hence the magnetic length scale remains
on the order of the lattice constant a.

the order of the lattice constant a.

Thus the interaction energy scale is generated from the lattice constant a: U

e2 /ea where c is the dielectric constant. For a 1/3 filled flat band, analogous to results

from FQH states in semiconductor-based systems[52] the gap for this v = 1/3 state

is roughly 0.09e 2/Ea = 500K. (We choose E = 3 and a = 10; a is defined as the square

root of the unit cell area). As the interaction energy scale is a hundred times larger

than in semiconductors, we may see the FQH effect at room temperature. As band

gaps A12 and A 13 are easily much higher than room temperature, a fully filled band
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could give the integer quantum Hall state at unusually high temperatures too.

2.3 Materials realization

We see that a suitable combination of geometric frustration, ferromagnetism and

spin-orbit interactions can give rise to nearly flat bands with a large bandgap and

non-zero Chern number. The ferromagnetism can arise from an external magnetic

field, a ferromagnetic substrate for a thin film sample, and/or exchange effects. If the

flat band is close to the Fermi energy, partial filling of the flat band can be controlled

by doping and give rise to FQH states at high temperatures.

The choice of parameters in our calculations is based on known values of spin-

orbit coupling. For example, in Herbertsmithite (a common copper-based 2D kagome

lattice) the spin-orbit interaction is 8% of the kinetic energy.[531 Other compounds

with 4d or 5d orbitals (instead of 3d as in Cu) may experience a larger spin-orbit in-

teraction. For instance, the strength of spin-orbit coupling in Iridium-based kagome

compounds can be on the order of magnitude of the kinetic energy, hence the sub-

stitution with 4d or 5d atoms in metallic kagome lattices could result in hopping

parameters similar to the ones used in our work. Alternatively, making thin films of

frustrated lattices with 4d or 5d atoms may lead to a flat band with strong spin-orbit

coupling, where exchange effects in this flat band could cause ferromagnetism.

Most existing kagome compounds are Cu-based insulators. Some 2D kagome lat-

tices show metallic behavior, for instance Fe3 Sn2[54, 551 which shows ferromagnetism

along the c-axis above 60K and in the kagome plane below 60K. Also, as spin-orbit

interactions can be simulated in cold atom systems,[56, 571 it is possible to realize our

hopping model in such systems. This would provide a method to obtain FQH states

in cold atom systems.

In short, flat bands with non-zero Chern number arise in the examples we have

given and in other geometrically frustrated systems with suitable levels of spin orbit

interaction. By partially filling these bands e.g. via doping, one can expect the emer-

gence of FQH states at high temperatures. While the identification of exact material
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candidates remains open, our work indicates intriguing directions for synthesis and

development.

During the publication of our work, we learned that T. Neupert et. al[58 also

discussed the possibility of the FQH effect in interacting two-band lattice systems,

while K. Sun et. alt59] found flat bands with non-zero Chern numbers on various

lattices (including the kagome lattice) after including some complex hopping.
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Chapter 3

Superconductor with intrinsic

topological order in a flat band

system

The previous chapter showed that in certain lattice systems, at commensurate fill-

ing fractions the ground state is a fractional quantum Hall state. The excitations of

this state are anyons, and we explore what happens at incommensurate fillings, as

the presence of the underlying lattice allows access to an entirely new regime where

the anyon kinetic energy can be larger than their interaction energy. In this case,

the resulting anyon gas can form a charged superfluid. This is studied with a flux

attachment scheme, first using mean-field then adding fluctuations. We present three

possible outcomes, the first two with intrinsic topological order, i.e. containing frac-

tionalized quasiparticles that have a fusion structure of (Z2)4 and (Z8 ) 2 respectively.

The third outcome has no fractionalized excitations similar to a BCS-type state; all

three have intriguing implications and represent a mechanism for superconductivity

driven purely by strong repulsion.
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3.1 New regime for FQH systems on lattice

The previous chapter provided a proposal for the fractional quantum Hall (FQH)

effect to be realized in a lattice system, for instance in a flat band with spin-orbit

coupling and spin polarization [1, 59, 58]. At commensurate filling fractions of this flat

band, e.g. 1/3, it has been shown numerically that the ground-state in such systems is

a FQH state [60, 61]. A natural question is what happens at incommensurate fillings,

when the electron density is doped slightly away from a rational fraction and anyon

excitations created.

The presence of the underlying lattice system allows us to access an entirely new

regime where the anyon excitations may have kinetic energy larger than their inter-

action energy. This is in contrast to the FQH state in semiconductor systems, where

electrons have zero bandwidth and anyons have a magnetic length scale several orders

of magnitude larger than in lattice systems. Consequently, the anyon wavefunction

is just a small perturbation to the electron wavefunction and is also expected to have

very little dispersion, favoring localization or Wigner crystal formation. On a lattice

system, anyons have a magnetic length scale on the order of the lattice spacing [1]

and form a strong local charge distortion, resulting in an anyon hopping governed by

the typical electron hopping energy.

We provide a more detailed discussion and comparison of energy scales in the

Appendix, where the relevant anyon energy scales are estimated as ~ h2/ma1' for the

kinetic and ~ (e/3)2 /d1a for the interaction energy (ma and la are an effective anyon

mass and interparticle spacing, e gives the effective screening, e.g. the dielectric

constant of the substrate). Note that the anyon kinetic energy is an energy scale

distinct from the bandwidth of the electron flat band, as the latter is a delicate

balance of several different hopping parameters on a frustrated lattice; furthermore

anyons reside on a separate unfrustrated lattice (e.g. Fig. 3-1(a)). When the anyon

kinetic energy dominates over the anyon interaction energy, we obtain an anyon gas

(while in the opposite limit we expect the anyons to form a Wigner crystal, or a

hierachy FQH state at appropriate commensurate densities).
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Figure 3-1: (a) Anyons live in the center of the hexagons of the kagome lattice (dashed

red lines) to minimize repulsion with the electrons, and see a flux of 27r/3 per unit

cell (solid black line). (b) The anyons hop on an effective triangular lattice (lattice

spacing set to unit width). The 27/3 flux breaks translation symmetry by three; here

we illustrate a hopping configuration with uniform flux. In addition to regular t = -1

hopping (solid black lines), a phase of -r/3 is added to the dotted (green) lines in the

direction of the arrow, while 27r/3 is added to the short dashed (blue) lines with 7r

added on the wide dashed (red) line. (c) Resulting band structure of the lowest band

with six degenerate minima.

To study the ground state of this anyon gas, we use a flux attachment scheme first

in a mean-field approximation then with fluctuations, to find an anyon superfluid. As

the anyons are charged, this would be a superconductor in the presence of an external

electromagnetic field. Anyon condensation was first suggested by Laughlin in 1988

[62, 63] and explored by several authors [64, 65]. Here we present a system which

provides the novel possibility of the right energy regime to support such physics.

