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Abstract

In this thesis, we use the methods of statistical physics to provide quantitative in-
sights into the behavior of biological systems. In the first half of the thesis, we use
equilibrium statistical physics to develop a phenomenological model of how the hy-
drophobic effect impacts the structure of proteins, and in the second half, we study
the phenomenon of adaptation and Darwinian selection from the standpoint of non-
equilibrium statistical physics.

It has been known for a long time that the hydrophobic effect plays a major role
in driving protein folding. However, it has been challenging to translate this under-
standing into a predictive, quantitative theory of how the full pattern of sequence
hydrophobicity in a protein helps to determine its structure. Here, we develop and
apply a phenomenological theory of the sequence-structure relationship in globular
protein domains. In an effort to optimize parameters for the model, we first analyze
the patterns of backbone burial found in single-domain crystal structures and dis-
cover that classic hydrophobicity scales derived from bulk physicochemical properties
of amino acids are already nearly optimal for prediction of burial using the model.
Subsequently, we apply the model to studying structural fluctuations in proteins and
establish a means of identifying ligand-binding and protein-protein interaction sites
using this approach.

In the second half of the thesis, we undertake to address the question of adap-
tation from the standpoint of physics. Building on past fundamental results in non-
equilibrium statistical mechanics, we demonstrate a generalization of the Helmholtz
free energy for the finite-time stochastic evolution of driven Newtonian matter. By
analyzing this expression, we show a general tendency in a broad class of driven
many-particle systems toward self-organization into states formed through reliable
absorption and dissipation of work energy from the surrounding environment. We
demonstrate how this tendency plays out in the familiar example of Darwinian com-
petition between two exponentially growing self-replicators. Subsequently, we illus-
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trate the more general mechanism by which extra dissipation drives adaptation by
analyzing the process of random hopping in driven energy landscapes.

Thesis Supervisor: Jeremy England
Title: Assistant Professor
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Chapter 1

Introduction to protein structure

Proteins are molecules of life - they are the building blocks of every living organism,

and they participate in nearly every biochemical process, starting with regulation

of gene expression inside one cell and ending with transduction of signals between

organs. The functions performed by proteins depend on their shape and ability to

change shape during interaction with the environment. Therefore, in order to design

any drug or enzyme to promote or inhibit a specific reaction, it is crucial to understand

why proteins fold in particular shapes. Over the past thirty years, the central question

in the study of the protein folding has been the following: How does the amino

acid sequence determine the three-dimensional structure and, therefore, function of a

protein?

To answer this question, a large number of experimental, computational, and

theoretical methods has been developed. In this chapter, we are going to review these

methods and build the foundation for introducing the phenomenological models of

protein folding presented in later chapters.

1.1 The building blocks

Despite the vast range of biological functions, proteins are a relatively homogeneous

class of macromolecules. All proteins consist of one or more linear polymers built

of various combinations of 20 amino acids. Figure 1-1 illustrates how amino acids
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Figure 1-1: Three amino acids joined by two peptide bonds form a polypeptide.

Peptide bonds are shown in red. q, b, and w are torsion and improper torsion angles.

are linked by peptide bonds to from a polypeptide chain. The particular sequence of

amino acids in the chain is called the primary structure, the different parts of which

might form local regular secondary structures, such as alpha helices and beta sheets.

The overall shape of a single chain is called a tertiary structure and is formed by

packing together secondary structure elements. Commonly, proteins contain more

than one linear chain, in which case different polypeptide chains are arranged in the

quarternary structure. The functional properties of a protein depend on its three-

dimensional shape and amino acid sequence. Therefore, the functional diversity of

proteins comes simply from the diversity of chemical properties of the amino acids

and the astronomical number of primary sequences.

The first three-dimensional structures of proteins were obtained using X-ray crys-

tallography in 1958 [1]. In 1984, the nuclear magnetic resonance (NMR) framework

for protein strucuture determination, which does not require protein crystallization,

was developed [2, 31. Since then, the three-dimensional structures for thousands of

proteins have been determined. This has allowed for classification of proteins by

their structures and functions [4, 5]. Although X-ray crystallography and NMR spec-

troscopy significantly improved our understanding of the relationship between protein

structure and function, these methods do not explain how the structure of the protein

arises from its sequence. To get closer to answering this question, one first needs to

understand the nature and variety of interactions in biological systems.
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1.2 Physical interactions that determine the proper-

ties of proteins

Even though the majority of forces in living systems are manifestations of electromag-

netic interaction, it is often convenient to group these forces by their strengths and

by the types and charges of interacting particles. Table 1.1 shows that the strength of

interactions also varies considerably depending on their nature. Because the energies

of quantum mechanical bound states, such as covalent bonds and bond angles, are

much greater in magnitude than the energies of other interactions, including ther-

mal fluctuations, one can approximate interactions of quantum mechanical nature by

classical potential energy:

- Covalent bonds are formed when two atoms share a pair of electrons. The

energy of breaking of covalent bonds is around 30 kBT. The latter allows one

to assume that the lengths of these bonds is close to optimal and to describe

the energy cost of stretching the bond by classical harmonic potential.

- When three atoms are connected by two covalent bonds, the angle between

these bonds tends to be close to the value corresponding to the ground state

of two atoms. The energy required to significantly change the bond angle is

of the same order of magnitude as the energy of breaking a covalent bond.

Therefore, in proteins, one can take into account only small variations in the

bond angle around optimal value, "bond bending", which for practical purposes

can be described by classical potential.

- When four atoms are connected by three covalent bonds, two side bonds prefer

to be in certain orientation relative to each other. This orientation is described

by torsion angle, the angle between two half planes that contain side chains

and have middle covalent bond in common. Figure 1-1 shows the definition of

torsion angles, q and V, and of an improper torsion angle, w, for a polypeptide

backbone. The improper torsion angle is close to 180' in all proteins, and small

deviations from this value can be characterized by harmonic potential. However,

the # and b torsion angle interactions are different from bond stretching and
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Interaction Nature Range, A Strength, kBT

Covalent bonds quantum 1 - 2 30 - 100

Torsion angle quantum NA 5 - 10

Electrostatic entropic solvent dependent 3 - 5

Hydrogen bonds electrostatic < 4 3 - 10

Van der Waals quantum < 10 0.3 - 1

Hydrophobic entropic particle size dependent ~1

Table 1.1: Summary of interactions in biological systems.

bending interactions in two ways: First, they are periodic in torsion angle, and,

second, more importantly, the rotation barriers are only about 3 kBT, which

is comparable to the energy of thermal motion. Therefore, rotations around

bonds are treated as Fourier series of lengths, providing a good agreement with

experimental torsion surfaces.

To conclude, the degrees of freedom associated with bond lengths and bond angles are

effectively frozen at room temperature, so the local flexibility and structural variation

of the protein backbone are due to the #, 0 torsion angles.

Because strong quantum mechanical interactions determine the local geometry

of a protein, it is the cooperativity of weaker interactions, such as hydrogen bonds

and van der Waals interaction, that control the structure of the entire protein. It is

practical to group weaker forces by the types and charges of interacting particles:

- The long-range electrostatic interactions between two ions, which can be on

the order of 100 kBT in a vacuum, are screened by counter-ions in physiological

solvents and should be taken into account at distances of less than several Debye

length, AD = 1/ ABnions, where AB - e2 /(EkBT) ~~ 7 A is Bjerrum length of

the solvent, and nion is the concentration of the counter-ions.

- Hydrogen bonds form as a result of competition of two electronegative atoms

for the same hydrogen atom. That is, the main component of a hydrogen

bond is an electrostatic interaction between the dipole of donor-hydrogen pair

(D-H+) and electronegative acceptor atom (A-). In proteins, hydrogen bonds

most frequently form between carboxyl CO and ammonium NH groups. Typ-

18



ically, the distance between nitrogen and oxygen atoms in a hydrogen bond

(N-H.. .0 = C) is about 3 A, and the energy of this bond is about 3 kBT.

Although these bonds are relatively weak, they can provide extra stability for

the protein structure. For example, it has experimentally shown that the salt

bridges - hydrogen bonds between amionic carboxylate (RCOO-) of aspartic

acid (Asp) or glutamic acid (Glu) and the cationic ammonium (RNH') of lysine

(Lys) or guanidinium (RNHC(NH 2)4) of arginine (Arg) - stabilize the native

structure of lysozyme [61.
- Van der Waals interaction is the result of correlations in fluctuations of po-

larization of non-charged particles. This interaction is relatively weak (about

1 kBT), but it cannot be ignored because van der Waals forces are acting be-

tween all nearby particles, and the energies of these interactions might add up

to a significant contribution to protein energy.

One of the most popular functional forms of effective potential energy of a protein,

which combines contributions of all interactions, is given by [7, 8, 9]:

U =Z I(b - bo) + o(O- 00)2 +F KUB(U - UO)2

all bonds all angles Urey-Bradley

+ K4,n[I + cos(n# - mn)] + I5(W - WO)2+
all torsion angles all improper angles

S+ 5 qiqj/r (1.1)
non-bonded atoms all charges

where Kb, K O, kUB, K,,, and r are the bond, angle, Urey-Bradleyl, torsion an-

gle, and improper torsion angle force constants respectively; b, 6, u, #, and W are the

bond length, angle, Urey-Bradley distance, torsion angles and improper torsion angle,

respectively; and the zero subscript corresponds to optimal values of distances and

angles. The last two terms in this equation describe van der Waals interaction calcu-

lated with 12-6 Lennard-Jones potential and the electrostatic energy with a Coulomb

'Urey-Bradley interaction is a harmonic term in distance between atoms 1 and 3 separated by
two covalent bonds (1-2-3). Not all force fields consider Urey-Bradley interaction because it is a
correction to bond bending and stretching terms.
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potential. The interaction parameters of the energy function (1.1) are usually de-

termined by fitting interaction energies and geometries of protein building blocks to

experimental gas-phase geometries of these blocks, vibrational spectra, and torsion

energy surfaces [10]. Importantly, the sums in the last two terms of energy function

(1.1) include both intrachain and chain-solvent interactions.

Exact treatment of chain-solvent interaction is difficult because of the dependence

of induced charges on each other and the complex organization of solvent molecules.

For example, the molecules of the typical biological solvent - water - tend to form

an extensive hydrogen bond network. Disruption of this network by protein backbone

and side chains leads to local rearrangement of water molecules, which is associated

with a change in free energy. This effect lies in the origin of hydrophobic interaction

the tendency of non-polar molecules to interact more strongly with each other

rather than water molecules. The contribution of different interactions to potential

energy of proteins has been studied both numerically and experimentally. The most

influential experiments were done by Anfinsen in early 1960s. In the next chapter,

we are going review these experiments and demonstrate how Anfinsen came to a

conclusion that hydrophobic interactions play the dominant role in determining the

structure of globular proteins.

1.3 Anfinsen's experiments and thermodynamic prin-

ciple

It is an indisputable fact that life is a far-from-equilibrium process. Living sys-

tems constantly absorb energy from the surrounding environment and use this energy

to initiate a multiplicity of chemical reactions and to form regular structures that,

from the standpoint of biology, perform particular biological functions. Because of

this, the application of equilibrium thermodynamics to most biological systems is

groundless. In early 1960s, Anfinsen conducted a series of experiments on kinetics of

renaturation of globular proteins and observed that globular proteins can fold into
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native structure without help from the cellular machinery [11, 12, 13]. These observa-

tions demonstrated that the process of protein folding does evolve toward equilibrium

and motivated formulation of the "thermodynamic hypothesis" which states that the

three-dimensional structure of a native protein in physiological environment is the

one in which the Gibbs free energy of the whole system is the lowest - that is, the

native conformation is determined by the sum of inter-atomic interactions and hence

by the amino acid sequence.

In the work on renaturation of ribonuclease, 2 Anfinsen and colleagues used urea to

disrupt non-covalent bonds and to unfold the protein [11]. Then, after removing urea,

they let the system oxidize again and measured the restoration of protein activity as

a function of time. After 10-20 hours, they observed the compete restoration of

protein activity. It was known before this experiment that ribonuclease is a 124-

residue protein with 8 cysteine residues forming 4 disulfide bonds that cross-link and

stabilize its native structure. The lag period (about 1 hour) prior to the appearance of

ribonuclease activity demostrated that during the process of folding, disulfide bonds

are formed at random and then are rearranged until the native configuration of protein

is reached. It should be noted that this experiment was conducted in vitro, and there

were no enzymes added that facilitate the formation of disulfide bonds. When such

enzymes were added to the solvent, however, the folding occurred much more quickly,

approximately 2 minutes, which is consistent with in vivo folding times. The results

of this experiment strongly supported the idea that folding of ribonuclease is driven

by thermodynamics forces toward the conformation with the minimal free energy,

native ribonuclease.

Later, in the study of proteins that are not cross-linked, Anfinsen and colleagues

identified the major physical forces that govern the process of protein folding [12].

Because the proteins that are not cross-linked undergo renaturation in a few seconds,

Anfinsen and colleagues used stop-flow experiments to study the kinetics of folding of

staphylococcal nuclease. They found that the fluorescence of nuclease, which depends

on nuclease's proximity to its native state, as a function of renaturation time can be

2 A protein that catalyzes the degradation of RNA into smaller parts.
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described by combination of two processes: fast (55 ms) and slow (350 ms). More-

over, they investigated how the time scales of these processes change under different

environmental conditions:

- Ionic strength and pH had no significant effect on folding time scales, which

suggested that electrostatic forces do not affect rates of folding.

- The rate of fast process is independent of temperature, whereas slow process was

almost four times faster at higher temperature (Ti 0 (l 3 C) = 600 ins, T,,(38 0 C) =

150 ins). The latter indicated the importance of hydrophobic interactions in

protein folding.

Anfinsen interpreted observed kinetics of renaturation as a sequence of two processes:

Fast nucleation followed by slow rearrangement of hydrophobic interactions. It should

be noted that not all proteins exhibit two-step renaturation 114]. However, numerous

studies of renaturation of proteins under different environmental conditions confirm

that hydrophobic interactions play a major role in the process of protein folding.

Contributions of hydrophobic interactions to protein folding thermodynamics have

been studied extensively in the past 30 years [15, 16, 17]. However, the quantitative

results of these studies vary substantially depending on the model of hydrophobic

interactions. To understand the origin of these discrepancies, it is helpful to review

basic models of hydrophobic interactions at different length scales.

1.4 Hydrophobicity at small and large length scales

Hydrophobic effect is usually understood as the preference of non-polar molecules for

non-aqueous environments. The origin of hydrophobic interactions is well understood

qualitatively - in the process of transferring a non-polar solute molecule into liquid,

the unfavourable change in free energy is a result of creation of a suitably sized

cavity for the solute molecule and associated rearrangement of the surrounding liquid

molecules. However, the microscopic physical interpretation of hydrophobic effect is

not straightforward.

The properties of liquids including water vary considerably depending on the
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length scale at which they are probed. The exclusion of molecules of liquid around a

large non-polar solute particle (about 1 pum in diameter) is associated with formation

of a "liquid-solute" interface very similar to the liquid-vapor interface [18]; that is, the

cost of formation of the interface is enthalpic and is due the fact the liquid molecules

at the interface form fewer bonds than do the molecules in the bulk. For particles

that are comparable in size to water molecules (about 3 A), the cost of forming of a

cavity is mostly entropic. An extreme example of increased order of water molecules

is formation of clathrates at low temperatures. In this example, all water molecules

have the same number of hydrogen bonds on average, but the orientation of these

bonds is fixed.

To estimate at what length scale the transition between bulk and microscopic

regime happens, consider a system composed of two large parallel hydrophobic plates.

At sufficiently large separations, the liquid bound between the plates forms two

"liquid-plate" interfaces, which have unfavorable energy proportional to the total area

of the interfaces, AEsurface = 27A, where -y is the surface tension and A is the inter-

face area. On the other hand, the favourable bulk free energy of liquid is proportional

to the number of liquid molecules between the plates, AEulk = ni 111 - pg AD, where

nj is the density of liquid, pl,g is the chemical potential of water/gas phase, and D is

the distance between the plates. From the arguments above follows that at distances

shorter than the critical distance,

D2-y (1.2)
nilp - pgI

the surface energy dominates favourable bulk energy, and evaporation of liquid oc-

curs. For water, the drying phenomenon happens at distances D, ~ 100 nm, and

at distances comparable to the size of biological macromolecules (about 10 nm), the

phenomenon is affected by the short-range correlations in water structure.

The correlations in local structure of water are commonly described using radial

distribution function, g(r), which is the average density of water molecules at a given

distance r from a reference particle. The radial density function depends on the size of
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the reference solute particle: for particles larger than 10 nm, there is a depletion region

where g(r) goes to zero; for particles with radii less than 1 nm, there is an increase

in the local density of water molecules. In other words, radial distribution function

has a peak near the solute particle, which is often referred to as first hydration shell.

This property of water motivated early models of solvation, where the solvation free

energy of a particle comes from the first hydration shell is proportional to the volume

of the hydration shell that is accessible to the solvent [19, 20]. Therefore, in these

models, the total free energy of hydration of a solute macromolecule is given by

AGh - giAi, (1.3)

where the sum is taken over all functional groups of solute (such as aromatic and car-

boxyl groups), gis is empirical hydration energy of the group i, and Ai is conformation-

dependent accessible area of group i. This form of solvation free energy assumes the

additivity of contributions of different groups and consistency of effective hydration

energies gi. Even though this method of calculating free energy can be extended to

calculation of enthalpy and heat capacity of solvation, there exists evidence that the

assumption that solvation free energy is proportional to the solvent-accessible surface

area breaks down for polar groups [21].

A different microscopic theory of hydrophobic effect, which takes into account local

correlations in density of water, was developed by Pratt and Chandler [22, 23, 24, 25].

This theory focuses on a component of fluid density that varies slowly in space and

provides a description of hydrophobic effect at both small and large distances. At

the heart of this theory lies the assumption that solvation energy is related to the

probability of creation of a cavity in liquid that is large enough to fit a solute particle:

AGs = -kBTnPcavity -kBTlnPv(0), (1.4)

where Pv(0) is probability of observing zero liquid molecules in volume, V. Assuming

3 The typical value of gi is on the order of 10-2 kBT/A 2 .
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Figure 1-2: Solvation free energy, AG, for a spherical hydrophobic particle as a
function of particle size, R. For large particles, the solvation free energy per unit
area approaches the liquid-vapour surface tension, -y.

that local fluctuation of density in water are Gaussian (i.e. the probability of observing

N particles in volume V is Pv(N) = AF(pV, U2), where p is the density of bulk water),

Chandler and coworkers found free energy of solvation and the variance in particle

number o< can be computed as

AGS = kBT 2 + -kBT In(27o2) (1.5)
2- 2

{ = pV + p Jdx dy (g(lx - yD - 1). (1.6)

Within the framework of this model, they also computed the solvation free energy

for a spherical particle in water as a function of particle size. The sketch of their

result is shown on Figure 1-2. It is noteworthy that, for small particles (R < 8 A),
the free energy of solvation grows linear with the volume of a particle rather than

the surface area, as is commonly assumed in hydration shell models. This result

demonstrates that at small length scales, hydrophobic forces are not additive and

affirms that hydrophobic effect is a collective phenomenon.

