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Abstract

Quantum simulation is emerging as an exciting and active frontier in atomic physics.
It allows us not only to verify existing models with high precision, but also to engineer
novel systems with strong correlations and exotic topologies. Recent efforts have been
made to include synthetic gauge fields and spin-orbit couplings into ultracold quantum
gas experiments, which would enable us to study the quantum Hall effect, topological
insulators as well as topological superfluids. This thesis will describe the experimental
implementation of a new spin-orbit coupled system using pseudospin-1/2 in an optical
superlattices, as well as progress towards detecting the stripe phase in this system.

The first part of this thesis describes the development of a new apparatus for per-
forming quantum simulations with sodium and lithium in optical lattices. A quantum
simulation program is challenging itself, therefore having a stable platform for prepar-
ing quantum gases is essential for this task. We'll describe our development in reliable
and efficient production of sodium Bose-Einstein condensates and lithium degenerate
Fermi gases, as well as the characterization of our optical lattice system in a superfluid
to a Mott-insulator quantum phase transition. The dynamics of a Bloch oscillation in
a tilted lattice has also been studied as an important step towards the implementation
of synthetic magnetic fields in our system.

The second part of this thesis describes the experimental realization of spin-orbit
coupling in a pseudospin-1/2 system using an optical superlattice. This new scheme
uses orbital states in a tilted double-well as the pseudospins, therefore does not require
near-resonant Raman light to flip the spins and promise longer lifetimes compared to

earlier spin-orbit coupling experiments in atomic gases. It also features a robust misci-

ble ground state with stationary density stripes, which is closely related to the concept
of supersolidity in condensed matter systems. We'll present our experimental imple-

mentation of this new system, signatures of the resonant spin-orbit coupling, as well
as progress toward experimental detection of the stripe phase via Bragg scattering.

This pseudospin-1/2 system could also be used for simulating quantum magnetism,
and potentially novel models with topological properties and Majorana excitations.
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Chapter 1

Introduction

1.1 Background

1.1.1 Quantum simulation

The idea of quantum simulation originates from remarks made by Richard Feynman in

1982, that physical systems can be hard to simulate with a computer. This statement

is particularly true for quantum systems, as the memory required to represent a state

(space complexity) and the time required to do computations (time complexity) with

them increase exponentially with the number of degrees of freedom being simulated.

One way to overcome the difficulties is to design and build novel quantum comput-

ers. They perform unitary operations instead of logic gates, and operate on quantum

bits instead of classical bits. Because of their vastly larger state space and greater

computational power, quantum computers could allow us to tackle difficult problems

that are not tractable with classical machines. To make scalable and robust quantum

computers is currently a field of enormous activity and interest.

Another promising solution is to simulate the same problem in a different quantum

system. Assuming physics is universe, studying problems in a clean and well controlled

setting allows us to gain an edge in solving them, as well as to engineer novel quantum

models to be explored.
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1.1.2 Cold atoms as quantum simulators

Since the first realization of Bose-Einstein condensation and later Fermi degeneracy of

neutral atomic gases, ultracold atoms have shown themselves to be an ideal candidate

for quantum simulations. Bose condensates and degenerate Fermi gases are pure forms

of quantum matter. Furthermore, the diluteness of the atomic clouds and their weak

couplings to the environment allow them long coherence times for quantum simulation

experiments.

The powerful toolbox for preparing, manipulating and probing atoms for quantum

simulations has been developed over the years. Here I'd like to mention a few examples

to demonstrate the powerfulness and convenience of these tools. First, optical lattices

are created by interfering laser beams. By changing the geometry and polarization of

the beams, we are able to make cubic, triangular, checkerboard or other very different

lattices in a single experimental setup. Second, Feshbach resonances would allow us to

tune the two-body interactions, ranging from strong attractions to strong repulsions.

Finally, atoms can be imaged in absorption, phase contrast, or single atom detection

via fluorescence [5]. All of these tools make the ultracold atom system particularly

attractive, and greatly facilitate the quantum simulation program.

1.1.3 A brief history

The field of quantum simulation using ultracold atoms has become diverse in recent

years. To me still, there are focused efforts in the following directions. The first one is

to simulate the Bose-Hubbard model with a single-component Bose gas in 3D optical

lattices. The quantum phase transition from a superfluid to a Mott insulator has been

observed in this sytem [15]. With newly developed microscopy techniques and single-

site resolution imaging, one can characterize the system with high precision [16, 17].

The second direction is to simulate the Fermi-Hubbard model with an interacting

two-component Fermi gas in optical lattices. This is partly motivated by the high-Tc

superconductivity and quantum magnetism. Experimental progress in this direction

includes observation of fermionic superfluid [3], band insulator and Mott insulator [19,
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20], and most recently results on probing the anti-ferromagnetic correlations near the

Neel transition [21, 22].

In the past five years or so, a third direction has emerged to simulate gauge fields,

spin-orbit couplings and topological states. New lattice modulation and laser-assisted

techniques have been developed to generate complex tunneling amplitudes. Highlights

in this direction so far include creating strong synthetic magnetic fields [23, 24, 25, 26],

and realizing novel Hamiltonians with topological properties [27, 28]. These exciting

developments have opened up a whole new phase of quantum simulations in ultracold

atoms, and motivate the work that will be presented in this thesis.

1.2 Thesis Outline

This thesis will present progress towards experimental realization of exotic Hamilto-

nians in optical lattices, including spin-orbit couplings in an optical superlattice and

subsequent experimental detection of the stripe phase, as well as synthetic magnetic

fields. It is organized as follows.

9 Chapter 2 presents an overview of the new apparatus, and discusses technical

details of the development of the machine after its initial construction, including

the creation of its first Bose-Einstein condensates and degenerate Fermi gases,

as well as the techniques for spin state preparation.

* Chapter 3 introduces the physics in optical lattices, and describes the develop-

ment of building and characterizing our optical lattice system. It also discusses

our studies of dynamical instability in tilted lattices and progress towards im-

plementing synthetic magnetic fields.

e Chapter 4 discusses the experimental realization of spin-orbit coupling in the

pseudospin-1/2 system in an optical superlattice. It will detail how to create,

control and characterize the superlattice, as well as the experimental detection

of the spin-orbit couplings and the stripe phase.
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* Chapter 5 briefly describes three density fluctuation measurements in a Fermi

gas. These experiments were performed in an apparatus that was later decom-

missioned.

* Chapter 6 presents an outlook for the future directions of the experiment and

the conclusion.
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Chapter 2

Production of Quantum

Degenerate Gases

When I first joined this lab in 2009, I was totally shocked to see the seemingly fragile

glass cell surrounded by complicated magnetic coils, and cables and fibers were over

the place tangled up on the ceiling and floor. It is still a mystery to me how I managed

to learn and operate such a formidable apparatus in the following two years without

any prior experience, and together with my labmates to carry out the atomic density

fluctuation experiments with it.

This old apparatus, originally built in 1998, was the second of its kind on this

hallway to perform BEC experiments [1]. It had been upgraded to a dual-species

sodium-lithium machine [2], and become one of the first machines to achieve quan-

tum degeneracy in fermions. In the following years, old generations of BEC2 people

had produced a series of pioneering works, including the first observation of fermionic

superfluidity in optical lattices [3] and the study of critical velocity of fermionic su-

perfluidity in the BCS-BEC crossover [4].

However, by the time I joined this lab, the old BEC2 apparatus already started to

show limitations for our long-term goal, which is to carry out quantum simulation in

optical lattices. It often required a few hours of tweaking and optimizing for a proper

performance, and was only stable enough to operate late during the night. In addition,

it had many layers of unnecessary complexity, partially because of its long history

23



of upgrades, making it difficult to adapt changes for new experiments. Furthermore,

vacuum in the main chamber started to degrade, as a few key components such as gate

valves and titanium filaments begun to fail. These would ultimately limit our cloud

lifetime for studying superexchange physics in optical lattices. In the end, the decision

was made to develop a next-generation apparatus for optical lattice experiments.

The primary focuses of designing the new apparatus are the reliability, versatility,

and low complexity. Consistent performance and low maintainance of the new appa-

ratus could allow us to work more efficiently and concentrate on the experiment itself.

For example, we have built enclosures with individual temperature stabilization to

have much better control of ambient temperature fluctuations. We have also switched

to a solid state laser system from the notorious dye laser for producing 589 nm light,

and carefully considered the mechanical stiffness and stability of mounting techniques

against beam drifts.

In addition, the design of our new apparatus aimed for versatility rather than for

one particular strength or area of research such as single-site resolution microscope

experiments [5] or multi-species cold molecule experiments (e.g., Na-Li-K [6]). We

decided to continue the Ketterle group tradition of making general purpose cold atom

machines, which may not be the ultimate tool for any specific study, but are suitable

to a wide variety of experiments.

Finally, in the new apparatus we have also tried to design built-in features that

reduce unnecessary complexity and facilitate future upgrades. For instance, we have

MOT light prepared on the back side of the main breadboards, and delivered with

translation stages so that it does not interfere with future use of high value surfaces

of these breadboards. We selected a much simpler plugged quadrupole magnetic trap

design, compared with the more complicated Ioffe-Pritchard design used previously.

Almost all laser beams are fiber coupled and delivered so that the experimental table

is decoupled from light preparation.

While the noise measurements were being carried out in 2011, the next-generation

apparatus was already in the process of being designed and prepared by the members

of the lab. Its initial design and construction are described in detail in Aviv Keshet's
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thesis [7]. Edward Su and I took over the machine from the point of its first magneto-

optical trap, and eventually made our first sodium BEC in the new apparatus a year

after. Some technical details of the design and implementation for the development

in this phase can be also found in Edward Su's thesis [8]. After another year of work

on cooling lithium and testing the new optical lattice system, now we are on the verge

of pushing the frontier of quantum simulation in optical lattices again.

This chapter will describe our efforts to reliably and efficiently produce quantum

gases for optical lattice experiments. First we'll provide a brief overview of our new

apparatus in its current state. We'll then discuss a few key developments in the pro-

cess of achieving quantum degenerate gases of sodium and lithium in this apparatus.

Finally, we'll describe the techniques to manipulate the hyerfine states of sodium as a

way to prepare the states. This chapter is by no means a complete guidebook for de-

signing and constructing a new apparatus for quantum gases experiments. For that,

the reader is advised to refer to early theses in Ketterle lab [1, 2, 7, 9] and references

therein.

2.1 Overview of the Experimental Apparatus for

23Na-6Li in Optical Lattices

The new BEC2 apparatus is a general-purpose machine for 2 3Na and 6Li dual-species

experiments. It shares some features with machines that were built around the same

time in Fermil (for 2 3Na-6Li- 40'41K) and BEC5 (for 'Li) on the hallway of the CUA.

The following contains a brief description of this apparatus.

Fig. 2-1 presents an overview of the whole apparatus. A two-species oven on the

far right is the source for 23Na and 'Li atoms. The oven chamber is connected through

a differential pumping tube to a small intermediate chamber, which is then connected

to the main chamber at the beginning of the Zeeman slower through a second stage of

differential pumping. The oven-to-intermediate and intermediate-to-main interfaces

can be sealed off with VAT gate valves, allowing the main chamber to be kept under
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ultra-high vacuum during oven refills. The intermediate chamber provides additional

differential pumping and acts as a buffer protection, so that the intermediate-to-main

gate valve sits in a cleaner environment and is less likely to fail. Each of these vacuum

chambers is monitored by its own vacuum ion gauge, and constantly pumped by its

own ion pump.

I I I I I

Main Chamber Zeeman Slower Source

Figure 2-1: Overview of our sodium-lithium apparatus. The oven cups (right) contain-
ing sodium and lithium are heated up to produce atomic beams, which are then cooled

through the Zeeman slower (middle) and trapped in the main chamber (left). The
main chamber on the left is a custom-made steel chamber with numerous viewports
for optical access and high-current magnetic coils mounted in the vertical buckets.
This figure is adapted from [7].

Main vacuum chamber

The main chamber is designed to prioritize optical access, and to accomodate the

bucket windows, with two on the top and bottom, and one on the side. The bucket

window design allows us to bring coils and optics much closer to the atomic cloud, and

therefore achieve strong magnetic fields and high resolution imaging. All viewports

are given a multi-wavelength coatings optimized for 532 nm, 589 nm, 671 nm, and

1064 nm, except the side bucket window and its facing viewport were given a single-V
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anti-reflection coating for 671 nm, intended to be the best-performing imaging axis

for lithium.

Magnetic coils

The high-current magnetic coils are mounted inside the top and bottom buckets to

provide strong magnetic fields. Each of them was wound with five individual layers,

which were then wired in series and combined into an outer and inner segment. Both

segments in the top-bucket coil can be configured, via a mechanical relay H-bridge,

into a Helmholtz or anti-Helmholtz configuration with its counterpart in the bottom

bucket, making the new coil system really easy to switch and reconfigure. These

high-current magnetic coils are constantly cooled with pressurized water, designed to

handle the power comsumption at 500 A. When running this current in both segments,

the Helmholtz configuration yields a bais field over 1000 G, and the anti-Helmholtz

configuration yields a magnetic field gradient of 1000 Gauss/cm, readily covering the

broad s-wave Feshbach resonance of 6Li near 830G, and the strong magnetic gradient

needed for fast evaporative cooling.

Temperature stabilization

Ambient temperature and humidity stabilization is crucial for the success of atomic

physics experiments. The old BEC2 experiments suffered terribly from this problem,

as the room temperature could drift a few degrees over the day, and the only practical

hours of data taking were in the middle of the night.

To address this problem in the new apparatus, we have upgraded the room tem-

perature stabilization system, and more importantly, have built enclosures and indi-

vidual temperature control for the experiment and laser tables. The details of our

new temperature stabilization system can be found in [7]. In practice, the daily room

temperature fluctuates within a couple of degrees, and the ambient temperature on

the tables fluctuates around tenth of a degrees, when the enclosure doors are fully

closed. To keep the machine away from extreme high humidity, we have also installed

a stand-alone dehumidifier to supplement the existing dehumidification performed by
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the air conditioners, and maintain the room humidity always below 35%.

Solid-state 589 nm laser system

For our sodium BEC experiments, a laser source at 589 nm of at least 1.4 Watts and

with a linewidth of about 1 MHz or better is required. Historically, this was achieved

by using a tunable dye laser with Rhodamine 6G dye in BEC2. However, the dye laser

was notoriously difficult to operate, and was a major source of experiment downtime.

Finally, it was replaced by a turnkey all-solid-state system from MPB Photonics.

This scheme was made possible by recent advances in the Raman amplifiers. In this

system, the 1178 nm light from a Toptica DL pro diode laser is amplified through the

Raman amplifier to about 5.8 Watts, and then frequency-doubled to create the 589

nm yellow light.

This compact package offers an almost maintainance-free yellow laser solution, and

we are in general very happy about it. There is one caveat that I want to mention:

even though MPB claims the minimal threshold of seed power is 13 mW, this value

is way below the saturation limit. This means, a stronger seed always generates more

yellow light. On the other hand, a weaker seed requires the Raman amplifer to run at

a higher current to maintain the same final yellow output, which shortens the lifetime

of the pump diodes.

In practice, we run this sytem at a seed power greater than 25 mW, and will get

a total output of 1.35 W yellow light. The degradation from 30 mW to 20 mW of the

maximum seed from the Toptica laser is observed over the past two years. Therefore

to overcome this degradation, one has to either replace the Toptica laser diode in the

near future, or to look for alternatives of the seed, such as the promising distributed

feedback lasers (DFB) that provide high power at low cost.

532 nm plug laser

In the new apparatus, we abandoned the loffe-Pritchard trap in favor of the quadrupole

trap, because of its simplicity in design and convenience in use. However, different

from the loffe-Pritchard trap in which a harmonic trap is created on top of a bias field,
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the simplest quadrupole trap with a pair of coils run current in opposing directions

always creates a zero magnetic field at the trap center. As the magnetically trapped

atoms pass through the trap center of zero field, their magnetic dipoles cannot adi-

abatically follow the field direction, causing them to undergo Majorana spin flips to

the untrapped states and get ejected from the trap.

The problem was solved by either moving the zero field point around to create a

time-averaged trapping potential, the so-called TOP trap in JILA experiments [10],

or by combining the magnetic potential with a repulsive [11] or attractive [12] optical

potential so that the atoms are trapped away from the region of zero field.

In our experiment, we have a 10-Watt 532 nm laser Millennia from Spectra Physics

used as a repulsive optical potential to plug the zero magnetic field. It's an old laser

and has already shown its aging. With a degraded output of 6 Watts, we are still able

to keep the machine running. However, if the old pump diodes fail, one could either

get diode replacement for the old laser directly from Spectra Physics if the cost is low,

or consider buying newer cost-effective lasers discussed in section 4.2.1, or multitask

the frequency-doubled green light for both the plug and the superlattices.

High power 1064 nm system

Far-off-resonant light is used to generate optical dipole traps and optical lattices for

quantum gases experiments. To study exotic states in quantum simulation with opti-

cal lattices, especially physics deep in the Mott-insulator such as quantum magnetism,

it is often desirable to work at low densities near one particle per site, and we want

large lattice beams with low curvature and simultaneously enough intensity to reach

deep into the Mott insulator regime. This in practice means a few Watts per beam

for sodium, and up to 10 Watts per beam for lithium. Safely, reliably and efficiently

making and controlling high-power light is essential for our experiments..

With high-power laser beams, it's important to carefully choose optics with high

optical damage threshold and low thermal drifts, since these damages are irreversible

and some of these drifts are hard to trouble-shoot. It is highly recommended to take

these factors into considerations at the designing phase. Based on our experience, it
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is preferred to use high-power optics for a millimeter beam with more than a couple

of Watts. These include high-power AOMs, high-power fibers and connectors, fused-

silica lenses and air-spaced polarizing beamsplitting cubes.

We have several water-cooled fused-silica AOMs from AA Opto-Electronic to in-

tensity stablize 20-Watt 1064 nm beams. These AOMs have large aperture (2-3 mm),

high diffraction efficiency (- 90%) and relatively low thermal drifts. However, fused-

silica AOMs have a low figure-of-merit in the acousto-optic effect, and therefore needs

a strong RF signal to drive (in our case about 30 Watts). The best alternative seems to

be AOM made in Tellurium dioxide (TeO2), which is rated at a lower maximum CW

laser power of 5 W/mm 2 but requires less RF. We get these AOMs from IntraAction.

For high power fibers, we use photonic crystal fibers from NKT Photonics, with

the maximum available mode area, which are the LMA-25 series without polarization

maintaining, and the LMA-PM-15 series with polarization maintaining. These fibers

are all end-sealed and custom connectorized to SMA-905 high-power connectors by a

French technology center called Alphanov. These high-power connectors are rated to

handle beams up to 50 Watts. In practice, we found no major thermal issues for a

10 Watts CW input without any active cooling. By installing thermoelectric coolers

(TEC) on these connectors to transfer away the excessive heat, other labs reported

that no severe thermal drifts were found with more than 20 Watts CW light. Finally,

we use fiber collimators with fused silica components from Micro Laser Systems (FC5-

Y-FS) or large area collimators from Schdfter+Kirchhoff GmbH (60FC-SMA series).

Optics layout

Because of its superior mechanical stability, the horizontal axes tend to be the busiest

in terms of optics density, as sensitive beams are preferred to be installed in this plane.

A schematic diagram of the optics layout in the horizontal plane is shown in Fig. 2-2.

The two 450 axes with large viewports are shared by the MOT beams and the lattice

beams, and the two smaller 22.5' windows are used by the plug and optical repumping

beam separately. Imaging is available along most major axis for easy beam alignment

and flexible detection. In addition, there are a pair of MOT beams, an optical lattice
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Figure 2-2: Layout of the optics on the experimental table. This diagram illustrates

the layout of the optics in the horizontal plane, including the plug beam and two

lattice beams in orthogonal axes shared by MOT beams. Imaging are available along

the plug axis, both horizontal lattice axes, the vertical axis, as well as the side axis.

This figure is adapted from [8].

beam, as well as the primary imaging along the vertical axis, which are not shown in

this diagram.

2.2 Condensation of 23Na in the F = 1 Hyperfine

State

In the following two sections, we will describe the development of making quantum

degenerate gases of sodium and lithium in our new apparatus. These discussions will

be mainly focused on the benchmark results in every stage for this particular machine,
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as well as the experimental techniques that we've found useful in troubleshooting and

performance evaluation. For general introduction and broader aspects of cooling 2 3Na

and 6Li into quantum degeneracy, please also refer to the pioneering works in [2, 9].

2.2.1 Single-species 23Na MOT

The traditional dark-spot MOT of sodium is used in our experiment to trap as many

sodium atoms as possible [13]. Typically, our MOT loading takes about 8 seconds,

and then we transfer the sodium atoms from the dark-spot MOT into the magnetic

trap with a vertical axial gradient of 50 G/cm,

Once the first MOT is obtained, critical components such as the slower frequency

and repumping sidebands, the MOT light polarization, and the dark-spot alignment

in the repumping beam are within the working range and unlikely to change. However,

there are pieces that might potentially drift over the weeks and deteriorate the MOT.

Based on our experience, the top candidates are the power balance in each pair of the

counter-propagating MOT beams, the current in the last section of the slower which

defines the final velocity of the decelerated atoms in the main chamber, and of course

the laser lock and total yellow light output. In most cases, by checking through this

list, one could recover a decent sodium MOT for the experiment.

When something has drifted away from its proper settings, it might be confusing

to figure out what's wrong and how to make improvement. In this case, we find setting

up a MOT loading monitor very helpful for debugging the system [13]. A very weak

probe beam is sent through the cloud with a countinuous frequency scan of over 100

MHz (via two double-passed AOMs) near the sodium D2 line. For a decent dark-spot

MOT with very high atomic density, a plateau of over 50 MHz with nearly complete

absorption is expected, and the excited-state hyerfine structure could no longer be

resolved. Similarly, a MOT fluorescence detector can be set up to diagnose the slower

performance in the MOT loading, as well as the transfer efficiency from the dark-spot

MOT to the magnetic trap.

If the MOT loading is very slow, another possibility could be the alkali in the oven

is depleted. Usually, we need to refill the sodium oven almost every year, while the
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lithium oven is running at a conservative temperature and is expected to last for the

entire lifetime of the apparatus. An independent check of whether the oven needs a

refill is to measure the atomic flux. A laser beam near the sodium D2 line is sent into

the intermediate chamber perperdicular to the atomic beam, and a narrow resonant

absorption of 3 - 5% corresponds to a good atomic flux for laser cooling and trapping.

In the end, a high density cloud in the magnetic trap is needed for the subsequent

evaporative cooling. For us, several billion of trapped sodium atoms is a good starting

point. To correctly estimate the atom number with such high density, an off-resonance

imaging after a short time-of-flight is used, using the scaled absorption cross sections.

2.2.2 Evaporative cooling in a plugged magnetic-quadrupole

trap

After loading the atoms from the dark-spot MOT, the magnetic trap is ramped up

to 750 G/cm for fast evaporation. While we are able to achieve the BEC in 8 seconds

without trap decompression, we obtain a larger condensate of about 5 x 106 atoms after

reducing the trap gradient to 75 G/cm with further evaporation in the decompressed

trap for an additional 3 seconds. The first BEC in the new apparatus was obtained

in the magnetic trap and the corresponding radio-frequency evaporation sequence is

illustrated in Fig. 2-3.

The plug beam initially came from a Spectra-Physics Millenia Xs (diode-pumped

solid-state laser) with a full output of 9.5 W at 532 nm. This unit unfortunately failed

later and was replaced with a similar unit but at a degraded ouput at 6 Watts. The

plug beam is in a free-space setup, prepared on the bottom layer of the experimental

table and then sent to the horizontal breadboard with a periscope. The plug has a

waist around 100 pum, and its position is controlled by motorized actuators (Newport

TRA12CC) on the last mirror before the vacuum chamber for beam alignment. The

motorized actuator is convenient in aligning the plug to the magnetic field zero point,

however, there are always some unexplained fluctuations in the plug beam pointing.

Preliminary investigation suggests that it is from the laser itself, and therefore could
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be eliminated by coupling through a fiber, with an improvement in beam shape but

a sacrifice in power.

to t t t
Radio-frequency evaporative cooling of F= 1 Na F=I Na BEC in a plugged magnetic-trap

uns TOP 1ins TOP

Figure 2-3: Evaporative cooling of sodium in the F 1 state with radio-frequency.

From left to right are the images of the cloud at different stages in the evaporation

after 1 ms time-of-flight from a plugged quadrupole trap. A plugged hole can be seen

at the center of the cloud. By the end of the evaporative cooling, a sodium condensate

in the F =1 state emerges in the plugged magnetic trap, shown on the far right with

a 10 ms time-of-flight.

Forced evaporative cooling of the sodium typically occurs on either the microwave

transition I1, -1) --+ 12, -2), or the radio-frequency (RF) transition I1, -1) -+ 11, 0).

The RF evaporation is often easier to implement and has a better performance, but

the strong RF radiation can interfere with the normal operation of electronic devices

ranging from power supplies and motorized actuators to flow and temperature sensors.

Since evaporation on the microwave transition near 1.7 GHz is necessary anyway for

the sympathetic cooling of lithium, in which only sodium atoms are evaporated, it is

used as our primary scheme for evaporative cooling.

We have an in-vacuum antenna that is connected via a 2-wire electrical feedthrough

and designed mainly for driving RF hyperfine transitions. There is also an outside

antenna mounted inside the top bucket, mainly for driving microwave hyperfine tran-

sitions. Both of them have a single loop copper wire design.

The results of the microwave and radio-frequency evaporation can be compared

in Fig. 2-3 and Fig. 2-4. The final atom number at the end of the evaporation seems

sensitive to the Rabi frequency of the transition. For our primary microwave evapo-

ration, a 50W microwave amplifier (EMPOWER 1119) is located as close as possible

and connected to the outside antenna by a short SMA cable to avoid unintended at-
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Figure 2-4: Evaporative cooling of sodium in the F = 1 state with 1.7 GHz microwave.
Evaporative cooling using microwave produces similar results as the case using radio-
frequency. At the end, a sodium condensate in the F = 1 state is produced in the
plugged magnetic trap, and subsequently transferred into an optical dipole trap.

tenuation. Unfortunately, it's somewhat impractical to boost the microwave transfer

and the Rabi frequency further, by either using a resonant circuit on the antenna

since the evaporation frequencies are ranging from 1.4 GHz to 1.8 GHz, or switching

to a horn antenna design because horn antenna at these frequencies gets very big and

won't fit in the space.

2.2.3 BEC in an optical dipole trap

Even though we could get a BEC in the plugged magnetic trap, as almost all quantum

simulation experiments are carried out in the optical dipole traps nowadays, efficiently

transferring the atoms from the magnetic trap into a robust dipole trap is an essential

landmark for our quantum gases sample preparation.

We decide to have a crossed dipole trap, because compared to a single-beam dipole

trap, it doesn't require extremely focused beams and create elongated cloud. To save

space on the optical table and minimize sloshing motion when ramping up the lattices,

originally we intended to use LCD waveplates to swich the same beams between dipole

traps and lattices. However, it turns out that, these nematic liquid crystal waveplates

are typically controlled by amplitude-modulating a square wave at 5-20 kHz, which

creates intrinsic intensity noise and heats up the cloud. If optical access permits,

it is recommended to have separate lattice and ODT beams, decoupling the sample

preparation from the subsequent experiments.
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We've set up imaging along the optical dipole beams (as well as all lattice beams)

to conveniently focus the beam at the cloud and achieve coarse alignment. For the fine

alignment, atoms caught in each of the dipole beams are locating the beam position,

and are used to align the beams to the magnetic trap center using in-trap imaging.

The cloud lifetime in the crossed trap is sensitive to overlap between the dipole beams,

and is maximized to fine tune their relative position. Finally, the plug beam could be

slightly tweaked to maximize the transfer from the magnetic trap to the dipole trap.

Since there is always heating associated with the transfer into the dipole trap, we

prefer to be more conservative near the end of evaporation in the magnetic trap, to be

able to load more atoms into the ODT, and then perform further evaporation there.

In pracitce, typically with dipole beams of 2 Watts in power each and of around 100

pmu waist, we are always able to catch a decent atom number in the dipole trap. The

crossed ODT is then slowly ramped down to its half depth for evaporation, in order to

create a pure BEC. The typical atom number of the condensate in our crossed dipole

trap is about several million, good enough for most quantum simulation experiments.

An example of the F =1 state BEC in the crossed dipole trap is shown in Fig. 2-4.

2.3 Sympathetic Cooling of 6Li with 2 3Na in the F

= 2 State

Evaporative cooling would not work for a spin polarized Fermi gas, because the Pauli

statistics strongly suppresses s-wave collisions and thermalization process at low tem-

perature. The way to overcome this problems is to employ some form of sympathetic

cooling between two distinguishable particles, which could be two spin states of the

same atom, or two different isotopes of the same chemical element, or two different

chemical elements. We continue the Ketterle lab tradition of using 2 3Na to cool 6 Li,

because the large number of sodium from the dark-spot MOT and the favorable col-

lision properties between these two species have proved that the bosonic sodium is a

great coolant for the fermionic lithium.
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2.3.1 The hyperfine states of 6 Li and 23Na

The hyperfine structures of "Na and 6 Li are shown in Fig. 2-5. The hyperfine splitting

of 2 3Na and 6Li is at 1.7 GHz and 228 MHz, respectively. The lowest two hyperfine

states 11/2, -1/2) and 1/2, 1/2) of 6 Li are usually used as spin up and spin down in a

two-component Fermi gas experiment. In the previous section, we have demonstrated

the Bose-Einstein condensation in 1, -1) state of the 2 3Na F = 1 hyperfine manifold.