Our formalism allows some choices so here we present three different scenarios.

In the first two, we find that the superfluid contains quasiparticle excitations with

fractionalized statistics, in one case with a fusion structure of (Z2 )4 and the other

with (Z8 ) 2 . Besides these examples of intrinsic topological order, we also present a

third one with purely local excitations, very similar to a BCS-type superconducting

state. The properties and implications of these scenarios are intriguing, and provide
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a mechanism for superconductivity driven purely by strong repulsion.

3.2 Host system

We illustrate this on a kagome lattice system with spin-orbit coupling and time-

reversal symmetry breaking (Chapter 2). A v= 1/3 FQH state in such a system has

anyon excitations, so a finite density of anyons is expected to be created with a small

amount of doping (small relative to total electron density). In order to minimize

Coulomb repulsion with the electrons that live on the kagome lattice, these anyons

would reside in the center of the hexagons, see Fig. 3-1(a).

The anyons have the same statistical properties as v = 1/3 Laughlin quasi-

particles: they pick up a phase of 27r when moved all the way around an electron

(as can be seen from the Laughlin wavefunction). Since the electron density is 1/3

per unit cell, this contributes a 27r/3 flux when moving around a unit cell. The anyon

lattice translation vectors thus triple, such that the resulting band structure contains

three or six degenerate minima. This has a dramatic consequence for the anyon gas:

as these degenerate minima have distinct momentum quantum numbers, our anyons

are now of multiple species.

In Fig. 3-1(b) we illustrate an anyon hopping with such a flux configuration

and the corresponding bandstructure (Fig. 3-1(c)): we see six minima which can be

labelled with the index I = 1, 2, .. , 6. Hence this anyon gas is characterized by six

anyon species with statistical angles of 6 = r/3, and we can ask what groundstate it

forms.

For anyons in the lowest band, we can describe them with a flux-attachment

procedure [66, 67, 681 where composite fermions 0, (also six species) are attached

to a statistical field aP such that the resulting particles have the appropriate 0 =

7r/3 statistics. Here only flux from the anyons are included, as the flux giving our

underlying v = 1/3 state had been considered earlier, where it resulted in multiple

degenerate minima for the anyon dispersion hence creating multiple anyon species.
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The Lagrangian is

= , a,,acE' + i44 (&o + iao - iSAo) 1
47rL 3

1 e
+ 2m(0 + iai - i SAi),01I2 + ... (3.1)

where 6A, is the probe external electromagnetic field, il a constant and m the anyon

mass. The "..." denotes other terms that do not affect the discussion, e.g. the Maxwell

term or the Coulomb repulsion between fermions.

Determining I/ is easier within a hydrodynamic approach [69, 701, where the low-

energy collective modes can be described by a particle current jA

L = ai9,aAEP"A - (a,. - -A,)j"; (3.2)
47r 3

A=Ej', and j' = 1 5XIE"" (3.3)
27r

since each fermion number current can be associated with a U(1) gauge field. Intro-

ducing a particle that carries an a, unit charge gives the source term ao6(x - xo).

Varying with respect to ao, we find this term creates an excitation of charge Q = -e/;

and is associated with 1/i units of the a,. flux [71J. Hence, interchanging two such

excitations induces a phase

7r
7r x (number of a,,-flux quanta) x (a,, charge) = -

There is also a phase -r from the core statistics of the composite fermions, so these

two contributions give the full statistical angle, i.e.

-- r = (3.4)

Since 6 = 7r/3, we obtain L = 3/4.
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3.2.1 Mean-field treatment

Within this flux-attachment scheme, we can use a mean-field approximation where

the statistical flux bound to the composite fermions is smeared to form a constant

background field: a. = 6,+a, where the flux density Ec- 3 idj takes a constant average

value b, and 6%P = 0.

In this approximation, our anyon gas problem becomes that of fermions in a

constant magnetic field b. Their resulting ground state depends simply on their

filling fraction, which we can calculate from Eq. 3.1 by varying ao:

t 2 w j-f (3.5)I 27r 27r

The filling fraction as ratio of electron density I to magnetic field density b, is

27r = - = 3/4 (3.6)
b

The constant i' in front of our Chern-Simons term has become the filling fraction of

the composite fermions (as distinct from the filling fraction of our electron system

v = 1/3).

What is the groundstate of a system with six fermion species at a combined filling

fraction of 3/4? This would favor a multi-layer analog of the Laughlin state 172]:

I=6

(J (z - zf) (12 -
I<J,i,j I,i<j

where z4 is the coordinate of the ith electron in the Ith layer, and can be described

by a 6 x 6 K-matrix with 3's along the diagonal and 1's on the off-diagonal entries.

Including this term in our theory (which we denote with kT for this composite
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fermion K-matrix) and substituting Eq. 3.3 in Eq. 3.2, we obtain

L= F a -E,4,A - (a, - A A j IaL AICjwA

+ K1 &,IO&AJE"A (3.7)
47r

3.2.2 Allowing gauge-field fluctuations

To this mean-field solution, we can now add fluctuations of the gauge-field, i.e. Ja, #
0. Further, as Ja, = E , J& 1/i (as can be seen from varying a,,), we can substitute

this 6a,, gauge-field out. With these steps, the following additional terms due to

fluctuations are obtained

1 16L = (kij - J)&,IJ6&cAE" (3.8)
F 47r

which we can denote with an effective 6 x 6 K-matrix:

3 1 --- 1 1 1 - - 1

K 1 1 3 ... 1 4 1 1 - 1

- 3 1 1 --

= UtK'U (3.9)

In the second line we diagonalize K to find one zero eigenvalue in K', signifying

a gapless mode (since the Chern-Simons term vanishes leaving the Maxwell term

only). This gapless mode is a density mode and all the other modes are gapped

as the composite fermions remain in a quantum Hall state, i.e. the system has the

same properties as a superfluid [73, 74]. This presence of this gapless mode can be

understood heuristically from Fig. 3-2 (a): The fermion density and flux density co-

fluctuate in always the same ratio such as to leave the filling fraction constant locally.

Hence the mean-field FQH groundstate remains the true local solution everywhere, so

this density fluctuation is a gapless mode while the other excitations remain gapped.
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a) b) J
Fermion density p

10Magnetic flux b
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E

Figure 3-2: (a) Heuristic scheme of the superfluid gapless mode: As the fermion
density fluctuates, so does the flux density since the flux-attachment scheme always
combines fermions and flux in exactly the same ratio. Hence density fluctuations
do not alter the ratio of fermion to flux density, leaving the filling fraction constant
everywhere. This leaves the mean-field FQH groundstate of the composite fermions
locally intact everywhere, so the density mode is a gapless excitation while the rest
of the system remains gapped - forming a superfluid. (b) Vortex quantization of the
superfluid current J,, created by the electric field E emanating from the charge lo in
the dual picture.

