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Abstract

In this thesis, we present studies that elucidate the relationship between entanglement
in strongly coupled gauge theories and the geometry of their gravity duals. In the
first, we find that in a certain class of time-dependent states which have a gravity dual
in which a black hole forms, the entanglement entropy of large regions grows linearly
in time, following the growth of certain time-like slices in the interior of the black hole.
In the second, we find a unified prescription in the gravity dual for calculating the
action of the entanglement Hamiltonian associated to an arbitrary spatial region in a
given holographic state. In particular, we find that the linearized perturbation of the
metric caused by the entanglement Hamiltonian propagates from the bulk entangling
surface.
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Chapter 1

Introduction

1.1 Introduction

Since the discovery of an anti-de Sitter space/conformal field theory duality in P2],

and subsequent elaboration of a dictionary relating boundary conditions of bulk fields

to sources and expectation values for corresponding operators in the boundary theory

[28, 2], we have known that gravitational degrees of freedom can emerge from those

of an ordinary quantum field theory on a fixed background in one less dimension.

In examples of AdS/CFT [52, 2J, in the limit of strong 't Hooft coupling and large

N in the boundary gauge theory, the dual gravitational theory is decoupled from

strings and has a small Newton's constant GN. Thus we expect the Hilbert space of

fluctuations of a quantum field theory weakly coupled to gravity in an asymptotically

anti-de Sitter background, to emerge from the strong dynamics of certain large-N

gauge theories which can be taken to live on the time-like boundary of said ant-de

Sitter space.

This emergence of gravity from gauge theory is expected to be quite general and

has been dubbed gauge/gravity duality [36]. A pressing and open question in the

context of such a duality is how local degrees of freedom far from the boundary in

the gravitational theory are mapped to boundary degrees of freedom.
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1.2 Holographic entanglement entropy conjecture

A significant hint regarding the above question came in the form of the Ryu-Takayanagi

conjecture [(3] - that the entanglement entropy

S = -Tr (p log p) (1.1)

of the reduced density matrix p of a spatial region, in a time-independent state of a

large-N field theory that is sharply peaked around a classical bulk configuration is

to lowest order in 1/N, is given by the area, in units of 1/GN, of the bulk surface

with minimal area ending on the boundary of the spatial region [63]. In addition to

considerable evidence, a derivation has been provided in [415], which only relies on

the widely established facet of gauge/gravity duality in which the saddle point of the

gravitational partition function, equal to the boundary path integral, is given by a

bulk configuration satisfying equations of motion.

A covariant generalization of the Ryu-Takayanagi conjecture has been given [38J,

in which minimal surfaces are replaced by extremal surfaces, and the quantum field

theory state can be time-dependent. This generalization has been shown to be con-

sistent with strong subadditivity [4, 15, 1] and boundary causality [321, but has not

yet been given a proof.

Taken together, the above conjectures point to a tangible relationship between

quantum entanglement in the boundary quantum field theory and the emergence of

a bulk spacetime including an extra dimension [69]. For example, linearized Ein-

stein's equations about the anti-de Sitter vacuum have been derived [22] using the

Ryu-Takayanagi and Hubeny-Takayanagi-Rangamani conjectures, and the first law

of entanglement entropy [10].

1.3 Real-space entanglement renormalization

Another facet of the Ryu-Takayanagi conjecture is that it has made manifest the

relationship between a certain class of tensor-network representations for many-body
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ground states that are conformal in the IR, dubbed the multi-scale entanglement

renormalization ansatz (MERA) [70], and the geometry of anti-de Sitter space [21,

6d, 67]. MERA tensor networks, in which real-space entanglement is renormalized

away in incremental steps, and an unentangled state is produced as an output, seem

to reproduce the geometry of anti-de Sitter space on scales larger than the AdS radius.

More recently, a continuous version of MERA has been proposed [30] which is

suited to describing the real-space entanglement renormalization of continuum field

theories. It has been suggested that the geometry of gravity duals can be directly

derived in the cMERA formalism [) 7], although a seeming obstacle to investigating

this so far has been that there are no analytic examples of cMERA for interacting

theories. Here we will not pursue this topic further.

In this thesis, we present studies that further elucidate the relationship between

entanglement in strongly coupled gauge theories with gravity duals, and the geometry

of their gravity duals.

In the first chapter, we find using the Hubeny-Rangamani-Takayanagi conjecture,

that in a certain class of time-dependent states which have a gravity dual in which

a black hole forms, the entanglement entropy of large regions grows linearly in time,

following the growth of certain time-like slices in the interior of the black hole. This

provides a direct example in which the entanglement properties of a quantum field

theory state are able to encode information behind even global horizons.

In the second chapter, we find prescriptions in the gravity dual for calculating the

action of an entanglement or modular Hamiltonian associated to a spatial region, or

minus the logarithm of the corresponding reduced density matrix, where the spatial

region can be arbitrary and the quantum field theory is only restricted by the require-

ment that it has a gravity dual. In particular, we find to linear order in the action

of the entanglement Hamiltonian, that the perturbation of the metric in the dual

geometry is an integral of the graviton-graviton propagator over the Ryu-Takayanagi

surface.
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Chapter 2

Growth of Entanglement and the

Interior of Black Holes

2.1 States dual to AdS-Vaidya geometries

In this chapter we consider the evolution of entanglement entropy after a sharp quench

of a strongly coupled gapless system with a gravity dual. More explicitly, at t = 0 in

the boundary system we turn on a spatially uniform density of external sources for an

interval Rt, creating a spatially homogeneous and isotropic excited state with nonzero

energy density, which subsequently equilibrates. The precise manner (e.g. what kind

of sources are turned on and how) through which the excited state is generated and

its microscopic details will not concern us. We are interested in the macroscopic

behavior of the system at large distances and in extracting "universal" behavior in

the evolution of these observables that are insensitive to the specific nature of final

equilibrium states.

On the gravity side such a quench process is described by a thin shell of matter

starting from the boundary and collapsing to form a black hole, which can in turn be

described by a Vaidya metric, see Fig. 2-1. The matter fields making up the shell and

their configuration are determined by the sourcing process in the boundary theory

and are again not important for our purposes. See e.g. [7, 46, 26, 5, 73, 47, 74] for

more explicit discussions. In the classical gravity regime we are working with, which
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translates to the large N and strongly coupled limit of the boundary theory, all of

our observables are only sensitive to the metric of the collapsing geometry.

We give a detailed description of our setup and review the vacuum and equilibrium

properties of the class of systems under consideration.

black hole
k(V > 0)

Ads t 0
(v <0)

0

Figure 2-1: Vaidya geometry: One patches pure AdS with a black hole along an in-
falling collapsing null shell located at v = 0. We take the width of the shell to be zero
which corresponds to the ft = 0 limit of the boundary quench process. The spatial
directions along the boundary are suppressed in the figure.

2.1.1 Vaidya metric

We consider a metric of the form

ds 2 = 2 (-f (v, z)dv 2 - 2dvdz + dY 2) . (2.1)

In the limit the sourcing interval 6t goes to zero, the width of the collapsing shell goes

to zero and f(v, z) can be expressed in terms of a step function

f (V, z) = 1 - O(v)g(z) . (2.2)

For v < 0, the metric is given by that of pure AdS,

ds2 = 2 (-dt2 + dz 2 + di2 ) (2.3)
Z2
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where

v=t-z, tz-v+z. (2.4)

For v > 0, (2.1) is given by that of a black hole in Eddington-Finkelstein coordinates,

ds 2 = (-h(z)dv 2 - 2dvdz + dY 2) , (2.5)

which in terms of the usual Schwarzschild time t can be written as

ds2 = - h(z)dt2 + I dz2 + di2 (2.6)
Z2 h(z)

with

h(z) = 1 - g(z) , = t - -(z), -(z) =j Z, . (2.7)
fo h (z/)

The functions h(z) in the black hole metric (2.5)-(2.6) may be interpreted as "pa-

rameterizing" different types of equilibration processes with different final equilibrium

states. We assume that (2.1) with some g(z) can always be achieved by choosing an

appropriate configuration of matter fields. In following discussions we will not need

the explicit form of h(z), and only that it gives rise to a black hole metric. We will

work with a general boundary spacetime dimension d.

More explicitly, we assume h(z) has a simple zero at the horizon z = Zh > 0,

and that for z < Zh, it is positive and monotonically decreasing as a function of z

as required by the IR/UV connection. As we approach the boundary, i.e. as z - 0,

h(z) approaches zero with the leading behavior

h(z) = 1 - Mzd + (2.8)

where M is some constant. From (2.8), one obtains that the energy density of the

equilibrium state is
Ld- d- IM (2.9)

87rGN 2
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while its temperature and entropy density are given by

h'(Zh (2.10)
= 

47r ' Z dS1 4GN

Representative examples of (2.5) include the AdS Schwarzschild black hole with

z d
h(z) = 1 - d (2.11)

Zh

which describes a neutral final equilibrium state, and the AdS Reissner-Nordstrom

(RN) black hole with

h(z) = 1 - Mzd + Q 2 z2 d- 2 , (2.12)

which describes a final equilibrium state with a nonzero chemical potential for some

conserved charge.

A characteristic scale of the black hole geometry (2.5)-(2.6) is the horizon size'

Zh which from (2.10) can be expressed in terms of the entropy density seq as

1

Zh = . (2.13)
4GN seq

Were we considering a gas of quasiparticles, the prefactor Ld- in (2.13) could be4GN

interpreted as the number of internal degrees of freedom of a quasiparticle, and zh

would then be the average distance between quasiparticles, or mean free path. Here of

course we are considering strongly coupled systems which do not have a quasiparticle

description. Nevertheless, Zh provides a characteristic scale of of the equilibrium

state. For example, as we will see below it controls the correlation length of equal-

time correlation functions and Wilson loops in equilibrium.

For the collapsing process described by (2.1) we can also identify Zh as a "local

equilibrium scale" eq, which can be defined as the time scale when the system has

ceased production of thermodynamic entropy, or in other words, has achieved local

1Note that while the horizon location is a coordinate dependent quantity, in the particular radial
coordinate used in (2.5)-(2.6) zh corresponds to a meaningful boundary scale as for example indicated
by (2.13).
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equilibrium at distance scales of order the "mean free path" of the equilibrium state.