Experimentally, the magnitude of hydrophobic interactions is usually measured
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by the free energy transfer of non-polar molecules from gas or non-polar liquid to

water:

AG&, = -kBT In nnP, (1.7)
nw

where nn, and nw are equilibrium concentrations of non-polar molecules in non-polar

environment and water [26]. The quantity defined by the equation (1.7) is usually

called hydrophobicity, and the relative hydrophobicities of amino acids is called the

hydrophobicity scale. From experimental measurements of hydrophobicities of indi-

vidual amino acids, one can determine the effective hydration energies for hydration

shell models, and using these values together with protein structural information, one

can estimate the contribution of hydrophobic interactions to the free energy of the

protein's native state by computing the difference in solvation free energy between

unfolded and folded states [15, 16]. It is worth mentioning that there also exist a

large number of empirical hydrophobicity scales derived using statistical analysis of

the distributions of residues between the surface and the core in proteins with known

structures. Some of these empirical scales we will discuss in more detail in Chapter

2.

Hydrophobicity scales have also been used to predict secondary structure of pro-

teins, antigen binding sites, and partitioning of residues between the core and the

exterior of a protein [27, 28, 29, 30, 31]. All of these methods are based on hydropho-

bicity profiles, moving average of sequence hydrophobicity. First, by analysing three-

dimensional X-ray structures of globular proteins, Rose noticed a correspondence

between chain turns and the place where hydrophobicity reaches a local minimum

[27]. Later, he observed that protein packing density is also strongly correlated with

hydrophobicity profile [28]. From these observations, Rose concluded that densely

packed regions are formed primarily by hydrophobic parts of the chain, while chain

turns and solvent-exposed parts of helices have low hydrophobicity. In addition, he

suggested a hierarchical condensation mechanism for protein folding: Formation of

dense hydrophobic clusters is followed by association of these clusters into native

conformation. Later, Kyte and Doolittle argued that the interior of globular proteins
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has high density and, thus, hydrophobicity profiles can be used to differentiate the

buried parts of the chain from solvent-exposed parts based just on a sequence of a

protein [31]. Likewise, Kyte and Doolittle used hydrophobicity profiles to identify

parts of transmembrane proteins that are located within a lipid bilayer. A similar

approach for transmembrane proteins was developed by Engelman [29]. In addition

to being helpful for predicting buried regions of a protein, hydrophobicity profiles can

also be used to locate protein antigenic determinants, parts of the antigen recognized

by immune system. For example, Hopp and Woods argued that because antibody-

binding interfaces are often located on the surface of the protein and contain charged,

hydrophilic side chains, their positions can be predicted by finding regions with the

highest local average hydrophilicity [30]. Despite descriptiveness and simplicity, hy-

drophobicity profiles have a limited practical use. These limitations come from the

fact that the hydrophobicity profiles depend on the smoothing procedure and that the

optimal window length for computing the average is not known beforehand. When

the window length is short, the resulting hydrophobicity profile is noisy and contains

a large number of extra of peaks and troughs, whereas averaging with large window

length leads to the loss of resolution and artifacts such as inverting of initial data.

To conclude, because of the multifaceted nature of the hydrophobic effect, it is

difficult to develop a theory that explains all features of this phenomenon. Therefore,

the most reliable simulations of protein dynamics, calculations of energy surfaces, and

methods of protein structure prediction are still performed with an explicit treatment

of water.

1.5 The current state in protein structure prediction

After Anfinsen's experiments showed that the proteins can fold without help of cellular

machinery and suggested that the information contained in the amino acid sequence

of a globular protein is enough to determine its structure, the focus of theoretical

research was to explain how proteins reach a single native state and how they do it

in a reasonable amount of time. The first polymer physics models interpreted protein

27



folding first as coil-to-globule transition and then a native state transition [32, 33].

In addition, these models explained Anfinsen's "all-or-none" observation as a first

order phase transition and constructed phase diagrams of proteins. Later works on

heteropolymers [34, 35, 361 considered energies of different protein conformations as

independent random variables and associated the folded frozen phase of the Random

Energy Model (REM) with the native structure of the protein. These studies demon-

strated that a single native state of the protein can be thermodynamically dominant,

provided that it has much lower energy than disordered states. In addition, the pres-

ence of a large energy gap in the spectrum of protein conformations sheds light on the

kinetics of folding process [37]. Even though the theoretical models mentioned above

provide deep insight into the physics of protein folding, they were not developed to

predict the structure of real proteins.

The most successful approaches to protein structure prediction have been molec-

ular dynamics (MD) and Monte Carlo (MC) simulations and statistical studies of

homologous proteins. These methods were developed in the mid 1990s and take ad-

vantage of rapid/dramatic growth of computational power and advances in protein

sequencing. MD simulations are widely used to analyse protein motion at atomic

resolution, but they have limited time scales, usually shorter than those of protein

folding and biologically important conformational changes. Limited computational

power still impedes the use of MD simulations for de novo structure prediction of large

proteins (greater than 100-residues), but some studies report that, using a special-

purpose machine, they were able to run 1-millisecond simulations4 of folding of short

polypeptides (about 40-residues) starting from random coil state [38]. In particular,

Shaw and colleagues simulated folding dynamics of WW domain (FiP35) and bovine

pancreatic trypsin inhibitor (BPTI). For FiP35, they ran two independent 100-ps

simulations, and in each of these simulations, FiP35 underwent several folding and

unfolding events. These simulations allowed them to determine the typical folding

pathway of the FiP35 and folding time 10 3 ps (comparable to experimental data 14

ps). A 1-millisecond simulation of the folded protein BPTI helped them understand

4These simulations took several months of supercomputer time.
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the native-state dynamics of this protein and to confirm separation of time scales

of conformational changes: the relaxation of side-chains happens on the 10-ns time

scales, whereas the time scale of backbone motion is on the order of 10 its. The

agreement between the results of MD simulations and experimental measurements

validates the use of empirical force fields for describing dynamics of proteins over

biologically important time scales.

A promising approach to interpretation of MD simulations and to propagation

of dynamics to times far beyond of those directly simulated was proposed by Pande

and colleagues [39]. In their work, Vaidyanathan and Pande ran a massive parallel

simulation of the dynamics of the villin headpiece protein. The total simulation time

of all trajectories was close to 500 is, but unlike the simulation done later by Shaw

and colleagues, the duration of single trajectory never exceeded 50 ns. Using tra-

jectories that started from unfolded states, Vaidyanathan and Pande constructed a

Markovian state model (MSM) that corresponds to observed dynamics. First, all con-

formations of the protein observed in these simulations were clustered/coarse grained

using k-means clustering algorithm. Then, given transition time At, transition prob-

abilities P, between coarse grained states i and j were computed as the fraction of

trajectories started in coarse grained state j at time t = 0 and finished in state J at

time t = At. Finally, the real deterministic dynamics of the protein was approximated

by probabilistic MSM dynamics. This approach allowed Vaidyanathan and Pande to

compute the mean folding time, 9 ps, which is in good agreement with experimental

measurements, 10 ps. In conclusion, it should be noted that the probabilistic ap-

proach proposed by Vaidyanathan and Pande provides a more descriptive picture of

the dynamics than simple analysis of the multiple trajectories, but approximation of

deterministic dynamics by MSM dynamics remains unproven.

Another powerful method of de novo protein structure prediction is built on the

idea that the native structure of the protein corresponds to the lowest energy confor-

mation, [40, 41].' In order to find the minimal energy configuration Rosetta performs

5This method is called Rosetta and is a result of collaboration of multiple research groups.
The code for the Rosetta project is available freely for academic purpose at (http://www.
rosettacommons.org/).
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a multistep MC search in conformational space of the protein. The energy func-

tion used by Rosetta changes during the search process - individual interactions

are taken into account progressively. The first step in the search of global minima

involves finding a large number for local minima in lower-resolution potential. At

this step, Rosetta searches structure space by replacing torsion angles of 9-residue

fragments with torsion angles from known structure fragments. The second step in

energy minimization process starts from local minima found in the low-resolution

search and adds more interactions, such as pairwise Lennard-Jones interaction, inter-

action with solvent, and hydrogen bonds. The predictive power of Rosetta was tested

in the Critical Assessment of Techniques for Protein Structure Prediction (CASP)

competition, and the high-resolution structures obtained with Rosetta agrees with

crystal stucture with less than 2 A accuracy. Despite an exceptional ability to com-

pute the native structure of the protein, the Rosetta program should be thought of as

statistical/computational method rather than as a physical model for two important

reasons: First, MC simulation is a great technique for obtaining ensemble averages

for thermodynamic quantities, but its kinetic interpretation is unclear; second, the

empirical energy function that Rosetta is minimizing changes during the simulation.

The recent progress in protein sequencing allowed for development of statistical

methods for predicting protein structure from sequence variation [42]. This method

is based on the idea that proteins that have similar sequences have similar shapes

and perform similar functions. In addition, this method assumes that amino acids in

positions important /critical for protein function are less likely to mutate in the process

of evolution. Therefore, by studying covariation of amino acids in collections of

homologous sequences, one can extract information about positions in linear sequence

of protein that evolve together. The latter implies that residues at these positions

are in contact in the three-dimensional structure. The workflow/algorithm of this

method can be summarized as:

- sequence alignment

- prediction of contacts using maximum entropy methods

- generation of approximate three-dimensional structure, with contacts deter-
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mined at the previous step

- refinement of three-dimensional structure using MD simulation

It should be noted that the refinement of three-dimensional structure in this method

does not have to be done with MD simulations, it can also be done with the Rosetta

energy minimization algorithm [43]. The major limitations of predicting a protein's

structure using evolutionary information are the lack of ability to correctly predict

non-local contacts and the unbiased choice of homologous sequences for alignment

procedure. Current accuracy of contact prediction is only 50 % -70 % for the top 20

contacts.
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Chapter 2

Quantitative theory of hydrophobic

effect as a driving force of protein

structurel

2.1 Introduction

Since the experiments of Anfinsen [13], the field of structural biology has been mo-

tivated by the idea that the shape of a protein is completely determined by its se-

quence. Increasingly, however, it has been assumed that this mapping from sequence

to structure is affected by such a diverse combination of physical interactions that a

detailed simulation framework must be necessary to make accurate predictions about

real proteins. Advances in hardware and simulation methods have led to various

breakthroughs in the computer simulation of protein folding with all-atom resolution:

The massive parallelization of trajectories for heavy sampling [391, the optimization

of supercomputing on the millisecond timescale [38], and the improvement of algo-

rithms for searching the energy landscapes of macromolecules have brought many

structure-prediction and design goals within reach [41].

However, even considering the success of such computational methods in shedding

'This chapter is a paper published in Protein Science Journal [44].

33



new light on macromolecular structure and function, their high computational cost

[38, 39] and dependence on numerous modelling parameters raise the possibility that

complementary insights might still be gained using a more more theoretically and

computationally simple approach. Such a method would potentially have at least

two advantages: that on a fixed computational budget it could be applied to a much

larger corpus of protein sequences or used to sample a wider diversity of low-energy

structures; and, that the small number of modelling assumptions would make it easier

to determine where the model is expected to succeed, as well as where it might fail.

In the search for a simple physical principle to incorporate into the assumptions

of such a model, the hydrophobic effect is a highly attractive choice. Various stud-

ies suggest that the hydrophobic effect plays a major role in the folding of proteins

[45, 46, 25]. However, although the hydrophobic effect is well understood at the level

of individual amino acids - non-polar amino acid residues tend to be buried in the

core of the protein, and the polar residues are more likely to be on the surface - a

quantitative theory of how the hydrophobic effect impacts structure as a whole in real

globular proteins is difficult to construct. The lattice HP models, in which a protein

is represented as a sequence of nonpolar (H) and polar (P) residues with attractive

interaction between H residues, quite often do not give unique native structures, so

that the predictions of these models cannot be translated to real protein structures

[47, 48]. Hydrophobicity profiles, which are constructed by averaging sequence hy-

drophobicity, are known to correlate reasonably well with the burial of amino acid

residues in globular proteins [49, 28]. However, the methods that use hydrophobicity

profiles to predict burial generally do not include nontrivial effects of the polypeptide

chain and do not account for the limited space in the core of a protein domain, which

limits application of these methods.

Previously, England introduced a model of protein folding, termed here the "burial

mode model", that considers the hydrophobic effect, steric repulsion, and the poly-

meric constraints of the protein backbone to be the driving forces of protein structure

[50]. Using only the amino acid sequence of a protein, this model allows one to com-

pute not only the minimum energy conformational state of a protein but also an

34



ensemble of low-energy excited states. Knowledge of these states has in turn been

demonstrated to be useful for studying coupled motion of different parts of a protein

in allosteric motion.

For a 100-300 residue protein, it takes less than a second to use the burial mode

model to compute tertiary structural information on a single CPU. Thus, it might

eventually be appealing to apply the model to studying the large collections of se-

quence homologs that became available with high-throughput genomic sequencing.

However, before doing so, one must clearly understand the model's domain of applica-

bility and which input parameters make it most successful in capturing the structural

physics of protein domains.

In this study, we first examine whether our approach can be improved by choosing

a better set of parameters. To accomplish this, we undertake to compute a new

amino acid hydrophobicity scale from a large set of known protein structures, and we

compare this performance of this scale to those of known hydropathy scales. Having

identified a suitable set of parameters, we then undertake to explore the confounding

effects of inter-domain interactions on the model's ability to predict burial in protein

monomers. By doing so, we discover a new application for the model in the analysis

of conformational fluctuations related to ligand-binding and mutation.

2.2 Results

2.2.1 Burial mode model

In the burial mode model a globular protein domain is represented as a linear chain of

N residues that are indexed by the number s and have position f*(s) = [x(s), y(s), z(s)]

relative to the center of mass of the globule (Figure 2-1). The polymeric bonds and

the hydrophobic effect are incorporated into the system energy:

N- N

E = rsis + 1) - i~s) 1 + Y p(S)Ii(s)2 (2.1)
s=1 s=1
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Figure 2-1: Basic assumptions of the burial mode model.

A. The protein backbone is represented as a linear chain (solid red line) with residues

indexed by the number s and that have position i?(s) relative to the center of the

globule. The solid black line shows the maximum size of the globule, while the black

dashed line shows the radius of gyration R9. The hydropathy of each residue np(s)

is determined by the type of the residue. Neighbouring residues are connected by

harmonic springs of stiffness r,. Blue and red residues represent hydrophilic and

hydrophobic amino acids, respectively. The plot in the bottom right corner shows the

contribution of different residues to the system energy as a function of the distance

to the center of the globule.
B. Burial traces computed using the model (blue lines) and from the crystal structures

(red lines) of sperm whale myoglobin (1BZP) and sialoadhesin (10D7). The PCC

between the model and the structure is 0.6 for myoglobin and -0.1 for sioloadhesin.
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The bond stiffness r determines the strength of "harmonic spring-like" attraction

between adjacent monomers along the chain, which sets the overall elastic extensibility

of the polymer. The relative hydropathy so(s) reflects the tendency of each different

amino acid in the chain to be exposed on the globule's surface or buried in its core

and is obtained by converting amino acid sequence into numbers using the standard

Kyte-Doolittle (KD) hydrophobicity scale [31]. It should be noted that quadratic

form of the hydrophobic contribution to the energy was chosen for two reasons: First,

it allows the model to be analytically tractable; second, it has a physical intuition that

a force acting on the residue near the surface is larger than in the core because on the

surface the amino acid is more likely to have larger area exposed to the solvent. The

steric repulsion between different parts of a chain is taken into account as a global

constraint on the ratio a of the gyration radius squared to the maximum distance to

the center of mass squared R2

R = N |s|2 =R2 .2N ;*S z (2.2)
s=1

The goal of this constraint is to prevent residues from collapsing into the center of

the globule and, thus, to account for the limited space in the packed globular core.

To compute the lowest energy conformation of the protein, one should minimize

the system energy (2.1) subject to constraint (2.2). As was shown in previous pub-

lished work, this procedure can be reduced to an exactly solvable linear programming

problem [50]. The optimized outcome of the linear program is given in the form of

an energy-minimizing "burial trace," that is, the squared distance Ii(s) 2 from each

residue to the center of mass.

To quantify the performance of the model on a given protein, one may compute

Pearson's correlation coefficient (PCC) between the burial trace computed from the

sequence using the model and the burial trace generated from the known structure

of the protein using coordinates of C, atoms. (Note: To compute burial traces, one

can also use coordinates of C, atoms or side chain centroids, but this does not change

burial traces significantly.) Examples of proteins for which the model gives different
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PCC values are shown on Figure 2-1B. As one can see from this figure, for the proteins

with high PCC (> 0.4), the resemblance between burial traces is striking, whereas

for the proteins with low PCC (< 0.1), the model correctly predicts only positions of

a few local extrema of the burial trace.

In globular protein domains, burial traces show what parts of the protein are

buried in the core and what parts are exposed to water. In this regard, burial traces

are similar to hydrophobicity profiles or window-averaged sequence hydrophobicities

p(s), which are widely used to find out information about the secondary and the ter-

tiary structure of proteins from their sequences [28, 301. However, unlike hydropho-

bicity profiles, which do not contain any explicit information about conformational

changes, the burial mode model allows one to compute the ensemble of burial traces

for low-energy excited states of the chain and, thus, provides a framework for studying

conformational fluctuations in proteins. Previously, this framework has been success-

fully employed to explain allosteric motion in a panel of test proteins for which the

PCC between the burial traces from the sequence and from the structure was greater

than 0.4 [50].

The mapping of the sequence-structure relationship that is affected in the burial

mode model simplifies and thus accelerates the calculation so that it becomes an

attractive tool for studying large collections of proteins. However, to use the model

as a reliable method for analysis of conformational fluctuations, one should identify

the set of physical parameters that makes the model applicable to the broadest set

of proteins. Thus, motivated by the previous successes of the model in explaining

allosteric motion for the proteins with high PCC, we attempted to improve the model's

power to predict burial traces by optimizing its input parameters.