(a) (b)
2 3 Na 12, 2>

12, 1>
12, 0>

12,-2>

CN

I'-i>

I . 11, 1>
0 100 200

Magnetic Field (G)

6Li 3 3

Ii, t)>II _120i

0 100 200
Magnetic Field (G)

Figure 2-5: The hyperfine structures of 2 3Na and 'Li. The hyperfine states are labeled
in their low-field IF, mF) basis. In the previous section, sodium was cooled to BEC in
the 11, -1) lower hyperfine state. In this section, to sympathetically cool lithium, the
combination of lithium in 13/2, 3/2) and sodium in 12, 2) states is used, because both

states are magnetically trappable and stable against spin-exchange collisions. This

figure is adapted from [2].

Among these hyperfine states, the combinations of 2 3Na and 6 Li that are both mag-

netic trappable and stable against spin exchange collisions are 1, -1) + 1/2, -1/2)

and 12, 2) + 13/2, 3/2). Earlier studies [2] have shown that the latter produce the best

results in sympathetic cooling of sodium and lithium, and is used in our experiment
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to achieve a quantum degenerate Fermi gas.

2.3.2 Condensation of 23Na in the F = 2 hyperfine state

Most sodium atoms in a dark-spot MOT are in 11, -1) state. To sympathetically cool

lithium, we need to first transfer the sodium atoms from 11, -1) state to 12, 2) state,

and then evaporatively cool 12, 2) state sodium with 1.7 GHz microwave radiation.

without gravity-purification with gravity-purification with gravity-purification

without m, optical pumping with m, optical pumping

Figure 2-6: Gravity-assisted spin purification and optical pumping of sodium into the
F = 2 upper hyperfine state. An additional stage of m.F optical pumping at F = 2
hyperfine states boosts the transfer efficiency by about 20 percent. Gravity-assisted
spin purification removes the unwanted IF = 2, mF = 0, 1) states, preventing inelastic
spin-exchange collisions and consequent heating.

The transfer from F = 1 to F = 2 states in sodium is achieved by optical pumping.

The a+ polarized light couples the F = 1 states into the excited states, and then the

atoms partially decay into the F = 2 states in spontaneous emission. To optical pump

the atoms onto the preferred Zeeman state 12, 2) and improve the pumping efficiency,

an mF pumping with .+ polarized light at F = 2 - F' = 2 transition is applied to

make 12, 2) a dark state and avoid unnecessary heating of the cloud. This additional

mF optical pumping boosted the transfer efficiency into the correct Zeeman state by

more than 20 percent, illustrated in Fig.2-6.

Atoms in the other Zeeman sub-levels IF = 2, mF = 0, 1) of F = 2 hyperfine states

are susceptible to spin exchange collisions and consequent heating, and need to be

removed from the trap before evaporation. Traditionally with an Ioffe-Pritchard trap,
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this is accomplished by applying a bias field to split the F = 2 Zeeman sub-levels, and

then selectively transferring these unwanted states into untrapped IF = 1, mF = 0, 1)

lower hyperfine states using microwave transitions. In our new apparatus with the

quadrupole magnetic trap, we've developed a new gravity-assisted spin purification

scheme, demonstrated in Fig. 2-6. This method uses the fact that the Zeeman states

have different magnetic moments, and therefore experience different trapping forces

in the magnetic trap. As we lower the trap, magnetic force is not able to hold up the

atoms against gravity in the unwanted states IF = 2, mF = 0, 1), and therefore only

atoms in IF = 2, mF = 2) are preserved in the end.

Finally, the microwave evaporation in the F = 2 state is fairly similar to the case of

F = 1, except that the microwave frequency is ramped down, instead of being ramped

up. The three-body collision loss rate is a bit higher for F = 2 states compared with

F = 1 states, and therefore the magnetic trap needs to be decompressed earlier before

further evaporation. The evaporation sequence is empirically chosen to optimize the

final atom number in the condensate.

2.3.3 Sympathetic cooling of 6 Li with 23Na

While there were major upgrades on the sodium table and infra-red setup, the lithium

table was almost kept the same. Most efforts were made to improve the temperature

stability, by moving the hot lithium cell onto a separate breadboard outside the main

table, and by building small enclosures to confine the air circulation. In addition,

a New Focus Vortex II tunable laser (TLB-6900) was bought and phase locked to

the main laser. This laser has a total output of 15 mW and a large mode-hop free

tuning range (>120 GHz), perfect for the lithium high-field imaging near the Feshbach

resonance.

In making a lithium MOT in our new apparatus, a tapered amplifier was added to

boost the slower light power and the MOT loading. In order to optimize the Zeeman

slower for a sodium-lithium dual-species MOT, first the current in its last section is

tweaked for the sodium MOT, and then the lithium slower frequency is scanned to find

its optimal value for the lithium MOT. Currently with things tweaked and optimized,
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we have a good performing dual-species MOT. However, future generation is advised

to consider adding tapered amplifier to the MOT/repump light for compensating the

larger beam sizes in our new MOT system.

During the transfer from dual-species MOT into magnetic trap, we also optically

pump 6 Li into the stretched 13/2, 3/2) state. Again, two a+ polarized laser beams

are used, resonant with the transitions from F = 1/2 and 3/2 ground states. In case

of 'Li, the excited states are not resolved, so the discussion of the dark state during

the optical pumping in 23Na does not arise here. The optical pumping performance

can be checked by imaging the F = 1/2 and 3/2 state population independently. The

gravity-assisted spin purification method doesn't work for lithium when both species

are loaded in the magnetic trap, due to the much lighter weight of the lithium atoms.

One could first load lithium alone and purify its spin states in the magnetic trap, and

then load the sodium subsequently. However, we find this procedure too cumbersome

and in practice unnecessary.

Na without Li

Na with Li

Li with Na

magnetic trap transfer 1880 MHz 1830 MHz 1800 MHz 1780 MHz

Figure 2-7: The sympathetic cooling of lithium with sodium in the F = 2 state. The
lithium cloud shows a decreased temperature as we evaporate the sodium. However,
with a fully loaded MOT, the lithium gas doesn't reach the deep quantum degeneracy
even when all sodium atoms are evaporated.

This is pretty much all we have to do. At this point, we simply evaporate sodium

the same way as in Section 2.3.2. The sympathetic cooling of lithium is observed in

Fig. 2-7, as we evaporate sodium, the temperature of the lithium cloud also decreases.
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(a) (b) (c)

Figure 2-8: The efficiency of the sympathetic cooling. The two images on the left show
the lithium cloud at the end of sympathetic cooling with initially (a) more lithium
atoms or (b) fewer lithium atoms loaded into the magnetic trap. Image (c) shows a
lithium cloud loaded into the optical dipole trap after the sympathetic cooling.

However, it seems that for a fully loaded lithium MOT, we are not able to reach the

quantum degeneracy of lithium even when all the sodium atoms are evaporated. To

trade in the 6 Li atom number for deeper quantum degeneracy, we deliberately switch

on the lithium slower light only at the end of the MOT loading. This tradeoff turned

out to be quite favorable, as we were able to get a very cold lithium cloud after the

sympathetic cooling in the magnetic trap, and subsequently loading it into the optical

dipole trap created a quantum degenerate Fermi gas of 'Li, shown in Fig. 2-8.

2.4 Hyperfine State Preparation of 2 3Na

In the final section, I'll describe how we use microwave and radio-frequency radiations

to drive transitions between the hyperfine states in sodium. These experiments are

performed in order to benchmark the performance of our antennas by measuring the

corresponding Rabi frequencies, as well as to develop the required techniques for state

preparation in future experiments, such as a spin mixture of lithium 1/2, -1/2) and

11/2, 1/2) states in strongly interacting Fermi gases, or a pure sodium condensate in

the stretched 12, 2) state for the synthetic gauge field experiments in the optical lat-

tices, where very homogeneous tilts are created by applying a magnetic field gredient

across the cloud. Finally, two-photon transitions are also demonstrated in the F = 1

to F = 2 transition in sodium, as it has been proved to be a powerful way to measure

the filling number in the Mott insulator state [14].
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2.4.1 Microwave transitions between hyperfine states

Landau-Zener transition is a powerful method to prepare spin mixture states in quan-

tum gases. In the first experiment, we have performed a Landau-Zener sweep between

F = 1 and F = 2 hyperfine states in sodium, shown in Fig. 2-9. A weak bias magnetic

field is turned on to split the Zeeman sub-levels, and the microwave radiation centered

at 1762.9 MHz is linearly swept over 0.3 MHz in 10 milliseconds, slow enough to keep

the sodium atoms following the adiabatic passage. In the first one-way sweep, almost

all sodium atoms flip to the other hyperfine states, and the second return-trip sweep

confirms that this process is fully reversible and does not create much heating.

IF=2, mF=- 2
>

No Sweep 1st Sweep 2nd Sweep

Figure 2-9: Spin flips between sodium F = 1 and F 2 hyperfine states via Landau-
Zener transition with microwave radiations around 1.763 GHz. The transfer efficiency

is close to unity shown in the single sweep, and this process is reversible without much
heating demonstrated in the double sweep.

In the second experiment, we drive the microwave transition on resonance to make

coherent transfer in the Rabi oscillation between F = 1 and F = 2 hyperfine states.

Again, a weak bias field is applied to split the Zeeman sub-levels, before the microwave

pulse is switched on at the resonance frequency for a variable time. The population in

the initial and final state can be measured independently, and are shown as a function

of the microwave pulse time in Fig. 2-10. A full Rabi oscillation was observed, and

the Rabi frequency of this microwave transition is estimated to be around 4 kHz.
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Figure 2-10: Rabi oscillations in the microwave transition between Ii, -1) and 12, 0)

hyperfine states. A weak bias field is switched on to split the Zeeman sub-levels, and

a microwave radiation pulse at the resoance refrequency of 1768.738 MHz is applied

to the sodium condensate in the dipole trap for a variable duration. These images

show an resonant Rabi oscillation at the estimated Rabi frequency of about 4 kHz.

2.4.2 Radio-frequency transitions between hyperfine states

Similarly, radio-frequency can be used to drive transitions between Zeeman sub-levels

in the hyperfine states. For F = 1 hyperfine state in sodium, there are three Zeeman

sub-levels IF = 1, mF = 0, 1). However, the selection rules predict that there is no

direct one-photon transition between the 11, -1) and 11, 1) states.

IF=1n=-I>
IF=1, nF=>

IF=1, mF+->

Ous IOus 20us 30us 40us 0sus 6Ous 70us gous

Figure 2-11: Spin flips between F = 1 hyperfine states with radio-frequency radiations

and the Stern-Gerlach experiment. A radio-frequency pulse at 2.933 MHz is switched

on for a variable time to drive the two-photon transition between 11, -1) and 11, 1). A

magnetic field gradient is rapidly switched on during the time-of-flight to separate the

Zeeman sub-levels and perform a Stern-Gerlach experiment to read out the population

in each hyperfine state. These images show an estimated Rabi frequency of 25 kHz.

To drive the RF transition, again a weak bias field is turned on to split the Zeeman

sub-levels. The hyperfine coupling in 2 3Na is so strong that, this bias field is far inside

the low field regime of the Breit-Rabi problem, and therefore these three Zeeman sub-

levels have linear Zeeman shifts and are equally spaced. We drive this RF transition

at the resonance frequency of 2.933 MHz for a variable time. Due to the linear Zeeman

shifts, effectively all three states are coupled, and a way to selectively read out each

state is needed. In contrast to the microwave transition, this splitting is much smaller
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than the sodium natural linewidth of 9.8 MHz, and thus cannot be resolved optically.

Instead, we perform a Stern-Gerlach type experiment, where a strong magnetic field

gradient is suddenly switched on during the time-of-flight to spatially separate these

Zeeman sub-levels, and a single absorption image is taken to measure the population

in each state, as demonstrated in Fig. 2-11. The measured Rabi frequency for the RF

transitions is about 25 kHz in our system.

2.4.3 Two-photon transitions between hyperfine states

Finally, we perform a two-photon transition between the F =1 and F = 2 hyperfine

states in sodium. This is relevant because the two-photon techniques can be applied to

the clock transition, which is between I1, -1) to 12, 1) states in sodium, to measure the

filling number in a Mott insulator [14]. This transition is called the clock transition,

because both the initial and final states have the same first-order Zeeman shift, and

therefore it is widely used in atomic clocks to avoid the Zeeman shifts and broadening

from magnetic field fluctuations.

IF= 1, mr=-l>

I F=2, mr=O>

Oms ims 2ms 3ms 4ms 5ms

Figure 2-12: Two-photon Rabi oscillations between F = 1 and F = 2 hyperfine states
in sodium. The two-photon coupling is provided by 1.77 GHz microwave photons and
2.4 MHz radio-frequency photons. The observed resonant Rabi oscillations indicate
a two-photon Rabi frequency of about 200 Hz.

In Fig. 2-12, we have shown the Rabi oscillation of a two-photon transition between

the 11, -1) to 12, 0) states in sodium. The final state is identified by the relative posi-

tion of the nearby resonances. This two-photon coupling is provided by a microwave

at 1769.237 MHz and a radio-frequency at 2.408 MHz. The resonant Rabi frequency

of the two-photon transition is measured to be around 200 Hz.
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Chapter 3

Bose-Einstein Condensates in

Optical Lattices

3.1 Introduction

Quantum simulation using ultracold gases in the optical lattices has become an very

active field in the past decade. This system has not only been demonstrated as a great

platform for testing fundamental concepts in quantum physics, but also has promised

a set of novel Hamiltonians that are far beyond the reach of other systems. The early

success of quantum simulations has also attracted a lot of interests from other fields

of physics in condensed matter and high energy communities, as it has proved itself

a powerful tool to tackle some long-standing unsolved problems in physics.

The field of quantum simulation in optical lattices has become very diverse lately.

However to me, the progress of the mainstream and the milestones in this field can be

divided into roughly speaking three phases. The first phase is focused on the behavior

of the condensates in optical lattices, from the first experimental observation of the

quantum phase transition from a superfluid to a Mott insulator from the interference

peaks during time-of-flight [15], to the recent microscopic studies of this phase transi-

tion using single-site resolution imaging [16, 17], and thorough characterization of the

quantum criticality near the transition [18]. The second phase is regarding fermions in

optical lattices, including the experimental observation of fermionic superfluidity [3],
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band insulator and Mott insulator [19, 20], and most recent efforts towards probing

the anti-ferromagnetic state in a Fermi-Hubbard model [21, 22]. In the past five years

or so, there has been a wave of research works on bringing gauge fields into the sys-

tem with complex tunnelings [23, 24, 25, 26], and simulating novel Hamiltonians with

topological properties [27, 28]. These exciting progresses have opened up a whole new

phase of quantum simulations in optical lattices.

During the design and construction of our new apparatus, the goal we envisioned

initially was to observe the antiferromagnetic ordering in the Fermi-Hubbard model.

However, another opportunity later arose, as a novel scheme for implementing syn-

thetic gauge fields became available. A different lab in our group working with 17 Rb

was in the process of implementing this scheme, but they observed anomalous heating

that had prevented them from reaching the ground state of the Harper Hamiltonian.

It appeared that the fast tunneling of sodium and the ease of making large magnetic

gradients in our apparatus might be the solution to solve this heating problem. These

thoughts have led to an extended study of the relationship between interactions and

the Bloch oscillations described at the end of this chapter. Now the rubidium lab have

found strong evidence of observing the ground state of the Harper Hamiltonian [26],

we have largely turned our focus towards implementing spin-orbit coupling in super-

lattices and synthetic gauge fields with fermions, presented in the next chapter.

In this chapter, we will first introduce the basic picture and concepts of the physics

in optical lattices. Then we experimentally demonstrate the quantum phase transition

from a superfluid to a Mott insulator, as a way to characterize our new optical lattice

system. Finally, we will describe our experiments of making very strong tilts in an

one-dimensional optical lattice to drive the Bloch oscillations, as well as our studies

on the interaction effects in the Bloch oscillations, such as dynamical instability and

relaxation in the quasi-momentum states. All of these studies pave the road to a new

implementation of spin-orbit coupling in a superlattice described in the next chapter.
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3.2 Basic Lattice Physics

In general, the Hamiltonian of a quantum gas consists of a single-particle term and

an interaction term,

H = HO+ Hint (3.1)

Let us start with the single-particle Hamiltonian, which includes the kinetic energy

-h 2V 2 /2m and the external potential V(r). In solid-state systems, the external

potential is usually from the static electric field of crystalline ions. In an optical

lattice system, the external potential is from the AC-Stark shift via photon-atom

interaction, and consists of two parts

HO = -h 2V 2/2m + VL(r) + VT(r) = HOL + VT(r) (3.2)

the former VL(r) is a periodic lattice potential created by the standing wave, while the

latter VT(r) is any additional potential, for example, the harmonic confinement from

optical dipole traps. As the extra potential is often slowly-varying compared to the

optical lattices, one can make the assumption that it is constant locally and first study

HOL in a homogeneous setting, and then consider the inhomogeneous effects of VT(r)

with a local chemical potential p(r) = p - VT(r) in the local density approximation

(LDA).

3.2.1 Band structure and Bloch states

In this section, we include a solid-state textbook calculation of the band structure in

an one-dimensional optical lattice. The more general question can be raised as, how

do we solve the eigen-problem for a periodic potential?

The eigen-states of an optical lattice, also known as the Bloch states #n(r) (with

band index n and quasi-momentum k), need to satisfy

HOL I (r)) = njo f(r)) (3.3)
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where #k(r) eik ruj(r) and 'u(r) has the same periodicity as the lattice by Bloch's

theorem.

One needs to diagonalize the Hamiltonian to find the eigen-states. In the basis of

plane waves, the kinetic energy term is diagonal. A key observation is that, for the case

of a sinusoidal potential, only plane waves with momentum shift 2kL are coupled.

This dramatically reduces the size of the Hilbert space we need to consider. Finally,

the eigenvalues of the Hamiltonian tell us the band structure, and superposition of

the plane waves weighted by the eigenstates give us the Bloch states.

For the rest of this section, we'll walk through some details of this calculation.

First of all, since un(r) has the same periodicity of the lattice, one can expand un(r)

in its Fourier components,

t(r) = k a(G)eiGr (3.4)

substitute on(r) with the Fourier expansion into the eigen-problem,

i(G+k)-r (G+k)-r
HOL E ak(G) =EZ ak(G) ei(G\k-r (3.5)

G G

We convert the equations into a matrix form by multiplying e-i(G'+k)-r/v/i on both

sides and applying integration over space,

S a'(G)HG',G = I an(G)eoG',G (3-6)
G G

with matrix element of the Hamiltonian

Gi(G'+k)-r(__ 2 72Ji(G+k)-r e-i(G'+k)rVei(k)rdr (37)
Q 2m Q

The first term is non-vanishing only when G' = G, meaning that the kinetic energy is

diagonal in momentum. The second term corresponds to an optical-lattice potential

V = V sin2 (kLr), which only couples plane waves with G' = G 2kL, in addition to
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an overall energy offset.

HG',G = 2| + k1 2 SG,G' + 8 EG,G' - VG0G+2kLG' - SG-2kLG') (3.8)

In summary, the single-particle Hamiltonian in an optical lattice in the basis of

plane waves is written as

/

.. k - 2kLI2 + V01 2

-Vo/4

-Vo/4

-k| 2 + Vo /2

- V /4

-V/4

h2|k + 2kL 12 + Vo0 2 ..'.

(3.9)

For actual numerical calculation, one needs to cut off this infinite matrix at a

certain size, because couplings into those high momentum states are far detuned

and thus negligible. With efficient commerical matrix eigen-solver from Matlab or

Mathematica, one finds the band structure and the corresponding Bloch states.
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Figure 3-1: The band structures of a one-dimensional lattice are plotted for lattice
depths between OER and 12ER. Even bands are shown in solid lines, odd bands are
shown in dotted lines, and the lowest band is shown in red. As the lattice gets deeper,
the lowest band becomes flat and the band gap becomes large.

In Fig. 3-1 and 3-2, we've plotted the Bloch bands for various lattice depths, and
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the Bloch states at the center and the edge of the Brillouin zone.

V/E =3 VVE =5 VO/ER=10 V /E =30

2 2 2 2

x
-- 0 0 0 0

C

44 44

-2 0 2 -2 0 2 -2 0 2 -2 0 2

site site site site

Figure 3-2: The real part and probability (absolute-value squared) of Bloch states

#gq(r) with quasi-momentum q =0 (in purple) and q =hkL (in green) in the lowest

band, for a one-dimensional lattice with depths of VO/ER=3, 5, 10 and 30, respectively.

3.2.2 Tight binding and Wannier states

To study the physics of localized particles, such as superfluid to Mott insulator phase

transition and quantum magnetism in optical lattices, it is often more convenient to

consider the tight binding limit and use a set of localized states, the so-called Wannier

states.

It's worth mentioning that Bloch states and Wannier states are both complete

orthonormal basis for the single-particle Hilbert space, as the field operator can be

decomposed as

O (r) = w*(r - R)6 = #(r)ck, (3.10)
i,n k,n

The difference is that Bloch states describe the itinerant behavior in the metallic or

superfluid phase, while Wannier states features localization in the insulator phase.

This is in analogy to the wave-particle duality in quantum physics, in which the wave

representation and the particle repensentation complement each other.
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One can construct a set of Wannier states wRL, (r) = w, (r - R), which are localized

at every lattice site Ri, using linear combinations of the Bloch states in the same band,

wn (r) w(r - R I) = ekR =ik(r-Ri)
kI k1nr-R)= E e keU r

(3.11)

One caveat here is that, there are actually many different ways of choosing the linear

combinations, namely the relative phases of the Bloch states in the superposition.

The consensus regarding this procedure is to choose the superpostition that gives the

maximally-localized Wannier states.

WniwrfunnM 10

. VC=3E

Ve10ER
V n0ER

Wannier function in 2D

2
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Figure 3-3: The Wannier states in the lowest band. The left figure plots the Wannier
states in a one-dimensional lattice for various lattice depths, whereas the right figure
plots the Wannier state in a two-dimensional square lattice with equal strength Vo =
10ER. Both figures show that Wannier states have secondary maxima at the nearest-
neighbors, which provide tunneling between them.

In Fig. 3-3, we plot the Wannier states in one-dimensional and two-dimensional

lattices. Each of them is mainly localized in a single lattice site, and has a small

overlap with its nearest-neighbors. This overlap is responsible for the amplitude of

nearest-neighbor tunneling.
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Second quantization of the single-particle Hamiltonian in the Wannier basis gives

HOL dr4 (r) [-h 2V2 /2m + VL(r)]1/,(r) (3-12)

= S k,Ck Ck, CnOcnc -- tc Ctnj (3.13)
k,n,a in, no ij

with the tunneling amplitude and onsite single-particle energies given by

= - fdrw* (r - Ri) [-h2 2 /2m+ VL(r)]wn (r - Rj) - eik(RiRJ)k,n (3.14)
k

EnO = 5 6 k,n (3.15)
k

There are a few comments to be made about this derivation. First of all, because

the Wannier states are superposition of Bloch states in the same band, the Hamilto-

nian does not couple Wannier states in different bands and thus there is no interband

tunneling. Furthermore, for separable optical lattices in higher dimensions, for exam-

ple a cubic lattice, tunneling is non-vanishing only along the principle axes. In other

words, there is no tunneling along diagonal directions.

For deep lattices, Wannier states are well localized and their amplitude goes very

small after a couple of lattice constants. Deep lattices also exhibit large band gaps,

and low-temperature quantum gases usually only populate the lowest band. There-

fore, we will only keep the nearest-neighbor tunneling in the lowest-band. The single-

particle Hamiltonian in the single-band Wannier states simply reads

HOL Ci C tctcj (3.16)
i'a <ij>

where < ij > includes all nearest-neighbors i and j, and the nearest-neighbor tun-

neling amplitude in the lowest band is

t = - fdrw*(r - Ri)[-h2V 2 /2m + VL(r)]wl(r - Rj) = - eik-(Ri-Ra)k,l (3.17)
k
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3.2.3 Lattice calibration via Kapitza-Dirac diffraction

The depth of an optical lattice in principle can be calculated based on the power

and waist of the beam. Nonetheless, there are often practical imperfections from the

overlap and polarization, and the atoms themselves are always the best probe of the

lattice depth.

The depths of optical lattices are routinely calibrated in our lab via Kapitza-Dirac

diffraction. During the experiment, a very short pulse of optical lattice is applied to a

condensate, and then after a few milliseconds of time-of-flight, the diffraction pattern

is recorded to analyze the strength of the optical lattice potential.

When the short pulse is diabatically switched on, the initial zero-momentum state

is projected onto the zero-quasimomentum states in each band of the lattice, which

evolve at different energies during the pulse. The zero-quasimomentum state at each

band has different contribtions from 2hkL, 4hkL, and higher momentum compo-

nents. As time evolves, these states in different bands become in and out of phase,

and this results in oscillations in the diffraction pattern.

Lattic Depth010 ER La*** e pth of N
3
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15 01
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0 2 4 9 9 10 12 0 2 A 6 a 0o 12

Pulse Duration / us Pulse Oufation / us

Figure 3-4: Kapitza-Dirac diffraction for a shallow lattice at lOER and a deep lattice
at 30ER. The time evolution of the relative strength of the diffraction peaks are
shown for 532 nm lattices.

Fig. 3-4 shows different time-evolution of the diffraction patterns for a shallow

lattice and a deep lattice. For shallow lattices, only the ground and first excited

band are populated, and the diffraction pattern shows oscillations at the band gap

frequency. For deep lattices, more momentum states are excited, the time-dependence

becomes more complicated, and experimental data are usually more difficult to fit.
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In practice, the number of visible peaks in the Kapitza-Dirac diffraction gives a

reliable rough estimate of the lattice depth. Precision calibration is usually performed

first with a shallow lattice by extracting the oscillation period, and then the depth

of a deep lattice is extrapolated by scaling the optical power. For example, Fig. 3-5

shows an experimental calibration of our 532 nm lattice. An oscillation at about 4

gs in the diffraction pattern gives an estimate of lOER in green, corresponding to the

left plot in Fig. 3-4. Careful calibration is done by fitting the diffraction pattern as a

function of time and matching the time evolution at a certain lattice depth.

11 S 2 s 3ss 4 s 5t s

6 7 s 8 s 9 s 10lss

Figure 3-5: Kapitza-Dirac diffraction for various pulse durations in a 532 nm optical
lattice. An oscillation period around 4 ps indicates a depth of 10 green recoils.

3.3 Superfluid to Mott-Insulator Quantum Phase

Transition

3.3.1 Mean-field theory for a Bose-Hubbard model

Short-range interactions in quantum gases

Now let's turn to the many-particle Hamiltonian. In quantum gas experiments with

low density and low temperature, the inter-particle distance and lattice spacing are
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usually much larger than the hardcore radius of the inter-atomic potential. In this

limit, the short-range details of this potential could be ignored, and inter-particle

interaction is characterized by a single parameter, the s-wave scattering length a,.

In most cases, an effective pseudo-potential captures most part of the effects of the

short-range interaction between atoms,

Vit(r - r') = g6(r - r') (3.18)

with parameter g defined as g = 47r1h2a/m. A more stringent form of this contact

pseudo-potential contains a regularization operator -- r, which can be left out as longOr

as the wavefunction is slowly varying at short range.

The s-wave scattering length depends only on the details of inter-atomic potential,

and is fixed once the internal atomic structure is given. However, if couplings exist

between the collision channels and bound state channels of this potential, one could

apply a magnetic field to shift the potentials of two channels with different magnetic

moment with respect to each other. Resonant scattering behavior would occur when

the two channels are near degeneracy. This phenomenon is called magnetic Feshbach

resonance, and was first observed in [291. Unfortunately, most BEC systems suffer

from strong inelastic collision losses near a Feshbach resonance, which limits the

atomic density and lifetime. In contrast, strongly interacting fermions are generally

longer-lived due to their different quantum statistics, and examples include broad

Feshbach resonances found in 6Li and "K. Feshbach resonance is a useful technique

to change atomic interaction in quantum gas experiments, whenever it is available.