3.3 Superfluid properties

We examine two aspects of the superfluid: the nature of the gapless mode, and gapped

quasiparticle excitations.

For the former, this collective mode has a definite vortex quantization and can be

calculated using 2+1 lattice duality (see Fig. 3-2 (b) and AppendixA.2 for details).

We find the superfluid quantization is ir/e, which corresponds to a superconducting

quantization of hc/2e - reminiscent of a BCS-like electron pair. However, without

identifying an order parameter within this approach, we cannot conclude that a similar

pairing mechanism occurs here, especially when the following discussion reveals clearly

non-BCS-like properties as well.

We proceed to analyze properties of the gapped quasiparticles, i.e. excitations

composed only of gauge-fields with a finite Chern-Simons term and hence short-
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ranged interactions. Such excitations are described by a vector orthogonal to the

zero-mode eigenvector (of the K-matrix in Eq. 3.9); further its entries are integers

for quantized excitations (i-vectors) [711.

The set of such possible vectors fall in two kinds: I-vectors that contain fraction-

alized statistics and those with trivial statistics. The former describe non-local exci-

tations while the latter are simply bound states of electrons (bosons and fermions).

We would like to identify all different types of non-local excitations; after all, if a

non-local excitation is merely a composite of another non-local excitation and a triv-

ial excitation - these two excitations have the same fractional statistics and can be

considered the same type.

We find 15 non-trivial particles with mutual semion statistics, which can be gen-

erated with the following four-vector basis of {l,,s}-vectors (where a, #, y, 6 = {0, 1}

only)

11000 = (1,0,1,0,0,0)T,

10100 = (0,0,1,1,0,0)T,

10010 (1,0,0,01, 0)T,

0001= (0,1,0,-1,0,0)T. (3.10)

Composites of two identical particles are trivial, so each of the four indices take

only 0 or 1 to be actually different excitations (there is a Z2 fusion structure for each,

separately). However, a composite of two different particles, e.g. l11oo = looo + lo1oo is

another non-trivial excitation distinct from the underlying two, giving rise to 24 = 16

possible combinations in total (loooo is trivial and the other 15 are not). Hence the

fusion relations between these particles have a group structure of (Z2 )4 .

Each i-vector is a 6-component integer vector where each component refers to the

composite fermion species I. The statistics of these excitations can be calculated

using lajK lb where K is a 6 x 6 matrix obtained from K in Eq. 3.9. In the

diagonal basis of K' and U, we can identify the zero-mode subspace and remove it,
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leaving a 5 x 5 K'ff and a 5 x 6 Uf. This allows the inversion of K'ff and we obtain

K- = U'K'Ue , (3.11)ef eff efUf

a 6 x 6 matrix which here has 5/12 all along the diagonal and -1/12 for all off-diagonal

entries.

Intrinsic topological order - We illustrate the modular matrix Sab = gexp(27laK lb)

(D is the quantum dimension for normalization [751) for just the four generating vec-

tors listed in Eq. 3.10:

1 1 -1 -1 -1

S -1(3.12)
4 _1 i 1 1

1 -1 1 1

where the -1 entries are the mutual semion statistics.

The matrix S for all 16 quasiparticle types can be calculated, along with the

diagonal twist matrix T = eabexp(rIT Ke-fflb). We find that these matrices satisfy the

modular group relations as expected for a bosonic topological order, e.g.

(ST)3 = xp 2 (3.13)
4

where the central charge c here is 4.

3.4 Other possible scenarios

Our method depends upon particular choices of parameters and this previous example

is just one choice. Here we examine other possible outcomes within this scheme. For

instance, the statistical angle of Laughlin quasiparticles could be -7r/3 instead of

7r/3, which would modify the result obtained from Eq. 3.4 to give i/ = 3/2 instead.

In this case, our six composite fermions would have a combined filling fraction of 3/2,
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where a favourable groundstate could be three Halperin states each at filling fraction

1/2.

The Halperin wavefunction is expected to be the groundstate of a bilayer system

at filling fraction 1/2 [721:

I=2

'H({Zi}1) = Jl (zf ')f (Z! e- Bj3~zI/

I<J,i,j I,i<j

when the intra-layer repulsion is stronger than the inter-layer repulsion. The K-

matrix is three copies of the K-matrix for a bilayer system:

KH 0 0
3 1~

KH= , K= 0 KH 0

0 0 KH

Repeating a similar analysis, we find once again a zero-mode with the same su-

perfluid vortex quantization. The possible gapped quasiparticles are now generated

by just two {l}-vectors

110 = (0,1,-1,0,0,0)T,

10, = (-1,0, 2, 0, 0, -1)T (3.14)

but now a, 3 {0, 1, ... , 7}, i.e. each excitation has a separate fusion structure of

Z. Together, they form 82 = 64 possible combinations and have a combined fusion

structure of (Z8)2

As above, we can compute their mutual statistics using the appropriate K-, which

here has 1/3 along the diagonal, -1/6 on off-diagonal entries within each bilayer and

- 1/24 on all remaining off-diagonal entries. Again we present the S matrix for the

two generating vectors in Eq. 3.14:

3iir

S - 4 (3.15)
8(exp 3 4 i
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Besides the strangeness of the statistics obtained, we find the relation in Eq. 3.13

is violated as (ST) 3 = -I whereas S2 is an off-diagonal matrix (while S4 = II). Hence

this is not a bosonic topological order, and it is unclear if this topological order that

comes with a gapless mode has the same properties as. topological order of a fully

gapped system.

3.5 BCS-like state

The last possible scenario we present is a case with particularly simple results, with

properties similar to that obtained from BCS theory. If the anyon hopping is frus-

trated, this adds a minus sign to all the anyon hoppings in Fig. 3-1(b) and the lowest

band becomes the flipped version of Fig. 3-1(c). What were previously three maxima

become the location of three minima, which results in just three composite fermion

species instead of six.

Considering the filling fraction = 3/2, we see that if all three fermions have the

same density, they each have a filling fraction of 1/2, which is a compressible state.

However, if the lattice translation symmetry is broken by spontaneous formation

of a charge-density wave or by the application of a periodic electrostatic potential,

this could suppress some of the fermion species density relative to others. Here we

choose to work in an alternate Wannier basis where the index I for fermion species

now denotes fermion species in real and not momentum space [76].