2.2.2 Parameter optimization

There are 21 independent parameters in the burial mode model: the bond stiffness

(r), the ratio of the squared gyration radius to the squared maximum radius of the

protein (a), and 19 relative hydrophobicities of amino acid residues. However, not all

parameters can be changed given the model's assumptions. First of all, the bond stiff-

38



Hydrophobicity scale Protein class
a a+3 a/f

Kyte-Doolittle 0.25 0.22 0.22 0.18 0.25 0.18 0.23 0.20
Wimley-White 0.24 0.23 0.21 0.19 0.21 0.18 0.21 0.19
Janin 0.22 0.23 0.18 0.19 0.23 0.18 0.20 0.19

Table 2.1: Comparison of the model performance with different hydrophobicity scales
for different classes of proteins from the SCOP database. Each column shows the
mean and the standard deviation of the distributions of PCC between the burial
traces computed from sequences using different hydrophobicity scales and the burial
traces extracted from protein structures for a given SCOP class.

ness r, fixes the units of length and must be chosen so that corresponding mean-square

distance between neighbouring C atoms is equal to one; the parameter a ranges from

0.4 to 0.6 in real proteins and is set to 3/5, which is the value that would hold for a

globular protein that was spherical and had uniform density. The maximum radius of

the protein, meanwhile, is estimated from the number of monomers in the chain and

is given by R = (3N/47po) 1/3, where Po is the density of monomers estimated from

the crystal structure of the TIM barrel fold (PDB ID 2VXN). Thus, it is the amino

acid hydrophobicity scale that offers some remaining parametric flexibility and could

perhaps be optimized to improve the model's burial trace prediction.

We first investigated how the burial mode model's performance changes when we

use different standard hydrophobicity scales. Based on the methods by which they

were developed, hydrophobicity scales can be divided into two groups: experimental

scales, which are based on the measurements of the free energy of solvation of single

amino acids or short peptides in water and ethanol [31, 51, 52], and numerical scales,

which are derived from the partition of amino acid residues between the core and

the surface in proteins with known 3D structures [53, 45]. In our previous study, the

relative hydrophobicities of amino acid residues were taken from the Kyte-Doolittle

(KD) scale and standardized so that the energy change associated with transfer of

glutamine from surface to the core of the globule is equal to 0.5 kBT. To compare

the performance of the model with different hydrophobicity scales, we normalized all

scales so that the difference between the maximum and the minimum hydrophobicities

was the same as in the KD scale. Table 2.1 shows the mean and the variance of the
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distributions of PCC for different classes of proteins from the Structural Classification

of Proteins (SCOP) database [54]. Interestingly, despite the different origins of the

hydrophobicity scales, none of the scales significantly altered the performance of the

model on this large set of proteins (SCOP class).

Next, we did a brute-force search for a better hydrophobicity scale. For large

groups of proteins (SCOP classes/folds), it is computationally costly to fit burial

traces using a 20-letter amino acid alphabet, so we elected to use a reduced-size

amino acid alphabet for these searches. We first split amino acids into four groups

according to their hydrophobicity indices in the KD scale: (R, K, D, E, Q, N, H), (P,

Y, W, S, T, G), (A, M, C, F), and (L, V, I). Because this is a somewhat arbitrary

way to split amino acids into groups, as a control, we also divided amino acids into

random groups. Then we generated a 4-dimensional rectangular grid with 10 nodes

along each axis. The range of hydrophobicity indices was set between -9 and 9,

twice the minimum and maximum values of KD scale, respectively. In the case when

amino acids were divided into groups at random, we found that the distributions of

PCC for a-helical proteins were always broad (st.dev. ~ 0.2) and their mean was

never greater than 0.2 (the data are shown in Appendix A); whereas when amino

acids were grouped according to the KD scale, the mean of the distribution of PCC

never exceeded 0.3 and the standard deviation was about 0.2. It should be noted that

out of 104 different hydrophobicity scales we examined, only 2% had the mean of the

distribution of PCC higher than 0.25, the mean PCC for the KD scale. Furthermore,

the hydrophobicity scales that provided high values of the mean PCC were in good

agreement with the KD scale (Figure 2 of Appendix A). Taking into account the

data in Table 2.1 and the results of the exhaustive search, one can conclude that one

cannot achieve a significantly better performance for the model on large groups of

proteins using 4-letter hydrophobicity scales.

To investigate whether the model's power to predict burial traces can be improved

with a 20-letter amino acid alphabet, we developed a method to derive a hydrophobic-

ity scale from real protein structures, using physical assumptions in line with those

of the model. In particular, we noted that any two amino acids of any two given
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Figure 2-2: (Continued)
A. For a given protein, one can compute the burial trace (right panel) corresponding
to its 3D structure (left panel). Then, one can count how many times a residue of
type i (leucine (L) in the figure) is closer to the center of the globule than residue
of type j (lysine (K) in the figure) given that they are the nearest neighbors on the
chain.
B. Repeating the procedure descibed above for all proteins from the set, one can
compute the matrix of relative positions Mij (left panel). On the right, comparison
of the hydrophobicity scale (a-rpm) calculated from the matrix of relative positions
Mij with Kyte-Doolittle and Wimley-White hydrophobicity scales. The matrix Mij
was constructed using a domains, with unique sequences of length between 100 and
300 a.a. from the SCOP database (970, in total). To compute this matrix, we used
only the residues that are far from the center of a domain (Ji|(s)1 2 > 0.5R 2 ).
C. Distribution of PCC between the burial traces predicted by the model using KD
and a-rpm scales and the burial traces computed from the crystal structures for
a-helical and 3-stranded proteins from SCOP.

types in adjacent positions on a protein chain are forced to "live" in nearly identical

environments. Because of this, one might suppose that their relative position in space

with respect to the center of the protein globule in a crystal structure could provide

an all-things-equal comparison of the tendencies of each amino acid to be buried in

the globular core. Put another way, a relatively greater tendency of one amino acid

in such a pair to be buried might be indicative of a relatively greater hydrophobicity.

In order to pursue this idea, we treated a large collection of proteins with known

3D structures as an ensemble of amino acid pairs, in which the relative burial of

neighboring amino acids is determined only by their relative hydrophobicity. We

examined the distribution of amino acid positions inside globular protein domains

with unique sequences and constructed a matrix Mij, each element of which was

defined to be the number of times that a residue of type i is further from the center of

the globule than residue of type j, given that these residues are the nearest neighbors

on a chain (Figure 2-2). By positing that the probability of amino acid of type i being

closer to the center of the globule than amino acid of type j is given by a Boltzmann

weight, we find that the relative hydrophobicity Apij of these amino acids is given

by

M-apg=w o cl
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Repeating this procedure for every pair of amino acids provides 190 relative hydropho-

bicities Aoij. Thus, to compute 19 hydrophobicity indices Oi of single amino acids,

we did a least squares optimization. Figure 2-2B shows the matrix of relative po-

sitions of amino acid residues Mij and the hydrophobicity indices SOi computed for

a set of a-helical protein domains with unique sequences of length between 100 and

300 a.a. from the SCOP database (970, in total). To compute this matrix, we used

only the residues that are far from the center of a domain (1i'(s)1 2 > 0.5R2 ). Strik-

ingly, this new hydrophobicity scale (called "a-rpm") that we computed from burial

information in real crystal structures turned out to agree quite well with the both

the KD scale and with the Wimley-White (WW) scale (Figure 2-2B). Thus, by de-

vising a new procedure to quantify the empirical relative statistical force on adjacent

amino acids on a protein chain, we seem to have somewhat surprisingly discovered

that classic hydrophobicity scales determined decades ago from bulk physicochemical

measurements on amino acids already constitute a nearly optimal model of how the

hydrophobic effect drives burial trends of adjacent amino acids.

To confirm this, we tested how the model works with the new hydrophobicity

scale. As one can see from Figure 2-2C, the new parameters only slightly improve

performance on a large set of proteins compared to the KD scale - roughly one

quarter of all domains have PCC greater than 0.4. This finding, along with the results

of our earlier searches of parameter space, suggests that there is no hydrophobicity

scale that works significantly better than the KD scale, and there will always be

many proteins whose structural physics cannot be captured by this simple model.

Therefore, we sought next to understand better what other factors might limit the

model's domain of applicability.

2.2.3 Sequence diversity in globins

In search of systematic blind spots for the burial mode approach, we elected to look

at a specific group of similar proteins for which the model's performance showed a

wide range of outcomes. The rationale in taking this approach was to reduce the

number of sequence and structural differences among the proteins being compared,
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so that it would be easier to correlate the remaining differences in these factors with

resulting divergences in predicted burial trace.

An ideal group to consider for this purpose was the SCOP family of globins (SCOP

ID a.1.1.2). The proteins in this family consist of eight a-helices forming a compact

globule, which is appealing because the burial mode model does not account for non-

local hydrogen bonding that is required for the formation of /-sheets. In light of the

exceptionally good performance of the model in the case of myoglobin (PCC=0.56), we

at first expected that the calculation should work just as well for all globins. However,

examining more closely the full distribution of PCC for non-redundant proteins in this

family, we found that the mean PCC is only 0.40 and that there are three separate

peaks. Because the family of globins consists of two protein domains, myoglobin (a

monomer) and hemoglobin (a heterotetramer), we decided to check whether the peaks

in the distribution of PCC corresponded to these proteins. As one can see from Figure

2-3A, we indeed found that the model predicts burial traces significantly better for

single domain myoglobins than for their multidomain hemoglobin cousins. For both

chains of hemoglobin, Figure 2-3B shows that the model mistakenly predicts that

the region 110-130, which corresponds to an inter-domain interface in the tetramer,

is buried. These results suggested to us that inter-domain interaction, which is not

included in the model, might change the amino acid propensity to burial by allowing

hydrophobic residues to be a part of inter-domain interfaces on the surfaces of single

domains.

To account for inter-domain interactions in hemoglobin we introduced a pertur-

bation to the original burial mode model. In particular, we generated ensembles of

burial traces where each residue of the chain was successively pinned to the surface of

the globule by setting its hydrophobicity index to a large negative number. The PCC

between these burial traces and the burial traces computed from the structures of a

and 3 chains of hemoglobin as a function of pinning position is shown on Figure 2-3C.

The idea behind this approach was that pinning the hydrophobic residues that are

parts of inter-domain interfaces to the surface would push a protein into the correct

shape by changing the amount of room in the protein core, and as one can see from
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Figure 2-3C, the model indeed predicted the burial traces better when regions corre-

sponding to inter-domain interfaces (residues 35-40, 110-130, and C-terminus) were

forced to be on the surface. However, the highest PCC was achieved when residues

75-85 were pinned to the surface.

To understand why pinning this region, which is not a part of inter-domain inter-

face, improves the performance of the model, we compared the hydrophobicity profiles

of myoglobin and hemoglobin (Figure 2-3D). As one can see from the hydrophobic-

ity profiles, the regions of hemoglobin corresponding to inter-domain interfaces are

more hydrophobic than the same regions in myoglobin, but the largest differences

in hydrophobicity occur in regions 62-72 and 75-85. The first region is more hy-

drophobic in myoglobin and is in close contact with a heme molecule [55], whereas

the second region contains more hydrophobic residues in hemoglobin and can bind

to 2,3-bisphosphoglyceric acid in the deoxy state of hemoglobin [56, 571. Because of

these differences in hydrophobicities, burying region 62-72 and exposing region 75-85

of hemoglobin is energetically less favourable in the framework of the original burial

mode model. Therefore, by pinning residues 75-85 to the surface, we just restored

the propensity of this region to exposure. To summarize, from the family of globins,

we have learned that the tendency of amino acid residues to be buried or exposed

might be determined not only by their hydrophobicity and the available space in the

core but also by whether the residues are potential sites of interaction.

2.2.4 Binding and mutation as triggers of conformational change

The realization that regions involved in interactions have marginal propensities to be

buried gave us the idea to look at conformational fluctuations, which we would expect

the burial model to predict in regions least able to "decide" whether to be buried or

exposed. Continuing to study the family of globins, we generated an ensemble of

burial traces with energy AE = 1 - 5kBT above the ground state energy for the

sequence of sperm whale myoglobin (PDB ID: 1BZP) [50], and then from these burial

traces we computed the variance of squared radial distance var[r2(s)] as a function of

residue position along the chain. This function indicates the ability of each part of
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Figure 2-3: Inter-domain interaction in hemoglobin.

A. Distribution of PCC between the burial traces predicted from the sequence using

the KD scale and the burial traces computed from the crystal structures for the family

of globins (SCOP ID a.1.1.2).
B. Burial traces of a and / chains of hemoglobin (1Y4V) computed from crystal

structures (black lines) and using the model (red and green lines). Gray bars corre-

spond to inter-domain contacts, which were determined by the distance between C,

atoms with the threshold 6.5 A.
C. PCC between the burial traces extracted from crystal structures of a and 3 chains

of hemoglobin (1Y4V) and the burial traces computed using the model when one of

the residues is pinned to the surface of the globule. Thin solid black lines correspond

to the same procedure for the random sequence. The dashed horizontal lines corre-

spond to PCC without pinning (0.28 for a-chain, and 0.10 for /-chain), whereas solid

black lines correspond to the random sequence.

D. Hydrophobicity profiles of myoglobin (blue line) and hemoglobin (red and green

lines) calculated using a sliding window of 10 residues.
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the chain to change its shape. Figure 2-4 shows the structural variability var[r 2(S)]

and the 3D structure of the myoglobin colored according to this function. Strikingly,

the most variable region of myoglobin corresponds the location of histidine 93, which

chelates the protein's heme co-factor [55]. This result is consistent with our initial

idea that the regions that can freely shift from core to surface are located close to

interaction sites.

We decided to look at other proteins and to check whether our method of fluc-

tuation analysis can be used to provide analogous insight into function in a broader

range of cases. We selected two proteins in which the relation between function and

conformational motion is understood and for which the model succeeds in predicting

ground state burial traces: H-Ras protein (3K8Y, PCC=0.42) and chymotrypsinogen

(1PYT, D chain, PCC=0.49). H-Ras is an intracellular protein that is involved in cell

division regulation, while chymotrypsinogen is a secreted protein that possesses serine

protease activity. H-Ras acts as a switch in a signal transduction from membrane to

the cell nucleus. In its active state, H-Ras binds to GTP and converts it to GDP by

cleaving the phosphate group. Figure 2-4C shows the 3D structure of H-Ras bound

to GTP and the structural variability of H-Ras computed using burial mode analysis

method. As one can see from this figure, the GTP binding sites of the H-ras protein

(10-17, 57-61, 116-119) are located in highly fluctuating/variable regions [58].

Figure 2-5B shows the results of similar analysis performed for chymotrypsinogen

and chymotrypsin (the active form of chymotrypsinogen). The conversion of chy-

motrypsinogen into its active form occurs in several steps: First, chymotrypsinogen

is secreted and the signal peptide (residues 1-16) is cut; then, the activation peptide

(residue 17-29) is removed by trypsin. The active form of chymotrypsin (residues

30-268) has catalytic activity [59]. As one can see from Figure 2-4D, both the activa-

tion peptide and the catalytic sites of chymotrypsin have high structural variability.

These findings increase our confidence that the model correctly explains structural

rearrangements in proteins where the burial trace prediction matches well with the

known structure.

Structural variability may indeed be an important physical mechanism for bio-
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Figure 2-4: Conformational changes in sperm whale myoglobin (1BZP), H-Ras

(3K8Y), and chymotrypsinogen (iPYT, D).

A. On the bottom panel, the solid black line corresponds to the burial trace of myo-

globin computed from the crystal structure, while red lines correspond the burial

traces of low-energy excited states (AE = 4 kBT). On the top panel, structural

variability varlr2 (s)] is computed from these burial traces. The gray bars on both

sub-plots correspond to heme-binding sites (residues 65 and 94).

B. The crystal structure of myoglobin is colored according to the structural variability

var[r2 (s)]. A heme molecule is shown in red.

C. Conformational changes in H-Ras (3K8Y). On the top, burial traces of low-energy

excited states of H-Ras are depicted. On the bottom, the structural variability is

both plotted and colored on the crystal structure for H-Ras, as computed for burial

traces of AE = 4 kBT. GTP binding sites are shown as gray bars, while GTP is

shown in red.
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Figure 2-4: (Continued)
D. Structural variability of chymotrypsinogen (1PYT, D). Here, green lines corre-
spond to the burial traces and structural variability computed for the uniprot se-
quence (before the signal peptide of chymotrypsinogen is cut), while red lines were
computed for the chymotrypsinogen sequence taken from the PDB file (before the
activation peptide is cleaved). Catalytic sites (H74, D121, and S216), signal and ac-
tivation peptides are shown in gray.
On all subplots, the structural variability var[r(s)] is shown in arbitrary units.

logical function in many proteins, but there are also situations where one would not

expect to see a signature of conformational change in this metric. It is possible that a

protein's native fold might be well-structured, but that it could exhibit strong sensi-

tivity to small changes in its sequence. For example, in a recent study [60], Alexander

and colleagues demonstrated that it is possible to design a version of the streptococ-

cal protein G such that a single point mutation (L45Y) leads to switching from 3a

to 40+a fold. Furthermore, they obtained high-resolution NMR structures of two

proteins (2KDL, 2KDM) that differ by three mutations (L20A, 130F, L45Y). These

structures and the corresponding burial traces are shown at the top panel of Figure 2-

5A. While the L20A and 130F mutants do not lead to a conformational rearrangement

in the protein, the L45Y mutation does, and it is clear that the map of structural

variability does not reflect the corresponding pattern of mutational sensitivity.

However, we also analyzed the sensitivity of both structures to changes in sequence

hydrophobicity pattern. Using the burial mode model, we constructed the response

matrix

Xss' - 6r 2(s)

where 6r2(s) is the change in predicted optimal burial trace at position s following

a small change in hydrophobicity 6 o(s') at position s' along the chain. The rows of

this matrix show how sensitive the optimal structure of the protein is to mutations.

The bottom panel of Figure 2-5B depicts the response matrices computed from the

sequences of 2KDL and 2KDM proteins. It should be noted, that for both proteins,

small changes in hydrophobicity in the region 43-47 lead to large changes in predicted

burial trace. This result is strikingly consistent with the experimental fact that muta-
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tion L45Y triggers a complete change of fold in the protein. Thus, the physical model

of conformational energetics provided by the burial mode picture enables a diverse

set of approaches to analyzing structural phenomena in globular protein domains.

