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Abstract

To evaluate the performance and optimize systems under uncertainty, two main av-
enues have been suggested in the literature: stochastic analysis and optimization
describing the uncertainty probabilistically and robust optimization describing the
uncertainty deterministically. Instead, we propose a novel paradigm which leverages
the conclusions of probability theory and the tractability of the robust optimization
approach to approximate and optimize the expected behavior in a given system.

Our framework models the uncertainty via polyhedral sets inspired by the limit
laws of probability. We characterize the uncertainty sets by variability parameters
that we treat as random variables. We then devise a methodology to approximate
and optimize the average performance of the system via a robust optimization formu-
lation. Our framework (a) avoids the challenges of fitting probability distributions to
the uncertain variables, (b) eliminates the need to generate scenarios to describe the
states of randomness, and (c) demonstrates the use of robust optimization to evaluate
and optimize expected performance. We illustrate the applicability of our method-
ology to analyze the performance of queueing networks and optimize the inventory
policy for supply chain networks.

In Part I, we study the case of a single queue. We develop a robust theory to
study multi-server queues with possibly heavy-tailed primitives. Our methodology
(a) provides approximations that match the diffusion approximations for light-tailed
queues in heavy traffic, and (b) extends the framework to analyze the transient be-
havior of heavy-tailed queues.

In Part II, we study the case of a network of queues. Our methodology pro-
vides accurate approximations of (a) the expected steady-state behavior in generalized
queueing networks, and (b) the expected transient behavior in feedforward queueing
networks. Our approach achieves significant computational tractability and provides
accurate approximations relative to simulated values.
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In Part III, we study the case of a supply chain network. Our methodology (a) ob-
tains optimal base-stock levels that match the optimal solutions obtained via stochas-
tic optimization, (b) yields optimal affine policies which oftentimes exhibit better re-
sults compared to optimal base-stock policies, and (c) provides optimal policies that
consistently outperform the solutions obtained via the traditional robust optimization
approach.

Thesis Supervisor: Dimitris Bertsimas
Title: Boeing Leaders for Global Operations
Co-Director, Operations Research Center
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Chapter 1

Introduction

While randomness is viewed probabilistically in stochastic optimization and deterministically

in robust optimization, our approach bridges the strength of the limit laws of probability and

the tractability of the deterministic robust setting in view of understanding and optimizing

systems under uncertainty. In this introductory chapter, we present an overview of our

uncertainty modeling framework and our proposed scheme to evaluate and optimize the

average performance of a given system.

1.1 Background and Contributions

Understanding the performance of systems is indispensable for making effective decisions,

especially in uncertain environments. Problems such as call center design and inventory con-

trol have been the subject of much research over the past century. Let L (6, ) denote the

system performance measure (e.g., waiting time in a queueing system, total cost in a supply

chain network), where 0 represents the vector of input (or design) variables and represents

the vector of uncertain variables affecting the system. To evaluate the performance and op-

timize systems under uncertainty, two main avenues have been suggested in the literature:

stochastic analysis and optimization describing the uncertainty probabilistically and robust

optimization describing the uncertainty deterministically.

Stochastic Approach

The traditional stochastic approach relies on the modeling power of probability theory.

17



Specifically, the uncertain variables affecting the system are treated as random variables

governed by some posited probability distribution. Under this assumption, we can derive in-

formation about the behavior of the performance measure, such as its distribution, expected

value, etc. Most commonly, we are interested in understanding the expected performance

given by

L (0) = E [L (0, (] 11

We can further control the input variables 0 in order to optimize the system's perfor-

mance given the probabilistic assumptions on . This gives rise to what is known as

stochastic optimization, which was pioneered in the 1950s by Dantzig [19551 and Charnes

and Cooper [19591, who introduced, respectively, the fields of stochastic programming and

chance-constrained programming. Optimizing the system's expected performance under

uncertainty, for instance, gives rise to the following stochastic optimization problem

min E [L (0,), (1.2)
Ose

where 9 represents the set of feasible input variables. The performance evaluation problem

in Eq. (1.1) and the stochastic optimization problem in Eq. (1.2) may yield closed-form

expressions and analytical solutions for rather simple objective functions and under simpli-

fying distributional assumptions over the uncertain variables. For instance, we can derive

the exact distribution of the steady-state waiting time in an M/M/1 queue and infer its

expected value. For inventory systems, the optimal order quantity for a single period instal-

lation that minimizes the expected total cost can be easily expressed as a quantile of the

distribution associated with the uncertain demand.

