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Abstract

In recent years, cold-atom experiments have moved towards atomic systems with
increasingly stronger interactions. One goal is to emulate condensed-matter phenom-
ena in an ultimately controlled system by studying the motion of atoms in optical
lattices. Trapped ions are the epitome of a strongly-interacting cold-atom system,
but until now have been limited to simulating spin systems. In this thesis work, a
toolbox is developed for combining trapped ions with optical lattices and for studying
problems of atomic crystals in periodic potentials. One such problem of tremendous
technological and economic importance is friction - a ubiquitous phenomenon that is
poorly understood even at the atomic level (nanofriction), where stick-slip processes
are known to be the dominant source of dissipation and wear.

Friction is studied in this thesis work with unprecedented spatial resolution and
control at the individual-atom level in the synthetic frictional interface between crys-
tals of trapped ions (moving object) and an optical lattice (rigid corrugated substrate).
These experiments address, at the atomic scale, four quintessential questions about
friction: the dependence of friction on the load (corrugation depth), on material prop-
erties (object-substrate lattice mismatch), on the contact area (number of atoms at
an atomically smooth contact) and on velocity and temperature. In particular, we ob-
serve the elusive regime of superlubricity - the vanishink of stick-slip friction - for ion
crystals mismatched to the lattice. With increasing load, we observe superlubricity
to break and stick-slip friction to reappear as a result of a long-theorized sliding-to-
pinned structural transition known as the Aubry transition. Although these effects
were initially predicted to occur in the infinite-atom limit, we find them to arise
already at the level of two or three atoms in our system.

The presented results could potentially lead to ways of engineering friction in
nanomaterials or even at the macroscopic scale, and the system can further be used
to study quantum many-body physics of solids in periodic potentials, potentially
relevant to friction and surface physics at the nanoscale and at cold surfaces.

Thesis Supervisor: Vladan Vuletic
Title: Professor of Physics
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Figure 0-1: Superlubricity of interacting graduate students in a periodic potential.
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Figure 0-2: Running the lab with Dorian in "A symphony in Yb+ for dancing atoms"

(https://www.youtube.com/watch?v=7c9dfxBAaJU).
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Chapter 1

Introduction: new possibilities with

ions in optical lattices

Advances in the trapping, cooling and quantum control of neutral atoms and trapped

atomic ions in the last decades has offered scientists a glimpse into the thermody-

namics and dynamics of coupled few-atom and many-atom systems, having both

fundamental importance and applications in the form of quantum information pro-

cessing [1] and quantum simulation [2]. Trapped ion systems and neutral atom sys-

tems have approached this process from different angles. Using techniques developed

by Paul and Demhelt (leading to their 1989 Nobel Prize in Physics), ions can be

trapped in vacuum for hours even at room temperature, owing to the strong nature

of the Coulomb forces exerted by the trapping electric fields. The steepness, good

harmonicity and stability of the resulting trapping potentials have enabled exquisite

control of the motional degrees of freedom of trapped ions [3]. The same strong,

long-range Coulomb forces between the ions a) result in trapped Wigner crystals

of these ions with individual-ion optical addressability, and b) are used to mediate

strong interactions between the internal degress of freedom (qubit states) of separate

ions. As a consequence, trapped ions have conveniently been utilized as stationary,

reconfigurable arrays of controllable qubits for quantum computation or metrology

(the subject of the 2012 Nobel Prize in Physics awarded to Wineland). By contrast,

taming the motional degrees of freedom of neutral atoms has been more challenging

13



due to shallow trapping potentials, requiring various clever cooling techniques (the

subject of the 1997 Nobel Prize in Physics awarded to Chu, Cohen-Tannoudji and

Phillips) and culminating in the discovery of the Bose-Einstein condensate (the sub-

ject of the 2001 Nobel Prize in Physics awarded to Ketterle, Cornell and Wieman).

The shallow trapping potentials and weak interatomic interactions mean that neutral

atoms in the trap act like a gas (unlike a solid Wigner crystal of ions), whose quantum

properties at cold temperatures are of great interest and have been a major research

focus in the neutral atom community. Furthermore, quantum gases can be studied

in the very versatile periodic potentials of optical lattices [4], simulating electrons in

crystal lattices in solids, with great promise for better understanding exotic quantum

materials. With the achievement of atomic Mott insulators in optical lattices [5] and

single-site resolution and control [6, 7, 8, 9, 10, 11], neutral atoms have entered the

territory of bottom-up control traditionally available to trapped ions - but with larger

numbers and much weaker, shorter-range interactions.

In this context, the effort described in this thesis it to study the physics of arbi-

trarily strongly interacting atoms in optical lattices - ions, allowing us to simulate a

nmqulita.tivPlv diffprpnt class, nf nrnhlmQ in Qsid-QtatP nth-ir_ f t nf znlids in per-

odic potentials. This encompasses friction between two objects at the atomic scale

(the focus of this thesis), the surface science of adsorbed monolayers, the operation

of molecular motors, etc. - in general, any kind of mechanical interaction between

two short or extended atomic arrays. This new direction for atomic physics hinges

on combining trapped ions with optical lattice potentials, pioneered by the groups

of Walther [12], Schaetz 113, 14], Drewsen [15], and the experiments in this thesis

[16, 17]. In this thesis, we have been concerned with studying and controlling the mo-

tional degrees of freedom of ions in the periodic optical-lattice potential, culminating

in fundamental studies of atomic-scale friction. In the future, these new features will

be combined with the quantum control toolbox for trapped ions [18] and with cavity

QED [19, 20], leading to very rich hamiltonians involving both internal and exter-

nal degrees of freedom of the ions, with possibilities to study spin-dependent friction

[21], quantum superpositions of crystalline structures [22, 23], interacting bosons and
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quantum magnetism [24] among other fascinating new regimes. Furthermore, return-

ing to the context of quantum information processing with ions, ions in optical lattices

could be used as a platform [25] to a) trap two- and three-dimensional arrays of qubits

[26] without micromotion that often causes heating in the usual radio-frequency traps,

and b) to bring qubits closer to each other (potentially down to the wavelength scale!)

for scalability and faster quantum gates while avoiding the "anomalous" heating in

proximity to planar traps [27, 28, 29, 30].

Trapping, cooling and studying ions in an optical lattice are associated with a

number of challenges: a) operating a versatile and micromotion-compensated trap in

the presence of a high-intensity lattice beam (and additionally in our case, operating

such a trap together with an optical cavity used to generate the lattice), b) generat-

ing a deep optical-lattice potential that exerts forces on the ions that overcome the

Coulomb forces, c) cooling the ions in such a deep optical potential and measuring

their temperature and lifetime, and finally, d) tracking the position of the ions with

sub-lattice-site (read: subwavelength) spatial resolution, and time resolution below

the relaxation time scales. In part I of this thesis, I provide details on how we have

addressed these challenges in our experiments, giving us the toolbox needed to study

solids in periodic potentials, and in particular, the problem of friction.

I start part II of my thesis with a brief overview of friction: the motivations for

studying this ubiquitous and economically relevant phenomenon, the atomistic mod-

els of friction, the current tools that exist for studying it at the nanoscale, and the

advantages for studying it with trapped ions in optical lattices. In the remaining

chapters part II, I describe experiments that we have done in our trapped-ion optical-

lattice emulator, achieving unprecedented control and atom-by-atom resolution of a

frictional interface and elucidating four long-standing questions about friction: 1) its

dependence on normal load, 2) the effect of material (structural) properties, 3) the de-

pendence of friction on contact area, and 4) its temperature and velocity dependence.

Our experiments exhibit a fascinating transition from superlubricity to stick-slip fric-

tion, associated with the long-theorized Aubry transition which we directly observe

here for the first time.
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Part I

Trapped Ions in Optical Lattices:

a new atomic physics toolbox
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Chapter 2

A brief history and challenges

The first observation of lattice forces on an ion was reported in 1997 by Katori et. al.

[12] as a suppression of ballistic oscillations in a shallow Paul trap and an onset of

a diffusive regime. Based on the slowest measured diffusion constant, one can infer

a 0.3ps maximum lifetime of the 24Mg+ ion in a single lattice site for the deepest

lattice employed (U/kB = 1.5 mK = 300Erec/kB, A/2 = 140nm, where U is the

optical lattice depth, Ere = h is the photon recoil energy, A is the optical lattice

wavelength, and kB is the Boltzmann constant). This lifetime corresponds to a single

oscillation period of the ion in the lattice site and is only a factor of 2 longer than the

transit time through the site in the bare Paul trap at the same temperature. This is

consistent with the measured temperature being kBT ~ U, which is in turn expected

from the fact that the lattice itself was used for laser cooling (see subsection 6.1.1).

Holding an ion briefly with purely optical dipole forces was first achieved only

recently in an optical dipole trap by Schneider et. al. in 2010 [131, and in an

optical lattice in follow-up work by Enderlein et. al. in 2012 [141 (24Mg+ used

again in both cases). In the first experiment, the RF trap was shut off for up to

2000ps with a greater than 50% chance of recapture. This optical trap lifetime cor-

responded to ~ 330 transverse oscillation periods and ~ 4 axial oscillations in the

deep, U/kB = 38mK = 7600Erec/kB optical dipole trap. In the second experiment,

the ion was held for 25pus without RF confinement in an optical potential of similar

depth, but in an interfering counter-propagating beam configuration forming an opti-
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cal lattice. These experiments have laid a foundation for all-optical micromotion-free

ion trapping, relevant for quantum information processing with ions and for studying

quantum collisions between ions and atoms [31, 32].

Another experiment by Linnet et. al. in 2012 [15] measured the effect of a

deep (U/kB = 24mK = 75000Erec/kB) intracavity optical lattice on the position

distribution of a 40Ca+ ion in a shallow Paul trap. During the 5ps of each experiment,

the position distribution would go from the thermal Guassian in the harmonic trap,

to a distribution peaked at the positions of lattice sites, as measured by fluorescence

from a probe standing wave. This work was the first to demonstrate subwavelength

confinement of an ion in an optical lattice, but with an undetermined and short

lifetime (at most 5ps) and without site-by-site resolution or control.

In the experiments described in this thesis, we laser cool single l74Yb+ ions, or

chains of them, deep into an intracavity optical lattice (T << U/kB, where U/kB =

0.05 - 2mK = 124 - 4960Erec/kB) superimposed onto the Paul trap, achieving ion

lifetimes in a single lattice site of up to 0.1 seconds (104 - 105 axial oscillations in a

single site). We also develop techniques for subwavelength positioning and tracking

of the individual ions with respect to the lattice, giving us the atom-by-atom, site-

by-site resolution and control for studying friction with unprecedented microscopic

control. In part I of my thesis, I describe in detail the system, the laser cooling

and this control toolbox. Studying ions in an optical lattice is associated with the

following challenges, which I address in the chapters that follow:

1) Operating a versatile and micromotion-compensated trap integrated with a

high-intensity lattice beam or cavity (chapters 4,5).

2) Generating and calibrating a deep optical-lattice potential of comparable strength

to the Coulomb potentials (chapter 5).

3) Cooling ions deep into the optical potential (chapter 6).

4) Measuring ion temperature in the lattice (section 6.4).

6) Measuring the positions of individual ions with sub-lattice-site spatial resolution

and time resolution below the relaxation time scales (chapters 7,8).
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Chapter 3

System overview

We trap and laser cool Yb+ ions in 1-D chains along the linear microfabricated Paul

trap (chapter 4), overlapped in vacuum with the mode of a 2.2cm-long optical cavity

[33] (see Figs.3-1,3-2). The trap is loaded using a 2-step photoionization of the neutral

Yb atoms in a thermal beam from a heated oven (section 4.4). The cavity can be

used for fluorescence collection from the ions and fluorescence spectroscopy [33], as a

quantum bus of photons connecting subchains of ions in the cavity mode [191, or it

can be pumped with laser light to produce an intracavity standing wave - an optical

lattice [161 (see chapter 5). Laser cooling beams (for Doppler cooling or Raman

cooling - see chapter 6) and repumping laser beams are sent parallel to the trap

chip surface to the center of the trap either through the optical cavity or from the

side. Scattered fluorescence is collected by a large objective just outside the vacuum

window and detected either by a electron-multiplying CCD camera, or by a pair of

photomultiplier tubes (PMT).

After this brief system overview, the key system components are discussed detail

in separate chapters: the microfabricated ion trap in chapter 4, the optical cavity and

lattice in chapter 5, laser cooling in chapter 6 and imaging in chapter 7.
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fold mirror
for imaging

Yb oven

collimation
groove

cavity
mirrors

ion trap

PCBs for
trap wiring
and filtering

Figure 3-1: Photograph of the optical cavity integrated with a planar microfabri-

cated ion trap inside the vacuum chamber. The cavity mirrors and the trap chip are

mounted on a temperature-stabilized stainless steel block. One of the cavity mirrors

can be translated by a piezo in order to tune the cavity resonance. Trap electrodes

are wirebonded to the printed circuit boards (PCBs), where low-pass filtering oc-

curs. Ions are loaded by photoionizing Yb atoms in a collimated flux coming from an

oven. Ions are imaged through a 450 fold mirror by an objective outside the vacuum

chamber with a working distance of 10 cm and numerical aperture (NA) 0.28.
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camera -

Yb ions

lattice

transfer:
402nm

-y repumpers:
lattice zB|935nm

probe: am: cooling: 638nm
369.5nm 369.5nm ion trap 369.5nm

Figure 3-2: Diagram of the set-up. Chains of Yb+ ions are trapped near the center of

the cavity along the RF nodal line of the Paul trap, 134.5 pm from the trap electrodes.

The intracavity optical lattice with lattice constant a =184.75 nm is produced by

pumping the cavity with 369.5 nm light blue-detuned from the 2S 1/ 2_ 2P 1/ 2 atomic

transition by 12.6 GHz. A probe beam, red-detuned by ~ 100 MHz also pumps the

cavity, resulting in a standing wave that matches the lattice near the center of the

cavity. Weak light for laser cooling, also red-detuned by ~100 MHz hits the ions from

the side. Ion fluorescence from scattered cooling light can be collected either by the

imaging system shown (discussed further in chapter 7), or by the cavity, whose output

can be fiber-coupled and detected by PMTs (not shown) [331. Repumping lasers at

935.2 nm (to depopulate the 2D3/2 state) and 638 nm (to depopulate the 2F7 /2 state)

are sent through the other end of the optical cavity for easy alignment to the ions

(but the cavity mirror reflectivity is near zero at those wavelengths). Finally, the

cavity is stabilized by locking it to the 402 nm transfer laser, which does not affect

the ions and is in turn locked to a reference cavity (not shown). All the 369.5 nm

lasers are also locked to the reference cavity, which can be tuned via a piezo to tune

the frequencies of the whole system (369.5 nm lasers, experimental cavity and optical

lattice).
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Chapter 4

Linear microfabricated Paul trap

4.1 Trap potentials

Our linear Paul trap is a microfabricated planar-electrode ion trap with gold elec-

trodes on a quartz substrate [33, 34, 29], shown in Fig.4-la. Radio-frequency (RF)

voltage at WRF = 27r x 16.160 MHz and VRF ~ 100 V amplitude is applied to two

electrodes spanning the length of the trap (colored in green), while the rest of the

electrodes are tied to ground at RF frequencies via capacitors [34]. This produces a

transverse pseudopotential shown in Fig.4-1c, with a minimum at 134.5 pm from the

electrode surface, typical radial trapping frequencies w, ~ 27r x 1 MHz, a Mathieu

parameter q ~~ 0.2 and a trap depth of 600 K along the weakest confinement direc-

tion away from the chip surface (-y). In practice, the trap depth is usually increased

significantly by applying a DC quadrupolar field that provides additional confine-

ment along the weak y-axis at the expense of deconfinement along the z-axis. This

is achieved by applying a negative DC bias voltage of a few volts (typically -2V)

to the RF electrodes. As a result of this DC quadrupole field, the y- and z- trap-

ping frequencies differ on the order of ~100 kHz. In addition, we apply a tilted DC

quadrupole in the transverse plane that results in rotated trap eigenaxes to ensure

that both trap eigenaxes can be cooled by beams that come in parallel to the trap

surface. The tilted quadrupole is produced by applying a positive and negative DC

voltage (typically 0.5V) on the two RF electrodes and compensating the dipole field
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using an opposite-polarity voltage on the large DC electrodes on the respective sides.

The trap is equipped with 24 large DC electrodes, controlled by a multichannel

-30V to +30V 16-bit digital-to-analog converter (DAC) (with a 15Hz 3-pole low-

pass output filter), for finely shaping the axial potential, and for compensating stray

electric fields that lead to micromotion in the transverse plane (see subsection 4.3).

Two pairs of these electrodes (indicated in Fig.4-la) are also used to move the ions

in the axial direction along the optical lattice in friction experiments. This is done

at frequencies between 0.5Hz and 64kHz from an AC source, requiring the correction

of the source waveform by the inverse filter function of the low-pass filter with corner

at 2.1kHz near the trap chip, and of the high-pass filter with corner at 0.5 Hz, which

AC-couples to the output of the DAC.

A split central electrode with a periodic structure, shown in Figure 4-1b, allows

the axial trap to be sectioned into an array of 50 separate microtraps along the

cavity mode, spaced by 160 pm, by applying a negative DC voltage to the inner

periodic electrode and a positive DC voltage to the outer periodic electrodes. The

ratio of outer-electrode voltage to inner-electrode voltage of -0.95 was chosen to cancel

the displacement of the trap in the direction perpendicular to the chip surface (as

measured by micromotion in that direction; see subsection 4.3). This way, the axial

(x) vibrational frequency wo/(27r) at the positions of the microtraps can be precisely

and conveniently adjusted in the range 20 kHz - 1 MHz with 0.1 kHz resolution enabled

by the large dynamic range of the DAC (this is used to finely tune the matching of

an ion crystal to an optical lattice as described in section 10.4). Note that axial

frequencies at the low end of this range are plagued by slow drifts of the ion position

on a typical scale of one lattice constant per hour, due to the weak confinement and

drifting stray electric fields.
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Figure 4-1: (a) Trap chip schematic. RF voltage is applied to the electrodes shown
in green; the rest are grounded at RE. (Note that the central electrodes colored
in blue and red could also be driven at RF by removing their capacitors, which
are outside the vacuum chamber; this would allow moving the trap minimum to a
different distance form the electrode surface.) The large rectangular electrodes are
DC electrodes for axial potential shaping and micromotion compensation. The ions
can be moved axially at AC by driving the two pairs of these electrodes filled with
the dot pattern (for small displacements), or the two pairs filled with the dashed
pattern (for large displacements). For the nominal wo/(27) = 364 kHz, the first set
gives 0.022a displacement per +/-lmV on the two pairs (where a = 184.75 nm is the
lattice constant), and the second set is 18 times more coarse. (b) Periodic electrodes
for producing an axial array of microtraps. A close-up photograph of the periodic
electrodes is shown (colored in blue and red in (a)) together with the potential that
they produce at 134.5 pm from the surface. (c) Transverse pseudopotential produced
by the RF. The equipotential contours are spaced by 5mV. (d) An image of Yb+ ion
chains (1-D crystals) loaded in the microtraps. (e) An image of Yb+ 3-D crystals
loaded in the microtraps, with trap electrodes illuminated in the background. (f)
Single Yb+ ions in microtraps. (g) A large elongated Yb+ ion crystal with periodic
potential off.
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4.2 Trap characterization and modeling

The key parameters characterizing an ion trap, which is typically very harmonic

even for large ion motional amplitudes, are the vibrational frequencies in the three

directions {wo, wo, w2}/(27) (the RF-free axial direction x and the two transverse

directions {y, z}, respectively). These vibrational frequencies can be measured by

"tickle spectroscopy". A small-amplitude AC voltage is applied to a set of electrodes

that couples to the desired direction and the frequency Wtickle of this excitation is

swept. Vibrational resonances show up as heating and delocalization of the ion, seen

as blurring of the ion image on the camera in the direction in question. Note that in

practice, we usually apply this voltage to the RF electrodes at WRF + Wtickle and drive

vibrational resonances using the beatnote with the RF trap drive. At large enough

amplitude and weak enough cooling, ion motion in any of the three directions can be

excited this way.

We must control precisely the axial vibrational frequency wo/(2w) to place the

ions in a chain at well-defined spacings with respect to the optical lattice (see sec-

tion 10.4). The typical width of the axial vibrational resonance that we observe is

~ 0.3 kHz under Doppler cooling at A/(2-F) ~ 50 MHz detuning, and the resonance

typically does not drift by more than its width over the course of a day at the nom-

inal vibrational frequency of wo/(2w) = 364 kHz (with axial confinement produced

primarily by the DC electrodes, and only a weak voltage < 500mV applied to the

periodic electrodes for fine-tuning).

Radial vibrational frequencies wy,2 of the Paul trap are usually held fixed, and from

the corresponding measured vibrational resonances and the known trap RF frequency

WRF one can calculate the trap Mathieu parameter as q = 2V2-. wy,Z/wRF and the

RF voltage on the electrodes as VRF = q jF (in the limit w, << wy,z and with

transverse DC quadrupolar fields set to zero). The constant C = 1.7 x 10 7 m- 2 is a

constant specifying the geometry of the RF electric fields at the trap center 134.5pam

from the surface (C it is the curvature of the potential producing these fields).

The potential distribution above a planar trap (and the constant C) can be cal-
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culated analytically as a superposition of contributions from all the electrodes, where

the potential distribution above a rectangular electrode carrying voltage V and the

rest of the plane at ground is given by

(2y (l

tan-2y 
(l

tan- (2y

tan-(2

(l + 2x)(lz + 2z)

+ 2x) 2 + (lz + 2z)2

(lx - 2x)(lz + 2z)

-- 2x)2 + (lz+ 2z)2

(lx + 2x )(1z - 2z)

+ 2x) 2 + (lz - 2z) 2

(lx - 2x)(lz - 2z)

- 2x)2 + (lz - 2z) 2

where l, x lz are the electrode dimensions. A voltage point source at the origin

on a ground plane gives a potential distribution (obtained using the approach in ref.

[35])

V(x, y, z) = VO y
(X2 + y2 + Z2)3/2

(4.2)

Formula 4.1 then comes from integrating the point source location over the rect-

angular electrode region.

4.3 Micromotion compensation

If a DC electric field Ej displaces an ion from the null of the RF electric field

quadrupole by 6i = 'Ej, the larger amplitude of the RF field at the new position

results in an excess micromotion amplitude given by

1
ui = -jq

2
(4.3)

where q is the Mathieu parameter and i = {z, y} refers to one of the eigendirections

in the RF plane. This excess driven motion can heat a trapped ion chain, so it is

important to compensate the background electric field Ej, which can be appreciable
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and also changing overtime in the vicinity of dielectric surfaces, such as the optical

cavity mirrors, and in the presence of high-intensity light, such as the optical lat-

tice, which can create charges on surfaces. In directions parallel to the planar trap

(z), micromotion is compensated using the standard method [361 by detecting and

minimizing the modulation of scattered fluorescence due to the micromotion-induced

Doppler shifts of an addressing beam in the same direction.

Micromotion compensation in the direction perpendicular to the trap (y), however,

is more tricky. The main issue with applying the traditional method is that the

intense UV light addressing an ion's cycling transition causes charge build-up on

the trap surface when shining directly on it ([37]). Because of close proximity of

the trap surface to trapped ions in planar traps, this is detrimental to maintaining

stable trapping potentials. This was verified to also be a problem for our trap and

the 369.5 nm light used for the 2S 1/2 _ 2P1 /2 cooling transition in Yb+. Instead, we

probe micromotion-induced Doppler shifts orthogonal to the trap using a 935.2 nm

laser beam which is used to repump the ion from the 2D3/2 state via the 3D[3/2]11/2

state (Fig.4-2a). This approach is motivated by the fact that lower-energy photons at

R5. 9 nm 1n nnot activTatP inoniiation prnoPesse nn the frap Qurfce itat f ad tri rhargLing

(this approach was also taken at Oxford [38]). The linewidth of the 3 D[3/2]1/ 2 state

is - 27r x 3.8 MHz, with a dominant decay to the ground state [39]. This is narrow

enough to resolve sidebands at WRF = 27 x 16.160 MHz put on the 935.2 nm transition

by the micromotion. As the frequency of the 935.2 nm repumper is swept across

the Bessel micromotion spectrum, the varying repumping efficiency modulates the

population in the cycling manifold, and consequently the fluorescence collected at

369.5 nm, resulting in a frequency-domain Doppler spectrum of micromotion (Fig.4-

2b). An additional advantage of this method is that a very small amount of 935.2 nm

light (~ 100nW, ~ 500pm focus) is sufficient to effectively repump the ion when it

falls to 2D3/2 from the 2P1 /2 state 0.5% of the time (the linewidth of the 2P1 /2 state

is 27r x 19.9 MHz). This further mitigates any charging effect because very little light

is directed at the ion trap surface, while maintaining the large fluorescence signal

provided by cycling on the broad 2S1 /2- 2P1 / 2 transition.
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Figure 4-2: (a) A simplified atomic level scheme for 174Yb+, showing the scheme for

micromotion compensation of the trap direction perpendicular to the trap surface,
using the 935.2 nm repumper to resolve RF sidebands. Fluorescence is detected
at 369.5 nm, modulated by changing repumper efficiency as the repumper is swept
through the micromotion spectrum. (b) A typical observed spectrum of micromotion
in the perpendicular direction (y) for different values of the compensating voltage

("dy") applied to all the electrodes on the chip with respect to the vacuum chamber
ground.

The micromotion modulation spectrum is characterized by the modulation depth

7r qy- 
(4.4

where A is the wavelength of the probing light (935.2 nm in our case). For a reasonably

compensated ion, where 3 << 1, the ratio of the first sideband to the carrier gives

(4.5)

Combined with equations 4.4 and 4.3, this leads to a micromotion amplitude

perpendicular to the trap given by

(4.6)u~ 1 
2

12A J1
2

where J12 and J2 are the measured values of the first sideband and the carrier in the
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spectrum. Experimentally, sidebands can be suppressed down to a fraction of 1/20 of

the carrier (limited by the signal-to-noise ratio of the measurement), corresponding

to a residual micromotion amplitude of 47 nm (or 5% of the wavelength at 935.2 nm).

For our typical trap parameters giving a vibrational frequency wy = 27r x 1 MHz and

a Mathieu parameter qy = 0.2, this gives a bound on the residual electric fields at

Estray = 33 V/m.

4.4 Deterministic trap loading

Yb+ ions are produced by a two-step photo-ionization [33, 40, 41] of the effusive

atom flux from a resistively heated oven. The flux is collimated, and to avoid coating

the trap, angled away from the chip surface. The ionization is accomplished by

resonant excitation on the 399 nm 'So-P1 neutral Yb transition perpendicular to

the oven flux, combined with one-photon ionization via 369 nm light built up in the

cavity mode (see Figure 4-3). The intra-cavity intensity of the 369 nm light can be

continuously controlled up to a maximum of 2 kW/cm 2, resulting in a loading rate of

-2 ions/second. Addressing the coldest direction (perpendicular to the flux) of the

atomic beam with the 399 nm light minimizes Doppler broadening and resolves the

different Yb isotopes of interest, which are spaced by at least 250 MHz in frequency.

This allows us to achieve isotopic purity of our ion samples in excess of 90% (see

Figure 4-3b).