With a charge imbalance where two species have a relative density of 1/4 compared

to the third (see Fig. 3-3), this would be a Halperin state for the first two species

and an integer quantum Hall state for the last. This is described by the K-matrix

~ KIH o)
0 1

and has a zero mode with the same 2e quantization like in previous examples, with

quasiparticle excitations that are non-fractionalized.

These purely local quasiparticle excitations can be described with the I-vectors
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Figure 3-3: (a)Breaking of translation symmetry in the lattice, where the three species

(cross, star and diamond) have different relative densities. This could happen by

spontaneous formation of a charge-density wave or by the application of a periodic

electrostatic potential. (b) When the first two species have a relative density of 1/4

compared to the third, this favors a Halperin state for the first two species and an

integer quantum Hall state for the third.

and topologically trivial S matrix

11 = (-2, -2, I)T 12= (-1, 1, 0 )T;

S = . (3.16)

3.6 Discussion

We show that flat band systems which support a FQH state at commensurate filling,

could support a superfluid mode at incommensurate filling. Such a state may have

intrinsic topological order, and we present one example of bosonic topological order

with anyon fusion statistics of (Z4)2 and a second non-bosonic topological order with

fusion statistics of (Z8)2. Another possible outcome is a state similar to that from

BCS theory, which suggests that such a state could also be described using more

direct methods like mean-field theory.

While our model has been based on a kagome lattice, our results essentially rest on

the effects of an underlying lattice where the FQH state can be realized. A different
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route to the same physics is through application of a periodic potential in other

continuum-like FQH systems, including semiconductors or graphene.

In order to identify which groundstate has the lowest energy, further work is

needed. Besides numerical simulations, the results here suggest anyon wavefunctions

and more indirectly, electron wavefunctions, that can be useful in suggesting compat-

ible Hamiltonians or appropriate variational wave-functions. Another open question

is what chiral edge modes this superfluid contains, and how they combine with the

edge mode from the underlying electron v = 1/3 state.
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Chapter 4

Strain-induced partially flat band,

helical snake states, and interface

superconductivity in topological

crystalline insulators

Topological crystalline insulators in IV- VI compounds host novel topological surface

states consisting of multi-valley massless Dirac fermions at low energy. Here we show

that strain generically acts as an effective gauge field on these Dirac fermions and

creates pseudo-Landau orbitals without breaking time-reversal symmetry. We predict

the realization of this phenomenon in IV- VI semiconductor heterostructures, due to a

naturally occurring misfit dislocation array at the interface that produces a periodically

varying strain field. Remarkably, the zero-energy Landau orbitals form a flat band in

the vicinity of the Dirac point, and coexist with a network of snake states at higher

energy. We propose that the high density of states of this flat band gives rise to

interface superconductivity observed in IV- VI semiconductor multilayers at unusually

high temperatures, with non-BCS behavior. Our work demonstrates a new route to

altering macroscopic electronic properties to achieve a partially flat band, and paves

the way for realizing novel correlated states of matter.
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4.1 TCIs and their surface states

The recently discovered topological crystalline insulators host novel topological sur-

face states that are protected by the symmetry of the underlying crystal[26, 27, 28, 291.

At low carrier energy, these surface states consist of multi-valley massless Dirac

fermions, whose characteristic properties are highly tunable by external perturba-

tions. Breaking the crystal symmetry at the atomic scale generates a Dirac mass

and leads to gapped phases[26, 30] with potentially novel functionalities in low-power

electronics and spintronics[31, 32, 33].

The (001) surface states of topological crystalline insulators SnTe and Pbi_.SnTe(Se)

consist of massless Dirac fermions at four valleys that exhibit spin texture of the same

chirality[26. The four Dirac points are located at two pairs of opposite momenta,

denoted by K1 and K 2 , in the vicinity of the X1 and X2 point in the surface

Brillouin zone respectively. K1 and K 2 are related by four-fold rotation around the

surface normal, while +Kj and -Kj are related by time-reversal symmetry (see

Fig.la). Importantly, unlike in the case of topological insulators[25, 77, 78], the Dirac

points in topological crystalline insulators are not pinned at time-reversal-invariant

momenta[79l, because their massless nature is protected by crystal symmetry instead

of time reversal[80, 81]. As a consequence, perturbations can move such Dirac points

in momentum space, mimicking the effect of a gauge field vector potential without

breaking time reversal symmetry. Two effective ways of moving surface Dirac points in

topological crystalline insulators are (i) alloy composition tuning, as recently demon-

strated in Pb1_,SnTe(Se)[82] and (ii) strain, which is the subject of this work.

We first use symmetry analysis to determine the general form of strain-induced

Dirac point displacement on the topological crystalline insulator (001) surface, which

is equivalent to a strain-induced gauge field vector potential Aj = K' - Kj acting on

the Dirac fermion at valley K. To lowest order, Aj = (Aj, A') is linearly proportional

42



a) 
*

0

X2

b)

Compression

x1-+*

c) 0

0U
Uniaial stretch

d)*

Shear

I-

Figure 4-1: Strain-induced Dirac point shift on the (001) surface of a topological

crystalline insulator such as SnTe and Pbi_,SnSe(Te). Top: strain on the rocksalt

structure of a) compression, b) uniaxial stretch and c) shear; the x and y axes are in

the (110) and (110) directions respectively. Bottom: the corresponding strain-induced

shift (arrows) of Dirac points to new positions (circles) in the (001) surface Brillouin

zone, which is equivalent to an effective gauge field.

to the strain field uij as given by (see Appendix B):

A1 = (O1Uxx + a2UYY, au3 ),

A2 = (a3uxy, aieU, + e2Uxx). (4.1)

where uj =_ (aDui + auj)/2 is the spatial gradient of the displacement field u, and the

coordinate axes x and y are along the [1101 and [1101 directions respectively. a,, a2

and a3 denote three independent coupling constants.

4.2 Strain acts as a gauge-potential

As shown in Fig.1, under a given type of strain, the Dirac fermions at valleys K1 and

K2 experience distinct gauge fields A1 and A 2. In addition, opposite gauge fields

-Aj are induced at the Dirac valleys -Kj as required by time reversal symmetry.

A uniform strain can only produce a constant gauge field vector potential, which
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yields zero pseudo-magnetic field B = V x A. Instead, a highly inhomogeneous strain

is required to create a strong pseudo-magnetic field, which is difficult to engineer

with high precision and control. Such a field was previously observed in graphene

nanobubbles[83, 84, 85, 86], which are however localized within nanoscale regions

thus leaving electronic properties on a large scale essentially unaltered.