However, the larger the number of random variables and the more complex the sys-

tem dynamics, the more challenging it is to derive elegant closed-form mathematics. The

advances of computing power and memory over the past decades have sprung a wealth of

computational techniques to solve such complex problems. We refer the reader to Birge and

Louveaux [1997] and Kall and Mayer [2005] for an overview of solution techniques. One of

the major challenges in taking a stochastic programming approach is the need to generate

scenarios that account for the complex interactions among random variables. Also, while

stochastic linear programs can be solved efficiently today, problems with binary and integer

decisions or generally non-linear functions create additional computational challenges.
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For some of the more complex problems, simulation optimization has attempted to take

advantage of the availability of computational resources and the power of simulation for eval-

uating functions. For a comprehensive overview of commonly used simulation optimization

techniques, we refer the reader to the survey by Fu et al. [2005]. Under this setting partic-

ularly, L'Ecuyer et al. [1994] explored various gradient-based algorithms to study M/M/1

queues, while Fu [1994], Glasserman and Tayyur [1995], Fu and Healy [1997] and Kapiscin-

sky and Tayyur [1999] leverage this framework to study inventory systems. These methods

work practically whenever the input variables are continuous and their success depends on

the quality of the gradient estimator. For problems with complex constraints on the input

variables, sample path optimization, known as sample average approximation (SAA), con-

siders many simulations first for the purpose of estimation, and then optimizes the resulting

estimates (see Rubinstein and Shapiro [1993]). The number of simulation replications is

especially critical whenever the uncertain parameters are governed by heavy-tailed distribu-

tions, which limits the practicality of SAA methods.

Stochastic optimization is a powerful tool when an accurate probabilistic description

of the uncertainty is available. However, in many cases, this information is difficult to as-

sess. Given this challenge, the field of robust optimization was born in the mid 1990s (see

El-Ghaoui and Lebret [1997], El-Ghaoui et al. [1998], Ben-Tal and Nemirovski [1998] and

Ben-Tal and Nemirovski [19991) as an alternative approach for analyzing and optimizing

systems under uncertainty.

Robust Approach

While stochastic optimization views the uncertainty probabilistically, the field of robust opti-

mization considers a deterministic model for the uncertainty by assuming that the uncertain

variables lie within some set, referred to as the "uncertainty set". It then seeks to deter-

ministically immunize the solution against all possible realizations of the uncertain variables

satisfying the uncertainty set via a min-max approach (i.e., worst case) as follows

min max L (6,), (1.3)
OEe EU

where U denotes the uncertainty set. The tractability of the robust optimization problem
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depends on the choice of the uncertainty set. For example, Ben-Tal and Nemirovski [1998,

1999], El-Ghaoui and Lebret [1997] and El-Ghaoui et al. [1998] proposed linear optimization

models with ellipsoidal uncertainty sets, whose robust counterparts correspond to conic

quadratic optimization problems. Bertsimas and Sim [2003, 2004a] proposed constructing

polyhedral uncertainty sets that can model linear variables, and whose robust counterparts

correspond to linear optimization problems. Furthermore, Bertsimas and Brown [2009] and

Bertsimas et al. [2015] provide guidelines for constructing uncertainty sets from the historical

realizations of the random variables using a data-driven approach. For a review of robust

optimization, we refer the reader to Ben-Tal et al. [2009] and Bertsimas et al. [2011a].

The robust framework allows the system designer to adapt the analysis to their risk

preferences. By parameterizing different classes of uncertainty sets, one can control the size

of the uncertainty set, which provides a notion of a "budget of uncertainty" (see Bertsimas

and Sim [2004b]). This, in fact, allows the design to control the corresponding level of

probabilistic protection, thus choosing the tradeoff between robustness and performance. In

this setting, the problem is formulated as

min max L (0,), (1.4)
OEe CEU(r)

where the variability parameter F reflects the degree of conservatism in the model.

In a recent series of work, Bandi and Bertsimas [2012a,b, 2014b,a] investigated the use

of a robust optimization approach to analyze the performance of stochastic systems such

as market design, information theory, finance and other areas. In the same spirit, Bandi

et al. [2015] presented a novel approach for modeling the primitives of queueing systems

by polyhedral uncertainty sets inspired from the probabilistic limit laws and provided exact

characterizations for the steady-state performance analysis of generalized queueing networks.

The robust approach generates parametrized solutions (functions of the variability parame-

ter) that matched the conclusions obtained via probabilistic analyses for simple systems and

furnished tractable extensions to more complex systems. However, capturing the choice of

values for the variability parameters to reflect the average performance is challenging.

Proposed Framework

We propose a novel framework to approximate and optimize the expected performance
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by taking advantage of the power of robust optimization in providing tractable solutions.