Our ability to control the loading rate and the shape of the axial potential permits

the loading of a controlled number of ions into a long isotopically pure ID crystal in

the trapping region. By applying a DC periodic potential, we can split this crystal

between the individual trap array sites with up to 20 ions per site. The crystal

order of our sample resulting from the strong ion-ion repulsion pins each ion with

respect to the applied periodic potential, causing the ion crystal to be split at defined

positions and resulting in a deterministic loading of the microtrap array. By ramping

the periodic potential up and down multiple times and counting the number of ions

loaded into each array site, we collect statistics that show highly suppressed ion
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Figure 4-3: a) Trap loading configuration. 399 nm light perpendicular to the thermal

atom beam excites the isotope of choice to the 1P1 excited state, from which ionization

to the continuum proceeds via the cavity-enhanced 369 nm light. b) Isotopically pure

ID crystal of 23 ions of 1 4Yb+ in a harmonic potential. Ions of a different isotope

would be off-resonant with the excitation light and would appear as dark gaps in the

chain.

number fluctuations, as shown on Figure 4-4. This can be quantified using the Fano

factor, which is defined as the ratio of the ion number variance to the mean number

of ions loaded in each trap. This factor is unity for a Poisson process, which would

be expected for weak interactions. We typically observe Fano factors less than 0.1.

The deterministically loaded array of microtraps that we demonstrated could be

used for quantum information processing with cavity photons connecting the quantum

ion registers at each microtrap [33, 19]. For friction studies at the level of a single-

asperity nanocontact discussed in this thesis (part II), we always use a single microtrap

holding a 1D ion crystal of deterministic size obtained by turning the 399 nm "loading"

light off once the desired number of ions has been loaded. Future friction experiments

in this system, however, could potentially explore multi-asperity friction by rubbing

an array of ion chains, loaded into the different microtraps, against an optical lattice.

In that case, the observed deterministic ion loading into the microtraps would come

in handy again.
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Figure 4-4: Typical ion number histogram for an array site after splitting a longer

chain repeatedly with the periodic potential. The red dotted curve is the Poisson

distribution with the corresponding mean. The Fano factor at this site is 1.6%. The

Fano factor at any site of the array is <10%, limited by residual isotopic impurity.
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Chapter 5

Optical cavity and intracavity lattice

The planar ion trap discussed in the previous chapter has been carefully integrated in

vacuum with a cavity at the 369 nm optical wavelength (more details can be found in

references [33, 34, 42]). The cavity can be used as a quantum interconnect between

the ions trapped in the cavity for quantum information processing [191, or it can be

used to generate a strong intracavity optical lattice for studying trapped-ion crystals

in a periodic potential (i.e. friction, which is the focus of part II). Additionally,

it can be used for collection of photons emitted by ions, for spectrometry on this

emitted fluorescence [33], for measuring ion temperature (chapter 6.4), and finally,

for measuring ions positions with sub-wavelength resolution (chapter 7) - a key tool

ion our "friction microscope".

The near-confocal cavity, with its axis aligned with the RF nodal axis of the Paul

trap, has a length of 2.2 cm, a TEMOO mode waist of wav = 38pm and a finesse

of F = 7r/(T + L) ? 1.4 x 103 (latest measurement), dominated by loss L. The

transmission coefficient for each mirror of T = 1.8 x 10-4 was quoted by Advanced

Thin Films and we independently measured it to be (2.9+0.2) x 10-4. The finesse has

degraded from the initial finesse of F ~ 12.5 x 103 as a result of loss increase over time

(accelerated during the bake), induced by depletion of oxygen from the outer-most

dielectric layer Ta20 5 . Our publication in reference [43] details a systematic study of

this process and outlines a finesse recovery method with oxygen treatment.
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5.1 Cavity for fluorescence collection and spectrom-

etry

Photons scattered from the ions due to excitation by 369.5 nm light from the side of

the cavity can be collected by the cavity (see Fig.5-la). The number of these photons

measured at the cavity output can be used to determine the coupling strength between

the ions and the cavity, relevant for using photons as quantum interconnects, but also

for the overlap between the trapped ions and a cavity-generated optical lattice for

friction studies. In addition, as the cavity length is scanned via a piezo, the spectrum

of the emitted fluorescence is obtained with a resolution of Awres = 27 x 7.5 MHz given

by the convolved linewidths of the drive laser AWlaser and of the cavity rK. Two spectra

are shown in Fig.5-1b. The blue spectrum shows the energy-conserving scattering of

monochromatic light from the 2-level atom, where the collected fluorescence at the

peak is in good agreement with the expected value for ions trapped at the center

of the cavity mode, testifying that the desired overlap betweens the ions and the

cavity (i.e. the lattice) is achieved (more details can be found in our publication

[331). The red spectrum shows sidebands due to uncompensated micromotion in the

direction of the side excitation beam (z). Note that this signal can also be used to

effectively compensate micromotion in this direction parallel to the trap surface, or

any micromotion along the cavity/lattice axis (x) due to stray RF fields.

The collected fluorescence also depends on the position of the ion relative to

the lattice. For a perfectly localized ion at a cavity node, coupling is zero, and no

fluorescence should be collected, while at a cavity antinode, maximal coupling should

result in maximal collected fluorescence. Thus, the observed fluorescence at the cavity

output can be used to determine an ion's position modulo half-wavelength A/2 =

184.75 nm with spatial resolution limited by photon shot-noise and temperature. At

finite temperature, as the ion's thermal position distribution broadens, the contrast

of the position-dependent fluorescence signal decreases, which can, in fact, be used to

measure the ion's temperature. Fig.5-2 shows the modulation of fluorescence collected

by the cavity as the ion, confined in a tight axial trap at wo = 27r x 1.14 MHz, is moved
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along the cavity axis. For friction experiments in a lattice, subwavelength position

detection of ions and measurements of ion temperature are based on the same concept

as presented here: ion fluorescence, this time collected from the side with the imaging

system, is modulated by the position of the center of an ion's position distribution,

and depends also on the width of this distribution (see chapter 7 and section 6.4).
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Figure 5-1: (a) Set-up for fluorescence collection and spectroscopy via the cavity.

Doppler cooling light perpendicular to the cavity-trap axes is scattered into the cavity,
which acts as a tunable spectrometer. The light exiting the cavity is coupled to a

single-mode fiber and detected by a PMT. For results shown in this section, incident

light is linearly polarized in the direction perpendicular to the cavity-trap axes, and

collected photons are polarization-analyzed in the same direction. (b) Single-ion

fluorescence spectra collected by the cavity for a well-compensated ion (blue) and

an ion decompensated (red) in the direction of the Doppler cooling beam by a DC

electric field of 65 V/m. The 1st-order micromotion sidebands show up clearly and

a 2nd-order sideband is also visible on one side. The asymmetry in the spectrum is

due to higher scattering rate on the side closer to atomic resonance; the grey dotted

curve shows the calculated dependence of the photon scattering rate on the detuning.
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Figure 5-2: Fluorescence from a single Doppler-cooled ion collected by the cavity

resonant with the cooling laser as a localized ion is transported along the cavity

mode. The observed mode visibility is 65%, corresponding to an ion temperature of

1.6 TD and a thermal RMS spread of the ionic position distribution of 27 nm. (Here

TD= 'hF/kB is the Doppler limited temperature.)
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5.2 Intracavity optical lattice

For the optical lattice forces to dominate over the Coulomb forces in an ion trap,

lattice confinement at a periodic potential minimum, or deconfinement at a maximum,

must overcome the confinement of an ion at its position in an ion crystal by its

neighbours. In other words, if WL is the lattice vibrational frequency given by

2 2 i [1~ a 22
WL 2 ma1 + cos(27--))] 2 (5.1)

L Mx (92X0 12 a ma 201

then we roughly want WL ;> Nwo. In other words, for axial trapping frequencies in the

Paul trap on the scale of 100 kHz, and a few ions forming a chain in the trap, WL/27 on

the scale of 1 MHz is desired. With a = A/2 = 184.75 nm, this corresponds to lattice

depths U/h on the scale of 30 MHz - larger than the linewidth of the 2S1/ 2 _ 2P1/2

transition at F = 27 x 19.9 MHz. This brings two challenges: generating such a deep

optical potential and cooling the ions in it (see chapter 6). The optical potential is a

result of the AC Stark shift of the ground-state energy, which is proportional to the

optical intensity. When available laser power is limited, using a cavity can enhance

the maximum intensity by a factor of 4F/w by exciting an intracavity standing wave.

The depth of the optical lattice is then given by

I I I ]p2
U - x 1 (5.2)

3 2 Is 6L

where I is the maximum intracavity intensity, I = 50 mW/cm 2 is the saturation

intensity, 6L is the detuning of the lattice and I is the Clebsch-Gordan coefficient3
for the T-polarized optical transition J = 1/2 - J = 1/2. With a few mW of

laser power available to pump the cavity near 369 nm, even with the cavity-enhanced

intensity, a relatively small detuning on the scale of 10 GHz is required to produce

lattices of desired depth U. Since our cavity is resonant with Doppler cooling lasers,

the lattice detuning must equal an integer number of cavity free spectral. ranges of

WFSR = 2w x 6.4 GHz. In the experiments described in this thesis, a lattice detuning

of 6L = + 2WFSR was used, blue-detuned relative to the 369.5 nm atomic transition.
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Three independent ways have been used to calibrate the strength of the lattice

potential actually experienced by the ions. The most indirect and least accurate

way is to measure the cavity-transmitted power Pst of the laser used to make the

optical lattice and to obtain the maximum intracavity intensity via the independently

measured mirror transmission coefficient T and cavity waist wa:

P0 nt 2o= t 2 (5.3)
T 7rwca

Then equation 5.2 can be used to calculate the lattice depth, assuming ions trapped

at the center of the cavity waist, which was inferred to be the case (albeit with a

large error margin) from measuring the fluorescence collection by the cavity (previous

section).

A more accurate measurement is done by vibrational spectroscopy of a single ion

trapped at a lattice site. This can be done by measuring the spacing of axial vibra-

tional sidebands in the fluorescence spectrum of sideband-resolved Raman cooling (see

chapter 6), or via tickle spectroscopy, where the ion's vibrational motion is excited by

weakly modulating the lattice intensity and observing a fluorescence increase when

the ion heats up (see Fig.5-3). Consider an ion placed at a lattice minimum (node),

which can be done by observing its position-dependent fluorescence, either collected

by the cavity from side beam excitation, as in Fig.5-2, or collected from the side using

a close-detuned beam resonant with the cavity (which gives a similar signal). In this

case, the lowest-order observed vibrational resonance is given by Wres = W + W L,

and WL can be extracted by doing and independent measurement of wO via tickle

spectroscopy with the lattice potential turned off (see chapter 4).

We found that tickle vibrational spectroscopy in the lattice results in a lattice vi-

brational frequency WL underestimated by 5%, by benchmarking the measured single-

ion stick-slip friction force against the expected value from the Prandtl-Tomlinson

model in the high-velocity, temperature-independent regime at j = 4.6 (see part II).

We believe the latter to be the most accurate measurement of the lattice depth in

our system, and subsequently use it for friction studies with multi-ion crystals.
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Figure 5-3: A typical vibrational spectrum of a single ion in a lattice, obtained

by weakly modulating the lattice intensity and sweeping the modulation frequency.

The narrow first-harmonic resonance at 700 kHz roughly gives the lattice vibrational

frequency wL/27r, which corresponds to a lattice depth U = 27rh x 15 MHz. The

broad resonance around 1400 kHz corresponds to parametric heating at twice the

vibrational frequency. The positions of the resonances scale as the square root of the

lattice intensity, as expected from formula 5.1.
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Chapter 6

Ground-state cooling of ions in a

lattice

6.1 Challenges

6.1.1 The Doppler cooling problem

Cooling an atom deep into an optical lattice, such that kBT << UL, requires elab-

orate cooling methods, since the most basic Doppler laser cooling works poorly if

one considers how an optical lattice destroys the conditions required to achieve the

Doppler cooling limit.

Consider an optical transition in the atom with a large oscillator strength (for

example the S-P transition in Yb+ or a neutral Alkali atom). Given the natural

linewidth F of the transition (F = 21r x 19.9MHz for the 369.5 nm 2S 1/2 - 2P1/2

transition in 174Yb+ ), the temperature limit kBTD = hF/2 for Doppler cooling on

this transition can be achieved at the optimal detuning of 6 = F/2 = kBTD/h of the

laser from the transition [44, 45]. An optical lattice is a spatially periodic AC Stark

shift of the ground-state energy that results in the desired periodic potential [44, 45].

The AC Stark shift results from an admixing of the excited states by the interaction

of the atom with the standing wave of light, and the excited states are in turn shifted

with opposite sign due to the admixing of the ground state. As a result, in general,
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the optical transition is spatially modulated as well. In a 2-level system, the AC Stark

shift of the optical transition is modulated between 0 and AAC = 2UL/h. Because of

this, kBT << UL cannot be achieved because, roughly speaking, that would require

6 << AAC/2 to achieve the Doppler limit, but 6 is modulated by the Stark shifts at

least up to the value AAc.

This problem can be mitigated using a number of different schemes. One approach

is to use a magic-wavelength optical lattice [44, 45], which results in equal AC Stark

shifts of the ground state and the optically cycled excited state as a result of the

admixing of other excited states. This cancels the spatially-dependent AC Stark shift

of the optical transition used to cool the atom and the optimal detuning can be dialed

in for reaching the Doppler cooling limit.

Another approach, which we take in our system, is to perform Raman cooling

[46, 47, 48, 49]. In this approach, the far-detuned Raman transitions between ground-

state sublevels are insensitive to the differential AC Stark shift between the ground

and excited states, and the effective linewidth of these transitions and the correspond-

ing Doppler cooling limit can be tuned via the scattering rate of a pumping beam,

and can therefore be significantly reduced. Furthermore, with resolved-sideband Ra-

man cooling where the red vibrational sideband is addressed by the narrow Raman

transitions and where momentum diffusion is suppressed by the confinement, the ion

can be prepared in its ground state of motion in a lattice site [50].

6.1.2 The temperature measurement problem

Time-of-flight temperature measurements, that work for neutral atoms by releasing

the trap and converting momentum to position for imaging, do not work for trapped

ions, because of poor number statistics, and because of the difficulty of switching

off the trapping electric fields without adding energy to the ions. Making use of the

tight confinement of ions in the trap, one way to measure temperature is via the

asymmetry of response to excitation of red and blue motional sidebands, which works

in the sideband-resolved regime. The asymmetry is strong when the occupation of the

ground vibrational state is high, but the signal disappears for higher temperatures.
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The temperature measurement scheme which we implement (see section 6.4), in-

volves a direct measurement of the width of the ion's position distribution using a

spatially structured probe (a close-detuned standing wave). This method does not

require operation in the sideband-resolved regime or a large ground-state occupation.

6.2 Basics of Raman cooling

6.2.1 Raman-Doppler cooling

The idea behind Raman-Doppler cooling is to create an effective 2-level system in the

ground-state manifold of the atom, with an effective linewidth and the corresponding

Doppler cooling limit controlled by an optical pumping laser. Consider an atom with

the ground state and the excited state having 2 sublevvls each: |g1), |g2) and |ei),

Ie2), respectively (see Fig. 6-1). Optical pumping from g2) to Igi) (by the beam with

Rabi frequency Q,) limits the lifetime of state 1g2), resulting in a linewidth of this

state given by the pumping rate FP. Two laser beams (Rabi frequencies Qa and Qb)

far-detuned from the excited state (6a >> F) drive a stimulated 2-photon transition

between Igi) and 192) at a 2-photon detuning A2 and a 2-photon Rabi frequency

02 =26,

The rate of photon scattering by a 2-level atom is given by

F 2(Q/F) 2

SC 2 1 + 2(Q/F) 2 + (26/F) 2

This means that the scattering rate from the effective 2-level system {jgi), g2) } is

given by
FP 2(Q2 / p) 2

= -F(.2
sc 2 1 + 2(Q 2/FP) 2 + (2A 2 /Fp) 2  (6.2)

The linewidth Fp is in turn given by the pump scattering rate

FP 2 (QC/F)2(63F~ = F63
2 1+ 2(Qc/F) 2 + (26c/F) 2

(ignoring the Clebsch-Gordan coefficients for now) with the corresponding Raman-
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Figure 6-1: Raman cooling basics. Ground sublevels Igi) and 1g2) form a 2-level

system with a linewidth of Fp, driven at a 2-photon Rabi frequency Q 2 = 2.

Doppler cooling limit kBTRD= hp/2, tunable via the intensity of the pump beam

Qc or its detuning 6c.

To see the Doppler cooling mechanism in Raman-Doppler cooling, consider an

atom moving at velocity V. In the moving frame, each laser beam is Doppler-shifted

by -k -& (where the wavevectors k of the beams have nearly equal magnitudes) and

the 2-photon detuning is shifted by - (ka - kb) -. Then the average force on the

atom, due to the 2-photon Raman transitions as a result of absorbed and emitted

photon recoil (in beams Qa and Qb respectively), is given by

__#. _#_# _*)r 2(Q2 /FP)2
FR(&) = h(ka - kb)'Ye(&) = h(a - kb2 1 2 - 2 (6.4)

1 -+ 2(Q2 /Fp)2 + 2 k o

Clearly, only the counter-propagating projections of the Raman beams contribute

to this radiation pressure force. Fig. 6-2 shows this force on the moving atom as
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a function of velocity for red (A 2 < 0, Fig. 6-2B) and blue (A 2 > 0, Fig. 6-

2C) two-photon detunings. When A 2 < 0, a large positive force decelerates atoms

moving in the negative direction, leading to a cooling effect, whereas when A 2 > 0,

the opposite happens: a large positive force accelerates atoms moving in the positive

direction, leading to heating. When cooling, there are also weak accelerating forces for

positive velocities, but in a confining trap, they are overcome by the much stronger

decelerating forces during the other half of an oscillation period. In order for the

radiation pressure force to decelerate the atoms at all velocities, two additional beams

can be added (Fig. 6-2D), identical to the first two Raman beams, but with their

propagation directions switched (one can also switch their polarizations as shown in

Fig. 6-2E). This results in a viscous cooling force for all velocities as shown in Fig.

6-2F.

A) k kb

k*Ml -

A2<O
cooling

C)
heating

(k-kb)v

E)

ka kb

kb ka

--

F)

(A-k1

Figure 6-2: Doppler cooling forces.

Note that there is an additional radiation pressure force along k, due to the optical

pumping beam Qc, given by Fc(i6) = hkcyc(&). It can enhance or reduce the velocity-

dependent forces in the Raman cooling direction of ka - kb depending on whether the
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component of k, in this direction is parallel or anti-parallel. In addition, the pumping

rate and effective linewidth F, is dependent on velocity along k, due to Doppler shifts:

F 2(Qc/F) 2  (6.5)

1 + 2(Qe/F) 2 + (2-

This provides some standard Doppler cooling in the direction kc if 6 < 0. (In the

limit where the 2-photon transition saturates Q 2 >> F,, basic scattering from the

excited state is recovered ]p((6) -+ F,()/2 and we get back to the original Doppler

limit kBTD = hF/2 along k,). Note that this velocity dependence of rp does not

affect the Raman cooling process in equation 6.4, where an effective F, can be used

as long as k, is perpendicular to the Raman cooling direction, in which case FP is

uncorrelated with velocity in the Raman cooling direction, and the effective F to be

used in equation 6.4 only depends on the width of the velocity distribution in the

direction kc.

6.2.2 Raman sideband cooling

As the effective linewidth of 2-photon transitions FP is reduced to lower the cooling

limit, one enters the regime where it becomes smaller than the trap vibrational fre-

quency (Fp < wo) and vibrational sidebands are resolved. The picture of optically

pumping down the ladder of vibrational energy eigenstates is more appropriate in

this strong confinement regime, rather than the picture of momentum eigenstates

and velocity-dependent scattering invoked thus far. The basic idea is that the stimu-

lated 2-photon Raman transitions tuned to a red sideband remove vibrational quanta

from the atom and change its internal state from 1gi) to 1g2), then the optical pump-

ing closes the cooling cycle by bringing the atom back to Ig1) without changing the

vibrational energy thanks to Lamb-Dicke confinement.

Depending on the 2-photon detuning A2, the stimulated 2-photon Raman process

can drive i) carrier transitions In) -+ In), which do not change the vibrational energy

of the atom, when A 2 = 0, ii) blue sideband transitions In) -+ In + 1), which add 1
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vibrational quanta, when A 2 = +lwo, or ii) red sideband transitions In) - In - 1),

which remove 1 vibrational quanta, when A2 = -lo (see Fig. 6-3). The spatial

component eiAkx of the electric field operator couples the vibrational levels via Akx

2k( 2mo/(a + at) = 2TLD(a + at). Here rJLD = rec )1/ 2  w0 ))1/2 is the

Lamb-Dicke parameter equal to the square root of the ratio of the photon recoil

energy and the trap vibrational quantum (where x is the atom's external coordinate

in the Raman cooling direction, Ak = 2k is the photon momentum transferred by

the Raman beams assuming that they are counter-propagating and a and at are the

harmonic oscillator annihilation and creation operators). Under strong Lamb-Dicke

confinement TiLD << 1 the coupling operator can be expanded in a Taylor series in
iAkx 1 - T1i2 +0(q

rLD as e %LD(a + at) - 2r D(a + at)2  D). The first term only

couples carrier transitions, the second term can add or remove a single vibrational

quantum (bringing out the prefactor V/n +1 or \rii) corresponding to first-order blue

or red sidebands, respectively, the third term corresponds to second-order sidebands

(bringing out the prefactor V(n + 1)(n + 2) or rn(n - 1)), and so on. The coupling

rate of Raman transitions on a sideband 1 is therefore down from the carrier rate due

to a factor on the order of ni'r1D. In other words, sideband transitions are strongly

suppressed under Lamb-Dicke confinement when an atom is cold. However, they can

still be driven selectively by the stimulated 2-photon Raman transitions by choosing

the 2-photon Raman detuning as explained above. The pumping process, on the

other hand, involves a spontaneously emitted photon predominantly on the carrier

because of the Lamb-Dicke suppression of sidebands. (Note that absorption of the

pump photon can remove vibrational quanta if 6, < 0, but the sidebands are not

resolved since F >> wo, and this corresponds to the additional Doppler cooling by

the pump in the direction kc described in the previous subsection).

For cooling, usually the 2-photon detuning is tuned to the first-order red sideband

to remove one energy quantum hwo per cooling cycle. If the 2-photon transition is

not saturated (Q 2 << Fr), then

2 QD
'sc(In)-+n-1)) e, 2  (6.6)

p
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where Q 2 here is the carrier 2-photon Rabi frequency. The cooling rate (ignoring

pump absorption) is then

dE 2

dt- = 'sc(In)-sn_1)) = nrhwrecyQ (6.7)

and the cooling rate constant is

1 1 dE 1 dE 2 rD =~L --=2 (6.8)
Tcool(RS) E dt nhwo dt 17

We can rewrite this Raman sideband cooling rate constant (RS) and compare it

to the Raman-Doppler cooling rate constant at optimal 2-photon detuning (RD):

1 =FWr 2( 2I FP rec ,2 2 p < o I A2 =-WO
Tcool(RS) Wo FP2 (6.9)

= 8wrec ,2 17 >> WO , A2 = -- 7p/2
Tcool(RD) ( P p

One can see that for a fixed resonant saturation parameter so = 2( -2)2, as I, is

lowered beyond 1P < wo, entering the resolved-sideband regime, the optimal cooling

rate constant starts to drop linearly.

Furthermore, the temperature limit begins to be limited by the trap frequency.

It can be found by equating the cooling rate on the 2-photon resonant red sideband

to the heating rate on the off-resonant (by 2wo) blue sideband. This gives L =

1 + (4W)2 = ekBT and the following relations for the mean vibrational occupation

and temperature at the Raman sideband cooling limit:

4wo (6.10)
kBTRS ()6

In (1 + 1/h)

In other other words, with better sideband resolution, sideband cooling allows a high-

fidelity preparation of the motional ground state, but the absolute temperature only

goes down logarithmically with reduced effective linewidth r'.
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6.3 Lattice-assisted Raman sideband cooling of 17 4Yb+

in a lattice

We perform Raman cooling on the 369.5 nm 2S1 /2-2P1 /2 cycling transition in l"Yb+

that has an excited state linewidth of F = 27 x 19.9 MHz (see Fig.6-3). The ground

and the excited state both have total spin J = 1/2 with two magnetic sublevels. In

the ground state, the two sublevels Igi) and 1g2) correspond to the S= } electron spin

projections m, = -1/2 and m, = +1/2 on the quantization axis (z) defined by the

externally applied magnetic field B, with a Zeeman energy splitting given by

A Ez = ABgeS - 3 (6.11)

where 1-tB is the Bohr magneton and g, is electron's gyromagnetic ratio. This corre-

sponds to a ground-state splitting of AEz = 2wh x 2.8 MHz per Gauss of applied

magnetic field. As described in the section 6.2, in order to cool, we drive stimulated

2-photon transitions (via a virtually excited 2P1 / 2 state) between Im, = -1/2, n) and

|m, = +1/2, n' < n), flipping an electron spin and removing motional quanta. The

cooling cycle is closed via a pumping beam detuned from the 369.5 nm transition by

ec , 100 MHz and with a resonant saturation parameter near so 2.5. It drives

a spontaneous 2-photon transition back to im = -1/2, n'), which flips the electron

spin again and spontaneously emits a photon, but maintains the new vibrational level

n'. This gives an effective linewidth Fp to the ims = +1/2) sublevel on the scale of

27 x 100 - 500 kHz, near the edge of the sideband resolved regime for the typical

vibrational frequencies between 400 kHz and 1 MHz.

The cooling rate is proportional to the 2-photon Rabi frequency squared Q2 =

(O 2)2 . To minimize heating due to spontaneous emission from the 2P1 /2 excited

state, large detuning 6a/F is desired, which must be compensated by a large intensity

in at least one of the Raman beams (Qa or Qb) to achieve a desired cooling rate. The

criteria of large intensity and far detuning coincide with the criteria for an optical

lattice, and so we use the lattice itself, to drive at least the x-polarized leg of the
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(a)

lattice

7r + 7 G-

detuning 12.7 GHz

(b)

2s1/

lat

Raman pump o-
detuning 100 MHz

ni -4 ni

ni -* n -1

tice potential

electric field

Figure 6-3: Raman cooling scheme for l74Yb+. Two-photon cooling (7r and o-- beams

shown in purple) is done on the effective two-level system formed by m = 1/2

Zeeman sublevels of the ground 2S1/ 2 level, with an effective linewidth set by the

pumping rate (a- beam shown in cyan) to resolve vibrational sublevels at hw. In

(a), we show the cooling beam configuration used for friction experiments, where

both the 7r and a- components of the 2-photon Raman transition are due to a lattice

light, which is mostly linearly polarized (7r), but with a small circular polarization

impurity introduced to obtain the desired a- component. The momentum vector of

both components, and therefore the Raman cooling, is along the lattice direction, the

relevant direction for the 1D friction experiments. Some Doppler cooling is maintained

along the orthogonal directions due to pump beam scattering and a DC quadrupolar

tilt of the transverse trap axes. In (b), and illustration is shown of 2-photon scattering

spectra for an ion placed at a lattice minimum (node, shown in green), and for an

ion placed at a lattice maximum (antinode, shown in red). At the node, the carrier

transition is suppressed. At the antinode, it is much stronger and broader than the

sideband transitions, contributing to fluorescence even at a 2-photon detuning A 2

tuned to the red sideband n - n - 1. This gives the position-dependent fluorescence

signal for tracking individual ions, as discussed in chapter 7.
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stimulated Raman transition, as shown in Fig.6-3. The other leg of the Raman

transition can either be driven by a separate --polarized beam, or by a small o-

polarized component of the lattice itself. In either case, the 2-photon Rabi coupling

squared Q' = (,2O)2 is controlled by the intensity Q2 of the - component, since the

detuning 6a = 27r x 12.6 GHz is fixed at the lattice detuning and Q2 is fixed by the

lattice depth at Q2 = 3 x 26aU/h.