We will discuss further support for this identification at the end of Sec. 2.2.3.

We note that in the AdS Schwarzschild case (2.111), the temperature T is the only

scale and controls both the local equilibrium scale Zh and energy density S (given

by (2.9)),
d1 4wT d

T = d M =-= I,(2.14)
47Za ' d d

Zh

but that in a system with more than one scale as in the Reissner-Nordstrom case,

Zh and S (or M) do not depend only on T. In the Reissner-Norstrom case, it is

convenient to introduce a quantity

d (2.15)d

which decreases monotonically from its Schwarzschild value of unity to 0, as the

chemical potential is increased from zero to infinity at fixed T. Thus with a large

chemical potential (compared to temperature), the local equilibrium scale f4 q " Zh

can be much smaller than the thermal wave length 1/T. In this regime, the system is

controlled by finite density physics which gives rise to the scale zh. For recent related

discussions, see [19].

Finally, we note that the metric (2.1) is not of the most general form describing a

spatially homogenous and isotropic equilibration process. If the equilibrium state has

a nontrivial expectation value for (or sourced by) some scalar operators, the metric

has the form
L2

ds2 = -- (-f(v, z)dv 2 - 2q(v, z)dvdz + dF2) (2.16)

with f(v, z) = 1 - O(v)g(z) and q(v, z) = 1 - O(v)m(z). The black hole part of the

spacetime now has a metric of the form

ds2 = _ (-h(z)dv2 - 2k(z)dvdz + dY2) (2.17)
z2
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with h(z) -1 - g(z) and k(z) = 1 - m(z), and can also be written as

ds 2 = L 2  h(z)dt2 +dz 2 + d2 2(Z) (z) (2.18)
Z2 (1( k (z =(z)

We will restrict our discussion mostly to (2.1), but it is straightforward to generalize

our results to (2.16) as will be done in various places below.

2.1.2 Vacuum properties

Before the quench, our system is in the vacuum state of a strongly coupled CFT with

a gravity dual. Consider an extremal surface rr (with boundary E) in pure AdS,

whose area gives the vacuum value of the corresponding physical observable. When

E is a sphere, 2

Asphere = local divergences

Ln (-1)b n even

{+Li bg (2.19)
(-1) 2 bn log R n odd

where w,_1 is the area of unit (n - 1)-dimensional sphere and

(n - 2)!!
bn = .n1! (2.20)

(n - 1)!!

When E is a strip, {2L log R n= 1
Astrip = local divergences + 2lo R n=1

LI(an), Astrip n > 1
I n-1 Rn-1

an 2 ( ) n (2.21)
2n

where Astrip is the area of the strip E with both sides included. The local divergences

in (2.19) and (2.21) can be interpreted as coming from short-range correlations near
2The following expressions for E a sphere or strip have appeared in many places in the literature.

For the case of entanglement entropy with n = d - 1, they were first obtained in [631.
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E and its leading contributions are proportional to As.

The number of degrees of freedom in a CFT can be characterized by a central

charge 8 d, defined in all dimensions in terms of the universal part of the entanglement

entropy of a spherical region in the vacuum [Mij,

S(vac) l divergences (-1) s8 d odd
sphere = local + , (2.22)

(-1)j2 S log R d even

where from (2.19),

Ld-1 Ld-1 1 d odd
Sd = Wd-2bd1 = x . (2.23)

4GN 1,(f) 4GN 22- d even7r

Note that for d = 2 the above central charge is related to the standard central charge

c as
C

s2 = - . (2.24)
3

From the standard AdS/CFT dictionary, sd oc N 2 where N is the rank of the gauge

group(s) of the boundary theory. If we put such a holographic CFT on a lattice, sd

is heuristically the number of degrees of freedom on a single lattice site.

From (2.19)-(2.21), a Wilson loop of circular and rectangular shape respectively

have the vacuum behavior

WE e# circle A-L2 (.5W { ~r = ,(2.25)
e# rectangle a

where f denote the length of the long side of a rectangular Wilson loop. Similarly

one finds that the two-point correlation function of an operator with large dimension

A ~ mL > 1 is given by
1

G(2R) R2A (2.26)
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2.1.3 Equilibrium properties

After the quench, our system eventually evolves to a final equilibrium state dual to

a black hole in the bulk. Here we briefly review properties of an extremal surface F

(with boundary E) in the black hole geometry (2.6), whose area gives the equilibrium

value of the corresponding physical observable.

To leading order in large size limit, one can show that for E of any shape [48]

A L = VL aeqV, ae = ,, (2.27)
h Zh

where VE denotes the volume of the boundary region bounded by surface E, and aeq

can be interpreted as an equilibrium "density." This result has a simple geometric

interpretation in the bulk - in the large size limit, most of the extremal surface simply

runs along the horizon. In particular, for entanglement entropy,

- Ld= = seqVE (2.28)
4GN Zh 1

where we have used the entropy density seq from (2.10). For a Wilson loop we have

Weq ~ e Zh (2.29)

where VE is now the area of the region enclosed by the loop. The two-point correlation

function of an operator with dimension A ~ mL > 1 is given by

Geq(2R) e zh . (2.30)

2.1.4 Further comments

It should be kept in mind that while the final equilibrium state has a temperature and

coarse grained thermal entropy density, the Vaidya geometry describes the evolution

of a pure state. As a consistency check, one can show that for such a process the

entanglement entropy for a region A is the same as that of its complement [1, 3, 38].
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Thus the equilibrium entanglement entropy (2.28), despite having a thermal form,

reflects genuine long-range quantum entanglement. The reason (2.28) has exactly

the form of a thermal entropy is as follows. We are considering a finite region in a

system of infinite size. Thus the number of degrees of freedom outside the region is

always infinitely larger than that inside. As a result in a typical excited pure state

the reduced density matrix for the finite region appears thermal [P8].

Before the quench, our system is in a vacuum state of a CFT and thus already

has long range correlations, whereas the initial state of [1I4] only has short-range

correlations. However, this difference is likely not important for the questions we are

interested in, which concern the build-up of the finite density of entanglement entropy

in (2.28). The long-range entanglement in the vacuum, quantified by the universal

part in (2.22), is measure zero compared to (2.28). Heuristically, for odd d, the long-

range entanglement entropy in the vacuum, being a R-independent constant, amounts

to that of a few sites inside the region that are fully entangled with the outside, while

in equilibrium, almost all points inside the region become entangled. For even d, there

is a logarithmic enhancement of the long-range entanglement in the vacuum, but it

is still measure zero compared to the final entanglement in the large region limit.

From the perspective of entanglement entropy, the equilibration process triggered

by the quench builds up long-range entanglement, as can be seen by comparing (2.28)

and (2.22), whereas from the perspective of correlation functions and Wilson loops in

which A appears in the exponential with a minus sign, the same process corresponds

to the destruction of correlations (compare (2.29)-(2.30) with (2.25)-(2.26)). More

specifically, long range correlations in the latter observables which were present in the

vacuum are replaced by short-range correlations with correlation length controlled by

zh. However, there is no contradiction, as the process of building up entanglement

also involves redistribution of those in the vacuum - pre-existing correlations between

local operators and over the Wilson loop get diluted by the redistribution process.
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2.2 Extremal surface solutions

Here we describe equations of motion for ]FE and its general characteristics when E

is a strip or a sphere. In such cases Fr can be described by two functions, z(p), v(p)

for a sphere, or z(x1 ), v(x1 ) for a strip. For both shapes the functions satisfy the

following boundary conditions at the boundary as well as regularity conditions at the

tip of the surface,

z(R) = 0 , v(R) = t, z'(0) = v'(0) = 0 . (2.31)

For a strip we will

(zt, Vt) of the tip of

write x1 simply as x. It is convenient to introduce the location

IFE,

z(0) = zt , v(0) = Vt . (2.32)

The sphere and strip being highly symmetric, specifying (zt, Vt) completely fixes Fr.

The relations between (R, t) and (zt, Vt) are in general rather complicated and require

solving the full equations for z(p), v(p) or z(x), v(x). Also, it is possible that a given

(R, t) corresponds to multiple (zt, Vt)'s, i.e. multiple extremal surfaces have the same

boundary data. Then as mentioned earlier we will choose the extremal surface with

smallest area.

For E a sphere or strip we will simply denote Ar(t) as A(R, t).

2.2.1 Strip

The area of an n-dimensional surface in (2.1) ending on a strip E can be written as

A= K R x Z, Q 1 - 2v'z' - f (z, v)v' 2

k = L"Astrip ,

26
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with Astrip being the area of E (both sides of E are included which gives the I factor2

in (2.33)). z(x), v(x) then satisfy the equations of motion

z' x Z' + fQ V

z~ Q~z(VQ)
z( v

1Of 2)= 20v

Q 10f/ 2
z 29z

Since the integrand of A does not depend explicitly on x, there is a first integral

Zn =J = const. (2.37)

Furthermore, when OBf = 0, equation (2.35) can be integrated to give another first

integral,

z' + fv' = E = const . (2.38)

We are mainly interested in Fr which go through both AdS and black hole regions.

With reflection symmetry about x = 0, we only need to consider the x > 0 half of

such a Fy. We now discuss equations in each region separately:

1. AdS region: From (2.31) and (2.38) we have

E =z' + v' = 0 (2.39)

and from (2.37)
_

Z' = z 2 - Z2n (2.40)J = Z't

which give

v(z) = Vt + zt - z . (2.41)

2. Matching conditions at the shell: Denoting the values of z and x at the in-

tersection of FE and the null shell v = 0 as z. and xe, respectively, we have

zc = zt + Vt (2.42)
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and derivatives on the AdS side of the null shell are

z -V z2n - z2n
Zn

(2.43)

To find derivatives on the other side, we integrate the equations of motion (2.35)-

(2.36) across the null shell to find the matching conditions

+'=-'_ Q+= Q-,
1

z' - z' + Ig(zc)v'= - g(zc)) z'

Note we have used the subscript - (+) to refer to quantities on the AdS (black

hole) side of the null shell.

3. Black hole region: From matching conditions (2.44), J is the same as in the

AdS region, i.e. given by (2.40), while E is given by

1
E =-(Zc)Z'_ < 0

2
(2.45)

implying t is no longer constant. From (2.38),

E - z'
h (2.46)

which can be substituted into (2.37) to obtain

z= h(z) ( - 1) + E2  H(z).