2.3 Discussion

The problem of protein structure prediction from amino acid sequence has a long

history. The most reliable approach to this problem so far - all-atom simulation

- is computationally costly because it explicitly keeps track of the multitude of

interactions among all atoms inside a protein. In this study, we set out to character-

ize a model of protein folding that sacrifices atomic details and that considers only

backbone stretching, steric repulsion, and the hydrophobic effect to explain confor-

mational preference in proteins. The advantages of this approach in studying the

sequence-structure relationship are its high speed and the simplicity of interpreting

results. However, a stumbling block preventing us from using the model to study large

collections of proteins was a lack of clear understanding of the model's limitations.

The parameter space of the burial mode model is defined by the hydrophobicity

scale by which the amino acid sequence is mapped into a quantified string of relative

burial tendencies. Thus, to improve the predictive power of the model, we searched

for a better hydrophobicity scale. Having not found another standard hydrophobicity

scale that works significantly better than KD scale, we did a brute force search for a

new hydrophobicity scale with a reduced amino acid alphabet. Because this approach

was not more effective than using KD scale, we devised a method to infer relative

hydrophobicities of amino acid residues from analysis of known protein structures.

This method is based on the idea that two amino acid residues that are the nearest

neighbours on the chain are essentially in the same environment, and their tendency

to burial is determined only by their relative hydrophobicity. It should be noted that

using statistics of amino acid contacts and distances to infer amino acid interactions

has been widely used before [61, 62]. However, our method is fundamentally different

from Miyazawa-Jernigan and Sippl's statistical potentials because it considers only
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Figure 2-5: Conformational change triggered by mutation.
A. 3D structures of the 2KDM and 2KDL proteins show that mutation L45Y leads to
the transformation of a 3-a fold into a 40+a fold. Structural variability, plotted in
red and green, was computed from the burial traces of the low-energy excited states
(AE = 4 kBT). The positions of other mutations are shown as the gray bars on the
plot.
B. Response matrices 6r2(s)/6 o(s') of the 2KDM and 2KDL proteins. The plots on

the bottom were obtained by taking the sum of the absolute values along the rows of
the response matrices. In both proteins, the residues near the termini and residues
43-47 are the most sensitive to changes in amino acid hydrophobicity.
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local interactions affecting relative burial of adjacent residues along the chain and

focuses on the relative positions of amino acid residues with respect to the center of

mass of the protein rather than pairwise distances.

Strikingly, the hydrophobicity scale computed with our method was in good agree-

ment with the experimentally measured scales. This fact supports the idea that a

large collection of proteins can be treated as a statistical ensemble of sequences and

that our model of folding is based on sound physical assumptions about the forces

driving native structure. Testing the model with the new scale, we found that per-

formance on a large set of proteins was not improved; apparently, the model has

limitations that may come from neglecting other intra-chain and/or inter-domain in-

teractions that may be important to protein structure in any given case. Indeed, it

is not surprising that the hydrophobic effect is not sufficient to explain the tertiary

structures of globular proteins in all cases. Long-range hydrogen bonding interactions

(such as in beta sheets), disulfide linkages, salt bridges, and dihedral angle constraints

all are forces not included in the burial mode model that might play a definitive role

in selecting a particular native structure in the case of a given protein. In this light, it

is easy to understand why the alpha-rich globins proved such a fertile testing ground

for the model.

Nonetheless, it should also be noted that the matrix of relative positions Mj that

we used to compute our new hydrophobicity scale contains more information about

amino acid residues than a simple hydrophobicity scale, because it treats each pair

of letters as having a unique local interaction. Thus, there are 190 parameters in

this matrix that correspond to relative burial tendencies of different pairs, and an

exciting future avenue of research will be to develop a model similar to the burial

trace model that exploits all of the information in this statistical potential to predict

the conformational physics of proteins. For example, it may eventually be possible

using this information to develop better criteria for distinguishing between sequence

trends that promote burial in the globular core and sequence trends that facilitate

surface interaction with a hydrophobic ligand or protein-protein interface. Although

both such trends might correspond to elevated hydrophobicity on the KD scale, one
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type of sequence composition could well be distinguishable from the other with a

more detailed model of the non-transitive relative burial tendency in each amino acid

pair.

Having found that the burial mode model could not be substantially improved

simply through parametric optimization, we set out to explore the origins of the

model's limitations. In particular, we looked at the family of globins, where the model

performs exceptionally well with myoglobin and does not succeed with hemoglobin.

From the comparison of these two proteins, we learned that the propensity of amino

acid residues to burial might depend not only on their hydrophobicity but also on

the interactions with molecules external to the monomeric protein chain, which are

not included in the model. This realization gave us the idea to study conformational

fluctuations in order to identify potential sites of interactions. For various proteins

with good burial trace agreement (myoglobin, H-Ras protein, and chymotrypsinogen),

we demonstrated that ligand binding and catalytic sites are located in the regions of

high structural variability.

This finding is consistent with the "conformational selection" paradigm that has

been suggested previously in the study of binding events [63] - regions of proteins

that have to accommodate ligands, whether small molecules or other proteins, bene-

fit from being structurally variable because the free energy of interaction is improved

when the protein can optimize its shape to accommodate the moieties of the lig-

and. This process is accompanied by large structural rearrangements if there is an

energy exchange between protein regions with "discrete breathers" (localized excita-

tions) [64, 65, 66, 67]. The conformational selection paradigm implies that "discrete

breathers" should be located close to ligand binding sites. Although at first sight the

conformational selection paradigm and the approach that we used in this study look

different, the similarity between them becomes clear if we make an analogy between

"discrete breathers" and the eigenmodes of the burial mode model energy function

[50] - in both descriptions, ligand binding suppresses one mode and stimulates an-

other, coupling large scale motions to the transduction of small forces. Furthermore,

it should be noted in passing that, unlike methods that use the normal mode analy-
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sis to compute structural variability and mechanical response [68, 69, 70, 71], burial

mode analysis relies only on sequence information and is not limited to small pertur-

bations about a local energy minimum in a particular conformational state. Thus,

burial mode analysis may yet prove useful as a general tool for prediction of catalytic

and ligand binding sites from primary sequence information.

To conclude, we presented a simplified model of protein folding that allows one

to compute information about protein structure directly from its sequence. In our

attempt to optimize the input parameters, we discovered that the KD hydrophobic-

ity scale provides nearly optimal performance and the limitations of the model come

in part from the interactions with external molecules that are not considered in the

model. To predict potential sites of ligand interaction, we exploited the idea of confor-

mational selection and demonstrated that the burial mode model captures function-

ally relevant conformational changes in several cases of good burial trace agreement.

Finally, we showed that sometimes the requirement for good burial trace agreement

can be relaxed and that the model can also be used to predict regions most sensitive

to mutations. This information can potentially be used in drug design to identify tar-

get sites and in SNP genotyping to distinguish neutral and disease-causing mutations.

The model can also provide auxilliary information for MD simulations that use burial

traces to generate initial protein configurations [72]. In addition, because of the high

speed, the model can be employed as a tool to study large collections of homologous

sequences, which became available with high-throughput genomic sequencing, and to

access structural information about different mutants that are not yet crystallized.

2.4 Materials and methods

Calculation of hydrophobicity scale from the matrix of relative positions

To calculate hydrophobicity scale of n-letter amino acid alphabet from the matrix

of relative positions, we first constructed two matrices, An(n-l)/ 2xn and Bn(n- 1 )/2xi,
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elements of which were computed as follows:

Ami =1, Amj = -1, (2.3)

Amk 0, for k / i, j, (2.4)

Bmi1  - ln M, /Mji = A pij, (2.5)

wherei = [1,n-1], j = [i+1,n], andm== (i-1)x (2n-i)/2+j -i. Then, we used

the method of least squares to find approximate solution for overdetermined system

of linear equations A - p = B, where cp is n-letter hydrophobicity scale.

Generation of the burial traces of near-native states

The burial traces in the model can be written in terms of the eigenmodes O4k(s) of

energy function (2.1) and coefficients ck: r 2 (s) =Z ckk )(s). Thus, to compute the

burial trace of the lowest energy state, one should minimize

E = CkE, (2.6)
k

where Ek are the eigenvalues of the model energy function (2.1), subject to the steric

constraints:

Ck = aNR2 , (2.7a)
k

0 < Y Ck V)2 (S) < R2 , for s c [1, N], (2.7b)
k

Ck > 0, for all k. (2.7c)

These equations set an exactly solvable linear programming problem with variables

Ck, Objective function (2.6), and linear constraints (2.7). The solution to this problem

provides the energy of the lowest energy state Emin and optimal coefficients c". To

find the burial traces of excited states with energy Emin + AE, we generated a set

of coefficients ck, which are the solution of another linear programming problem with

constraints (2.7) and Ek ck'k = Emin + AE, and objective function Ek ckrk, where
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rk are random numbers.

To compute the structural variability var[r2 (s)], we first computed n = 100 burial

traces of near-native states ri(s) (i = 1, 2, ... , n), and then for every position s we

calculated the variance of r 2 (S):

var[r2(s)] = I Z(r 2(s) - mean[r2(s)])2, where (2.8)
mn

mean[r n(s)]) (2.9)
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Chapter 3

Overview of non-equilibrium

statistical mechanics

The majority of physical processes in living systems occur far from thermal equilib-

rium. Biological systems are intrinsically open systems - that is, they continuously

absorb mechanical and chemical work from the surrounding environment and use it

to fuel their vital activities. For example, on an organism level, plants in the process

of photosynthesis convert light energy into chemical energy which is stored in the

adenosine triphosphate (ATP), or "energy currency of a cell"; on a single cell level,

bacteria digest the nutrients in the environment and use the chemical energy extracted

from the food to power the process of cell division, chemotaxis, etc; on a molecular

scale, protein complexes such as molecular motors or polymerases use the free energy

released in the hydrolysis of ATP to perform mechanical work of transporting a cargo

along microtubules or unzipping of DNA in the process of transcription. Importantly,

biological organism are adaptive and can adjust their behavior to the changes in the

environmental conditions. In the aforementioned examples, deciduous plants shed

leaves with the onset of dry or cold weather, and single-cell organisms in the pro-

longed periods of starvation form colonies or switch into a dormant state in which

normal activities are suspended. From the biological point of view, the phenomenon

of adaptation is generally understood as the ability of an organism to change its qual-

ities and behavior in a manner that allows it to survive and reproduce. However,
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from the physics standpoint, there is no clear understanding of the general principles

governing such adaptation.

In this chapter, we present a theory that might shed light on the physical mecha-

nisms of adaptation and provide a unifying framework for quantitative comparison of

the effectiveness of adaptation between different classes of living systems. This theory

is based on the application of non-equilibrium fluctuation relations to the dynamics

of living systems and allows us to compute the relative probability of the outcomes of

finite-time stochastic dynamics. In the first section, we review the general approaches

to modelling far-from-equilibrium systems; in the next two sections, we demonstrate

that fluctuation theorems stem from the time-reversal symmetry; and finally, we de-

rive and analyse the expression for a generalization of the Helmholtz free energy for

finite-time stochastic evolution of driven Newtonian matter.

3.1 Foundations of non-equilibrium statistical me-

chanics

In recent years, the development of experimental techniques that allow us to ma-

nipulate individual molecules and measure tiny changes in their energy under non-

equilibrium conditions, together with the extensive use of computer simulations of

dynamics of molecular systems, have boosted the interest of theoretical studies in

thermodynamics of small systems. These studies resolved the caveats of the second

law of thermodynamics: 1 that is, of how microscopic equations of motion that are

symmetric under time reversal can result in macroscopic behavior that does not pos-

sess this symmetry. To do so, one can interpret the second law as a constraint on

the average value of macroscopic observable over multiple realizations of the physi-

cal process rather than their values measured for individual microscopic trajectories.

Consequently, as one measures thermodynamic properties of systems with a small

number of degrees of freedom, the statistical/thermal fluctuations around the aver-

'Here, we refer to the formulation of the second law, which claims that the total entropy of the
isolated system must not decrease, dStot > 0.
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age become more important and the "violation" of the second law of thermodynamics

is more likely to be observed.

The general framework of non-equilibrium thermodynamics assumes that a finite,

classical system of interest is held in contact with a heat bath at constant inverse

temperature = 1/T, and that there is an external parameter A(t) that allows us

to control certain degrees of freedom of the system (e.g. the extension of the DNA

molecule in the stretching experiments). The classical Hamiltonian of the whole set-

up (system+bath) can be written as

7-(t (x, y, A(t)) = Hsys (x, A (t)) + Hbath(y) + hint(x, y), (3.1)

where x and y represent degrees of freedom of the system and the bath, respectively;

Hsy,(x, A(t)) defines the Hamiltonian of the system of interest, including its inter-

action with the external time-varying field A(t), Hbath(y) is the Hamiltonian of the

heat bath, and hint(x, y) describes the interaction between the system and the bath.

Without loss of generality, one can assume that hint is small, so that this term merely

allows the exchange of energy between the system and the bath and may otherwise

be ignored.

Now we can imagine a process in which at time t = 0, the system is prepared to

be at some particular point of the phase space x(0), and then from time t = 0 to time

t = T is driven according to some protocol A(t). Crucially, the dynamics of the whole

set-up (system+bath) is completely deterministic; however, when we focus only the

system degrees of freedom, the observed dynamics appear to be stochastic due to the

variation of the initial configurations of the heat bath. Therefore, when we model such

non-equilibrium process, we generally posit that there is some probability distribution

7r.[x(t) x(0), A(t)] that expresses how likely it is that one would observe a particular

micro-trajectory x(t) over time T. Just as in equilibrium thermodynamics, we can

compute the amount of work done on the system when the parameter A is displaced

by 6A as the change of system energy due to this displacement 6W = 6A H (x, A),

59



so the work performed over the entire process is

W[x(t)] 16W j dt A Hs (x(t), A (t)) (3.2)

From the conservation of energy (6E 6W - 6Q), one can also find that the heat

dissipated from the system into the heat bath is

AQ[x(t)] = 6Q = W[x(t)] - Hasv(x(T), A(r)) + Hsy,(x(0), A (0)). (3.3)

One compelling avenue that we can pursue at this point is calculation of ensemble

averages of macroscopic observables, such as work or dissipated heat. In particular,

by considering an infinitely large number of repetitions of the same driving process,

we can obtain a statistical ensemble of trajectories x1(t), x2(t),... and compute any

function of these trajectories F[x1(t)], F[x 2(t)], . If 7r,[x(t)] is the probability dis-

tribution of individual trajectories, then the expected value of the functional f[x(t)]

is

KT[x(t)]) Zir[x(t)]F[x(t)] = f - r[x(t)]6(F[x(t)] - f)
x(t) f x(t)

= f -pT(f), (3.4)
f

where p, (f) is the distribution function of f[x(t)]. A groundbreaking result was ob-

tained by Jarzynski [73], who considered the driving process in which at time t = 0

the system of interest is in equilibrium with the heat bath at A = A, and from t = 0

to t = T, the external field is varied from A = A to A = B. He demonstrated that for

this driving protocol, the expected value of the functional Y[x(t)] = exp(-W[x(t)])

is related to change of the equilibrium free energy, AF = FB - FA,2 as

(eOW) = e-3AF (3.5)

2 Here, the equilibrium free energy is defined in a standard way: FA = kBT in ZA, where ZA

E e-Hsys (x,A)
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and does not depend on specific details of the driving protocol. This result has been

derived using various approaches [74, 75, 76] and has been experimentally verified in

RNA stretching [77], trapped colloidal particles [78], and torsion pendulum studies

[79]. A simple way to derive Jarzinski work fluctuation theorem (3.5) is to assume that

during the time interval (0, T), the system is not connected to the bath. In this case,

the dynamics of the system is deterministic, and for each repetition of the process

there is one-to-one correspondence between the initial x(0) and final x(T) points in

the phase space of the system. In addition, the work done in this process is equal to

the change in system energy W H y(x(r), A(T) = B) - H,,,(x(0), A(0) = A). The

only source of randomness in this simple scenario comes from the initial configuration

of the heat bath (i.e. the probability of observing a particular trajectory x(t) is

given by the probability of selecting state x(0) form the Boltzmann distribution,

7r[x(t)1x(0), A(t)] = peq(X(O)) = e-Hs,(x(O),A=A) ZA). Combining these facts, we

obtain

(C-W) = 7 rT [x(t) x(0), A(t)]e-Wx(t) =

x(t)

e (eHs (x(r),A(T)=B)-H,,,(x(O),(O)=A) _

x(O) ZA

e-HsVS(x(),A(T)=B) -HYs(x(T),A(T)=B) _ ZB e-AF
ZA = e . (3.6)

ZA ZA ZAx(O) x(T)

An instructive interpretation of Jarzynski work fluctuation theorem can be ob-

tained if we introduce another functional of the system's trajectory: dissipated work,

Wd[x(t)] = W[x(t)] - AF. The fluctuation theorem for dissipated work takes form

(e-Wd) = 1. (3.7)

From Jensen inequality ((ex) > e(')) immediately follows that (Wd) > 0. We know

that in an infinitely slow, reversible process the work done on the system is equal

to the change in Helmholtz free energy, Wd = 0. Therefore, in driven systems, the

dissipate work measures how irreversible a particular realization of the process was,
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and equation (3.7) tells us that, on average, this quantity is greater or equal to

zero. Another interpretation of the Jarzynski result that points to connection of non-

equilibrium statistical mechanics and information theory comes from the relation

between dissipated work and entropy production. In macroscopic theory, equilibrium

free energy is defined as F = E - TS, and the work done on the system is related

to dissipated heat through the first law W = AE + AQ. Thus, we find that the

dissipated work is equal to

fWd = (W -,AF) = (AE + Q) - /3(E - TS) = Q +,AS = AStot,

where the total entropy change AStat is the sum of the entropy change of the system

AS and the bath /Q. If this definition of total entropy production is extended to

microscopic trajectories, we will recover the familiar statement of the second law

(Stot) 0.

It should be emphasized that the significance of Jarzynski work fluctuation the-

orem is not only in reconciling the inconsistency between the second law of thermo-

dynamics and time-reversal symmetry, but also in setting bounds on the fluctuations

of macroscopic observables. Indeed, any macroscopic observable a- that satisfies inte-

gral fluctuation theorem (e-4) = 1 has a bound on the probability of negative values

Prob[o- < -] > e--. 3 In the next section, we will show that probability distribu-

tion p(o-) satisfies even stronger constraints given that the underlying microscopic

equations of motion satisfy microscopic reversibility relation.