The Bose-Hubbard model

Second quantization of the atomic interaction in the Wannier basis goes as follows

Hit= g dr ,.(r),, (r)i0,(r)$,(r)

TTV1 
3 4 C t C33-C44- (.9

2 CRIVC R2V2 cCR3v37'CR4v4o (3.19
o',a' R1 R2R3 R4 VIV2V 3 V 4
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where the interaction strength is a product of the Wannier state overlap,

U 3"A4 - 47r,2a8  drw* (r - R - R(r - r2 - W,)(r4(r - R4) (3.20)
'R 2R 3R 4  , VV3W(

Again, a few simplifications can be applied here. First of all, since Wannier states

are localized, the dominant contribution corresponds to the on-site interaction when

more than one particle occupy the same lattice site. Furthermore, for deep lattices,

higher bands are separated from the lowest one and can be neglected. This leaves us

only the on-site interaction in the lowest band,

is = cLcR,&cRo' (3.21)

where on-site interaction is

UO = 4rh 2 a. drlwi(r - Rj)I 4  (3.22)

Together with the single-pariticle Hamiltonian, we have derived the general form

of a single-band Hubbard model,

H EiC = Coc, - c1c + Ct ,ci, (3.23)

For a single-component bosonic system, this is known as the Bose-Hubbard model

(setting the energy offset to zero)

H = tc c + =c: +2 2 ni(ni - 1) (3.24)
<ij> i <ij> j

The two parameters in this model, the nearest-neighbor tunneling t and on-site in-

teraction U, are numerically calculated for an equal-strength three-dimensional cubic

lattice as a function of lattice depths VO/ER in Fig. 3-6.

The kinetic and interaction terms favor quantum states with very different char-

acters. When the kinetic energy dominates, that is t > U, the system minimizes its
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Figure 3-6: Tunneling amplitude t and on-site interaction U, as a function of lattice
depth V0, for a three-dimensional cubic lattice. Tunneling amplitude t is plotted in
units of ER, and on-site interaction U is in units of 100ERa5 /d, with as the scattering
length and d the lattice spacing. As we increase the lattice depth, tunneling t decreases
because of the reduced overlap between neighboring sites, and interaction U slightly
increases because of the squeezing of localized Wannier states.

energy by having particles delocalize and be at zero momentum. The ground state is

a superfluid that can be written as

I"ISF)U/t-+O ( a)NO) (3.25)

10=1

where M is the total number of lattice sites, N is the total number of particles, and

local creation operator aGIri) = ri. + 1) at ith site. In a grand canonical ensemble, it

is a cohetent state at each site with an average density ri = N/M, and occupation

shows Poissonian statistics.

When the on-site interaction dominates, that is U >> t, the system minimizes its

energy by having particles uniformally distribute and suppress particle-hole excita-

tion. The ground state is a Mott insulator, which consists of a product of Fock states

with the same number of particles on each site,

M

IMI)t/UMO = Jc)I) (3.26)
i=1

A quantum phase transition from a superfluid to a Mott insulator occurs when

the ratio t/U is tuned across the critical value in the Bose-Hubbard model. This is
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usually done experimentally by varying the lattice depth becuase of the convienence.

Mean-field theory for Bose-Hubbard model

Let's start with the single-component Bose-Hubbard model in a grand canonical en-

semble,

H = - t3 tc c + ni(ni - 1) - p ni (3.27)
<ij> i i

A mean-field theory is formulated by replacing operators by their expected values.

In this case, they are the expected values of creation and annihilation operator of the

neighboring sites acting as an effective field.

In this mean-field approach, the tunneling term can be decomposed as

C -c const + (c )cj + c (cj) + quantum fluctuations (3.28)

then the effective Hamiltonian can be written as

U0
Heff = -A ct - A.cc + -n(n - 1) - in (3.29)

This mean field, or sometimes referred as the "Weiss field", is characterized by

parameter A%. It is no longer an quantum operator but a constant, and it is evaluated

by taking the average of expected values of nearest-neighbor tunneling

Ai = tij (c) (3.30)

For a homogeneous and isotropic Bosonic system, all nearest-neighbor couplings

have equal strength. This means that the "Weiss field" is proportional to the total

number of nearest-neighbors, or the connectivity z,

A = zt(c) (3.31)

In the mean-field theory, we assume different lattice sites are coupled only via
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Figure 3-7: Phase diagram of the Bose-Hubbard model at zero temperature is plotted
as a function of chemical potential p/U and normalized tunneling zt/U. The predicted
phase transition is shown in solid purple line for a first-order perturbation theory,
and in dashed blue line for numerical simulation. The dotted-dashed gray lines show
the trajectory for a gas with various integer fillings in the superfluid phase. The
critical ratio of (U/zt)c ~5.83, 9.90 and 13.93, for the filling number n =1, 2 and 3,
respectively, and it asymptotically reaches 4n when n is large [30].

this effective field, and quantum fluctuations and short-range correlations can be

neglected. This effectively reduces the Bose-Hubbard model into a local problem at

each site with self-consistent requirement. One could use the Fock states 10), 11), 12),

etc., as the basis, the effective Hamiltonian in the mean-field theory is written as

0 -zt(c)

-zt(c) -p -v'2zt(c)

Heff = H - pN= -v/zI(c) U - 2/1 - v/3zt(c) (3.32)

-N3zt(c) 3U - 3tt ...
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To solve this problem, one first diagonalizes the Hamiltonian and finds the ground

state, which is a superposition of Fock states. This calculated ground state is then

used to evaluate the expected value (c), and subsequently the Weiss field z'. Iterate

this procedure until z converges, that's when the self-consistent condition is satisfied.

The Weiss field A is also an order-parameter to characterize the quantum phase

transition from a superfluid to a Mott insulator. It is non-vanishing in the superfluid

phase, and zero in the Mott insulator phase. The mean-field predictions of the Bose-

Hubbard model phase diagram are summarized in Fig. 3-7.

Density distribution in an inhomogeneous system

Optical lattice experiments are usually carried out in a finite-size and inhomogeneous

setting. For example, there are often residual harmonic confinements associated with

the lattice beams, or from additional dipole traps.
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Figure 3-8: Left: Phase diagram of the Bose-Hubbard model in a three-dimensional
lattice. An incompressible Mott insulator is found inside each lobe with integer filling.
Right: Atomic density distribution plotted as a function of t/U in a harmonic trap.
The density distribution is obtained by taking the cross section at fixed t/U from the
left phase diagram.

Local density approximation (LDA) is valid when these additional potentials are

slowly-varying in space compared with the lattice potential. Therefore, locally the
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Figure 3-9: The density distribution of the Bose-Hubbard model in a harmonic trap.
The "wedding cake" structure results from the incompressibility in the Mott insulator.
Four density profiles are simulated with 6.0 x 104 atoms in a 200 x 200 two-dimensional
lattice, with parameter t/U = 0.001, 0.01, 0.02 and 0.03, respectively, covering the
phase transition from a Mott insulator to a superfluid.

atomic cloud can be regarded as a homogeneous system, with a local chemcial poten-

tial

p(r) = - VT - Io - mwor2 /2 (3.33)

With the local density approximation, one can extract the density profile in a trap

from a cross section in the phase diagram shown in Fig. 3-8, as the local chemical

potential is higher in the trap center and lower near the edge. Depending on t/U,

the density profile shows dramatic difference across the phase transition. When t/U

is large and the superfluid phase prevails, the density profile is smoothly-varying,

similar to a weakly interacting Bose gas in the trap with a modified effective mass.

When t/U is very small and the Mott insulator phase dominates, the density profile
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shows flat Mott plateaus with integer filling, and sharp edges between these plateaus.

The density distribution of a Mott insulator with discretized plateaus is sometimes

referred as the "wedding-cake" structure, illustrated in Fig. 3-9. It is a clear signa-

ture of the Mott insulator, and has been experimentally detected via high-resolution

in-situ imaging [16, 17]. The Mott insulator also features a finite energy gap and

exponentially-vanishing compressibility, and was previously observed in [15, 31].

3.3.2 Observation of the superfluid to Mott insulator transi-

tion

Quantum phase transition from a superfluid to a Mott insulator is one of the recent

highlights in quantum simulation with ultra-cold atoms. It was first reported from the

Munich group in 2002 [15], and still regarded as a solid starting point for optical lattice

experiments. For this reason, we have characterized our new apparatus by observing

this quantum phase transition and measuring the lifetime of the Mott insulator, and

demonstrated the capability of simulating new interesting Hamiltonians and exotic

quantum states in our optical lattice system.

Detecting the phase transition in the interference pattern

A loss of coherence in the time-of-flight interference pattern for a Mott insulator, as

demonstrated in the very first experiment [15], is a clear and robust signal of the

phase transition.

To drive the system from a superfluid to a Mott insultor, one typically could either

reduce the tunneling by ramping up the lattice, or increase the on-site interaction via

Feshbach resonance. The latter option is not available for us, due to the lack of broad

Feshbach resonance in 23Na, and the limited condensate lifetime caused by strong

inelastic collisions near a Feshbach resonance [29].

In this experiment, after a pure condensate is prepared in the optical dipole trap, a

three-dimensional lattice is adiabatically ramped up to its final depth in 100 Ms. Af-

terwards, the lattice and dipole trap are simultaneously turned off, and an absorption
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image of the cloud is taken after 10 ms free expansion in the time of flight.

5ER

Figure 3-10: Experimental observation of a superfluid to a Mott insulator quantum
phase transition. An optical lattice is adiabatically ramped up to its final depth in
100 Ms, then simultaneously turned off with the dipole trap to release the gas for
free expansion. The sharp peaks in the expanded cloud indicate superfluid coherence
across the sample in shallow lattices, and they disappear as the sample goes across
the phase transition into a Mott insulator.

In Fig. 3-10, we've shown the time-of-flight image of the condensate after being re-

leased from the optical lattice with variable depths. The sharp peaks in the expanded

cloud correspond to the 2kL components of the groud state with quasi-momentum

q = 0, indicating a global coherence and a uniform phase across the sample. These

interference peaks disappear in deep lattices, as the sample goes across the phase

transition into a Mott insulator and loses the global coherence.

Measuring the Mott insulator lifetime

To demonstrate that the loss of coherence is in fact due to the Mott insulator phase

transition, rather than heating of the sample caused by the deeper lattice, and to char-

acterize the technical heating in our apparatus, we perform a lifetime measurement of

the sample in the Mott insulator phase. The experimental sequence is that, we start

with a superfluid, ramp it into a Mott insulator and hold it for a variable amount of

time, and then ramp it back to a superfluid to measure the residual coherence.

The results are shown in Fig. 3-11, from where we see the coherence of the sample

almost disappears after 150 ms hold in the Mott insulator at 22ER. This measured
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lifetime is mostly limited by three-body collision loss, and reducing the atomic density

should significantly improve the lifetime of the Mott insulator to be around a second,

suitable for studying super-exchange physics in optical lattices in the future.

superfluid 0 ms 30 ms 60 ms

90 ms 120 ms 150 ms

Figure 3-11: The lifetime of a Mott insulator at 22ER. A superfluid is first prepared
in a lattice at 8ER, which is then ramped up to 22ER in 100 ms and held for a variable
time, and finally ramped back down to 8ER in 20 ms. The loss of the coherence as
we increase the hold duration in the Mott insulator occurs as a result of heating,
typically from three-body collisions or mechanical vibrations of the optics.

3.4 Tilted Lattices and Bloch Oscillations

When a uniform gradient potential is applied to the condensate in an optical lattice,

the atoms experience a constant force and undergo Bloch oscillations. This tilt cre-

ates an energy offset A between every neighboring sites, providing another energy

scale besides tunneling t and on-site interaction U. Tilted optical lattices is an ideal

platform to study the dynamics of interacting particles in Bloch oscillations, or to

implement Raman-assisted tunneling and realize synthetic gauge fields for quantum

gases in optical lattices [25].
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3.4.1 Bloch oscillation

Atoms in a tilted lattice have their quasi-momentum increase linearly until they are

resonantly reflected at the edge of the Brillouin zone. Bloch oscillations can be directly

observed from the time evolution of the momentum distribution in time-of-flight, or

from the periodic center-of-mass motion in position space.

For small tilts, the semiclassical equations for the Bloch oscillation are

k = hF (3.34)

' =(3.35)
ak

where k is the quasi-momentum in the lattice. In the tight-binding limit and with a

constant external force, the center-of-mass motion is

2Jd
x - x0 = cos[(ko + Ft)d] (3.36)

For strong tilts, the Hamiltonian with nearest-neighbor tunneling is diagonalized

by the following Wannier-Stark states,

2J
kO(m)) Kn-m( )W(X - xn) (3.37)

n

where the Ki are the Bessel functions. The Wannier-Stark states are localized at each

site, when the tilt A is much larger compared to the bandwidth J. Bloch oscillations

in this regime can be understood from the ladder of accumulated phases along the

lattice, which are linearly increasing in time and equally spaced in space.

Bloch oscillations are experimentally observed in time-of-flight images, shown in

Fig. 3-12. In this measurement, a strong magnetic field gradient is suddenly switched

on by rapidly turning off one of the magnetic coils running in Helmholtz configuration.

Bloch oscillations up to four cycles are recorded, before the sample heats up and loses

the coherence. The measured oscillation period at T ~ 0.5 ms gives an estimate of

the tilt at A ~ h x 2 kHz. However, the tilt strength seems to vary in time, possibly
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Figure 3-12: Bloch oscillations in a three-dimensional optical lattice, with 20ER along
the tilt direction and 5ER in the transverse directions. A tilt potential of A ~ h x 2
kHz is applied for a variable duration from 0 to 2 ms.

due to drifts from the sudden switch-on of the magnetic field gradient.

The technical reason for switching on the tilt by turning off the coils is to reach a

maximum switch-on speed. Given the harmonic confinement in a dipole trap, if the

tilt is switched on gradually, the atomic cloud simply follows an adiabatic shift to

new equilibrium in the trap. However, the large inductance of the coils means that

the rate of change of the magnetic field gradient is proportional to the voltage across

the coils. By turning the coils off, rather than on, it is possible to generate a huge

transient voltage across the coils and switch on the tilt faster, without the need of

building a capacitor circuit to boost the switch-on speed.

3.4.2 Dynamical instability

In the presence of interactions, Bloch oscillations can be damped due to a dynamical

instability that occurs for states above a certain critical value of the quasi-momentum.

The damping process goes as follows: for two particles at quasi-momentum q, a two-

body collision results in one particle at q+Ak and the other at q-Ak, which conserves

the quasi-momentum but may release excessive energy. The excessive energy can be
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transferred into the transverse directions in the case of a one-dimensional lattice where

the transverse directions have a free-particle dispersion relation. However, in the case

of a three-dimensional lattice where the transverse directions are strongly confined

and have flat bands, the excessive energy has no place to go and therefore the losses

are strongly suppressed.

Top: 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35

0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75

Bottom:

0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60

Figure 3-13: Experimental observation of dynamical instability. Top: condensates at
a variable quasi-momentum are prepared by accelarating the lattice, held for 2 ms,
and then ramped back to zero quasi-momentum before being released from the trap.
Bottom: condensates at a variable quasi-momentum are prepared by accelarating the

lattice, and immediately released from the trap to measure the momentum distribu-
tion. Image captions in this figure are in arbitrary units proportional to the value of

the quasi-momentum during the hold on the top. Quasi-momentum states near the

edge of the brillouin zone (from 0.35 to 0.5 in the figure) show rapid heating and loss
of coherence. This could be explained by dynamical instability.

When the dispersion relation is concave upward, the energy that is lost from

the particle at q - Ak is not enough to excite the other particle at q + Ak. These

quasi-momentum states, such as free particles or quasi-momentum states near q = 0

in an optical lattice, are therefore stable against two-body collisions. However, the
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dispersion relation becomes convex upward above the inflection point. In this regime,

two-body collisions are allowed as the final states under energy conservation become

available, and the sample undergoes rapid dephasing and heating.

We study dynamical instability in an alternate experimental configuration, where

we create a moving lattice with a constant acceleration and the fictitious force in the

moving frame drives the atoms undergo Bloch oscillations. A pair of non-retroreflected

Raman beams are used to create this moving lattice, and the velocity of the moving

lattice is a product of the wavelength and the frequency difference between the two

beams. A constant acceleration of the moving lattice is generated by applying a linear

frequency ramp in one of the Raman lattice arms.

This method has the disadvantage that the cloud can move out of the trap or the

field of view in a matter of milliseconds, because the imaging system and transverse

confinement exist in the stationary lab frame. However, it has a distinct advantage

that the tilt can be easily stopped, restarted, or reversed, and can be programmed in

arbitrary waveforms. As a result, compared with the magnetic field gradient, the tilt

in an accelerated lattice is more controllable and uniform in time, although the time

window for experimental observation is limited to a few cycles of Bloch oscillations.

In Fig. 3-13, we hold the condensate at a variable quasi-momentum to observe

the onset of the dynamical instability. The sample is first prepared at a target quasi-

momentum by accelarating the optical lattice, held for 2 ms, and then ramped back to

zero quasi-momentum before release from the trap. Quasi-momentum states near the

edge of the brillouin zone have shown rapid heating and loss of coherence, consistent

with the theory of dynamical instability.

To our surprise, further experiments have shown a decay of the cloud down to the

ground state at zero quasi-momentum, even though dynamical instability could not

occur in these states. These measurements, shown in Fig. 3-14, were carried out in a

stationary lattice with magnetic field gradient tilts, where we first turn off one of the

bias coils to initiate the Bloch oscillation, and subsequently turn off the second coil in

the pair to 'freeze' the quasi-momentum. The decay of these finite-momentum states

occurs at a timescale much faster than the nearest-neighbor tunneling, and the cloud
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Figure 3-14: Rapid decay of quasi-momentum states near the edge of the brillouin
zone. A tilt pulse is applied to prepare the condensate at the edge of the Brillouin
zone. This tilt is then switched off, and time-of-flight images are taken after a variable
hold up to 2.5 ms. Compared with the ground state at q = 0, quasi-momentum state
at q = kL shows rapid decay into the ground state, which could not be explained by
simple two-body collisions alone.

always relaxes into the zero-quasi-momentum state. A complete understanding of the

underlying mechanism for this decay is still unknown: our experimental observations

could not be fully explained by two-body collisions alone, and suggest many-body

effects in this process.
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Chapter 4

Quantum Simulation in

Superlattices

4.1 Introduction

In this chapter, we will present the experimental implementation of a new scheme us-

ing pseudo-spins in a superlattice to simulate spin-orbit coupling physics with ultra-

cold atoms. This system is ideal to prepare and study the stripe phase which simulta-

neously breaks the gauge symmetry and translational symmetry, and will potentially

allow us to explore exotic topological states of matter.

In contrast to the spin-orbit coupling in atomic physics which describes the inter-

actions between the orbital and spin angular momentum of an electron L - S, and in

part gives rise to the fine structure splitting in the atomic structure, the spin-orbit

coupling in condensed matter systems couples particle momentum with its spin k - a

and modifies the band structure. Two-dimensional spin-orbit couplings play a crucial

role in spin-Hall materials, topological insulators and topological superfluids [32, 33].

To simulate spin-orbit coupling with ultracold atoms, we need to couple two spin

states with a momentum transfer. For simplicity, let's consider the one-dimensional

problem and the spin states have the free-particle dispersion relation. After a spatial

and a temporal unitary transformation, the effective spin-orbit coupling Hamiltonian

to be simulated is written as

71



Ho = h2 (k+kL2 Kx + 6z (4.1)
2m

where Ku1 is the spin-orbit coupling term, and ooa, is the Zeeman term.

The single particle band structure of this Hamiltonian is shown in Fig. 4-1. As we

turn on the spin-orbit coupling, the eigenstate will be a superposition of opposite spins

with shifted momentum. When spin-orbit coupling is weak, there are two degenerate

ground states. Depending on the miscibility of the system, particles can stay miscible

and form density stripes or phase separate [39]. In contrast, when spin-orbit coupling

is very strong, only a unique ground state is available.

5 5 5 5

4 4 4 4

3 3 3 3

2 2 22

o.U 0 0 0

-1 1 , -1 1 1.1.1U
-2 0 2 -2 0 2 .2 0 2 -2 0 2

k/k L k*L L kA L

Figure 4-1: The single particle band structure of the spin-orbit coupling Hamiltonian.
The spin-orbit coupling strength increases from left to right, and the colors represent
the two spin components.

Previously in the pioneering experiment in Ian Spielman's group, hyperfine states

of 87Rb were used to simulate a one-dimensional spin-orbit coupling Hamiltonian [34].

In this experiment, the single particle spin-orbit coupling band structure was studied.

Later, similar techniques were used in fermionic systems to create spin-orbit coupled

Fermi gases [35, 36].

However, there are two major limitations with the hyperfine state scheme. First

of all, to drive a two-photon transition between hyperfine states, near-resonant light

needs to be used. This severely limits the lifetime of the system. Second, for the bare

interactions between hyperfine states, gt-_- g~-tr, gt, and the system prefers to stay

immiscible. This results in a small window for the stripe phase in the phase diagram
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and weak density stripes, making the experimental detection very difficult.

6k=k
y L

Figure 4-2: A new scheme to simulate spin-orbit coupling physics. The pseudo-spins

in a double well are coupled via a two-photon process to compensate the energy offset

and provide momentum transfer. Because no real spin flip is needed, far-detuned laser

beams can be used.

To overcome these limitations, we have implemented a new scheme using pseudo-

spins in a double well potential to simulate spin-orbit couplings, illustrated in Fig. 4-2.

In this scheme, only one hyperfine state is involved and real spin flips are not required,

far-detuned laser beams can be used. Furthermore, because of the spatial separation

between opposite spin states, gt4 < gti, g44, the system prefers to stay miscible and

therefore is ideal to prepare and study the stripe phase.

In this chapter, we will first describe the experimental techniques to create and

control an optical superlattice with 532 nm and 1064 nm laser beams. Then we'll ex-

perimentally characterize and calibrate our superlattice system, in particular its phase

and band structure. Finally, we'll describe the spin-orbit coupling experiment in de-

tail. First, the theory of spin-orbit coupling in this system is developed, including the

exact derivation of the single-particle Hamiltonian, the comparison of the spin-orbit

coupling and onsite coupling, and the phase transitions in an interacting spin-orbit

coupled system. Then our experimental realization of the spin-orbit coupling Hamil-

tonian is presented, where we discuss the state preparation techniques, experimental

results on detecting the resonant spin-orbit coupling signal and the dynamics in the

upper state, as well as proposal to use Bragg scattering to directly probe the stripes.
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4.2 Experimental Setup and Techniques

In this section, we will describe the experimental techniques for the second-harmonic

generation of 532 nm green light, the phase control of the superlattice, as well as the

preparation of our Raman beams. Besides the implementation and performance of our

chosen scheme, other available solutions and their pros and cons are also discussed.

4.2.1 Second-harmonic generation for 532 nm green lattice

Laser source selection

Single-mode high-power 1064 nm fiber lasers have been available for quite a while, and

have been used for optical lattice experiments at the CUA in the past decade. Based

on our experience, the best configuration for building the high-power infra-red system

is to dedicate a high-quality single-mode laser as the seed, combined with powerful

fiber amplifiers downstream. In this case, one could use a seed laser powerful enough

to drive multiple fiber amplifiers when high power is in demand, or have the option to

swap seed lasers for diagnosis purposes and special needs, or implement light control

such as frequency modulation involving only the low power seed light, instead of the

amplified light with full power.

For 532 nm green light, there are mainly two options for us. The first one is to find

a turnkey high-power single-mode laser that is commerically available. We have found

a few candidates: IPG Photonics offers the GLR-20 which is a 20-Watt single-mode

fiber laser, Coherent Inc offers the Verdi V series that can go up to 18 Watts and was

claimed to be a single-frequency laser, and Spectra-Physics offers the single-frequency

Millennia Edge that has a maximum output of 6 Watts. Some other options include

the 18-Watt Sprout from Lighthouse Photonics, and the 25-Watt Millennia eV from

Spectra-Physics, but both are multi-mode lasers and thus not suitable for optical

lattice experiments.

The other option is to frequency double the 1064 nm light in house, using relatively

cost-effective and high-power sources at this wavelength. The advantage of the former

solution is the convenience and low maintainance of a turnkey equipment, and possibly
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a higher optical power they could provide. On the other hand, one needs to phase

lock the IR and green lasers to stablize the relative frequency against long-term drifts

in a superlattice experiment. Furthermore, there are still some concerns about the

single-mode quality and linewidth of aforementioned commencial products. In the

end, we decided to make our own frequency-doubled green light.

In our system, a 2-Watt Coherent Mephisto laser is used as the seed laser, which is

powerful enough to simultaneously drive multiple fiber amplifiers. For fiber amplifiers,

we have two 50-Watt units from Nufern, with one dedicated for 1064 nm IR lattices,

and the other one for frequency doubling and generating 532 nm green lattices. There

is another older 20-Watt 1064 nm laser from IPG Photonics, which has an integrated

seed. This laser has been used mostly for optical dipole traps, due to concerns on its

single-modeness.

Second-harmonic generation for green light

Single-frequency continuous-wave 532 nm light can be generated via second-harmonic-

generation (SHG) of a high-power 1064 nm light. With the full output from a 50-Watt

Nufern fiber amplifier, one could generate about 15 Watts of 532 nm in a single pass

frequency doubling through a nonlinear crystal [37].

HC Photonics in Taiwan provided us the nonlinear cystals. There are two types of

these cystals: PPMSLT is periodically-poled MgO (1 mol.%) dope SLT, and PPMCLT

is periodically-poled MgO (1 mol.%) dope CLT. From the specifications, PPMSLT has

a higher damage threshold and a slightly higher second-harmonic conversion efficiency,

but unfortunately HC Photonics could no longer find vendors to consistently supply

them quality wafers, and may have to discontinue this product line soon. We have

received one PPMSLT crystal from their last batch, and have permanently set it up

in our second-harmonic generation for the superlattice experiment. There are several

PPMCLT crystals for backup, in case the current PPMSLT crystal is damaged or has

degraded.

We have selected the single-pass frequency doubling scheme, because of the con-

venience in setting it up, as well as the sufficient output that it could generate for our
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Figure 4-3: The optimal crystal temperature set point for second-harmonic-generation
of 1064 nm light. When we increase the fundamental power, weak absorption from the
beam creates local heating inside the crystal. This thermal effect can be compensated
by reducing the set point of oven temperature, indicating there is a small temperature
gradient between the sensor and the core of the crystal.

application. The SHG efficiency is highly sensitive to the phase-matching conditions,

therefore the focus and beam waist of the fundamental beam are carefully chosen and

well tweaked. The crystal needs to be maintained in a temperature-stabilized envi-

ronment for the optimal performance. Therefore, we've mounted it in an commercial

oven from HC Photonics as well. Although somewhat expensive, it is well-built and

does stablize the ambient temperature for the crystal.

Even with the over temperature stabilized, we still have seen several-degree drop

in the optimal oven temperature for second-harmonic conversion, as we increase the

fundamental power from a few Watts to 30 Watts, shown in Fig. 4-3. This observation

could be explained by heating from weak absorption of the fundamental light inside

the crystal, and also indicates that there is a small temperature gradient between the

sensor and the core of the crystal.

With the oven temperature retuned and optimized at each fundamental power, the
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conversion efficiency for our 532 nm second-harmonic generation is measured in Fig. 4-

4. With the fundamental beam at 25 Watts, we could get more than 6 Watts of 532 nm

light, sufficient for our superlattice experiment. The characteristics and performances

of the second-harmonic-generation of 1064 nm light in other configurations can be

found in [37] for more details.

1064nm to 532nm frequency doubling efficiency
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Figure 4-4: The conversion efficiency of second-harmonic-generation of 1064 nm light.
The SHG efficiency is measured as a function of the fundamental 1064 nm power. The
measured conversion efficiency starts to deviate from theoretic prediction above 15-
Watt fundamental power. This reported conversion efficiency has taken into account
the thermal effect in Fig. 4-3, as it was measured after tuning the optimal temperature
at each fundamental power.

4.2.2 Controlling the phase of the superlattice

The phase of the superlattice, namely the relative position of the green and IR lattice,

needs to be experimentally controlled to change the superlattice between all possible

configurations. The major considerations for the phase control are the full range, the

maximum speed, the long-term drifts, and the possibility of changing it dynamically

during the experimental sequence.
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n5 32  n1064  An
BK7 1.5195 1.5066 0.013

Fused Silica 1.4607 1.4496 0.011
Sapphire 1.7718 1.7545 0.017

ZnSe 2.6754 2.4823 0.19
CaF2  1.4354 1.4285 0.007
MgF 2 1.3789 1.3733 0.006

Table 4.1: The indices of refraction for 532 nm and 1064 nm light in various types of
glass. The dispersion between green and IR light is around one percent for these glass
except ZnSe. Overall, BK7 and fused silica are most suitable for our phase plate.

We have mainly considered three options for the phase control. They are rotating

a dispersive glass plate on a galvo mount, sweeping the frequency of one lattice beam

using an acousto-optic modulator (AOM), and changing the refractive index for one

lattice beam using an electro-optic modulator (EOM). We'll discuss the pros and cons

of each method in the following, meanwhile we've implemented the first two schemes

in our experiment.

Method 1: Glass Plate Phase Shifter on a Galvo

One way to control the phase of the superlattice is to use a piece of dispersive glass.

By rotating the glass plate and adding different path lengths to the two wavelengths,

we create a relative position shift of the two lattices at the cloud.