Here we show that a periodic pseudo-magnetic field covering macroscopic spatial

regions arises naturally in IV-VI semiconductor (001) heterostructures consisting of

a topological crystalline insulator and a trivial insulator. This field is created by mis-

fit dislocations that are known to spontaneously form at the interface due to lattice

mismatch. Remarkably, these dislocations self-organize into a nearly perfect two-

dimensional square array with a period of 3-25nm (see Fig.2), as observed by trans-

mission electron spectroscopy, X-ray diffraction, and scanning tunneling microscopy

in SnTe/PbTe, PbTe/PbS, PbTe/PbSe, and PbTe/YbS[87, 88, 891. This dislocation

superstructure naturally produces an inhomogeneous strain field, which gives rise to

an unusual pseudo-magnetic field B(x, y) that alternates with a nanoscale period and

averages to zero. Instead, it should be pointed out that the widely studied uniform

pseudo-magnetic field is physically impossible in the thermodynamic limit, due to the

bounded nature of strain.

To calculate B(x, y), we first note the experimental observation[89] that the dislo-

cation array is a superposition of two sets of equally spaced parallel dislocation lines

along the x and y directions respectively. Each line is an edge dislocation with a

Burgers vector b = is x 8 (a is the lattice constant), which is parallel to the interface

and perpendicular to the line direction 8 = x or y. The set of dislocation lines along

the y direction creates a displacement field at the interface. The corresponding strain

field contains two in-plane components vxx and uY, that periodically vary in the x

direction. uxx and uY, are the sum of strains from each dislocation line indexed by
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Figure 4-2: The spontaneous formation of a misfit dislocation array gives rise to a

periodically varying strain field and pseudo-magnetic field, at the interface. Top: a

square array of misfit edge dislocations is spontaneously formed at the (001) interface

of two IV-VI semiconductors (e.g., PbTe/PbSe), due to lattice mismatch. The array

consists of dislocation lines along both x and y directions, as shown in the transmission

electron microscopy image taken from Ref.[4]. Bottom: the set of dislocation lines

along the y direction creates a periodically varying strain field it(x) = u(x) + usy(x)

as a function of x given by Eq. (4.3). This is plotted here using the realistic parameters:

A = 15nm, z = 2nm, v = 0.26 and a = 6.4 (see main text), together with the pseudo-

magnetic field B(x) it generates.
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N:

uzz(x) = u (x - NA),
N

Uy (x) = Eu(x - NA), (4.2)
N

where A is the dislocation array period. Within linear elasticity theory, uG andY

are given by90

x (x)bz (3x2 + z 2 )
u ) 27r(1 - v) (x 2 + z 2) 2 '

bzv 1
YY"x 7r(1 - V) X2 + Z2

Here z is the distance from the dislocation plane, v is the Poisson's ratio and b is the

magnitude of the Burger's vector b. Similarly, the set of dislocation lines along the

x direction creates strain fields ii, and fiiy, which are related to uxx and uY, by the

7r/2 rotation: f2i2(y) = uyy(x -+ y) and iiyy(y) = uxx(x -+ y).

The total strain fields uxx(x) + ft(y) and uyy(x) + ,y(y) create gauge fields for

the two-dimensional Dirac fcrmions at the interface. It follows from Eq. (4.1) that the

gauge field Aj for the Dirac fermion at Kj contains both longitudinal and transverse

components, Ai = AL + A T. The longitudinal component Af can be "gauged away"

by a unitary transformation hence will not be considered below. The transverse

component AT is given by

A(y) = a (1 fix(y) + OZ2f~y, )

~(X) (0 al (4.4)
A2 (x 0 yy(X) + a2Ux.(X)),(4)

which yields an out-of-plane pseudo-magnetic field B acting on the Dirac fermion

at valley Kj: B1(y) = V x AT(y) and B2 (x) = V x A T(x). Note that although

the dislocation array is two-dimensional, the pseudo-magnetic field for a given Dirac

valley is periodically alternating in one direction only.

We now estimate the magnitude of the pseudo-magnetic field created by misfit
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dislocation arrays at the interface. For a typical array period of A = 15nm at z = 2nm,

with the Poisson ratio for PbTe of v = 0.26[911 and the lattice constant a = 6.4, the

corresponding strain field u = u., + uyy, plotted in Fig.4-2, has a maximum value

of 6%, which is comparable to the 3 - 10% lattice mismatch in IV-VI semiconductor

heterostructures[87, 88, 89]. A recent ab-initio calculation[92] finds that the Dirac

point positions of strained PbTe in the topological crystalline insulator phase shift

linearly under compression, and yields a, = 2.2-1. Assuming a2  a, a, we find

a Dirac point displacement of AO = 0.13-1 under the maximum 6% strain, which is

comparable to the displacement under changes in alloy composition in Pbi_2SnTe

as recently observed by angle-resolved photoemission spectroscopy[82]. Using this

value of a, we plot the periodically alternating pseudo-magnetic field created by the

dislocation array in Fig.4-2. The maximum field strength is around 180T.

4.3 Spatially-varying psuedo magnetic field: Landau

levels

How does this pseudo-magnetic field change the electronic structure of Dirac fermion

surface states at the interface? We first analyze this problem using a local field

approximation. When the magnetic field is uniform, two-dimensional massless Dirac

fermions form a set of Landau levels. In the Landau gauge, the Landau orbitals are

one-dimensional strips localized at different x positions and infinite in the y direction.

The width of the strip is set by the magnetic length LB = 1/ R5I. When the

magnetic field B(x) is slowly varying over the distance LB, the Landau level strip

remains an approximate energy eigenstate. However, the Landau level energy becomes

position dependent and is determined by the local magnetic field:

En(x) = sgn(n) 2nvxvvIB(x)I. (4.5)

where vx(vy) is the Dirac fermion velocity in the x(y) direction. Since the x position

of a Landau level strip is proportional to its momentum in the y direction i.e. x oc
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sgn(B)ky, the Landau level energy E.a(x) as a function of position x is also the

dispersion as a function of momentum kg. Thus, when the magnetic field is spatially

varying, Landau levels at different positions become non-degenerate and collectively

form a dispersive band. It should be clear from this analysis that the extensive

degeneracy at E = 0 holds so long as the strain field varies slowly over LB even

without being strictly periodic.

The n = 0 Landau level of massless Dirac fermions deserves special attention. Its

energy is pinned at Eo = 0 independent of the magnetic field strength, as recently

observed in topological crystalline insulators[30. This implies that in a slowly varying

pseudo-magnetic field, the n = 0 Landau orbitals remain extensively degenerate at

zero energy, forming a flat band.

To demonstrate this, we numerically calculate the energy spectrum of massless

Dirac fermions under the periodically alternating pseudo-magnetic field created by

the dislocation array. The Hamiltonian is given by

H = -ivO8s, - vy(k, - Ay(x))s, (4.6)

where sx and s, are Pauli matrices. Here we have chosen to study the Dirac valley K 2 ,

for which the strain-induced gauge field Ay(x) is given in Eq.(4.4). For simplicity, we

approximate the strain field shown in Fig.4-2 as a cosine function in our calculation,

i.e., Ay(x) = Ao cos(27rx/A). The main findings presented below are independent of

the specific choice of A (x).