The 2-photon detuning A 2 is controlled via the magnetic field and the resultant

Zeeman splitting:

A 2 =-AEz - (we, - W,) - AAC,p (6.12)

Here w, and w, are the optical angular frequencies of the Raman beams. In the case

where the 7r and - components both come from the lattice, they are degenerate, and

formula 6.12 reduces to A2 = -- AEz - AAC,p. The shift AAC,p is due to an AC Stark

effect of the pumping beam, which changes with the pumping beam parameters and

consequently with the chosen linewidth F'y of the 2-photon Raman transitions as

AAc,p = x4 6 (6.13)

neglecting here for simplicity the effect of optical lattice Stark shifts on the pumping

beam detuning 6c.

Two representative Raman fluorescence spectra, obtained by scanning the z-component

of the magnetic field B, with the ion positioned at a lattice minimum, are shown in

Fig.6-4 in the Raman-Doppler cooling regime (Fig.6-4a) and in the sideband-resolved

regime (Fig.6-4b). In the Raman-Doppler regime, the fluorescence peak at A2 > 0

corresponds to ion heating, which results in increased fluorescence. The fluorescence

dips close to zero at A2 < 0, corresponding to near ground-state cooling (see next

section). Note the absence of the Rayleigh fluorescence peak at A2 ~ 0, which would

correspond to carrier n -+ n scattering. This coupling is suppressed at the lattice

minimum because the electric field coupling element sin(kx) ~ kx + 0((kx) 2) respon-

sible for the Raman transitions has no x0 term to give lowest-order coupling between

motional levels of equal vibrational quantum number (see Fig. 6-3b).
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Figure 6-4: (a) A typical Raman spectrum of pump fluorescence versus magnetic

field (or two-photon detuning A 2 ) in the Raman-Doppler cooling regime (at the edge

of the sideband-resolved regime) with the beam configuration shown in Fig.6-3a. The

dashed line indicates the approximate location of A 2 = 0, where a carrier peak would

appear if the Raman beams were running waves. For red-detuned Raman transitions

(to the right of the dashed line) cooling is observed as a drop in fluorescence to a level

of ~ 50 photon counts per second detected on the PMT. (b) A sideband-resolved

Raman spectrum of pump fluorescence versus magnetic field. Cooling resonances

show up as dips in the observed fluorescence (collected by the electron-multiplying

CCD camera.)
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In our paper demonstrating initial trapping and cooling of ions in a lattice [16]

(chapter 8), the stimulated 2-photon transitions were driven by the wr-polarized lat-

tice and separate --polarized beam. Ultimately, it was empirically found that the

scheme with the - component derived from the lattice was more robust for friction

experiments and was subsequently used for these experiments. Consider this second

scheme. The electric field matrix element that couples harmonic oscillator levels n

and n' of the im, = -1/2) and Imn = +1/2) ground sublevels is a multiplication of

the electric fields from the two Raman legs, and when both of them are driven by the

lattice standing wave, it gives

V,, = (n sin 2 (k(x - xe)) n') (6.14)

where x is the ion's motional coordinate in the lattice direction with respect to the

center position of the ion x, in the combined Paul trap and lattice potential, and

k = 2. Expansion of this for kx CX 7LD <K 1 gives

V,n, ~~$ (nI sin2 (kxc) - kx sin(2kxc) + (kx) 2 cos(2kxe) In') (6.15)

The lowest-order term x0 gives the n -+ n carrier coupling, which varies from zero

at the lattice minimum x, = 0 to largest at the lattice maximum x, = a/2 = A/4

(see Figs.6-3b and 6-5). The first-order n -+ n 1 sideband couplings (x' term) and

the second-order n --+ n 2 sideband couplings (2 term) vary sinusoidally with half

the period and out-of-phase with each other as a function of the ion's position x,

(Fig.6-5). Therefore, cooling on the first red sideband turns off at the lattice minima

and maxima, and is most effective at the slope of the periodic lattice potential. Cool-

ing on the second red sideband does the opposite, and works at lattice minima and

maxima. In friction experiments, where ions are dragged through the lattice, to main-

tain cooling for all positions in the lattice at a fixed 2-photon detuning, we operate

in the Raman-Doppler cooling regime near the edge of the sideband-resolved regime

(Fig.6-4a), where first-order sideband cooling and second-order sideband cooling can

both contribute. Furthermore, in this regime, the position-dependent variation of
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carrier scattering, which dominates the collected fluorescence signal even though the

2-photon detuning is off-resonant, can be used to track the position of ions relative

to the lattice with subwavelength resolution (see chapter 7).

lattice lattice lattice
minimum maximum minimum

1.0 2

n,n

- 0.8I
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) 0.1 0.2 0.3 0.4 015
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o 0.4
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ion position xc[a]

Figure 6-5: Variation of the vibrational coupling matrix elements (squared) with ion

position relative to the lattice. The carrier n -* n coupling varies from zero at lattice

minima to unity at lattice maxima (black). Variation of fluorescence from carrier

scattering can therefore be used to determine an ion's position relative to the lattice,
with subwavelength resolution limited by photon shot noise (see chapter 7). The

first-sideband coupling (red) goes from zero at lattice minima, to unity at the lattice

slope, and back to zero lattice maxima. The second-sideband coupling (orange) does

the opposite.
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6.4 Temperature measurement and ground-state cool-

ing

While the fluorescence in spectra in Fig.6-4 can be used to qualitatively infer the

temperature of the ion (low fluorescence corresponds to low temperatures, and high

fluorescence corresponds to high temperatures), the effects of temperature and of

Raman coupling, which changes with the 2-photon detuning 2 even at a fixed tem-

perature, are convolved. For example, at large negative 2-photon detunings, cooling

breaks down and temperature should increase again, but without cooling, no photons

are scattered and the fluorescence is no longer representative of temperature.

To measure the temperature independently from cooling, we measure the width

of the ion's position distribution in a lattice site using a "probe" standing wave in

the cavity. The probe is detuned from the 369.5 nm transition by 100 MHz and

resonant with the cavity 2 free spectral ranges away from the lattice-cavity resonance

(which is 12.7 GHz detuned). This means that at the center of the cavity where the

ions are trapped, the probe standing wave intensity pattern nearly coincides with the

lattice intensity pattern (see Fig.6-6). A cold ion at the lattice minimum will be well

localized at the node of the probe standing wave and will not scatter photons. A hot

ion's position distribution will sample high-intensity regions of the probe standing

wave and will scatter photons. Thus, scattered probe fluorescence is a measure of the

ion's temperature.

To distinguish the scattered probe fluorescence from fluorescence from the pump

in the cooling process, we run a sequence where we interleave cooling and probing.

First, the ion is cooled for 160 ps (pump beam and cooling are on, probe beam is

off), then cooling is turned off (pump beam off) and after 10 ps, the probe beam is

turned on for 20 ps, during which fluorescence is collected, and after another 10 As the

cycle repeats. Fluorescence collected this way is plotted in (Fig.6-7a) as a function

of the magnetic field (2-photon detuning) for cooling in the Raman-Doppler regime.

Comparison with the fluorescence spectrum where cooling photons were collected

(Fig.6-7b) reveals a much more pronounced cooling dip and fluorescence approaching
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Figure 6-6: Experimental sequence to measure the temperature of an ion centered
at a lattice site, using a near-resonant standing-wave probe in the cavity. The probe

(red) is scattered at a rate proportional to the width of the ion's position distribution,
shown in gray. The Raman pump beam, which closes the cooling cycle, is shut off

during the probe period of 20 ps when probe fluorescence is recorded.

constant values corresponding to large temperatures for large 2-photon detunings on

the cooling and heating sides. For low fluorescences, such as observed around the

cooling dip, the probe fluorescence divided by largest fluorescence observed can be

interpreted as kBT/U, as explained below.

The position distribution of an ion in a thermal state is assumed to be a Guassian

at an optical lattice site locally approximated as a harmonic oscillator with vibrational

frequencyWL = 2 2 U where a = A/2 is the lattice constant:

1 ( x2
p(x) = exp 2 2

27r.
(6.16)

The width of this distribution depends on temperature:

kBT

X L

(6.17)

which results from the application of the equipartition theorem to the harmonic oscil-
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Figure 6-7: Probe fluorescence (top) and pump fluorescence (bottom) as the magnetic

field (2-photon detuning) is scanned. The probe fluorescence is converted to temper-

ature on the second vertical axis on the right, showing cooling deep into the optical

lattice (kBT/U 0 0.05) at 2-photon detunings around the first-order and second-order

red vibrational sidebands. (The blue, black and red arrows indicate detunings corre-

sponding to the first-order heating sideband, the carrier, and the first-order cooling

sideband, respectively.)

59

r-

- -4

--

U

0



lator: (jmW2) = !kBT. The fluorescence as a result of probe beam scattering varies

sinusoidally with the ion's position as

1
f(x) = fo (1 - cos(27rx/a)) (6.18)2

where fo is the fluorescence at the antinode. The mean fluorescence given off by the

ion is therefore

(f) = p(x)f(x)dx = fo (1- exp(-27r2o /a 2 ))--oo 0C)2 1 (6.19)

= fo (1 - exp(-kBT/U))

This dependence of observed fluorescence on temperature is plotted in Fig.6-8.

The fluorescence is linear in kBT/U for small temeratures and saturates at 1fo at

large temperatures. Expanding the expression for small kBT/U << 1 in fact gives

the fluorescence relative to the largest observed fluorescence fmax = jfo as

(f )/Ifrax= kBT/U (6.20)

Based on this, the coldest point in the spectrum shown in Fig.6-7 gives kBT/U r

0.04 - a value that can be routinely achieved in the system. For the lattice depth

of U = 27rh x 18 MHz used in the measurement shown, this corresponds to a mean

vibrational quantum number h m 0.5. With a slightly different scheme for cooling

and temperature measurement, and under optimized cooling conditions, a mean vi-

brational quantum number as low as h = 0.1 0.1 has been achieved, as reported in

our publication in reference [16]. This represents the preparation of an ion near its

motional ground state in an optical lattice site.

Note that his temperature measurement is performed with the ion stationary at

a lattice minimum; it breaks down for other ion positions. In friction experiments,

where the ions are driven across the lattice, the effective time-averaged temperature

was found to increase slightly, as determined by comparing observed friction forces
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Figure 6-8: Expected dependence of probe scattering on temperature for an ion at a

lattice minimum.

with Langevin simulations of the dynamics at finite temperature (see chapter 15).

6.5 Tuning temperature

Ion temperature depends on the balance of the laser cooling power and heating power

from ambient electrical and optical noise. Deliberately increasing noise in the system

leads to a higher temperature (which can be measured with the technique discussed

in the previous section). We use two different ways to increase the ion temperature

to study its effect on friction (chapter 15). One way is to increase recoil heating

due to photons scattered from the Raman pump beam by introducing a wr-polarized

component to it via rotation of a quarter-waveplate. Another way is to "tickle" the

ion by weakly modulating the lattice intensity via an acousto-optical modulator (also

used for tickle spectroscopy as discussed in section 5.2). These two methods allow us

to introduce noise in a controlled way to tune the temperature from kBT/U ~ 0.04 in

the absence of additional noise, to kBT/U ~ 1 where our temperature measurement

saturates (see Fig.6-8).
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Chapter 7

Imaging and fast, subwavelength

position tracking

A key ingredient in the trapped-ion optical-lattice emulator, particularly for atom-by-

atom friction studies, is the microscope, i.e. the ability to 1) Image individual ions in

the optical lattice; 2) measure their positions with sub-lattice-site (sub-wavelength)

resolution; 3) track the position with time resolution faster than the relaxation time

scales.

Imaging individual ions spaced by several micrometers in a chain can simply be

done by diffraction-limited optics and a camera. To achieve fast time resolution on

the scale of 1 ms or shorter, photomultiplier tubes (PMTs) are used instead of the

camera (see Fig.7-1). To achieve subwavelength spatial resolution, two methods were

employed in this thesis work. The first method is to split an ion's image between two

PMTs and track the difference in detected fluorescence - a single-PMT version of this

was used in our work [16] first demonstrating the cooling and trapping of a single

ion in an optical lattice. The second method is to infer each ion's position from the

fluorescence it emits, which is modulated by the ion's position with respect to a lattice

period due to a position-dependent carrier scattering in our Raman cooling scheme

(see chapter 6). In other words, the wavelength-scale structure of the lattice itself

is used to probe the ion's position. This method gives a significant improvement

in the signal-to-noise ratio, and scales better to ion numbers larger than 1, so we
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subsequently used this method for all the studies of friction between the ions and the

lattice.

7.1 Imaging setup

PMTs PMT I PMT 11
(Hamamatsu)

re-imaging I1 ion
lens split image

mirror edge
pinhole -- ------- - ---- -

EM COD _flip mirror

camera
:)r) imaging(Andor) mgn

objective

ons 
NA=0.3

ion

Figure 7-1: Ion imaging system. Two modalities of ion position tracking are shown on

the right. The split-image modality can be used to measure the position of a single ion

with subwavelength resolution by averaging the normalized difference signal from the

two PMTs each observing one half of the ion's image, split by a sharp mirror edge. The

position-dependent fluorescence modality gives a position resolution improvement by
2 orders of magnitude and allows measuring the positions of two ions simultaneously.

A summary of the imaging setup is shown in Fig.7-1. The ions are imaged to

infinity by an aberration-corrected commercial objective (FAC30125-A from Thor-

labs) outside the vacuum chamber, with numerical aperture NA ~ 0.3 and working

distance of ~ 10cm matched to its focal length. A field lens (Thorlabs LA4246-

UV) immediately after the objective re-focuses the image with a magnification of 3.7

either onto the electron-multiplying CCD camera sensor, or onto a plane where a

25pm-diameter pinhole rejects stray fluorescence before getting re-imaged by another

lens onto a sharp mirror edge that splits the image between two PMTs for detection.

(The re-imaging lens is a conjugate achromatic matched lens pair from Thorlabs,

MAP1075150-A, which magnifies the image by another factor of 2 with object and

image focal lengths 75 and 150 mm respectively.) The roughness of the sharp mirror

edge (obtained by breaking the mirror) was verified under microscope to be below 10
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pm. The resolution of full imaging system was experimentally determined to be at

AZxre = 1.8 pm for the FWHM of the Airy disk - limited by aberrations to be a factor

of 2.6 above the diffraction limit of 0.68 pm for the 369 nm fluorescence wavelength.

This was determined using split-image position detection of an ion driven at a known

amplitude (see next section).

7.2 Split-image position detection

The mirror with the sharp edge can be used to split the image of a single ion in

half and send the two halves to the two PMTs (Fig.7-1). If I(x - xj,") is the one-

dimensional intensity profile of the image of the ion at position zin, then the signals

detected by the two PMTs are si = f_" I(x)dx and s2 f I(x)dx. A balanced

fluorescence signal, obtained as
82 - Si
S =1 (7.1)
S2 + Si

can then be used to track the center position of the ion. For displacements of the

ion image ion from the balanced point s = 0 much smaller than the width of the ion

image,

as
Xion 8 X (a9ion xion= - (7.2)

(2I(0)7

where 1(0) is the peak 1D intensity of the ion image and IT is the integrated total

signal in the image. This gives the conversion from the observed balanced signal s

from the PMTs to ion position zin. For a fixed total fluorescence from the ion (IT),

the sensitivity of this ion position detection 21(0)/I is inversely proportional to the

imaging system resolution; in fact I(O)/IT ~ AZ- with a prefactor of order unity

that depends on the lineshape of I(x). This gives a rough scale for the balanced signal

as
1 x~02 ~ Xir (7.3)
2 Ares

65



Under ideal conditions, this signal is limited by photon detection shot noise and

the minimum resolvable balanced signal is As = . This gives an ion position

resolution of

Aion AXres (7.4)

Thus, position resolution scales as the inverse of the integration time, Axion cC t-1/2I

reaching after sufficiently long integration arbitrary position resolution. In our publi-

cation [16], a position resolution substantially finer than the 369 nm wavelength was

reported with this method, AxO = A/40.

7.3 Position detection via lattice-modulated fluores-

cence

The scale of ion position resolution in the split-image method in equation 7.4 is set

by the aberration-limited imaging system resolution Axres = 1.8pm, which would be

th ion position resolution upon the detection of a single photon. If instead the cavity

standing wave is used to detect ion position, the position scale is roughly set by half

the optical lattice period a/2 = 92nm. Consider carrier scattering fluorescence f(Xi0 n)

in the Raman cooling scheme from chapter 6. It dominates the ion fluorescence and

varies sinusoidally with the ion position relative to the lattice between zero and fmax

with nearly perfect contrast. The maximum sensitivity of fluorescence to position is

achieved half-way on the slope of a lattice site, where

8f (Xi0 ) =- Ffmax (7.5)

With detected fluorescence fluctuations limited by photon shot noise, the minimum

resolvable fractional fluorescence difference is given by Af/(fmax) = g, resulting

in

Aion = a/(2) (7.6)vf _
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Figure 7-2: Fluorescence signal that reveals an single ion's position as it is moved
through the lattice. At few hundred detected photon counts per second, the signal-
to-noise ratio was obtained after only a few seconds of integration per point. Note that

the shape of the signal is distorted from sinusoidal because the ion slips to a different
local minimum before reaching the cavity maximum (see part II of this thesis).

Comparing this to equation 7.4 gives an ion position resolution for this method 123

times better than for the split-image method for equal integration times. In fact,

using the cavity standing wave for ion position imaging is a type of super-resolution

microscopy.

In addition, this method has several other advantages over the split-image method:

it does not suffer from vibrations or drift of the imaging system, and scales better for

multiple ions. In particular, the positions of two separate ions in an ion crystal can

be tracked at once using the two PMTs which both had to be utilized for tracking

a single ion in the split-image method (see Fig.7-1). This is important if correlation

between the motion of different ions is of interest.

7.4 Time-resolved experiments

The fluorescence that reveals an ion's position is detected by PMTs with very fast

time resolution and recorded using custom FPGA counters at sampling rates up to

a few hundred megasamples per second (limited by the FPGA clock speed). Typical

67



experiments are performed at a 1 kHz repetition rate, and photons detected during

each experiment fall into appropriate time bins with respect to the experiment start

trigger. The experimental cycle can be divided into up to 300 bins, limited by the

number of resources on the FPGA chip. This setup allows us to resolve the fastest time

scales of ion motion and thermalization (including the RF micromotion frequency,

which we also detect with this setup for compensation in the direction parallel to the

trap).
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Chapter 8

Long-lived lattice-site trapping of an

ion

The combination of time-resolved split-image detection of ion position and Raman

sideband cooling enabled us to demonstrate first long-lived localization of a single

ion in an optical lattice site 1161. The initial experiment involved driving the ion

with a time-varying electric field of varied frequency, which in the absence of the

optical lattice moved the ion with an amplitude of two optical lattice sites in an

axial Paul trap potential with vibrational frequency of wo = 27r x 130 kHz. In the

presence of an optical lattice with depth U/h = 40 MHz and a fast enough driving

frequency (with period between 10 ms and 31 ps), we observed that ion motion was

suppressed to an amplitude consistent with zero within a t20 nm experimental error

after averaging a sufficient number of experimental repetitions (see Fig.8-1). At lower

driving frequencies (100 ms period), only partial suppression of ion motion and a phase

delay were observed, since thermal hopping was sufficiently fast to enable the ion's

position distribution to follow the displacement of the axial Paul trapping potential.

To find the time scale at which thermal hopping limits the lifetime of an ion at an

optical lattice site, we varied the drive frequency and measured the amplitude of the

driven ion motion. Fig.8-2 shows the best repeatedly observed amplitude suppression

for each frequency, from which we infer an approximate lifetime on the order of 0.1 s,

corresponding to an amplitude suppression of the driven motion by 30%.
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In more recent experiments, where position was measured via position-dependent

fluorescence in the lattice, thermal hopping across a lattice barrier was measured as

a function of the barrier height. The ion would first be initialized in a lattice site,

and then a force would be applied quickly to tilt this potential and lower the barrier

separating the ion from the global minimum to a desired value. The ion would then

be allowed to relax across this barrier, with its fluorescence decaying over time to the

global minimum value (Fig.8-3). The fitted exponential time constant of this decay

can be interpreted as the thermal activation or thermal hopping across the energy

barrier. Thermal hopping time versus the height of the energy barrier was measured

for several temperatures, and the results are shown in Fig.8-4. The dissipation time

scale T, = -- 1, which is the time for an ion to be recooled after slipping across a

barrier, can be found as the intercept of these curves with the UB= 0 axis where

the barrier height is zero. This measurement is the most direct measurement of the

thermal relaxation time scales in the system, critical for understanding the thermal

dynamics and velocity dependence of friction, discussed in chapter 15.
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Figure 8-1: Ion displacement by a periodic electric field in units of the lattice site

spacing, A /2 = 185 nm, without optical confinement (squares) and in an optical lattice

(circles). (a) The modulation with a period of T = 31 ps was applied for averaging

durations of 150 s and 300 s respectively. The lines represent sinusoidal fits yielding

amplitudes of A = (340 10) nm in the Paul trap and A(") = (10 20) nm in

presence of the optical lattice, respectively. (b) Corresponding measurements for a

modulation period of T 100 ms. The fit yields A = (300 10) nm, A(0 = (200

40) nm and a phase delay AO = (25 11)' of the driven motion in the lattice.
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Figure 8-2: Normalized ion oscillation amplitude in the lattice, A(o)/A, as a function

of the modulation frequency. The dashed line represents a displacement of A/2. The

results of a numerical simulation for the optical pumping rate of FP = 0.1 F and a

temperature T ~ 250 MK are shown as a solid line.
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Figure 8-3: Measurement of thermal hopping time scale of an ion across an energy

barrier of controlled height. The blue curve shows the experimentally measured posi-

tion of the ion in the absence of an optical lattice. With the lattice on, the red curve

is Raman pump fluorescence that indicates ion position relative to the lattice and its

temperature. The ion is first initialized in a lattice site (0-120), then the potential

is tilted to move the ion up the lattice slope (hence the increased fluorescence) and

reduce the energy barrier to a desired value (120-150), then the ion thermally relaxes

across the barrier during the wait time (150-270).
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Figure 8-4: Measured thermal hopping time versus barrier height for three different

temperatures. At the coldest temperature, an ion lifetime in a single lattice site (no

tilt) can be extrapolated to yield -.100 ins, consistent with amplitude suppression
measurements in Fig.8-2.
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Part II

Friction and Surface Physics
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Chapter 9

Friction from the macro-scale to the

nano-scale: an introduction

Friction is the ubiquitous phenomenon of a non-conservative force resisting the motion

of two objects relative to each other, of energy dissipation during such motion, and

of the often associated surface wear. According to some estimates [511, about 6% of

the gross national product is wasted due to frictional energy dissipation and wear

(e.g. due to engine inefficiencies), which constitutes 1 trillion dollars annually in

the USA today. Clearly, this is a problem of enormous technological and economic

importance. Yet our ability to control friction remains modest, and our knowledge

of it largely empirical. This is not surprising: at the macroscale, it is a complex

emergent phenomenon. However, even at the atomic scale, friction is not yet fully

understood. It is a highly nonlinear many-body problem, and friction happens at an

interface between two objects, which is sandwiched between them hidden from access

by experiments. Wolfgang Pauli nicely summed up the difficulty of studying friction,

when he said "God made materials, but surfaces were the work of the Devil".

The commonly known phenomenological laws of macroscopic friction date back to

Leonardo Da Vinci (1452-1519), Amontons (1663-1705) and Coulomb (1736-1806):

1. Friction force is directly proportional to the applied (normal) load.

2. Friction force in independent of the apparent contact area.

3. Friction is independent of the sliding velocity.
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The proportionality of friction to normal load FN and independence on the contact

area and velocity can be summed up in the well-known formula

Ff = pFN (9.1)

where /a is an empirical material-dependent coefficient of friction.

It is now well understood that the first two laws arise from the multi-scale rough-

ness of surfaces. Only a small fraction of the apparent contact area is actually in

contact, and the contacts are made by a multitude of asperities at various length

scales [51, 52, 53, 54, 55] (Fig.9-1). The friction force is proportional to the sum of all

atomically smooth contact areas, which change under varying contact pressure as a

result of elastic deformations of asperities. The mean contact pressure is given by the

normal load divided by the true area of contact, and in the linear deformation regime

this area, and consequently the friction force, will vary linearly with the normal load.

The independence of friction on the apparent contact area naturally comes out of

this picture: any increase in the apparent area is compensated by the decrease in the

contact pressure, which reduces the contact area of each asperity, compensating for

the increased number of asperities, and friction does not change.

Because of the crucial role of asperities as the fundamental elements determining

macroscopic frictional behaviour, it is natural to ask about the frictional behaviour of

a single asperity or a small collection of asperities in atomically smooth contact with

a substrate - this is the domain of nanotribology, or nanofriction. At the level of a

single atomically smooth contact, do the three phenomenological laws for macroscale

friction apply? In other words, how does friction depend on the strength of inter-

action between an asperity and a substrate surface ("normal load"), on the number

of atoms at the contact ("contact area") and on the relative velocity of the asperity

and the substrate? As we shall see, at the atomic scale, the question of velocity is

intimately connected to the thermal dynamics of the system and thus also becomes

the question of temperature. Furthermore, studying friction at the atomic scale is

posed to answer a fourth question only addressed empirically at the macro-scale,
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nanofriction

Figure 9-1: Multiscale roughness of contacting surfaces means that as we zoom in on

an apparent contact at the end of an asperity, we find many asperities and contacts

on a smaller scale, and so on until the atomic scale. The study of friction at the level

of atomically-smooth contacts is known as nanotribology or nanofriction.

related to the material-dependent coefficient of friction p: how does the structure

of the nanocontact affect friction, and how does any structure effect depend on the

contact size? For example, does the concept of incommensurability survive for finite,

few-atom contacts? Thus, I present the four "pillars" of friction (Fig.9-2) - the four

questions that I will address in this part of my thesis in the context of nanofriction,

using our trapped-ion optical-lattice friction microscope:

1. Normal load. How does nanofriction depend on the normal load or substrate

interaction strength? (chapter 12)

2. Material properties. How does nanofriction depend on the structural properties

of the interface at the atomic scale? (chapter 13)

3. Contact area. How does nanofriction and the effect of structure depend on the

size of an atomically smooth contact (true contact area)? (chapters 12, 13 and 14)

4. Velocity & temperature. How does nanofriction depend on sliding velocity and

temperature? (chapter 15)

At the nanoscale, the dominant form of friction is stick-slip friction. Stick-slip

friction is a non-linear phenomenon where two surfaces stick due to a static friction
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Ff = - FN

(b) FRICTION

Normal load

Materia properties
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& Te ture

Commensurate lattices stick, 4 velocity regimes
incommensurate don't due to thermal dynamics

Superlubricity A few-atom contact can behave
below a critical load like an infinite contact

V

Aubry transition

Golden ratio

Figure 9-2: (a) The study of friction, also known as tribology, dates back to Leonardo

Da Vinci, who first postulated the well-known empirical law that friction is propor-

tional to the normal load on the surface. Does it apply at the atomic scale? We shall

see in this part of my thesis that it doesn't. (b) The 4 pillars of friction, which can be

used to organize the studies of friction, both at the macroscale and at the nanoscale.