3.2 Microscopic reversibility relation

In this section, we describe a stochastic dynamics approach to modelling far-from-

equilibrium thermodynamic processes. The reason for switching from deterministic

to stochastic framework is purely pedagogical: the two approaches are equivalent,

but derivation of fluctuation relations in stochastic framework is less technical, and

3This fact follows from the fact that for any c > 0, 1 = (e-) f dc-p(-)e" ; eeProb[c- <
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it provides a more descriptive picture of the physical principles underlying these

relationships.

One of the standard methods to describe the time evolution of the finite-size

system in stochastic process is solving a set of master equations:

p(t + 6t) = (1 - (3 Wj 6t) pi (t) + ( Wi 96tpj (t), (3.8)
j:Ai is i

where pi(t) is the probability that the system is at state i at time t, and Wij6t is

the probability that in time 6t the system makes a transition from state j to state

i. As an example, we can consider a molecular motor walking along a microtubule:

The state of the motor i = (x, a) in this case is represented by its position on the

microtubule x and its internal conformation a; the transition rates Wij describe how

fast the motor can switch between internal states and walk along the microtubule.

These rates can be controlled externally by changing the properties of the surrounding

environment, such as concentration of ATP, or by applying force to the cargo attached

to the motor. As one can see from the above example, the transition rates Wij have to

satisfy certain conditions in order for the master equation to describe thermodynamics

of physical systems. To understand what these conditions are, one can first require

that in the long time limit stochastic equations (3.8) are consistent with equilibrium

thermodynamics.

For a large number of physical systems, one can assume that the stochastic dy-

namics is Markovian (i.e. the transition rates do not depend on the previous history

of the system). In addition, for the systems in thermal equilibrium the rates should

not change with time. In this case, the transition matrix Wij satisfies the Perron-

Frobenius theorem, which tells that master equation (3.8) has a unique steady state

solution, p S. At equilibrium, this steady state probability distribution should be the

same as Boltzmann distribution, PiS = P 0c e-Ei, where E is the energy of the sys-

tem in state i, and the system satisfies detailed balance condition (i.e. the probability

current between any pair of states (i, j) is zero, Jij = pjWij - piWji = 0.) These two
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conditions imply that for any i, j

Wje 3-E = Wiie-8Ej-6 (39

which in turn means that transition rates can be written in Arrhenius law form

Wi = roeEj-OBi 4j, Wjj = roe Ej-,Bji (3.10)

where ro is some constant rate that sets the time scale in the system, and Bij = Bj

can be interpreted as the energy of the barrier between states i and j. Interestingly,

this form of transition rates demonstrates that the interaction between the heat bath

and the system has potentially multiple effects on the dynamics of the system: Not

only does it set the temperature of the system, but it also affects the equilibration

time by determining the heights of the barriers Bij.

The two conditions that transition rates satisfy in equilibrium point to two distinct

ways to drive the system out of equilibrium: First, one can imagine scenario where

the transition rates vary over time, but at any moment of time t, they still obey

detailed balance and, thus, can be expressed using time-dependent Arrhenius law:

Wij(t) = roe Ej (t) -Bij (t), Bij (t) = Bjj (t). (3.11)

The systems that fall into this driving scenario include, but are not limited to, the

system of colloidal particles in time-varying magnetic or electric field and driven

reversible chemical reactions, where the reaction rates are modulated by changing

solvent properties. In the second scenario, one can assume that transition rates stay

constant in time but that they no longer satisfy detailed balance conditions (i.e. in

steady state, there exist states for which Jij = pj"Wij - p"SWj # 0). This scenario

can describe the irreversible chemical reactions similar to ATP hydrolysis that results

in directed motion of molecular motors along cytoskeleton filaments. In the later

example, still assume that the transition rates take form (3.11); however, there is no

longer a single barrier energy, Bij # Bij, because the free energy released in ATP
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hydrolysis lowers only the barrier of forward transitions Bij and does not affect the

barrier of reverse B 2 . Clearly, one can also imagine a driven system in which the

two scenarios described above are combined, but these scenarios demonstrate two

fundamentally different ways in which the driving field A, introduced in the previous

section, can couple to the system degrees of freedom.

Independent of the specific details of the drive, we can define thermodynamics

observables such as work done on the system 6W and heat dissipated from the system

into the environment 6Q:

6W = E[i(t + 6t), A(t + 6t)] - E[i(t + 6t), A(t)] (3.12)

6Q = E[i(t), A(t)] - E[i(t + 6t), A(t)], (3.13)

where E[i(t), A(t)] is the energy of the state i(t) in driving field A(t) at time t. From

these definitions follows that by driving the system, we perform work during time in-

tervals when the system stays in the same state, and heat is released into environment

every time the system jumps from one state to another. To compute the amount of

heat that goes into the bath during the transition from state j to state i, it is useful

to consider two driving scenarios described above. In the first scenario, during the

jump process, the heat bath does not do any chemical work on the system, so the

total dissipated heat qij(t) is equal to the change of system energy 6Q. Combining

this result with the fact the instantaneous transitions rates are given by Arrhenious

law, we find that the heat released into bath is

Wig (t )qij(t) = Ej[A(t)] - Ei[A(t)] = kBTIn -V,(t) (3-14)
Wii(t),

In the second scenario, when the transition rates are constant but do not satisfy

detailed balance, the heat qij has two contributions: one from the change in energy

of the system, Ej - Ei, and another from the work done to change the barrier energy

-- (Bi - Bji). Again, combining these two contributions with equation (3.10), we
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obtain the same result

Wig (t )qij*(t) = Ej[A(t)] - Ei[A(t)] - Bij[A(t)] + Bji[A(t)] = kBT In .V3 (t) (3.15)

Having derived the above result for a single transition, we now are in a position to

construct a measure of irreversibility of stochastic dynamics.

In classical mechanics, equations of motion are symmetric with respect to time re-

versal. The meaning of this statement becomes clear once we consider the evolution of

a Hamiltonian system on a finite time interval [0, TI. Let trajectory x(t) = {q(t), p(t)},

where q and p are generalized positions and momenta of the system, be a solution to

Hamiltonian equations of motion in which the driving protocol A is some function of

time, A = A(t). The time reversal operator T acts on time, generalized coordinates,

and driving protocol as follows: Tt = -t, Tq q, Tp = p, and TA = A. If we imagine

that at time r we apply time reversal operator to Hamiltonian equations of motion in

which the driving protocol is time independent, we will find that R(t) = {4(t), p(t)},

where generalized coordinates are given by

e(t) = q(T - t) and P(t) = -q(r - t) (3.16)

is a solution of time-reversed equations of motion. The trajectory 4(t) that satisfies

equation (3.16) is called the reversed trajectory. If we apply the time reversal operator

when the driving protocol is not constant, then in order to observe the reversed

trajectory one also needs to run the protocol backwards in time, I(i) A(r - i). The

driving protocol A(i) is usually called the reversed protocol.

In stochastic dynamics, it is absurd to assume that after we apply the time re-

versal operator, the system will follow the reversed trajectory. What one can do

instead is compare the probability of the forward trajectory i(t) under the forward

driving protocol to the probability of the reversed trajectory i(t) = i(T - t) under the

reversed protocol. It is easier to do so if instead of a continuous time, we consider

a discrete time Markov process. The example of such a process for T = 4 is shown

on Figure 3-1. It should be noted that one can always approximate a continuous
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time Markov process by a discrete time Markov process if a time step 6t in discrete

process is small enough so that the transition rates Wi (t) do not significantly change

during this time and transition probabilities are small, Wi (t)6t < 1. Thus, the re-

sults obtained here for a discrete time process are also applicable to continuous time

processes. The discrete time forward trajectory i(t) can be parametrized by speci-

i(0) (41) i(2) ) i(3) (3)(

A- (3 2 A (2) A_(1)
1 (4) i(3) i(2) < (1) < i(0)

Figure 3-1: An example of forward and reversed trajectories for a discrete time Markov
process.

fying the system state and the moment time when the system arrives in this state:

i(t) = {(io, To), (i, 1T),..., (iN, TN)}, where N is the number of transitions in time

interval [0, -]. The probability of the forward process can be written as

(N Tn+1-1 

6 Tr-1

PF [i ft)] = 1 fl[ 1 - Wjin( W &I ]Win+ n (n+ 1 - 1fl [1- WiiN~t61
n=O t=Tn t=-rN

(3.17)

where the terms in the form [1 - E Wi, (t)6t] describe the probability that the

system will not make a transition in time interval [t, t + 6t), and terms in the form

Wi in(n+1 - 1)6t describe the probability of making a transition from state in to

state in+1 during times step [Tn+a - 1, -Fn+). Similarly, the reversed trajectory can be

represented as i(t) - i r - t) = {(to, ~ro), (i, I), . .. , (N 'TN)}, and its probability

under the reversed driving protocol is

N in+i-1 T-1M

PRZt)] = ( rJ [1 - ( (t)t] I Win (n+l - 1)6t) X 17111- Z ZN
n=O t=i, 3 t=TN

(3.18)

Using the fact that in = iNn, r = T ~ Tn + 1, and Wej(t) = Wij(-r - t), we find

the ratio of the probability of the forward process to the probability of the reversed

67



process

PF[(t) N-1 WI in+1 - 1)
P=) .

-(3.19)
PR[t) n= Wini.+ (Tn+1 - 1

Taking into account equation (3.14), which relates the heat dissipated into the bath

during a single transition, we obtain

N-1
PF01 ein+1in(Tn+1-1) = e3Q[i(t)] - eASbath, (3.20)
PR[i(t)1 =

where Q[i(t)] = q (T,+ 1 - 1) is the heat dissipated into the bath along the for-

ward trajectory, and ASbath= OQ[i(t)] is the change in entropy of the bath. Equation

(3.20) is called Crooks microscopic reversibility relation, and it represents the essence

of all fluctuation theorems. This relation can be generalized to the case of multiple

baths by replacing ASbath with the total entropy change of the baths connected to the

system ASths. Microscopic reversibility has been derived in various ways [80, 81],

using Markovian dynamics (similar to how they are presented in this section) [82],

using Hamiltonian dynamics [83], and using Langevin dynamics [84, 76].

In the next two sections, we will first use microscopic reversibility relation to

obtain work and entropy production fluctuation theorems for a broad class of driven

systems [73, 74, 85, 861, and then derive a similar relation for transitions between

macrostates [87].

3.3 Fluctuation theorems

There are two types of relations that are commonly referred to as fluctuation theorems

in the literature: detailed fluctuation theorems, which relate the probability distribu-

tion of some thermodynamic observable F[x(t)] in a forward process and those in a

reversed process, and the integral fluctuation theorems, which set a constraint on the

exponential average of thermodynamic observable:

PF ( - , and (e-) = 1. (3.21)
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It should be noted that the detailed fluctuation theorem implies the integral fluctua-

tion theorem; however, the opposite is not true.

In the previous section, we found the ratio of probabilities of forward and re-

versed trajectories given that the initial state of the system is known. More gener-

ally, at time t = 0, a thermodynamic system is described by some distribution over

state pi(O), so probabilities of observing forward x(t) and reversed 7(t) trajectories

are 7rT[x(t)1 = px(o)(0)PF[x(t)1, and 7T[x(t) = p;(o)(0)PFJ-(t)]. Using the fact that

P;(o) (0) = Px(r) (T), we find that the ratio of probabilities of forward and reversed

trajectories is given by

7T [x (t)] _ Px(O)PF [x(t)] - Inpx(O)(O)-np(,)(T)+Q[x(t)] (3.22)
ITT [ (t)] P(O)PR[X(t)]

If, following the information theory, we define the entropy of a microstate i of the

system as a logarithm of the probability of being in this state, sint(i) = - Inpi, then

we can interpret the expression in the exponent in equation (3.22) as the total entropy

production along the trajectory x(t)

AStot[x(t) = Inpx(o)(0) - InpX(T)(r) + /Q[X(t)] = Asint + ASbath. (3.23)

From this definition and equation (3.22), we immediately find that for any driving

protocol, and for any initial conditions, the total entropy production satisfies the

integral fluctuation theorem

(e-Astot) = Zrr[x(t)le-Astt[(t) = 7rr[z(t)1 = 1. (3.24)
X(t) )

Because in general case px(O) (0) # p;(,) (r), there is no simple relation between the en-

tropy production along forward and reversed trajectories , AStot[x(t)] # -ASt,' (t)],

and the total entropy production AStat does not necessarily satisfy a detailed fluctu-

ation theorem.

For the rest of this section, unless otherwise explicitly stated, we will focus on the
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systems and driving protocols for which

p(0)(0) = PX (,)(T) and p_(o)(0) = pr) (T). (3.25)

We will show that, in this case, the total entropy production satisfies a detailed fluc-

tuation theorem, and we will give examples of two broad groups of physical systems

for which this theorem is relevant. When the conditions (3.25) are satisfied, the to-

tal entropy production is anti-symmetric under time reversal, and we obtain that its

probability distribution satisfies

pF(wJ) = E 7rT[X(t)li5(W - AStlt[X(t)]) A S 7Tt[X)]e

x(t) x(t)

= e' , 7r[z(t)]6(P + AStot[ (t)]) epR(-w). (3.26)

Motivated by Jarzynski work fluctuation theorem, we will first focus on the group of

the systems that from time t = -oo to time t = 0 are in equilibrium with the heat bath

at some constant external field A = A; then, during finite time interval [0, T], they are

driven arbitrary far from equilibrium according to protocol A(t); finally, after time r,

the protocol is kept constant and the systems relax toward new equilibrium A(T) = B.

Because under the reversed protocol at the start the system is in equilibrium at A = B

and in the end is in equilibrium at A = A, the system satisfies conditions (3.25), and

the total entropy production along the forward trajectory equals the dissipated work

AStot[x(t)] = lnP _)(A = A) - Inp (A = B) + Q[x(t)] =

= In ZB - In ZA + /(Et(0 ) - Ex(_o)) + 4Q[x(t)] = -OAF + W[x(t)] = Wd[x(t)].

(3.27)

From this follows that the dissipated work satisfies detailed and integral fluctuation

theorems, and we recover Jarzynski's result, (e-Wd) = 1. Moreover, because the

change in free energy is anti-symmetric under time reversal and does not depend

on the system's trajectory x(t), the probability distribution functions for work is
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p(W) = p(Wd - AF) and satisfies

PF(W) - W-OAF (3.28)
pR(-W)

This relation is known as the Crooks work fluctuation theorem [74], and it is valid

even if the system is driven far from equilibrium and has been experimentally verified

[88].

To derive the fluctuation relations (3.5, 3.28), we restricted ourselves to the group

of systems that are initially in equilibrium. However, this is not the only group of

systems for which fluctuation theorems are applicable. We can also consider a group of

system that are driven symmetrically into non-equilibrium steady state (NESS). For

example, a Markovian system discussed in the previous section, in which transition

rates are driven periodically and symmetrically in time according to time-dependent

Arrhenius law (3.11), will eventually reach a periodic steady state. Between the

moments of time with respect to which the driving protocol is symmetric, the entire

system is invariant under time reversal4 (i.e. the forward and reversed dynamics

are the same). Figure 3-2 shows an example of periodic driving protocol, and the

points in time with respect to which the protocol is symmetric and conditions (3.25)

are met. It should be emphasized that for systems in NESS, a detailed fluctuation

theorem is valid only for total entropy production AStat. The changes in internal

AS,., and heat bath entropy ASbath do not individually satisfy detailed or integral

fluctuation theorems. To complete this discussion, it is informative to list a few

real systems, for which these fluctuation theorems are relevant: nanoscale machines

such as molecular rotors [89], driven chemical reactions, self-replicators, and fluid or

suspension of colloidal particles under the constant shear.

Since the late 1990s, there have been many theoretical works that split the to-

tal entropy production into contributions that satisfy detailed or integral fluctuation

theorems in NESS. Hatano and Sasa used Langevin dynamics framework and the

concepts of houskeeping Qhk and excess Qex = Qbath - Qhk heat introduced in phe-

4In this example, we assume that the system has discrete states and, therefore, no momenta.
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Figure 3-2: An example of periodic driving protocol. This protocol is symmetric
between ta and any time separated by an integer number of periods ta + nT.

nomenological steady-state thermodynamics (SST) [90] to show that integral fluctu-

ation theorem holds for Qex + ASy, [85]. Jarzynski and colleagues demonstrated

that this quantity also satisfies a detailed fluctuation theorem [91]. At the same time,

Speck and Seifert obtained an integral fluctuation theorem for housekeeping heat Qhk

[92], which is defined as

Qhk [X(t)] -- _Y dt J1S( )'k f(t), (3.29)
fo P88(A (t))

where JsS is a steady state probability current and -y is a drag coefficient. In Marko-

vian dynamics framework, the housekeeping heat is defined as

WX+),(A)pss (Ai)Qhk[X(t)1 ] 6Qhk(Xiil, xi, Ai) I n Xi(3.30)

and measures the degree to which detailed balance is violated. Recently, Esposito

and Broeck divided the total entropy production along a trajectory into the adiabatic

AS, and nonadiabatic parts ASn, and demonstrated that all three quantities satisfy

detailed fluctuation theorems [86]5. Finally, Hatano and Sasa's relation has been

tested in experiments on optically trapped beads dragged through viscous fluid [93].

5To derive these theorems, Esposito and Broeck defined AS, using equation (3.30) generalized
to multiple baths.
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3.4 Macroscopic irreversibility

In the previous section, we demonstrated how microscopic reversibility relation sets

constraints on the ensemble averages and probability distribution functions of ther-

modynamic quantities such as dissipated work and housekeeping heat. Here, we

will use this relation to determine constraints on the transition probabilities between

coarse-grained states.

We may define a macrostate of the system as a set of microstates that share some

observable property I (e.g, the number of bacteria in the Petri dish, or the magnetiza-

tion of a collection of spins). We may also assume that there is some reproducible ex-

perimental procedure that allows us to prepare the system in macrostate I, and in this

macrostate, the probability density function over microstates is p(xlI)dx = pi(x)dx.