The index of refraction in a medium depends on the wavelength of the light, and it

usually decreases for longer wavelength. This dispersive effect is about a few percent

over the visible spectrum for most transparent materials. For example, for dry air at

15 0 C, one atmosphere and with 450 ppm C0 2 , the index of refraction is 1.0002782 for

532 nm and is 1.0002740 for 1064 nm. For glass such as BK7, the index of refraction

is 1.5195 for 532 nm and is 1.5066 for 1064 nm. In table 4.1, we have listed the indices

of refraction for 532 nm and 1064 nm in common optical glasses.

Among these glasses, ZnSe has the strongest dispersion, but the transmission is

low for visible and near-infrared light. Uncoated CaF 2 and MgF 2 glass have fairly low

reflection of a few percent, but their dispersions are relatively weak. Overall, standard
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BK7 and fused silica (high optical damage threshold) are the favorable options, and a

layer of anti-reflection coating for 532nm and 1064nm can be applied on both surfaces

of the phase plate.

Edmund Optics offers fused silica windows of thickness between 3 mm and 5 mm

with various diameters. We've being using the 3 mm glass plate in our experiments,

because of its light weight for fast switching. An estimated rotation about 2 degrees at

30-degree incident angle gives 266 nm shift of IR and green lattices, which corresponds

to a full period of the superlattice potential.

The rotation of the glass plate needs to be computer-controlled by the Cicero Word

Generator, so that the phase ramp can be synchronized in the experimental sequence.

The maximum speed and repeatability of this mechanical phase control, as well as

the sensitivity to electronic noise, such as radio-frequency or microwave radiations,

require careful considerations. All of these aspects can be tested independently using

a position sensing detector (e.g., Thorlabs PDQ80A), before integrating it into the

experiment.

There are two options for mechanically controlling the glass plate. One way is

to choose a piezo-based device. We find the Agilis piezo-driven rotation stage AG-

PR100 from Newport that features 360-degree continuous rotation and ultra-high

adjustment sensitivity. It was tested to be reasonably fast, but it has shown clear

hysteresis, and the bigger headache is that they do not offer a convenient interface to

Cicero. Therefore, it is not suitable for our experiment.

The other approach is to use a galvometer scanning system. The galvometer has

two core components: an actuator that drives the load, and a position detector that

monitors the load position for fast tuning and stabilization in a closed loop system.

There are two types of position detectors in a galvometer. In the traditional dielectric

capacitive design, a radio frequency source is driving two variable capacitors, and the

resulting rectified differential currents measure the position of the galvo actuator and

load. In recent years, there has been a new design based on optical position detection.

A light source illuminates parts of four photocells, and a moving butterfly-like shape

between the light source and the receivers casts more or less shadow onto the pairs of
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the receiver cells. As a result, the currents read out the relative position of the galvo

actuator and load.

In our first attempt, we used the galvo GVS011 from Thorlabs, which seemed to be

of the dielectric capacitive design. It shakes rapidly and loses its initial position during

the microwave evaporation phase, and needs to be reset after every shot. On the other

hand, a galvo based on optical position detection is far less sensitive to microwave and

should solve this problem for our experiments. The vendors for the galvos that we have

looked at include Nutfield Technology, Cambridge Technology and Thorlabs. Nutfield

and Cambridge Technology have more in-depth knowledge and experience about galvo

design and applications. Specifically, Nutfield offers galvos that "significantly reduce

temperature based gain and offset drift and is greatly immune from radio frequency

interference".

Up to now, we have been using the galvo system Thorlabs GVS001 for the super-

lattice experiments, because of its short lead time and lower cost. After careful tuning

of the closed loop, it can shift the superlattice phase over 27r within one millisecond.

It still picks up some microwave, and may undergo a random shift equivalent to about

10 percent of the superlattice period during the microwave evaporation, but it is able

to settle back to its initial position within a deviation equivalent to one percent of the

superlattice period by the end of evaporation when the microwave is turned off. This

one-percent level phase uncertainty is comparable to phase drifts from other sources,

such as the ambient temperature and pressure fluctuations, therefore is acceptable in

terms of control precision. Overall, the one-millisecond maximum speed, one-percent

precision in repeatability and the convenient interface of this galvo have met our needs

for the static and slow dynamical control of the superlattice phase.

Method 2: AOM Frequency Shifter

The phase of the superlattice can also be controlled by shifting the light frequency.

The reason is, a one part per million shift in the frequency changes the lattice spacing

by one part per million as well. This small difference might be hard to notice locally,

but a finite position shift can be built up for the lattice after a distance, since a node
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of the standing wave is always locked at the retro-reflection mirror. We estimate the

required frequency shift to control our superlattice in the following.

The superlattice potential in the general case is

U(x) - cos(2kRX + 2 70R) - VG cos(2kGX + 27 OG) (4.2)
2 2
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Figure 4-5: The phase control of the superlattice via AOM frequency shifter. When
the frequency of one lattice beam is swept, its lattice spacing is sligthly modified, but
with a node fixed at the retro-mirror. This results in an effective shift in the relative
position between the two lattices. The case of shifting green lattice is plotted on the
left, while the case of shifting JR lattice is plotted on the right. Although the absolute
shift in the relative position is the same for the two cases, shifting JR lattice requires
a smaller frequency change, and also keeps the atomic wavefunction more stationary,
therefore it is the favorable option.

Let's aim to shift the superlattice phase by a half of the period, which corresponds

to changing from symmetric double-wells to asymmetric double-wells. As illustrated

in Fig. 4-5, this is translated into a relative motion of 133 nm between the two lattices,

which is half of the green lattice spacing, A#G = 0.5 or ANG = 1/2, and a quarter of

the IR lattice spacing, AOR = 0.25, or ANR = 1/4. It is intuitive for a sanity check,

since the superlattice potential is identical if either green lattice or IR lattice moves

by 266 nm, the green lattice spacing.
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The number of nodes in the standing wave between the retro-reflection mirror and

the cloud is

N = 2 (4

in our experiment, 1 ~ 500 mm is the distance from the retro-mirror to the cloud.

It is easy to find out all relative changes are equal

AN _ AA Af

N A f

If we are shifting the green lattice,

500 mm
NG= - 2 x 106

266 nm

the relative frequency shift for the green lattice needs to be

AfG ANG 1/2
fG _ - 1/4 x 10 6

fG 'NG 2 x 106

we know the frequency of 532 nm light is

3 x in8 /s
fG 32 m 5.6 x 1014 Hz

532 nm

therefore, the absolute frequency shift for the green lattice needs to be

AfG = 1/4 x 10-6 x 5.6 x 1014 Hz = 140 MHz

On the other hand, if we are shifting the IR lattice,

ANR

NR

.3)

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)
1/4 ANG

NG12 NG

the absolute frequency shift for the IR lattice needs to be

AfT R fR - AfG/2 = 70 MHz (4.10)
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which is half of the frequency needed for shifting green lattice, and feasible by using

an AOM in the double-pass configuration. Shifting the IR lattice has the additional

advantage that the atomic wavefunction is more stationary during the sweep, which

reduces heating and other side effects.

In short, controlling the superlattice phase by changing the frequency of IR lattice

is a favorable choice, when speed is the priority and the phase only needs to be tuned

within half of a period.

Method 3: EOM Phase Shifter

The third way to control the superlattice phase is to use an electro-optic modulator.

Depending on the type and orientation of the nonlinear crystal, as well as the direction

of the applied electric field, the refractive index of an electro-optic crystal will depend

on the polarization of the light. Based on this result, one could make the green and

IR lattices in orthogonal polarizations, and use the electro-optic modulator to shift

the phase of only one beam.

This scheme can be in practice very fast, and may allow us to shift the superlattice

phase over several periods. However, standard electro-optic modulator devices usually

have a small aperature of 2 mm in diameter, which require us to shrink the beam size.

Furthermore, for high power beams at small beam waist, optical damage becomes an

issue. For the EOMs that we've looked at, at their maximum aperature and for a

beam at the laser power required for our experiments, the intensity of the beam will

be fairly close to the specified optical damage threshold for these devices. There are

other EOM devices which offer larger aperatures. However, they are rather expensive,

have longer lead time, require very high voltage drivers, and we are still unsure about

the overall phase shift from the crystal expansion and the residual phase shift for the

other polarization beams. In the end, we decide not to pursuit this scheme.

Estimated phase drifts from the changes in ambient condition

The phase of the superlattice is determined by the path length difference of the green

and IR lattices from the retro-reflection mirror to the atomic cloud. This path length

83



is subject to changes in the ambient conditions such as temperature and air pressure.

In this section, we will make estimates for these effects.

First, let's consider the path length in the air. The refractive index of air is linear

in its density,
P T0

n(P, T, A) ~- 1 + c\ x - x -o (4.11)PO T

where c\ is the linear coefficient that depends on the wavelength of the light. The

difference in the refractive index for 532 nm and 1064 nm light is

P To
Anai ~ 4 x 10-6 X - X (4.12)

P0 T

Let's assume the maximum relative changes for room temperature and air pressue

are both about 1%. If the atomic cloud is half a meter away from the retro-reflection

mirror as in our experiment, the effective phase drift of the superlattice is

L x Arin
Abair/27 = xF x relative change (4.13)

A532 /2

0.5 x 4 x 10-6
0.266 4 10-6 x 1% (4.14)0.266 X 10-6

~ 10% (4.15)

which is not completely negligible.

For a temperature stabilized environment, such as in the enclosure system that we

have, and in a day with steady weather, the superlattice phase should be stable for a

full day of experiment running, as demonstrated in the superlattice phase calibration

section later. However, because these drifts accumulate over time, we cannot expect

the superlattice phase to be stable more than a week. In practice, we have not seen

severe drifts in the superlattice phase in our experiments. In case the drifts from air

temperature and pressure become a problem, it can be reduced by shortening the

distance between the retro-reflection mirror and the chamber.

Finally, let's consider drifts from thermal effects on the glass plate and viewports.

The thermal expansion coefficient is about 10 x 10-6 K- 1 in standard glasses. The
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phase drift of the superlattice due to thermal expansions in glass is

Aqglass/27 =cD x AT x Aflass (4.16)
A53 2/2

10 x 10-6 x 10-2 x 1 x 0.013 (4.17)
0.266 x 10-6

~ 0.5% (4.18)

which is small and negligible.

4.2.3 Considerations for the Raman beams

Raman beams are used to drive the spin-orbit coupling between the double wells. In

our experiment, one beam of the Raman pair is along the lattice direction to guarantee

a non-vanishing coupling matrix element, due to the fact that eigenstates are always

orthogonal! The other beam of the Raman pair is perpendicular to the lattice, which

provides the transverse momentum kick.

There are a few special considerations for the Raman beam preparation. First of

all, the Raman beams are split after the same optical fiber on the experimental table.

The motivation is to minimize relative frequency noise of the two beams, because

any fluctuation in the path length inside the fiber is now common mode. Second,

each of the Raman beams is going through a double-pass AOM for switching on/off

and intensity stabilization. This is intended to minimize the pointing shifts while

scanning the Raman frequency. Lastly, to be able to look at the frequency spectrum

and make sure our Raman coupling is narrow and at signal frequency, we have built

up a beat note monitor between the Raman beams for diagnosis.

Initially, our Raman beams were set up for the synthetic gauge fields in optical

lattices experiment, as one beam was along the vertical direction, in which a strong

and uniform tilt would be created, and the other was horizontal to provide transverse

momentum kick and consequent vector potential. Later after we turned to the spin-

orbit coupling experiment in superlattices, this vertical Raman beam has been moved

to the horizontal plane for mechanical stability and detection convenience.
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For the experiments that have been carried out in this thesis, Raman beams of 1064

nm light and in orthogonal directions are used. The choice of Raman beams is not

restricted to this particular configuration at all, as long as they are far detuned from

the atomic transition, have the correct frequency offset, and provide an non-vanishing

coupling matrix element. As we will see later, in certain situations, a different Raman

configuration (both in wavelength and geometry) could come in handy for the state

preparation and experimental detection.

4.2.4 Experimental layout

To give the reader a graphic view about the geometry and layout of the optical setup

in our superlattice experiment, a schematic drawing looking from the top is shown in

Fig. 4-6,

The green and IR beams are combined along one of the 45-degree axes, and then

simultaneously retro-reflected to make the superlattice. A glass plate is inserted into

the retro-path to control the phase of the superlattice. A pair of IR beams with a small

frequency offset are used for the Raman coupling, with one along the superlattice and

the other perpendicular to it.

Another way to see the geometry of beams in action is to look at the corresponding

diffraction patterns. This is illustrated in Fig. 4-7, as a fun aspect of the experiment.

4.3 Experimental Characterization and Calibration

of a Superlattice

In this section, we will experimentally characterize the superlattice, including testing

our experimental control of the superlattice phase, and probing the band structure

via amplitude modulation (AM) and two-photon Raman process (Raman).
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Figure 4-6: Experimental schematics of the superlattice experiment viewing from the
top. The green beam is sent collinearly with the IR beam through the atomic cloud,
and then both are retro-reflected to create a superlattice. A glass plate is mounted on
a galvo in the retro-path to control the superlattice phase. One of the Raman beams
is sent along with the superlattice, and the other is perpendicular to the superlattice,
both without retro-reflection.

4.3.1 Superlattice band structure

The potential of a one-dimentional superlattice can be written as

U(x) = cos(2kRx) - VG cos(2kGx + 0) (4.19)2 2

where kR, kG are the wavenumbers of 1064 nm and 532 nm light, and VR, VG are the

corresponding lattice depths.

The natural units for the physical quantities of interest in a superlattice are listed

in table 4.2. Please note that kL = r/d is also the size of the Brillouin zone in a 1064

nm lattice.

With all physical quantities in their natural units, the single-particle Hamiltonian
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Figure 4-7: The diffraction patterns for relevant beams in the superlattice experiment.
These images are taken by looking at the cloud from the bottom. To stay consistent
with the schematics in Fig. 4-6, these images need to be flipped vertically due to the
mirrors in the imaging path.

in the superlattice is simply

Ho = -V 2 - - cos(2x) - - cos(4x + #)
2 2

(4.20)

The band structure calculation for a superlattice is a straightforward extension of

the solid-state textbook problem that we've derived earlier in section 3.2.1. The only

difference is that, in addition to the IR component in cos(2kLx) which couples states

with momentum transfer 2kL, there is also a green component cos(4kLx + 0) which

couples states with momentum transfer 4kL.
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Physical Quantity Unit Meaning
Momemtum kL = kR = 21r/AR 1064 nm wavenumber

Energy EL =k E = 1064 nm recoil energy
Distance d/7r = 1/kL 1064 nm lattice spacing

Table 4.2: The natural units of the physical quantities in a 532/1064 nm superlattice.

The superlattice band structure as a function of the phases is shown in Fig. 4-8.

In the case of very deep symmetric double wells, the lowest two bands correspond to

the symmetric and anti-symmetric states, and they are splitted by the tunneling J

between the double wells. As the phase is tuned away from the symmetric point, an

energy offset is created between the left and right wells, and the lowest two bands are

separated, roughly speaking, by this offset A.

Quasi-momentum states of each band in a superlattice can be calculated as well.

For example, quasi-momentum states at q = kL in the lowest three bands are shown

in Fig. 4-9. Please notice that for a superlattice without IR component, there is no

gap opened at q = kL, therefore the lowest three bands in a green lattice shown on

the top right correspond to the 1st, 3rd and 5th lowest band in the other superlattice

configurations.

They are the final states when we couple the ground state into higher bands via

a Raman process, and the Raman beams provide a momentum transfer kL along the

superlattice as in our experiment. The momentum distribution of the final state can

be measured in the time-of-flight images and is used to identify the band index of the

final state.

4.3.2 Calibration and dynamical control of the superlattice

phase

To have the full control of the superlattice in our experiments, we need to calibrate and

dial in the superlattice phase anywhere between 0 and 27r. In addition, it would very

helpful to be able to dynamically change the phase during the experimental sequence.

Finally, the superlattice phase needs to be stable against long-term ambient drifts.
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Figure 4-8: The band structure of the superlattice under various conditions, with the
lowest two bands shown in red and blue. The relative phase # between the IR and
green lattices are 0 for the top row, 7r/2 for the middle row and 7r for the bottom row.
The green lattice becomes deeper from left to right, while the IR lattice depth is kept
constant. The symmetric point of the superlattice corresponds to the bottom row.

We will discuss all of these aspects in the following.

Superlattice phase calibration

The phase of the superlattice can be read out in the time-of-flight image. When the

phase is at a symmetric point, the superlattice is an array of symmetric double wells,

and the first-order peaks will disappear due to destructive interference in the double-

well structure factor. The other phases of the superlattice can be linearly interpolated

from the nearest symmetric points, using either the glass plate angle set point or the

AOM frequency.
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Figure 4-9: The momentum components of quasi-momentum states at p +kL for
the lowest three bands in an superlattice. The units on the horizontal axis are the IR

wavenumber kL. This figure also predicts the time-of-flight images of the final states

in Fig. 4-16, when we couple the ground state into higher bands via a Raman process.

The time-of-flight images can be taken by adiabatically ramping up a superlattice,

or by applying a superlattice pulse and then looking at the diffraction in time-of-flight.

We find that in practice the second method usually has better contrast and robustness,

possibly because of a much shorter interaction time (a few ps).

A typical superlattice phase calibration series is shown in Fig. 4-10. The superlat-

tice is symmetric when first-order peaks are minimal in the time-of-flight diffraction.

2.5V 2.7V 2.9V 3.IV 3.3V 3.5V 3.7V 3.9V 4.AV

Figure 4-10: Calibration of the superlattice phase via diffraction in time-of-flight. The

image captions are the set points for the glass plate, which is linear in the superlattice

phase. The symmetric point in the superlattice phase shows minimal first-order peaks,
which is at 3.3V in this series.
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Load BEC into a superlattice

A pure condensate can be loaded into a superlattice by ramping up the green and IR

lattices simultaneously to reach the desired values. When both lattice beams are well-

aligned, we are able to load the condensate into a superlattice with various presetted

phases in 100 ms without noticeable heating, shown Fig. 4-11. When the lattice

beams are slightly misaligned from the dipole trap (especially for the repulsive green

lattice beam), the sample may experience sloshing motion in the trap. In this case, a

slower ramp-up in a few hundred milliseconds can prevent the sample from heating

up, and sometimes additional confinement may be necessary to keep the cloud in the

trap.

single ramp

loins time

double ramp
symmetric superlattice loaded at .4V 10ms 1Oms time

Figure 4-11: Experimental sequence for the dynamical control on superlattice phase.
Left: a condensate is loaded into a symmetric superlattice with a static phase. Right:
The experimental sequence for a single ramp and a double ramp in the slow dynamical
phase control experiment.

Slow dynamical phase control using glass plate

To test our dynamical control of the superlattice phase using a glass plate, we first load

a condensate into a symmetric superlattice, and then change its phase in either a single

ramp or a double ramp with the galvo rotation, illustrated in Fig. 4-11. These phase

ramps are done in tens of milliseconds, which is slow compared to the estimated inter-

well tunneling about kilohertz, and enough to keep the condensate in the ground state.

Time-of-flight images after the one-way ramp show the corresponding ground state
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in a tilted double-wells, and round-trip images confirm that the process is adiabatic

and without severe heating.

It's important to point out that, as we rotate the glass plate to change the phase,

the superlattice itself has an overall motion of hundreds of lattice constant, dragging

the condensate along. This effect may require even slower speed in the phase ramp to

maintain adiabaticity. Therefore, even though the galvo has the capability of rotating

our plate within a millisecond, the glass plate phase shifter scheme is limited for only

static and slow dynamical control of the superlattice phase.

single phase ramp double phase ramp

1.4V -> 1.5V 1.4V -> 1.5V -> 1.4V

I.4V -> 1.6V

1.4V -> 1.7V

1.4V -> 1.6V -> 14V

14V -> 1.7V -> 1.4V

1.4V -> 1.8V 1.4V -> 1.8V -> I.4V

.4V -> 1.9V 1.4V -> 1.9V -> 1.4V

Figure 4-12: The dynamical control of the superlattice phase using a glass plate. The

time-of-flight images are shown on the left after a one-way phase ramp, and on the

right after a round-trip phase ramp in the superlattice. These phase ramps are slow

enough so that the condensate remains in the ground state of the superlattice.
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Fast dynamical phase control using AOM

The superlattice phase can also be tuned by changing one of the lattice frequencies,

which can go as fast as a microsecond, and doesn't come with the unwanted motion of

the superlattice. As discussed in earlier sections, changing IR frequency is favorable

compared to green, because it requires a smaller frequency shift, and keeps the atomic

wavefunction more stationary. By suddenly switching the IR frequency, we freeze the

atomic population in each well between two superlattice phases, critical for the 50/50

sample preparation in the spin-orbit coupling experiment.

In our experiment, a double-passed AOM is used to shift the frequency of the seed

light for the Nufern fiber amplifier. In this way, we only need to shift the frequency

with a low power beam, and the double-pass scheme maintains the fiber coupling

efficiency. The RF frequency and power for this AOM need to be carefully chosen

so that the power of the seed light into the amplifier stays constant before and after

the frequency switch, otherwise the fiber amplifer may complain and shut down itself

from a built-in safety feature. Experimentally, we have observed a shift of the phase

symmetric point by 0.7V in the galvo set point when we shift the IR frequency by 40

MHz, consistent with our estimates in section 4.2.2.

Long-term superlattice phase drifts

One could characterize the long-term phase drifts by measuring the superlattice sym-

metric point over time. In Fig. 4-13, we've located a symmetric point by the time-of-

flight diffraction, and monitored its position over half a day with a half-hour interval.

In the earlier calibration, the period of the superlattice phase between neighboring

symmetric configurations is measured to be at 2.6 0.2 V in the unit of glass plate set

point. Long-term drifts of the superlattice phase is measured to be within 10 percent

of the full period over six consecutive hours. This upper bound is mainly limited by

the measurement error bar of locating the symmetric phase. In practice, we have not

experienced severe phase drifts in the superlattice, although as a routine we'll check

and calibrate the superlattice phase everytime we start the experiment.
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Figure 4-13: The measurement of the long-term drifts in the superlattice phase. The
symmetric point of the superlattice phase was monitored over six consecutive hours.
The long-term drifts in the superlattice phase are estimated to be within 10%, mainly
limited by our phase measurement error bar.

4.3.3 Interband population transfer and band mapping

The band structure of the superlattice can be probed by coupling the condensate from

the ground state into higher bands. Understanding the band structure is essential for

lattice diagnosis, the study of orbit physics and excited state dynamics, and sample

preparation for quantum simulation with pseudospin states in superlattices as well.

In this section, we'll develop the techniques for transferring atoms into higher bands,

as well as for measuring the population in each band afterwards.

Population transfer into higher bands is achieved by amplitude modulating the

lattice, or by switching on a pair of Raman beams through the two-photon process.

Amplitude modulation preserves the quasi-momentum of the initial state, while Ra-

man coupling may shift the quasi-momentum depending on the wavelength and beam

geometry. In our experiment with orthogonal 1064 nm beams, the Raman coupling

shifts quasi-momentum by kL, and also provides a momentum transfer of kL perpen-

dicular to the lattice, illustrated in Fig. 4-15.
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Amplitude Modulation Raman Coupling
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Figure 4-14: Interband coupling in a 1064 nm lattice via amplitude modulation and
Raman process. Population in each band is individually read out with band mapping,
as the bands are resolved with spatially separated Brillouin zones in the time-of-flight
images. The image captions are the corresponding resonance frequencies.

Population in different bands could be directly read out by raniping down the lat-

tice and subsequently taking the time-of-flight image, a technique commonly known as

band mapping. During this slow ramp, quasi-momentum states in different bands are

mapped into the corresponding real-momentum states in the free-particle dispersion

relation in an adiabatic connection process, and population in each band shows up in

individual Brillouin zone spatially separated in the time-of-flight image. Population

in higher bands transferred via Raman coupling can also be identified in time-of-flight

without band mapping, as they are spatially shifted from the ground state due to the

perpendicular momentum transfer, and show different momentum distribution. We
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will demonstrate both methods in the following.

For amplitude modulation, we are modulating the RF power of the AOM. The

modulation depth is usually around 30% to balance the strong coupling and excessive

heating, and the duration is about 100 milliseconds. For Raman coupling, its coupling

strength is proportional to the depth of the moving Raman lattice, which is usually

chosen to be a few lattice recoils, and the pulse duration is less than a millisecond.

kHz
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Figure 4-15: Interband coupling resonances and the corresponding band structure in a

1064 nm lattice. The solid lines show the AM resonances, while the dotted lines show

the Raman resonances. The Raman resonance frequencies have been subtracted by a
recoil energy EL = 7.6 kHz for the transverse momentum transfer. Within experimen-

tal precision, these measured resonances are in agreement with the band structure of

an IR lattice of 27EL, calibrated independently via Kapitza-Dirac diffraction, except

for the AM resonance of the 5th band.

In band mapping, the lattices are simultaneously slowly ramped down. In practice,

we find out that the maximum speed of this ramp so that the condensate could still
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follow the adiabatic passage is around 0.5 rns for the green lattice, and around 2 ms

for the IR lattice. A ramp-down faster than that might result in partial projection

onto the higher bands and create a false signal in the band mapping detection. The

time-of-flight images of a condensate in the ground state are used to calibrate the size

of the Brillouin zone in band mapping.

First, we've tested the population transfer and band mapping in a 1064 nm lattice,

shown in Fig. 4-14. Population transfers up to the 5th band have been identified, and

the resonance frequencies are consistent with the case of a lattice depth of 27 EL, after

taking into account the additional recoil energy due to the perpendicular momentum

transfer, illustrated in Fig. 4-15. This inferred lattice depth is in agreement with our

independent calibration using Kapitza-Dirac diffraction.

There are a few findings and comments regarding this experiment. First of all, in

theory, amplitude modulation only couples the ground state into higher bands with

the same parity, which in our notation are the odd bands in Fig. 4-15. The fact that

we seem to see coupling into even bands might due to deviations from the ideal case,

or simply heating from the modulation. Second, we find that AM coupling is usually

broader than 5 kHz, while Raman coupling is about a couple of kilohertz wide. Third,

Raman couplings usually transfer population with much less heating compared to AM

couplings. Finally, the lifetime of higher band population is about 10 ms in the 1064

nm lattice, as the atoms collide and rapidly decay into the ground state.

The band of the final state in the Raman coupling scheme can also be identified in

the time-of-flight images. As shown in Fig. 4-16, the Raman transferred population in

the higher bands is shifted in the transverse direction, and has shown distinguishable

momentum distributions. This separation in time-of-flight on lattice bands is possible

only with the assistance of perpendicular Raman momentum transfer. Time-of-flight

detection relies on analyzing the relative strength of the momentum peaks, therefore

it is less direct and robust compared to the band mapping scheme. However, it doesn't

require additional time for the slow ramp as in band mapping, and is useful when the

lifetime of the final state is limited.
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Figure 4-16: Raman coupling into higher bands with time-of-flight images in a green
lattice. The final states of the Raman coupling are offset to the upper-right di-
agonally because of the perpendicular momentum transfer. In this experiment, we
demonstrated the distinguishable momentum distributions of quasi-momentum states
at q = kL for the lowest three bands in a green lattice. The measured resonance fre-
quences indicate the lattice depth around 10EG.

4.4 Theory of Spin-Orbit Coupling in a Superlat-

tice

In this chapter, we will develop the theory for a spin-orbit coupled condensate in the

superlattice. First, we will discuss the Raman couplings in superlattices, and derive

the single-particle Hamiltonian with spin-orbit coupling in this system. Then we will

compare the relative strength of the spin-orbit coupling which couples states between

the wells, and onsite coupling with couples states within the same well. The desirable

experimental parameters are also estimated. Finally, we discuss the phase transition

from the miscible stripe phase to the immiscible separated phase for the interacting

spin-orbit coupled system.
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4.4.1 Single-particle spin-orbit coupling Hamiltonian

In this section, we derive the Raman coupling contributions for a double-well system.

We will focus on only the single-particle physics in this section.

Raman couplings in a double-well system

First of all, let's consider the general case where we apply a pair of Raman beams in

the superlattice, and discuss the possible coupling processes.

In the tight-binding approximation, the basis functions are the localized Wannier

states labelled as I m, k), where i can be left a or right b in the double well, representing

our pseudospin-1/2 states, m is the superlattice double-well unit-cell index, and k is

the transverse momentum. If the coupling between double-wells can be neglected for

now and only a single double-well is considered, index m is omitted.

The two-photon Raman field can be written as Qeikxx+ikye-it. The spatial phase

component eikyy provides the transverse momentum kick ky, while component e ikx is

critical to maintain a non-vanishing matrix element for nearest-neighbor couplings.

As the Wannier states are localized and vanishing after a few lattice sites, all other

couplings are negligible except the onsite and nearest-neighbor couplings,

HRaman - .e,t amk + kL) (am, kI+ iFe-t ibm, k + kL) (bm, kj (4.21)

+ Ke-' Ibm, k + kL) (am, kI + h.c. (4.22)

where IF is the strength of coupling between states in the same well, as we will call it

the "onsite coupling"; while K is the strength of coupling between states in different

wells, as we will call it the "spin-orbit coupling". K is complex in this notation, the

phase is 31r/4, from the propagating phase of the Raman coupling,

In the case where an energy offset A is applied between the double wells to make

well-defined pseudospins, first-order perturbation theory gives the onsite coupling

strength F _ Q, and the spin-orbit coupling strength K ~- JQ/A.