Below each pillar is summarized the key finding from experiments in the trapped-ion

optical-lattice frictional interface. The first three are related to the Golden ratio (Da

Vinci again!), and the Aubry transition, which we observe for the first time in our

system).
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force and accumulate potential energy under increasing applied shear force, then slip

suddenly, releasing this energy as kinetic energy. As the released energy is dissipated,

the surfaces stick again and the process repeats. Meanwhile, the large amount of

released energy can cause surface damage known as wear. The stick-slip phenomenon

turns out to be very general and spans many orders of magnitude from the nanometer

length scales of biological molecules and atomic contacts [56, 57, 58] to the kilometer

scales of earthquakes [59]. At familiar length scales stick-slip manifests in the familiar

concepts of static friction and kinetic friction. To get an object at rest on a surface

to move, one must apply a critical shear force known as the static friction force F,.

Once the object is moving, the force resisting motion is known as the kinetic friction

force Fk, which is generally smaller than the static friction force Fk < F,. The action

of the kinetic friction force over the slip distance gives the dissipated energy:

AW = Fk * 6lip (9.2)

At the atomic scale, a number of minimalistic models have been invoked to model

stick-slip friction. The simplest is the single-atom model proposed by Prandtl and

Tomlinson (PT) in 1928 and 1929 [60, 61]. In this model, a single atom at the tip of

an asperity, held in the harmonic confining potential of this asperity, is driven across

a sinusoidal potential of a rigid substrate crystal (Fig.9-3a). The PT model can also

be applied to a multi-atom contact, assuming that each contact atom experiences a

harmonic confining potential due to the mean field from the rest of the contact-layer

atoms, or in the limit where interactions between contact-layer atoms are much weaker

than the interactions with the substrate potential and the attachment to the bulk of

the asperity. As we shall see in chapters 12-14, the PT model remains valid for multi-

atom contacts even if the contact-layer atoms interact strongly with each other, as long

as their spacing is matched or nearly matched to the lattice constant of the substrate.

The PT model, however, fails to capture the effects of structural mismatch between

the crystal of contact-layer atoms and the substrate crystal. A many-particle model,

proposed by Frenkel and Kontorova (FK) in 1938 [62, 63], instead treats the contact
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layer as an independent, infinite chain of atoms joined by springs (Fig.9-3b). Friction

in this model is governed by the commensurability of the unperturbed chain and

the substrate, and exhibits non-trivial dynamics due to kinks and other solitons [63],

as well as many-body static and dynamic phenomena, such as the pinned-to-sliding

phase transition predicted by Aubry in 1983 [64], and the related superlubricity -

the vanishing of stick-slip friction [65]. Since nanocontacts have a finite number of

contacting atoms and the mutually interacting contact-layer atoms are also attached

to their asperity, the Frenkel-Kontorova-Tomlinson model (FKT) - a combination of

PT and FK - is more appropriate for nanofriction (Fig.9-3c). As we shall see in chapter

1o, we implement and study this model in our trapped-ion optical-lattice synthetic

friction interface. In the context of these models, normal load can be interpreted as

the depth of the substrate potential, the true contact area as the number of atoms in

the chain, and the questions of material properties and interface structure reduce to

the spacing mismatch between the atomic chain and the substrate.

Sensitive nanotribology apparatuses [67, 68, 69, 66, 70, 71], and in particular

atomic force microscopy [67], are able to measure tiny shear forces and atomic-scale

slips between atomically smooth surfaces comprising down to a few atoms [72, 66, 70].

This has enabled the observation of superlubricity of a nanocontact below a critical

normal load [73] and at orientations of the contacting crystal lattices that result in

mismatch [74, 75]. Most experimental observations of stick-slip in these systems can

be qualitatively explained via variants of the PT or the FK models, but without

direct access to the microscopic parameters or dynamics [76]. For example, the depth

of the substrate potential and the asperity stiffness have to be inferred, the number

of atoms at the nanocontact is usually not known, and the behaviour of individual

atoms is not resolved. Velocity and temperature dependence of friction have also been

studied [77, 78, 79, 80, 80, 81, 82, 83], but the experimental results have thus far not

yielded a consistent picture that can be unambiguously linked to microscopic models

[84, 85, 86, 87, 88].

One way to peek at individual-particle behaviour in friction, with independent

control over the microscopic parameters, is by studying a synthetic frictional inter-
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Figure 9-3: Atomistic models of friction. (a) The Prandtl-Tomlinson model

is often invoked to interpret experimental results in single-asperity nanotribology

with atomic force microscopes [66]. (b) The Frenkel-Kontorova model involves an

infinite atomic chain on a substrate and can be used to understand some aspects

of friction, such as commensurability of contacting surfaces. The physical situation

of an independent chain, however, is perhaps more appropriate for the problem of

adsorbed monolayers or long biomolecules on an ordered substrate surface. (c) The

generalized Frenkel-Kontorova-Tomlinson model is a combination of the other two,

involving a finite chain with additional external confinement by the asperity. It is

most appropriate for modeling nanofriction, and also our trapped-ion optical-lattice

frictional interface.
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face - a nanofriction "simulator". One such interface, implemented with colloidal

polystyrene beads on water and in an optical lattice, has confirmed some dynamical

aspects such as the propagating kinks predicted by the FK model [89], and a number

of other experiments have been proposed in this system [90]. The ultimate synthetic

frictional interface, however, involves real atoms as opposed to macroscopic particles,

and following a number of recent proposals [91, 92, 93, 94], we have implemented in

this thesis a synthetic nanofriction interface using trapped atomic ions in an optical

lattice [17] (chapter 10) able to resolve the stick-slip motion of the individual ions

(chapter 11).

I will describe in this part of my thesis the experimental findings about nanofric-

tion obtained from our trapped-ion optical-lattice interface, which can be summarized

with regards to the 4 pillars of friction in Fig.9-2 as follows:

1. Below a critical normal load (lattice depth), superlubricity occurs (stick-slip fric-

tion vanishes).

2. Commensurate crystals stick, and incommensurate crystals don't - leading to

structural superlubricity.

3. A few-atom contact can behave like an infinite-atom contact in the manifestation

of structural superlubricity.

4. Four regimes of velocity-dependence of friction can be observed as a result of sep-

arated time scales of thermal dynamics.

Our results represent the first atom-by-atom demonstration of these four elusive

effects. Furthermore, they represent the first observation of the Aubry transition - a

structural transition of a Golden-ratio chain on a surface (chapter 14). Perhaps the

most valuable lesson learned, is that all of these effects, some of which have tradition-

ally been assumed to arise from many-body interactions (e.g. the Aubry transition),

emerge already at the level of a few atoms - the size of the smallest asperities, the col-

lective behaviour of which determines macro-scale friction. Therefore, perhaps some

of the findings can be applied to engineer friction between materials - both at the

nanoscale and at the macro-scale.
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Chapter 10

Trapped-Ion Optical-Lattice

Nanofriction Interface

10.1 A complementary system to condensed matter

interfaces

In our system, we measure, atom-by-atom, friction between a trapped crystal of Yb+

ions and the corrugated potential produced by the optical lattice (Fig.10-1). This

idealized frictional interface captures many static and dynamic multi-atom phenom-

ena thought to be of relevance at condensed matter surfaces and in friction processes

at these surfaces on the nanoscale. The advantage of our trapped-ion optical-lattice

frictional interface is the ability to study these phenomena with unprecedented resolu-

tion and microscopic control. For tribologists, our system can be viewed as a physical

emulator or simulator of processes at condensed matter interfaces. For physicists,

it is a microscope for such processes in an ultimate controlled lab environment. In

any case, it can elucidate the mechanisms of friction and instruct ways to engineer

materials with desired frictional properties.

In particular, the distinguishing capabilities of our nanofriction emulator/microscope

are:

1) Tracking of individual atoms at a frictional interface. This is currently not possible
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Figure 10-1: A crystal of atomic ions, strongly interacting via Coulomb forces (the

object), is rubbed against the corrugated potential of an optical lattice (the substrate)
to study, with individual-atom resolution, the physics of nanoscale friction.

50 pm

Figure 10-2: An image of a l74Yb+ ion crystal in vacuum.
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at a condensed matter frictional interface, because the interface is buried between the

two objects in contact (with the exception of the simplest case where the interface

consists of a single atom, which can be tracked with an atomic force microscope). In

our system, the "interfacial" atoms form a chain in vacuum, spaced by several mi-

crometers, and can be imaged directly with diffraction-limited optics (see Fig.10-2).

2) Control of atom number at a frictional interface. The size of a condensed matter

nanocontact cannot be measured directly because of the reason above, and is difficult

to infer - as a result, it is usually not known in nanotribology experiments [76]. In

our system, a deterministic number of ions up to 10 or 20 can be loaded into the trap

and seen directly on the camera [33] (see Fig.10-2).

3) Control of atomic arrangement at a frictional interface. Although the relative

lattice spacing of two atomic lattices at an extended atomically flat contact can be

controlled by choice of material and crystal orientation [75, 74], the arrangement of

atoms is usually unknown at an asperity contact, since the asperity can be signif-

icantly deformed from the lattice structure of the bulk. This is important, since

friction at the macroscale is believed to be governed by the collective behaviour of

asperities on multiple length scales [51, 53, 54, 55, 52]. In our system, we can precisely

tune the spacing between the ions in a chain to match it or mismatch it to the optical

lattice.

4) Control of interatomic interactions. Although materials with a desired bulk mod-

ulus can be chosen, surface properties might be very different and poorly known,

especially at the ends of asperities. In our system, interactions between ions are via

Coulomb forces, and can be tuned by adjustments of ion spacings.

5) Control of temperature and dissipation over a wide range. Although temperature

can be varied in condensed matter experiments, it is technically challenging to make

nanotribology apparatuses work over wide ranges of temperature. Dissipation is an

intrinsic property of the material, the microscopic mechanism of which is typically

unknown [76]. In our system, both temperature and dissipation can be varied by

tuning laser cooling parameters.

6) Time resolution of dynamical processes higher than the fastest dissipation rate.
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Tribology experiments typically cannot time-resolve the dissipation processes. In our

cold atom system, dissipation is significantly slower, determined by laser cooling, and

we can both resolve it and control it as mentioned above.

7) Possibility to observe quantum many-body effects. Friction is typically thought of

as a dissipative process far in the classical regime. This is due to the large number

of degrees of freedom and fast decoherence rates (dissipation again) in condensed

matter. Our cold ions are well isolated from the environment if the laser cooling is

turned off, and coherent many-body processes can be observed. Several possibilities

are explored in part III of this thesis.

10.2 The Frenkel-Kontorova- Tomlinson model.

Both our system and a condensed-matter nanocontact can be modeled by a gener-

alized Frenkel-Kontorova-Tomlinson (FKT) model [95, 96] (Fig. 10-3). In this model,

an N-atom chain with an intrinsic spacing d interacts with a sinusoidal potential with

lattice constant a and depth U. The model captures the physics of competing length

scales and competing energy scales. The intrinsic chain spacing d competes against

the lattice spacing a, embodied in the dimensionless ratio

r = d(mod a)/a = (d/a)(mod 1) (10.1)

The stiffness of the chain competes against pinning by the lattice. There are two

components to the effective chain stiffness: the "internal" chain springs of stiffness

g which couple the atoms together, and the "external" springs of stiffness K which

couple the atoms to a rigid support (Fig.10-3c). (This support can be used to drag the

atoms across the substrate in a friction scenario.) As a result, two more dimensionless

parameters describe the competition of energy scales: the ratio rq of maximum lattice

curvature to external spring stiffness, and the ratio c of internal to external spring
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stiffness:

S=r2 U/K = WIW2

U/ Lw2/0(10.2)
c 2g/ K

In a nanocontact, the sinusoidal potential U represents the potential due to the

atomic lattice of the substrate at its surface. The chain represents an atomic layer

in contact with the substrate. The internal chain springs g represent next-neighbour

atomic bonds in this contact layer, and the external confinement K corresponds to

attachment of this layer to the bulk of the asperity (Fig.10-3a).

In our system, we literally have a chain of atoms (ions) interacting with a sinu-

soidal potential (optical lattice), resulting in an almost exact implementation of the

FKT model (Fig.10-3b). The effective internal springs g between the ions are due to

Coulomb forces and are, in fact, long-range (see section 10.3 below). K corresponds

to confinement by the ion trap at the common-mode angular frequency wo = /K/rm,

where m is the mass of an ion. The ions self-organize in this trap at typical spacings

d of a few micrometers, an order of magnitude larger than the optical lattice spacing

a = 184.75 nm. However, the physics is periodic in the lattice spacing a, as evi-

dent from equation 10.1. Therefore, it suffices to precisely tune the spacing between

the ions with sub-wavelength precision, which is done by controlling K (see section

10.4), while the absolute spacing can be kept significantly larger than a wavelength,

allowing us to image this frictional interface with individual atom resolution using

diffraction-limited optics (Fig.10-2).

There are two important limits of the FKT model. The limit N = 1 corresponds

to the Prandtl-Tomlinson -(PT) model of a single-atom contact [60, 61] (Fig.9-3a)

and it is usually used to model the contact between an AFM tip and the substrate

under study in nanotribology experiments [58, 66]. Our system with a single trapped

ion is an exact implementation of the PT model. The opposite limit of an infinite

chain N -- 0 oo and no external confinement K = 0 corresponds to the Frenkel-

Kontorova (FK) model [62, 63] (Fig.9-3b) used to model friction of extended contacts
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and adsorbed monolayers among many other systems. As discussed in subsection

10.3 below, our system approaches this limit as more ions are trapped in a chain: as

N increases, so does the ratio g/K and the chain stiffness begins to be dominated

by the internal springs g rather than external confinement K. In general, our system

with finite ion chains and the corresponding FKT model treat the general case of

finite N and K, more appropriate for modeling asperities, which are believed to play

a key role in macro-scale friction [51, 52, 53, 54, 55], and which have finite stiffness

and might be several atoms in extent.

Finally, friction is a dissipative process, which can be modeled as coupling of

the chain motion to a thermal bath at temperature T with rate constant -/ (Fig.10-

3c). Heat generated by friction is dumped to this bath. In a nanocontact, this

bath is usually believed to be provided by the bulk vibrational degrees of freedom

of the substrate and the asperity, but the detailed mechanism is not understood in

condensed matter. In our system, dissipation is provided by continuous laser cooling

of ions, and both the cooling rate and the equilibrium temperature can be controlled

via laser cooling parameters. The effects of temperature and dissipation are discussed

in detail in chapter 15.

To summarize, the total potential (external plus interaction potential) of the FKT

model can be written down as follows

VFKT = Vext + Vint

N N-1

K2 - x,o - X) 2 + + cos(27rxj/a)) + ( g(xi+1 - xi - d))

(10.3)

where xi are positions of chain atoms, xj,o are their intrinsic positions in the unper-

turbed chain at U = 0 and X = 0, and X is the displacement of the rigid support that

can be used to drag the atoms across the substrate. In dimensionless units, where

lengths are in units of a and taken modulo 1 (since the system is periodic in a), and
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removing the energy offset, the potential becomes:

VFKT N (X, - X, X)2+Yr cos(2+r) 
Ka2 2 47j + 4rx

N-1

+ ~ c(Xi+ - Xi - r)2

(10.4)
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0 00 c contact atoms
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(b)
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K
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Figure 10-3: (a) A nanocontact can be modeled as a chain of atoms representing

the contact-layer atoms of an asperity, attached to the asperity via harmonic springs,
and subject to the lowest harmonic component of the periodic potential due to a rigid

substrate crystal. (b) A nanocontact is emulated by a Coulomb crystal of trapped
ions ("contact-layer atoms"), attached to the ion trap ("asperity") and subject to the

cavity-generated optical lattice ("substrate"). (c) The Frenkel-Kontorova-Tomlinson
model of systems in (a) and (b), additionally interacting with a thermal bath where

frictional heat is dissipated (phonons for a nanocontact, and laser cooling for trapped

ions).
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10.3 Internal chain springs

The FKT potential in equation 10.3 is a good approximation to the total potential

of the ion-lattice system:

VFKI = Vext + VCou=

N 2 (10.5)

-2K(xi -X 2 -( cos(27rxi/a)) )+E 4rox-xjI

To reiterate, the harmonic confinement by "external springs" K corresponds to

the axial confinement in the linear Paul trap at angular vibrational frequency wo =

K/r [33], which corresponds to the center-of-mass (COM) motion of the chain -

its lowest-energy vibrational mode. The internal springs g in the FKT model roughly

correspond to the highest-energy "Egyptian" vibrational mode of angular frequency

Wmax, where neighbors move in opposite directions:

1 -ma (10.6)

To see this, consider the phonon dispersion relation for an infinite crystal of atoms

with next-neighbor harmonic springs: w = (4g/m)1 / 2 1sin ( I )1 [97]. The maximum

energy is reached at the edge of this crystal's Brillouin zone Aph = 2d. This phonon

wavelength indeed corresponds to neighboring atoms moving out-of-phase and results

in the relation 10.6 exactly. It turns out that this property largely survives for internal

springs in the center of a finite, inhomogeneous Coulomb crystal of ions with long-

range coupling, trapped in a harmonic potential, as can be seen in Fig. 10-4 and

Fig.10-5 .

Coulomb coupling for an ion pair separated by AZx falls off with dipole-dipole

scaling as Ax 3 if the Coulomb forces are linearized around ion equilibrium positions

by expanding them in 6x/Ax. This is a good approximation because the largest

changes in ion separation 6x due to the optical lattice are on the order of the lattice

spacing a, which is one to two orders of magnitude smaller than ion separations in

our trapped chains: 6x/Azx < a/Ax < 1. Changes in the Coulomb force due to 6x
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Figure 10-4: Vibrational modes of finite ion chains. In an infinite homoge-
neous chain, the highest-energy vibrational mode Wmax corresponds to the shortest-
wavelength phonons: neighboring ions oscillating out of phase. (Top left) For finite

N in a harmonic trap (N=51 shown), due to broken translational symmetry these
short-wavelength phonons get localized towards the chain center, where the ions see

the stiffest internal springs g directly related to the energy of these phonons. (Bot-

tom left) A lower-energy vibrational mode is shown for comparison, exhibiting longer-

wavelength phonons less stiff than the next-neighbor springs g. (Top right and bottom

right) Even for a few-ion chain (N = 4,3 shown), the highest-energy vibrational mo-

tion corresponds to the center ions moving out-of-phase, preserving the relationship
1 2m (The ion positions on the x-axis are in units (  )1/3 = /21/3

where x2 is the separation of 2 ions in the trap with the given wo).

are then given by

Fco= 4e (AX + 6x)- 2 
- Ax-2

4co 2)
Ax21 6x -A - (10.7)

47rEO Ax

- -2 6x
47rEOAX3

This gives the effective spring constant for an ion pair as gij = 
2  In

other words, for a homogeneous spacing d, beyond-next-neighbor contributions are

reduced by 1/8, 1/16, etc - the sum of these forces to infinity contribute additional
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Figure 10-5: Scaling of central internal springs g with the number of ions

N. The maximum vibrational mode energy and the internal spring g =-47 2 at

the center of the chain both increase with N as g/K ~ (Wmax/WO) 2 ~ N 1 -64. The

additional confinement by the mean field of ions beyond the next-neighbors results in

a slight deviation of 9mean from this behavior.

20% to the confinement of an ion in the mean field of an infinite crystal:

0 0 = 9 0 0 1C ( 3 1 . g1 0 8
mean 1. 8)

j=1 j=1

where g is the internal next-neighbor spring stiffness as defined for the FKT model.

For finite N and inhomogeneous ion spacing d as in the ion trap (see section 10.4),

g and gmean vary with position in the chain and are largest in the center, where d

is the smallest and most uniform (see Fig.10-6). As mentioned above and shown in

Fig.10-5, in the center of even a few-ion chain, g agrees with jmw a as expected

for an infinite chain. In our studies of the Aubry transition in finite chains (chapter

14), we focus on the superlubricity breaking and analyticity breaking of the center

ion (odd case - corresponds to the symmetry-breaking transition known as the finite

version of the Aubry transition[92, 98, 99, 63]) or the center two ions (even case).

As we add ions one by one into the trap at fixed w0 , the ions get closer together

(Fig.10-6) and the center-ion internal springs g scale together with Wmax as - N'.64
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(Fig. 10-5). In effect, we use the ion number N to tune the FKT model parameter

gK .64
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Figure 10-6: Variation of internal springs g with position in the chain j.
Ion spacing d is the smallest and most uniform in the center of the chain, where
the internal spring g attains its largest value and corresponds to the highest-energy
vibrational mode. Note the special case of the edge ions: they only have a single
neighbor, and as a consequence, the effective spring g is about a factor of 2 lower
that for the next ion. As a result, in the finite-N transition from superlubricity to
stick-slip, these boundary ions always get pinned first.

10.4 Control of ion spacings to tune lattice mismatch

The intrinsic ion positions xio unperturbed by the lattice are obtained by minimizing

VFKI in equation 10.5 at U = 0, which is a convex function and yields a unique

set of ion positions [100, 1011. In the harmonic potential, the chain spacings are

inhomogeneous (shown for N = 51, N = 4 and N = 3 in Fig.10-6). However, for a

given N, the ratio of spacings is fixed and they all scale as K 113 . Therefore, we tune

the harmonic confinement of the Paul trap to vary ion spacings on the scale of the

96

1 1

0.5-



lattice constant a, giving us control over the matching between the ion chain and the

lattice.

One sensible way to mismatch a finite chain to the lattice [17, 102] is to cancel the

sum of lattice forces on the unperturbed chain such that z sin( (oi - #) = 0 for

all #, where # represents the common displacement of unperturbed ion positions by

moving the harmonic trap position X. The intuition behind this is that an infinitely

stiff chain g -+oo that does not deform would not see the corrugated potential at

finite U, and would slide frictionlessly because of this cancellation of lattice sticking

forces. This leads us to define the matching parameter q as follows:

0(1Nq = max4 E sin( xo,i - #) (10.9)

Thus, q represents the normalized Peierls-Nabarro potential barrier to the dis-

placement of the unperturbed (infinitely rigid) ion crystal. The value of q always falls

between 0 and 1. q = 1 corresponds to the ion chain matched to the optical lattice,

resulting in the largest possible value of such barrier because lattice forces add con-

structively. q = 0 corresponds to the chain mismatched to the lattice, resulting in

a vanishing barrier (in the limit of an infinitely rigid ion crystal) because the lattice

forces add destructively and cancel.

The easiest way to visualize this is with N = 2 trapped ions, as shown in Fig.10-

7a. When the distance between the ions d is in registry with the lattice spacing (or

"in phase"), giving r = (d/a)(mod 1) = 1, they always see the same slope of the

lattice potential, resulting in a constructive addition of the lattice sticking forces. In

particular, they see the maximum slope at the same time as the ion crystal position

X is translated, giving q = 1, and this maximal sticking force on the crystal per

ion is equal to that of a single trapped ion in this external potential. When the

distance between the ions is perfectly out of registry (or "out of phase"), giving

r = (d/a)(mod 1) = 1/2, the ions always see opposite slopes of the lattice potential,

resulting in a destructive addition of lattice forces, and q = 0. At intermediate values

of r, one obtains intermediate values 1 > q > 0. Since the distance between the ions
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Figure 10-7: (a) The ions are matched to the lattice when the lattice forces add
constructively, and mismatched when the lattice forces add desctructively. (b) The
matching parameter q is tuned via the external harmonic confinement and is periodic
with the trap vibrational frequency, as ions go in and out of registry with the lattice.

and consequently the value of r are tuned via K, as the axial vibrational frequency

wo of the Paul trap is varied, the calculated value of q quasi-periodically goes through

maxima at q = 1 and minima at q = 0 (see Fig. 10-7b).

For larger N, it is convenient to visualize the intrinsic arrangement of the ions

with respect to the lattice by plotting their relative lattice phases 9i = 27rxo,i/a on the

unit circle as shown for N = 2 in Fig. 10-7a. The matched case of q = 1 corresponds

to all ions being in registry, i.e. they all see the same lattice phase. An arrangement

of N = 5 ions close to q = 1 is shown in Fig.10-8a. However, the mismatched case

of q = 0 may be given by many different arrangements, two of which are shown for
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(a) (b) (c)

Figure 10-8: Calculated unperturbed positions of N 5 ions with respect to the

lattice plotted as phases 9i = 27rxo,i/a on a unit circle. The lines connect neighbouring

ions. (a) In the near-matched case q = 0.98 as the ions are almost in registry

(the phases modulo 27r almost coincide). (b),(c) For a mismatched case q = 0

multiple configurations of ions relative to the lattice are possible; (c) shows a q = 0

configuration where the ion spacing is close to the Golden ratio r ~~ (V5' - 1)/2.

N = 5 in Fig.10-8b,c. Incidentally, the second one corresponds to a dimensionless ion

spacing r close to the golden ratio, which will become important in chapter 14.

The calculated values of q versus the axial vibrational frequency wO (near the

nominal value of 27rx364 kHz) for N = 2 - 6 and N = 10 are shown in Fig.10-9.

Evidently, the single control parameter wo is insufficient to control matching for large

enough N. For example, by N = 10, q = 1 cannot be reached in the vicinity of the

desired nominal vibrational frequency. However, up to N = 6, both the matched

case q = 1 and the mismatched cases q = 0 can be dialed in by controlling wO with

sub-kHz precision, which is done via the snake electrode (see chapter 4).

The plots of q versus wo and the intrinsic chain arrangements discussed above are

calculated assuming a perfectly harmonic trap, with N and the measured values of wO

as inputs. In reality, even a small asymmetry in the Paul trap axial trapping potential

can cause small changes of ion spacings, that are however considerable on the scale

of the lattice spacing a. For that reason, we also measure the intrinsic arrangements

and extract values of q experimentally. This is done by taking fluorescence images of

the ion chain in a weak lattice at different positions X of the Paul trap. Under a weak

perturbation from the lattice, combined with thermal averaging, the fluorescence of

each ion as a function of X should peak when the ion's intrinsic position aligns with
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Figure 10-9: Calculated matching parameter q versus harmonic trap vibrational fre-

quency wo for ion chains of different size. Arbitrary control of q using wO breaks down

by N = 10, but works well up to N = 6, which is the largest ion number used in

experiments in this thesis.

the lattice maximum. Such a set of 1D images versus X is shown in Fig.10-10 for

N = 6. Denoting by Xi the trap positions where each ion's fluorescence peaks in this

procedure, the experimental measurement of the matching parameter is given by:

( N

qeXP = maxo - sin (12Xi - <) (10.10)

The plot of measured q versus wo closely agrees with the the calculation with no

free parameters up to N = 6 (Fig.10-11), and is also very reproducible from one

measurement day to another, meaning that the trapping potentials are stable and

under control.
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Figure 10-10: Experimental signal used to measure the matching parameter qexp for

N = 6 ions. Horizontal ID images of the ion chain are shown stacked vertically for dif-

ferent trap positions X. Different ions experience maximum fluorescence at different

trap positions X1 , corresponding to alignment of ion i with a lattice maximum.
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Figure 10-11: Measured matching parameter qexp for ion chains of different size.

Measurements agree well with calculations (blue line, no free parameters), and are

reproducible on different days.
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Chapter 11

Friction microscope: measuring

stick-slip, atom-by-atom

One of the key advantages of studying nanofriction with trapped ions in optical lattices

is the ability to track the sticking and slipping of each atom at this idealized frictional

interface. In this chapter, I outline our experimental procedure for measuring stick-

slip friction of individual ions in a ID Coulomb crystal (chain) dragged through an

optical lattice.

To study friction, we apply a known shear force to our nanofriction interface, which

moves the ion chain over the corrugated lattice potential, and we track the position

of each ion via the fluorescence that it emits (Fig.11-1). The applied shear force is a

uniform electric force Fapp = eE due to a uniform electric field applied via two pairs

of far away DC electrodes (see chapter 4). This force displaces the minimum of the

axial harmonic trap of stiffness K by X = Fapp/K, moving with it the ion chain.