Substituting (2.47) back in (2.46) we also have

dv _ 1 (E
dz h V/H

+1 .

(2.47)

(2.48)
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Collecting equations in the two regions we find from (2.40) and (2.47)

R z dz jc dz (2.49)
z. Z?" 0 VH (z)

where we have assumed that z(x) monotonically decreases as x increases (recall we

let x > 0). As we will see later z(x) can be non-monotonic in which case the above

equation should be suitably modified. Similar caveats should be kept in mind for

other equations below. From integrating (2.48),

ti +c (2.50)
Sh(z) f-H(z)

Note that at z= Zh, h(z)- 1 has a pole but the integrand in (2.50) remains finite

as the second factor vanishes at z = Zh, due to H(zh) = E 2 and E < 0. Finally,

from (2.40) and (2.47) we have that the area of I7 is given by

A = AAdS + ABH (2.51)

where
1 1(252)
-~-AAds =z y(.2
K JMy n - y 2 n

and
1 fZc
~ABH Zt dz .z (2.53)

K O z2N/H (z)

For a given R and t, we can use (2.49) and (2.50) to solve for zt(R, t), zc(R, t) after

which (2.51) can be expressed in terms of R and t.

2.2.2 Sphere

The area of an n-dimensional surface in (2.1) ending on a sphere E can be written as

A=K jdp P Q, Q = 1 - 2v'z' - f(zv)v 2  (2.54)
f0 Z
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where

K=La Asphere

Ran-1

It follows that z (p), v (p) satisfy the equations of motion

pn-1 O
zn Q
pl OP

I

(2.55)

pn-1
Zn

nQ +If 12

z 2 az
1Of 12

20v'

(2.56)

(2.57)

and boundary conditions (2.31). When Dvf = 0, equation (2.57) can be integrated to

give
Pfn-1 1

-(z' + fv')
znV1 Q

= E = const (2.58)

which can also be expressed as

pn-1 f dt
Z" dp

(2.59)

where t is the Schwarzschild time.

Again, we are interested in FE which go through both AdS and black hole regions:

1. AdS region: Given (2.31), we again have E = 0, which implies that the solution

in the AdS region is the same as that in pure AdS, i.e. is given by [62]

z(p)= Vz2 - p2 v(p) = zt + Vt - z(p) . (2.60)

2. Matching conditions at the shell: Denoting values of z and p at the intersection

of 1FF and the null shell v = 0 as z, and pc, respectively, we have

(2.61)zc = zt + Vt Pc = C

and derivatives on the AdS side of the null shell are

Z' = -V' = -
Zc
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To find the corresponding derivatives on the other side, we integrate (2.56)

and (2.57) across the shell, which again leads to the matching conditions (2.44)

but with z' , v'_ now as in (2.62).

3. Black hole region: The matching implies

E = I ( P g(Z ) < 0 (2.63)
2 z, zt

and t is no longer constant. Solving for v' and Q in terms of z' using (2.58), we

obtain
1EB V1 + z, n"

V'=' B = - (2.64)
h(z) Kz + E2B2 P-

which, when substituted in (2.56), gives the equation for z

(h + E 2B2) zI + (h +z2) n zII +
p Z

8 h
+ (E2 B2 - z' 2 ) az= 0 . (2.65)

From integrating (2.64), the boundary time is

R dp / EB +

L PC h E
2 B

2

1+ h/

fR dp E2 B 2 
- Z12 (2.66)

Pc h+E2 B 2 EB j -Z2B2 + z'

where the second expression is manifestly well-defined at the horizon, and the integral

is evaluated on shell, with z(p) satisfying equation (2.65) and boundary conditions

(2.44) at p = pc and z(R) = 0. Finally, from (2.60) and (2.64), the area of Fr can be

written as

A = AAdS + ABH (2.67)
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where
1PC pn--1 -C x --1

-AAds = dp - 1 + Z/2 = dx (2.68)K o Zn fo P (I -_X2) n21

and

1~ F a11 + h
-ABH=jPP 1+ E

2 B
2  (2-69)

Note the story here is significantly more complicated than for a strip. One needs

to first solve the differential equation (2.65) with initial condition given by the last

equation of (2.44). Imposing the boundary condition z(R) = 0 gives a relation

between pc and z,. One then needs to evaluate (2.66) to find zc(R, t), pc(R, t) and

finally use (2.67) to obtain A(R, t).

2.2.3 Time evolution

We now describe geometric features of FE during its time evolution, using as examples

the case of E being a sphere or a strip. For the two shapes the equations of motion

(given in Sec. 2.2) can be readily solved numerically. We are interested in long-

distance behavior, i.e. we take

R >Zh . (2.70)

At fixed R, as t is varied, the tip (2.32) of Fr traces out a curve (zt(R, t), vt(R, t))

in the Penrose diagram. This provides a nice way to visualize the evolution of FE

with t. See Fig. 2-2.

Instead of (zt, Vt) it is sometimes convenient to use (zt, z.) or (zt, p,) to specify FE,

where z, and pc are the values of z and p at which the Fr intersects the null shell.

For both sphere and strip z, = zt + vt. For a sphere p, is given by (2.61), while for a

strip x, can be obtained by setting z = z, in (2.41).

We now elaborate on various stages of the time evolution of FE, and strategies for

obtaining A(R, t) in each of them.
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A

(a)

B

A

Figure 2-2: Cartoon of the curve (zt(R, t), vt(R, t)) for (a) continuous and (b) dis-
continuous saturation. Cartoons of various extremal surfaces whose tip are labelled
above are shown in Fig. 2-3. (a): For continuous saturation the whole curve has a
one-to-one correspondence to (R, t), and saturation happens at point C continuously.
(b): Discontinuous saturation happens via a jump of the extremal surface from one
with tip at C' to one with tip at C. Along the dashed portion of the curve, different
points can correspond to the same (R, t).

A

(a)

B

(b) (c)

Figure 2-3: Cartoons of extremal surfaces with tip at various points labelled in Fig. 2-
2. Spatial directions are suppressed. (a): At t = 0+, the extremal surface starts
intersecting the null shell, with z, very small. (b) When t > zh, the extremal surface
starts intersecting the null shell behind the horizon. (c) The extremal surface close
to continuous saturation for which zt - zc is small.

For t < 0, ITF lies entirely in AdS, and

zt(R, t < 0) =R sphere

strip
Vt = t - Zt (2.71)
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where a, was introduced in (2.21). A(R, t) is independent of t and is given by its

vacuum value. In Fig. 2-2 this corresponds to the part of curve below point A. Note

that as R - oo, Zt -+ Do.

At t = 0+, or point A, Fr starts intersecting the null shell (see Fig. 2-3(a)). For

t < Zh, the point of intersection is close to the boundary, i.e. z, < Zh. This defines

the pre-local-equilibrium stage mentioned in the Introduction. In this regime, one

can extract Ar(t) by expanding both t and A in small z,.

When t becomes of order Zh, at some point Fr starts intersecting the shell behind

the horizon, i.e. z, > Zh. An example is point B in Fig. 2-2, whose corresponding Fr

is shown in Fig. 2-3(b).

There exists a sharp time t, after which FE lies entirely in the black hole region. pr

then reduces to that in a static black hole geometry. It lies on a constant Schwarzschild

time t = t outside the horizon and is time independent. That is, for t > t,

zt(R, t) = Zb(R) < Zh , vt = t -- (zt) (2.72)

where Zb denotes the location of the tip of T, in the static black hole geometry, and

in the second equation we have used (2.7). This corresponds to the part of the curve

above point C in Fig. 2-2. For t > to, A(R, t) is time independent and given by its

equilibrium value.

The saturation at the equilibrium value at t, can proceed as a continuous or dis-

continuous transition, as illustrated in Fig. 2-2. For a continuous transition, depicted

on the left, the entire curve (zt, Vt) as a function of t has one-to-one correspondence

with (R, t) and saturation happens at point C, with t, given by

vt (t') = 0 , t8(R) = 9-(zb(R)) = jZb . (2.73)
fo h (z)

In contrast, for a discontinuous saturation, depicted on the right plot of Fig. 2-2, in

the dashed portion of the curve, there are multiple (zt, Vt) associated with a given

(R, t). As a result, the minimal area condition requires that the extremal surface

jump from point C' to C at some t,. In this case there does not exist a general
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formula for t,. For a discontinuous saturation, Ar,(t) is

time derivative becomes discontinuous.

In the case of a continuous saturation, for which the

is continuous, one can then define a critical exponent -/

continuous at t, but its first

first time derivative of Ar,(t)

(by definition y > 1)

A((t) - A" oc -(t, - t)7 . (2.74)

The "critical" behavior around saturation can be obtained as follows. As t -+ t., the

tip of F' approaches the null shell, i.e. zt - z, -+ 0 with Zt, z, -+ Zb (this is depicted

by point D in Fig. 2-2 and Fig. 2-3(c)). Thus one can expand both t - t. and A - Aeq

in small zt - z,.

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Ze

4 6

8 .... ....... 1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.01 2 4 6 810

(b)

Figure 2-4: Parametric curves (zt(R, t), z,(R, t)) at fixed R and varying t for
Schwarzschild h(z) in d = 3. Different curves correspond to R = 2,3,. .. , 10. In

both plots, we choose units so that the horizon is at zh = 1. (a): For a strip. Note
the saturation is discontinuous with z, lying behind the horizon at the saturation
point where each curve stops. (b): For a sphere. The saturation is continuous and
ze lies outside the horizon at the saturation point (in the plot it is too close to the
horizon to be discerned).

So far we have based our discussion on generic features of bulk extremal surfaces

without referring to explicit solutions. To understand what happens during inter-

mediate stages of time evolution, i.e. between B and C in the figures of Fig. 2-2,

it is useful to work out specific examples of the evolution of (zt (R, t), Vt (R, t)). In

Fig. 2-4, we give the parametric plots of (zt(R, t), zc(R, t)) for various values of R, for

E a strip and a sphere, for Schwarzschild h(z) with d = 3. From these plots we see a
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remarkable phenomenon: curves of varying R, after a brief period of order O(Zh), all

collapse into a single curve z*(zt) highlighted by the dashed line in each plot.