If we start with a coherent equal superposition in the double-well Ia, 0)+e-iA' 1b, 0),

and then slowly ramp up the Raman beams, this state will be adiabatically connected
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to the following state (in the perturbative limit),

IS) =Ia, 0) + e-'At 1b, 0)
+ 6i6t P+ik

+ C-E-la, kL) - e+la, _L)J - EL 6 + EL

+ E e s+|b, kL) + S E e+i(--)t Ib, -kL)S- EL 6 + EL

+ e-(+)t la, kL) + A e+i(6-A)t la, ~kL)A+ 6 - EL A - 6 - EL
KK

+ e it|b, kL) - K e+ __ kL)-A+6 - EL A +6+ EL

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

where Eq. 4.24 and 4.25 are the onsite coupling contributions, and Eq. 4.26 and 4.27

are the spin-orbit couplings and their counter-rotating terms.

When the Raman detuning 3 is set to be equal to the double well offset A,

IS) = Ia, 0) - * la, -kL) + eIt b, 0) - Ib, kL)
EL EL

F P*
+ e-iAt la, kL) - e+iAt a, -kL)A-EL A +EL

+ ir - e-2 At Ib, kL) + 1b, -kL)
A-EL A+EL

K*K
+ A-E e-2 iAt Ia, kL) - K e+'At b, -kL)2A - EL 2A + EL

(4.28)

(4.29)

(4.30)

(4.31)

In this equation, Eq. 4.28 is the spin-orbit coupling state, which shows the stationary

stripe phase. Eq. 4.29 and 4.30 are the onsite coupling states in each well, which give

a time-dependent density modulation moving with the Raman beams. The last terms

in Eq. 4.31 are the counter-rotating contributions from the spin-orbit coupling.

As we will see, our experiment is usually done in the regime where A is about an

order of magnitude bigger than the recoil energy EL, therefore the effects from the

counter-rotating terms are negligible. The strength and effects of the onsite couplings

will be discussed in section 4.4.2.
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Single-particle spin-orbit coupling Hamiltonian

When the Raman detuning 6 is very close to double-well offset A, one can make the

rotating-wave approximation, and neglect the onsite couplings. The Hamiltonian of

the spin-orbit coupled spin-1/2 system in the lab frame is

h2 k2 K*e-ikLY+iot
Ho= 2"y ) (4.32)

after applying a temporal and spatial unitary transformation, the effective Hamilto-

nian in the transverse direction is

Henf h2 (k = kL/2. C)2 + Ka, + 60a- (4.33)
2m

where 60 = 6 - A is the offset of the pseudospin-1/2 in the new frame.

Effects of the couplings between double-wells

In the last two sections, we've only considered the Raman couplings within a double-

well, as the normal tunnelings are strongly suppressed by the energy offset. In this

section, we'll discuss the effects of the Raman couplings between neighboring double-

wells, as well as the resonant normal tunnelings between wells of the same kind.

Firstly, the resonant tunneling between wells of the same kind in the neighboring

double-wells, which is excepted to be small, is maintaining the relative phases between

double-wells and therefore the global coherence. This is critical for both the time-of-

flight interference detection and the Bragg scattering detection. As we'll see in the

experimental section, the upper-well states, which correspond to the second band,

have the ground state at quasi-momentum q = kL, rather than q = 0. This insight,

which in retrospect totally makes sense, came initially as a little surprise, and would

completely change the expected signals in our detection for the spin-orbit coupling.

Therefore, when we prepare a coherent superposition with equal population in the
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double-wells, the initial ground state can be written as

ISm) = Iam, 0) + (-1)me-At Ibm, 0) (4.34)

Secondly, let's also consider the propagating phase of Raman couplings, as well as

the effects of the Raman couplings between double-wells. The latter is written as

HRaman = (-1)m[K 2e-%s lbm_, k + kL) (am, kI + h.c.] (4.35)
m

where K2 is the coupling strength between states in neighboring wells but from differ-

ent unit cells. Again, this coupling strength is approximately k2 ~_ J'Q/A, and J' is

the normal tunneling corresponding to the barrier between neighboring double-wells,

which could be much higher than the barrier within a double-well. Therefore, in most

experimental configurations where the IR lattice is not very weak, K2 is much weaker

than K.

If one carefully counts the phases of the Raman couplings, and keep the spin-orbit

coupling between double-wells, the full ground state that is adiabatically connected to

our initial state, in the presence of Raman couplings at balanced spin-orbit coupling

condition 5 A, is

IS') =lam, 0) + (-1)m 't I bm, 0) (4.36)
K* K

K lam, -kL) - (-1) e ibm, kL) (4.37)
EL EL

+ EL am, -kL) + (_1)m K2 eAt bm, kL) (4.38)
EL EL

F IF*
+ (-1)e- lam, kL) - (-1)me~it lam, -kL) (4-39)

A-EL A+EL
if jf*

+ - e iAIbm, kL) + Ibm, -kL) (4.40)
A-EL A+EL

where K and K2 are complex if we assume F is real in this notation, and have phase of

7r/4 and -7r/4 in approximation. This complete wavefunction contains the stationary

stripes from the spin-orbit coupling as well as the moving density modulation from the
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onsite couplings, and is also used to make predictions in the time-of-flight interference

measurement.

4.4.2 Spin-orbit coupling and onsite couplings

In this section, we'll discuss the relative strength of spin-orbit coupling and the onsite

couplings. The optimal parameters for creating the spin-orbit coupling for experimen-

tal detection are also proposed.

First of all, the onsite coupling couples the la, 0) and la, tkL) states,

0 Q
Hoc =K

Q k6+ER

In this case, we have approximated the Rabi frequency as r ~ Q. If Raman detuning

6 is much greater than Q, the onsite coupling in first-order perturbation theory is

Ia,0) t a, kL) (4.41)

In our experiment, we choose the Raman detuning 6 ~ A ~ 50 kHz, and the Rabi fre-

quency in this case is roughly the Raman lattice depth, which we assume to be around

15 kHz, the amplitude of the onsite component is about 30%, and the corresponding

population is around 10 percent.

In contrast, the spin-orbit coupling couples the |a, 0) and 1b, kL) states,

0 A
Hsoc =AH50 ~~![j ER + A- 1

the Rabi frequency in this case is JQ/A due to wavefunction overlap between left and

right wells. J is the normal tunneling rate mainly determined by the barrier between

left and right wells, and is about a few kilohertz. Let's say we use a maximum value

of J to boost the spin-orbit coupling signal, which corresponds to a green barrier of
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3EG - 100 kHz, still large enough to separate the left and right wells,

J 3kHz x 15kHz -IkHz (4.42)
A 50 kHz

When we set the Raman detuning at the double-well offset 6 = A for the balanced

spin-orbit coupling and the stationary stripes, the spin-orbit coupling in the first-order

perturbation theory is

la,0) - AE Ib, kL) (4.43)
A ER

therefore, the spin-orbit component is about 12% in amplitude and less than a couple

of percent in population.

In short, although the Raman-assisted tunneling does provide a finite spin-orbit

coupling in the double-wells, it also comes with an unwanted onsite coupling compo-

nent that is a few times stronger than the spin-orbit coupling in the balanced case.

To demonstrate the Raman-assisted spin-orbit coupling, one could tune the cou-

pling close to the resonance. The lower-to-upper transition has a resonance frequency

at 6 =A + ER, while the upper-to-lower transition has a resonance frequency at

6 = A - ER, therefore we expect to see a significant increase on one side of the

Raman-coupled final-state population when the Raman detuning is near one of the

resonances. This is what we have seen in experiment that, as we scan the Raman de-

tuning, one side of the Raman-coupled components shows a resonance feature about

1 kHz wide, while the other side does not. However, the stationary stripe phase re-

quires the balanced spin-orbit coupling at 6 = A. In this regard, a sensitive detection

is needed to measure the spin-orbit coupling. One way is to implement the Bragg

scattering to detect the stationary density modulation, which is the linear cross term

in the amplitude. Another possible way is to look at the time-of-flight interference,

not only the total population but also the interference between the spin-orbit coupling

component and the onsite coupling component. Both methods will be discussed in

the experimental detection section.
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4.4.3 Quantum phase transition of an interacting spin-orbit

coupled condensate

In this section, we will consider a spin-orbit coupled condensate with repulsive inter-

actions. The mean-field Hamiltonian in this system can be written as,

H = ( * p* )Ho a + a + g + gab|IV)a|12 2 (444)

where Ho is the single-particle spin-orbit coupling Hamiltonian as before,

Ho- h2(k + kL/2 T)2 + Kax + 6 0o-z (4.45)
2m

The spin-orbit coupling mixes spin states with different momentum components,

as a result, it creates a spatial density modulatio and costs kinetic energy. Therefore,

for a balanced spin-1/2 system, spin-orbit coupling favors an immiscible state where

opposite spins are spatially separated. On the other hand, if the repulsive interaction

between different spins is much weaker than the intra-spin counterpart, gab < gaa, gbb,

the excessive interaction energy forces the spins to say miscible. Therefore, depending

on the relative strength of the kinentic energy in the stripes, and the asymmetry in the

intra-spin and inter-spin interactions, a quantum phase transition from a stripe phase

to a separated phase is predicted for an interacting spin-orbit coupled condensate [38,

39], and the relevant quantum phases are illustrated in Fig. 4-17.

Up to today, the stripe phase, which is related to supersolidity in condensed mat-

ter, has not been observed in experiment. In the first spin-orbit coupling experiment

with 8 7Rb [34], the interaction strength gaa 9bb= g, and the difference (gab - g)/g

is less than 1%, therefore the window for detecting the stripe phase is very small, as

the system prefers to stay in the separated phase.

In our spin-orbit coupled pseudospin system, the interspin interaction is controlled

by the overlap between the states from the left and right wells. In the lowest-order ap-

proximation, gab _ (J/A)2 g < 0.1g. There is a huge mismatch between the intraspin
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stripe phase separated phase single minimum phase

Figure 4-17: Illustration of the quantum phases of an interacting spin-orbit coupled
condensate. For the weak couplings, two degenerate minima are created in the single
particle dispersion relation. Depending on the interaction, both minima are occupied
in the miscible phase with density stripes, or in an immiscible phase, the condensate
falls into one of the minima via spontaneous symmetry breaking. For strong couplings,
only a single minimum is present in the dispersion relation.

and interspin interactions, and naturally the system prefer to stay in the stripe phase.

Quantitative predictions are made on the phase diagram for an interacting spin-

orbit coupled condensate in [391. For a low density atomic cloud, in which the mean-

field energy is less than the recoil of the Raman beams, ng < EL/4, as we increase the

spin-orbit coupling strength, a first transition from the stripe phase to the separated

phase happens at the critical Raman coupling

EL y
K1-2 L - 2 ' (4.46)C 2 V1+ 2-

where a (g - g.)/(g -+ gab) is a dimensionless interaction parameter that measures

the asymmetry between interspin and intraspin interactions. In our experiment, y ~ 1

gives the critical Raman coupling of Kj-2 ~ O.4EL.

When we increase the spin-orbit coupling further, a second phase transition from

the separated phase to the single minimum phase happens at

K2- 3 = 0.5EL (4.47)

Finally, the phase transition from the stripe phase to the separated phase can be

driven by changing the Raman detuning away from the symmetric spin-orbit coupling

at 6 = A as well, although the stripes will be moving in the detuned. scenario.
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In summary, compared with other spin-orbit coupled systems, the pseudospin-1/2

system in the superlattice has the desirable feature that, the interspin interaction is

tunable and could be dramatically different from the intraspin interactions. Therefore,

it is an ideal system to prepare and detect the stripe phase.

4.5 Experimental Realization of Spin-Orbit Cou-

pling in a Superlattice

4.5.1 State preparation in a superlattice

To implement the spin-orbit coupling Hamiltonian and study its phase diagram such

as the stripe phase, one needs to prepare the initial quantum state in the double wells.

Conceptually, if every step in the preparation is adiabatic, the condensate will remain

in the ground state, which is the lower well in an asymmetric double-well. Therefore,

some form of the diabatic process, or additional external couplings, are needed in the

state preparation for spin-orbit coupling experiment.

Fast switching of the superlattice phase

By fast switching the superlattice phase and changing its configuration in a timescale

much faster than the double-well tunneling, the atomic wavefunction is frozen in each

well. However, special care needs to be taken to make sure that there'll be no residual

overall motion of the superlattice so that the atomic wavefunction is kept stationary.

Even with a fairly high barrier, the tunneling rate is still on the order of hundred

Hertz between the double-well, which means we need to switch the superlattice phase

in less than a millisecond. It is very challenging for mechanical switchs like the glass

plate. Furthermore, in the glass plate scheme, the relative shift of the two lattices is

about just one percent of the overall shift of the superlattice. Assuming the atomic

cloud will not be able to follow the overall motion in such a short timescale, it creates

dragging and undefined matching of the atomic wavefunction.

In contrast, fast switching of the lattice frequency won't have the same problem.
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As discussed earlier, switching the IR frequency keeps the atomic wavefunction more

stationary, and it could be done far less than a milliesecond. We have been using this

scheme to prepare initial states with balanced population, or 100-percent population

in the upper-well, in an asymmetric double-well.

Sudden switch-on of the offset

Another way of preparing a balanced population in the asymmetric double-well is

to first load the condensate into a green lattice, and subsequently switch on the IR

lattice with a proper relative shift that is presetted by the glass plate. This is an

alternative option when the fast dynamical control of the superlattice phase is not

available.

However, as we found out experimentally, this method is quite sensitive to lattice

alignment. If the IR lattice is not well-centered, this additional dipole potential also

creates sloshing motion and breathing mode excitations, demonstrated later in the

experimental section. Better beam alignment would reduce these effects.

On the other hand, these side effects from sudden switch-on of the IR lattice might

turn into our favor in the experimental detection phase. Because of the different trap

frequencies for the two states in the double well, the sloshing motion of them results in

a spatial separation in the time-of-flight images. Therefore, this scheme could be used

as a Stern-Gerlach type experiment for an independent readout of the pseudospin-1/2

states.

Raman process

Both of the aforementioned methods prepare the upper-state with a constant phase

across the atomic cloud. As we found out later, the upper state in fact has the ground

state at q = kL, or its wavefunction has alternating phases in the lattices. The above

two schemes rely on the assumption that there will not be too much heating created

while the atoms relax into the ground state in the upper well, which seems to be the

case in our experiment.

Motivated by this observation, another way of preparing the initial state is to use a

109



direct two-photon process to couple the ground state in the bottom well to the ground

state in the upper well. To compare with the Raman-assisted spin-orbit coupling, this

Raman-assisted state preparation does not provide the extra momentum transfer in

the perpendicular direction. For state preparation, the required momentum transfer

of kL along the superlattice could be provided by a pair of 1064 nm Raman beams at

30' angle of incidence, or a pair of 532 nm Raman beams at 14.50 angle of incidence.

This Raman process without perpendicular momentum transfer could potentially be

useful in an interferometric readout of the atomic wavefunction in the double-well as

well.

Due to space constraints near the apparatus, we've implemented the first two state

preparation schemes, but not yet the last one.

4.5.2 Dynamics in the double-wells

The energy offset of A can be calibrated by measuring the accumulated phase between

the A-state (the lower well) and B-state (the upper well) as a function of time in the

time-of-flight interference images. In this measurement, a BEC is prepared in a green

lattice, and subsequently a weak IR lattice is suddenly switched on with a properly

pre-selected superlattice phase to provide the energy offset. After a variable hold, the

time-of-flight image is taken to record the interference pattern, shown in Fig. 4-18.

As we see in Fig. 4-18, the population in the time-of-flight images oscillate between

the zeroth-order and first-order peaks, corresponding to the case with relative phase

of 0 and r. The oscillation frequency in the time-of-flight interference pattern, or the

slope of the accumulated phase, is a measure of the energy offset A. This measurement

was performed before the upper-well state relaxed into its ground state at q = 7r.

If we continue to hold the condensate in this superlattice configuration, interesting

dynamics occur. This is better demonstrated from the horizontal imaging, where the

A-state and B-state are separated vertically due to a differential force from the slight

misalignment of the IR beam. The A-state on the top stayed in the same pattern of

q = 0, whereas the B-state on the bottom developed a different pattern corresponding

to a quasi-momentum of q =7r, shown in Fig. 4-19.
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Figure 4-18: The experimental calibration of the offset A. The relative phase between
the left and right wells is accumulated linearly in time, and shows up as the oscillation
in the time-of-flight interference. This oscillation calibrates the offset frequency A in
our experiment. This measurement was performed before the upper-well state relaxed
into its ground state at q = kL.

There are two strong pieces of evidence to support our findings. First of all, the

A-state and B-state correspond to the lowest two bands in a superlattice. Therefore,

A-state naturally has the ground state at q = 0, whereas B-state has the ground state

at q =7r, based on the shape of the band structure. Second, a sloshing motion of the

atomic cloud is induced by the sudden switch-on of the IR beam, and A-state would

have a faster oscillation in the sloshing motion because of the higher IR intensity and

therefore a higher trap frequency in the A-state. This is confirmed in Fig. 4-20, where

A state, or the lower state, does show a faster sloshing oscillation. Furthermore, the

relaxation process in B-state is an indirect measure of the resonant tunneling between

the neighboring upper wells, whereas the tunneling between the A-state and B-state

within the same double-well is strongly suppressed by the energy offset, as the relative

population stay constant in Fig. 4-20.
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Figure 4-19: The ground states of the lower- and upper-well in the superlattice. The
separation in the time-of-flight images is induced by the sloshing motion and different
trap frequency for the two states. The initial state is prepared by suddenly switching
on an energy offset A. After 750 ps, upper-well relaxes to its ground states at q = kL-

4.5.3 Detection of the spin-orbit coupling in time-of-flight

Structure factor in optical lattices

The interference pattern in the time-of-flight image shows momentum distribution of

the atomic cloud. One could also say, it is the measurement of static structure factor

of the atomic wavefunction in the trap, and thus can be used to measure the relative

strength and phase of the superposed components in the superlattice. In this section,

we'll derive the static structure factor for a periodic potential in the general case, and

discuss the corresponding interference patterns in a few relevant phase configurations.

This general discussion about the static structure factor will show its important in

the Bragg scattering section later on as well.

Let's assume that the distribution of interest is O(r). The momentum distribution

measured in a time-of-flight image, or the scatter signal measured in a scattering ex-

periment, is proportional to I(q) ~ S(q) = 4(q) 2, where o(q) = fV 4(r) exp(-iqr) dr

is the Fourier transform. This defines the structure factor in the most general context.
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Figure 4-20: The separation of the lowest two bands in the time-of-flight images and

the relaxation of the second band into its ground state. The upper-well and lower-well

states show oscillations with different trap frequencies. During the relaxation process,

the relative population stays constant, which confirms that the tunneling between the

double-well is strongly suppressed by the energy offset A.

To make it clear, the distribution O(r) corresponds to the atomic wavefunction in the

time-of-flight interference measurement, while it is actually the atomic density in the

Bragg scattering experiment.

If the system of interest is composed of identical constituents, such as unit cells

in a lattice, it is convenient to explicitly capture the variation in V) by the sum of the

contribution from each constituent,

N N

(4.48)(r) = f(r - Rj) = (f * )(r - R)
j=1 j=1

113

* S upper

1 0 lower
.00 0

0@0- -0

-50.0.* ** *. 0 .. **
-5*. . .. e

0 200 400 600 800 1000 1200
time / ps

0.8-

0.8-

0.4-* 0 0 * 0 -

0.2-

01
0 100 200 300 400 500 600 700 804

time / is
300

200-00

100-



with Rj, j = 1, . . . , N the position of each constituent. In the second equality, the

field is decomposed as a sum of the convolution product * of the function f and Dirac

delta functions depending only on the positions. Using the property that the Fourier

transform of a convolution product is simply the product of the Fourier transforms

of the two factors, we have

N 2

SV) (= 2 If(q)1 2 X e-iqjR (449)
j=1

= S(q)unit cell x NS(q)grating (4.50)

In short, time-of-flight interference images measure the structure factor of the whole

system, which is a product of the structure factor of a grating and the structure factor

of each unit cell.

For a one-dimensional superlattice, the structure factor of the grating with grating

constant a (also the size of the unit cell) is

1 N-2 1 1 - e-iNqa 2 1 I sin(Nqa/2) 1 2
S(q)graing =__-i~ - = I 4.1

N N 1 - e-iqa N sin(qa/2)=1-

The reciprocal lattice has a spacing 21r/a, the intensity of the maxima increases with

the number of particles as S(q = 2nmr/a) = N, and the peak width decreases as 1/N.

In the large N limit, the peaks become infinitely sharp Dirac delta functions,

lim S(q)grating = S(q - 2n/a) (4.52)
N-+oo

n

which is a Dirac comb as a infinite series of Dirac delta functions spaced at intervals

of 27r/a.

Now let's consider the structure factor in the unit cell S(q)unit cel. As before, one

could decompose the unit cell structure factor into a product of the structure factor of

each constituent, or the single-slit structure factor, and the multi-slit structure factor
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based on the arrangement of the constituents in each unit cell,

S(q)unit cell = S(q)single slit x S(q)multi slit (4.53)

the single slit in the case of our superllattice corresponds to the Wannier state in each

well. For simplicity, the single-slit structure factor is chosen to be a Gausssian profile

centered at q = 0 with a proper width for the following discussion in this section.

In the following, we'll apply the general results to a few special cases for the spin-

orbit coupling experiment in a superlattice. The natural length unit in this system is

the superlattice period d = A1064/2, and the corresponding momentum unit is 27r/d.

We label k as the transverse momentum perpendicular to the superlattice, and q as

the quasi-momentum along the superlattice.

Case 1. k = 0 for 50/50 population

In the first case, we consider the interference between a 50/50 population with trans-

verse momentum k = 0 in the double wells. This is relevant for the double-well offset

calibration, when the relative phase between left and right population is accumulated

linearly as a function of time, before the upper-state population relax into q = kL-

In this case, the structure factor in a unit cell is simply in a double-slit form,

S(q)muiti slit = S(q)double slit = 1 + ei(-qb) 12 = 2[1 + cos(# - qb)] (4.54)

where # is the relative phase between the right and left wells. The double-slit structure

factor is a sinusoidal function with the period 27r/b. In this case, the grating constant

or the size of the unit cell is a = d, and the double-slit spacing is b = d/2.

The predicted time-of-flight images as a function of the relative phase # are shown

in Fig. 4-21. As time evolves, we expect to see oscillations between the centered # = 0

pattern and the symmetric # = ir pattern at the frequency of offset A.
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Figure 4-21: Case 1: The relative phases and the corresponding interference pattern of
the k = 0 component for 50/50 population. The relative phase is linearly accumulated
in time, therefore the time-of-flight interference will show oscillations at the frequency
A.

Case 2. k = kL for 100/0 population with only OC or SOC

The second case applies when we have only on-site coupling or spin-orbit coupling in

a 100/0 population in the superlattice. The propagating phase of the Raman coupling

is imprinted onto the atomic wavefunction to create an alternating phase.

In this case, the size of the unit cell is a = 2d, the double-slit spacing is b = d,

and the relative phase in the double-slit structure factor is fixed at # = r. Therefore,

we expect to see a stationary pattern of # = 7r in time.
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Figure 4-22: Case 2: The relative phases and the corresponding interference pattern
of the k = tkL component for 100/0 population with only the OC or SOC component.
The relative phase is locked by the propagation of the Raman coupling, and therefore
the time-of-flight interference will be stationary in time.

Case 3. k = kL for 100/0 population with both OC and SOC

The third case applies when we have both the on-site coupling and spin-orbit coupling

in a 100/0 population in the superlattice. In this case, besides the structure factors

considered above, there is an additional double-slit structure factor for the double-

well with spacing b = d/2, due to the interference between the onsite component and

the spin-orbit component.

The relative phase between these two comes from the propagating phase of the

Raman coupling, and also depends on the sign of the two-photon detuning 3- A t ER-

When the Raman frequency of A is increased across the resonance, the relative phase

between them (the right respect to the left) goes from -- 7/4 to 37/4, while the spin-

orbit coupled component has a resonant strength. Therefore, we expect to see a

dispersive signature in the population difference between the left and right peaks.

The predicted time-of-flight images as a function of the relative phase # are shown

in Fig. 4-23, assuming on-site coupling and spin-orbit coupling have equal strengths.
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Figure 4-23: Case 3: The relative phases and the corresponding interference pattern of
the k = kL component for 100/0 population with both the OC and SOC component.
The relative phase is finite from the propagation of the Raman coupling, and flips its
sign when across the SOC resonance, and therefore the time-of-flight interference will
show asymmetry and a dispersive signature in the difference between the plus/minus
first-order peaks.

Case 4. No interference between quasi-momentum q = 0 and q = kL states

Let's consider the last situation, where we have a condensate in the left wells at quasi-

momentum q = 0, which has a constant phase in each well, and a condensate in the

right wells at quasi-momenum q = kL which has a relative phase of # with alternating

sign. This is motivated by our experimental observation that the upper well, or the

second band in the superlattice, has the ground state at q = kL, rather than q = 0.
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Figure 4-24: Case 4: There is no interference between quasi-momentum q = 0 and
q = kL states. The total interference pattern is just the sum of the individual patterns.

The multi-slit structure factor in the unit cell in this case is

S(q)muiti slit = |1 + ei(++qd/2 ) + eiqd - ei(0+3qd/ 2 ) 2 (4.55)

= 2 + 4 sin(qd/2) 2 + 2 cos(qd) + 4[sin(#) + sin(# + qd)] sin(qd/2) (4.56)

= 4 + 4 sin(# + qd/2) sin(qd) (4.57)

Although the multi-slit structure factor shows dependence on #, the grating structure

factor is non-vanishing only when at q = wn/d, where the multi-slit structure factor

is a constant of S(q = irn/d)multi slit = 4. Therefore, there is no interference in 0, and

we are not table to extract the value of it from the time-of-flight interference images,

as the final interference pattern is just the sum of the individual patterns.

Another easier way to see the result without explicit calculation is that, particles

with different momentum simply do not interfere. This is simple and straightforward,

since we are measuring the momentum-distribution in the time-of-flight images.

To take the point one step further, we claim that all the onsite coupling and spin-

orbit coupling from the left wells do not interfere with couplings from the right wells.

This conclusion could be made by noticing that the same Raman coupling shifts the
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left-well state and right-well state by the same amount in momentum, and therefore

they still do not interference, or by carefully checking the relevant phases. As a result,

the cases that we've discussed in this section have covered all the scenarios that we'll

see in our experiment.

4.5.4 Experimental observation of resonant spin-orbit cou-

pling

In this section, we present the experimental data on detecting the spin-orbit coupling

signal across the resonance. The experimental results presented here will be focused

on a sample with 100 percent population loaded into the A-state.

Figure 4-25: A typical time-of-flight image in the spin-orbit coupling experiment, and
the notation used in our data analysis. The relevant peaks are explained in the text.

First of all, a typical time-of-flight image in this configuration is shown in Fig. 4-25.

The time-of-flight pattern for the A-state with q = 0 shows up in the middle. After the

Raman coupling, there is a +k component separated from the main component, and it

has contributions from both on-site coupling and spin-orbit coupling. Similarly, there

is a -k component which corresponds to the counter-rotating terms in the Raman

process, and it is usually weaker than the +k component. In the following discussion,

we are mainly looking at the +k component.
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Figure 4-26: The experimental detection of spin-orbit coupling near resonance. The
top plot shows the difference between the left and right peaks, where a clear dispersive
signal was observed. The dashed line is the zero crossing to guide the reader's eyes.
The bottom plot shows the total of the left and right peaks where a bump showed up
around 43 kHz, which could be explained by the enhanced spin-orbit coupling near
the resonance. The dashed curve is a 1/A2 fit from the tail for the on-site coupling.

Both +k and -k components show q = r time-of-flight pattern in Fig. 4-25. This

is the result of interference from the alternating phase in the final state imprinted by

the propagating Raman coupling. From the momentum picture, the initial state is

the A-state with q = 0. Since the Raman coupling in our experiment also provides a

momentum transfer along the superlattice, this results in the final state at q = r.

Since both on-site coupling and spin-orbit coupling have the final state at q = ir,

they will interfere in the time-of-flight depending on their relative phase. This relative

phase comes from the propagation of the Raman coupling, and will change only when

the spin-orbit coupling resonance is crossed. With careful count on the relative phase,

we expect to see a stronger left peak below the resonance, and a stronger right peak

above the resonance.

The experimental data are shown in Fig. 4-26, as the Raman detuning was scanned
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across the spin-orbit coupling resonance. As we expected, the difference between the

left and right population showed a clear dispersive signature, and it went back to zero

away from the resonance. In addition, there was a bump in the totoal population due

to the enhanced spin-orbit coupling near the resonance. The broadened width can be

explained by the inhomogeneity of the offset A across the atomic cloud.