This is equivalent to translating the rigid support in the FKT model, resulting in a

uniform shift of the intrinsic atom positions xj,o -4 xj,o + X (Fig.11-2b). We linearly

ramp the applied shear force so that X(t) = v -t and the chain is "dragged" along the

lattice at constant speed, and then we reverse the ramp to drag the chain at constant

speed back to its initial position (Fig.11-3a).

The ions in a typical chain are separated by micrometers, and therefore can be

individually resolved with diffraction-limited optics (the imaging setup is discussed
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X(t) = Fapp(t)/ K

Figure 11-1: To measure friction, we ramp a uniform longitudinal electric force to

translate the harmonic trap with the ion crystal over the corrugated lattice potential.

The motion of each ion is tracked by monitoring its fluorescence.

in chapter 7). However, we are interested in observing the position of each ion with

resolution finer than the optical lattice spacing of half the optical wavelength a =

A/2 = 185 nm (Fig.11-2a). This is enabled by the lattice itself, combined with the

repumping laser in the cooling scheme (see chapter 7), acting as a subwavelength

position probe. As a result, each ion's fluorescence is proportional to its lattice

potential, i.e. the observed fluorescence is maximum at lattice maxima, and minimum

at lattice minima. This modulation of fluorescence by the ion's position relative to the

lattice can be inverted to extract the relative position from the observed fluorescence.

Thus, in friction experiments, we move the ion chain along the lattice at speed v and

observe the fluorescence from different ions peak when the respective ions reach a

maximum value of the lattice potential before slipping. At low speeds v, the camera

can be used to observe all the ions at once, while at high speeds, we use two PMTs

to observe two ions at a time, and reconstruct the fluorescence traces of the entire

chain with successive overlapping measurements.

This type of super-resolution microscope allows us to track the position of each

ion with sub-lattice-constant resolution, enabling an ion-by-ion measurement of the

stick-slip process. As the shear force is applied, each ion can stick to a lattice site

until a critical shear force is reached that makes that position unstable, at which
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(a) 6/Am

a = 185nm

(b) X(t) = v- t

inci)
E

position along the chain

Figure 11-2: (a) A near-diffraction-limited image of a 3-ion crystal juxtaposed with a

schematic of the lattice potential to illustrate that the lattice spacing is 1.5 orders of

magnitude smaller than the typical ion spacing: a/d _ 1/30. The large ion spacing

allows for fluorescence to be collected from individual ions, and the value of the

fluorescence indicates each ion's position relative to a lattice site. (b) As the trap is

translate d by ramping the electric force, different ions stick and slip at different times,

with the slip events signaled by a fluorescence peak, since an ion reaches a maximum

value of the lattice potential right before a slip. Horizontal ID images of the ion chain

are shown here stacked vertically versus time as the applied force is ramped.
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point a fold catastrophe occurs [103], and the ion slips to a new minimum which is

stable. Thus, bistability (or multistability) is the key ingredient in stick-slip, which

is the process of switching between the multiple minima of the potential under the

action of an applied force.

This process is visualized in Fig.11-3a for a single trapped ion in the Prandtl-

Tomlinson bistable potential arising from the addition of the Paul trap axial confine-

ment and the sinusoidal lattice potential with q > 1:

VPT(X, t)/(Ka2 ) = (x - v -t)2 + -17(1 + cos(27rx)) (11.1)

As the linear ramp of the applied force Fp, displaces the harmonic potential to the

right at speed v, the ion sticks to its initial site (#1), riding up the lattice potential

and increasing in fluorescence (#2), until a critical maximum static friction force F,

is reached. At that point, the barrier vanishes and the initial minimum disappears,

resulting in the fold catastrophe. The ion discontinuously slips from its initial site

to the global minimum one site over (#3). The ion then dissipates the released

energy AW via laser cooling, while localization in the lattice potential reduces its

fluorescence again. The positions of fluorescence peaks in Fig.11-3b thus correspond

to values or the applied force causing the ions to slip over consecutive lattice barriers

during the forward ramp, then during the reverse ramp. Hysteresis can be clearly

observed in the shift between the forward and reverse slips - this shift corresponds

to twice the maximum static friction force 2F,. The fluorescence increase leading up

to each slip is converted to the ion's position to reconstruct the force-displacement

curve. When X = Fapp/K is moved by one lattice site a, this curve is a loop enclosing

the area 2AW equal to twice the energy dissipated after a single slip (since two slips

occured: one on the way forward, and one on the way back) (Fig.11-3c).

Such hysteresis loops measured for individual atoms via their fluorescence there-

fore provide all the microscopic information about friction, atom-by-atom: the half-

width of each loop is the static friction force F, on that atom, the half-area of the

loop is the energy AW which that atom dissipates in a single slip, and this dissipated
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Figure 11-3: (a) Stick-slip results from bistability, illustrated here for a single ion.

We linearly ramp a shear force causing the ion to jump between the minima, and

we extract its position from its fluorescence, proportional to the lattice potential

energy: (#1) ion initialized in the left site; (#2) the applied force pushes the ion

up the lattice potential, eventually causing the slip; (#3) immediately after the slip,
the ion is optically recooled and localizes to the right site; (#4),(#5),(#6) the force

ramp reverses and the ion sticks at the right site before slipping back to the left.

Slips are identified by maxima in the ion's fluorescence. (b) Fluorescence versus

applied force measured during the forward transport (green squares) and reverse
transport (red circles), showing hysteresis that is used to measure the static friction

force F,. The stages of the stick-slip process (#1)-(#6) correspond to the illustrations

in (a). Only the bold data points indicate the ion's position before a slip and are

used to reconstruct the force-displacement curve shown in (c) (immediately after

the slip, fluorescence is high as a result of the released kinetic energy, and indicates

temperature rather than the ion's position until it has cooled down again). (c)

The force-displacement hysteresis loop encloses an area equal to twice the dissipated

energy per slip AW.
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energy per 1 lattice site of displacement is the kinetic friction force Fk = AW/a.

In addition, AW is proportional the the height UB of the energy barrier to chain

displacement, intuitively because it is the energy released when the chain falls off the

top of the barrier by slipping (see section 12.2).

It is interesting to note that just like in most manifestations of friction at the

macroscopic scale, the kinetic friction force is smaller than the static friction force

Fk < F. This can be seen as follows: the half-area of the loop is AW ~ F, x Ax,

where Ax is the distance between the two minima in the bistable potential and also

roughly the distance over which the ion slips. The ion is never stuck exactly at the

lattice site, but gets pushed up the potential before each slip, so Ax < a, meaning

that Fk = AW/a < AW/Ax = F,.

A note about the definition of static friction force is in order. In our system,

F, is the external force field that needs to be applied to the atoms to force them

over the barrier in a symmetric bistable potential. The actual reaction force exerted

by an atom on the rigid support in the FKT model (Fig.11-2) is given by Freact =

(xi,o + X) - xi. This critical reaction force just before the slip Freact,, is commonly

defined and measured in tribology experiments as the static friction force. It is always

larger than the static force we have defined here: Freact,s > F., but Freact,s goes to zero

whenever F, goes to zero, and therefore this does not affect any conclusions in this

thesis (for example, the conclusions about superlubricity in the subsequent chapters).

Of course, Freact,s can also be extracted from the measured hysteresis loops, but our

measurement of F, comes directly from a very reliable measurement of the shift in

the fluorescence peaks, and so we stick to discussing the static friction force in terms

of our definition of F.
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Chapter 12

Normal load dependence of friction

and superlubricity

FRICTION

Norial load

Materiat properti

Contact area

7 &

Figure 12-1: In this chapter, I explore the first and oldest pillar: the normal load
dependence of friction, and show experimental observations of superlubricity.

The well-known empirical law of friction

Ff =-FN (12.1)

which states that friction is proportional to the normal load at the contact surface,

does not hold even in the simplest atomistic model of friction involving a single atom

on a periodic substrate, the Prandtl-Tomlinson model (PT) [60, 61], commonly used
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to describe single-asperity nanocontacts and AFM experiments [58]. Stick-slip friction

vanishes below a critical normal load in this model in a phenomenon termed super-

lubricity [65, 104]. In a multi-atom contact, as in the Frenkel-Kontorova-Tomlinson

model (FKT), the critical normal load below which superlubricity appears depends on

the matching of atomic lattices at the contact, in which case we refer to that regime

as structural superlubricity (explored in more detail in chapter 13). In the limit of

the Frenkel-Kontorova model, structural superlubricity can be associated with the

sliding-to-pinned Aubry transition [64, 105, 106, 107, 63] (I explore this connection

in chapter 14). Superlubricity is an elusive, but technologically and economically

important regime, which does not seem to naturally occur on the macroscopic scale.

Evidence for it has been seen mostly at the nanoscale using atomic force microscopes

[75, 73, 74], but recently also at the microscale in sheared graphite [108] and at the

macroscale in carbon nanotubes [109] and graphene stabilized by nanodiamonds [110].

Unfortunately, these condensed-matter experiments have limited access to all micro-

scopic variables and individual atoms at the contact interface. In our experiments

described here, we measure friction between trapped-ion chains and an optical lattice

as a function of lattice depth, which represents the normal load, and observe superlu-

bricity below a critical lattice depth. Our studies of superlubricity with atom-by-atom

control provide detailed understanding of its microscopic mechanisms, including the

effects of atomic lattice mismatch and contact size [17, 111], and the effects of velocity

and temperature [112] - effects which I fully unravel by the end of part II of my thesis.

12.1 Observations of superlubricity and transition to

stick-slip

Our measurements of friction as a function of lattice depth U for ion chains of N =

1 - 5 ions are shown in Fig.12-2. In a) ion chains are matched to the lattice, and in b)

they are mismatched to the lattice. In both regimes, the vanishing of the measured

static friction force, the mean force per ion F,, is apparent below a critical finite
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lattice depth Uc. This zero-friction regime is superlubricity. Note that according to

the empirical law in equation 12.1, which translates to F, oc U, there should be no

superlubricity as any finite corrugation results in a finite friction force. Note also the

difference between U, in the matched and mismatched scenarios: a matched chain of

any length N gives the same mean friction force per ion F, as with a single trapped

ion, whereas mismatching makes superlubricity more robust and U, increases with N

from the single-ion value U( 1) = Ka2 /27r 2 .

12.2 Friction of a single trapped ion and the Prandtl-

Tomlinson model

The occurence of superlubricity is most easily understood in terms of a single trapped

ion (N = 1). This case is an exact implementation of the Prandtl-Tomlinson model

(PT) [58, 60, 611, which assumes a single-atom contact between an asperity of stiffness

K at equilibrium position X and a substrate producing a periodic potential with

lattice constant a and depth U (Fig.12-3). In our system, K = mW2 is the axial

harmonic confinement of the ion in the Paul trap, where wo is the axial vibrational

frequency (nominally at 27r x 364 kHz), X is the position of the minimum of the axial

potential, U is the depth of the optical lattice (here varied in the range 27h x (1.6 -

36.8) MHz) with lattice period a = 184.75 nm. In the absence of the Paul trap, the

lattice would confine the ion at one of the sites, which for small oscillations around

the energy minimum would result in a vibrational frequency WL given by

1 82 1 27r 2u
1 = 82 [ U(1 + cos(27r-))] 2 (12.2)
m x2 __ 2 a ma2

Thus, the total potential experienced by the atom is:

VpT(x) = -K(x - X) 2 + -U 1 + cos(2wr-) (12.3)2  2 a

which in dimensionless units of Ka 2 for energy and a for position becomes
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Figure 12-2: Summary of observed dependence of stick-slip friction on lattice depth U

(or "dimensionless normal load" 7). Superlubricity is observed when friction vanishes

within experimental error. (a) For ion crystals of N = 1 - 4 matched to the lattice,
superlubricity is observed below a critical value of the lattice depth U, corresponding

to 1 = 1, independent of the ion number. This is in agreement with the single-atom

Prandtl-Tomlinson model (orange solid line), where the potential is monostable for

,q < 1 and bistable for q > 1. For 27 > 1 friction is observed to increase linearly

with q, with no observable change in behaviour as the multistable regime is entered

at 7 ~ 4.6, where multi-slip motion is expected to take place. (b) For ion crystals

of N = 1 - 5 mismatched to the lattice, the stick-slip behaviour with normal load

,q changes drastically: superlubricity persists to larger and larger critical values of

q as the size of the crystal N increases. In (a) and (b) the measured mean friction

force per ion is plotted (PS), and error bars indicate statistical errors of 1 standard

deviation.
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VPT(X) = 1 2 1 -(- cos(27x)) (12.4)
2 47r

The dimensionless parameter q defines the topography of the potential landscape

and is given by the ratio of maximum lattice curvature mW2 to the curvature of the

harmonic trap mwo (or equivalently, by the square ratio of the associated vibrational

frequencies):

2 2U w27r2U _ (12.5)
Ka 2  W2

Since q is proportional to the lattice depth U through this relation, it can be thought

of as the dimensionless normal load.

The total potential in eqn. 12.4 is always monostable for r < 1, bistable for a

range of X for 1 < g < 4.604 and multistable for i > 4.604, as shown in Fig.12-4. The

crossover from monostability to bistability happens at 1 = 1 because that is when

the negative curvature at the lattice maximum overcomes the positive curvature of

the harmonic trap, and creates a barrier. The global potential minimum bifurcates

into two degenerate local minima (at distance x from the lattice maximum). Since

stick-slip can be understood as a sudden switch induced by an applied force from

a metastable potential minimum to a lower minimum, stick-slip requires bistability.

Therefore, in the PT model stick-slip should be finite for i > 1 and should vanish for

rj < 1, resulting in superlubricity. This crossover at i7 = 1 (i.e. UP) = Ka 2/27 2) for

N = 1 is indeed observed in our experimental data in Fig.12-2a.

Recalling chapter 11, we measure the static friction force F, as the electric force

required to move the harmonic trap position X from the symmetric point X = 0

until the ions slips: F, = KXtip. By considering at which X the metastable initial

minimum disappears, we obtain, in our dimensionless units where force is measured
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(b) x O
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Figure 12-3: (a) Friction of a single trapped ion against the optical lattice potential.

(b) The Prandtl-Tomlinson model of a single trapped ion in the lattice.

monostable

:(superlubricity)

r7 < I

bistable
(stick-slip)

x

1 < r/< 4.6

Figure 12-4: The Prandtl-Tomlinson potential results from the superposition of the

harmonic trap potential and the sinusoidal lattice potential. It is monostable when

the curvature of the harmonic trap dominates rq = L < 1, becomes bistable when

the lattice curvature dominates r/ = ol/W > 1, and is multistable (more than two

local minima) for r > 4.6.
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in units Ka and distance in units a, for 7 > 1:

F = X = I sin(arcsec()) - arcsec(y)
Fs si (arcsec-2,)) /(12.6)

= s/ 2 - 1 - arcsec(r)

This exact result of the PT model agrees very well with our experimental curve of

F, versus y for the matched ion chains as can be seen in Fig.12-2a. Near q > 1, F,

scales as (q - 1)3/2 and for q >> 1, F, scales linearly with 77. A good approximation

in the full range 17 > 1 turns out to be (see Fig.12-5):

1 (ij - 1)3/2F, e -(12.7)
27 71/2

What is the relationship of this measurement of F, to the dissipated energy AW

and to the energy barrier UB? Measurements of the ion fluorescence allow us to

reconstruct the force-displacement hysteresis loop for this single-ion stick-slip process,

as discussed in chapter 11. Let us revisit this loop in Fig.12-5. The measurement

of the static friction force F, comes from the width of this loop and the dissipated

energy comes from the area AW ~ F, x Azx where AZx is the distance between the two

degenerate minima of the bistable PT potential at the symmetric point X = 0. F, is

the shear force that needs to be applied to overcome the sticking force of the barrier

between these minima, corresponding to the largest barrier slope. In a sinusoidal

potential, the largest barrier slope is related to the barrier by Fmax = 7rUB/Ax.

Taking this relationship for the PT potential,

1 1
UB e -F8Ax ~ -ZAW (12.8)

7r 7r

The height of the hysteresis loop Ax/a scales as (,q - 1)1/2 near q > 1 and for qi 1,

it saturates to unity since in that limit, the distance between the minima is equal to

a. A good approximation is

AZx/a 1/2 (12.9)
171/2
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Combining this with equations 12.7 and 12.8, gives an approximate expression for the

energy barrier UB:

1 (rj - 1)2(1.0
UB ~7F 1 (12.10)

and since the depth of the lattice potential in dimensionless units is $r, the ratio

of barrier height to maximum barrier height (lattice barrier U) is

- ~ )(12.11)
U r

In Fig.12-5, numerical results for F, AZx and UB as a function of rq are compared

with the approximate formulae 12.7, 12.9, and 12.10 (left column), and with the

experimental determinations of these quantities from the measured hysteresis loops

(right column). It is evident that the measurement of F, is robust and agrees well

with the theory, but there is a slight discrepancy in the experimental measurement

of AX, which translates to a discrepancy in the experimental value of UB. This can

be attributed to finite temperature (see chapter 15) and to drifts of the fluorescence

signal, to which the measurement of Ax is significantly more sensitive than F,. For

these reasons, we stick to measurements of F, as the primary experimental signal.
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Figure 12-5: Theoretical (left) and experimental (right) hysteresis loops are shown

corresponding to the stick-slip of a single ion in the optical lattice. The corresponding

measurements of the static friction force F, (from the width of the loops), of the

height of the loops Ax, and of the resultant energy barrier UB from equation 12.8

are plotted below (for N = 2, 3 ions matched to the lattice). The numerical plots of

these quantities and the approximate formulae plotted on the left agree well for F,

and agree qualitatively for Ax and UB.
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12.3 Multi-ion contact (matched vs mismatched)

As discussed in detail in the previous section in the context of the PT model, the

central concept differentiating finite stick-slip and superlubricity is an energy barrier

in a bistable (or multistable) landscape. Superlubricity occurs when the potential is

monostable and there is no energy barrier, whereas stick-slip friction increases with

the energy barrier. The data showing very different friction forces for the matched

cases and the mismatched cases (Fig.12-2) can be understood in terms of a reduction

of the energy barrier - the Peierls-Nabarro barrier - due to the Coulomb forces between

the ions in a chain mismatched to the lattice. This barrier reduction can be visualized

in a 3D plot of the total potential of a 2-ion chain versus the coordinates x1 and X 2 of

the two ions (Fig.12-6). When the ions are matched to the lattice, all the ions always

experience identical lattice sticking forces equal to the sticking forces on a single

trapped ion in the PT model. As a result, the energy barrier per ion is unmodified

compared to a single ion, and scales with 7 as in the PT model (Fig.12-5). When

the ions are mismatched and experience opposite lattice sticking forces, their partial

cancellation leads to a reduced barrier UB.

The transition from superlubricity to stick-slip occurs when the stiffness of lattice

confinement 2! U overcomes an effective stiffness of the ion chain s. For a single

ion, or a matched chain, the competing chain stiffness is given by the common mode

s = K. However, in the mismatched case, the internal springs g due to a higher-

order motional mode also contribute to the competing chain stiffness s(K, g) > K

and a deeper lattice U is required to break superlubricity. This suggests defining

the parameter i in terms of the effective chain stiffness s(g, K) equivalent to the PT

parameter q reduced by a factor E < 1:

2w 2 U/a2  
(12.12)

s(K, g)

Assuming the same form for UB( ) and F() as in equations 12.10 and 12.7,

this indeed leads to a reduced energy barrier and static friction force, as well as a

transition from superlubricity to stick-slip at a larger value of a given by 1/6:
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Figure 12-6: Total potential landscape (including Coulomb interactions) for a

matched and a mismatched 2-ion chain showing a reduction of the PN energy barrier

in the mismatched case.
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UBU
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1 ( - )/1 ( _ )3/2
1)in t (12.14)

s 27r j1/ 2  27r 71/2

The model 12.14 indeed fits well to the experimental data for mismatched ion

chains with the single parameter E (Fig.12-7a). Indeed, rescaling the q axis for each

curve by its fitted value of c, the curves collapse onto the same curve as a function of

the rescaled normal load i, as shown in Fig.12-7b.

Numerical results at zero temperature show a transition from superlubricity to

stick-slip at values of q in agreement with the fitted values of 'q = 1/E. However,

F, appears to increase with q for n > 77, much more sharply in the zero-temperature

numerical simulations, not following formula 12.14, indicating that the naive rescaling

of the normal load that appears to hold experimentally for mismatched crystals, works

partially due to finite temperature and thermolubricity, effects discussed in chapter

15.

To conclude this chapter, superlubricity occurs for dimensionless normal loads
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Figure 12-7: When in the mismatched cases the measured friction force F, versus 'q is

fitted with model 12.14 with the single parameter 6, the data for crystals of N = 1 -5

ions collapses onto a single curve as a function of the rescaled normal load i =
This is consistent with the idea of PN barrier reduction by internal chain stiffness in

the mismatched case.

,q < 1 for a single ion or for an ion crystal of any N matched to the lattice, in which

case the Prandtl-Tomlinson model explains the onset of stick-slip friction for q > 1

by the emergence of an energy barrier in a bistable total potential. This barrier is

reduced by Coulomb interactions in the mismatched case, resulting in the extension

of superlubricity to larger values of q, and the behaviour of the friction force with

7 under effects of finite temperature can be modeled by a single-particle Prandtl-

Tomlinson model with a rescaled dimensionless normal load i. The mismatched case

is considered in more detail in the next chapter on structural lubricity.

120

(D

20

0
Cn
.)

N=1,2,3,4,5

-j

2 2.5



Chapter 13

Structural lubricity

FRICTION

Normal load

Materio roperties

Contact area

Commensurate lattices stick,
Incommensurate don't

Figure 13-1: In this chapter, I explore the second pillar: the effect of structural

mismatch on friction.

The question of how the microscopic structures of contacting surfaces interact at

a frictional interface is perhaps the first one that comes to mind in the context of

friction. In the empirical law for microscopic friction Ff = A - FN, it is embodied

in the material-dependent friction coefficient p, which is believed to be affected by

surface roughness on multiple length scales in a complicated way [51, 53, 54, 55, 52].

For atomically smooth contacts at the nanoscale, as in a single asperity contact at the

lowest scale of roughness, or as in nano-scale mechanical systems, a simple intuition

might be expected to hold. When the atomic lattice constants of the contacting
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surfaces are matched (in registry), the two atomic lattices can lock together and

stick, resulting in large friction. When the lattice constants are mismatched, or in

the extreme case incommensurate, the two lattices do not lock and the cancellation

of sticking forces can significantly reduce friction. In fact, superlubricity can occur

as a result of this structural effect. As discussed in chapter 12, the effect is to extend

the superlubric regime to larger values of the critical normal load that breaks it.

Varying the lattice constants of surfaces in contact is difficult to do in condensed

matter interfaces, requiring the use of different materials. One trick, that has been

utilized to observe structural superlubricity in an atomic force microscope [75, 741,

involves rotating one surface with respect to the other surface. Unfortunately, indi-

vidual atoms cannot be accessed in such a system to verify the locking hypothesis

and to study the microscopic behaviour of the friction process with varying degrees of

structural lubricity. We do, however, have this single-atom access in our ion-crystal

optical-lattice friction interface. This enables us to show that as the relative length

scales of the two structures are varied from matched to mismatched, friction is re-

duced, and the character of this reduction is related to a localization of kinks as

the atoms go from sticking and slipping simultaneously to crossing lattice barriers

one at a time. This transition in a finite system is related to the commensurate-

incommensurate transition in the infinite chain as in the Frenkel-Kontorova model,

also known as the Frank-van-der-Merwe transition [63].

13.1 Observation of structural lubricity

Recall from section 10.4 that the ion chain spacing is inhomogeneous and that we

define matching between the trapped ion crystal and the optical lattice in terms of

the parameter q representing the normalized potential barrier to the displacement of

the unperturbed (infinitely rigid) ion crystal:

IN
q =max, sin (xoj - (13.1)

3
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When we measure the frictional hysteresis of each ion in a matched (q = 1)

crystal of N = 1 - 6 ions, we observe large hysteresis loops, with large values of the

static friction force F, and of the energy dissipated during a slip AW for each ion

(Fig. 13-2a). The ions are observed in this case to stick and slip simultaneously.

This explains the large F, and AW as the simultaneous catastrophe (slip) of all the

particles leads to a large amount of released energy. Furthermore, because the ions

stick and slip simultaneously, only their common motional mode wO participates in the

process, which is identical for a single trapped ion in that harmonic potential. This

is consistent with our observation (also discussed in chapter 12) that the measured

friction force for each ion in the matched crystal of any size N is equal to that for a

single trapped ion at the same value of q = (WL/WO) 2 which parametrizes the Prandtl-

Tomlinson model. The other parameter, describing the internal chain stiffness g in

the FKT model, drops out of the problem.

When we measure the frictional hysteresis of each ion in a mismatched (q = 0)

crystal of N =1 - 6 ions, we observe that the hysteresis loops are significantly

reduced or vanish (Fig.13-2b). The ions are observed to pass the lattice maxima

one at a time, in a staggered fashion. The reduction in friction can therefore be

interpreted as additional confinement against slipping of each ion on top of a lattice

barrier by its better pinned neighbours via the internal springs g, as the ion crystal

is translated across the lattice. This stiffness against internal deformations with the

energy scale of the highest vibrational mode can result in smooth translation of the

entire chain along the lattice in a snake-like motion reminiscent of kinks.

13.2 Commensurate to incommensurate transition

As we vary the matching parameter q continuously from the matched case q = 1 to

the mismatched case q = 0 by tuning the external harmonic confinement K = mW2

(see section 10.4), the static friction force P, and dissipated energy AW drop quickly

from the single-ion value at first, then approach slowly a much reduced value near

q = 0 (Fig.13-3 and 13-4). This reduced value decreases with increasing chain size N
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Figure 13-2: Changing friction in a 3-ion crystal from maximal to nearly frictionless

(superlubric) by structural mismatch. In the matched case (top), the ions stick and

slip synchronously during transport (the observed fluorescence for each ion expressed

as a photon detection rate and indicated by the color, is maximum when the given ion

slips over a potential barrier). The large hysteresis loop corresponds to large friction,

shown here for the middle ion. In the mismatched case (bottom), the different ions

slip in a staggered fashion and the friction and hysteresis loop nearly vanish. The

results shown are taken at a value of the dimensionless normal load r just below 4.6.
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at a fixed q, consistent with the measured curves of F, vs q in chapter 12. This is also

consistent with the fact that friction reduction comes from additional confinement by

the internal springs g, which increase with growing N (section 10.3).

The observed 10-fold reduction in friction already for N = 2 ions and a 100-fold

reduction for N = 6 ions is interesting because no energy scales were changed in

the system. This lubricity is purely structural, coming from a slight tweak of ion

separations on the scale of the optical wavelength. This lesson can be important in

designing materials and nano-scale mechanical systems with ultra-low (or ultra-high,

as needed) frictional coefficients.

The property of simultaneous or staggered crossing of lattice barriers can be cap-

tured by the degree of slipping synchrony

N

= max j Sin( X - #) (13.2)

defined analogously to the matching parameter q in equation 13.1, but with intrinsic

ion positions x4,0 replaced by trap positions Xj where each ion crosses the barrier

or slips (the maximum fluorescence point). The slipping synchrony is basically the

correlation of ion slipping times during the force ramp that translates the trap position

X, and it is measured in the same way as the matching parameter (see section 10.4),

but during the actual friction experiments (rather than in the limit of low lattice depth

and slow driving). The synchrony varies between = 1 for simultaneous slipping and

= 0 for maximally staggered slipping.