In Sec. 2.3, we will show that the universal curve z*(zt) corresponds to a critical

line in (zt, z,) space: for a given zt, FE reaches the boundary only for z, < z*. In

particular, for a IFE with z, = z*(zt), to which we will refer as a "critical extremal

surface," the surface stretches to p, v = co. As a consequence, for sufficiently large R

and t, (zt, z,) lies very close to the critical line, and the evolution of A(R, t) is largely

governed by properties of the critical extremal surfaces. We will show that this is

responsible for the linear growth discussed in [19].

To conclude this section we comment on the role of Zh in the evolution. As can

be seen from the above discussion, Zh plays the characteristic scale for the evolution

of ]FE. There is an important geometric distinction between the time evolution of

surfaces with R < Zh and of those with R > zh. In the former case, Ir(t) stays

outside the horizon during ts entire evolution, while in the latter case important

parts of its evolution are controlled by the geometry near and behind the horizon.

This supports the identification of Zh as a "local equilibrium scale" as only after such

time scale does an extremal surface start probing the geometry around the black hole

horizon.

2.3 Linear growth

In this section, we show that with E given by a strip A(R, t) grows linearly with t

for R > t > Zh. We will see that the evolution is largely controlled by the critical

extremal surface discussed in the last section. The same growth also applies to a

sphere and other shapes.

2.3.1 Linear growth

To obtain the behavior for R > t >> zh, we consider z, close to z* for some zt,

zc = ZC*(1-e), < (2.75)
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and assume that

c ,mS) - «
Zt Zt

z* <
log 6|

In this regime we can expand t, R, and A in a double expansion of 1/zt and C.

We now proceed to evaluate the boundary quantities t, R, and A using (2.49)-

(2.53). Note that these equations should be modified when z(x) is not monotonic,

which happens, for example, for zt > zi(s). Then z, ~ z* < zm, i.e. after intersecting

the shell, z(x) first moves to larger values of z before turning around. In this case

equation (2.49) should be modified to

dz + dz)
Z, fo

R = dz +
zzn +

1

VH(z)
(2.77)

and similarly for others. In the above equation z, is the root of H(z) which is slightly

smaller than zm and z, = zm for c = 0.

It is useful to separate z(x) into four regions: (i) AdS region from zt to ze, (ii)

from z, to near Zm, (iii) running along zm, and (iv) from near zm to boundary z = 0.

One can then check that contributions to t, R, and A - Ac from regions (ii) and

(iv) are at most O(Z*).3

Now let is look at region (iii). Near z zm, with z, = z*(1 - e), we have

H(z) = H 2 (z - Zm) 2 + bc , (2.78)

where
1

H2 = IH"(zm) ,2
dE2

b = -Z*d 2

Cdzc
(2.79)

Note H2 > 0 and that b < 0 (b > 0) for zt > z() ( < 8)). In (2.50) (or its

non-monotonic version), there is no contribution from region (i), while region (iii)

3When zm -+ oc as zt -+ oo, one has to be careful because the integration
is large. One can check that divergent contributions from (ii) and (iv) cancel.

range from z* to zm
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contributes at order log e, leading to

(2.80)t = - H2 g c*+ -l-g-+..
h (zm) -/H2

In (2.49) (or (2.77)) there is an O(zt) contribution from (i) in addition to a log e term

from (iii),
1

R = anzt - loge +
7H2

(2.81)

where a, was introduced (2.21) (c.f. (2.71)). Using (2.80), we can then rewrite (2.81)

as

Zt = R R
an (

h(zm) t
E(z*)

(2.82)

Now consider the evaluation of A using (2.51)-(2.53). After subtracting the vac-

uum value Avac, the diverging contribution near z = 0 in region (iv) cancels and the

dominant contribution is again from region (iii),

1 1
~ A A- -(A - Avac)

K K
=- log E + O(1)

zAvfH 2

Collecting (2.80) and (2.83), we find

AA= KAt+---

-h(zm)

zn

where in the second equality we have used (2.47) to express E(z*) as

E(zc*) = - h(zm)h(zm)

Upon substituting the explicit form of K (2.34), we have

AA = V/--(zm)Astript + - - -
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(2.84)

A zt h(zm) _

z, E(z*)
(2.85)

(2.86)

(2.87)



where -y(zm) is the determinant of the induced metric on the critical extremal surface

at zm, which is spanned by v and x2 , - - - , Xn, i.e. directions along E. Using the

equilibrium "density" aeq introduced in (2.27), we can also write (2.84) as

AA = aeqAstripVnt + 0(1) (2.88)

where the velocity vn is given by

Vn zh(zm). (2.89)

In particular, for n = d - 1, we have the entanglement entropy

AS = 4G - SeqAstripVEt + 0(1) (2.90)

where seq is the equilibrium entropy density in (2.10), and

VE - Vd- I -1 (Zm) (2.91)

In the regime of (2.76) we can approximate the value of zm in various equations

above by that at zt = oo. So to leading order in large R limit, the evolution is

linear. Note in order for (2.76) to be satisfied we need t to be large enough so that

z, is sufficiently close to z*, but not too large such that zt becomes comparable to z*

(see (2.82)) to invalidate (2.76).

2.3.2 Example: Schwarzschild

Let us now consider the Schwarzschild case for explicit illustration. Depending on

the value of r = *, 4 and zm behave differently in the limit of a large zt. Below

we consider these situations separately. While we are considering Schwarzschild, the

discussion only depends whether zc* and zm have a finite limit as zt -+ oc. So we will

still keep h(z) general in our discussion.
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For rj > 1, which covers the case of entanglement entropy n = d - 1 in d > 2, both z*4

and zm remain finite of order O(zh) in the limit of large zt. The assumptions (2.76)

then apply when R > t > O(zh).

In this case we can show that the linear growth (2.88) in fact persists all the way

to saturation, which happens via a discontinuous transition. We do this by assuming

the conclusion, strongly suggested by Fig. 2-4, and checking self-consistency.

With the linear growth (2.88), A will reach its equilibrium value (2.27) at time

R R
t - - , (2.92)

Vn zM -h(zm)

when, from (2.82) and (2.86),

zt = - 1 m - " ) + ---. (2.93)
an Zt Zh

For r7 > 1 the second term in parentheses is small for large zt, so we find that when

the system reaches the equilibrium value, zt is still very large.

When t is greater than (2.92), equation (2.88) exceeds its equilibrium value, and

the extremal surface with smallest area is no longer a near-critical extremal surface

to which (2.88) applies, but one that lies solely in the black hole region. Thus the

extremal surface jumps at t, and the saturation is discontinuous. Note that for

entanglement entropy, the saturation time is

R
ts = -- (2.94)

VE

where VE was given in (2.91).

40



'q= 1

For 7 = 1 and that of a spacelike Wilson loop in d = 4, z* remains finite but zm

increases with zt in the large zt limit. In this case, there is still a linear regime, with

V" =1 . (2.95)

Furthermore, the expression inside parentheses in (2.93) becomes zero at the time (2.92),

i.e. zt becomes comparable to z, before (2.92) is reached. Thus the system exits the

linear growth regime before saturation.

'q < I

For?) < 1, both z* - zt' (with a < 1) and zm oc zt grow with zt in the limit zt -+ cx.

Then since z* is also very large for large zt, it may take a long time for zc to reach

z*. If zt is still O(R) as zc first approaches zc*, the linear regime could still exist.

Supposing such a regime exists, equation (2.89) gives for Schwarzschild h(z)

(S) + 2 00, (2.96)

which is physically unreasonable and suggests that a linear regime does not exist.

Explicit numerical calculation appears to be consistent with this expectation.

Next we generalize the linear growth found for a strip to general shapes. We show

that for t in the range R > t > Zh, AE(t) generically exhibits linear growth in t with

a slope independent of the shape of E. Again the technical requirement is that z*

should remain finite as zt -+ oo, which for Schwarzschild g(z) amounts to 2n > d.

We first rederive the linear growth from a scaling limit, which we can extend

straightforwardly to general shapes. We will also extend results to the wider class of

metrics (2.16).
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2.3.3 A scaling limit

The linear growth of the last section occurs when zt is large but z* remains finite in

the limit zt -+ o. In this regime, with z~, z* we have (from (2.41))

zn+1
Xc = x(zc) = anzt - Z +-

nz7
(2.97)

Also from (2.82) and (2.86)

anZ= R - O(z7-) . (2.98)

The above equations suggest that in the black hole region we should consider a scaling

coordinate

y = (R- x)z. (2.99)

Indeed, in terms of y equation (2.47) has a scaling form independent of zt to leading

order as zt -- o,
dz 2

dy)

h(z) 2

- +[a2,

2

a2 _C_ .

4z2n
(2.100)

Similarly, to leading order in 1/zt, equation (2.48) becomes

dv 1 a
dz h + a2

From (2.100) and (2.101), we conclude

dx 1
dz zt2

(2.101)

(2.102)
dv
-~O(1).
dz

Then using z as the independent variable, the action (2.33) in the black hole region

is

ABH = L Astrip
f ZC d /I dx 2

10 Zn dz)
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Figure 2-5: In the limit of a large zt and a finite z, z*, the evolution in the
black hole region is essentially solely in the time direction, with two sides of the strip
evolving independently.

n Ac 1 dv dv
L Astrip dz -2- h (2.103)

o dz dz

where in the second equality we have dropped the term (z)2 ~ O(z- 2t). It may

look odd that in (2.103) x(z) completely drops out. This in fact has a simple geo-

metric interpretation: from (2.97)-(2.98), by the time the extremal surface reaches

zc, x(zc) = R - O(zt ) has essentially reached its boundary value R, while v(z,) is

zero and still far away from its boundary value v(z = 0) = t. Thus the evolution of

the extremal surface in the black hole region (for z < z,) is almost completely in the

time direction. See Fig. 2-5 for an illustration. For purposes of calculating the area

A to leading order in 1/zt, we can simply ignore the evolution in x-direction. As a

consistency check, we indeed recover (2.101) by variation of (2.103).

Integrating (2.101) we find that

Sz+ dza 1 (2.104)
fo h h~)+ a 2

and further substituting (2.101) into (2.103) we have

ABH LnAstrip dz 1 (2.105)
+/a 2

0 ~~z2n +
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The linear growth of A(t) can now be immediately understood from (2.104) and (2.105)

As before, for z, = z*, h(z) + a2 has a double zero at its minimum Zm 4. For

ze = z(1 - e) with e -+ 0, both the integrals for t and ABH are then dominated

by region around zm, and we precisely recover (2.88).