4.5.5 Detection of the spin-orbit coupling in Bragg scattering

For a spin-orbit coupled condensate in the miscible state, different momentum compo-

nents of the same spin in the superposition interfere and result in density modulation,

or the stripe. In our experiment, even though the pseudospins are in fact in the same

atomic state, they are spatially separated in the double-wells, and form stripes along

the wells perpendicular to the lattice.

The density modulation comes from the interference between different momentum

components. Let's consider the general case with a superposition of two momentum

states shifted by momentum kL and energy w,

f () = (a + beikLx-iwt+i~O ei+t (4.58)

the atomic density is just the norm of the wavefunction,

n(x) = (a + beikLX-iwt+ito)(a + beikLx-iwtt+io )* (4.59)

= a2 + b 2 + 2ab cos(kLx - wt + 0) (4.60)

In our experiment, the interference between the main component Eq. 4.36 and the

spin-orbit coupling component Eq. 4.37 gives the stationary stripes with periodicity of

1064 nm, when 6 = A and therefore w = 0. It is stationary because the relative phase

does not change in time. The stripes are in phase within the double-well, as well as

between the neighboring double-wells, as the initial phase 0 is constant throughout

the cloud. Therefore, the stripe pattern is orthogonal to the superlattice as shown in

Fig. 4-27.
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Figure 4-27: The stationary stripes from the spin-orbit coupling, and the moving den-
sity modulations from the onsite coupling, and their corresponding structure factors.

Notice they have different Bragg planes, and therefore could be detected individually
by sending the probe beam from the corresponding Bragg angles. Higher-order Bragg

scatterings will vanish, because the sinusoidal density modulation has a single Fourier

component.

In contrast, the density modulation created by the onsite coupling, comes from the

interference between the main component Eq. 4.36 and the onsite coupling component

Eq. 4.39-4.40. These two momentum components have a frequency difference of 6,

and therefore cause the stripes to move with a speed of 6/kL ~ 0.1 m/s. The initial

phase of 0 is alternating due to the propagating phase of the Raman coupling. As a

result, the density modulation is at the 450 angle and moving perpendicularly to the

lattice, shown in Fig. 4-27 as well.

In fact, an easier way to figure out the stripe pattern is by noticing (again) that it

all comes from the momentum difference of the two components that are interfering.
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For the onsite coupling, these two are the Raman-coupled and the main component

from the same well, which differ by the momentum transfer of (kL, kL) in the Raman

process. Whereas for the spin-orbit coupling, these two are the Raman-coupled com-

ponent from left and the main component from right, or vice versa, and because the

two wells have ground states that are shifted in momentum by kL, the two components

that are interfering differ by momentum of (0, kL)- We reach the same conclusion on

the stripe patterns in a direct way.

Finally, let's discuss how to detect the density stripes. The time-of-flight detection

presented earlier measures the momentum distribution of a cloud, but it does not tell

the miscibility of the system. Directly sensitive to the density stripes, Bragg scattering

becomes the ideal way of probing the miscible state.

d=l06

Ak =2ksine

Figure 4-28: The Bragg scattering experiment for detecting the stripe phase. A spin-
orbit coupled condensate in the miscible state creates density stripes with periodicity
of 1064 nm. A near-resonant light of 589 nm is sent to the atomic cloud at the Bragg
angle, illustrated in the figure, for detecting the density stripes.

The constructive interference of the scattered photon follows the Bragg's law,

nA = 2d sin 0 (4.61)

where 0 is the Bragg angle illustrated in Fig. 4-28. The Bragg scattering experiment

can also be considered as a way to measure the structure factor of the atomic density,
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1st order 2nd order 3rd order
Bragg angle 0 16.07 33.610 56.130

Table 4.3: The Bragg angles for detecting the stripe phase using 589 nm probe beam.
Higher-order Bragg scatterings will vanish, because the sinusoidal density modulation
has a single Fourier component.

in which the Bragg photon only gets diffracted with a momentum kick Ak when the

structure factor of the atomic density S(Ak) is finite.

To generate a sufficient amount of coherently scattered photons, the near-resonant

589 nm light will be used. The Bragg angles of the lowest three order Bragg scattering

have been calculated in Tab. 4.3. However, the higher-order Bragg scatterings vanish

in our experiment, because the sinusoidal density modulation has a only single Fourier

component.

The moving stripes induced by the onsite coupling can also be detected via Bragg

scattering, with a different set of Bragg angles. Due to the motion of these stripes, the

scattered Bragg photons will be Doppler-shifted by frequency 6. This frequency shift

can be detected by beating the scattered beam with the probe beam via a heterodyne

detection.
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Chapter 5

Density Fluctuations in Quantum

Degenerate Fermi Gases

Atomic density fluctuation measurements have been carried out as a proof-of-principle

experiment in an ideal Fermi gas [40], and these developed techniques are then used

to probe many-body physics in strongly interacting Fermi gases [41, 42]. These works

have been summarized with details in earlier theses in this lab [7, 8, 43], and published

papers are attached in the appendix.
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Chapter 6

Outlook and Conclusion

This chapter will briefly discuss the extensions of the spin-orbit coupling experiment

and future experiment towards direct observation of the stripe phase, as well as other

promising directions with the new apparatus. It will also conclude the research work

that has been presented in this thesis.

6.1 Outlook

In this section, we'll discuss future directions of this experiment, including extensions

of the work carried out in this thesis, as well as other interesting and promising topics

that can be studied with this system.

Spin-orbit coupling from the B-state

As we have experimentally observed the resonant spin-orbit coupling signal from the

A-state, the next step is to detect the reverse process of resonant spin-orbit coupling

from the B-state. Due to the recoils along the transverse direction, the two resonances

will be offset by 2EL.

The fact that A-state and B-state have the ground state with different momentum

leads to a favorable situation for our experimental detection: they are orthogonal and

do not interfere in the time-of-flight measurement. This means, even though spin up

and spin down are in fact in the same atomic hyperfine state in our scheme, we are able
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to independently read them out in a single shot. Having detected the resonant spin-

orbit coupling from the B-state would complete the study of single particle physics

in the spin-orbit coupling Hamiltonian in this system.

Direct detection of the stripe phase via Bragg scattering

From single particle physics to an interacting system, it is very interesting to probe

the stripe phase and study the phase transition from the stripe phase into a separated

phase. The stripe phase, equivalent of the supersolid phase in condensed matter, has

not been directly observed yet in experiment and is of great interest.

The spacing of the stripes in our experiment is on the order of optical wavelength,

therefore it is very challenging to resolve them in-situ. Alternatively, Bragg scattering

is an ideal tool to directly probe the spatial ordering in the atomic density. Detailed

discussions about using Bragg scattering to detect the stripe phase can be found in

section 4.5.5.

Spin-dependent models in quantum magnetism

This pseudo-spin system in optical superlattices is also suitable to simulate quantum

magnetism and study the magnetic phase transition. Because of different barriers, the

resonant tunneling is spin-dependent, tT =A t , and due to the spatial separation of the

pseudo-spins, UT < UTT, U4t. This would allow us to simulate spin-dependent models

without using spin-dependent lattices of near-resonant light, and does not require a

Feshbach resonance since the model parameters can be controlled experimentally by

tuning the superlattice.

Spin-orbit couplings and gauge fields with fermions

As we have seen, laser-assisted coupling in a one-dimensional superlattice would allow

us to simulate a spin-orbit coupled condensate, and laser-assisted tunneling in a tilted

lattice allows us to simulate a condensate under a strong synthetic magnetic field [26].

These techniques can be readily transferred into a fermionic system, such as 6 Li in our

experiment. Although specific topics still need to be identified, the emergent Fermi
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surface and additional spin degree of freedom in the hyperfine states with Feshbach

resonances almost certainly guarantee us new physics waiting to be explored.

6.2 Conclusion

Quantum simulation of condensed matter systems using ultracold atomic gases re-

mains one of the most exciting avenues of atomic physics. Towards this goal, a next-

generation general-purpose cold atom machine was built and tested to meet the new

level of complexity and reliability in optical lattice experiments. A new scheme with

long sample lifetime and robust stripe phase to simulate spin-orbit coupling Hamil-

tonian has been implemented using pseudo-spins in an optical superlattice. These

developed platforms and techniques could become relevant in simulating exotic quan-

tum states in topological insulators and topological superfluids in the near future.

I hope this work would allow younger generations in this lab to explore interesting

quantum physics towards topological states of matter.
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Appendix A

Suppression of Density

Fluctuations in a Quantum

Degenerate Fermi Gas

This appendix contains a reprint of Ref. [40]: Christian Sanner, Edward J. Su, Aviv

Keshet, Ralf Gommers, Yong-il Shin, Wujie Huang, and Wolfgang Ketterle, Suppres-

sion of Density Fluctuations in a Quantum Degenerate Fermi Gas, Phys. Rev. Lett.

105, 040402 (2010).
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We study density profiles of an ideal Fermi gas and observe Pauli suppression of density fluctuations
(atom shot noise) for cold clouds deep in the quantum degenerate regime. Strong suppression is observed
for probe volumes containing more than 10000 atoms. Measuring the level of suppression provides
sensitive thermometry at low temperatures. After this method of sensitive noise measurements has been
validated with an ideal Fermi gas, it can now be
correlated many-body systems.

DOI: 10.1 103/PhysRevLett. 105.040402

Systems of fermions obey the Pauli exclusion principle.
Processes that would require two fermions to occupy the
same quantum state are suppressed. In recent years, sev-
eral classic experiments have directly observed manifesta-
tions of Pauli suppression in Fermi gases. Antibunching
and the suppression of noise correlations are a direct con-
sequence of the forbidden double occupancy of a quan-
tum state. Such experiments were carried out for elec-
trons [1-3], neutral atoms [4,5], and neutrons [6]. In
principle, such experiments can be done with fermions
at any temperature, but in practice low temperatures in-
crease the signal. A second class of (two-body) Pauli
suppression effects, the suppression of collisions, requires
a temperature low enough such that the de Broglie wave-
length of the fermions becomes larger than the range of the
interatomic potential and p-wave collisions freeze-out.
Experiments observed the suppression of elastic collisions
[7] and of clock shifts in radio frequency spectroscopy
[8,9].

Here we report on the observation of Pauli suppression
of density fluctuations. This is, like the suppression of
collisions between different kinds of fermions [10], a
many-body phenomenon which occurs only at even lower
temperatures in the quantum degenerate regime, where the
Fermi gas is cooled below the Fermi temperature and the
low lying quantum states are occupied with probabilities
close to 1. In contrast, an ideal Bose gas close to quantum
degeneracy shows enhanced fluctuations [11].

The development of a technique to sensitively measure
density fluctuations was motivated by the connection be-
tween density fluctuations and compressibility through the
fluctuation-dissipation theorem. In this Letter, we validate
our technique for determining the compressibility by ap-
plying it to the ideal Fermi gas. In future work, it could be
extended to interesting many-body phases in optical latti-
ces which are distinguished by their incompressibility [12].
These include the band insulator, Mott insulator, and also
the antiferromagnet for which spin fluctuations, i.e., fluc-
tuations of the difference in density between the two spin
states are suppressed.

applied to characterize phase transitions in strongly

PACS numbers: 03.75.Ss, 05.30.Fk, 67.85.Lm

Until now, sub-Poissonian number fluctuations of ultra-
cold atoms have been observed only for small clouds of
bosons with typically a few hundred atoms [13-16] and
directly [17,18] or indirectly [19] for the bosonic Mott
insulator in optical lattices. For fermions in optical lattices,
the crossover to an incompressible Mott insulator phase
was inferred from the fraction of double occupations [20]
or the cloud size [21]. Here we report the observation of
density fluctuations in a large cloud of fermions, showing
sub-Poissonian statistics for atom numbers in excess of
10 000 per probe volume.

The basic concept of the experiment is to repeatedly
produce cold gas clouds and then count the number of
atoms in a small probe volume within the extended cloud.
Many iterations allow us to determine the average atom
number N in the probe volume and its variance (AN) 2. For
independent particles, one expects Poisson statistics, i.e.,
(AN) 2/(N) = 1. This is directly obtained from the
fluctuation-dissipation theorem (AN) 2 /(N) = nkBTKT,
where n is the density of the gas, and KT the isothermal
compressibility. For an ideal classical gas KT = 1/(nkBT),

Pt
Ballistic expansion

pt

-4

2PF

x

FIG. 1. Phase space diagram of ballistic expansion of a har-
monically trapped Fermi gas. Ballistic expansion conserves
phase space density and shears the initially occupied spherical
area into an ellipse. In the center of the cloud, the local Fermi
momentum and the sharpness of the Fermi distribution are scaled
by the same factor, keeping the ratio of local temperature to
Fermi energy constant. The same is true for all points in the
expanded cloud relative to their corresponding unscaled in-trap
points.
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and one retrieves Poissonian statistics. For an ideal Fermi
gas close to zero temperature with Fermi energy EF, KT =
3 /( 2 nEF), and the variance (AN) 2 is suppressed below
Poissonian fluctuations by the Pauli suppression factor
3kBT/(2EF). All number fluctuations are thermal, as in-
dicated by the proportionality of (AN) 2 to the temperature
in the fluctuation-dissipation theorem. Only for the ideal
classical gas, where the compressibility diverges as 1/T,
one obtains Poissonian fluctuations even at zero
temperature.

The counting of atoms in a probe volume can be done
with trapped atoms, or after ballistic expansion. Ballistic
expansion maintains the phase space density and therefore
the occupation statistics. Consequently, density fluctua-
tions are exactly rescaled in space by the ballistic expan-
sion factors as shown in Fig. 1 [22,23]. Note that this
rescaling is a unique property of the harmonic oscillator
potential, so future work on density fluctuations in optical
lattices must employ in-trap imaging. For the present work,
we chose ballistic expansion. This choice increases the
number of fully resolved bins due to optical resolution
and depth of field, it allows adjusting the optimum optical
density by choosing an appropriate expansion time, and it
avoids image artifacts at high magnification.

We first present our main results, and then discuss
important aspects of sample preparation, calibration of
absorption cross section, data analysis and corrections for
photon shot noise. Figure 2(a) shows an absorption image
of an expanding cloud of fermionic atoms. The probe
volume, in which the number of atoms is counted, is

(a) Atom 54000

count No

(b) (c)

N

(AN)2

Hot Cold

FIG. 2 (color online). Comparison of density images to vari-
ance images. For Poissonian fluctuations, the two images at a
given temperature should be identical. The variance images were
obtained by determining the local density fluctuations from a set
of 85 images taken under identical conditions. (a) Two dimen-
sional image of the optical density of an ideal Fermi gas after
7 ms of ballistic expansion. The noise data were taken by
limiting the field of view to the dashed region of interest,
allowing for faster image acquisition. (b) For the heated sample,
variance and density pictures are almost identical, implying only
modest deviation from Poissonian statistics. (c) Fermi suppres-
sion of density fluctuations deep in the quantum degenerate
regime manifests itself through the difference between density
and variance picture. Especially in the center of the cloud, there
is a large suppression of density fluctuations. The variance
images were smoothed over 6 X 6 bins. The width of images
(b) and (c) is 2 mm.

chosen to be 26 /m in the transverse directions, and ex-
tends through the entire cloud in the direction of the line of
sight. The large transverse size avoids averaging of fluctu-
ations due to finite optical resolution. From 85 such im-
ages, after careful normalization [24], the variance in the
measured atom number is determined as a function of
position. After subtracting the photon shot noise contribu-
tion, a 2D image of the atom number variance (AN) 2 is
obtained. For a Poissonian sample (with no suppression of
fluctuations), this image would be identical to an absorp-
tion image showing the number of atoms per probe vol-
ume. This is close to the situation for the hottest cloud (the
temperature was limited by the trap depth), whereas the
colder clouds show a distinct suppression of the atom
number variance, especially in the center of the cloud
where the local T/TF is smallest.

In Fig. 3, profiles of the variance are compared to
theoretical predictions [25,26]. Density fluctuations at
wave vector q are proportional to the structure factor
S(q, T). Since our probe volume (transverse size 26 pm)
is much larger than the inverse Fermi wave vector of the
expanded cloud (I/qF = 1.1 m), S(q = 0, T) has been
integrated along the line of sight for comparison with the
experimental profiles. Within the local density approxima-
tion, S(q = 0, T) at a given position in the trap is the
binomial variance nk(1 - nk) integrated over all momenta,
where the occupation probability nk(k, /t, T) is obtained
from the Fermi-Dirac distribution with a local chemical
potential y determined by the shape of the trap. Figure 4
shows the dependence of the atom number variance on
atom number for the hot and cold clouds. A statistical
analysis of the data used in the figure is in [24].

The experiments were carried out with typically 2.5 X
106 6Li atoms per spin state confined in a round crossed
dipole trap with radial and axial trap frequencies wr =
27r X 160 s- 1 and wZ = 21T X 230 s-1 corresponding to
an in-trap Fermi energy of EF kB X 2.15 ApK. The sam-

(AN) 2/1 000
5 (a) (b) M

0
0 100

Position (bins)

FIG. 3. Comparison of observed variances (black dots) with a
theoretical model (black line) and the observed atom number
(gray), at three different temperatures (a, b, and c), showing 50,
40, and 15% suppression. Noise thermometry is implemented by
fitting the observed fluctuations, resulting in temperatures T/TF
of 0.23 4 .01, 0.33 .02, and 0.60 .02. This is in good
agreement with temperatures 0.21 .01, 0.31 .01, and 0.6
.1 obtained by fitting the shape of the expanded cloud [32]. The
quoted uncertainties correspond to 1 standard deviation and are
purely statistical.
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FIG. 4. Atom number variance vs average atom number. For
each spatial position, the average atom number per bin and its
variance were determined using 85 images. The filled and open
circles in the figure are averages of different spatial bin positions
with similar average atom number. For a hot cloud at T/TF =
0.6 (filled circles), the atom number variance is equal to the
average atom number (dotted line, full Poissonian noise) in the
spatial wings where the atom number is low. The deviation from
the linear slope for a cold cloud at T/TF = 0.21 (open circles) is
due to Pauli suppression of density fluctuations. There is also
some suppression at the center of the hot cloud, where the atom
number is high. The solid and dashed lines are quadratic fits for
the hot and cold clouds to guide the eye.

ple was prepared by laser cooling followed by sympathetic
cooling with 23Na in a magnetic trap. 6Li atoms in the
highest hyperfine state were transferred into the optical
trap, and an equal mixture of atoms in the lowest two hy-
perfine states was produced. The sample was then evapo-
ratively cooled by lowering the optical trapping potential at
a magnetic bias field B = 320 5 G where a scattering
length of -300 Bohr radii ensured efficient evaporation.
Finally, the magnetic field was increased to B = 520 5 G,
near the zero crossing of the scattering length. Absorption
images were taken after 7 ms of ballistic expansion.

We were careful to prepare all samples with similar
cloud sizes and central optical densities to ensure that
they were imaged with the same effective cross section
and resolution. Hotter clouds were prepared by heating the
colder cloud using parametric modulation of the trapping
potential. For the hottest cloud this was done near 520 G to
avoid excessive evaporation losses.

Atomic shot noise dominates over photon shot noise
only if each atom absorbs several photons. As a result,
the absorption images were taken using the cycling tran-
sition to the lowest lying branch of the 2P3/2 manifold.

However, the number of absorbed photons that could be
tolerated was severely limited by the acceleration of the
atoms by the photon recoil, which Doppler shifts the atoms
out of resonance. Consequently, the effective absorption
cross section depends on the probe laser intensity and
duration. To remove the need for nonlinear normalization
procedures, we chose a probe laser intensity corresponding
to an average of only 6 absorbed photons per atom during a
4 ps exposure. At this intensity, about 12% of the 6Li
saturation intensity, the measured optical density was
20% lower than its low-intensity value [24]. For each

bin, the atom number variance (AN) 2 is obtained by sub-
tracting the known photon shot noise from the variance in
the optical density (AOD) 2 [24]:

-(AN) 2 = (AOD) 2 - - I
A 2 (N1) (N2 )

(1)

Here, (N 1)((N2)) are the average photon numbers per bin of
area A in the image with (without) atoms and a- is the
absorption cross section.

The absorption cross section is a crucial quantity in the
conversion factor between the optical density and the
number of detected atoms. For the cycling transition, the
resonant absorption cross section is 2.14 X 10-13 M 2.

Applying the measured 20% reduction mentioned above
leads to a value of 1.71 X 10-13 M2 . This is an upper limit
to the cross section due to imperfections in polarization and
residual line broadening. An independent estimate of the
effective cross section of 1.48 X 10-13 m 2 was obtained by
comparing the integrated optical density to the number of
fermions necessary to fill up the trap to the chemical
potential. The value of the chemical potential was obtained
from fits to the ballistic expansion pictures that allowed
independent determination of the absolute temperature and
the fugacity of the gas. We could not precisely assess the
accuracy of this value of the cross section, since we did not
fully characterize the effect of a weak residual magnetic
field curvature on trapping and on the ballistic expansion.
The most accurate value for the effective cross section was
determined from the observed atom shot noise itself. The
atom shot noise in the wings of the hottest cloud is
Poissonian, and this condition determines the absorption
cross section. Requiring that the slope of variance of the
atom number (AN) 2 vs atom number N is unity (see Fig. 4)
results in a value of (1.50 0.12) X 10-13 M2 for the
effective cross section in good agreement with the two
above estimates.

The spatial volume for the atom counting needs to be
larger than the optical resolution. For smaller bin sizes (i.e.,
small counting volumes), the noise is reduced since the
finite spatial resolution and depth of field blur the absorp-
tion signal. In our setup, the smallest bin size without
blurring was determined by the depth of field, since the
size of the expanded cloud was larger than the depth of
field associated with the diffraction limit of our optical
system. We determined the effective optical resolution by
binning the absorption data over more and more pixels of
the CCD camera, and determining the normalized central
variance (AN) 2 /N vs bin size [24]. The normalized vari-
ance increased and saturated for bin sizes larger than
26 Am (in the object plane), and this bin size was used
in the data analysis. We observe the same suppression
ratios for bin sizes as large as 40 Am, corresponding to
more than 10000 atoms per bin.

For a cold fermion cloud, the zero temperature structure
factor S(q) becomes unity for q > 2qF. This reflects the
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fact that momentum transfer above 2qF to any particle will
not be Pauli suppressed by occupation of the final state. In
principle, this can be observed by using bin sizes smaller
than the Fermi wavelength, or by Fourier transforming the
spatial noise images. For large values of q, Pauli suppres-
sion of density fluctuations should disappear, and the noise
should be Poissonian. However, our imaging system loses
its contrast before q - 2 qF [241.

Observation of density fluctuations, through the
fluctuation-dissipation theorem, determines the product
of temperature and compressibility. It provides an absolute
thermometer, as demonstrated in Fig. 3 if the compressi-
bility is known or is experimentally determined from the
shape of the density profile of the trapped cloud [17,27].
Because variance is proportional to temperature for T <<
TF, noise thermometry maintains its sensitivity at very low
temperature, in contrast to the standard technique of fitting
spatial profiles.

Density fluctuations lead to Rayleigh scattering of light.
The differential cross section for scattering light of wave
vector k by an angle 0 is proportional to the structure factor
S(q), where q = 2k sin(O/2) [26]. In this work, we have
directly observed the Pauli suppression of density fluctua-
tions and therefore S(q) < 1, implying suppression of light
scattering at small angles (corresponding to values of q
inversely proportional to our bin size). How are the ab-
sorption images affected by this suppression? Since the
photon recoil was larger than the Fermi momentum of the
expanded cloud, large-angle light scattering is not sup-
pressed. For the parameters of our experiment, we estimate
that the absorption cross section at the center of a T = 0
Fermi cloud is reduced by only 0.3% due to Pauli blocking
[28]. Although we have not directly observed Pauli sup-
pression of light scattering, which has been discussed for
over 20 years [28-30], by observing reduced density fluc-
tuations we have seen the underlying mechanism for sup-
pression of light scattering.

In conclusion, we have established a sensitive technique
for determining atomic shot noise and observed the sup-
pression of density fluctuations in a quantum degenerate
ideal Fermi gas. This technique is promising for thermom-
etry of strongly correlated many-body systems and for
observing phase-transitions or cross-overs to incompress-
ible quantum phases.

We acknowledge Joseph Thywissen and Markus Greiner
for useful discussions. This work was supported by NSF
and the Office of Naval Research, AFOSR (through the
MURI program), and under Army Research Office grant
no. W91 1NF-07-1-0493 with funds from the DARPA
Optical Lattice Emulator program.
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Suppression of Density Fluctuations in a Quantum Degenerate Fermi Gas:
Supplementary Information

EXPERIMENTAL DETAILS
1.4

To accurately measure the atom number variance it is
necessary to eliminate patterns in the absorption images
whose fluctuations increase the observed noise. Weak
reflections of the probe beam from the walls of the glass
cell and from optical elements in the imaging system can
interfere with the probe beam itself, leading to spatial
fluctuations in its intensity profile. To reduce interference
fringes and ensure uniform illumination, the central area
of the probe beam is imaged onto the sample through
a 2 mm aperture. Even though the residual fringes are
small, there are two significant effects of inhomogeneous
illumination which must be addressed.

First, if the time elapsed between the image with atoms
and the reference image without atoms is too large, me-
chanical vibrations of the optics will cause the intensity
profile of the probe to change between the two images,
creating artifacts in the absorption image. To reduce
this effect, we operate our CCD in fast kinetics mode,
with a time interval - 500ps between exposures. Since
there is no longer enough time for the atoms to exit the
frame between images, before taking the reference image
we optically pump the atoms from the |1) state to the 16)
state, and from the 12) state to the 15) state (11) refers
to the lowest hyperfine state, etc.), by exciting them to
the mj = 1/2 excited state manifold. At the magnetic
fields used in the experiment, these levels are separated
in frequency from the 12) state used for imaging by ~ 2
GHz and contribute negligibly to resonant imaging.

Second, if the average probe intensity is too high, the
atoms subjected to higher intensities will have a lower
effective cross-section, and so any spatial fluctuations in
the beam intensity will be 'imprinted' onto the absorp-
tion images. As a result, in our experiment we use a
probe beam with maximum intensity of 0.12 of the satu-
ration intensity Isat=2.5 4 mW/cm2 , where these effects
are relatively small. The variation of optical density with
intensity is shown in Fig. 1.

Additionally, the exposure time must be kept very
short to prevent the atoms from moving between pix-
els during the exposure. The expected motion of atoms
during the 4 ps exposure is on the order of 1 ftm, much
smaller than the effective pixel size.

NOISE DETERMINATION

In this experiment the local atom number variance is
determined by comparing the measured number of atoms
in the same bin across a series of images. To do this, we
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FIG. 1: Determination of the absorption cross section. The
observed optical density decreases with increasing probe light
intensity. The line is a quadratic fit to the data. The re-
duction of the cross section is mainly due to the Doppler
effect caused by acceleration of the atoms by radiation pres-
sure; a smaller reduction results from the partial saturation of
the optical transition. At the probe light intensity chosen in
this study (shaded bar), the number of photons absorbed per
atoms is about 6. The decrease of the cross section is slightly
larger than that predicted by simple models.

must first eliminate the effect of fluctuations in the total
atom number between experimental cycles. Initially, we
select the 85 images used in the analysis from a larger
group of - 150 images, using an automated procedure to
choose the images whose total atom numbers are closest
to the center of the distribution. A very small number of
images (< 1%) are manually excluded because of obvious
artifacts in the frame due to dust particles or other large
perturbations. Then, we subtract a fitted profile from
each OD image before computing the variance. Initially
we subtracted a fitted 2D Thomas-Fermi profile, but we
replaced this with a Gaussian fit which had an insignif-
icant effect on the variances, while taking considerably
less computation time.

We then compute the variance in optical density at
each position. That variance has contributions from pho-
ton and atom shot noise, given by the following formula:

'2 2
(A(OD))= 1 + + (Natom)2~(OD) -(N 1 ) (N2 ) A (1)

This equation holds bin by bin: N1 is the average number
of photons measured in a given bin position for the im-
age with atoms, and N2 is the average number of photons
measured in that bin for the reference image. (ANatom)

2

is the variance in atom number for that bin, a is the
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FIG. 2: Atom number variance vs. atom number. (a) Data for all of the resolution elements is plotted. Red points are from the
hot cloud at T/TF = 0.6, blue points from the cold cloud at T/TF = 0.21. There is significant scatter in the variance data, and
there are many "cold" pixels which actually have higher variance than their corresponding "hot" pixel. (b) The red and blue
shaded regions indicate the expected 2a- scatter in sample variance that is expected due to atom and photon counting statistics.
The large circles are variance data averaged over pixels with similar atom number for hot (red) and cold (blue) cloud. The bars
show the measured 2o- scatter of the data points. The measured scatter agrees very well with the expected scatter, indicating
that the scatter of the data is fully accounted for by counting statistics. Negative values of the observed atom number variance
result from the subtraction of photon shot noise.
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FIG. 3: Determination of profiles of the atom number variance
for a cold cloud. For each bin, the total photon count is deter-
mined, and its contribution (red) to the total variance of the
optical density (blue) is subtracted. The obtained atom num-
ber variance (green) is compared to the average atom number
(black). The displayed trace reveals 50% noise suppression in
the center of the cloud. The apparently high suppression of
atom variation in the wings is a statistical fluctuation. Fig. 2
shows that the suppression is monotonic in atomic density.

absorption cross section, and A is the effective bin area.
The atom number variance is isolated by calculating the
first two photon shot noise terms and subtracting them.
The analysis used in the paper also subtracts contribu-
tions from detector read noise and photon shot noise in
the dark field, but these are fairly small contributions.