The measured degree of slipping synchrony (Fig. 13-5) exhibits a transition from

simultaneous slipping (( = 1) of the ion crystal for q > q, to staggered slipping ( < 1)

for q < q,. This means that the first regime q > q, can be viewed as single-particle

stick-slip in the Prandtl-Tomlinson model with an effective value of 7 = 2 U/a2 that

scales as 1 ' q (q - q) to lowest order, where s(K, g, q) is an effective chain

stiffness (discussed also in chapter 12) with a q-dependent contribution from internal

springs g due to Coulomb interactions. In the second regime q < qc, a single ion can

slip without forcing the rest to do the same, forming a kink that propagates one ion
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at a time. In this regime, friction appears to be nearly independent of the matching

parameter q.

These results point to an important conclusion about structural lubricity: it is

robust to imperfect mismatch. Friction is low and independent of q for a large range

of values q < q,; as long as ions cross lattice barriers one at a time, the exact timing

of these crossings or slips does not affect friction. In fact, the robustness to structural

lubricity to mismatch is a feature of the finite system. This brings us to the next

chapter, where I show observations of the Aubry transition in our finite system and

discuss the questions of contact size and the concept of incommensurability in a finite

system.
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Figure 13-3: The dependence of static friction force on the structural mismatch q

between the ion crystal and the optical lattice for different crystal sizes. The value of

q is tuned from the matched case (q = 1) to the mismatched case (q = 0) by changing

the trap vibrational frequency wo. The static friction force F, is plotted, averaged

over the ions and normalized to F, as measured for a single trapped ion. The results

shown are taken at a value of the dimensionless normal load q just below 4.6. Error

bars represent 1 standard deviation. Simulations are shown for zero temperature

(red, green and blue dashed lines) and finite q-dependent temperature (red, green

and blue solid lines), indicating that in the limit of low q structural lubricity and

structural thermolubricity reduce the observed friction by similar factors in our data

(see chapter 15).
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Figure 13-5: The measured degree of slipping synchrony as a function of matching
parameter q, shown here for an N = 2 ion crystal at q just below 4.6. The results
are compared to the measured friction force P/F(1 ) from Fig. 13-3, showing that for

q > q, where the friction force drops linearly with q, synchrony is locked at ( = 1: the

ions slick and slip synchronously. Below qc, staggered slipping sets in ( < 1), and
friction becomes nearly independent of q. Here, q, was loosely assigned to the point

when synchrony breaks and deviates from unity.

128

(8)

1

0
0

a)

a)
'a

0

1



Chapter 14

Aubry transition

FRICTION

0

A few-atom contact can behave
like an Infinite contact

Aubry transition
IJ

Figure 14-1: In this chapter, I tie together our findings about structural lubricity and
superlubricity at low normal load to demonstrate the first observation of the Aubry
transition. I wrap up with the related question of the third pillar: the dependence of
friction on the true contact area (the number of atoms at the contact).

In chapters 12 and 13, I discussed our observations of superlubricity - the van-

ishing of stick-slip friction - between finite ion chains and the optical lattice below

a critical normal load (lattice depth) and as a result of mismatch between the ion

chains and the lattice. Superlubric behaviour - a dynamical frictional phenomenon -

has been conjectured to be related to a translationally invariant sliding phase - a static

property of the ground state of the infinite-chain Frenkel-Kontorova model, found by
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Aubry [64, 105, 106, 107] to occur below a critical substrate corrugation depth when

the chain is incommensurate with the substrate. Above the critical corrugation depth,

he found that the infinite chain gets pinned and analyticity-breaking occurs in the

atomic positions, which form an everywhere-discontinuous fractal "staircase" pattern

relative to the substrate period (Fig. 14-2). Although signatures of superlubricity have

been observed at the nanoscale [73, 74], a clear connection to Aubry's sliding phase

has never been made, and the Aubry analyticity-breaking transition has never been

directly observed. One reason for this is that the transition as discussed by Auby

happens in a very theoretical limit of a static, infinite, maximally incommensurate

chain interacting only with a sinusoidal potential (without any external confinement).

However, a realistic experimental scenario is dynamical (involving, for example, mea-

surements of friction), and involves finite atom chains, which might additionally be

attached to an external support, which provides external confinement and breaks

discrete translational symmetry of the sinusoidal potential. The Aubry transition

concept has been extended to finite chains as a reflection-symmetry-breaking transi-

tion due to the pinning of the center ion in an odd chain [92, 98, 99, 63]. Separately,

it has been extended to infinite chains with finite external confinement, in which the

frequency of the soft "sliding" mode is lifted to a finite value [93] and the critical

pinning corrugation U, is pushed to a larger value [95, 96]. Even though these modifi-

cations represent a more physical situation, quantitatively linking any observations of

superlubricity and superlubricity breaking to the Aubry transition concept involves

linking the dynamical processes to the static properties and having full control of mi-

croscopic parameters and individual atoms. Such experimental capabilities, achieved

for the first time in our system, and the experimentally-guided conceptual connection

between the statics and dynamics in our system, enable us to claim the first observa-

tion of the Aubry transition via superlubricity breaking. I discuss this milestone in

this chapter.

130
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Figure 14-2: (a) The infinite-chain Frenkel-Kontorova model is where the Aubry
sliding-to-pinned structural transition was predicted to occur. The largest value of the
critical potential depth where pinning occurs is set by the stiffness of next-neighbour
springs g, and occurs at the maximally incommensurate Golden ratio spacing of the
chain relative to the periodic potential. (b) The sliding phase below the Aubry
analyticity-breaking transition manifests itself as a soft (zero-frequency) motional
mode, conjectured to be related to superlubricity. (c) The ground-state curve of
allowed atomic positions relative to the substrate potential goes from continuous
below the transition, to a fractal staircase with forbidden regions or gaps above the
transition, earning the term "analyticity-breaking transition".
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14.1 Static and dynamic manifestations of pinning

In general, both the static and dynamic properties of a chain of atoms in the periodic

potential of a substrate lattice are governed by two competing length scales and two

competing energy scales. The intrinsic chain spacing competes against the lattice

spacing, and the stiffness of the chain competes against pinning by the lattice. When

the spacings are mismatched and the atom chain is stiff, it is stable against pinning

and favours its intrinsic arrangement, where atoms can take any positions with respect

to the lattice period and there is a cancellation of lattice forces - the total potential

landscape is monostable, without barriers. Dynamically, this means that the chain

can be smoothly translated through the lattice, manifesting in superlubricity. If

the depth of the lattice potential is increased, at the point when it overcomes the

chain stiffness, the chain becomes unstable against pinning and the atoms reorganize

towards lattice minima and avoid lattice maxima (Fig. 14-3), which become Peierls-

Nabarro (PN) energy barriers in the a multistable total potential [63]. Dynamically,

the finite force, required to move the chain over these barriers, manifests in stick-slip

friction.

Consider for each atom j its position relative to the lattice period in the form of

the displacement from the nearest lattice maximum xj (Fig. 14-3). Since the pinning

transition manifests in exclusion of atoms from lattice maxima, one can parametrize

it via the disorder parameter Xmin =minjlxj I giving the closest distance to a lattice

maximum [1131. Consider first the infinite-chain limit. The atoms whose intrinsic

positions coincide with lattice maxima xj,o = 0, stay there below the pinning transi-

tion, giving Xmin = 0. Above the transition, they displace left or right and Xmin > 0

as a result of anti-confinement by the negative lattice curvature Z U overcoming the

confinement due to total chain stiffness (g and K), and creating a finite PN barrier

there (Fig. 14-3). Analyticity breaking is the formation of discontinuities in the

curve of an atom's relative position xj in the ground state versus its unperturbed

position x3,o as the position of the support X is varied. (Since all the atoms in an

infinite chain are equivalent, this curve is identical for all j and coincides with the
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Figure 14-3: The Frenkel-Kontorova-Tomlinson model showing a structural transition

in the atomic position distribution. (a) When U < U, the chain is unpinned with

atoms at their intrinsic unperturbed positions x3 ,o relative to the nearest lattice max-

ima. (b) When U > U, the chain is pinned wit the atoms at their pinned positions xj

relative to the nearest lattice maxima. The distance of the center atom to its closest

maximum, denoted xmmn parametrizes the reflection-symmetry-breaking transition.

hull function [63].) The curve is continuous (analytic) below the pinning transition.

Above the transition it has a jump at xj,o = 0 from -Xmin on one side of the PN

barrier to +Xmin on the other side because the global minimum switches from the

left local minimum to the right local minimum. In the same way, one of the neigh-

bouring atoms J 1 at distance d away is forbidden from a lattice maximum when

the intrinsic position of atom j is xj,o = d(mod a), and the forces exerted on it by

the neighbours produce smaller jumps in xj at these points. Another pair of even

smaller jumps occurs at xj,o = 2d(mod a) due to next-next neighbours, and so on

down the chain. For an infinite incommensurate chain with irrational d(mod a)/a, as

in the Aubry limit, the curve of x3 forms a fractal staircase with an infinite number

of jumps and is nowhere analytic (Fig.14-4a). For a finite mismatched chain, each

curve xj should have N jumps near the points x3 ,o that put an atom in the chain

over a lattice maximum (Fig.14-4b). For the center atom j = (N + 1)/2 in an odd-N

chain, the main jump, which corresponds to displacement of this atom and the rest

of the chain to the left or to the right of the symmetry point at a lattice maximum,

parametrizes the reflection-symmetry-breaking transition [92, 98, 99, 631.
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To visualize the dynamical situation of stick-slip friction, consider an atom's rela-

tive position xj versus the intrinsic position xj,o when the support is moved sufficiently

quickly so that the chain does not have time to relax across the PN barrier, and in-

stead follows the local minimum. Above the pinning transition, as xj,o crosses from

left to right the value where xj jumps in the static case, the chain sticks to the left

metastable state until the PN barrier vanishes and a slip to the global minimum

occurs (Fig.14-4c). When the support is moved in the opposite direction, the chain

sticks to the right metastable state before slipping to the global minimum on the left.

This dynamical process results in hysteresis loops centered around the jumps in the

static xj (Fig.14-4c,d). Below the pinning transition, there are no PN barriers: the

superlubric chain always follows the global minimum and the dynamic curve of xj

coincides with the continuous static curve. Thus, the hysteresis that can be used to

measure friction [17, 112] across the boundary between superlubricity and stick-slip,

can also be used to measure the opening of gaps in the atomic position distribu-

tion across the pinning transition: the two are different aspects of the same physical

phenomenon.
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Figure 14-4: Analyticity breaking as formation of gaps in the ground-state position

distribution of atoms relative to the lattice. (a) In the limit N - o, K -4 0

corresponding to the Frenkel-Kontorova model, and at d(mod a)/a =(V - 1)/2,

the curve of allowed ground state positions xj versus xj,o is continuous below the

Aubry transition (grey) and forms a fractal staircase above the Aubry transition (red).

(Numerical results shown are for N = 101 and K/g = 0.0078.) (b) For a realistic

nanocontact, for example N = 5, K/g = 1 and d(mod a) = (v5 - 1)/2, a finite

staircase forms above the transition. (d) In a dynamical situation (fast translation of

the support), the gaps in this staircase appear as hysteresis loops in measurements of

friction above the superlubricity-breaking transition. The trajectory for a neighboring

ion is shown with a dotted line to emphasize that the secondary gaps are due to the

primary instabilities of other ions in the chain near their respective lattice maxima.

(c) Illustrated here for a single ion, the ground-state ion position (red) is given by its

position up to the midpoint of a hysteresis loop in a friction experiment, where the

global minimum switches from one site to the next.

135

(b) 5 atoms,
static

+0.5

-0.5

(c)

-o 5 --
-0.5

xO = X(t) = F t)IK [a]



14.2 Observation of forbidden positions via stick-slip

We perform friction experiments by applying an external electric force Fapp to quickly

move back and forth the position X(t) = Fapp(t)/K of the axial trapping potential,

thus translating the intrinsic ion positions xj,o(X(t)) = xj,o(0) + X(t). The dynamic

position curves xj are then mapped out by monitoring the position of each ion via

fluorescence. In the elementary case of a 2-ion partially mismatched chain we observe

two hysteresis loops in each ion's position: a large one due to the primary slips of

the ion over its lattice maximum, and a smaller one due to secondary slips induced

by the primary slips of the other ion (Fig.14-5). These hysteresis loops correspond

to the points where analyticity is broken for the finite chain. The heights of the

loops give the desired static discontinuities in x3 - forbidden regions in the atomic

position distribution. The left and right edges of the loops correspond to the slipping

events in the stick-slip process, and as before, half the difference in Fapp between the

forward and reverse slips gives the static friction force F, required to pull the chain

over the corresponding PN barrier and the area enclosed by the loops gives the energy

dissipated by stick-slip friction. We observe both the primary and secondary loops

Co open up from zero with increasing lattice depth, in qualitative agreement with

zero-temperature numerical simulations, despite a decreased size and distorted shape

of the secondary loop as a result of the finite temperature in our system (chapter 15).
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Figure 14-5: Observation of analyticity breaking in a 2-ion chain. (a) The measured

displacements from lattice maxima XI, X2 versus the intrinsic displacements X1 ,0 , x 2,0

show a secondary hysteresis loop for ion 2 induced by the primary hysteresis loop

of ion 1 (left), when the trap position X is quickly moved forward and backward

in the vicinity of a Peierls-Nabarro barrier that causes a large gap in the ground-

state position distribution of ion 1. Similarly, the primary hysteresis loop on ion 2

induces a secondary hysteresis loop on ion 1 (right). The heights of these loops give

measurements of these gaps, and the width of the loops give a measurement of the

static friction force F. Note the different scales of the primary and secondary loops.

The 2 ions in this measurement are partially mismatched to the lattice with d(mod

a)/a ~ 2/3 and q ~ 0.5. The error bars show a statistical uncertainty of 1 standard

deviation. (b) As the lattice depth U is increased, the measured loops open up as

seen in the increasing difference between the forward and backward ion positions

Azx, shown in colour, and in the increasing static friction force, corresponding to the

half-width of the color region Axj > 0.
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14.3 Observation of the Aubry transition

To measure quantitatively the transition from analyticity to the gapped pinned phase

and from superlubricity to finite friction as a function of lattice depth U, we mea-

sure, ion-by-ion, the static friction force Fe, which is the most experimentally reliable

measurement of the sizes of the hysteresis loops. As discussed in chapter 12, for

chains of N = 1 - 5 ions, we clearly observe superlubricity below a critical value of

the lattice depth U, as vanishing of the measured friction force within experimental

errors (Fig.14-6). When the ions are matched to the lattice (q = 1), superlubricity

is observed to break at U, e Ka2/(27T 2 ) for all N (Fig.14-6b) as in the single-atom

limit of FKT corresponding to the Prandtl-Tomlinson model [58J. In other words,

anti-confinement by the lattice only needs to overcome the external chain stiffness

K, and neither the number of ions N, nor the internal springs g have an effect on

friction, because when the ions are in registry with the lattice, they are always subject

to same lattice sticking forces. When the ions are mismatched to the lattice (q = 0),

superlubricity is observed to break at values of U, > Ka2/(27r 2) (Fig.14-6a) due to

structural superlubricity [171 as mismatch activates the stiffness of internal springs g

in keeping the ions at their intrinsic positions against the lattice forces. The observed

increase of U, with ion number can be explained by the fact that g increases with N

in a harmonic trap as g/K - IN1 65 (see section 10.3). Thus, in the large N limit,

the internal springs dominate the chain stiffness and the pinning behaviour, as in the

Frenkel-Kontorova limit [91], where the Aubry transition occurs at the largest value

Uc = ga2/(2w 2) when the chain and the substrate are maximally incommensurate at

a spacing ratio equal to the Golden ratio d(mod a)/a = (v/5 - 1)/2. When g and K

are comparable in an infinite golden-ratio chain, the Aubry transition should occur

[95, 96] at Uc > (g + K)a 2 /(2 2 ).

We extract the critical lattice depth Uc at the superlubricity-breaking transition

using a piecewise linear fit (Fig.14-6) to the measured static friction force on the

central ion(s) in the chain (corresponding to the symmetry-breaking transition in an

odd chain). The experimental data points of Uc versus the effective g/K at the chain
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center, obtained from chains of different N (Fig.14-7a), agree with the analyticity-

breaking Aubry transition in an infinite golden-ratio chain with finite external con-

finement K. In other words, our finite inhomogeneous system simply tuned to cancel

the lattice forces on an unperturbed arrangement of the chain (q = 0) is as robust

against analyticity and superlubricity breaking as Aubry's upper bound in an infi-

nite, maximally incommensurate chain. To understand this, one must consider the

finite periodicity resolution 1/N set by the size of a finite system. Indeed, for the mis-

matched intrinsic chain arrangements that are observed to follow the Aubry transition

limit, separations between neighbouring ions djj 1 (mod a)/a tend to fall within this

resolution of the golden ratio (Fig.14-7c). In fact, for a homogeneous chain, one can

show that for any N there exists a choice of spacing d(mod a)/a = 1/N, where 1 is an

integer, such that the chain is mismatched to the substrate (q = 0) and d(mod a)/a

is within 1/2N of the golden ratio. This reconciles the intuitions that a finite sys-

tem is maximally super]'ubric when mismatched to the substrate, and that an infinite

system is maximally superlubric (statically, largest sliding phase) when maximally

incommensurate with the substrate.

I close this chapter by addressing one of the questions posed iii the beginning: how

the number of contact atoms affects nanofriction. The answer depends on the material

properties and the normal load. When the intrinsic arrangement of nanocontact atoms

is matched to the substrate crystal lattice, each atom experiences an identical friction

force, so the total friction force is proportional to the number of atoms, or the true

contact area. However, friction vanishes in superlubricity below a critical normal

load which does not depend on the number of atoms, but only on the stiffness of the

contact. When the arrangement of contact atoms is suitably mismatched, the total

friction force is again proportional to the number of atoms in the limit of large normal

loads. At low normal loads, but higher than the critical load in the matched case,

all the atoms at the nanocontact become superlubric except for the boundary atoms,

and friction becomes independent of the number of contact atoms. Surprisingly,

this occurs at the same normal loads for small contacts and for infinite contacts,

independent of the size and function only of the contact's stiffness to deformation.
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At an even lower normal load, which again depends only on the stiffness of the contact,

the whole contact becomes superlubric.
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Figure 14-6: In chapter 12, we observed the transition from superlubricity to stick-

slip as a function of lattice depth U (normal load r), shown here again for mis-

matched (top) and matched (bottom) ion chains with N = 1 - 5. This observed

superlubricity-breaking transition in the mismatched cases (top) corresponds to the

Aubry analyticity-breaking transition. This is testified by the agreement of the

superlubricity-breaking lattice depth U, with the expected analyticity-breaking lattice

depth in the Aubry limit, as can be seen in Fig.14-7. To extract the values of U, from

the data, here we fit an analytical formula for the PT model to the single-ion and the

matched chain results, and for the mismatched chain results we fit the lowest-order

piecewise linear model b + a(U - Uc) - H(U - Uc), where H is the Heaviside step

function, the measured friction of a central ion in the chain. The part of the fit for

U > U, is shown as dotted lines.
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Figure 14-7: Aubry transition in finite "incommensurate" ion chains. (a)
The measured superlubricity-breaking point U, for the center ion plotted against the

internal spring stiffness (each value of g/K is obtained at a different ion number

N plotted on the second horizontal axis at the top). In the matched case (blue

open circles), regardless of ion number or internal springs, the breaking point follows

the PT limit (blue dotted line). In the mismatched case (red filled diamonds), the

breaking point follows the Aubry transition (N = oc, d(mod a)/a = (v'5 - 1)/2)

modified [95, 961 by the finite external confinement K (red dotted line). The gray

open circles are numerical simulations of our finite, inhomogeneous system. The error

bars represent a 12% systematic uncertainty in applying the lowest-order fitting

model as obtained by the fidelity of U, determination on the numerical results. (b)

For each ion number, mismatching is achieved by placing the ions at the calculated

relative phases shown. (c) The calculated configurations correspond to ion spacings

shown in black: d(mod a)/a = 1/2 for N = 2, d(mod a)/a = 2/3 for N = 3, and

inhomogeneous spacings close to d(mod a)/a = 3/4 for N = 4 and close to d(mod

a)/a = 3/5 for N = 5. Shown in red are actual measured spacings, which deviate from

the expected due to a 1%-scale asymmetry of the axial trap. One can see that the

effects of inhomogeneity and asymmetry still put the ion separations dj (mod a)/a

in our finite chains within the 1/N resolution window (gray shading and dotted lines

at l-) around the Golden ratio (V 5-1)/2, explaining why the observed superlubricity

breaking agrees with the Aubry transition.

142



Chapter 15

Velocity-dependence of friction and

thermal dynamics

FRICTION

Normal load

Maer al proprties

Contact area
V

& Ter tr

4 velocity regimes due to thermal dynamics

Figure 15-1: In this chapter, I explore the fourth pillar of friction: its velocity and
temperature dependence.

Amonton's and Coulomb's empirical "third law" of friction states that kinetic dry

friction is independent of velocity. In reality, in many situations, it exhibits complex

velocity [77, 78, 79, 801 and temperature dependence [80, 81, 82, 83], which are in-

timately related at the atomic scale, yet still difficult to understand as a result of

non-equilibrium, highly nonlinear dynamics [76]. In the context of stick-slip friction,

these phenomena are governed by the interplay of the driven transport and thermal
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dynamics time scales, related to dissipation and thermal hopping across energy barri-

ers. While modeling of this at the atomic scale has been extensive [84, 85, 86, 87, 881,

pinning down the microscopic mechanisms of velocity and temperature dependence

using nanotribology experiments is challenging without full control and independent

measurement of all the microscopic parameters of the system including the height

of energy barriers and the thermal dynamics timescales. Our model nanofriction in-

terface of trapped ions in an optical lattice affords this microscopic control, and has

enabled us to build a clear picture of microscopic thermal dynamics directly corrob-

orated by experiments. In particular, we observe 4 regimes of velocity and thermal

dynamics in a single experiment for the first time, enabling us to deconvolve thermal,

structural (chapter 13) and load effects (chapter 12) of stick-slip friction experimen-

tally for the first time.

Stick-slip friction subject to thermal dynamics is governed by the interplay of 3

time scales:

1) the inverse velocity time scale, or time to displace the two surfaces by one

lattice constant of the substrate

Ttrans a/v (15.1)

2) the time scale of thermal hopping across a Peierls-Nabarro energy barrier UB,

given by the Arrhenius thermal activation relation

Tth = exp(UB/kBT) (15.2)

3) the time scale of energy dissipation T=

The thermal activation prefactor TO(TC, w7L, wjL) is the inverse of the attempt rate

A, known as the Arrhenius constant, and is a function of the dissipation time scale

and the vibrational motion time scales of the lattice wyI and the harmonic trap o.
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Figure 15-2: The trapped ions interact with an effective bath at temperature T via

laser cooling at rate y = -r1 . The latter removes frictional heat as the ions stick and

slip over the lattice as the trap is moved at speed v. The bath results in fluctuating

forces that can cause an ion to slip over the barrier prematurely (thermal hopping).

15.1 Thermal hopping and dissipation

The simple picture of the stick-slip process discussed thus far is deterministic. The

ion chain is stuck in a metastable local energy minimum as the shear force is applied,

until a critical force when this configuration becomes mechanically unstable, resulting

in a slip to a global minimum. This picture is correct in the limit of zero temperature

(T = 0) and infinite dissipation rate (-r = 0). The first condition means that there is

no thermal hopping across the energy barrier out of the metastable state (wTth o),

and the second condition means that the chain immediately finds the next minimum

energy configuration after a slip and ends up there with zero kinetic energy (T = 0)

instantaneously. This is, of course, unphysical, but is a good approximation in the

friction plateau regime identified in this chapter - the regime in which we operated in

all the friction experiments described in the previous chapters.

Consider a single ion in the bistable potential of the Prandtl-Tomlinson model

being pulled by the applied electric force Fap at speed v (Figl5-2). The balance of

cooling processes (laser cooling) and heating processes (photon recoil, electric field

noise, parametric heating from lattice potential fluctuations) results in an effective

bath at temperature T, typically at kBT ~ 0.1 - U in our system. The ion's motion

is coupled to this bath via the laser cooling at rate -y = T;1. At thermal equilibrium

in the classical limit, the ion's energy relative to its local minimum has a Boltzmann
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distribution
1

PEdE = exp(-E/kBT) (15.3)
kBT

The probability of a thermal hop is given by the probability of the ion's energy being

above the energy barrier

Phop = P(E > UB) ~ ~ PEdE
J (15.4)

= exp(-UB/kBT)

The thermal hopping rate Rhop is given by this probability times the attempt rate:

Rh0o = Aphop = rt- (15.5)

which leads to equation 15.2.

The attempt rate reduces to A e wl0 c in the underdamped limit / << l, where

Wi0,/27r is the vibrational frequency at the metastable local minimum [88, 84]. The

attempt rate reduces to A w of1C/7 in the overdamped limit -y >> wlc. With typical

damping rates of -y - 27r x 3 kHz and vibrational frequencies in the few hundred kHz

range, our experiments are most of the time governed by underdamped dynamics.

Thus, the idealized deterministic stick-slip process will occur if thermal hopping

is negligible on the time scale of the driven transport Rh0 p << v/a until the poten-

tial is very close to the mechanical instability (Fig.15-3a<A>). This is the case if

the transport is fast, at high velocities v, or if the hopping probability is low due to

U/kBT >> 1 at low temperatures T. In the opposite regime of low velocities v and

high temperatures T, the ion thermalizes across the barrier by fast thermal hopping

and never sticks to a metastable state; its probability distribution smoothly shifts

from one local minimum to the other resulting in a smooth displacement of the mean

position known as thermal drift (Fig.15-3a<B>). In a regime of intermediate veloc-

ities and temperatures, sticking may occur part of the time, weakened by occasional

thermal hopping. Experimentally, the signature of thermal hopping is diminished

hysteresis and static friction force as a result of premature hopping of the ion across
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Figure 15-3: (a) The deterministic stick-slip process occurs in the limit of low tem-

perature or high velocity and fast damping. (b) In the limit of high temperature or

low velocity, stick-slip is pre-empted by thermal hopping across the energy barrier as

the trap is translated (trap position X is shown 1-+2-+3). (b) The effect of thermal

hopping is to reduce the observed hysteresis, resulting in a smaller measured static

friction force F,.

the barrier prior to any mechanical instability (Fig. 15-3b). Such reduction of friction

due to thermal hopping is known as thermolubricity [861.

To observe deterministic stick-slip, a large damping rate is also required, such

that the released energy during a slip is removed faster than the transport time scale

v/a << -. If this does not happen, the residual kinetic energy results in a higher

temperature and large thermal hopping rate; such frictional overheating then reduces

stick-slip friction. Experimentally, finite damping is evident in all our observations of

slipping events as a decaying fluorescence tail after a slip, corresponding to an expo-

nential decay of the released energy as a result of recooling (Fig.15-4) (infinitely fast

damping would result in a sharp jump of fluorescence to the new value corresponding

to the new minimum).

These simple pictures of thermal dynamics are corroborated by full dynamics sim-

ulations using the Langevin approach where a random fluctuating force is introduced

via the fluctuation-dissipation theorem relating it to the effective temperature and

dissipation rate [87].
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trap position X(t) = v -t

Figure 15-4: An observed fluorescence peak signaling a slipping event (blue) is super-

imposed on the theoretical result in the zero-temperature, infinite-dissipation limit.