Note that the action (2.103) as well as the linear growth of A is in fact identical to

that of [31], where entanglement entropy between half spaces lying on two asymptotic

boundaries of an eternal AdS black hole was considered. The agreement can be

easily understood from Fig. 2-5; in the large zt limit, each half of the strip evolves

independently in the black hole region solely in the time direction, which coincides

with the set-up of [311.

2.3.4 General shapes

/ 
7

Figure 2-6: A cartoon of an extremal surface for E with some arbitrary shape, in
the large size limit and t in the linear regime. Upon entering the black hole region,
the extremal surface has essentially attained its boundary shape E. The evolution in
the black hole region is essentially solely in the time direction and is the same as that
for a strip.

The intuition obtained from the above discussion for a strip and Fig. 2-5 can now

be generalized to arbitrary shapes. For arbitrary E, we again expect that in the limit

R >> t >> zj, the evolution of the extremal surface after entering the shell will be

essentially solely in the time direction, as indicated in Fig. 2-6. In other words, in

99 + a2 differs from H(z) only by an overall scaling and thus has the same minimum and zero.
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the large size limit, when z, is much smaller than the size of E, the curvature of E

should not matter in the black hole and each point of the extremal surface essentially

evolves like one on a strip. Below we present arguments that this is indeed the case.

Consider a smooth entangling surface E which can be parameterized in terms of

polar coordinates as

p = Rr(Q), Xa = 0 (2.106)

where Q denotes collectively the angular coordinates parameterizing E, R is the size

of E, and the function r(Q) specifies the shape of E . The bulk extremal surface can

then be parameterized in terms of p(z, Q), v(z, Q) with boundary conditions

p(z = 0, Q) = Rr(Q), v(z = 0,Q) = t (2.107)

and regularity at the tip of the surface.

Writing

dQ_ 1 = d g (=)d6| , d"- = F Ji dO (2.108)
i

the area of E can be written as

AR R"- d-lr () 1 + E (2.109)

where

ri =- c r (Q) .(2.110)

Meanwhile, in the Vaidya geometry, the action for an n-dimensional extremal surface

ending on the above E can be written as

Ar,= L n dz d nl- Q (2.111)

with

Q = p'2 - 2v' - f(v, z)v1 2 + - E Gi - I E (pVj - pjVi)2 (2.112)
P2 i 9i p 4i 9i9j
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where we have used the notation

p ' zP, Pi =_ aip, V' = 0_ V, Vi = Ojv (2.113)

and

Gi -f (v, z)(p'vi - piv')2 + 2pi(p'vi - piv') - V. (2.114)

In (2.111) 5 is a short-distance cutoff. It is readily found that in the black hole region

p and v have the following small z expansion (for z < Zh)

z2
p(z, )= Rr(Q) - -f (Q) + - (2.115)

R

V(Z, ) t - Z + O(Zn+1) (2.116)

where f (Q) is a function which can be determined from r(Q).

For R > t, to leading order in 1/R, the part of the extremal surface in the AdS

region can be approximated by that in pure AdS, which we denote p(O) (z, Q) (and for

which t constant). For z/R < 1, p(s) has the the expansion

p(0)(z, Q) = Rr(Q) + O(R- 1) (2.117)

Note that in contrast to (2.115) which applies only to z < Zh, due to the scaling

symmetry of pure AdS and that E as defined in (2.106) has a scalable form, equa-

tion (2.117) in fact applies to any z/R < 1 and in particular z ~ z, z*. Thus we

conclude that when the extremal surface enters the shell at ze,

p(zc, Q) = Rr(Q) - O(R 1 ) . (2.118)

From (2.115)-(2.116) and (2.118), the extremal surface in the black hole region

should then have the following scaling

p' ~O(R-1 ), pi 0 0(R), vi ~ O(R-1), v' - 0(1) . (2.119)
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Plugging in the above scaling into the action (2.111) we find that to leading order in

1/R,

AE,BH - LR- 1 j dz d--1Q rn-1(Q)

1 1
- -2v'- hv' 2  1 -

Z" T2

L A, j Z -2v' - hv'2  (2.120)

which reduces to (2.103). In particular, all evolution in p and Q directions have

dropped out. Thus we conclude that (2.88) in fact applies to all shapes with Astrip

replaced by AF.

The above discussion encompasses the case of E being a sphere for which r(Q) = 1.

In that case one can derive the above scaling limit explicitly from equations (2.56)-

(2.57). In particular, the linear growth regime is controlled by the first plateau of the

critical extremal surface as indicated in Fig. 2-7.

z(p)

zc* --------------------- -- --- - --------

Zh ~ ~ ~~---------------------------- P

Figure 2-7: Cartoon: For a sphere, in the linear regime the extremal surface follows
the critical extremal surface for a while but exits near the first plateau. The dashed
curve is the critical extremal surface.
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2.3.5 More general metrics

The above discussion can be readily extended to more general metrics of the form (2.16)-

(2.18). The action (2.120) is replaced by

ABH = L"AE - V-h(z)v' 2 - 2k(z)v' , (2.121)
0 Zn

from which v(z) satisfies the equation

1 h' + k
- = const (2.122)

Zn v/-hv 2 - 2kv'

which can be solved as (b is a positive constant)

V' k(z) ( b (2.123)
h(z) h(z) + b2

with

dA L A k(z) 1
dz ZLA (2.124)

dz~~ z2n+b

Other than a prefactor k(z) appearing in both equations, equations (2.123)-(2.124)

are identical to (2.104)-(2.105). The constant b should be determined by matching

conditions at the null shell, i.e. be expressible in terms of z, alone in the limit zt -+ o.

Its precise form is not important. As far as a z* exists such that h + b2 is zero at

its minimum zm, A will have a linear growth regime for z, close to z*.

Since in the linear regime the leading behavior is given by the behavior of the

RHS of (2.123)-(2.124) near zm, the factor k(zm) cancels when we relate A to t and

we conclude A is still given by (2.88) with the same vn, i.e. the additional function

k(z) in (2.121) cannot be seen in the linear regime.
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Chapter 3

The Gravity Duals of Entanglement

Hamiltonians

3.1 Entanglement Hamiltonians

Given that the entanglement entropy of a spatial region is encoded in the gravity dual

as the area of the minimal surface, one can ask if there is a simple interpretation in

the bulk of the corresponding entanglement Hamiltonian operator

H = -logp . (3.1)

Note that the entanglement entropy suffers from UV divergences associated to short-

distance entanglement across the boundary of the region. However, the claim that

the relative entropy Tr(p 2 log P2) - Tr(P2 log P1) is regulator-independent [16, 5, 35]

is equivalent to the statement that only the piece of H proportional to the identity

operator is regulator-dependent. Then the UV divergences will not affect the modular

evolution that we investigate.

Very few characterizations of a general entanglement Hamiltonian are known other

than those which follow directly from its definition. For p associated to the causal

completion' C of some general spacetime region, H is a Hermitian and possibly un-

'We define the causal completion of a set of points S in spacetime as the set of all points C(S)
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bounded operator acting on the Hilbert space of states in C. The conjugation by H

O(a) = eiaHo-iaH (3.2)

is an automorphism on A(C), the algebra of bounded operators in C [291, and is a

symmetry of the expectation value of all operators in C,

Tr (p O(a)) = Tr (pO) . (3.3)

In the special cases of the region being half-space in the Minkowski vacuum of any

quantum field theory [8, 9] or conformally related configurations [17], and the case

of the region being a null slab in the Minkowski vacuum of a CFT [11], H has been

obtained explicitly and is a linear smearing of components of the energy-momentum

tensor over the region. For a general region and state, however, little is known about

H and one merely has the expectation that it cannot be written as a spacetime

integral of local operators.

In this chapter, we consider the modular evolution of a quantum field theory

density matrix p which has a semi-classical gravity dual,

p - e-ioH iaHpOZ -joB PeH (3.4)

where H is the entanglement Hamiltonian associated to the reduced density matrix

of an arbitrary but fixed spatial region R,

H = - log PR 0 . (3.5)

Defined thus as an operator on the full Hilbert space, H is a non-smooth operator

due to a kink at the boundary of R. However, integrating it over the location of R with

respect to a smooth test function should result in a smooth operator. Furthermore,

we will sometimes consider the operator K = HR - HR, which we conjecture is a

such that all causal curves passing through each point also passes through S. In the literature C(S)
is also called the domain of dependence or the causal development of S.
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smooth operator. The logic is that the action of H very close to the boundary of R

is very similar to that of the entanglement Hamiltonian associated to a half space in

the Minkowski vacuum, for which K is a smooth operator.

The holographic duals of density matrices are not fully understood, and there is a

related ongoing investigation of the possibility of formulating AdS/CFT for subregions

[12, 13, 18, 3, 71, 32]. Moreover, the relation between entanglement and topology

proposed in [51] would imply that knowledge of a density matrix is insufficient even

to make probabilistic predictions for general bulk observables. 2 Thus although none

of our results depend on p being pure, we will take p to be that of a pure state V),

p = )(4| (3.6)

after which pc. is again a pure state,

pa = 1a) (al , ca) - eiaH 1/) (37)

Note that H is an example of a state-dependent operator. Somewhat analogously

to [59, (0], we will find that there is a useful holographic interpretation of H when

acting on states close to the reference state, in the sense that they are given by a

small number of single-trace operators acting on 10).

We first show that at linear order in a, one can construct the classical metric ga

in the gravity dual of pa to leading order in 1/N, using the first law of entanglement

entropy [ 0]

6 (H) = 6S (3.8)

and the minimal (RT) and extremal (HRT) surface prescriptions for calculating spatial

entanglement entropy. Beyond linear order in a, we can use the fact that Ha = H

to interpret the following expression for the metric perturbation (3.9) as a non-linear

2 This is because information about entanglement is lost when a general probability distribution on
the Hilbert space of quantum states is replaced by an associated density matrix p = E pi 10i) (4i I.
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differential equation in a for the metric g,. The metric perturbation takes the form

Oah = i Hh])= 4  Z A, [ (3.9)
(I 4GN -

where h is a metric perturbation operator constructed by smearing boundary single-

trace operators using bulk equations of motion, 3 and Ah is the change due to a metric

perturbation h in the area of the extremal surface corresponding to R, obtained by

elevating h to the operator h. This equation should be interpreted in the linearized

theory around the background dual to p, and the expectation values in (3.9) are taken

with respect to p.