The determination of N1 and N2 depends on the CCD
gain, which is measured to be 1.18 (counts/electron) from

~ 240 pairs of images without atoms, employing the as-
sumption that the detector statistics are Poissonian. Af-
ter the subtraction of photon shot noise (and technical
noise), the remaining variance in optical density is due
to the atom number variance. Fig. 3 shows the contribu-
tions of photon and atom number variance to the overall
noise in optical density.

The large scatter of the measured atom number vari-
ance, as depicted in Fig. 2, is not primarily due to tech-
nical noise, but instead a statistical property of the sam-
pling distribution of the variance. The shaded areas are
derived from theoretical values for the variance of the
sample variance. This is given by

(M - 1)2 (M - 1)(m - 3)Var(Var(N)) = -;3-P4 - - 3 A2 (2)

where m is the number of observations in each sample.
The moments P2 and p4 are the central moments of the
population distribution. For a Poisson distribution, A2 =

(N) 3 and p4 = (N)(1 + 3(N)), and for m, (N) > 1,
this expression reduces to 2(N)2 /m. Fig. 2b shows the
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3

comparison between the expected and measured variance
in the sample variance.

IMAGING SYSTEM CHARACTERIZATION

The blurring of adjacent pixels due to finite optical
resolution effectively decreases the measured atom num-
ber variance. This effect is avoided by binning the data
using a sufficiently large bin size (Fig. 5). In our ex-
periment, this bin size is determined by the extension of
the cloud along the optical axis, which is much larger
than the depth of focus of the diffraction limit of the lens
system.

Atom noise allows us to characterize the transfer func-
tion of our imaging system. Fig. 4 shows the average
power spectrum (modulus squared of the spatial Fourier

transform) of the optical density images. Because the
Fourier transform of uncorrelated fluctuations is flat, the
deviation from flatness of the density noise corresponds
to blurring induced by the lens, barring the central peak
corresponding to the shape of the cloud. For wavevectors
q much larger than the resolution limit of the detection
scheme, the atom number fluctuations are no longer im-
aged, and the power spectrum is the photon shot noise.
For our experiment this happens for q < qF- Compari-
son of the power spectra for the cold and the hot cloud
shows, at small values of q, a 50% suppression, consis-
tent with the results obtained using spatial bins. If the
imaging system still had contrast at q > 2

qF, we would
expect the ratio of the power spectra to approach unity,
since momentum transfer q > 2 qF to a Fermi cloud has
negligible Pauli suppression.
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FIG. 4: (a) Radially averaged power spectra of optical density
images for hot (solid line) and cold (dashed line) samples (b)
Power spectrum of cold sample (arbitrary units) (c) Power
spectrum of hot sample (arbitrary units). A constant offset is
added to the power spectrum for the hot sample to equalize
the levels of photon shot noise.
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FIG. 5: Observed atom number variance versus bin size for
heated (dashed line) and cold (solid line) samples, normalized
to 1 for Poissonian statistics. A plateau is reached when the
blurring of the bins due to finite optical resolution is negligi-
ble.
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Appendix B

Speckle Imaging of Spin

Fluctuations in a Strongly

Interacting Fermi Gas

This appendix contains a reprint of Ref. [41]: Christian Sanner, Edward J. Su,

Aviv Keshet, Wujie Huang, Jonathon Gillen, Ralf Gommers, and Wolfgang Ketterle,

Speckle Imaging of Spin Fluctuations in a Strongly Interacting Fermi Gas, Phys. Rev.

Lett. 106, 01040202 (2011).
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Speckle Imaging of Spin Fluctuations in a Strongly Interacting Fermi Gas

Christian Sanner, Edward J. Su, Aviv Keshet, Wujie Huang, Jonathon Gillen, Ralf Gommers, and Wolfgang Ketterle
MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, and Department of Physics,
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Spin fluctuations and density fluctuations are studied for a two-component gas of strongly interacting
fermions along the Bose-Einstein condensate-BCS crossover. This is done by in situ imaging of dispersive
speckle patterns. Compressibility and magnetic susceptibility are determined from the measured fluctua-
tions. This new sensitive method easily resolves a tenfold suppression of spin fluctuations below shot
noise due to pairing, and can be applied to novel magnetic phases in optical lattices.

DOI: 10.1103/PhysRevLett.106.010402

One frontier in the field of ultracold atoms is the real-
ization of quantum systems with strong interactions and
strong correlations. Many properties of strongly correlated
systems cannot be deduced from mean density distribu-
tions. This has drawn interest toward novel ways of prob-
ing cold atoms, e.g., via rf spectroscopy [1,2], Bragg and
Raman scattering [3], interferometric methods [4,5], and
by recording density correlations [6-8]. Further insight
into quantum systems is obtained by looking not only at
expectation values, but also at fluctuations. Several recent
studies looked at density fluctuations, either of bosons
around the Mott insulator transition [9-11], or of a gas of
noninteracting fermions [12,13].

In this Letter, we extend the study of fluctuations of
ultracold gases in several ways. First, we introduce the
technique of speckle imaging as a simple and highly
sensitive method to characterize fluctuations. Second, we
apply it to a two-component Fermi gas across the Bose-
Einstein condensate (BEC)-BCS crossover. Third, we di-
rectly measure fluctuations in the magnetization, i.e., the
difference of the densities in the two different spin com-
ponents, bypassing the need to measure the individual
densities separately.

Our work is motivated by the prospect of realizing wide
classes of spin Hamiltonians using a two-component gas of
ultracold atoms in an optical lattice [14,15]. An important
thermodynamic quantity to characterize two-component
systems is the spin susceptibility, which provides a clear
signature of phase transitions or crossovers involving the
onset of pairing or magnetic order [16-19]. At a ferromag-
netic phase transition the susceptibility diverges, whereas
in a transition to a paired or antiferromagnetic phase the
susceptibility becomes exponentially small in the ratio of
the pair binding energy (or antiferromagnetic gap) to the
temperature. The fluctuation-dissipation theorem relates
response functions to fluctuations, consequently the spin
susceptibility can be determined by measuring the fluctua-
tions in the relative density of the two spin components.

In our experiment, we image the atom clouds using light
detuned from resonance so that each atom's real

PACS numbers: 05.30.Fk, 03.75.Ss, 67.85.Lm

polarizability, which contributes to the refractive index, is
much larger than its imaginary polarizability, which con-
tributes to absorption. Since the detunings for the two spin
states are different, spin fluctuations lead to fluctuations in
the local refractive index, resulting in phase shifts of the
imaging light that vary randomly in space. We measure
these phase shifts by imaging the resulting speckle
patterns.

These speckle patterns are created by propagation,
which converts the spatially varying phase shifts of the
imaging light into an intensity pattern on our detector
without the use of a phase plate. Spin and density fluctua-
tions occur on all spatial scales down to the interatomic
separation; the smallest observable fluctuations have a
wavelength equal to the imaging system's maximum reso-
lution. In our system that length has a Rayleigh range, and
hence a depth of field, smaller than the cloud size, so the
recorded image is necessarily modified by propagation
effects. Propagation mixes up amplitude and phase signals
[Fig. 1]. This can be easily seen in the case of a phase
grating, which creates an interference pattern further
downstream; after propagating for a distance equal to the
Rayleigh range of the grating spacing, the imprinted phase
is converted into an amplitude pattern. This feature of
speckle makes our imaging technique both simple and
robust. It is insensitive against defocusing, and allows us
to image fluctuations of the real part of the refractive index
(i.e., a phase signal) without a phase plate or other Fourier
optics.

Similar physics is responsible for laser speckle when a
rough surface scatters light with random phases [20], and
occurs when a Bose-Einstein condensate with phase fluc-
tuations develops density fluctuations during expansion
[21], or when a phase-contrast signal is turned into an
amplitude signal by deliberate defocusing [22].

The experiments were performed with typically 106 6Li
atoms in each of the two lowest hyperfine states |1) and I2)
confined in an optical dipole trap oriented at 450 to the
imaging axis with radial and axial trap frequencies cr =
27r X 108.9(6) s- and w' = 21r X 7.75(3) s-. For the

0 2011 The American Physical Society0031-9007/ 11/106(1)/010402(4) o14N-i
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FIG. 1. Simulation of propagation effects after light has passed
through a Poissonian phase noise object. Shown are the variance
measured in the amplitude or in-phase quadrature (black line)
and the out-of-phase quadrature (gray line) as a function of
defocus distance, for an imaging system with a numerical
aperture of 0.14. Within a distance less than 5% of our cloud
size, noise becomes equally distributed between the two quad-
ratures and the variances in transmission and phase-contrast
images become the same. (Top inset) For small phase fluctua-
tions, an in-focus phase noise object gives no amplitude contrast,
but when it is out of focus it does. (Bottom inset) Sample
intensity patterns for a defocused phase object.

samples imaged at 527 G, the sample preparation was
similar to that described in [13], with a temperature of
0.14(1)TF. The samples imaged at other magnetic fields
were prepared in a similar fashion, except that evaporation
was performed at 1000 G to a final temperature of T =
0. 1 3 (1)TF before ramping the magnetic field over 1.5 s to
its final value. The temperature at 1000 G was determined
by fitting a noninteracting Thomas-Fermi distribution in
time of flight. The temperatures at other points in the
crossover were related to that value assuming an isentropic
ramp, using calculations presented in [23]. Using this
method we obtain temperatures of 0.13(1)TF at 915 G,
0.19(1)TF at 830 G, and 0.1 9 (3 )TF at 790 G where addi-
tional evaporation was performed to achieve a central
optical density similar to that at the other magnetic fields.
The extent of the cloud along the imaging direction was
135 Am, much larger than the Rayleigh range of 8 Arm for
our imaging system with a NA of 0.14.

The superfluid to normal phase boundary was deter-
mined by measuring condensate fraction [Fig. 2] using
the standard magnetic field sweep technique [24,25]. For
this, the magnetic field was rapidly switched to 570 G to
transfer atom pairs to more deeply bound pairs (molecules)
which survive ballistic expansion. For resonant imaging of
the molecules, the field was ramped back to 790 G over
10 ins. The condensate fraction was determined by fitting
the one-dimensional density profiles with a bimodal
distribution.
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FIG. 2. Measured condensate fraction as a function of dimen-
sionless interaction strength 1/(kFa). Insets show typical images
from which the condensate fraction was extracted by fitting a
bimodal distribution. The dashed line is a sigmoidal fit to guide
the eye.

As previously described, propagation converts spatial
fluctuations in the refractive index into amplitude fluctua-
tions on the detector. For different choices of the probe
light frequency, the two atomic spin states will have differ-
ent real polarizabilities and the local refractive index will
be a different linear combination of the (line-of-sight inte-
grated) column densities n1 and n2. To measure the sus-
ceptibility we choose a probe light frequency exactly
between the resonances for states 1l) and 12), so that the
real polarizabilities are opposite and the refractive index is
proportional to the magnetization (n, - n2). The intensity
fluctuations on the detector after propagation are conse-
quently proportional to the fluctuations in magnetization.
Since a refractive index proportional to (n, + n 2) occurs
only in the limit of infinite detuning, we measure the
fluctuations in the total density by exploiting the fact that
the fluctuations in total density can be inferred from the
fluctuations in two different linear combinations of n, and
n2 . For convenience, we obtain the second linear combi-
nation using a detuning that has the same value, but oppo-
site sign for state 12), and therefore three times the value for
state 1 1). With this detuning, we record images of the
fluctuations in (n1 /3 + n 2).

In principle, this information can be obtained by taking
separate absorption images on resonance for states |1) and
12). However, the images would have to be taken on a time
scale much faster than that of atomic motion and there
would be increased technical noise from the subtraction of
large numbers. The use of dispersive imaging has the
additional advantage over absorption in that the number
of scattered photons in the forward direction is enhanced
by superradiance. As a result, for the same amount of
heating, a larger number of signal photons can be collected
[26]. This is crucial for measuring atomic noise, which
requires the collection of several signal photons per atom.
The choice of detuning between the transitions of the two
states has the important feature that the index of refraction

for an equal mixture fluctuates around zero, avoiding any
lensing and other distortions of the probe beam. This is not
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the case for other choices of detuning, and indeed, we
observe some excess noise in those images (see below).
At the detunings chosen, 10% residual attenuation is ob-
served, some due to off-resonant absorption, some due to
dispersive scattering of light out of the imaging system by
small scale density fluctuations. The contribution to the
variance of the absorption signal relative to the dispersive
signal scales as (2F)2/8 2 ~ 0.006 and can be neglected in
the interpretation of the data.

The noise analysis procedure was nearly identical to that
performed in [13]. A high-pass filter with a cutoff wave-
length of 13 tm was applied to each image of the cloud to
minimize the effect of fluctuations in total atom number.
Then, for each pixel position, the variance of the optical
densities at that position in the different images was com-
puted. After the subtraction of the contribution of photon
shot noise, the resulting variance image reflects the noise
contribution from the atoms.

The goal of our noise measurements is to determine at
various interaction strengths the normalized susceptibility
A' = X/'o and compressibility F = K/KO, where Xo =
3n/2EF and Ko = 3/2nEF are the susceptibility and com-
pressibility of a zero-temperature noninteracting Fermi gas
with the same total density n and Fermi energy EF. Before
studying spin fluctuations through the BEC-BCS crossover,
we therefore calibrate our measurement by measuring the
spin fluctuations in a noninteracting mixture, realized at
527 G where the scattering length between the two states
vanishes. Figure 3 shows raw profiles of the variances A2
and A2 measured at the two detunings. These fluctuations
in the speckle pattern are proportional to number fluctua-
tions in the specified probe volume V: A2 = [cA(NI -
N2)] 2 and A2 = [c'A(N,/3 + N2)]2 . In these relations c
and c' are factors which have to be calibrated. Without
interactions, N, and N2 are uncorrelated, and one predicts
[A(NI - N2 )]2 /[A(N 1/3 + N2 )] 2 = 2/[1 + (1/3)2] = 1.8.

8 1e , 1/(kFa)

6 ,

4.

2

5 10 15 20 25 30
Pixels (1 pixel = 2.6 pm)
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0.6
0.4
0.2
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05 10 15 20 25 30

Pixels (1 pixel = 2.6 m)

FIG. 3 (color online). (Top panel) Example speckle noise
image, with white box indicating analysis region. (Bottom
panels) Noise data for noninteracting (left panel) and resonantly
interacting (right panel) cold clouds, showing A2 (black dots)
and A2 (gray dots). Solid lines are Gaussian fits to the data, and
dotted lines illustrate the expected full Poissonian noise for the
corresponding quantities based on density determined from off-
resonant absorption.

The observed ratio of A 2 /A 2 = 1.56(14) reflects excess
noise contributing to A2 due to residual systematic disper-
sive effects and is accounted for by setting c'/c =

V1.8/1.56. For high temperatures, the atomic noise of the
noninteracting gas approaches shot noise; for lower tem-
peratures we observe a reduction in noise due to Pauli
blocking as in our previous work [13]. With our new
method, we easily discern spin fluctuations with a variance
of less than 10% of atom shot noise.

The fluctuation-dissipation theorem connects the varian-
ces [A(N - N2)] 2 and [A(NI + N2)] 2 to the susceptibility
f and the compressibility R via [A(NI - N2)]2 =
3N/2(T/TF)fj and [A(NI + N2 )] 2 = 3N/2(T/TF)k with
N = N, + N2 and T/TF being the temperature measured
in units of the Fermi temperature TF. Recomposing the
variances from the two experimentally accessible
linear combinations these relations become A2 INc 2 

=

3/2(T/TF)f( and 9/4A2 INc/2 - 1/4A2 INc2 
=

3/2(T/TF)k. The constants c and c' are determined using
the noise measurements at 527 G for a noninteracting
Fermi gas for which f = k = 1 + O((T/TF)2). This
analysis ignores line-of-sight integration corrections.

Figure 4 shows the spin susceptibility, the compressibil-
ity, and the ratio between the two quantities for the inter-
acting mixtures as the interaction strength is varied through
the BEC-BCS crossover. The susceptibility and compressi-
bility reproduce the expected qualitative behavior: for the
sample at unitarity, where the transition temperature is
sufficiently high that a sizable portion of the sample is
superfluid, and for the sample on the BEC side, the spin
susceptibility is strongly suppressed relative to the com-
pressibility. This reflects the fact that the atoms form bound

l/kF a
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FIG. 4. (a) The ratio Y/K, (b) the normalized susceptibility
X/Xo, and (c) the normalized compressibility K/KO in the BEC-
BCS crossover. The variances derived from sequences of images
are converted into thermodynamic variables using the measured
temperatures and a calibration factor determined from the non-
interacting gas. The vertical line indicates the onset region of
superfluidity, as determined via condensate fraction measure-
ments. The curves show theoretical zero temperature estimates
based on 1st (dotted) and 2nd order (solid) perturbative formulas
obtained from Landau's Fermi-liquid theory integrated along the
line of sight, and results from a Monte Carlo calculation (dashed)
for the compressibility in a homogeneous system [32].
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molecules or generalized Cooper pairs; the spin suscepti-
bility should be exponentially small in the binding energy,
while the enhanced compressibility reflects the bosonic
character of the molecular condensate. At 915 G and
1000 G, where the sample is above the superfluid critical
temperature, the susceptibility is larger but still below its
value for the noninteracting gas, reflecting the persistence
of pair correlations even in the normal phase of the gas.

Above the Feshbach resonance, for attractive interac-
tions, we compare our results to first and second order
perturbation theory in the small parameter kFa. This
ignores the instability to the superfluid BCS state at ex-
ponentially small temperatures. The perturbation theory is
formulated for the Landau parameters for a Fermi liquid
[16,27]. The susceptibility and compressibility are given
by Xo/X = (1 + Fo)m/m*, K 0 /K = (1 + F)M/M*,
where m* = m(1 + F'13) is the effective mass, and F',
F" are the lth angular momentum symmetric and antisym-
metric Landau parameters, respectively. Although the ex-
perimental data are taken for relatively strong interactions
outside the range of validity for a perturbative description,
the predictions still capture the trends observed in the
normal phase above the Feshbach resonance. This shows
that more accurate measurements of the susceptibility, and
a careful study of its temperature dependence, are required
to reveal the presence of a possible pseudogap phase.

In our analysis we have neglected quantum fluctuations
which are present even at zero temperature [16,28]. They
are related to the large-q static structure factor S(q) mea-
sured in [29] and proportional to the surface of the probe
volume, scaling with N2/ 3 log(N). For fluctuations of the
total density, their relative contribution is roughly
N-1/ 3/(T/TF), and at most 40% for our experimental
parameters. Attractive interactions and pairing suppress
both the thermal and quantum spin fluctuations, but it is
not known at what temperature quantum fluctuations be-
come essential.

Spin susceptibilities can also be obtained from the equa-
tion of state which can be determined by analyzing the
average density profiles of imbalanced mixtures [30]. Our
method has the advantage of being applicable without
imbalance, and requires only local thermal equilibrium.
Moreover fluctuations can be compared with susceptibili-
ties determined from the equation of state to perform
absolute, model-independent thermometry for strongly in-
teracting systems [31].

In conclusion, we have demonstrated a new technique to
determine spin susceptibilities of ultracold atomic gases
using speckle imaging. We have validated and calibrated
this technique using an ideal Fermi gas and applied it to a
strongly interacting Fermi gas in the BEC-BCS crossover.
This technique is directly applicable to studying pairing
and magnetic ordering of two-component gases in optical
lattices.
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Correlations and Pair Formation in a Repulsively Interacting Fermi Gas
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A degenerate Fermi gas is rapidly quenched into the regime of strong effective repulsion near a
Feshbach resonance. The spin fluctuations are monitored using speckle imaging and, contrary to several
theoretical predictions, the samples remain in the paramagnetic phase for an arbitrarily large scattering
length. Over a wide range of interaction strengths a rapid decay into bound pairs is observed over times on
the order of IOh/EF, preventing the study of equilibrium phases of strongly repulsive fermions. Our work
suggests that a Fermi gas with strong short-range repulsive interactions does not undergo a ferromagnetic
phase transition.

DOI: 10.1103/PhysRevLett.108.240404

Many-body systems can often be modeled using contact
interactions, greatly simplifying the analysis while main-
taining the essence of the phenomenon to be studied. Such
models are almost exactly realized with ultracold gases due
to the large ratio of the de Broglie wavelength to the range
of the interatomic forces [1]. For itinerant fermions with
strong short-range repulsion, textbook calculations predict
a ferromagnetic phase transition-the so-called Stoner in-
stability [2].

Here we investigate this system using an ultracold gas of
fermionic lithium atoms, and observe that the ferromag-
netic phase transition does not occur. A previous experi-
mental study [3] employing a different apparatus found
indirect evidence for a ferromagnetic phase, but did not
observe the expected domain structure, possibly due to the
lack of imaging resolution. Here we address this short-
coming by analyzing density and spin density fluctuations
via speckle imaging [4]. When spin domains of m atoms
form, the spin density variance will increase by a factor of
m [5], even if individual domains are not resolved. One
main result of this paper is the absence of such a significant
increase which seems to exclude the possibility of a ferro-
magnetic state in the studied system.

The Stoner model assumes a two-component Fermi gas
with a repulsive short-range interaction described by a
single parameter, the scattering length. The predicted
phase transition to a ferromagnetic state requires large
repulsive scattering lengths on the order of the interatomic
spacing. They can be realized only by short-range attrac-
tive potentials with a loosely bound state with binding
energy h2 /(ma 2), with m being the atomic mass and a
being the scattering length [6]. However, as shown sche-
matically in Fig. 1, the repulsive gas is then by necessity
only metastable with respect to decay into the bound state.
Many theoretical studies of a Fermi gas with strong short-
range repulsive interactions assume that the metastable
state is sufficiently long-lived [7-18]. In recent Monte
Carlo simulations, the paired state is projected out in the

PACS numbers: 03.75.Ss, 67.85.Lm, 75.10.Lp

time evolution of the system [19,20]. Theoretical studies
concluded that the pairing instability is somewhat faster
than the ferromagnetic instability [21]. The second major
result of this paper is to show that pair formation occurs
indeed on a very short time scale. The measured time
constant of l0h/EF (where EF is the Fermi energy) in-
dicates that the metastable repulsive state will never reach
equilibrium and that, even in a metastable sense, a Fermi
gas with strong short-range repulsive interactions does not
exist. The fast pair formation could not be observed pre-
viously due to limited time resolution [3]. Instead, a much
slower second phase in the conversion of atoms to pairs
was observed leading to the wrong conclusion that the
unpaired atoms have a much longer lifetime.

E
0

CU

1V u -0
Interaction parameter (1/kFa)

-10

FIG. 1. Diagram showing energy levels and timing of the
experiment. The upper (repulsive) and lower (attractive) branch
energies, near a Feshbach resonance, are connected by three-
body collisions. In our experiment, we quickly jump from a
weakly interacting Fermi gas (A) to a strongly interacting one
(B) with a rapid magnetic field change. The evolution of corre-
lations and domains and the molecule formation (population of
the lower branch) are studied as a function of hold time t.
Adapted from [42].
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The experiments were carried out with typically
4.2 X 105 6Li atoms in each of the two lower spin states
I I) and |2) confined in an optical dipole trap with radial and
axial trap frequencies to, = 21r X 100(1) s- 1 and cz =
21r X 9.06(25) s-1. The sample was evaporatively cooled
at a magnetic bias field B = 320 G, identical to the proce-
dure described in [22]. Then the magnetic field was slowly
ramped to 730 G (kFa = 0.35) in 500 ms. The fraction of
atoms being converted to molecules during the ramp was
measured (see below for method) to be below 5%. The
temperature of the cloud was typically 0.2 3 (3 )TF at 527 G
with a Fermi energy of EF = kBTF = h X 6.1 kHz. After
rapidly switching the magnetic field from 730 G to the final
value in less than 350 ps, spin fluctuations were measured
by speckle imaging. Optionally an appropriate rf pulse was
applied directly before imaging to rotate the spin orienta-
tion along the measurement axis. Due to the use of 20 cm
diameter coils outside the vacuum chamber, the inductance
of the magnet coils was 330 pH and the fast switching
was accomplished by rapidly discharging capacitors
charged to 500 V.

Experimentally, spin fluctuations are measured using the
technique of speckle imaging described in Ref. [4]. For an
appropriate choice of detuning, an incident laser beam
experiences a shift of the refractive index proportional to
the difference between the local populations of the two
spin states N, and N2 . Spin fluctuations create spatial
fluctuations in the local refractive index and imprint a
phase pattern into the incoming light, which is then con-
verted into an amplitude pattern during propagation. The
resulting spatial fluctuations in the probe laser intensity are
used to determine the spin fluctuations in the sample.

In Ref. [4] we prepared samples on the lower branch of
the Feshbach resonance, where positive values of kFa
correspond to a gas of weakly bound molecules. At
kFa = 1.2, we observed a sixfold suppression of spin
fluctuations and a fourfold enhancement of density fluctu-
ations. Typical fluctuations in the speckle images of a non-
interacting Fermi gas at T = 0.2 3 TF amount to 5% of the
average optical signal per pixel, corresponding to about
50% of Poissonian fluctuations. Those fluctuations are
modified by factors between 0.2 and 1.6 due to pairing
and interactions.

In this study, on the upper branch of the Feshbach reso-
nance, the situation is reversed. For unbound atoms, as the
interaction strength increases, the two spin components
should develop stronger and stronger anticorrelations and
enhanced spin fluctuations. Previous experimental work [3]
and several theoretical studies [10,11,13-15,18,23] predicted
a phase transition to a ferromagnetic state where the magnetic
susceptibility and therefore the spin fluctuations diverge.
Recent Monte Carlo simulations [19] predict such a diver-
gence around kFa = 0.83. We therefore expected an in-
crease of spin fluctuations by one or several orders of
magnitude, related to the size of magnetic domains.

Figure 2 shows the observed spin fluctuations enhance-
ment compared to the non-interacting cloud at 527 G. The
variance enhancement factor reaches its maximum value of
1.6 immediately after the quench, decreasing during the
2 ms afterward. The absence of a dramatic increase shows
that no domains form and that the sample remains in the
paramagnetic phase throughout. Similar observations were
made for a wide range of interaction strengths and wait
times. Note that first-order perturbation theory [24] pre-
dicts an increase of the susceptibility by a factor of 1.5 at
kFa = 0.5 and by a factor of 2 at kFa = 0.8 (i.e., no
dramatic increase for kFa < 1). Therefore, our data show
no evidence for the Fermi gas approaching the Stoner
instability.

Before we can fully interpret these findings, we have to
take into account the decay of the atomic sample on the
upper branch of the Feshbach resonance into bound pairs.
We characterize the pair formation by comparing the total
number of atoms and molecules Na + 2 Nmoi (determined
by taking an absorption image after ballistic expansion at
high magnetic field where molecules and atoms have the
same absorption resonance) to the number of free atoms
(determined by rapidly sweeping the magnetic field to 5 G
before releasing the atoms and imaging the cloud, convert-
ing pairs into deeply bound molecules that are completely
shifted out of resonance) [25].

The time evolution of the molecule production (Fig. 3)
shows two regimes of distinct behavior. For times less than
1 ms, we observe a considerable number of atoms con-
verted into molecules, while the total number Na + 2 Nmoi
remains constant. The initial drop in atom number becomes
larger as we increase the final magnetic field, and saturates
at around 50% near the Feshbach resonance.

We attribute this fast initial decay in atom number to
recombination [26,27] into the weakly bound molecular
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FIG. 2. Spin fluctuations (a) after 350 pus as a function of
magnetic field and (b) on resonance as a function of hold time
scaled to the value measured at 527 G. Even at strong repulsive
interactions, the measured spin fluctuations are barely enhanced,
indicating only short-range correlations and no domain forma-
tion. The spin fluctuations were determined for square bins of
2.6 /ptm, each containing on average 1000 atoms per spin state.
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FIG. 3 (color online). Characterization of molecule formation
at short and long hold times, and at different values of the
interaction strength. The closed symbols, circles (black) at
790 G with kFa = 1.14, squares (blue) at 810 G with kFa =
2.27 and diamonds (red) at 818 G with kFa = 3.5 represent the
normalized number of free atoms, the open symbols the total
number of atoms including those bound in Feshbach molecules
(open circles at 790 G with kFa = 1.14). The crosses (green)
show the molecule fraction. The characteristic time scale is set

by the Fermi time h/EF = 43 ts, calculated with a cloud
averaged Fermi energy.

state. We obtain an atom loss rate Na/Na = 250 s-1

at 790 G in the first 1 ms after the magnetic field switch.
Assuming a three-body process we estimate the rate
coefficient L3 at this field to be 3.9 X 10-22 cm6 s-I,
though the interaction is already sufficiently strong for
many-body effects to be significant. For stronger interac-
tions, about 30% of atom loss occurs already during the
relevant 100 /s of ramping through the strongly interact-
ing region, indicating a lower bound of around 3 X 103 S-1

for the loss rate which is 13% of the inverse Fermi time
EF/h, calculated with a cloud averaged Fermi energy.