If the system that was prepared to be in macrostate I is driven according to some pro-

tocol A(t), then after finite time T with probability 7r[I -÷ II; A(t)], we may observe

the system to be in macrostate II, where the microstates are distributed according

to a new density function p(x II, I; A(t);-r)dx = pf(x)dx. In addition, we can de-

fine 7i'[IIt - It; A(T - t)] to be the probability of returning back to macrostate I

under reversed protocol A(r - t), given that all generalized momenta change signs

(xt = {(qi, -p), . . . }). In his recent work [87], England demonstrated that the tran-

sition probabilities introduced above satisfies

71 [IIt -+ It; A (T - t)]___ir[I~~ t Xr - ( e Stt)'s", (3.31)
7T[I - II; A(t)]

where the total entropy production along trajectory x(t) is defined in the usual way

AStat[x(t)] = lnpi(x(0))/pf(x(T)) + AQ[x(t)], and averaging is done over all paths

that start at some microstate i E I and end in microstate J E II. More general

derivation of this result, which is valid for quantum systems, has been done by Ru-

elle [94, 95]. To understand the structure of expression (3.31), it is instructional to

reproduce the original derivation.

To emphasize the use of microscopic reversibility relation, we first derive an ex-

pression similar to (3.31) for a pair of microstates: x(O) = i, x(T) = j. In the
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equation below, we will use the fact that for forward process 6x(T),J6x(o),i72ij it)]
7. [x(t) i, j, A(t)], conditional probability of trajectory x(t) given that it started at i

and finished at j is

7rTT[jf 4 it; A(T - t)] S xt (o),jt 6xt (T),it 7[xt(t) 6X(T),Jx(o),i47r [x(t)]e 3Q[x(t-
xt (t) x(t)

= 7F [i - -j ; A (t)] 6X(Tr') 6[z x (t) ] e -OA Q [X(t)]

J x(t) ITx(O) i - + j; A (t)]

= -r [i - j; A(t)](e "Sath )i÷. (3.32)

Having obtained the relation for two microstates, we may now express transition

probabilities between macrostates I and II as

ir [I -+ II; A(t)] = dj di p(i1I)r, [i - j; A (t)]

(3.33)

Using the fact that p(jtfIIt) = p(j1II) = pf(j) and pQi[ t equals to condi-
7r7- [I-+II;A(t)]

tional probability of transition from microstate i to microstate j given that i C I and

j E II, we obtain

7r'[IIt -+ It; A(T - t)]

Fr [I - II; A(t)]
1 )

grF [I -+- II; A(t)] flit
dj / di P i(i) [j i; A(T - t)] =

= dj di p(i 1I)P(i I)7r [I -+ II; A(t)] elnpf (/1 i(i) -ASbth
JL 7rr[I -II; A(t)] (e)/) i/A+j =

=KInpf(j)/pi(i) (-ASbath )- - K (ASint+ASbath))

(3.34)

Now, if we define the Shannon entropy as S = pi Inpi = (Si3nt), take the loga-

rithm of the expression above, and use Jensen inequality (WX) > e(x), we find lower

bound on the average of the total entropy production

(AStot),_1 = AS + /(AQ) 1,1 ;> In
ir[I -+ I1; A(t)]

74

(3.35)

dj Idi p(J-1I1t)7T[j-i; A ( - ].
JI It It

')rI[Ilt -+- It ; A(7 - t)] =



When dynamics of the system is dominated by diffusive motion, and the external

protocol is time-symmetric, the bound on total entropy production significantly sim-

plifies

(AStot) 1, 11 = AS + /3(AQ)v ; In T . (3.36)

As an example of the phenomenon that falls into framework of equation (3.36), Eng-

land considered biological self-replication. In particular, he demonstrated the effect of

growth rate and durability of replicators on the heat dissipated into the environment

in the processes of DNA and RNA hydrolysis and bacterial cell division.

3.5 Generalization of Helmholtz free energy

In this section, we will use macroscopic irreversibility relation (3.31) to derive a gen-

eralization of the Helmholtz free energy for a finite time stochastic evolution of New-

tonian matter. We will analyze this expression term by term and show that the

relative probability of observing two macrostates is strongly affected by the amount

of dissipated work during the process of entering these macrostates. Finally, we will

argue that many structures formed far from equilibrium may appear to be selected

for their ability to absorb work from the environment.'

Here we will consider the same setup as described in the previous section. However,

instead of deriving the generalized second law of thermodynamics and constraints

obeyed by self-replicators, we will focus on the thermodynamics of driven stochastic

evolution. Let us assume that the system is initially prepared to be in some macro-

scopic state I, and that macrostates II and III are possible macroscopic arrangements

of the system at time T after it was driven according to protocol A(t). It should be

noted that this framework is quite general and covers even ridiculous possibilities,

such as an E.coli cell in rich medium spontaneously degrading into individual atoms

instead of making a copy of itself. Independently of specific details of the system, we

will try to answer the question of what makes some outcomes more likely than others.

By dividing macroscopic irreversibility relations (3.31) for two possible macrostates

61n this section we will closely follow the logic of our manuscript [96].
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and taking the logarithm of both sites, we can write

in I -+ II; A(t)] ~ yr[IIt a It; A(T - t)] ~ i exp(-AStot))In =In - In So)I

7rr[I III; A(t)] wrI[I L It; A(- t)] exp(-AStt))dII
(3.37)

If we now assume that the system is driven time-symmetrically and that its dynamics

is diffusive (i.e. the particle momenta are not relevant), then we can drop t opera-

tors and replace reversed transition probabilities with return probabilities in forward

process. Furthermore, if the system is driven for a long time, it is reasonable to

assume that there is no correlation between initial x(O) and final x(T) microstates

of the system. Using equation (3.27), which states that when the system starts in

equilibrium at A(O) and finishes at equilibrium ASt,[x(t)] = Wd[x(t)], we can find

that for arbitrary initial and final conditions, the total entropy production is

AStjAx(t)] = In pA(x(O)) - In pi(X(T)) + Wd[x(t)], (3.38),\O (x(O)) (r) (x(T))

where P, is Boltzmann distribution at constant external field A. Because dissipated

work Wd[x(t)] depends on the entire trajectory, when the system is driven for time T

longer than the typical time needed to lose the memory of the initial distribution over

states, we can neglect any correlation between Wd, pf, and pi and write the logarithm

of the ratio of transition probabilities as a sum of three terms

7rr~~ ~ (I) -+I)rzr(I-+I ep"
fT I r 1T T'1 K Wd)

ln = -ln +ln -In
LT(I -+ III) K rL7F(III -> I)j _ ( egh 3 wd ) I-HI III I 

T
L Peq

(3.39)

The first term in equation (3.39) has a clear intuitive meaning: Since for any

distribution pf functional - ln(pf/peq) < 0, and zero is reached only when pf Peq,

this term measures the proximity of non-equilibrium distribution pf to equilibrium

distribution Peq. If all other terms in equation (3.39) are equal, then the macrostate

that is closer to equilibrium is more likely to be observed. To conclude, the first term

merely indicates the general tendency of systems to evolve toward thermal equilibrium
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and contains no information about the effect of the drive on the system's dynamics.

The interpretation of the remaining terms and the practical use of equation (3.39)

seem to present two major difficulties. Our initial goal was to make a statement

about the probabilities of forward transition between macrostates, and yet almost

tautologicaly, in order to do this, we need to know the reversal probabilities, the

calculation of which requires knowledge of all of the microscopic transition rates

in the system. The second problem involves a well-known difficulty of calculating

exponential averages of dissipated work that have dominant contribution from rare

trajectories with extremely low values of dissipated work. This means that to answer

our original question, we need to know the dissipation in stochastic events that are

immeasurably unlikely to occur [97].

In the remaining part of this section, we will try to resolve both difficulties by

narrowing down the set of all possible trajectories to a subset of typical trajectories

that carry the most probability current from one macrostate to another. Importantly,

all calculations that we have done so far to derive equation (3.39) are also applica-

ble for the case when the averages are computed using any subset of possible paths.

When we do the averaging over the typical forward paths, forward transition prob-

abilities between the macrostates are almost not affected (i.e, 7fqw ~ d ir), but

reversal probabilities and exponential averages of dissipated work might change sig-

nificantly. Indeed, the average (e-Wd)fwd taken over the typical paths does not have

a contribution from rare events, which means that the reversal probability might be

71,1 < 7,n1. These simplifying assumptions allow us to rewrite equation (3.39) in

a more compact form

ln A = -Aln Pf +ln I ln ( exp ( Wd)f 1 (3.40) JT f \Peq /11,11 [rev exp(--Wev)) fwd

If we further notice that - ln(e-wd) is a cumulant generating function for dissi-

pated work and expand it, -ln(e- ) = W) -d .... = - (

we can introduce two new quantities: the average of dissipated work IF = (Wd),

and <D = ln(e--Wd) + T, which accounts for all fluctuations around the average. It
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should be noted that D is a non-negative D > 0, because e-q+* = (exp(-3Wd)) >

exp(-3(Wd)) = e-'. The intuitive meaning of D can be acquired from the systems

in the non-equilibrium steady state. In these systems, (e-Astot) = 1, and ' = 4P. Be-

cause in steady state the average rate of dissipation can take any value but is always

counter-balanced by fluctuations associated with cyclical motion, the presence of 4

in the equation for relative probabilities points to the idea that contribution to dis-

sipation coming from cyclical motion should be ignored. This idea is closely related

to the concept of housekeeping heat introduced previously [90, 85]. By incorporating

these two new quantities into equation (3.39), we obtain

fwd rev-

In =d -A In P + ln [ 71 + ,A4 ' ywd - A, Ifwd (3.41)
I-III J wd Peq 11-111 L re -

This equation can be thought of as a generalization of Helmholtz free energy for finite

time stochastic evolution of driven systems. In the next chapter, we will demonstrate

how this relation can be used to provide a physical explanation of adaptation phe-

nomenon. In particular, we will look at the toy models of thermodynamics of com-

peting self-replicators and the random hopping of a single particle in time-varying

energy landscapes.

When we derived equation (3.41), we restricted calculation of average to typical

paths. However, we did not explain how these paths can be identified. One plausible

approach might be to consider a procedure in which some finite number K > 1 of

paths are randomly drawn from the distribution of forward paths leading from one

macrostate to another. Such a procedure implicitly excludes "abnormal" types of

events unlikely to occur in K experiments. It should be noted that the distribution

of work obtained in such a way may still be non-Gaussian and may have a significant

contribution of higher-order cumulants to (e-Wd).

To conclude, it is informative to go thorough the physical principles that lie at

the core of equation (3.41) and to give a brief interpretation of the individual terms

in this equation. Like many fluctuation theorems for far-from-equilibrium systems,

equation (3.41) is based on the conservation of energy and microscopic reversibility.
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The first term in this equation describes the general tendency of physical system to

equilibrium, the second term reflects the effects of kinetics, and the last two terms

express the effect of the drive on stochastic dynamics: Reliable dissipation described

by T makes forward transitions more likely, while fluctuations in dissipation due to

cyclical motion oD have the opposite effect.
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Chapter 4

Thermodynamics of adaptation

In Chapter 3, we derived fluctuation relations (3.37, 3.39, 3.41) that can be thought

of as a generalization of the Helmholtz free energy for finite-time stochastic evolution

of driven systems. In this chapter, we will use these relations to provide a potential

explanation of adaptation in far-from-equilibrium systems. We will start in a familiar

setting and consider a toy model of self-replication. Then we will illustrate how

average dissipated work and its fluctuations affect the random motion of a single

particle in a time-varying energy landscape. Finally, we will discuss the implications

of our physical model of adaptation for biological systems.

4.1 Toy model of self-replication

Let us consider a system consisting of two populations of self-replicating particles, A

and B. The coarse-grained state of this system can be specified by an ordered pair

(NA, NB), which counts the number of particles of each type. We will assume that the

particles of both types can spontaneously produce copies of themselves and undergo

a reversal process when two particles of the same type combine into one particle. In

other words, the self-replication rules are described by two chemical reactions:

x2'% x+x, x+x 6 x. (4.1)
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In principle, the rates of these reactions g and 6 might depend on the positions and

momenta of the particles. However, we will neglect by this dependence, assuming

that concentration of particles is low and that the system is well mixed. In addition,

we will assume that the rate of reversal reaction 6 is the same for both types, and

without loss of generality set gB > gA. It should be noted that the replication rules

(4.1) that we have chosen and time-reversibility imply that the minimum number

of particles of each type in the system is one. In order to have zero particles in

the system, we need to introduce processes of spontaneous particle creation from a

vacuum and single-particle annihilation. At the end of this section, we will discuss

the impact of these processes on the thermodynamics of the system.

Because particles of different types do not directly interact with each other, the

probability of finding N particles of type X in the system obeys the master equation

(N Nx(Nx - 1Y' () N 1) t)(Nx + 1)Nx
PNx (t) =- gNx + 2 2) + pNx+1(t).

(4.2)

In the calculations that follow, we will be interested in the limit that occurs when

reversal reactions are extremely rare 6 -+ 0 but 6 remains non-zero so that the entropy

production in replication event Nx - 1 -+ Nx remains finite

p[Nx -+ Nx - 1] 2gx
ASx= - In = In -In Nx. (4.3)

p[ Nx - I - Nx ]

Furthermore, we will consider the regime in which the average number particles grows

exponentially (i.e. 1 < Nx ~ eg' < N = 2g/6, where N* is the average number

of particles of types X in the steady state).' Our goal is to demonstrate that, in this

regime, the nonequilibrium dynamics of the system can be predicted by comparing

the total entropy production within ensembles of macrostates that have the same

value of reversal probability.

The probability of forward process in which the system initially is in state (1, 1)

and at time T is in state (NA, NB) can be found analytically from equation (4.2) if

'The solution of deterministic equation associated with equation (4.2) and the steady-state dis-
tribution are presented in Appendix B.
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we neglect by terms that are proportional to 6

p [(1, 1) -* (NA, NB), T] = CYAT(l - e AT)NA-1,9B'( -g B __ )NB-. (4.4)

In a sense, this approximation is equivalent to restricting our attention to typical

paths along which the number of particles grows monotonically in time. The next

logical step is to compute the probability of the reversed process. This can be done in

two different ways. Conceptually, the most straightforward way is to take the sum of

probabilities of all paths along which the number of particles monotonically decreases

(Appendix B). However, this approach is mathematically challenging, and one can

obtain the same result by exploiting Crooks-type relation (3.32)

In p 1) - (NA NB), AS(1 -÷ NA) + AS(1 -+ NB) (4.5)
P [(NA, NB) - (1, 1), T]

where the total entropy production AS(1 -+ Nx) can be found by adding together

all contributions from individual transitions 2 (4.3)

AS(1 + Nx) = (Nx - 1) In 2x - In Nx!. (4.6)

Combining these expressions with the one for p [(1, 1) - (NA, NB), T], we find that

the probability of the reversed process occuring is

p[(NA, NB) (1, 1), T]1 e-x-T(1 -- e-gx)Nx-1e-gxT(_ -gx)Nx-Nx!

X={A,B}

(4.7)

In principle, the space of all possible outcomes of the self-replication process de-

scribed above consists of all ordered pairs (NA > 1, NB > 1) and the probabil-

ity of outcomes spans a large range of values. However, in this space, there ex-

ist a certain region of macrostates that have the same reversal probability. In the

limit of small 6 (in gx/[Nx6], Nx > 1) and comparable order-of-magnitude growth

2Here, we used the fact that total entropy production is the same for all paths that have the
same starting and ending points because the transition rates g, 6 are constant, and all paths are
topologically identical to 1 -4 2 -4 ... -4 n - 1 -4 n.
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rates gA ~ g -~ In Nx, these regions can be well approximated by the lines

NA + NB = const. On these lines, entropy production takes the simple form

AS ~~ C" + NB (eYAT - 6 -9BT) (4.8)

where C" is a constant independent of NA and NB.3 Figure 4-1 shows the variation of

entropy production along these lines for g > gA. Because in this case the expression in

parentheses in the equation above is always positive, the entropy production increases

linearly with NB along each line. Therefore, the relative probability of states on lines

of fixed reversal probability grows exponentially with NB, and we recover an intuitive

notion that in the system where the total number of particles is bounded from below,

the most likely outcomes are those where NB >> NA.
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9.7e7 C2I7.
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Figure 4-1: Variation of total entropy production on the surfaces of fixed return

probability. gA = 1, gB = 2 , 6 - e-60 , - = 10. N = e 20 .

Certainly, the result that we obtained is not surprising - without doing any cal-

3The derivation of this result and the relation between NA and NB on the surfaces of fixed return
probability is presented in Appendix B.
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culations, one can immediately say that in the competition between two populations

where the particles are almost never destroyed, the particles that divide more quickly

are expected to be more numerous after a long enough time. However, our goal here

was to provide the explanation of this result using a thermodynamic approach that

can be applicable in other situations, where the stochastic dynamics of the system is

more complicated.

Finally, let us consider an extra replication rule that allows the spontaneous birth

and death of particles (X -+ 0). Let g' and 6' be the rates of these processes. One

might assume that the addition of this rule will complicate the calculation of the

exponential average (e-AStot) because of the diversity of paths with different values

of entropy production associated with a transition from (1, 1) to (NA, NB). However,

in the limit of g' ~ 6' < gx, this calculation simplifies significantly - we can

take the sum over the typical paths where spontaneous birth and death processes in

forward direction are ignored, so in calculation of reversal probability, we do no have

to consider these processes. Therefore, as long as the spontaneous birth and death of

particles are rare, we recover previous results (4-1). To conclude, this scenario clearly

demonstrates the advantages of summing only over the typical paths in equation

(3.41).

4.2 Drift and diffusion in driven energy landscapes

In this section, we will consider a simple, stochastic model of a single particle hopping

in a discrete landscape of energy states. Following the Markovian dynamics framework

introduced in Section 3.2, we assume that each state i had an energy Ei, and each

pair of states i and j is separated by an activation barrier Bi3 = Bji. To introduce

the notion of the heat bath and the temperature T = 1/3, we will further assume

that at any moment of time, the transition rate ri2 j of jumping for state i to state j

obeys time-dependent Arrhenius law (3.11)

ri -, = r 0e -#8(Bi - Ei)(49
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where r = ro. is a rate constant that stays constant when Ei, Ej, and Bij are varied.

It is worth noting that this form of transition rates implies that at any moment of

time, the instantaneous steady-states distribution is a Boltzmann pss(i) = Peq(i) C<

e-3Ei and that the system obeys detailed balance condition Jis,8 = PsS(i)ri*j -

ps(j)rjai = 0. In the presence of an external drive that couples to the barrier and

state energies, the thermodynamic quantities, such as the work done on the system

and heat dissipated into the surrounding bath, are defined in a standard way (3.12).