The fluorescence decay observed in experiments following a slip gives the dissipation

time constant Tc =

15.2 Velocity dependence of friction from thermolu-

bricity to velocity weakening

The competition of the transport time scale with the time scales of thermal dynamics

described above results in velocity-dependent friction. In this section, we focus on

velocity-dependent friction of a single trapped ion. We vary the velocity, with which

the harmonic trap position X is translated, over 4 to 5 orders of magnitude, and

experimentally observe 4 regimes of stick-slip friction in order of increasing velocity

(Fig.15-5a): 1) thermal drift, where friction is zero and velocity-independent; 2)

thermal activation, where friction increases logarithmically with velocity; 3) friction

plateau, where friction is large and velocity-independent, and 4) velocity weakening,

where friction decreases logarithmically with velocity due to frictional overheating.

The observed friction plateau of perfect, maximal stick-slip friction Fs,max, equal

to the applied force required to induce a mechanical instability, occurs for a window

of velocities Rhp,u << v/a << y, where Rhp,U = A - exp(-U/kBT) is the thermal

hopping rate over the highest barrier U equal to the depth of the optical lattice

potential. As velocity drops from v/a >> Rh0 ,u towards the thermal drift regime of

zero friction when v/a << Rh0 ,U, in the intermediate regime v/a ~ RhO,,pU thermal
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Figure 15-5: Velocity dependence of stick-slip friction for a single ion. The

transport time a/v should be compared to two time scales: the slowest thermal

hopping time between two lattice wells, given by Tth,U = R-g = Toexp(U/kBT),

and the recooling time after a slip Tc = -y- 1. This results in four regimes of stick-

slip friction that are observed in (a), labeled (i)-(iv). (a) Here Tth,U ~ A1 s, Tc ~

100ps and 1j = 2.2, resulting in Fs,max,o- 2. 2 = 0.14Ka. (U = 27rh x 9.5 MHz and

kBT/U = 0.14 0.04). The solid orange lines show the analytical results of equations

15.9 and 15.10 in the thermal activation and velocity weakening regimes, respectively,

where the critical velocities Vth ~ 1 mm/s and v, ~ 2 mm/s agree with independent

measurements of T0 and Tc, respectively (see chapter 8). The Langevin simulation

(dashed green line) is in good agreement with the data over all four velocity regimes for

the experimental parameters above. Note that an independently measured velocity-

dependent temperature correction was used in plotting the analytic formulae and

the Langevin results. (b) Results at a larger lattice depth U = 27th x 18 MHz

where 77 = 4.6, F,max,,=4.6 ~ 0.5Ka, and Tc ~~ 50ps, showing the friction plateau

regime extend over a wider range of velocities. Increasing the temperature from

kBT/U = 0.04 0.01 (blue squares) to kBT/U = 0.17 0.01 (red diamonds) reduces

the friction in the thermal activation region 10-5 M/s < v < 10-3 m/s while leaving

the friction plateau in the region 10- m/s $ v 10-2 m/s almost unaffected.

Solid lines show the expected results from the analytical thermal activation model

15.9. Data from (a), normalized to F,max,q=4.6, is shown as open black circles for

comparison. Langevin simulations (inset, solid lines) are in good agreement with the

data for the experimental parameters above.

149



activation begins to reduce the measured static friction force F, from the plateau value

Fs,riax. An applied force reduces the energy barrier UB to zero at the mechanical

instability, but prior to the instability, the barrier becomes sufficiently small that

thermal hopping empties the metastable state. Since thermal hopping is exponential

in the barrier height Rh0 p = A -exp(-UB/kBT), this happens close to a specific barrier

height UB = kBT - ln(A -a/v) at the associated applied force, which gives the reduced

static friction force F, in the thermolubricated process by an amount AF:

Fs = Fs,max - AF (15.6)

Close to a mechanical instability, the barrier height scales as

UB oc AF3/ 2  (15.7)

which leads to

Fs = Fs,max - C kBT - 1n (15.8)
(V TO)

where C is a parameter determined by the shape of the corrugated potential [88].

This equation can be written as an approximate formula in terms of the experimen-

tally measured parameters of temperature-to-lattice-depth ratio kBT/U and "thermal

velocity" Vth 0 a/ro:

3kT th 2/3
Fs/F,max = 1- (3kBT .( log (Vh (15.9)

2 v/-2 U V

Thus, stick-slip friction should scale as (log(v)) 2/3 in the thermal activation regime,

consistent with our observations (Fig.15-5). Obviously, this formula does not apply

to the friction plateau regime, where Fs/F,max = 1 and thermal hopping is negligible

regardless of the velocity as long as it is fast enough, or to the thermal drift regime,

where F,/F,max = 0 and thermal hopping dominates regardless of the velocity as

long as it is slow enough.
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As anticipated in the previous section, we observe that when the velocity becomes

faster than the dissipation rate v/a >> y, the excess energy released by slips and not

removed by laser recooling results in frictional overheating: the temperature increases,

resulting again in thermal activation (despite the fast velocity) due to a large value of

the thermal hop probability Phop. The observed decrease of the friction force F, with

velocity is logarithmic, and in analogy with equation 15.9, we model this velocity

weakening regime with

Fs3 kBT (v Ilg \2/3
Fs/Fs,max = 1 - - log - (15.10)

2i V2, U Vc

where the "damping velocity" v, ~ a/Tr gives a good agreement with our data

(Fig. 15-5).

The non-monotonic behaviour of friction with velocity observed in our experiments

pertains to the stick-slip frictional mechanism. The laser cooling that removes the

released kinetic energy after a slip with rate -y of course does so using an effective

viscous drag force roughly linear in velocity

1
Fvisc = -myv (15.11)

2

This component of friction however, in our system and in dry friction in condensed

matter, is significantly smaller than the stick-slip contribution F, ~ mW a in the range

of available velocities:

F2'sc/F- yv/a (15.12)
W2

At the nominal -y 27 x 3 kHz and wo = 27r x 364 kHz, this gives Fvisc/F, ~ 10-4

at the velocity v/a = y when velocity weakening of stick-slip friction sets in. Of

course, at larger velocities, when stick-slip friction is wiped out by frictional overheat-

ing, viscous drag becomes the dominant mechanism of friction, resulting in friction

increasing with velocity again. However, it would require orders of magnitude larger

velocities for this viscous frictional mechanism to be within our detection sensitivity

via frictional hysteresis.
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I conclude this section by noting that the friction plateau regime insensitive to

the thermal dynamics is where the dependence of "pure" friction Fmax on structural

mismatch and normal load (lattice depth) was investigated in previous chapters. As

an example, the full velocity curve is plotted in Fig. 15-5b showing the different values

of the plateau Fs max for two different values of the lattice depth, corresponding to

y = 4.6 (blue, red filled symbols) and q = 2.2 (black open circles). It is important to

note, however, that the observed plateau regime at the lower lattice depth of j = 2.2

occurs in a narrower window of velocities. Also, the observed friction force in the

plateau regime for 17 = 2.2 does not fully reach the plateau value expected from the

Prandtl-Tomlinson model, but a value Fs/F,PT,r;=2.2 ~ 0.75. This is due to the fact

that at a fixed temperature and reduced barrier height, thermolubricity is enhanced

by increased thermal activation over this reduced barrier, since the ratio UB/kBT is

smaller. This is discussed in more details in the next two sections, together with the

observed temperature dependence of friction.

15.3 Temperature and barrier dependence of friction

Stick-slip friction at lower velocities is reduced due to the thermolubricating effect

of finite temperature. When we increase the temperature of the system, this effect

is increased (Fig.15-5b): friction drops faster with velocity in the thermal activation

regime, and the thermal drift regime is extended to higher velocities. The thermal

velocity at which friction plateaus, however, does not seem to be affected by temper-

ature, consistent with Vth % a/ro set by the damping and vibrational time scales.

To investigate more systematically the temperature dependence of friction in the

different velocity regimes, we vary temperature and measure friction with velocity

either fixed at the boundary between thermal drift and thermal activation, or at

the boundary between thermal activation and the friction plateau (Fig.15-6). In the

observed F,/F,max plotted on a logarithmic scale against 1/T, the exponential sen-

sitivity of friction to temperature is apparent near the thermal drift regime (yellow),

whereas near the friction plateau velocity regime, friction is observed to be nearly
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independent of temperature (green). More quantitatively, we fit data to the model

Fs/Fs,max = f- exp((U/kBT) (15.13)

where f and ( are fitted parameters, and ( represents the sensitivity to temperature.

At low velocity (v ~ 40pm/s), near the thermal drift, we determine ( ~ 0.17 (expected

to be unity for the discussed thermal activation models). At high velocity (v ~ 1

mm/s) near the friction plateau, we determine ( ~ 0.016. This confirms that a nearly

zero-temperature stick-slip regime can be experimentally accessed at high transport

velocity, as desired for studies of structural and normal load effects on friction.

Since temperature only affects friction via the ratio UB/kBT, the observed de-

pendence of friction on inverse temperature in Fig.15-6 can also be interpreted as the

dependence of friction on the lattice depth U at fixed temperature. The residual sensi-

tivity to temperature even at high velocity then explains the slightly reduced friction

plateau F,/Fs,PT,n=2.2 ~ 0.75 at the lower lattice depth corresponding to rq = 2.2.

Furthermore, as discussed in chapter 13, structural lubricity in a multi-ion contact

with the lattice occurs due to a reduction of the Peierls-Nabarro barriers UB by in-

teratomic interactions (Coulomb forces), which at fixed temperature then necessarily

also means increased thermolubricity. Such structural thermolubricity is discussed in

more detail in the next section.
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Figure 15-6: Measured sensitivity of friction to temperature at a high velocity (V 1

mm/s) near the friction plateau regime (green) and at a low velocity (v ~ 40pm/s)

near the thermal drift regime (orange). Shown here is the measured static friction

force divided by the zero-temperature static friction force on a logarithmic scale, plot-

ted versus inverse temperature T- 1 in units of inverse lattice depth U- 1 . Alternatively,

the measured relation can be interpreted as thermolubricity as a function of the lat-

tice depth U or PN barrier UB in units of temperature T (at a fixed temperature),

which explains the effect of structural thermolubricity in section 15.4. (Experimental

parameters for this measurement were rj = 4.6, U = 27rh x 18 MHz and T, ~~ 50ps, and

temperature was varied by an order of magnitude from kBT/U = 0.06 to kBT/U = 0.4

by introducing additional recoil heating from the near-detuned pumping beam by in-

creasing the wr-polarized component as described in section 6.5.)
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15.4 Structural thermolubricity

It is easiest to visualize structural thermolubricity for a trapped crystal of 2 ions,

where the total potential as a function of the first ion coordinate xi and the second

ion coordinate x 2 can be visualized in a 3D plot (Fig.15-7). When the two ions

are matched to the lattice, with the spacing between them tuned to be an integer

number of lattice spacings d(mod a)/a = 0, the barrier to common-mode translations

is maximal, equal to the Prandtl-Tomlinson barrier determined only by the ratio of

lattice depth to external stiffness 7 = 2w2
U

Ka
2

1 (rj - 1)2 (15.14)
UB e 1514

27r2 7

The velocity and temperature dependence of friction for a matched ion crystal is

therefore expected to be identical to that for a single ion investigated in the previous

sections. Indeed, this is what we observe in the case of a matched 2-ion crystal

(Fig. 15-8a).

MATCHED MISMATCHED
d d

UB4

a a

Figure 15-7: The total potential (including the Coulomb interactions) is plotted versus

xi and x 2 for two ions matched (q = 1, left) and mismatched (q = 0, right) to the

lattice. For a fixed temperature T, the PN barrier UB in the mismatched case, reduced

due to partial lattice force cancellation, results in faster thermal hopping between the

local minima of the potential, reducing the observed static friction force beyond the

zero-temperature effect of structural lubricity.
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When the ions are mismatched, however, the partial cancellation of lattice forces

results in a significantly reduced barrier UB, and motion across this barrier corre-

sponds to ions going over lattice maxima one at a time (Fig.15-7). The reduced

barrier means a smaller sticking force, and consequently a smaller observed static

friction F, - this is the structural lubricity that we observed in chapter 13. The re-

duced barrier at fixed kBT also means faster thermal hopping which reduces friction

even further - an effect we call structural thermolubricity. To deconvolve structural

thermolubricity, which is velocity-dependent, from structural lubricity, we measure

friction versus velocity for a mismatched 2-ion crystal and compare the results with

the velocity dependence of a matched 2-ion crystal at the same temperature (Fig.15-

8b,c). The ratio of the friction force in the matched case to the friction force in the

mismatched case goes to unity in the thermal drift regime, where friction is zero re-

gardless of the barrier height as a result of the dominant thermal hopping, and goes

to a factor of ~ 4.8 in the friction plateau regime. In the intermediate thermal acti-

vation regime, this ratio spikes as a result of the exponential dependence of thermal

activation on the barrier height: at the intermediate velocities, thermolubricity does

not yet affect the matched ion crystal, but already significantly diminishes friction

over the small barrier in the mismatched case.

The plateau in the friction ratio between the matched and mismatched cases

at high velocities suggests that in this regime, the observed factor of 4.8 reduction

in friction is due to structural lubricity alone. However, zero-temperature numerical

simulations show a reduction of friction by a factor of 2 for a mismatched 2-ion crystal,

indicating residual structural thermolubricity reducing friction by another factor of

2.4 even at high velocities. This is not fully consistent with a much smaller measured

sensitivity to barrier depth at fixed temperature shown in Fig.15-6, suggesting that

temperature actually also increases as a result of structural mismatch. In fact, as

mismatch is varied from matched (q = 1) to mismatched (q = 0) for N = 1 - 5 ions,

comparison between the experimental data, numerical zero-temperature simulations

and Langevin simulations of the full dynamics suggests that in our system, structural

lubricity and structural thermolubricity reduce friction by similar factors aided by an
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additional temperature increase from kBT/U ~ 0.05 to kBT/U ~ 0.35 (Fig.15-9)).

It is important to note here that structural thermolubricity has not affected the

determination of the critical lattice depth U, of the superlubricity-breaking transition,

which is consistent with zero-temeprature simulations and is the basis of our claim

of observation of the Aubry transition. Varying temperature in the Langevin simula-

tions confirms that while thermolubricity significantly diminishes friction for U > Uc,

making the slope of the increase of friction with lattice depth shallower, the crossing

of this slope with F, = 0 were stick-slip vanishes is minimally affected. This makes

sense: even at large temperatures, some residual stick-slip should be detectable, until

it identically vanishes in the superlubric regime.
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Figure 15-8: Velocity dependence of friction and structural thermolubricity

for a 2-ion crystal. (a) The velocity dependence of a matched 2-ion crystal (red

circles) coincides with the velocity dependence of a single ion (blue squares) at the

same experimental parameters 77 = 4.6 and kBT/U 0.055 0.010; both reach the

friction plateau at the maximum value F,max,q=4.6 = 0.5Ka. (b,c) Comparing the

velocity dependence of static friction for the matched (red) and mismatched (green)

2-ion crystals, both at a slightly higher temperature than in (a) (kBT/U = 0.15

0.02), reveals structural friction reduction that goes away in the thermal drift regime,

which is obvious in the ratio of matched to mismatched friction in (c). Although

barely visible in the data, the peak in simulations is due to structurally-induced

thermolubricity: a window of velocities for which the friction in the mismatched case

is further reduced from the matched case by thermal effects. In (a)-(c), Langevin

simulations for the experimental parameters (solid lines) are in good agreement with

the data.
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Figure 15-9: Revisiting our measurements of structural lubricity versus the matching

parameter q and comparing the results with zero-temperature and finite-temperature

simulations, reveals that structural lubricity and structural thermolubricity reduce

friction by similar factors in our data for N = 1 - 6 trapped ions. This results

from an additional increase in temperature from kBT/U e 0.05 to kBT/U ~ 0.35 as

the ion chain is mismatched, as obtained from fitting Langevin simulations with a

q-dependent temperature to our data.
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Chapter 16

Multi-slip dynamics

I have so far discussed stick-slip friction in terms of a bistable total potential. As long

as the switching of the chain between the two minima of this potential always occurs

close to the same value of the applied force, this results in the regular stick-slip pattern

that we observe as fluorescence peaks spaced by the lattice constant a in the quickly

displaced trap position X. However, at larger corrugations depths r= (L/WO )2

the total potential might have three or more minima. In such a regime, when a slip

occurs, it may take the system to the next minimum, two minima over, or more for

higher multiplicities of the landscape stability. The multi-slip behaviour has been

observed in nanotribology experiments with atomic force microscopes [114, 115] as

an irregular pattern of mixed slips of different size and occurring at different times, as

a result of the stochastic processes at play. The multi-slip behaviour is intimately tied

with the thermal dynamics and velocity of the system [116, 114, 115, 88, 117], and

complete understanding of it would require microscopic control of thermal dynamics,

and in particular, of the dissipation rate, typically not accessible in AFM experiments

[76]. Although in our system, single-shot measurement of slips is not available and

the data is obtained by averaging many repetitions of the experiment, the relative

abundance of single-slip and double-slip events can still be determined from the av-

erage behaviour, and the transition from the single-slip regime to the multiple-slip

regime can be identified. Our experiments offer a glimpse into this very important

regime of friction relevant for dissipation and wear, and another tool for studying
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the thermal dynamics of friction at the microscopic scale. As an example, one could

investigate, with single-atom resolution, recipes for stabilizing irregular stick-slip us-

ing mechanical excitation [118] - an important approach for controlling and reducing

friction [119], or for studying quantum synchronization [120].

16.1 Multistability and stochastic slipping

Let us return to the single-atom Prandtl-Tomlinson model that exactly models a

single trapped ion or a commensurate chain of ions in the optical lattice:

VpT (x) = 1(X - X)2 + 472 (I + cos(27rx)) (16.1)

where energies are in dimensionless units of Ka2, positions are in dimensionless

units of the lattice constant a, and q = (WL/WO) 2 defines the topography of the

potential. As discussed in chapter 12, it is always monostable for q < 1, bistable in a

range of trap positions X for 1 < q < 4.604 and multistable for q > 4.604 (Fig.12-4).

In the tristable regime 4.604 < y < 7.788 [114], when a minimum becomes unstable

as a result of applied force, two minima, potentially of different energies. are available

for the ion to slip into, and the probability of transitioning to one or the other

depends on the temperature T and on the damping rate in the system - = r-

(Fig.16-1). If the system was overdamped with -y > WL, i.e. if the damping rate

was faster than ion motion over a lattice site, bounded by the vibrational frequency

in a lattice site, the released kinetic energy as the ion is dumped over the barrier

would get dissipated faster than the ion can travel to the other side of the corrugated

potential; and it would always end up in the first minimum over [58]. Our system,

however, is highly underdamped -y << WL, and the ion can end up in one of the two

available minima after recooling. Assuming an infinitely slow dissipation - the limit

of perfect annealing - the probabilities of the two final states are simply weighted

by each minimum's Boltzmann factor exp(-E/kBT). The assumption is not strictly

correct, since in our case, dissipation if faster than the hopping rate across the barrier

between the two available states y > 7-0ex(-UB/kBT), and this should result in an
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increased probability to get stuck in the higher-energy metastable state. Nonetheless,

this assumption is useful for an initial analysis done here.

An important point is that as long we operate in the velocity- and temperature- in-

sensitive regime of stick-slip friction (see chapter 15) where v/a > TrOexp(-UB/kBT),

the ion does not thermally hop out of its initial site prematurely, and the slipping

event occurs at a well-defined applied force, or trap position X = Fapp/K. That means

that regardless of whether a single- or a double-slip tends to happen, the fluorescence

peaks signaling the slipping events will have a regular spacing in X, corresponding

to a for single-slip events and to 2a for double-slip events. When both types of slip

occur with finite probability, they produce a time-averaged fluorescence pattern with

varying peak heights, which carries information about the single-slip and double-slip

event probabilities (in a way that depends on the initial and final values of X with

respect to the lattice in the force ramps). In the next section (16.2), I present the

experimental signatures of double-slipping, and in the section after (16.3), I discuss

in detail multi-slip dynamics and use a Markov-chain model to extract double-slip

probabilities.

16.2 Experimental observation of the single-slip to

double-slip transition

As we increase 77 (by increasing the lattice depth U) and measure the static friction

force F, on a single trapped ion as the hysteretic splitting between the fluorescence

peaks (Fig. 16-2), we observe that the friction force continues growing linearly after

we enter the multislip regime for y > 4.604 (Fig.16-3). Nothing significant appears to

happen at this cross-over point in the measured friction. However, it is evident from

the fluorescence traces in Fig.16-2 that the distribution of the observed fluorescence

peak heights changes, which is the anticipated signature of the onset of double-slips.

Note that the same continued increase in the friction force (Fig.16-3) and the same

fluorescence peak patterns are observed for matched crystals of larger N.
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Figure 16-1: The Prandtl-Tomlinson potential can be multistable when 71 > 4.604,
and a slip can take the ion to one of multiple available minima after recooling, with

probabilities weighted by the respective Boltzmann factors. When thermal hopping

is negligible, the slips always occur at defined trap positions X that make successive

sites unstable, regardless of whether a single or a double slip occurs afterwards, which

is determined by a stochastic process.

Plotting in Fig.16-4 the difference in fluorescence between the first and second

peak for the forward slips (blue) and backward slips (red) reveals that there is a

transition from a regime where the fluorescence is equal to a regime with a difference

in fluorescence that increases with ij, which can be interpreted as the onset of double

slips. This transition appears to happen near -q ~ 4, reasonably close to the expected

value of 4.604.

Note that these results were obtained for the force ramp starting and ending at the

trap position X centered over a lattice maximum, with a ramp range of 3a. A different

ramp window results in a different distribution of peak fluorescences, which will be

important to investigate further systematically. The chosen window, however, gives

a nice relation between the observed fluorescence peak heights and the double-slip

probabilities, as discussed in the next section.
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Figure 16-2: Observed fluorescence for a single trapped ion dragged forward (blue)

and backward (red) over 3 lattices sites as rq is increased from the single-slip to the

multislip regime. The forward and backward slips, giving a measurement of the static

friction force F., continue to separate in the multislip regime, but the peak heights

begin to change, indicative of the onset of double slips.
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Figure 16-3: The measured friction force for N = 1 - 4 ions in a chain matched

to the optical lattice continues increasing into the multislip regime 'q > 4.604 of the

Prandtl-Tomlinson model without a clear change in behavior.
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Figure 16-4: The difference in fluorescence Af between the two peaks normalized

by the larger peak starts to increase close the expected crossover to the multislip

regime. This fluorescence difference is plotted in blue for forward traces and in red

for backward traces, for N = 1 ion and N = 2 ions matched to the lattice.
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16.3 Determination of double-slip probabilities us-

ing a Markov model

The best way to visualize multi-slip dynamics is using the hysteresis loops in the

position-force trace that we usually experimentally reconstruct from the full fluo-

rescence information. These loops open up around the lattice barriers for r/ > 1,

and the multi-slip regime is entered when adjacent hysteresis loops begin to overlap

(Fig.16-5), resulting at first in tristable regions, creating the possibility for each slip

to take the ion(s) either one or two lattice sites over. At steady state (after driving

the system over many cycles) and for each trap position X = Fapp/K, there is a

probability distribution between the two or three available sites, which determines

the time-averaged level of fluorescence at a given slipping point.

One can model this dynamical system as a Markov-chain process with a steady

state. The steady state determines the desired probability distribution between the

available sites, or "states", labeled in Fig. 16-5 as A, B, Z, C, D, E. The middle site on

the way forward, labeled as C, and on the way backward, labeled as C, are taken as

separate states to model the process as a memoryless Markov process. Transitions in

this state space are single slips, with probability pi, and double slips, with probability

P2, where pi + P2 = 1 (Fig. 16-6). Consider an instantaneous probability distribution

over this state space P= {PA, PB, P- PPD, PE}. In a single time step of the Markov

process, this distribution is taken to a new distribution by the transition probability

matrix M. After a long enough time for the initial conditions to die out, the steady-

state distribution I5 , is characterized by the fact that it is unchanged by the transition

matrix:

MA s s (16.2)

In other words, the steady state is given by the solution to the eigenvalue problem

that corresponds to the eigenvalue 1. Diagonalizing the transition probability matrix

yields
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Figure 16-5: As the position of the trap X is ramped by the applied force, hysteresis
loops in the ion's position appear over successive lattice maxima. The width of these
loops (determined from hysteresis between fluorescence peaks) gives twice the static
friction force, so when F, > 0.5, the loops begin to overlap, and multiple slipping
possibilities or transitions between different states A - E become available. At finite
temperature, each fluorescence peak is proportional to the probability of the state
out of which the given slip occurs. The distribution of fluorescence peaks therefore
carries information about the probability distribution of the different states. The
edges of the ramp in X, break the symmetry of this distribution, enabling us to
deconvolve single-slip and double-slip probabilities using a Markov model. In the
numerical simulation here, as in the experimental data, the ramp starts and ends
over a lattice maximum, and the ratios of peak heights appear to correspond well
with the experimental fluorescence traces (Fig.16-2). In the numerical simulation,
kBT/U 0.23 was used.
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Figure 16-6: The states (lattice sites) and possible transitions between them in the
Markov chain process modeling the multi-slip dynamics for the ramp range of 3a
starting and ending at a lattice maximum. Single slips (red) have probability pi
and double slips (orange) have probability P2. The corresponding 6 x 6 transition
probability matrix to be diagonalized is shown.

169



PA 1 P2

41 +P2

-1
PB 4

1 + P2 (16.3)

Pg = Pg

PD PB

PE = PA

As can be seen from Fig.16-5, for the forward transport, the first fluorescence peak

is given by slips from state A, so its value (minus the background fluorescence due to

the ion already being in states D or e at that X) is proportional to PA. Similarly,

the second fluorescence peak is proportional to PB, and the third to p-. After some

algebra, we get

f2 - f3
P2= f3 - b (16.4)

P1= 1-P2

where fi, f2 and f3 are the values of the three fluorescence peaks observed during

forward transport (Fig.16-5 and Fig.16-2) and b is the mentioned background, which

can be taken as the minimum fluorescence in the trace. Using equation 16.4, the

double-slip probabilities versus Tj can be extracted from the experimental data (Fig.16-

7). (In fact, the double-slip probability P2 in equation 16.4 is the peak fluorescence

difference plotted earlier in Fig. 16-4 as evidence of transition from single-slip to multi-

slip regime, but normalized by the lower peak rather than the higher peak). According

to the PT model, the two available minima during a slip are at equal energy for

T = 7.788, so the curves in Fig.16-7 are in fact expected to not exceed P2 = 1/2

for the range of 7 values used. The quantitative disagreement solicits more careful

modeling (taking into account the non-adiabatic dissipation rate, for example) and

further experiments where temperature and the minimum and maximum values of
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Figure 16-7: Double-slip probabilities versus q extracted from experimental peak fluo-
rescences, again showing a transition from single-slip to multi-slip dynamics (forward
slips are shown in blue and backward slips in red).

the X window are varied.
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Chapter 17

Friction with trapped ions:

conclusions and outlook.

Using the few-ion synthetic frictional interface described in this thesis, we have an-

swered both experimentally and conceptually, with atomic detail, a few key questions

about nanofriction, pertaining to the four fundamental pillars. We observed the de-

pendence of friction on the normal load, or substrate interaction strength, and on

the structural properties of the frictional interface. We observed the elusive regime of

superlubricity at low normal loads and as a result of structural mismatch, related it to

the long-standing theoretical concept of the Aubry transition, and very importantly,

showed that superlubricity and the Aubry transition occur even in few-atom nanocon-

tacts. Finally, we experimentally elucidated the interplay of different time scales in

friction by observing its velocity and temperature dependence with unprecedented

systematic control.