It is instructive to express H in terms of the dimensionless quantities z = x/A,

Y VXY/VYA and H = AH/v,:

H = -i&jsy - (ky - /3cos(27rz))sx. (4.7)

The energy spectrum of H is entirely determined by a single dimensionless parameter

#= (vy/vx)AoA oc /A/LB, which depends on the ratio of the dislocation array

period and the magnetic length. The formation of local Landau levels and flat bands

requires 3 > 1. To estimate the realistic value of #, we use the aforementioned
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parameter AO = 0.13-1, and take Dirac velocities from an ab-initio calculation[791:

v, = 0.84eV, vy = 1.3eV. This yields # ~ 20 - 40 for A = 10 - 20nm, fulfilling the

condition for flat bands.

4.4 Partially flat bands and snake states

A representative band structure of H for / = 30 is plotted in Fig. 4-3a. As expected,

we find two bands become very flat at zero energy for IkyI < k, = 0.051. These

two degenerate flat bands correspond to two types of n = 0 Landau level strips that

reside in different spatial regions under positive and negative pseudo-magnetic fields

respectively. The x position of Landau level strips in B > 0 (B < 0) regions increases

(decreases) linearly with ky. For jky| > k,, these two types of Landau levels become

hybridized in "transition regions" where B goes through zero, which are centered

either on a dislocation line at x = NA or at the midpoint x = (N + -)A between

adjacent dislocations. As a consequence of the level splitting from hybridization,

the two zero-energy flat bands at 1k.1 < k evolve into a pair of dispersive bands

at IkyI > kc, which reside on the domain wall between n = 0 Landau levels under

positive and negative pseudo-magnetic fields (see Fig. 4-3b).

These dispersive states have a topological origin related to the unique half-integer

Hall conductance of the n = 0 Landau level of a single massless Dirac fermion:

= sgn(MB) 2 ., where p is the chemical potential. Because Hall conductances in

B > 0 and B < 0 regions differ by Aaoy = sgn(p)e2 /h, there exists one branch of

chiral snake states at the domain wall[931, which is derived from the valley K2 and

moves parallel to the y axes. The existence of these snake states, which is required

by topology, leads to the electron-hole symmetric dispersion at large ky shown in Fig.

4-3a. The opposite velocities of snake states at p > 0 and p < 0 are required by the

sign reversal of oxy.

The above topological flat bands and snake states derived from the Dirac valley at

K2 have a time-reversed partner from the opposite valley at -K 2 with opposite spin

polarizations, as well as 7r/2-rotated copies from the two other valleys at K 1. Taking
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Figure 4-3: The pseudo-magnetic field from strain creates flat bands and snake states.

(a) Under a periodically alternating pseudo-magnetic field B(x), the initially linear

Dirac dispersion becomes flat within a finite range of k. in the vicinity of the Dirac

point, while higher Landau levels are more dispersive. (b) The band is completely flat

in kx, which has a much reduced period given by the dislocation superlattice Brillouin

zone. (c) Local density of states p(x, E) as a function of position x and energy

E, showing zero-energy Landau levels from regions of both positive and negative

pseudo-magnetic field, which are spatially separated by dispersive snake states. (d)

One-dimensional snake states appear where the pseudo-magnetic field changes sign.

This schematic cartoon shows snake states from valleys K1 and K2 moving along the

y and x directions respectively, which form a two-dimensional network. Please refer

to the main text for parameters used.
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all four valleys into account, we conclude that the dislocation array causes dramatic

band reconstruction on the (001) surface by creating flat dispersions in the vicinity

of the Dirac points and a two-dimensional network of helical snake states at higher

energy. Due to the helical nature of topological surface states, counter-propagating

snake states on the same domain wall cannot backscatter, and the two-dimensional

surface of topological crystalline insulators remains conducting even in the presence of

disorder[94l, unlike non-topological flat bands that are prone to Anderson localization.

Recently flat-band systems have attracted tremendous interest due to enhanced

interaction effects associated with the high density of states and the resulting elec-

tronic instabilities. Most studies have focused on finding a completely flat band with

nontrivial topology, which appears to rely on careful fine tuning of material parame-

ters and has not been experimentally realized so far. In comparison, our work reveals

a new and realistic route to achieve a partially flat band, as shown in Fig.3. For a

wide range of electron or hole densities (up to about 5 x 10"cm-2 in this example),

the Fermi energy lies within the partially filled flat band. It is thus natural to ask

whether interesting interaction-driven phenomena are expected to arise.

4.5 Comparison with measured interface supercon-

ducitivity

In this regard, we note that a wide class of IV-VI semiconductor (001) multilayers and

bilayers is superconducting. Superconductivity was first discovered in PbTe/SnTe,

PbSe/PbS, PbTe/PbSe, PbS/YbS and PbTe/YbS superlattices long ago[95, 96, 971,

and recently found in two-layer sandwiches of PbTe/PbS, PbTe/PbSe, and PbTe/YbS

with layers 40-300nm thick[98, 99]. The transition temperatures T, are in the range

of 2.5-6.4K, which is unusually high for semiconductors especially given that the

individual constituent materials are non-superconducting (the only exception is SnTe

with the very low T, of 0.22K). Further, the strong anisotropy of the upper critical

field reveals that the observed superconductivity is two-dimensional[98, 99]. Based on
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these facts, it was concluded that the locus of superconductivity is at the interface.

Remarkably, it was found that the appearance of superconductivity is dependent

on the formation of a misfit dislocation array near the interface[4, 100j. Samples with

island-type growth, and therefore dislocations that do not cover the whole interface

only show partial superconducting transitions. For superconducting samples, the

transition temperature T, was found to increase from 3K to 6K as the period of the

misfit dislocation array A decreases from 23nm to 10nml4I.

Previous works[97, 41 have proposed that superconductivity emerges from metal-

lic interface states created by band inversion on one side of the interface where the

constituent material is pseudomorphic and in compression. Such band inversion due

to compression is only possible for narrow-gap semiconductors, which explains the

absence of superconductivity down to 1.5K in IV-VI multilayers consisting of only

wide-gap semiconductors (YbS/EuS, YbS/YbSe). However, this proposal does not

take into account the indispensable role of dislocations in superconductivity, nor ex-

plain the origin of the unusually high transition temperature.

Our work sheds new light on the interface superconductivity in IV-VI multilayers.