Specifically, we construct polyhedral sets that are inspired from the limit laws of probability

and introduce variability parameters that control the size of these sets, and thus the level

of probabilistic protection and conservatism of the model. At each level, we obtain worst

case values which directly depend on the values of the variability parameters. We then treat

the variability parameters as random variables following some distribution implied from the

limit laws of probability. To portray the expected behavior of the system, we propose to

average the worst case values over the possible realizations of the variability parameters.

Beyond performance analysis, we formulate the problem of optimizing the average system

performance as a robust optimization problem. The benefits of this approach include

(a) eliminating the challenges of fitting probability distributions,

(b) avoiding scenario generation to describe the states of randomness,

(c) not requiring simulation replications to evaluate the performance, and

(d) utilizing robust optimization to evaluate and optimize expected performance.

This chapter is structured as follows. Section 1.2 introduces our uncertainty set modeling

assumptions. Section 1.3 describes our approach to analyze the average system perfor-

mance. Section 1.4 presents our framework to optimize the system performance. Section

1.5 concludes the chapter and gives an overview of the thesis main contributions.

1.2 Uncertainty Modeling

Analyzing and optimizing the expected system behavior entails understanding the complex

relationships between the random variables. The traditional approach for queueing systems,

for instance, models the interarrival and system times as renewal processes. Similarly, for

inventory systems, the demand at each installation within the network can be assumed to

be drawn from some probability distribution. The high-dimensional nature of modeling

the uncertainty probabilistically and the complex dependence of the system on the random

variables highlight the difficulty in analyzing and optimizing the expected performance.

Instead of positing some joint probability distribution over the random parameters, we

propose to model the uncertainty via parametrized sets. The system designer may choose

from a variety of possible classes of uncertainty sets, and we refer the reader to the work of

Bandi and Bertsimas [2012a] and Bertsimas et al. [20151 for an overview.
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Given our interest in systems that are characterized by a linear dependence on the uncer-

tain variables, we construct the construction of our uncertainty sets using the conclusions

of probability theory (namely the generalized central limit theorem). Given a sequence

of independent and identically distributed random variables ((1,..., s) with mean P, the

normalized sum
k

j - (k - j)p
i=j+1

(k - j)1/70'

where Y follows a stable distribution with a tail coefficient a E (1,2], for a big enough n.

Note that for the case of light tails (a = 2), the normalized sum follows a normal distribution.

Inspired by this result, we propose to model the uncertainty around via uncertainty sets

of the form

kk -j

Ff<i=j+1 < k-j Vj<k-<n}
(k - j)1/a

where r = (Fe, Fu), and Fe FE R are variability parameters which control the size of the

uncertainty set. Each value of F provides a certain level of probabilistic guarantee that the

actual realizations of the random variables will lie within the uncertainty set. The higher

the value of F,, and the lower the value of Te, the more comprehensive the uncertainty set

becomes.

1.3 Performance Analysis

Since robust optimization immunizes the solution against all possible realizations of the

random variables satisfying the uncertainty set, the values of F directly impact the level of

conservatism of the robust solution. For a given level F, we define the worst case performance

measure as

L(o, ) = max L (0,). (1.5)
EU(r)

The optimization problem in Eq. (4.4) effectively selects the scenario where the realizations

of the random variables produce the worst performance. The selection of F dictates how

much variability we allow the normalized sums to exhibit around zero. With higher vari-

ability, the uncertainty set includes more extreme scenarios which directly drive the worst
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case performance measure.

By the generalized central limit theorem, and given the ensuing bell-shaped limiting dis-

tribution, the normalized sums will most likely take values around zero. Therefore, scenarios

that result from allowing higher variability around the normalized sums are less likely to

occur. One can therefore imagine a density with decreasing tails governing the worst case

behavior. This constitutes the basic intuition behind modeling the variability parameter r

as a random variable.

We model the average performance as an average of the worst case values with

L (6) = Er [L (o, r)]. (1.6)

We inform the selection of the density of r via insights we draw from the probabilistic

definition of the expected value. We view the expected value of the performance measure

as an "Caverage" over the quantiles.

Suppose that L (0, ) is governed by a distribution F which can be derived from the joint

distribution over the random variables . Then, we can express the expected performance

as

L (0) = udF(u).

For the purpose of our exposition, suppose that the distribution function is continuous. The

inverse of F (-) then corresponds to the quantile function, which we denote by

Q(p) =F-1(p) = q:F(q) = p = q:P (L (0, ) q)=p

for some probability level p E (0, 1). By a simple variable substitution, we can view the

expected value as an "average" of quantiles,

L(6)= Q(p)dp.