Given that expectation values of operators inserted solely in C(R) or in C(R) are

invariant under modular evolution, if there is a bulk region B(R) in g = go that is dual

to PR in the sense that the metric in B(R) is determined by PR, and similarly B(R)

for pp, the metric in those regions will be unchanged in g,, up to diffeomorphisms.

Assuming the HRT prescription, the form of the 'modular response' Oah in (3.9)

implies that its diffeomorphism-invariant support is causal from the extremal surface

of R - in other words, one can choose coordinates, at least patch-wise, such that the

response vanishes at spacelike separation from the extremal surface. Thus the support

is indeed absent from the 'entanglement wedge' advocated in [321 to be B(R),4 the

causal completion of the codimension-1 bulk region which interpolates between R and

its extremal surface on a Cauchy slice. Parallel statements hold for R.

Proceeding further and explicitly computing the diffeomorphism-invariant support

of 0ah in simple examples, we find the following: except when R is a half-space or a

sphere and p is the Minkowski vacuum of a CFT, in which case the support is causal

from the boundary of the extremal surface,5 generically there is support on interior

points of the extremal surface and thus at space-like separation from C(R) [1, 82].

Since H as a boundary operator is localized in C(R), this implies that generically

the entanglement Hamiltonian is a 'precursor' [61] in the sense of being a boundary

3Such a construction of the metric perturbation operator in Poincar6 AdS appeared in [33]. Also
see [42].

4For other papers that have discussed how large B(R) should be, see [13, 1,87, 371].
5The same is true for conformally related configurations.
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Figure 3-1: Cartoon of the diffeomorphism-invariant support of the modular response
0ah ~ (ga - g)/a, as computed using the HRT prescription. The entanglement wedge
of R, whose intersection with the AdS boundary is C(R), is delineated in pink. Left:
for configurations (p, R) with special symmetry, the response is causal from OR. Right:
for generic (p, R) the response is causal from the entire extremal surface associated
with R. To avoid clutter here we have only drawn the upper half of time evolution.

operator that is sensitive to bulk processes at space-like separation. Alternatively,

the HRT prescription may need to be modified.

Moving beyond the metric, we discuss two methods of obtaining the deformation

0 ,(01 ... O) of n-point functions and other expectation values in general. The

first is to utilize (3.8) and perform bulk computations of the change in entanglement

entropy, staying in Lorentzian signature. The second is to analytically continue from

Euclidean path integrals defined on replica sheets. In certain instances the Euclidean

calculation simplifies further as we are able to use geometries with continuous conical

deficit following [45]. The knowledge of n-point functions allows us to recover the

action of the entanglement Hamiltonian on excitations about its defining state.

This chapter is organized as follows. In section 3.2, we study the modular response,

or deformations of the metric and correlation functions in the linearized p, state.

We give an explicit construction of the metric deformation. We discuss methods

of computing the deformation of general expectation values, and show that one can

recover the action of the entanglement Hamiltonian on nearby excited states. We also

examine the special symmetric case that R is a half-space and p is the Minkowski

vacuum of a CFT. In section 3.3, we show that generically the modular response of the

metric as computed using the HRT prescription violates bulk causality, and discuss
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the known resolution of a similar conundrum for Wilson loops and geodesics. In

section 3.4, we present conclusions and open questions. In the appendices we present

computations of the metric response for an arbitrary region R when the gravity dual

to p is the Poincar6 AdS vacuum.

3.2 Modular response

3.2.1 Deformation of the metric

Let us fix a quantum field theory density matrix p and a spatial region R understood

to be lying at some fixed time tR. This defines a entanglement Hamiltonian

Hp,R = - log PO , PR = TrRp . (3.10)

In defining the reduced density matrix PR we assume that the Hilbert space factorizes

as R = HR0 7 tl. The states in WR and -n live in the spacetime regions C(R)

and C(R), respectively. The action of Hp,R extends in the obvious way to the whole

Hilbert space Ii. From here on we omit the subscripts on Hp,R.

We start by making a simple observation as follows. Consider the unitary evolution

of p by some Hermitian operator 0,

p + e-i"pei . (3.11)

Working to linear order in a,

JOp = iZ [p,O] . (3.12)

Then deforming p alternatively by the entanglement Hamiltonian H and another

Hermitian operator 0,

- 6 H (0) = 6o (H) = TrR (6 OPR H) = 60S (3.13)
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where S = -TrR (PR log PR) is the entanglement entropy of region R. In the second

equality we have used that H acts trivially on 7R and and the last equality is the

first law of entanglement entropy.

The statements so far do not rely on gauge/gravity duality. Now let us assume

p has a semi-classical gravity dual with classical metric g. Then we note that if the

deformation 6op again gives a semi-classical state, JoS in (3.13) can be computed at

leading order in 1/N using the HRT prescription. In particular, from the knowledge

of 6 H (0) for single trace operators {0}, we can construct the modular response

h = Hg as

Dahab =6 -H (hab) a E h ab] (3-14)
a a as4GNy

at leading order in 1/N or 0(1). Here h is a metric perturbation operator written as

a smearing of boundary single trace operators {0}, by solving linearized equations of

motion about the gravity dual of the original state p at leading order in 1/N. When

p is the vacuum, or dual to a matter-free solution of Einstein's equations, only the

expectation value of the boundary energy-momentum tensor JH (T) is non-vanishing

at O(N), so h decouples from other bulk fields and is a smearing of T only. For

generic states p, 6 H (0) is non-vanishing at 0(N) for 0 : T as well, and one has to

solve a system of coupled differential equations for h together with other bulk fields.

Meanwhile,

Ah - L J E 17 hab (3.15)

is the change due to a metric perturbation h in the area of the extremal surface which

ends on OR, elevated to an operator. The integral is over the extremal surface E in the

unperturbed metric g, and we have denoted the induced metric and tangential vectors

on E as -,3 and ea. Note that due to E being extremal, Ah is a diffeomorphism-

invariant operator. By causality in the bulk field theory, an operator q whose entire

diffeomorphism-invariant description, or 'framing', is space-like to E, commutes with

Ah. Thus for instance, in the linearized theory, if one forms a curvature combination

of the metric response Dahab which transforms homogeneously under diffeomorphisms,

55



its support must be restricted to j(E),6 the causal future and past of E. Similarly,

the modular response on the boundary corresponding to the leading fall-off of &&hab

will be restricted to the intersection of j(E) with the boundary, or J(aR) [32], as

required by (3.3) and triviality of the action of H on C(R). We are able to check this

explicitly for general regions R when g is Poincar6 AdS.

Note that in the above the HRT prescription is put to use even when g is a static

metric - we used extremal surfaces in the bulk to compute the entanglement entropy

in the presence of time-dependent perturbations on top of g. Furthermore, the RHS

of (3.14) can only give the piece of the response at absolute leading order in 1/N, as

it was derived using the leading order expression for S. In it hab can be replaced with

any boundary operator, but the leading order piece it yields will be zero for instance

for multi-trace operators, and in the vacuum, single-trace operators other than T as

well.

3.2.2 Deformation of general expectation values

In order to compute the deformation of general expectation values 6 H (0) = aa (0)

(now 0 can be any operator, for instance a Wilson loop or a string of single-trace

operators) which are 0(1) or smaller using the RHS of (3.13), one has to reckon with

quantum corrections to the RT/HRT prescriptions such as were considered in [23, 20].

However, if Jb) is a time-symmetric state that can be obtained from a real Eu-

clidean path integral with a corresponding classical gravity dual, one can derive the

deformation of expectation values of operators in 1a) in another way.

Consider a Euclidean QFT path integral on a space with boundary at t = 0,

with sources for single trace operators turned on. This defines a quantum state

at t = 0 whose gravity dual is the analytic continuation to Lorentzian signature,

of the Euclidean bulk field and metric configuration with AdS boundary conditions

determined by the sources.

The trace Zk = Tr(pk) is given by the normalized QFT partition function on the

6We distinguish a causal domain in the bulk as opposed the boundary by placing a tilde above
the character.

56



k-sheeted covering space branched over OR. In the bulk, the leading classical saddle

is smooth in the interior and asymptotes to the k-sheeted AdS boundary geometry.

As an operator, p 0 I is given by the Euclidean path integral from t = 0 that does

nothing in fT and glues in the k sheeted region over R, see figure 3-2.

Therefore ($01(x)(pk 0 I) 'b) for any operator ( is given by the associated Eu-

clidean expectation value, Zk+l(O(x))/Zk+1. The operator ordering is determined by

the Euclidean time of x relative to r = it = 0. Analytically extrapolating in n = k +1

and continuing x to Lorentzian signature, one finds that'

limO (Zn(O(X) (O(x)H). (3.16)
n-+1 Z /

The commutator response is given by the difference between the two operator order-

ings,

_, _,. . Zn(O(x, t - iE)) Zn(O(x, t + iE))
Oa (O(X,4 t)) = ([H, O(X', t)]) = lim him i8ne-*O n-+1 Zn Zn

(3.17)

Note that the RHS is continued from Euclidean signature and only non-analyticities

in Z(0 (, T)) contribute, which only exist for Y E R, T = 0. Also note that for a

time-symmetric state 10), one could in principle compare the value of some 0 , (0)

that is O(N) as computed from the above with that from the Lorentzian method,

7The same equation but formulated using a twist operator appeared in [191.

Figure 3-2: Riemannian sheets for Euclidean path integrals corresponding to the
operator pt: 0 I, left, and PR, right.
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and this would constitute a check of the HRT prescription.