The band inversion induced by compression leads to the topological crystalline insula-

tor phase[261, and hence gives rise to topological surface states at the interface whose

electronic properties were correctly identified only recently[26, 27, 29, 28, 79]. At the

same time, the dislocation array produces a periodically varying strain, which acts on

these states to create topological flat bands. In the presence of attractive interaction

due to electron-phonon coupling, the high density of states associated with these flat

bands dramatically increases the superconducting transition temperature.

Our proposal of interface superconductivity from dislocation-induced flat bands

provides a remarkable explanation of the unusual dependence of T, on the dislocation

array periodl4l. As shown recently, the superconducting transition temperature T, in

a flat-band system is linearly proportional to the area of the flat band in momentum

space[101, 1021, which is parametrically enhanced compared to BCS theory. In our

proposal, when the distance between dislocation lines is large, the pseudo-magnetic

field created by the strain field (4.3) is largely concentrated around individual dis-
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location lines, thus the zero-energy Landau orbitals from different dislocations are

spatially separated. In this regime, the area of the flat bands in momentum space

is proportional to the reciprocal superlattice vector 27r/A, and thus T, increases with

decreasing array period. When A becomes too small, however, Landau orbitals start

to overlap and band flatness gets destroyed, hence T, stops increasing. In effect, the

dependence of T, on the flat band degeneracy results in its non-monotonic dependence

on the array period, in agreement with the experimental observation[41.

We further predict two testable signatures of flat bands in topological crystalline

insulators and their prominent role in interface superconductivity in IV-VI semicon-

ductor multilayers. First, the flat bands and coexisting network of helical snake states

generate a distinctive local density of states spectrum as a function of position and

energy shown in Fig.3c, which can be detected in tunneling (magneto-)conductance

measurements[103], de Haas-van Alphen or Shubnikov-de Haas oscillations. Second,

the enhancement of superconductivity by flat bands ceases to work when the flat

bands become empty or filled. This leads to a drop in T, as the carrier density at the

interface increases above a threshold, whose value depends on the strain field strength

and dislocation array period and is estimated to be on the order of 10"cm- 2 .

While the superconducting transition temperatures in IV-VI heterostructures are

not high on an absolute scale, the mechanism of flat band formation due to in-

terface microstructures or intentional strain engineering may offer a viable route

to high-temperature interface superconductivity-a subject of tremendous current

interest[104, 1051. Further, our work opens up new directions for achieving other inter-

esting phases in a realistic setting. In particular, when interactions are repulsive[106,

107, 108], novel quantum Hall states or fractional topological insulators may arise

in the helical flat band we have found, at zero magnetic field. While electron re-

pulsion is weak in IV-VI semiconductors due to their large dielectric constants, new

topological crystalline insulator materials have recently been predicted/proposed in

correlated electron systems such as heavy fermion compounds[109, 110], transition

metal oxides[111], graphene multilayers[112] and anti-perovskites[113]. These rapid

and continuing developments hold promise for the physical realization of new states
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of matter in partially flat bands.
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Chapter 5

Superconducting interaction in a flat

band

In this chapter we re-examine the question of how the superconducting interaction

dominates the Coulomb repulsion to result in an effective attractive interaction for

superconductivity to occur. While this issue has been solved for a typical electron

gas with a large bandwidth, that criteria appears to break down for a flat band. Our

results in the previous chapter or other experiments in interface superconductivity

prompt the re-examination of this question in the flat band context.

A solution was first suggested by Anderson and Morel in 1962 [114] where they

demonstrated that even while the phonon energy scale (Debye energy ED) is much

smaller than the electronic Coloumb scale, the more rapid electron time scale allows

for renormalization of the repulsive interaction to give an effectively attractive in-

teraction overall (retardation effect). We review their calcuation in the first section

below. Their calculation assumes a constant density of states, which is appropriate

for a usual Fermi surface around the Fermi energy.

In a flat band however, the density of states of sharply peaks at the flat band

energy and drops off outside that window, i.e. the flatband bandwidth I'FB < ED- In

this case, it is questionable whether the Coloumb repulsion can still be renormalized,

as it is typically when the electron bandwidth W >> ED . We consequently repeat the

Anderson-Morel calculation with a modified density of states, and show that in the
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flat band limit we obtain a different result for the gap equation, and governed by a

new energy scale.

5.1 Review of Anderson-Morel

In the Anderson-Morel model, the effect of two different interactions are looked at -

an attractive phonon interaction A and a repulsive Coloumb one A. The latter acts

over a much larger range of energies, while the first one acts over a small energy range

ED near the Fermi surface. Hence the gap equation takes two different values, one

within ED and the other between ED and the bandwidth W. Assuming a constant

density of states No, this can be parametrized as

NoVe( k' 4') = [ > 0

NoVP(4k,(k') = -A <0

for

for

|k,|kI W

|11, |1kI ED

where k is the electronic energy-dispersion relation.

Solving the self-consistent gap equation

A(4) = - J 'NoV( ,') tanh('/2)

then gives

A1  ((A - p)ln(1.14ED/kBT)

A 2 J - ln(1.14ED/kBT)

Assuming non-zero values for the gap puts the following constraints on T,

(A - [) ln(1.14ED/kBT) - 1

-p ln(1.146D/kBT)

-A ln(W/ED) 0

-p ln(W/ED) - 1

which gives

kBT c 1.14ED CXP - A[) where W* = 1
I1+ P IIn(W/ED)
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This is the result for a usual Fermi surface, where the Coloumb repulsion M becomes

dramatically renormalized to p*, by a factor that depends on the ratio of the band-

width W to the Debye energy ED. As W >> ED in this regime, the renormalized

Coloumb repulsion becomes small such that the effective interaction is attractive -

hence favoring superconductivity. In the following section, we consider what happens

in the flat band limit when the flatband bandwidth FFB « ED-

5.2 In a partially flat band

We modify the density of states to reflect a flat band by including a large peak at the

Fermi surface. Since the interaction is still only of two types (phonon and Coloumb),

we still only have two values for the gap of A, and A 2 . This is because the interaction

is the only part of the sum in the gap equation Eq. 5.1 that depends on (all other

quantities depend on the internal index i').

Assuming that now we have a larger DOS aNo within a small energy window FFB,

where FFB < CD and a > 1, this gives us instead

(A - p) In ((1.14FFB/kBT) aED/FFB) - 1 -,uln(W/ED)

-p ln ((1.1 4 FFB/kBT) cD/J'FB) -t ln(W/ED) - 1

which results in a modified gap equation

(ED\
kBT = 1 .14FFB E exp - (5.3)

\FFB/-

where p* is defined in the same way as it was in the previous section.