These studies, however, have only explored the tip of the iceberg, and friction

remains a fascinating and poorly understood phenomenon. I hope that the new

set of tools described in this thesis for studying friction with atom-by-atom control

can be used in the future to understand this phenomenon even better, at least in

the clean controlled system made of cold atoms. For example, a number of open

questions can further be studied with these tools: fast-time-scale dynamics of kinks,

overdamped multislip dynamics, critical exponents near the Aubry transition, friction

173



with defects in the substrate lattice or in the contact-layer, friction and superlubricity

in 2-dimensional contacts, the effect of different lattice symmetries on friction with

2-dimensional contacts, and the list goes on.

Entering the realm of quantum mechanics, accessible in our system of cold atoms

in vacuum, even more fascinating questions present themselves that have barely been

addressed by experiment or theory. One such question is spin-dependent friction

[21, 121, 122], which could be studied in our system using an optical lattice potential

that depends on the internal state of the ion, controllable via lasers. One convenient

scheme, for example, would involve hyperfine ground-state sublevels in 17 1,b+. An-

other possibility is to study the quantum phase transition associated with the Aubry

transition [91, 93, 123, 124]. I discuss in part III of my thesis several specific quantum

and classical effects at a few-ion level, that, although perhaps digressing from friction,

would be intriguing to explore with the current setup.
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Part III

Outlook
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Chapter 18

Tunneling: towards quantum solids in

periodic potentials

An important application of atomic physics is quantum simulation of poorly under-

stood solid-sate phenomena by studying the motion of atoms in periodic optical-lattice

potentials. Phenomena in many-body systems with strong inter-particle interactions,

such as electrons in certain solids, are particularly interesting and poorly understood.

While neutral atoms in optical lattices are promising for emulating the behaviour

of electrons in solids, the strength and range of interatomic interactions is limited

for neutral atoms. Trapped ions, on the other hand, interact very strongly via the

Coulomb forces, just as electrons do, and just as electrons can form a Wigner crys-

tal in a solid [125], trapped ions form Wigner crystals in ion traps. How do these

Wigner crystals behave in periodic potentials - i.e. in the crystal lattice of a solid

or an optical lattice superimposed on an ion trap? Classically, the same as in the

friction problem studied in detail in part II of this thesis. Quantum mechanically, no

one knows. Strong interactions combined with strong non-linearities make this a very

difficult problem, warranting experimental studies in a well-controlled trapped-ion

optical-lattice system achieved in this thesis. The motivation for this is broader than

the friction problem studied in our system so far, but understanding the quantum

behaviour of solids (Wigner crystals) in periodic potentials can lead to a quantum-

mechanical picture of friction and of adsorbed monolayers, possibly relevant at the
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nanoscale and at cold surfaces.

Studying the quantum motion of ions in an optical lattice hinges on detecting

coherent tunneling of ions between different lattices sites. In the friction language of

this thesis, we want to observe quantum mechanical tunneling of an ion chain between

two different configurations (local minima) through a Peierls-Nabarro energy barrier.

If the chain is matched, this would correspond to common-mode tunneling of the

entire chain from one pinned location to the next pinned location one lattice constant

a away. An observation of such tunneling of a composite rigid object with individual

resolution of its constituent atoms could lead to important studies of decoherence

mechanisms as a function of object size (number of atoms). If the chain is mismatched,

tunneling through the PN barrier would correspond to tunneling of kinks - solitonic

excitations readily detectable in our system (see chapter 13).

To study the quantum coherent processes, laser cooling - the source of dissipation

in our system that removes frictional heat - must be turned off for the duration of

the experiment. Observation of coherent tunneling is then limited by thermal exci-

tation above the energy barrier by residual heating processes due to environmental

fluctuations (T decoherence) and other decoherence processes (T2 decoherence). In

this chapter, I focus on several schemes that might successfully overcome these deco-

herence time scales, at least for a single trapped ion, the tunneling of which would

be the first milestone towards studying quantum solids in periodic potentials in our

system.

18.1 Measured heating rate of a single ion in a lattice

Several sources of heating are expected to contribute to T decoherence in our system:

1) anomalous electric field noise [28, 126];

2) electric field noise due to noisy trap electrode drive (multichannel digital-to-

analog converter and output amplifiers);

3) parametric heating by lattice intensity fluctuations [127];

4) photon recoil heating from the close-detuned lattice.
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Noise due to sources 2-4 can, in principle, be mitigated by passive filtering (on

the noisy drive), active feedback (on lattice fluctuations) and larger lattice detuning

(to reduce photon recoil heating). Anomalous heating is a more fundamental source

of noise and to mitigate it would require rebuilding the experimental setup under

a different design (blade trap with distant electrodes, cryogenic cooling of the trap

[29, 301, in-situ Ar+ bombardment cleaning of the trap surface [128] [129], etc.). The

anomalous heating rate can be estimated based on published measurements from

traps with similar parameters that underwent similar fabrication procedures [30, 130].

Reference [30] reported a heating rate of t' = 4.2 0.3 quanta/ms for a trap with

vibrational frequency wo = 2w x 1 MHz and an ion trapped 75pum from the gold

electrode surface. Assuming the commonly accepted d- 4 scaling of electric field noise

with distance from electrode surfaces [28, 126, 131, 25], for ions trapped at 135pm

above the gold trap surface in our system this puts the heating rate estimate at

h = 0.4 quanta/ms at wo = 2w x 1 MHz, equivalent to Rhat = 27rh x 0.4 MHz / ms.

The expression for the heating rate in terms of the electric field noise power

spectrum SE(w) is given by [281:

e2 ( 2
Raet SE (WO) 2 2 E (WRF wo) (18.1)

4m 2 RF

Since wo << WRF and the noise spectrum is typically "pink" SE(W) Oc w- 1 [28], the

second term in equation 18.1 is negligible and the heating rate is expected to scale as

Rheat c wo- 1 , and the rate of excitation of vibrational quanta as A oc wo 2, i.e. heating

becomes significantly worse at lower trap vibrational frequencies.

We have performed preliminary measurements of the total heating rate of a

trapped ion centered in the site of an optical lattice by switching off laser cooling

and observing temperature increase with time as inferred from the ion fluorescence

(see section 6.4). Our best measurement (Fig.18-1) gives n = 2.5 quanta/ms at a lat-

tice vibrational frequency of WL = 27 x 0.635 MHz, corresponding to a lattice depth

of U = 2wh x 12 MHz (however, heating rates up to 60 quanta/ms have also been

seen, for example, under imperfect compensation). Assuming A c wo 2 scaling, this

179



L 27 x 0.625MHz.

( U ... h...... 
q u.n

C

78 -Cr

2 

7 ....2. ..4 ... .. ...8 ... .2..

m dy [5quantams

Ci
a)
E 6 .5 ... ... .. -.. ... .... .. ... .

-S2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

time delay [ins]

Figure 18-1: Measured heating rate of a single ion in an optical lattice, obtained by

switching off cooling and observing temperature increase with time. Temperature is

obtained from the ion's fluorescence in its lattice well, a method described in more

detail in section 6.4. This temperature measurement saturates at large temperatures,

so the heating rate is obtained using a linear fit in the first ims of heating.

corresponds to ii = 1.0 quanta/ms for a 27 x 1 MHz vibrational frequency, a factor

of 2 larger than the anticipated 0.4 quanta/ms heating rate from anomalous heating,

indicating additional heating, potentially due to the lattice.

The parametric heating in a lattice site at twice the vibrational frequency 2 fL

2WL/27r is given by [1271
i dE1 E= 72 2/L (18.2)
E dt f2SL(2fL)

where the one-sided power spectrum of the fractional intensity noise of the lattice

SL(f), as measured at the cavity transmission, is shown in Fig. 18-2a. It results in the

heating rate constant I as a function of lattice vibrational frequency fL shown in

Fig.18-2b. Thus, at fL = 0.635 MHz and at h = 1, we expect A = 0.03 quanta/ms

from paramteric heating due to lattice intensity fluctuations, a negligible contribution

to the total 2.5 quanta/ms observed.
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Figure 18-2: (a) Measured spectrum of fractional lattice intensity fluctuations at the

output of the cavity (normalized by the photodiode DC reading). The noise spectrum

appears to be white in the frequency range of relevance. (b) Heating rate constant

due to parametric lattice intensity noise heating as a function of trap vibrational

frequency, obtained from the measured intensity noise spectrum and equation 18.2.
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The photon recoil heating by the lattice is given by the recoil energy times the

photon scattering rate

R-h = WrecYsc (18.3)

where the rate of photon scattering by l 4Yb+ from for the far-detuned lattice is given

by
3 U3Uc =(18.4)

2h A/F

Given the large detuning A/F = 630 and the lattice with U = 27rh x 12 MHz and

WL = 27 x 0.635 MHz, we estimate h = Rph/hwL ~ 0.4 quanta / ms, potentially a

sizable contribution to the total observed heating rate of 2.5 quanta/ms.

If the observed heating rate is indeed dominated by anomalous electric field noise

as this analysis suggests, one way to potentially suppress this heating rate without

significant changes to the setup would be to move the minimum of the RF pseudopo-

tential further from the trap chip surface, which is currently 134pm away. With the

current set-up, this is limited by the requirement to keep the ions within the cavity

waist of 38 pm. In the best case scenario then, the ions would end up at 172pm from

the surface, and the d- 4 scaling would result in heating rate reduction by a factor of

2.7.

18.2 Tunneling in a shallow lattice

The Rabi frequency 2J for single-atom tunneling between two sites of a uniform

optical lattice with a = A/2 can be obtained from the width of the ground band [132]

as

2J = 2(Eo,q=r/a - Eo,q=o) ~exp(- U) (18.5)

where J, E and U are in units of recoil energy Erec h
2

k
2 and k = . That means

that the fastest tunneling proceeds at angular frequency lwrec x 0.82 at the lowest

lattice depth U = 0.8 where all ground band energies are below U, and tunneling falls

off exponentially with the depth of the lattice U.

The conventional approach to observing ion tunneling in a lattice is to 1) cool the
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ion near its vibrational ground state IWL (where WL = 2V/U in recoil units) at one

site of a deep optical lattice, 2) shut off the cooling lasers, 3) adiabatically ramp the

lattice down to the recoil energy U ~ 1 while keeping it in the motional ground state,

4) let the motional wavefunction of the ion evolve coherently for a variable time Texp,

5) quickly ramp the lattice back up to project the ion into one of the lattice wells,

and 6) detect which well the ion is in (via fluorescence modulated by position in the

lattice, or via split image detection - see chapter 7).

Cooling of ions to the ground state of the deep optical lattice was demonstrated

in section 6.4 and in our paper [161. For an ion to stay in the ground state as the

lattice is ramped down, according to the adiabaticity criterion for avoiding vibrational

excitations at WL, the rate of fractional change of the vibrational frequency must be

smaller than the vibrational frequency:

dwL
d/W L << WL (18-6)dt

That means that during the fastest ramp allowed, WL(t) follows the solution of the

differential equation d/wL WL given by

1
WL(t) = (18-7)

WL(0)--1 - t

So the total time T for a ramp from wL(0) to WL(T) is

T = WL(0) - WL(T) (18.8)
WL (0)WL (T)

which for wL(0) >> WL(T) (as in our case where typically WL(0) ~ 100 and WL(T) ~~ 1

in recoil units) reduces to T = 1/wL(T), which in our case is on the order of the inverse

recoil frequency w- for the fastest allowed adiabatic ramp.

As mentioned above, tunneling will also proceed on the time scale of w;- or slower.

That means that once the cooling lasers are shut off in step (2), the heating rate due

to external noise cannot exceed 1 recoil of energy after one fastest tunneling Rabi
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period 2,r
0.41lw...

Rheat < 0.41hWec/(27r) (18.9)

Given wrec = 27r x 8.4 kHz for l74Yb+ ions, the heating rate in our system must not

exceed '2wFh x 30 kHz / ms. Optimistically assuming that the heating rate is indepen-

dent of the vibrational frequency, as in the case of a white power spectrum of electric

field noise [28], our measured heating rates of ~ 27rh x 1 MHz / ms already drastically

exceed the allowable decoherence rate to observe tunneling. More realistically, noise

is not white, but pink, with 1/w scaling, as observed, for example, in other ion traps

[28, 29]. In that case, the heating rate would go up by a factor wL(0)/wL(T) ~ 100

after an adiabatic ramp to a recoil-deep lattice, certainly prohibiting ion tunneling

experiments in shallow lattices. It is possible, however, that the measured heating

rate suffers from a peaked noise spectrum in the vicinity of 1 MHz and the heating

rate will go down after an adiabatic ramp. This would need to be confirmed with

more careful measurements.

18.3 Enhanced tunneling in a double-well potential

As discussed in the previous section, the fastest tunneling rate scale is set by the

recoil angular frequency Wrec/(27r) = s'a2 and scales as a-'. This means that it

could be made faster by reducing the spacing between lattice wells a. One way is

to use a shorter-wavelength optical lattice - which in our case would be deep in the

UV wavelengths that are technologically challenging. An alternative approach is

to observe tunneling of ions in a double-well potential with a tunable well spacing

that can be brought significantly below a. For example, one can observe coherent

oscillations of a single ion or a chain of ions matched to the lattice between the left

well and the right well of the Prandtl-Tomlinson potential (see section 12.2) obtained

by superimposing a deep optical lattice U and the axial harmonic confinement at

angular frequency wo of the Paul trap:
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VpT(x) = i222 + U 1 + cos(27rx) (18.10)

This is the same equation as 12.3, but with energies in units of Erec and Wrec

respectively, and positions and distances in units of a. Let us introduce again the PT

parameter specifying the shape of the potential 7 = 4U in terms of the ratio of the two

potential components expressed in recoil units. (Recall that equivalently, r = .)
Then,

VPT(x) = 12W2X2 + o I + cos(27rx) (18.11)

This potential is plotted in Fig.18-3 and the distance between the two wells and

the energy barrier are plotted as a function of 7. One can see from these plots, that the

two wells can be brought arbitrarily close together by choosing the shape of the PT

potential via r, and the height of the barrier between the wells can be independently

controlled by scaling the energy of the potential via the axial Paul trap confinement

wo (the lattice depth U of course needs to be scaled accordingly to maintain a desired

q). For example, by dialing in I = 1.11, the distance between the two wells 6 can

be made 1/4 of the underlying lattice spacing a, which should result in a tunneling

rate enhancement by a factor of 62 = 16 from 0. 4 lWrec, assuming that the barrier is

adjusted to just barely keep 2 eigenstates below the barrier.

18.3.1 Tunneling rate calculation

To verify this intuition, the tunneling rate in the double-well potential 18.11 can be

calculated by diagonalizing the Hamiltonian H = VpT - (dimensionless units)

in the eigenbasis of the underlying axial harmonic potential with angular frequency

wo. The idea is that for large energies, the lattice component of the VPT potential is

a perturbation on the harmonic oscillator potential, especially for TI close to 1, and

the Hilbert space can be cut off at a finite number of basis vectors. The harmonic

oscillator eigenvectors are given by Hermite-Gaussian wavefunctions in position space
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Figure 18-3: (a) Tunneling can be significantly enhanced in the Prandtl-Tomlinson

double-well potential where the superimposed harmonic trap can squeeze two lattice

sites arbitrarily close together. Here, q = 1.11 is illustrated. (b) The distance

between the two minima 6 in units of the lattice spacing a goes to zero sharply as

the corrugation parameter q approaches unity from above. (c) The barrier height UB

also goes to zero at 7 = 1.

(where h, are Hermite polynomials):

'n (x) = (yrow2)1hw X o2W/2 ) exp( -- x2 ) (18.12)

The Hamiltonian matrix elements Hnm are then given by Hnm = f_ (xn()Hm(x)dx.

Taking basis vectors On up to nmax and diagonalizing the nmax X nmax matrix gives

the eigenspectrum up to nmax. The difference between the lowest two eigenfrequen-

cies gives the tunneling Rabi frequency (equivalent to the width of the ground band

giving the tunneling Rabi frequency in a lattice). Fig. 18-4 shows the tunneling Rabi

frequency calculated this way with increasing nmax for wo = 119wrec and two values of

q. Thus, for low values of ?7 close to 1, the procedure converges for about nmax = 25

basis vectors.

With the choice of 77 = 1.11 and wo = 119wrec, corresponding to 27r x 1 MHz -

the largest axial vibrational frequency attainable in the current set-up (limited by

the maximum output of the DAC supplying the DC voltages), this diagonalization

procedure gives the first excited state energy equal to the energy barrier. The tun-
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Figure 18-4: Convergence of the diagonalization procedure with the number of basis

states for determining the tunneling Rabi frequency. Convergence is faster for y

close to 1, since the lattice becomes less of a perturbation to the harmonic oscillator

Hamiltonian.

neling Rabi frequency is Wtn = 9 wrec, a factor of 20 faster than the fastest tunneling

in a recoil-deep lattice, attained here in a lattice that is U ~ 4000Erec deep (27rh x 30

MHz).

Repeating this procedure for several pairs of Tj and wo that give the first excited

state energy at the energy barrier, confirms that the tunneling rate scales as 6-2, as

shown in Fig.18-5a. The solid line that agrees with the results (red points) is

1.34
Wtun = 12 (0.41Wrec) (18.13)

In Fig.18-5b the same results are plotted against the axial vibrational frequency

Wo, where the solid line that agrees with the results is

Wtun/Wrec = 0.37(WO/Wrec)
2 / 3  (18.14)

This shows that increasing the tunneling rate beyond 9Wrec would be difficult:

reaching 14Wrec would require an axial vibrational frequency of wo = 27r x 2 MHz,

which means quadrupling the DC voltages for axial confinement and quadrupling the

lattice depth U to 27rh x 130MHz.
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Figure 18-5: (a) The tunneling Rabi frequency scales with the distance between the

double-well minima as 6-2. (b) Scaling of the tunneling Rabi frequency with the

overall energy scale represented by the harmonic trap vibrational frequency wo.
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Figure 18-6: Fractional sensitivity of the tunneling Rabi frequency (vs the overall

energy scale determined by wo) for 1% fractional fluctuations in 'q (likely to be dom-

inated by fluctuations in the lattice depth).

18.3.2 Limitations

One important consideration for enhancing the tunneling rate with this method is

the attainable stability of ij limited by the stability of the lattice depth U. The plot

versus wo of fractional fluctuations of the tunneling rate for 1% fluctuations in 7 is

shown in Fig.18-6. At Tj = 1.11 and wo = 27 x 1 MHz, the tunneling rate fluctuates

by 20% for 1% fluctuations in the lattice depth, so U must be stable to better than

1% on a time scale of tunneling for these parameters: 2i = 10ps. This can be

achieved by lattice intensity stabilization with a 100 kHz bandwidth lock.

Another important consideration is lattice scattering that begins to contribute
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to decoherence at large lattice depths and the 12.6 GHz detuning (corresponding to

A/F = 630) that we currently use. The scattering rate from 174'Yb is related to the

lattice depth as follows:
3 U

'YSC = A (18.15)
2h A/F

This means that a lattice U = 4000Erec that gives a tunneling rate of 9Wrec will

also scatter about 10 photons and add 10 recoils of energy to the system in one

tunneling Rabi period unless the detuning in increased further, which would require

a proportional increase in laser power to maintain the desired lattice depth.

The biggest limitation to this scheme is likely to be the stability of axial electric

fields. Their drifts or fluctuations even on a small scale result in a significant tilt

of the double-well, which becomes more sensitive for lower values of y, which are

desired to enhance the tunneling rate. For example, at 7 = 1.11, an electric field that

displaces the Paul trap position X by only 0.005a already makes one of the wells of

the double-well potential disappear.

18.3.3 Experimental protocol

To observe coherent tunneling between the two minima of this double-well potential,

we can employ the position-dependent fluorescence that enables single-lattice-site

resolution in friction experiments. Fluorescence contrast between the two minima

can be achieved by tilting the potential once the lattice is ramped up for position

detection. Thus, the proposed experimental scheme is as follows (see Fig.18-7):

<1> Initialize the ion in a single well at q = 2 (or another value y >> 1) and

trap centered over a lattice minimum X = -0.5. Duration: limited by recooling time

e~ 50ps.

<2> Move the trap over a lattice maximum X = 0 to create the symmetric

bistable potential. Duration: limited by trap low-pass filtering ~ 100p s. Turn laser

cooling off.

<3> Adiabatically ramp down the lattice depth to y = 1.11 to initiate tunneling.

Duration: must be between the tunneling time scale of (10wrec) and the inverse
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energy gap to the next band of two states ~ (30Wrec)- 1.

<4> Wait for a variable delay time Texp while the ion tunnels. (Vary Tp between

0 and (10 x 27wrec)- 1 to reconstruct the Rabi flopping.)

<5> Suddenly ramp up the lattice depth back to q = 2 to freeze the coherent

evolution. Duration: much faster than tunneling time scale~ (lOWrec) .

<6> Turn laser cooling on and move the trap to tilt the double-well enough to

create fluorescence contrast but not enough to cause a slip: 0 < IXI << F,/K.

Duration: limited by trap low-pass filtering ~ 100ps.

<7> Collect fluorescence to determine which site of the bistable potential the ion

ended up in. Duration: limited by thermal hopping timeTth -. 1 - Oims.

Before concluding this section, I emphasize again, that while the double-well po-

tential is described in the context of a single trapped ion, the common mode of an ion

crystal which is matched to the lattice will experience an identical double-well poten-

tial, and therefore this scheme is suitable for studying quantum coherent tunneling

of an ion chain as a rigid composite object.
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Figure 18-7: Experimental scheme for observing tunneling of a single ion or a matched

ion crystal in a double-well potential. Detection of the ion in the left or the right

minimum is enabled by a fluorescence contrast between them as a result of a potential

tilt which brings one minimum higher up the lattice potential than the other.
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18.4 Tunneling assisted by delocalized states

In the previous section, I discussed a way to enhance the tunneling achievable in a

lattice by squeezing two wells of a double-well potential close together. Here, I discuss

a way in which tunneling could be induced in a deep optical lattice at the original

site spacing by using photon-assisted coupling to delocalized motional states.

In the limit of a deep optical lattice, tunneling is exponentially suppressed as can

be inferred from the spatial overlap between two ground-state harmonic oscillator

wavefunctions displaced by 6 (in units of the lattice spacing) and corresponding to

angular vibrational frequency w (in units of wrec):

(0Wo( )1o(X - 6)) = e 8 (18.16)

Taking these harmonic oscillator wavefunctions to be approximations to localized

states at two neighbouring lattice sites, gives 6 = 1, and for a deep optical lattice

W = WL >> 1, these wavefunction are well localized with a very poor spatial overlap.

A way to address the poor wavefunction overlap is to couple both wavefunctons

to a virtual untrapped, or delocalized, motional state, which has good overlap with

both wavefunctions. This could be, for example, an internal state of the ion that

experiences the opposite sign of the optical lattice potential and has lattice sites

in between the sites of the original lattice (Fig.18-8). Coupling to a highly excited

motional state of the intermediate site can achieve the desired wavefunction overlap.

Let us again consider harmonic oscillator wavefunctions. It turns out that there is

a simple closed-form expression for the overlap between the ground-state harmonic

eigenfunction and an excited eigenfunction of a displaced oscillator:

( 0 (x) I#(O -- 6)) = (18.17)

where again 6 is the distance between the two oscillators in units a = A/2 and w

is the oscillator frequency in units of recoil frequency. This expression turns out to
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Figure 18-8: Tunneling between two deep lattice wells can be enhanced by two-photon

coupling via a highly excited vibrational state in a "flipped" lattice experienced by

a different internal state. The highly excited intermediate vibrational state has good

spatial overlap with the localized wavefunctions representing the initial and the final

state of the tunneling process.

be the square root of the poisson distribution

(0 I On(X - 6)) = P -oisson(n; /) (18.18)

with the Poisson distribution mean and variance given by

V =7F 62W (18.19)
4

We are interested in the overlap between the ground-state harmonic oscillator

wavefunctions at neighouring lattice sites that we want to couple and the nWh vibra-

tional state of the "intermediate" oscillator site that is a/2 away from each of the

primary sites. Given a vibrational frequency of w = 2-F x 400 kHz, reasonable for our

system, the overlap peaks at n = 30 at a value of 0.25 (see Fig.18-9). This means

that if the 30th vibrational state can be resolved spectroscopically, a large tunneling

rate can be achieved virtually via this delocalized vibrational state.

To conclude this section, I emphasize that this scheme is fundamentally different
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Figure 18-9: The spatial overlap between the localized ground-state wavefunction and

an excited intermediate state n follow a Poisson-like function that peaks a particu-

lar quantum number n depending on the depth of the lattice (i.e. the vibrational

frequency of the effective harmonic oscillator).

from other photon-assisted tunneling schemes [133, 134], which usually serve to con-

trol the phase of tunneling and restore a resonant tunneling condition. The scheme

here can in addition significantly enhance the tunneling rate itself, and could be used

more generally in neutral atom experiments as well.
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Appendix A

Publications

A number of publications resulted from this thesis work, shown here by topic.

(* indicates equal author contributions)

Friction:

-÷ Alexei Bylinskii*, Dorian Gangloff* and Vladan Vuletic, "Tuning friction atom-

by-atom in an ion-crystal simulator". Science, 348(6239), 1115-1119 (2015)

-+ Dorian Gangloff*, Alexei Bylinskii*, Ian Counts, Wonho Jhe, Vladan Vuletic, "Ve-

locity tuning of friction with two trapped atoms". Nature Physics, (2015), doi:

10. 1038/nphys3459

-+ Alexei Bylinskii*, Dorian Gangloff*, Ian Counts and Vladan Vuletic, "Observation

of Aubry transition in finite atom chains via superlubricity breaking ". Manuscript in

preparation

Trapping and cooling of ions in optical lattices:

-+ Leon Karpa*, Alexei Bylinskii*, Dorian Gangloff*, Marko Cetina and Vladan

Vuletic, "Suppression of Ion Transport due to Long-Lived Subwavelength Localization

by an Optical Lattice ". Physical Review Letters, 111(16), 163002 (2013)

Ion-cavity system:

-+ M. Cetina, A. Bylinskii, L. Karpa, D. Gangloff, K. M. Beck, Y. Ge, M. Scholz, A.

T. Grier, I. Chuang, and V. Vuletic, "One-dimensional array of ion chains coupled

to an optical cavity ". New Journal of Physics, 15 053001 (2013)
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Other:

-+ D. Gangloff*, M. Shi*, T. Wu*, A. Bylinskii, B. Braverman, M. Gutierrez, R.

Nichols, J. Li, K. Aichholz, M. Cetina, L. Karpa, B. Jelenkovic, I. Chuang, and

V. Vuletic, "Preventing and reversing vacuum-induced optical losses in high-finesse

tantalum (V) oxide mirror coatings ". Optics Express, 23, 18014-18028 (2015)

-+ P. Samutpraphoot, S. Weber, Q. Lin, D. Gangloff, A. Bylinskii, B. Braverman,

A. Kawasaki, C. Raab, W. Kaenders, and V. Vuletic, "Passive intrinsic-linewidth

narrowing of ultraviolet extended-cavity diode laser by weak optical feedback". Optics

Express, 10 11592 (2014)

-+ A. M. Eltony, D. Gangloff, M. Shi, A. Bylinskii, V. Vuletic, I. L. Chuang, "Tech-

nologies for trapped-ion quantum information systems". Under review at Springer

Special Issue on Trapped Ion Quantum Information Processing, arXiv:1502.05739
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