In principle, there are many physical phenomena that can be studied using this

framework, but our primary interest in this section is to demonstrate how the gen-

eralized Helmholtz free energy (3.41) can be used to explain how fluctuations and

dissipation affect the flow of probability in stochastic evolution. The differences in

mean dissipated work T and its fluctuations (D determine the relative likelihood of two

outcomes only if these outcomes have the same "distance" to equilibrium (ln(pf/peq))

and return probability 7re". In the case of the single particle that we are considering,

the first term is always zero - ln(pf/peq) = 0 because each microstate is assumed to

have zero entropy.

Figure 4-2 shows an example of a system where the return probability can be

tuned to be the same for certain states. This system consists of only three states

arranged in a row so that r12 = r23= r and r = 0. In the absence of the external

driving field, all states have the same energy Ei = 0, and the barrier heights between

adjacent states are equal B12 = B23 = AE > 0. When at time t = 0 the particle is in

state 2, then in the absence of an external drive, the probabilities of hopping to the

right and to the left are the same for any time interval T because of the symmetry. For

the same reason, the probability of returning from 1 to 2 in time T is the same as that

of transitioning from 3 to 2. Now let us consider a system that is driven in such a way

that EI(t) = -A cos(wt)/2 and B12 = AE - AE cos(wt)/2, and the energies of other

states and activation states remain the same. In general, in order to compute forward

and return probabilities, we need to solve a time-dependent master equation, but in

the limit of fast drive and short times w > 1/T > r, this calculation significantly

simplifies. On this time scale, the transition probability from one state to another
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r2- -=rexp[--3AE(1 - cos[wt]/2)]

B12 B23

El rE2 YAEE3

1AE/2

Figure 4-2: Three microstates in the absence of drive have the same energy E 0,
and the heights of the barriers between adjacent microstates is Bij = AE. In the
presence of the drive, the barrier and state energies are varied in such a way that the
transition rates r3- 2 , r2- 3, and ri, 2 are not changed, while the transition rate from
state 2 to 1 is r 2 , 1 = r exp[-OAE(l - cos[wt]/2)].

can be found as -F,[i -4 j] ~_ fJ ri~j(t) dt. Using rI, 2 (t) = exp[-AE] = r3 , 2 (t), we

find that in the limit of interest, the drive has no effect on return probabilities

ir1 [1 -+ 2] ~r,[3 -+ 2] rTe-.

In other words, for the driving protocol that we have chosen, the particle is still

equally likely to return from states 1 and 3 to state 2.

The consequences of fixing the return probability and the impact of the drive

on the systems dynamics can be recognized, if we consider the forward probabilities

7rT[2 -+ 1] and 7,T[2 - 3]. It should first be noted that our analyses are valid only

between points in time between which the driving protocol is time-symmetric (e.g,

t = 0 and t = T = 27rn/w). The rate of hopping to the right does not change in

time r2- 3 = re-AE, whereas the rate of leftward hops is periodically attenuated and

amplified because of oscillations of the barrier energy B12 (t)

r2-1 = r exp[-OAE(1 - cos[wt]/2)]. (4.10)
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In the limit of strong drive /AE > 1, the leftward transition is much more likely

to happen when the barrier B 12 (t) reaches minimum, and in this limit, the ratio of

leftward to rightward transition probabilities is

7rT[2 - 1] rna /2-+1 e OA/2 >(4.11)
7- [2 - 3] r 2- 3

A more general result that is valid for any strength of the drive can be obtained if we

average transition rates over one period of drive and recall that 7r,[2 -* 1]/7r,[2 -* 3]

1/T fJ eI3Ecos(wt)/ 2 dt I 0 (/3AE/2) > 1, where Io is the modified Bessel function of

the first kind.

During the moments of time when the particle is most likely to make a transi-

tion from state 2 to state 1, the energy of state 1 takes its minimum value -OE/2,

so leftward transitions are typically accompanied by a positive entropy production

T2-1 = 3(AQ)2-1 ~ OE/2. In contrast, the rightward transitions occur with no

dissipation because E2 = E3 , so T2,3 = 0. In more general case, one can show that

(e-AStt) 2-+ = 1/Io(#3AE/2). Therefore, if we now look back on equation (3.41), we

will immediately recover that

rT[2 - 1] m
~ 2-41 = e . (4.12)

7rT [2 -+3] r" 2-3

This equation can be interpreted as the general tendency of a particle to move with

higher probability in the direction where it dissipates more heat into the environ-

ment (i.e, particle drift and the mean dissipated heat are two profoundly connected

quantities).

A similar system shown on Figure 4-3 can be examined to demonstrate the effect of

fluctuations (D on drift. This system consists of states 1 and 2, which in the absence

of drive have the same energy E = E2 = 0. Unlike the previous example, where

there was only one possible way to make a jump from one state to another, here, we

assume that there are two different hopping paths that connect states 1 and 2. There

might be different physical mechanisms to realize this scenario, but the simplest one

is connecting the system to two heat baths. We assume that the external driving
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Figure 4-3: An example of system where the drift is suppressed by fluctuations 4P.

field couples to the system so that the barrier heights are changed over time in the

following way

B' 2(t) = AE - A cos(wt) and B' 2(t) = AE + Acos(wt),

where A is the amplitude of the drive, the exact value of which we will specify later.

The energy of the second state is not affected by the drive, while the energy of the

first state varies as E1 (t) = A cos(wt).

In the regime of strong OA >> 1 and fast r < 1/- < w drive, the transitions

between states are rare and occur during the moments of time when transition rates

have maximum value. First, we assume that at time t = 0, the system is in state

2, and we consider the forward process of hopping to state 1 in time T through each

path. Both transition rates r' and r 1 change over time, but the integral of this

rate over integer number of driving cycles is the same. Thus, the forward transition

probabilities over each path are

7r~r[2 "+ 1] = -r[2 4 1] ~ rTe-0AEJo(/A) 2i -- (AE-A) (4.13)

Next, we estimate the exponential average of dissipated heat for forward process. One
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can notice that when a particle jumps to state 1 over the barrier a, the energy of the

first state reaches its maximum value E{a A; thus, this transition is associated

with negative heat AQa = -A dissipated into the environment. In contrast, the

transition through path b happens when the energy of the first state is minimal E"M =

-A, and the system dissipated positive heat AQb = A into the bath. Combining AQa

and AQb, we promptly find that the average total entropy production is zero, I =

(AQa+AQb)/2, and that the fluctuations are (D = 0- (- ln(e-As)) = Incosh(3A) ~

OA. Finally, we will determine the probability of the reversed process of coming back

from state 1 to state 2. The transition rate ra re-AE - COnst is not affected

by the drive, whereas the averaged transition rate through path b is amplified by the

drive r 2 = re-E o(2 e #(AE 2 A). The latter implies that we can ignore

the return transitions over barrier a. Furthermore, if we set A = AE/2, we find that

the return probability 7r,[1 - 2] ~ rr is independent of drive. For this value of

driving amplitude A, the fluctuations of total entropy production are

4D ~1 AE/2 = - lnrtot. (4.14)

This expression explicitly shows that fluctuations in entropy production decrease the

forward transition rate when the return probability and average dissipation are held

constant. The origin of this effect is in the diversity of possible ways to jump between

the states: Not only can the drive accelerate forward transitions along some paths,

but it also can speed up return transitions along other paths, resulting in dissipation

that is not associated with directed motion. An extreme example of the drive that

acts symmetrically on forward and return transition rates is no-pumping theorem

[98], which claims that in the NESS, the current integrated over one driving period

is non-zero if and only if both barrier and state energies are driven.

It should also be noted that, in a low dimensional system, in order to hold the

return probability fixed, we had to change the transition rates in an extremely or-

chestrated way so that we had freedom in controlling other parameters. However, in

a high dimensional system, we expect that tuning landscape parameters such as the
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local drift velocity and diffusion coefficient would be much easier because one would

be fixing small number quantities in a system with many degrees of freedom.

The examples considered in this section demonstrate the twofold effect of the

drive on single-particle motion in time-varying landscapes. On one hand, the drive

can cause the particle to drift in the direction associated with reliable dissipation.

On the other hand, the drive can result in cyclic motion and futile dissipation. In the

next section, we will discuss how these ideas can be generalized to other systems.

4.3 Discussion

The non-equilibrium systems described by equation (3.41) have a vast range of phys-

ical properties, but not all of these systems exhibit behavior that we call adaptation.

In this chapter we analyzed the thermodynamics of self-replication and random mo-

tion in driven energy landscapes. The former example demonstrates the interplay

between entropy production and reversal probability in determining outcomes of the

stochastic evolution. In addition, the toy model of self-replication shows that adap-

tation through Darwinian selection can be thought of as a special case of physical

mechanism of adaptation in which the system tends to evolve toward the regions of

phase space where it can reliably absorb work from the drive and dissipate heat into

the surrounding bath.

This interpretation of adaptation could have a broad application, but there are also

certain subtle points related to it. Because equation (3.41) defines the probability of

being in a particular state and using the dissipated work, in order to judge whether the

system is well adapted, we need to know the initial state of the system and the history

that brought it to the final state. Therefore, we expect this theory of adaptation to

work only when, from the current configuration/structure of the system, one can

infer how the system looked in the past. In a sense, this is analogous to Darwinian

selection: When we see that species traits are adjusted well to the environment, we

assume that the ancestors of this species had these traits as well.

Another example that supports our model of adaptation focuses on rearrangement
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of a periodically driven spring network and its vibrational spectrum over time. In the

NESS, this system adopts a dynamical structure, with the peak in the vibrational

spectrum corresponding to the driving frequency. Furthermore, if the system is suffi-

ciently large and is driven at multiple frequencies, then there might emerge structures

with peaks in the spectrum that match each of driving frequencies. Physically, this

means that the system can absorb more work from the drive when its natural fre-

quency is close to the driving frequency. This behavior is in agreement with the recent

experiments on silver nanorods that assemble into ring-like structures in the presence

of light when their plasmon frequency matches the frequency of the laser beam [99j.

An interesting observation consistent with the dissipative theory of adaptation has

recently arisen in studies of self-organization in voltage-driven systems [100, 1011. In

these experiments, conducting beads were placed in circular Petri dish filled with oil,

and then high voltage was applied between two electrodes, one of which was located

in the center of the dish and the other of which formed the walls of the dish. The

viscosity of the oil was high so that on the time scale of the experiment, the diffusion

of beads was negligible. In both experiments, the authors observed the formation

of tree-like structures with statistically robust properties, such as number of termini

or branch points. However, in the second experiment [101], the authors also tracked

the dissipation rate in the system, and they found that the network of conducting

beads evolves towards states of lower resistance and, thus, higher rates of entropy

production. It is worth mentioning that the motion of the beads was collective, and

regardless of the initial arrangement and boundary conditions, the final structure had

lower resistance. Similar behavior was observed in the simulations of self-assembly of

particles interacting through time-oscillatory potentials [102]. The simulated systems

consisted of two types of charged particles whose charge was controlled by the pH of

the surrounding solvent. When the period of pH oscillations was fast compared to

particle diffusion, the formation of steady-state structures was observed. Depending

on the particle density and driving protocol, self-assembled structures with disor-

dered, dimer, fiber, honeycomb lattice, and square lattice morphologies were formed.

Interestingly, some of these structures, such as fibers, were not formed in the absence
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of time-varying potential. When the driving period was long, disordered oscillating

structures were observed. The transition from a disordered to an ordered phase cor-

responded to the maximum energy dissipated per period. In addition, the dissipative

theory of adaptation could potentially be used to explain spontaneous motion in mix-

tures of multiple proteins driven by ATP or GTP hydrolysis [103, 104] and to provide

an alternative way to design structures with high yield [105, 106].

To conclude, it is instructive to discuss the connection between the generaliza-

tion of Helmholtz free energy (3.41) and variational principles that set constraints on

entropy production rate. In 1947, Prigogine formulated and proved the minimum en-

tropy production theorem for irreversible processes in the linear response regime [1071.

In particular, this theorem states that in a system with purely diffusive dynamics,

the total entropy production rate is at a minimum in a non-equilibrium steady state

with respect to the variations of the generalized forces compatible with boundary

conditions. In the past 40 years, there was a lot of argument about this principle

and its application to biological systems. Recently, Maes and Netocny used the large

deviation theory approach to devise more specific criteria of when minimum entropy

production principle is valid [108]. They demonstrated that this principle breaks for

systems that are either non-linear or non-even under time reversal. The counter-

example first proposed by Landauer clearly illustrates these scenarios [109]. In the

electrical circuit where a resistor R and conductance L are connected in series and

driven by applying a constant voltage V, the steady state current is I = V/R and the

entropy production rate is o = RI2/T, where T is the temperature of the surrounding

bath. One can easily see that the entropy production is not minimized by current

I = V/R. The important point in this example is that the generalized thermodynamic

force, current I, is odd under time-reversal. A more general criticism of of minimum

entropy production principle and its validity for temperature-inhomogeneous systems

was outlined by Jaynes [110]. It is worth emphasizing that, unlike Prigogine's mini-

mum production principle, the generalization of the Helmholtz free energy (3.41) for

finite time stochastic evolution is valid arbitrarily far from equilibrium and does not

depend on the symmetry of generalized forces.
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A different variational principle states that, in steady-state, the mean rate of

entropy production is maximum. This principle is based on the application of Jaynes

formalism of statistical mechanics [111] to path information entropy

S, = - Z Ppath In ppath.
paths

By maximizing path information entropy, Dewar showed that the probability of a sin-

gle path x(t) is proportional to the exponential of the entropy production p[x(t)] c

exp(ro-[x(t)]) [112] (i.e, trajectories with higher mean entropy production rate are

more probable). Similar results were obtained by others [113, 1141. However, the

most legitimate derivation of this principle and discussion of how maximum and min-

imum entropy production principles reconcile with each other is due to Maes and

colleagues [115]. In particular, they show that in linear systems, minimization of

entropy production is associated with even under time reversal variables, and max-

imization is associated with odd. In some sense, the mean dissipated work II in

equation (3.41) resembles the maximum entropy production principle; however, in

our framework of dissipative adaptation, we also have to consider the opposite effect

of fluctuations (D and the difference in kinetic accessibility of macrostates. Finally,

it should be repeated that the central result of our theory of adaptation, equation

(3.41), was derived for arbitrarily strongly driven systems.
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Chapter 5

Outlook

In previous chapters, we used statistical physics to develop models of protein folding

and adaptation to time-varying fields. Here, we will briefly discuss the limitations of

these models and suggest future research directions.

5.1 Phenomenological models of protein folding

In Chapter 2, we presented a burial mode model of protein folding that allows us to

study the sequence-structure relationship in globular protein domains. In particular,

this model takes into account hydrophobic effect, polymeric bonds, and steric repul-

sion and allows us to compute the squared distance from each residue to the center of

mass of the protein, called the"burial trace". By analyzing fluctuations of burial traces

in proteins, we establish a method of identifying ligand-binding and protein-protein

interaction sites. Unfortunately, this analysis cannot be applied to a broad class of

proteins because of the approximate nature of the model.

To reduce the minimization of Hamiltionian (A.1) that is subject to constraints

(A.2, A.3) of a linear programming problem, we made a crucial approximation (A.7).

To understand how this approximation affects the performance of the model, it might

be interesting to perform Monte Carlo or molecular dynamics of Hamiltonian (A.1).

Importantly, these simulations can provide an ultimate answer for why the model

succeeds on some proteins and fails on others - the simulations will show us whether
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the cause of failure is the lack of physical factors taken into account in burial mode

model or whether the source of error is approximation (A.7).

In the process of parameter optimization of the burial mode model, we devised

a new way to measure the hydrophobic effect: From the matrix of relative positions

Mij, an example of which is shown on Figure 2-2, one can obtain a set of 190 relative

hydrophobicities of amino acids A/op. In Chapter 2, we used these numbers to obtain a

new hydrophobicity scale qi for the burial mode model. However, in principle, one can

use all 190 relative hydrophobicities to model the hydrophobic effect. For example,

one can consider a class of models in which the energy of the protein conformation is

= r,(s + 1)- i(s)12 + A S,S+if (0F(s + 1) - fi(s)) , (5.1)
S-

where f(x) is some function of a scalar argument. It is worth noting that these

models have the same phisical assumptions as burial mode model, but because of the

freedom in choosing f (x), one might be able to compute the analytical expression for

the partition function of Hamiltonian (5.1).

5.2 Thermodynamics of self-replication

In Chapters 3 and 4, we addressed the question of adaptation from the standpoint

of physics. By employing the Crooks microscopic reversibility relation, we derived

the expression for the relative probability of two macroscopic outcomes of stochastic

evolution of driven Newtonian matter. By analyzing this expression term by term, we

demostrated the general tendency of the systems of self-replicators to evolve toward

the regions of the phase space associated with the state formed through reliable

absorption and dissipation of energy from the heat bath.

For a system of two non-interacting, self-replicating species, we showed that keep-

ing the term that describes return probability in equation (3.41) constant corresponds

to a simple constraint on the total number of particles in the system, nA + nrB ~z N.

An interesting avenue to pursue might be studying the class of self-replicating sys-
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tems in which interactions between different species are allowed. These studies can

provide a thermodynamic explanation of equations describing population growth (e.g,

Lotka-Volterra or logistic equations). Furthermore, a deeper understanding of pop-

ulation dynamics can be obtained by comparing the theory of adaptation presented

in Chapters 3 and 4 to Fisher's fundamental theorem of natural selection [116] and

Price's equations [117].
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Appendix A

Burial Mode Model (BMM)

A. 1 Basic Assumptions and Approximations of BMM

In the burial mode model, a single domain protein is represented as a linear chain of

N residues, which are indexed by number s and have position r(s) with respect to

the center of mass of the protein. This model considers only three interactions that

determine protein structure: polymeric bonds, hydrophobic interaction, and steric

repulsion. The first two interactions are incorporated into the system energy directly,

whereas steric repulsion is taken into account as a global constraint on the ratio a,

between the radius of gyration of the protein chain, Rg, and its maximum size, R.

Mathematically, these assumptions are expressed as:

- polymeric bonds and hydrophobic effect

dr(s) 2 2 1

- steric repulsion and relation between R. and R

dslr(s)12 = aNR2 , (A.2)

- steric repulsion and constraint on maximum size

0 < Ir(s)12 < R2. (A.3)
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Because of the global constraints (A.2, A.3), it is difficult to obtain a closed form

analytical expression for the partition function of the protein in BMM. Therefore, to

compute the native state configuration of the protein, we have chosen to minimize

the potential energy (A.1) that is subject to these constraints. The minimization

procedure can be reduced to linear programming (LP) problem, if the following steps

and approximations are made:

- diagonalize Hamiltonian (A.1)

W'k(s) = Ek~ k(S), (A.4)

- express r(s) in terms of eigenmodes /k(s)

r(s) = [z Xklk(s),,Y~/~(S),: Zk k(s) , (A.5)
- k k k -

Ck = X+Yk + Z, (A.6)

- neglect by cross-terms q/i(s)Ob (s)

r(s) E = ck '(s) + X LY-+-Z7Zjf?/Jjs. (A.7)
k

The latter approximation is motivated by the fact that all protein conformations with

given values of coefficients ck have the same energy and radius of gyration and, thus,

that these conformations can be represented by a subset of conformations for which

cross-terms vanish.