We see that T, is governed now by the energy scale of the flatband bandwidth FFB,

along with other pre-factors that modify the relation. It is intriguing whether this

new relation can describe superconductivity in other materials which have partially

flat bands, such as the heavy fermion materials.
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Appendix A

Anyon superfluid properties

In this Appendix we consider the energy scales and additional technical details for

the anyon superconductor proposal given in chapter three.

A.1 Estimation of anyon energy scales

The anyon interaction energy can estimated by the Coloumb repulsion between them,

(e/3)2 /dEa. Their charge is e/3 and la is their interparticle spacing as determined

by their density. c gives the effective screening, e.g. is the dielectric constant of the

underlying substrate.

As for the anyon hopping energy, we first look at Fig. A-1 for a reminder of

key energy scales in this system: A ~ t for the typical electron hopping and W

for the bandwidth of the flat band. As mentioned in the introduction, since an

anyon has a magnetic length scale on the order of the lattice spacing here [11, it

forms a strong local charge distortion (in contrast to anyons from a FQH state in

semiconductor systems with much larger magnetic length scales hence only weakly

distorting the wavefunction). In this case, since the anyon/electron interaction energy

scale is similar to or larger than the bandgap A, the presence of an anyon can cause

significant interband mixing. In this case, the anyon hopping will be determined by

the typical electron hopping (also the scale of A), giving rise to an effective anyon

mass from t ~ h2 /maa2 ; here a is the lattice spacing.
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Figure A-1: Illustration of relevant energy scales in the flat band [11: A is the bandgap
and on the order of the typical electron hopping t, which we expect to govern the
anyon hopping strength. This is distinct from the width of the flat band W - a
finely tuned balance of several hopping and spin-orbit parameters.

Using this effective anyon mass ma, we can now estimate the anyon kinetic energy,

which is ~ h2 /mal'. This is an energy scale distinct from W, as the latter is a

fine balance of different hopping parameters (e.g. the typical electron hopping and

spin-orbit coupling) on a frustrated lattice, and anyons would reside on a separate

unfrustrated lattice. The regime we are interested in is where the anyon kinetic energy

dominates the anyon interaction energy.

A.2 Vortex quantization

Excitations of the zero mode can be described within our K-matrix theory as i-vectors

that overlap with the zero eigenvector in Eq. 3.9, for instance 1 = (1, 0, 0, 0, 0, 0)T.

As mentioned, this zero-mode is associated with a gapless Maxwell field aA as there

is no Chern-Simons term. Here we examine its vortex quantization.
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This excitation can be described with the following terms in the Lagrangian

L = loao6(x) + 1(E2 - B2 )2g

+eq'6Al >xOvi"A + ... (A.1)
27r

where Ei = oai-&iao and Bi = &1a2 -D 2a1 . Here the charge vector q = }(1, 1,1, 1, 1, 1)

couples the internal gauge-fields to the probe electromagnetic field, and q' = UTq.

We write 10 as the first element in the vector I that couples to the ao component of

the gauge-field. The first term in the expression above introduces an 1o charge, the

second is just the Maxwell term and the third couples the electromagnetic field to the

internal gauge-fields (from Eq. 3.7).

Varying with respect to ao, we obtain Gauss's Law:

V -E = glo(x) (A.2)

This gives an electric field (see Fig. 3-2)

E = g(A.3)
2- x2

that creates a density current since

J/-' = I 9 q'OaocAe
e N6AP 27r

- EveP"v (A.4)
27r

where q' is the first element of the vector q' (as lo was defined previously). Combining

this with the radially-directed electric field in Eq. A.3, we obtain

qo'glo
(27r)2 X(

i.e. a circulating current around the charge couples to the probe field 6 A, (a vortex
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as expected from the superfluid/U(1) duality in 2+1 dimensions).

This vortex is quantized, as we can see by integrating the current around a loop

M 10 0
dx-J- = dx

p qO, |x|

= 21r (A.6)

where m and p are the superfluid mass and density respectively. Their ratio can be

converted to a quantity involving the gauge field couplings g and q' by comparing the

dual terms in the action. The kinetic terms in the action for both the superfluid and

U(1) descriptions, E2 /2g and lmv2 p (v is the superfluid velocity), can be converted

into each other using j = vp and Eq. A.4. This gives m/p = (27rq') 2 /g, which we use

to obtain the result in Eq. A.6.

In all our examples, the flux quantization obtained is ir/e, which corresponds to

a superconducting vortex of hc/2e, similar to that in a BCS-type superconductor.
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Appendix B

Symmetry analysis of Dirac point

shifts in TCIs

Here we provide a derivation of the strain-induced gauge field (4.1), or equivalently

Dirac point displacement on the (001) surface Brillouin zone of topological crystalline

insulators. The derivation is based on symmetry analysis. A generic in-plane strain

uj can be decomposed into three independent components: compression/dilation

uXX + up, uniaxial stretch uxx - u, and shear ux, + uy, which transform differently

under crystal symmetries.

Compression/dilation preserves the full symmetry of the (001) surface. In par-

ticular, the presence of two mirror planes (110) and (110) guarantees the two pairs

of Dirac points tK 1 and K2 lie along the mirror-invariant lines 1X1 and FX2 re-

spectively, in the surface Brillouin zone[26]. Importantly, the Dirac point positions

on the FX lines are not constrained by symmetry[79]; they vary continuously under

strain[115]. As shown in recent ab-initio calculations[92, 1161, a compressive (tensile)

strain moves tK 1 and K2 towards (away from) the Brillouin zone center IF (see

Fig.1b).

Uniaxial stretch in the [110] direction preserves both (110) and (110) mirror planes

but breaks the four-fold symmetry: u,,, - unY is odd under the r/2 rotation x -+

y, y -+ -x. As a consequence, the Dirac points tK 1 and K 2 move along the FX

lines by an equal distance but in opposite directions: K1 move inward and K2
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move outward (see Fig.1c).

Shear strain breaks both (110) and (110) mirror symmetries, as well as the four-

fold rotation symmetry. Therefore, Dirac points move perpendicular to the FX lines,

and the displacement vector K' - K1 is opposite to K' - K2 after the 7r/2 rotation

(see Fig.1d).

It follows from the above analysis that a generic strain-induced gauge field Aj

acting on the Dirac fermion at valley Kj consists of contributions from compres-

sion/dilation, stretch and shear, which involve three independent coupling constants.

Adding up the corresponding Dirac point displacements leads to the expression of

A3 in (4.1). Note that the form of Aj in topologically crystalline insulators is differ-

ent from its counter-part in graphene, which has been extensively studied in recent

years[84, 85, 86, 83]. For example, unlike here, a dilation in graphene does not gen-

erate a gauge field due to the pinning of Dirac points at Brillouin zone corners. This

difference arises from the important distinction in crystal symmetry and electronic

topology.
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