As explained in f4[j, one can quotient the bulk saddle dual to Z" by its replica

symmetry, to obtain a geometry which asymptotes to the original single-sheeted AdS

boundary but has a conical opening angle of 27/n along a bulk defect. If the Eu-

clidean expectation value in (3.16) is dominated by the classical bulk geometry, it can

be extracted from the quotient space, and the analytic extrapolation in n is straight-

forward. This is the case when 0 is a single-trace operator or some other operator

whose expectation value in the large-N limit is given by a minimal geodesic or surface

in the Euclidean bulk saddle.8

Then immediately from (3.17) we have

(r Z (t - ie)) _ Z(0 (, t + ie))
a, (0(A, t)) = hm i ,t (3.18),->0 Zr, Z, r.=

where the RHS is continued from Euclidean signature with Z, being the partition

function over conical defect geometries with opening angle 27r(1 - n). This is par-

ticularly useful in computing the deformation of 2-point functions of high-dimension

scalar operators, since the expectation values involved are given at leading order in

terms of lengths of geodesics in classical saddles gs, of Z, .

Finally, we note that the two methods outlined above translate to respective argu-

ments that 1a) with a infinitesimal is indeed a semi-classical state with a gravity dual

if 1') is. One needs to check that corrections to an n-point function of single-trace op-

erators (01 .. .0?), besides the classical value (01), ... (On), are subleading in 1/N.

Below we also find it instructive to explicitly identify the subleading corrections in

the Lorentzian method.

Using (3.13), we have 0, (0102) = -- 1 60 102S. For small a, the state eia0102 1')

is described by the same classical metric in the bulk dual as 10) to leading order in

1/N, and thus 6S vanishes at leading order. At subleading order, there are two sources

of contributions to JS - corrections to the bulk metric, and subleading corrections to

S besides the extremal area. The former arises from the bulk tree-level diagram of two

8[6.4] suggested that general correlation functions of H with operators in Minkowski space are
equivalent to correlation functions of just the operators on spacetimes with conical defects.
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scalars and the metric, and is calculable from the bulk Lagrangian - in CFT language,

the TOO 3-point function gives a nonzero VEV to T in the state, and there is also

an explicit 00 correction to the boundary expression for the bulk metric operator

[41]. The latter corrections include the bulk scalar field entanglement entropy [23],

so is more difficult to determine.

In any case, contributions from both are suppressed by 1/N compared to the

classical, factorized 2-point function. The same reasoning applies to general n-point

functions, and we have the desired conclusion.

Using (3.17), we reach an identical conclusion by noting that Z,(O1 ... O) obeys

large-N factorization, due to the fact that a semi-classical bulk configuration domi-

nates its gravity dual and n-point functions on the boundary are limits of bulk n-point

functions.

3.2.3 Action of the entanglement Hamiltonian on excitations

It is interesting to determine if the action of the entanglement Hamiltonian on states

other than its defining state also has a useful holographic description. For states that

are dual to completely different geometries, we do not expect the action to be simple.

However, for states that are made by acting with a small (compared to N) number

of single-trace operators on 10), one can make some progress.

We would like to characterize states of the form HO 10) where now 0 again

denotes a single-trace operator. This can be done by computing the inner products

(?/0(x)[H, 0(y)] 4). For general position x, this is difficult to determine. However

in the special case that x E C(R), one can move the insertion of H such that it always

acts on 10), and use the methods in the previous section to compute the result.

We know that H is not a smooth operator because of a kink at OR, but we con-

jecture that K = HR - H7 is smooth. This is because the action of H on operators

inserted very close to OR should be well approximated by the half-space result (3.20),

for which K is explicitly a smooth operator. One can see that this approximation is

valid from the Euclidean expressions (3.16) and (3.17). At sufficiently short distances

OR may be approximated by a flat plane. Moreover, the expectation values of opera-
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tors inserted sufficiently close to OR in the n-sheeted covering spaces are governed by

short-distance physics and thus do not depend on the state. Finally, at least in our

situation where the analytic continuation in n is simple in the gravitational dual, it is

clear that the same is true with H replacing the branch point of the covering space.

For y E C(R), we have [K, 0(y)] = [H, 0(y)] and thus i(0 10(x) [K, 0(y)] 1') =

Da(cj0(x)O(y) a). Then assuming that K is a smooth operator, we may determine

the entire action of K on such states by analytic continuation of x from C(R) to the

entire spacetime.

In computing a (a10(x)0(y) a), we saw in the previous section that there is a

contribution that is difficult to determine in the Lorentzian method, the change in

the bulk entanglement entropy. Thus here we restrict to 4') such that the Euclidean

method can be applied, and consider the special case of high-dimension single-trace

scalar operators, dual to heavy fields in the bulk (with mass parametrically larger

than the AdS scale, but smaller than the Planck scale).

Then using (3.18) and the geodesic approximation (O(x)O(y)), oc e-M1@Y), we

have

0,, (0(x)0(y)) ~ lim -im 0, (l(x, y+, r,) - l(x, y-, )) ((x)0(y)) (3.19)

where l(x, y, r,) is the length of the geodesic of minimal length connecting points x

and y in g., and y are obtained by the replacements ty -+ ty -F ie. The discontinuity

in l(x, y, n) as y crosses R is due to the deficit angle about DR.

For a complete characterization of the action of H on excited states near 1'), one

needs to compute more general inner products (0 10(x 1) ... 0(Xn)[H, 0(yi) ... O(ym)] 4').
Then modulo analytic continuation in xi to the entire space-time, one could again

take xi c C(R), y, E C(R), converting the problem to that of obtaining modular

deformations of n-point functions. The latter can be computed in principle with the

methods we have discussed, although the computations will be more difficult than in

the simplest instance of (3.19).
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3.2.4 A special symmetric case

Here we examine the modular response Dahab as given by (3.14) in the simple case

that p is the Minkowski vacuum of a d-dimensional CFT, and the spatial region R

is half-space. The entanglement Hamiltonian H is known in this configuration [ , ],
and taking the half-space to be x1 > 0 at tR = 0, can be written as

H = 27r dd-2x j dxi x1 Tet(t = 0, Y) . (3.20)

Given that H is a smearing of local operators on R, bulk-causality implies the

diffeomorphism-invariant support of the modular response Oahab must be causal from

R. As we have argued above it is also causal from E, so in fact it should be causal

from R n E = OR.9 See left in figure 3-1.

It is easy to check that indeed Einstein equations in Poincar6 AdS conspire with

the geometry of E in this case to make the integral over E

Z2Oah,, o j dz' d- 2 x' z'ldG,,,(z, x; z', x') , p = 2, .. ., d - 1 (3.21)

into a boundary term at OE = OR, where in the integrand a sum over p is implied.

Here we are working in transverse-traceless and Fefferman-Graham gauge for h. For

independent components Bahti and Bahij where i, j are spatial indices, we have the

propagator components

Gtipp = - ((d - 1)7,liOtap - atOa) 02 + (d - 2)OtaOaO] G4

Gijp = [((d - 1>)nipj -- nij) a4 - ((d - 1) (?5j898O + qHrb ) - OiaO - 77ija) 02 + (d - 2)OiOaO ] G

(3.22

and switching derivatives using OG4 = -O' G4, terms with a (9 integrate by parts

9A related result that appeared previously in the literature is the first law of black hole mechanics
that the perturbed area of a stationary black hole horizon reduces to an integral of energy density

over the boundary of the horizon [.40]. In [22] the authors used the HRT prescription to translate

the first law of entanglement entropy for balls in a CFT vacuum to a sub statement of the first law

of black hole mechanics, and derived from it linearized Einstein equations.
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over x'P, and terms without a Op integrate by parts over z' using the equation of

motion

z'l-dO 2G4 = 11 (z'1d'G4) . (3.23)

In particular, the linearized Weyl response OaCabcd associated to &ahab, which is ho-

mogeneous under diffeomorphisms about AdS, is manifestly causal from OR as kernels

in the metric-Weyl propagator Wabcd;p (Z, x; z', x') are causal for z > z'.

From the metric response as computed in (3.21), one can reproduce the modular

evolution of space-like two-point functions as effected by (3.20), as follows.

Consider the two point function of a primary scalar operator 0 of dimension D,

which in the CFT vacuum is up to a constant

1
(O(X)O(y)) (X - Y)2D (3.24)

The entanglement Hamiltonian (3.21) acts on any operator O(y) in the Rindler region

C(R) as

e iaH O -We H = O(y(a)) ,(3.25)

yy(a) = y1  y0 , (3.26)

and trivially on operators localized in the complementary Rindler region C(R). Thus

if we choose x E C(R) and y E C(R),

a0 (O~X)0(y)) = 47rD - - - Y (0()0(y)) . (3.27)
(x - y) 2

Now, if the gravity dual of a boundary quantum field theory has metric g, and

if g is the analytic continuation of a Euclidean geometry and possesses a natural

vacuum, we expect that generically we will be able to approximate space-like two-

point functions of scalar operators of large dimension in the boundary theory using

geodesics in g [6, 5O}. In the case at hand, the metric evolved in modular time g0 of

Poincar6 AdS g is a topological black hole up to an isometry in g [17]. Thus we expect
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X1

Figure 3-3: Depiction of a geodesic in Poincare AdS which computes the expectation
value of an equal-time two-point function (O(x)O(y)), with x and y in Rindler regions
C(R) and C(R), where R is the half-space x1 > 0. (Note we have d = 2 in the figure
for ease of drawing, but all considerations here are in d > 3 for which there are local
gravitational excitations in the bulk.) The light-cone and boundary light-cone from
OR are shown in solid beige and transparent purple, respectively. The solid purple
line is the extremal surface E. All contributions to o9, (O(x)O(y)) come from the
intersection of the geodesic with the boundary light-cone from OR.

the geodesic approximation to be valid, and for D > 1, to have up to a constant

(O(x)O(y)) e (3.28)

where L is the AdS radius and l(x, y, a) is the length of the geodesic of minimal length

connecting space-like boundary points x and y in the metric g". It follows that (c.f.

(3.19))

O, (O(x)O(y)) D al(x, y, a) (O(x)O(y)) (3.29)
L

and restricting ourselves to equal-time two-point functions without loss of generality

- space-like two-point functions can be rotated in the t - xj_ dimensions to be brought

to equal time without breaking the symmetry of our configuration - and comparing

with (3.27), we would like to verify

Oael ~ 47rL 2 t -yX) Y (3.30)
( 4- y)

Since the length of a geodesic is invariant under linear deformations, 0,l is given
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by the change in length of the original geodesic in Poincar6 AdS. The most general

such geodesic at equal time is a semi-circle

z (w) = - 2W) + - , k = 1,2 , (3.31)
2 r \2J

of radius r = V(yl - X1 ) 2 + (y 2 
- x2 ) 2 /2 parametrized by -r < w < r. One can

check that enforcing x c C(R) and y E C(R), the geodesic never enters the light-

cone from OR inside which the Weyl response OaCabcd is non-zero. See figure 3-3.