Using the approximations described above, the minimization of the energy func-

tion (A.1) that is subject to constraints (A.2, A.3) can be written as:

CkEk (A.8)
k

Ck = aNR 2  (A.9)
k

0 < jr(s)12 ZC (s) < R2  (A.10)
k
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which is an LP problem with objective function (A.8) and constraints (A.9, A.10).

The burial trace of the minimal energy configuration is

r(s)2 = c
k

(A.11)

where c0pt is the solution of the LP problem.

A.2 BMM Model Parameters

The original parameter of BMM were set based on the following assumptions:

- Stiffness n sets the length scale in the problem.

(Ir, - r,- 1 2) = 3/2(#8)-' = 1 (A.12)

- The maximum size of the globule scales with the number of monomers N as

1/3

R 3N)
R = Tp (A.13)

- The ratio of r2ms to R2 is set to 3/5 assuming uniform density of the protein.

- Kyte-Doolittle (KD) hydrophobicity scale (20 numbers), which is used to con-

vert the primary sequence to the sequence of numbers np(s), is normalized so

that p(Gln)R2 = 0.5 kBT.
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A.3 Brute Force Search of 4-letter Hydrophobicity

Scale

Figures A-1 and A-2 show the mean and the variance of the distribution of Pearson

correlation coefficient (PCC) between the burial traces predicted by BMM with 4-

letter alphabet and burial traces computed from crystal structures. In the former

letter, the amino acids are grouped together according to KD hydrophobicity scale;

in the latter, the groups are random. For random grouping, maximum Mean(PCC)

does not exceed 0.2.
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(a) Mean(PCC). (b) Std(PCC).

Figure A-1: The mean and standard deviation of the distributions of PCC for 200
a-helical proteins when amino acids are divided into groups according to KD scale.
The model number is computed as follows: m = iid + N1 - ind2 + (N1 N2) ind3 +
(N1N2N3 ) ind4 , where Ni is the number of values along i-th axis.
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Figure A-2: The mean and the standard deviation of the distributions of PCC when
amino acids are divided into random groups.

102



Figures A-3 and A-4 show 4-letter hydrophobicity scales that provide the best and

worst performance of the model.
best vs KD

. o best
- KD

111111111"
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a.a. name

(a) Best vs KD.
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Figure A-3: 4-letter hydrophobicity scales that provide the best and worst perfor-
mance of the model on a large group of proteins, when amino acids are divided into
groups according to their hydrophobicity indices in the KD scale.
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Figure A-4: 4-letter hydrophobicity scales that provide the best and worst perfor-
mance of the model on large group of proteins, when amino acids were divided into
random groups.
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A.4 Conformational changes (statistical significance)

To estimate statistical significance of the results presented in the conformational

changes section, we used the following test model. For the protein of length N, let

F be a set of n residues responsible for performing specific function (ligand binding

for the case of myoglobin (1BZP) and H-Ras (3K8Y), and serine protease activity

for the case of chymotrypsinogen (iPYT D)); let V be a set of m residues with high

value of structural variability computed using burial mode model, and let k be the

size of the overlap 0 = F n V. Assuming that the set of residues performing specific

function F is fixed and that the set of residues with high structural variability V is

chosen at random, one can find that the probabilities of having an ovelap 0 of size k

and greater than k are given by:

Prob(101 = k) = (n). (N n) (N)
k m - k M

k

Prob(|O1 > k) = 1 - 1 Prob(1O| = i).
i=o

Thus, the p-value, defined as the probability of obtaining the overlap 0 of size at

least k, is equal to p = 1 - Prob(1O1 > k).

The tables below show p-values for different parameters of the test model. For

myoglobin and H-Ras, the residue was assumed to bind to the ligand if at least one of

its atoms is located closer to the ligand than some distance d; for chymotrypsinogen,

the positions of residues that are involved in serine protease activity were taken from

UNIPROT database (id: Q7M3E1); in some tests, we also treated first- and second-

nearest neighbors as active sites. For all proteins, the set of residues V was determined

using a cutoff on the normalized value of structural variability:

s c V if var[r2 (s)]/(var[r(s)]) > var.
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2.0 2 15 4 0.045 0.003 0.048
3.0

2.5 2 9 4 0.017 0.001 0.017

2.0 4 15 17 0.052 0.014 0.066
4.0

2.5 3 9 17 0.054 0.009 0.063

2.0 5 15 21 0.029 0.007 0.036
5.0

2.5 4 9 21 0.019 0.003 0.021

2.0 5 15 28 0.079 0.034 0.112
6.0

2.5 4 9 28 0.048 0.011 0.059

Table A.1: Myoglobin (1BZP). N 153. dE 5 kBT. Binding sites are determined
using a distance cutoff.

sites var k m n Prob(1O1 = k) Prob(1O1 > k) p-value

2.0 2 15 4 0.045 0.003 0.048
44; 91; 92; 96

2.5 2 9 4 0.017 0.001 0.017

2.0 3 15 10 0.051 0.009 0.060
+ first nearest neighbors

2.5 3 9 10 0.013 0.009 0.014

2.0 4 15 15 0.035 0.008 0.043
+ second nearest neighbors

2.5 4 9 15 0.005 0.000 0.006

Table A.2: Myoglobin (1BZP). N = 153. dE = 5 kBT. Binding
to be nearest neighbors to the residues, located closer than 3 A

sites are determined
to the ligand.

d, var k m n Prob(1O1 = k) Prob(1Ol > k) p-value

2.0 2 22 10 0.262 0.131 0.392
3.0

2.5 2 14 10 0.161 0.041 0.201

2.0 5 22 24 0.118 0.072 0.190
4.0

2.5 4 14 24 0.090 0.034 0.123

2.0 9 22 31 0.006 0.002 0.008
5.0

2.5 6 14 31 0.021 0.005 0.026

2.0 9 22 34 0.012 0.004 0.016
6.0

2.5 6 14 34 0.031 0.010 0.041

Table A.3: H-Ras (3K8Y). N = 166. dE = 5 kBT. Binding sites are determined using
a distance cutoff.
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sites var k m n Prob(O1 = k) Prob(1O1 > k) p-value

14-17, 28, 29, 34, 59. 118, 145 2.0 2 22 10 0.262 0.131 0.392
2.5 2 14 10 0.161 0.041 0.201

2.0 5 22 22 0.095 0.048 0.143
+ first nearest neighbors

2.5 4 14 22 0.071 0.023 0.094

2.0 7 22 34 0.080 0.050 0.130+ second nearest neighbors
2.5 6 14 34 0.031 0.010 0.041

Table A.4: H-Ras (3K8Y). N = 166. dE = 5 kBT. Binding sites are determined to
be the nearest neighbors to the residues, located closer than 3 A to the ligand.

sites var k m n Prob(1O1 = k) Prob(1O1 > k) p-value

2.0 7 17 10 0.002 0.000 0.002
2.5 6 14 17 0.001 0.000 0.001

+ first nearest neighbors 2.0 9 22 23 0.001 0.000 0.001

2.5 6 14 23 0.005 0.001 0.005

2.0 9 22 29 0.004 0.001 0.005+ second nearest neighbors
2.5 6 14 29 0.015 0.004 0.019

Table A.5: H-Ras (3K8Y). N = 166. dE = 5 kBT. Binding sites are taken from
UNIPROT.

sites var k m n Prob(1O1 = k) Prob(1O1 > k) p-value

2.0 1 30 3 0.280 0.038 0.319
74, 121, 216

2.5 1 17 3 0.178 0.012 0.190

2.0 3 30 9 0.065 0.014 0.079+ first nearest neighbors 2531 .1 .0
2.5 3 17 9 0.015 0.001 0.017

2.0 5 30 15 0.018 0.004 0.022

2.5 5 17 15 0.001 0.000 0.002

Table A.6:
taken from

Chymotrypsinogen
UNIPROT.

(1PYT). N = 251. dE = 5 kBT. Binding sites are
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A.5 Comparison of BMM and Regression Models

It is possible to construct a class of linear regression models (LRM) that are similar

in spirit to BMM. Just as in BMM, one can represent the protein configuration by

the distance from each amino acid to the center of mass of the protein and assume

that each amino acid has a tendency to be at specific distance from the center of

mass, r0pt(aa) = r/R. Moreover, one can assume that the effect of polypeptide bonds

in LRM can be taken into account by averaging the preferred position r0 pt(aa) over

nearest neighbors. That is, the radial position of residue at position s in the sequence

is

r(s) = Mean [rpt [aa(s - n), r0pt[aa(s - n + 1),.. . , r0 pt[aa(s - n)]], (A.14)

where aa(s) is amino acid at position s, n is the number of nearest neighbors taken

into account, and Mean[xi, x2 ,...] is some weighted arithmetic or geometric mean

function. Because parameters r0pt(aa) have physical meaning only when they are

greater than zero, it is convenient to write these parameters as an exponent of "effec-

tive hydrophobicity"

r0pt(aa) = hopt(aa)

and to compute radial positions as geometric mean

r(s) exp 2 1 S 'h0 pt[aa(i)]], (A.15)

where the sum is taken over nearest neighbors and n is the number of neighbors.

Given this form of r(s), one can easily find the parameters of the model h0pt(aa)

using simple linear regression on In r(s).

Figures A-5-A-8 show the results of the LRM described above for different groups

of proteins. For each group, the optimal parameters were found from the training

set consisting of 20 proteins, and then the model was tested as one whole group. In

addition, the performance of the LRM on each group of proteins was compared to the
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performance of BMM. Figure A-5 shows that LGM and BMM perform equally well on

the group of myoglobin and that the optimal parameters h0pt(aa) are similar to the KD

hydrophobicity scale. For other groups of proteins (hemoglobin and immunoglobulin)

the LRM works significantly better than BMM, but there is almost no correlation

between optimal parameters of the LRM and KD hydrophobicity scales.
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Appendix B

Thermodynamics of self-replication

B.1 Chemical reaction X ; 2X

Let us consider two chemical reactions:

X-+2X, X+X X. (B.1)

The first reaction describes the self-reproduction of molecule X at rate g, whereas

the second reaction describes the annihilation at rate 6 of one X molecule when two

X molecules collide.

In principle, the state of a system with n molecules should be defined by speci-

fying the positions and momenta of all molecules {(qi, pi), ... , (qn, p")}. However, for

simplicity of calculation we are going to assume that all molecules have the same

position and neglect their momenta, so the states of the system can be labelled by

the number molecules in the system, n. The Master equation for the system can be

written as

15(n, t) = -(gn + 6('))p(n, t) + g(n - i)p(n - 1, t) + 6("fl)p(n + 1, t), (B.2)

where combinatorial factors n and (n) account for the number of ways that first and

the second reactions can happen.

111



B.1.1 Deterministic solution and steady-state distribution

The corresponding deterministic equation for this set of chemical reactions is

k = gX - 6X2/2. (B.3)

The deterministic equation has a stable fixed point x* = 2g/6 and the system

approaches this point as

x(t) = xoe9 ' (B.4)
X* + XOlegt - 1

where xO = x(0).

Assuming that x* >> 1, we can rewrite Master equation (B.2) as a Fokker-Plank

equation
a a 2

j(x, t) v(X)p(x, t) + a2 D(x)p(x, t), (B.5)

where v(x) = gx(1 - x/x*) and D(x) = gx(1 + x/x*)/2. The steady-state distribution

is equal to

C (fv(X)\ 62x
PSs(x) =Dx) exp dx = (1 + X/X*) 4 x (B.6)

and is sharply peaked at t ~~ x*, var(x) ~ X*

B.1.2 Forward probability

In this subsection, we are going to compute the time-evolution of the probability

distribution p(n, t11, 0) for a system that at time t = 0 has only one molecule. We will

consider the regime where the rate of particle annihilation 6 is very small compared

to growth rate g, 2g/6 > 1, and focus only on times when the average number of

molecules in the system grows exponentially, that is 1 < gt < x* = 2g/ 6 . In this

regime, we can neglect terms corresponding to the annihilation of the molecules and

rewrite Master equation (B.2) as

(n, t) = --gnp(n, t) + g(n - l)p(n - 1, t). (B. 7)
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This equation can be easily solved by introducing the generation function G(s, t)

00 s8p(n, t) and solving PDE for the generating function

Gt(s, t) = gs(s - 1)Gs(s, t).

The latter equation has a solution G(s, t) = F(gt + In I-' 1), where F(z) is arbitrary

function that can be found from the initial conditions

p(n,t = 0) =6n,no, or G(s, t = 0) =so.

From '-' = ez, we find that F(z) = 1/(ez + 1)'0, i.e.

G(s, t)= (- = ( )(o 1) + (B.8)
ew(1 -r 1, w c e tt - obn '

where #3 = I - e-9'. For no = 1, we can simplify the result and obtain that

G(s, t) = e-gt/(- 1 + 1 + /s + (+s)2

Thus, we find that the probability of observing

time t = 0 there was only one molecule is

+ ... ) = e-//3 (0s)"
ns 1

n molecules at time t given that at

PF(n, t) = p(n, t11, 0) = egton" = e-gt( - e9t)n 1 . (B.9)

B.1.3 Return probability

In regime 1 < gt < x* = 2g/6, the most likely paths from a state with n molecules

to a state with one molecule do not contain growing events because any growing

event contributes the factor of 6/g < 1 to the probability of the path. Thus, the

probability of moving from a state with n molecules to a state with one molecule

can be estimated as a sum of probabilities of all trajectories in which the number of
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molecules monotonically decreases with time:

PR = p(l, t~n, t = 0) = z Ppath(tin_1, ... ,ti).
all I paths

It should be emphasized that this probability equals the probability of the process

time reversed to the process (1, t = 0) - (n, t).

4

3

2

1
0

T4

73-

T2

- ~

I ITi

t4 t3 t2
tl T t 0-

Figure B-1: A sketch of a monotonic destruction path, P(t 4, t6, t2, ti).

A typical monotonically decaying path is shown in Figure B-1. The probability of

such a path is given by the product of probabilities of having i particles on the time

interval [ti, ti_ 1) and probabilities of annihilation of the particle in dti- 1

2

Ppath (tn, tn_1, .. ,tl) = -g(T-ti) 11 e- i(ti-1-ti) (2i ) dti_-1,

where ci = gi + 6('). Here, the extra term e-g(T--1) comes from the fact that the

system should spend time T = T - t, in a state with one molecule. Therefore,

the probability of the reverse process is given by the integral over ti, subject to the
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constraint 0 = t, < tn_ 1 < ... t1 < T :

-(2

PR ] -g(T-ti) 17 eai(ti-iti) (2i)6dti-
-~ -~ -i2n

=
fX n n

n!(n - 1)! 11 dTr e-i( ri - T)
. 1 i 1

n!(n - 1)! 1 dke kT
d00

0fJ dT
0~

e-(a+ik)-r _

n-1 1

= -~ n( 1!2 27i

= 2 n! (n - )! e-

n

dkezkT a + ik

cei J 1 .a - a-

Assuming that n ~ et < 2g/6, we can simplify the expression above as

PR=
2g

,n--1

=2g

n!(n - 1)! . .
=1(n - )( -1!

n-i

n! e -T (n 1) (-1)ie-igt-

i~0

B.1.4 Entropy production

Because the transition rates do not depend on time and to get from the state with

one molecule to the state with n molecules, the system should go through all states,
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(B.10)
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1

n-1

= g n! e--gT(1 - gt9)n-1
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the entropy production is completely determined by the initial and final state of the

system:

AS(1, n) = As(, i + 1) In 1)

(n - 1) ln - In n!
6

n-1

- Eln
i=1

gi

6i(i - 1)/2

Using equations (B.9, B.11, B.12), one can verify that our assumptions for PF,

PR, and AS are self-consistent and that these quantities satisfy the Crooks relation:

In PF - InPR AS.

It should be noted that, in principle, it was not necessary to directly compute PR

through integration over monotonically decreasing paths. However, we decided to

include this calculation just to demonstrate the consistency of our assumptions.

B.2 Two chemical reactions A ; 2A, B ; 2B

B.2.1 Surface of fixed return probability

If we consider the evolution of two different types of molecules A and B that do not

interact between each other, we can write

ln PF(rA, nB, T) = In PF(TA,T) + In PF(nBt)

- -(gA + YB)T + (nA - 1) -n( - 6 -AT) + (rB -1) ln(1 - e6 BT)

InPR(nA,nBT) = InPR(nA,T) +In PR(nBt) =

= -(gA + gB)T + (nA - 1) ln(1 - e 9 AT) (nB - 1) n(1 - e B_

+ In nA! -+In nB! -- (nA -- 1) In 2A-(B
6A

- 1) n

AS(nA, nB) =(nA -- 1) In 2gA
6A

- (n B -1)In -- nnA! - InnB!
6B
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Assuming that 1 < nA/B < A/B, we can rewrite the probability of reverse process

and the entropy production as:

In PR(nA, nB, T) C(T) - (u + 6u) nA - (v + v) nB

In AS(nA, nB, T) C'(T) + unA + VnB, (B.14)

where u = In 2
9A, 6u in(1 -e-9AT) = e-9T , = B 2B v Bn( --9BT) -

e-9BT. On the surface of fixed return probability PR(na, nB)= const, we can estimate

the variation of entropy production AS as follows:

AS(nA, nB)
PR=const

- C"(T) =
Sn

nB(VU -v)
U

nB (e9A n - e-gB
In n*- r~(eAT~ eBA

= nBe9BT(e(gB -g)TnB

In n*
- 1),

(B.15)

that is the molecules that grow more quickly dissipate more, and the outcomes with

larger fraction of these molecules are more likely on the surface of fixed return prob-

ability.

If we assume that YB = 2 9A and B= 2 6 B, then n* = n* and

AS(nA, nB)
PR=const

- C"(T) = nB (e T -T ) T nB(e--9AT _-gB)T nBe 9 AT

Taking into account that the average number molecules of type B is on the order of

nB ~ we find that S(nB = 1) ~ e(gB-g)T > 1, that is, the variation of entropy

on the surface of fixed return probability can be dramatic.
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