After the first millisecond, the molecule formation rate
slows down, by an order of magnitude at a magnetic
field of 790 G (and even more dramatically at higher
fields) when it reaches about 50%. It seems likely that
the molecule fraction has reached a quasi-equilibrium
value at the local temperature, which is larger than the
initial temperature due to local heating accompanying
the molecule formation. Reference [28] presents a simple
model for the equilibrium between atoms and molecules
(ignoring strong interactions). For phase space densities
around unity and close to resonance, the predicted
molecule fraction is 0.5, in good agreement with our
observations [29].
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For longer time scales (hundred milliseconds) we ob-
serve a steady increase of the molecule fraction to 90% for

the longest hold time. This occurs due to continuous
evaporation which cools down the system and shifts the
atom-molecule equilibrium towards high molecule frac-
tions. During the same time scale, a slow loss in both
atom number and total number is observed caused by
inelastic collisions (vibrational relaxation of molecules)
and evaporation loss.

Is the rapid conversion into molecules necessarily faster
than the evolution of ferromagnetic domains? Our answer
is tentatively yes. First, for strong interactions with kFa
around 1, one expects both instabilities (pair formation and
Stoner instability) to have rates which scale with the Fermi

energy EF and therefore with n2/ 3 . Therefore, one cannot
change the competition between the instabilities by work-
ing at higher or lower densities. According to Ref. [21] the
fastest unstable modes for domain formation have a wave
vector q = kF/2 and grow at a rate of up to EF/4h when
the cloud is quenched sufficiently far beyond the critical
interaction strength. Unstable modes with such wave vec-
tors will develop "domains" of half a wavelength or size
e = ir/q = 21r/kF containing 5 atoms per spin state in a
volume 63. This rate is comparable to the observed con-
version rates into pairs of 0.1 3 EF. Therefore, at best,
"domains" of a few particles could form, but before they
can grow further and prevent the formation of pairs (in a
fully polarized state), rapid pair formation takes over and
populates the lower branch of the Feshbach resonance.
Based on our observations and these arguments, it seems
that it is not possible to realize ferromagnetism with strong
short range interaction, and therefore the basic Stoner
model cannot be realized in nature.

One possibility to suppress pair formation is provided by
narrow Feshbach resonances. Here the pairs have domi-
nantly closed channel character and therefore a much
smaller overlap matrix element with the free atoms.
However, narrow Feshbach resonances are characterized
by a long effective range and do not realize the Stoner
model which assumes short-range interactions. Other in-
teresting topics for future research on ferromagnetism and
pair formation include the effects of dimensionality
[30,31], spin imbalance [32,33], mass imbalance [34],
lattice and band structure [35,36].

We now discuss whether ferromagnetism is possible
after atoms and molecules have rapidly established local
equilibrium. In other words, starting at T = 0, one could
heat up the fully paired and superfluid system and create a
gas of atomic quasiparticles which are similar to free atoms
with repulsive interactions. Density and temperature of the
atoms are now coupled. It is likely that such a state is
realized in our experiments after a few ms following the
quench, until evaporative cooling converts the system into
a molecular condensate over = 100 ms. The possibility
that such a quasiparticle gas could become ferromagnetic
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has not been discussed in the literature. Our experiments do
not reveal any major increase in spin fluctuations which
seems to exclude a ferromagnetic state. In the simplest
picture, we could regard the atomic quasiparticles as free
atoms, and then apply the Stoner model to them.
Ferromagnetic domain formation is analogous to phase
separation between the two spin components [3]. Since
dimers interact equally with the two spin components, one
might expect that even a noticeable dimer fraction should
not suppress the tendency of the atomic gas to form do-
mains. Therefore, in a simple model, one may neglect
dimer-atom interactions.

If the Stoner model applies to this quasiparticle gas, the
next question is whether the temperature is low enough
for the ferromagnetic phase transition. Available theoreti-
cal treatments do not predict an exact maximum transition
temperature to the ferromagnetic state and obtain an
unphysical divergence for large scattering lengths. Since
the only energy scale is the Fermi temperature, one would
expect a transition temperature which is a fraction of
the Fermi temperature [37], higher or around the
temperature scale probed in our experiments. However,
even above the transition temperature, the susceptibility
is enhanced. A simple Weiss mean field or Stoner
model leads to the generic form of the susceptibility
X(T) = Vo(T)/(1 - wXo(T)), where Xo(T) is the Pauli
susceptibility of the non-interacting gas and w the interac-
tion parameter. This formula predicts a twofold increase
in the susceptibility even 50% above the transition tem-
perature, which is well within the sensitivity of our
measurements.

Therefore, our experiment can rule out ferromagnetism
for temperatures even slightly lower than the experimental
temperatures. Temperatures are very difficult to measure
in a transient way for a dynamic system which may not be
in full equilibrium. For example, cloud thermometry
requires full equilibration and lifetimes much longer than
the longest trap period. We attempted to measure the
temperature after the hold time near the Feshbach reso-
nance by quickly switching the magnetic field to weak
interactions at 527 G and then performing noise thermom-
etry using speckle imaging [4]. We measure column-
integrated fluctuations that are 0.61(8) of the Poisson value
which implies an effective temperature well below TF,
around 0.33(7) TF, not much higher than our initial
temperature of 0.23 TF. Although the cloud is not in full
equilibrium, an effective local temperature can still be
obtained from noise thermometry.

Alternatively, we can estimate the temperature increase
from the heat released by pair formation. A simple model
[38] accounting for the relevant energy contributions
predicts for kFa = 1 that molecule fractions of higher
than 20% result in a final temperature above 0.4 TF, an
estimate which is higher than the measurement reported
above. One may hope that closer to resonance many-body

effects lower the released energy; however, as we show
in the Supplemental Material (Fig. 1 of [38]) this is
not necessarily the case due to the repulsive interaction
energy.

Our experiment has not shown any evidence for a pos-
sible ferromagnetic phase in an atomic gas in "chemical"
equilibrium with dimers. This implies one of the following
possibilities. (i) This gas can be described by a simple
Hamiltoninan with strong short range repulsion.
However, this Hamiltonian does not lead to ferromagne-
tism. This would be in conflict with the results of recent
quantum Monte Carlo simulations [19,20] and second
order perturbation theory [11], and in agreement with
conclusions based on Tan relations [39]. (ii) The tempera-
ture of the gas was too high to observe ferromagnetism.
This would then imply a critical temperature around or
below 0.2T/TF, lower than generally assumed. (iii) The
quasiparticles cannot be described by the simple model of
an atomic gas with short-range repulsive interactions due
to their interactions with the paired fraction.

A previous experiment [3] reported evidence for ferro-
magnetism by presenting non-monotonic behavior of atom
loss rate, kinetic energy and cloud size when approaching
the Feshbach resonance, in agreement with predictions
based on the Stoner model. Our measurements confirm
that the properties of the gas strongly change near
kFa = 1. Similar to [3], we observe features in kinetic
and release energy measurements near the resonance (see
Supplemental Material [38]). However, the behavior is
more complex than that captured by simple models. The
atomic fraction decays non-exponentially (see Fig. 3), and
therefore an extracted decay time will depend on the details
of the measurement such as time resolution. Reference [3]
found a maximum of the loss rate of 200 s- 1 for a Fermi
energy of 28 kHz. Our lower bound of the decay rate of
3 X 103 s-1 is 15 times faster at a five times smaller Fermi
energy. Our more detailed study rules out that Ref. [3] has
observed ferromagnetic behavior.

Our conclusion is that an ultracold gas with strong short
range repulsive interactions near a Feshbach resonance
remains in the paramagnetic phase. The fast formation of
molecules and the accompanying heating makes it impos-
sible to study such a gas in equilibrium, confirming pre-
dictions of a rapid conversion of the atomic gas to pairs
[21,40]. The Stoner criterion for ferromagnetism obtains
when the effective interaction strength times the density of
states is larger than one. This is a at least an approximately
valid criterion for multi-band lattice models [41]. We have
shown here that this criterion cannot be applied to Fermi
gases with short-range repulsive interactions (the basic
Stoner model) since the neglected competition with pairing
is crucial.
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Correlations and Pair Formation in a Repulsively Interacting Fermi Gas:
Supplementary Information

In this supplement we present measurements of the
release energy of fermions with strong repulsive interac-
tions, derive estimates for sample heating due to molecule
formation, adapt predictions for ferromagnetic domain
formation after a quench to our experimental parame-
ters, and discuss our temporal and spatial resolution for
spin fluctuations.

KINETIC ENERGY AND RELEASE ENERGY

The energy of a trapped interacting gas is the sum of

three contributions: the kinetic energy, the interaction
energy, and the potential energy in the trapping poten-

tial.

E = T + Uint + Utap (1)

By suddenly releasing the atoms from the trap and

measuring the radius of the cloud, it is possible to mea-
sure either the release energy (T + Uint) or the kinetic

energy T, depending on whether the interactions are left

on or are switched off, respectively, at the time of re-

lease, by leaving the external magnetic field constant or
rapidly switching it to a value away from the Feshbach

resonance.
The system is prepared with variable interaction

strength by rapidly switching the magnetic field to a

value near the Feshbach resonance. For the kinetic en-

ergy measurement, the field is again rapidly switched to

5G, after which the atoms are released from the trap.

After 8 ms of free expansion, the size of the cloud reflects

the width of the in-trap momentum distribution and the

average in-trap kinetic energy. The observed increase

in kinetic energy with increasing interaction strength re-

flects the onset of pair (anti-)correlations of opposite-spin

atoms - those anti-correlations reduce the repulsive po-

tential energy at the price of increased kinetic energy.
The observed increase in kinetic energy is consistent with

the observations in Ref. [3]. We do not observe a mini-

mum in kinetic energy as in [3], since the interactions are

suddenly increased and the cloud cannot adiabatically
expand during the ramp as was the case in the earlier

work. For fully spin-polarized domains, the kinetic en-

ergy would increase by a factor of 22/3 which provides an

upper bound (since the true ground state must have an

energy lower than or equal to the fully phase-separated

state). The smaller observed energy increase (factor of

1.3) implies that fully spin polarized domains have not

formed. It should be noted that the kinetic energy in-

crease is insensitive to the correlation length or size of
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FIG. 1: Measured transverse mean square cloud size af-
ter time-of-flight expansion as a function of the interaction
strength before the release in units of the value of the non-
interacting cloud. The interactions are switched off (squares)
or left on (circles) at the time of release. For sufficiently long
time-of-flight the transverse 2D release energy is directly pro-
portional to the measured mean square width of the cloud.
The expansion is either isotropic (in the case of switched off
interactions) or mostly transverse (in case of strong interac-
tions leading to hydrodynamic expansion) [1, 2]. Uncertain-
ties as indicated by the error bars are purely statistical.

domains and cannot clearly distinguish between ferro-
magnetic domains and strong anti-correlations [4, 5].

In-trap kinetic and interaction energies are measured

when the magnetic field is left at its value near the Fes-

hbach resonance while the trap is switched off. After 4

ms of the 8 ms free expansion the field is switched to 5G
for imaging. The resulting cloud size is directly related
to the release energy of the cloud, the sum of the in-trap

kinetic and interaction energies. Around kFa = 0.5, we
observe a strong increase of the transverse release en-

ergy by a factor of about 2. This implies that the total
energy has increased by a factor of 4/3 compared to the

non-interacting case since the interactions modify the ex-

pansion from ballistic to hydrodynamic. The comparison

of kinetic energy and release energy at 790G and 810G
shows that the extra energy due to repulsive interactions

is clearly dominated by repulsive potential energy and

not by kinetic energy. The latter would occur for fer-

romagnetic domains. In case of fully spin-polarized do-

mains, the repulsive interaction energy would vanish, and
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kinetic energy and release energy should be the same.
Therefore, the energy measurements also rule out a fer-
romagnetic phase.

The interaction-strength dependence of the release en-
ergy shows a weak maximum at 790G. The ground state
energy has to vary monotonically with the strength of
the repulsive interactions. This follows from a simple
variational argument where the exact ground state wave-
function at strong interactions is used as a trial wave-
function at weaker interactions. Therefore, the observed
maximum is most likely related to non-equilibrium ex-
citations caused by the sudden jump in the scattering
length.

HEATING DUE TO MOLECULE FORMATION

Molecule formation heats the sample by transferring
the binding energy and excess kinetic energy of the
molecules to the remaining atoms, and also by creating
holes in the Fermi sea. For small values of kFa, the total
energy release per molecule is h2 /ma2 + 2EF. From the
energy per particle for an ideal homogeneous degenerate
Fermi gas E = 0.6EF [1 + (57r2 /12)(T/TF) 2 ] we obtain

T 4 1 / 1 (2
TF (kFa)2 (2)

for the final temperature with a small molecule frac-
tion -(assuming initially 71=0 and T=0). Evaluating this
result at kFa = 1, where the two-body binding energy is
2EF, one finds that molecule fractions of higher than
20 % result in a final temperature above 0.4TF, an es-
timate which is somewhat higher than the measurement
reported in the main article.

DOMAIN GROWTH PREDICTIONS AND
EXPERIMENTAL RESOLUTION

As described in the main paper, we have observed two
dynamic time scales - a sub-ms timescale for rapid pair
formation, followed by a slower time scale of tens of mil-
liseconds where further cooling led to a full conversion of
the atomic into a molecular gas. We now want to discuss
over what time scale we could have observed ferromag-
netic domain formation if it had happened, and some
experimental aspects regarding temporal and spatial res-
olution.

Pekker et al. [6] predicted in uniform systems fast
growth rates for small domains. Unstable modes with
wavevector q ~ kF/2 grow at a rate of up to EF/4h when
the cloud is quenched sufficiently far beyond the criti-
cal interaction strength. This corresponds to a growth
time of around 100ps. For a wide range of interactions

and wavevectors, the predicted growth time is faster than
10h/EF or 250ps. During this time one would expect the
thermal fluctuations to increase by a factor of e.

Wavevectors q kF/2 will develop "domains" of half
a wavelength or size = 7r/q = 27r/kF, which is 2.3 pm
at the experimental density of 3 x 1011 cm- 3 correspond-
ing to kF = 2.7 x 104 cm- 1. For speckle imaging the
smallest effective probe volume is given by the nomi-
nal optical resolution or the optical wavelength times the
aperture of the lens system which is equal to the bin size
of 2.6pm in our experiment. For a bin size d, the mea-
sured fluctuations are an integral over fluctuations at all
wavevectors q with an effective cutoff around 1/d. Due to
a mode density factor q2 the largest contribution comes
from wavevectors around 7r/d which is equal to 0.4 kF
for our experimental parameters, fortuitously close to the
wavevector of the fastest growing unstable modes. There-
fore, for a quench across a ferromagnetic phase transition,
we would have expected a sub-millisecond growth time
for the spin fluctuations, which was not observed.

Another analysis focuses on domains. As discussed in
the main paper, random domains containing m atoms
will increase the variance of spin fluctuations by a fac-
tor of m. The fastest growing unstable modes contain
around 5 atoms per spin state in a volume 3. At our tem-
peratures, the thermal fluctuations correspond to Pois-
son fluctuations reduced by the Pauli suppression fac-
tor (3/2) T/TF, i.e. in a small volume with about ten
particles, the spin fluctuations correspond to plus/minus
one particle, and will approach saturation (i.e. fully spin
polarized domains) after a few growth times (when, of
course, the unstable mode analysis is no longer applica-
ble). If these domains randomize through spin diffusion,
it will increase the variance of the spin fluctuations at all
length scales larger than by a factor of m, without re-
quiring optical resolution of the domain size . Spin diffu-
sion effectively "converts" initial fluctuations at wavevec-
tor q to fluctuations at all wavevectors smaller than q.

Since we start with a balanced two-state mixture with
zero spin density, formation of random (i.e. uncorrelated)
domains requires spin diffusion. Full sensitivity to do-
mains requires spin transport over a distance equal to
the bin size. Assuming diffusive motion at resonant in-
teractions with a spin diffusivity D, ~ h/m as observed
in [7] results in a corresponding minimum wait time of
about 300ps. This means that after crossing a ferromag-
netic phase transition, formation of domains of a few to
tens of particles should have occurred on ms scales and
should have resulted in an observable increase of spin
fluctuations. Therefore, we conclude that we have not
entered any ferromagnetic phase within our experimen-
tal parameters.
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Appendix D

Kapitza-Dirac Diffraction

Simulation
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E:\My Dropbox\8 THES...\kapitza.m Page 1

%% Kapitza-Dirac Diffraction

%Parameters

Va=20; %lattice depth in recoils

k=O; %starting momentum in lattice recoils

t=O:.001:0.4; % time (x axis) in units of 1/f recoil

% Li recoil 29.2 KHz, Na recoil 7.6 KHz

k-numpts=200; % number of orders to calculate

k_numshow=3; % number of orders to show

Pi=3.14159265;

e=2.71828;

%Diagonalize Hamiltonian Matrix

k mid=ceil(knumpts/2);

H=zeros(k numpts);

for ii=l:knumpts

H(ii,ii) = (k+2*(ii-k mid))^2;

if ii>l

H(ii,ii-1) = Va/4;

end

if ii<k numpts

H(ii,ii+l) = Va/4;

end

end

[V,E]=eig (H)

Ex=2*Pi*li*diag(E)*t;

expEx=e.^Ex;

Vproj=V*diag(V(kmid,:));

Vprop=abs(Vproj*expEx).^2;

Vshow=Vprop(kmid:k mid+knumshow,:)';

FigHandle = figure('Position', [200, 200, 600, 300]);
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%Generate plots

plot(t*1000/7.6,Vshow); % IR

%plot(t*1000/30.4,Vshow); % Green

title( sprintf( 'Lattice Depth of %d E_R', Va ) );
xlabel('Pulse Duration / us');

xlim([O 52]);

ylim([O 1]);

ylabel('Relative Strength');

hold on;
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E:\Mv Dropb.. .\SL Bandstructure.m Page 1

%% Superlattice Band Structure Calculation

clearvars;

%% Calculate the Band Structure

V1 = 40; %in the unit of E IR

V2 = 10; %in the unit of EGreen

phi = 0.5; %in the unit of 2*pi. (nearest symmetric points/

are -0.5 and 0.5)

lc=1:1:200;%1BZ is discretized into 2000 parts, which is/

also the number of the sites involved in the calculation;

for l=1:length(lc)
q(l)=lc(l)/100-1;%[-1,11, momentum scale PI(/a

%Creating H on the basis of plain wave;

N=51; %must be odd;

h=zeros (N,N);

cl=1:1:N;

c2=1:1:N;

for cll=l:length(cl)

for c12=1:length(c2)

switch c1l-c12

case 0

h(cii,ci2)=(q(l)-((N+1)/2-c11)*2)^ 2;

case 1

h (cii, c12) =-Vl/4;
case -1

h(cii,ci2)=-Vi/4;

case 2

h(c1i,c12)=-(4*V2*exp(2*ii*phi*pi))/4;

case -2

h(cii,ci2)=-(4*V2*exp(-2*ii*phi*pi))/4;

otherwise

h (ci1, c12)=0 ;

end

end
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end

[V,D] = eig(h); %E(q(l)) for different bands in a column;

ge(:,1) = D*ones(51,1);

if 1==100
Band-mid = abs (V) .^2;

end

if 1==200
Bandedge = abs(V) .^2;

end

end

k = lc(101:200)/100-1;

bands = ge(1:4,101:200);

center = median(bands');
zero = center(1);
width = range(bands');

%% Plot Superlattice Band

figure;

plot(k,ge(1,101:200)-zero

plot(k,ge(2,101:200)-zerc

plot(k,ge(3,101:200)-zerc

plot (k,ge (4, 101:200) -zerc

plot (k,ge (5, 101:200) -zerc

plot (k,ge (6,101:200) -zerc

Structure

); hold o

); hold o

); hold o

); hold o

); hold o

); hold o

n;
n;

n;

n;

n;

n;

%% Plot Quasi-momentum States

x = -5:2:7;
FigHandle = figure('Position', [200, 200, 800, 400]);

subplot(1,3,1);

bar(x,Bandedge(23:29,1));ylim([0 1]);

subplot(1,3,2);

bar(x,Bandedge(23:29,2));ylim([O 1]);
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subplot (1, 3, 3) ;

bar (x,Bandedge (23:29,3) ) ;ylim( [0 1]);

% x = -6:2:6;

% FigHandle = figure('Position', [200, 200, 800, 400]);

% subplot(1,3,1);

% bar(x,Band mid(23:29,1));ylim([O 1]);

% subplot(1,3,2);

% bar(x,Band mid(23:29,2));ylim([0 11);

% subplot(1,3,3);

% bar(x,Band-mid(23:29,3));ylim([O 1]);

%% Plotting the Potential

x2 = -0.1:0.001:1.1;

r = (x2+0.5)*pi;

y2 = -V1/2*cos(2*r)-4*V2/2*cos(4*r+phi*2*pi);

y1 = center'*ones(size(x2));

figure;

plot(x2, y2-zero, 'Color', [0.2,0.9,0.1]); hold on;

plot(x2, y1(1,:)-zero,'linewidth',width(1),'Color',V

[0.9,0.1,0.1]);

plot(x2, yl(2,:)-zero,'linewidth',width(2),'Color',V

[0,0.1,0.9]);
plot(x2, y1(3,:)-zero,'linewidth',width(3),'Color',/

[0.4,0.4,0.3]);

plot(x2, y1(4,:)-zero,'linewidth',width(4),'Color',V

[0.4,0.4,0.3]);

xlim([-0.1 1.1])

ylim([-20 60])

title(['VR = ',num2str(V1),'E_{IR}, VG = ',num2strV

(V2),'E_ {G}, \phi = ', num2str(2*phi),I\pil])

ylabel('E/E_{IR}')
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%% Simulate Double-Slit Pattern in Superlattices

clear;

x = -0.3:0.000001:0.3;

oneslit = 5; % single slit size
multislit = 10; % distance between nearest/
double-wells

doubleslit = multislit/2; % distance between left and/

right wells

Ramanslit = 20; % Raman coupling period, for 1064nm/
light it is twice double-well spacing

N = 50; % total number of double-wells
Raman_phi = pi; % Raman phase between nearest double-V
wells, always pi

LR-phase = 0*pi; % relative phase between left and right

% calculate relative phases

c=sin(x*3.1/2);

oneslitphase = pi*oneslit*c;
multislit phase = pi*multislit*c;
Ramanslitphase = pi*Ramanslit*c;

%% k=0 component

zero_k_dbphase= 2*pi*doubleslit*c + LRphase;

I_ kO = (cos(zero_k_dbphase/2)).^2.*(sin/

(N*multislitphase)./sin(multislitphase)).^2.*(sinL/

(oneslit phase) ./oneslit_phase) .^2;

%% k=+/-kL Spin-Orbit-Coupling, also Onsite-Coupling with/
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100/0 population

Raman-phase = 2*pi*multislit*c + Ramanphi;

ISOC = (cos(Ramanphase/2)) .A2.*(sin(N*Ramanslitphase).V

/sin(Ramanslitphase)) .^2.*(sin(oneslitphase).1

/oneslit-phase).^2;

%% k=+/-kL Onsite-Coupling with 50/50 population

finite k db phase = 2*pi*doubleslit*c + LRphase + pi/2;
Ramanphase = 2*pi*multislit*c + Ramanphi;

I_OC = (cos(finitek_dbphase/2)).^2.*(cos(Ramanphase/2)).V

^2.*(sin(N*Ramanslit_phase)./sin(Ramanslit_phase)) .2.*(sin/

(oneslit-phase)./oneslit phase).^2;

%% Equal OC and SOC with 50/50 population (simplified)

OCphase = 2*pi*doubleslit*c + LRphase + pi/ 2 ;

SOC_phase = 2*pi*doubleslit*c + pi/4;

I_Both = 0.5*(3/2+cos(SOC phase)+cos(OC_phase)+cos/

(OC phase-SOCphase)).*(cos(Ramanphase/2)) .2.*(sinV

(N*Ramanslit phase)./sin(Ramanslit_phase)) .^2.*(sin/

(oneslitphase)./oneslit phase).^2;

%% plot the interference pattern

FigHandle = figure('Position', [200, 200, 800, 400]);

plot(x/0.065,ISOC);

xlim([-3 3])
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% case 1: k=0 for 50/50 population

x = -4.5:0.0001:4.5;

y = (normpdf(x,-3,0.02)+normpdf(x,-2,0.02)+normpdf(x,V

-1,0.02)+normpdf(x,0,0.02)+normpdf(x,1,0.02)+normpdf(x, V
2,0.02)+normpdf(x,3,0.02));

z1 = 1 + cos(-pi*x);

z2 = 1 + cos(pi-pi*x);
w = normpdf(x,0, 1.5)*7.5;

FigHandle = figure('Position',[200,

subplot (2,1,1);

plot(x,y) ;hold on;

plot(x,zl);

plot(x,w);

ylim([0 2]);

xlim([-4 4]);

xlabel('q / [2\pi/dl');

%title('\phi = 0');

200, 800, 400]);/

subplot(2,1,2);

plot(x,y);hold on;

plot(x,z2);

plot(x,w);

ylim([O 2]);

xlim([-4 4]);

xlabel('q / [2\pi/d]');

%title('\phi = \pi');

% case 2: k=+/- kL for 100/0 population with only OC or/

SOC

x = -4.5:0.0001:4.5;

y = (normpdf(x,-3.5,0.02)+normpdf(x,-3,0.

5,0.02)+normpdf(x,-2,0.02)+normpdf(x,-1.5,

-1,0.02)+normpdf(x,-0.5,0.02)+normpdf(x,0,

0.5,0.02)+normpdf(x,1,0.02)+normpdf(x,1.5,

0

0

0

0

2)+normpdf(x,kV

.02)+normpdfV

.02)+normpdfV

.02)+normpdfL/
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(x, 2,0.02) +normpdf (x, 2.5,0.02) +normpdf (x, 3,0.02) +normpdf (x, V
3.5,0.02));

z1 = 1 + cos(-2*pi*x+pi);
w = normpdf(x,0, 0.75)*3.75;

FigHandle = figure('Position', [200, 200, 800, 200]);

plot(x,y);hold on;

plot(x,zl);

plot(x,w);

ylim([0 2]);

xlim([-4 41);

xlabel('q / [2\pi/dl');

% case 3: k=+/- kL for 100/0 population with both OC and/
SOC

x = -4.5:0.0001:4.5;
y = (normpdf(x,-3.5,0.02)+normpdf(x,-3,0.02) +normpdf(x,V

-2.5,0.02)+normpdf (x,-2,0.02)+normpdf (x,-1.5,0.02)+normpdf/

(x, -1,0.02) +normpdf (x, -0.5,0.02) +normpdf (x, 0,0.02) +normpdfV

(x, 0.5,0.02) +normpdf (x, 1,0.02) +normpdf (x, 1.5,0.02) +normpdf/

(x,2,0.02)+normpdf(x,2.5,0.02)+normpdf(x,3,0.02)+normpdf(x, V
3.5,0.02));

z1 = 1 + cos(-2*pi*x+pi);

z2 = 1 + cos(-pi*x-3*pi/4);

w = normpdf(x,0, 0.75)*3.75;

FigHandle = figure('Position', [200, 200, 800, 400]);k

subplot(2,1,1);

plot(x,y) ;hold on;

plot(x,zl);

plot(x,w); plot(x,z2);

fn = y.*zl.*z2.*w/80;plot(x,fn);
ylim([0 21);

xlim([-4 4]);

xlabel('q / [2\pi/dl');
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subplot (2,1,2);

z1 = 1 + cos(-2*pi*x+pi);
z2 = 1 + cos(-pi*x+pi/4);

plot(x,y) ;hold on;

plot(x,zl);

plot (x,w); plot(x,z2);

fn = y.*zl.*z2.*w/80;plot(x,fn);

ylim([0 2]);

xlim([-4 4]);

xlabel('q / [2\pi/dl');

% case 4: No interference between quasi-momentum q=0 and/

q=kL states

x = -4.5:0.0001:4.5;

y = (normpdf(x,-3.5,0.02)+normpdf(x,-3,0.02)+normpdf(x,

-2.5,0.02)+normpdf(x,-2,0.02)+normpdf(x,-1.5,0.02)+normpdf/

(x, -1,0.02) +normpdf (x, -0.5,0.02) +normpdf (x, 0,0.02) +normpdf/

(x, 0.5,0.02) +normpdf (x, 1,0.02) +normpdf (x, 1.5,0.02) +normpdf/

(x,2,0.02)+normpdf(x,2.5,0.02)+normpdf(x,3,0.02)+normpdf(x, /

3.5,0.02));

z1 = 1 + sin(pi/4-pi*x).*sin(2*pi*x);

w = normpdf(x,0, 0.75)*3.75;

FigHandle = figure('Position',[200, 200, 800, 200]);

plot(x,y);hold on;

plot(x,zl);

plot(x,w);

fn = y.*zl.*w/40;plot(x,fn);

ylim([0 2]);

xlim([-4 4]);

xlabel('q / [2\pi/dl');
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