A metric perturbation Ochab whose Weyl response vanishes is locally a pure diffeo-

morphism, and such a perturbation, if smooth, cannot contribute to 0,1 which is a

diffeomorphism-invariant quantity much like (3.15). Thus OBl is entirely due to the

singular kink in the metric perturbation which exists on the boundary light-cone of

OR in transverse-traceless and Fefferman-Graham gauge.

Integrating the metric perturbation (3.21) over the geodesic given in (3.31), we

have

CTA 2r2 L 1

64GN r 3 '

dw dz' d d-2X's z'l-d (AX1)2 Gpp + (AzX2) 2 G 22p, + 2Ax'z'X2G 12 p),

(3.32)

where Axk - yk - Xk. Thus verifying (3.30) is equivalent to checking

I cx t(y' - x')r (3.33)

where the constant of proportionality only fixes the O(N) constant CT in the energy-

momentum tensor two-point function appearing in [T, T]. The integral I simplifies

after integrating by parts and using the equation of motion (3.23), but we still need

to integrate numerically at a finite cutoff E on light-cone singularities appearing in the

bulk-to-bulk kernels G,,, as we have not isolated the analytic form of the singularities.

We find precise agreement with (3.33) as shown for example in d = 3 in figure 3-4.
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Figure 3-4: Tests of the scaling of I in (3.32) in d = 3 and at E = 10-3. The fixed
parameters in each plot are as follows - left: y - -X = 11, Ax 2  0, center: t = 1,
x1 = -3/2, Ax2 = 0, right: t = 1, y1 = -Xi = 3/2.

3.3 Propagation of metric response

We have seen that although the modular response of the metric Oh (3.14) is naively

an integral over the extremal surface E, and propagates in the bulk space-time g from

the entirety of E, in the special case that p is the CFT vacuum in Minkowski space

and R is half-space, it reduces to a boundary term at OE = OR. The same is true for

conformally related configuration. As a consequence, the entanglement Hamiltonian

H, which by definition is localized to the boundary spacetime region C(R), is seen to

act locally in the bulk space-time g with Oah propagating causally from OR E C(R).

However, for a generic state p and region R, Oah(x) ~ [H, h(x)] is non-zero at

space-time points x of g at which the entire operator h(x) in its bulk-local form,

including its framing, is space-like to C(R).' 0 This can be seen, for instance, by

considering general regions R in the case that g is Poincar6 AdS. One can use the

extremality of E to integrate by parts the integrand in Oah, but there is a genuine

bulk integrand remaining that does not integrate to a boundary term. The same is

true after acting with derivatives to obtain the Weyl response OaC, which measures

the gauge-invariant support of Oah. In particular, the Weyl response is non-vanishing

on points in the interior of E, which is guaranteed to be space-like from C(R) [71, 32].

In figure 3-5 we plot a component of the Weyl response on an interior point of E for

an R which is a slab in d = 3.

10The need to consider the full diffeomorphism-invariant description of a bulk operator when
considering issues of bulk locality was pointed out in [341].
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The upshot is that assuming the HRT prescription of using extremal surfaces

in Lorentzian spacetimes to calculate entanglement entropy, H for a generic state

p and region R violates bulk locality at lowest order in the large N limit in which

we expect the bulk to be described by an ordinary quantum field theory on a fixed

background. The expectation value of H, which for linear perturbations measures the

entanglement entropy of R with respect to R in the boundary field theory, is sensitive

to bulk perturbations that are space-like to the region on which H is supported.

Starting in [61], operators in the boundary theory whose expectation values are

sensitive to space-like bulk perturbations so as to ensure that the boundary theory

encodes all of the information - in the gravity dual in the context of gauge/gravity

duality - have been called precursors. Using the naive saddle approximation and

computing expectation values of Wilson loops with areas of extremal world-sheets

in perturbed backgrounds, it would seem that Wilson loops are precursors [65] in

complete analogy to the case of entanglement Hamiltonians that we have investigated,

yet in [27] it was pointed out that such reasoning fails because the naive saddle

is incorrect. In fact the same flawed reasoning would lead one to conclude that

the two-point function of space-like operators in ordinary quantum field theory are

sensitive to perturbations at space-like separation from both operators, in violation

of locality. Similarly, Wilson loops are dual to extended string states, hence the

locality and causality of perturbative string theory implies that such commutators

must vanish. One can also understand that the extremal world-sheet approximation

for expectation values of Wilson loops and the geodesic approximation for space-like

two-point functions cannot be generally valid in Lorentzian signature, from the fact

that the one-point function of the metric does not uniquely specify the state of the

bulk quantum field theory [U."

Here we simply point to two possibilities. The first is that the HRT proposal is

correct in which case we have shown that entanglement Hamiltonians associated to

spatial regions are genuine precursors which differ qualitatively from possible pre-

"In [24] it was shown that even in static black hole backgrounds one needs to take into account
non-trivial complexified geodesics.
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cursors as previously characterized in [Z5]. There it was proposed that short-distance

properties of Wilson loops may be sensitive to bulk processes at space-like separation.

However, the value of a entanglement Hamiltonian, for example at linear order, mea-

sures spatial entanglement which generically includes long-range entanglement. It

follows that, again generically, at least part of the bulk information which is encoded

acausally via the entanglement Hamiltonian is encoded in long-distance properties of

the boundary state.12 The second possibility is that the HRT proposal needs to be

modified in a manner in which the state of the bulk quantum field theory is explicitly

taken into account, and that with the correct computation of spatial entanglement

entropy, corresponding entanglement Hamiltonians may not be precursors as seen in

the large N limit.

3.4 Further directions

In this chapter, we have obtained descriptions in the gravity dual of the action of the

entanglement Hamiltonian - associated to an arbitrary spatial region in a quantum

field theory state that has a gravity dual - on its defining state and nearby states.

This was possible after obtaining the deformation of expectation values, in particular

n-point functions of single-trace operators, in the original state evolved unitarily

with the entanglement Hamiltonian. The Lorentzian method of obtaining deformed

expectation values relies on the first law of entanglement entropy, and at leading order

in 1/N, the RT and HRT prescriptions for computing entanglement entropy. We also

discussed a Euclidean method that applies only in the case of certain time-symmetric

states but does not rely on the HRT prescription, and thus could potentially be used

to cross-check it.

Focusing on the metric deformation obtained using the Lorentzian method, we

found that in special symmetric cases in which the entanglement Hamiltonian gener-

ates a diffeomorphism on a subset of the bulk space-time, the deformation propagates

1 2For example consider the response acaC = -6a (H) = -6aS for g Poincar6 AdS and R an
arbitrary region. For even d, the non-local part of the response sensitive to perturbations space-like
to C(R) includes a piece that is finite in the limit that the light-cone cutoff e goes to zero.
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causally from the boundary of the spatial region in the quantum field theory. That

this reduction to the boundary does not occur generically, however, led us to the

surprising statement that the action of a generic entanglement Hamiltonian does not

respect bulk causality to lowest order in 1/N, or in other words, that the entangle-

ment Hamiltonian as an operator cannot be localized to C(R) to any finite order in

perturbation theory.

That the interior points of generic HRT surfaces are not in causal contact with

C(R) is actually crucial for it to be compatible with causality in the boundary quantum

field theory [32]. Yet we found that it is precisely this feature that puts it at tension

with causality in the low energy bulk quantum field theory. It is an interesting future

direction to think about whether and how the HRT prescription could be modified

to resolve this tension. We pointed out that any modification will likely have to do

with incorporating the state of the bulk quantum field theory more explicitly.

It will also be interesting to explore whether we can obtain further characteriza-

tions of the action of generic entanglement Hamiltonians with the aid of methods we

began developing in this chapter.
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Figure 3-5: A component of the Weyl response on an interior point of E for an R

which is a slab in d = 3 with finite extent -1 < x1 < 1 and extending infinitely in

remaining boundary spatial coordinate x2 . Left: The point on E at which we measure

the Weyl response. We show a t = tR, x 2 = const. cross section of the bulk space-time

g which is Poincar6 AdS. Right: The component 0a8C2t2 on the point specified as a

function of the light-cone cutoff E. It diverges as e --+ 0.
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Chapter 4

Conclusions

We conclude by outlining directions for future research that could shed light on ques-

tions we discussed in the introduction, namely the emergence of local degrees of

freedom in the bulk and a more direct derivation of gauge/gravity duality.

One is to look for a bulk interpretation of the entanglement first law dS = d (H)

[1(], for S the entanglement entropy of an arbitrary spatial region on the boundary.

In the case that the region is a sphere and the state is the conformal vacuum, the bulk

interpretation is given by Wald's first law of black hole mechanics, which equates the

linearized change in black hole entropy to that of an energy that is defined at spatial

infinity with respect to a Killing vector [40]. For an arbitrary region, the absence of

a Killing vector and indeed any natural vector field which preserves asymptotically

AdS boundary conditions, makes it quite challenging to find a suitable definition of

energy that would enter a presumed bulk first law.

However, if such a bulk first law or equilibrium condition dS = dE/T, T = h can

be formulated for a suitable energy E, and which pertains to extremal codimension-

two surfaces in Einstein gravity, it would help establish a more explicit correspondence

between AdS geometries and cMERA networks, where in the latter setting it is nat-

ural to think of the entanglement across a codmension-two surface as having been

maximized when the surface is extremal [5, 5].

Another direction is to look for simple toy models which have a suitable notion of

gravity dual and on which the cMERA procedure can be implemented analytically.

71



For instance, there exists a large-N matrix model of non-interacting fermonic degrees

of freedom whose dual is given by dilatonic gravity coupled to a tachyon [44.1] and for

which there is in principle no obstacle to implementing the cMERA procedure, due to

the boundary theory being non-interacting. A more far-reaching goal is to implement

the cMERA procedure on a model which has a black hole horizon in its gravity dual -

a possible candidate is given by Kitaev's random quartic model of Majorana fermions,

which he has shown possesses a kind of dual black hole horizon [43].
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