We can map each quantile value Q(p) to a corresponding worst case value L (0, F). Let G

denote the function that maps p to r such that Q(p) = Z (o, r), i.e.,

p = P (L (0, ) ! f (o, r) ) = F (L (0, F) ) = G (r) .(1.7)
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In this context, the expected value can be written as an average over the worst case values,

with

Z(0) = Er [L (o, r)] f :(o, r) dG(r). (1.8)

Note that the knowledge of G allows us to compute the expected performance measure

L (0) exactly; this however depends on the knowledge of the distribution function F. This

is feasible for instance for simple systems, e.g., analyzing the steady-state waiting time in

an M/M/1 queue. However, characterizing F, and therefore G, is challenging for more

complex systems and is immediately dependent on the distributional assumptions over the

random variables . Instead of deriving the exact distribution G(.), we propose an approxi-

mation 0(-) inspired by the conclusions of probability theory and approximate the expected

performance as

L (0) ~ f (o, r) dO (r) . (1.9)

Chapters 2-4 provide a detailed account of how we approximate the density of the variability

parameters to study queueing and supply chain networks.

Philosophically, our averaging approach distills the probabilistic information contained

in the random variables into r, hence allowing a significant dimensionality reduction

of the uncertainty. This in turn yields a tractable approximation of the expected system

performance by reducing the problem to a low-dimensional integral.

1.4 Performance Optimization

Until now, we have assumed that the design parameters 6 are given and have proposed a

framework to analyze the performance of the system around a particular setting of design

inputs. We next seek to determine the design parameters that optimize the system's average

performance. To do so, we leverage our approximation in Eq. (4.7) and consider the following

optimization problem

min Er [f (o, r)] ~ min Z fi -(o, i) , (1.10)

where I denotes the discretized space of possible realizations of the variability parameter r

and fi denotes the discretized probability mass function evaluated r = Pi. We note that the
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problem in Eq. (1.10) can be formulated as a robust optimization problem, yielding

min Z fi -yi
min Er[L (6, r)] j J. (1.11)
OE& s.t. y L (6,) V E U (ri) and i : i E I

We note that, in the traditional robust optimization setting, the designer selects a particular

value of r reflecting their risk preference and solves the resulting problem

min y
min max L(e, ) = Oee . (1.12)
OEe tEU(r) s.t. y t> L (0,) V E U (r)

Both formulations in Eqs. (1.11) and (4.19) belong to the same class of problems. Our

approach therefore conserves the desirable tractability of the robust optimization approach,

while exploring different levels of protection against uncertainty.

Note: The size of the robust optimization problem in Eq. (1.11) depends on the level

of discretization over the space of possible values that r can take on. Quadrature methods

help numerically approximate the value of a definite integral with few possible evaluations.

Using such methods ensures a level of precision while keeping control over the size of the

discretization set I. In Chapter 4, we illustrate that, for a simple inventory system for

instance, discretizing the space of F to as low as five values results in errors of the order of

10-4.

1.5 Main Contributions

Our framework leverages the conclusions of probability theory and the tractability of the ro-

bust optimization approach to accurately approximate and optimize the expected behavior

in a given system. We illustrate the applicability of our methodology to analyze the per-

formance of queueing networks and optimize the inventory policy throughout supply chain

networks. Specifically,

(a) In Chapter 2, we study the case of a single queue. We develop a robust theory which

yields closed form expressions describing the worst case transient behavior for multi-

server queues with possibly heavy-tailed primitives. We then approximate the expected

behavior via averaging the worst case values. Our methodology (a) provides approxima-
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tions that match the diffusion approximations for light-tailed queues, and (b) extends

the framework to analyze the transient behavior of heavy-tailed queues.

(b) In Chapter 3, we study the case of a network of queues. Our methodology provides ac-

curate approximations of (a) the expected steady-state behavior in generalized queueing

networks, and (b) the expected transient behavior in feedforward queueing networks.

In particular, we show that, in steady-state, we can decompose the network and ob-

tain an accurate station-by-station approximation. In the transient regime, we obtain

closed-form characterizations of the worst case behavior and leverage the analytic solu-

tions to approximate the expected behavior. Our methodology achieves computational

tractability and provides accurate approximations relative to simulated values.

(c) In Chapter 4, we study the case of a supply chain network. We apply our framework

to analyze and optimize base-stock and affine policies. Our methodology (a) obtains

base-stock levels that match the optimal solutions obtained via stochastic optimization,

(b) yields optimal affine policies which oftentimes outperform base-stock policies, and

(c) provides optimal policies that consistently outperform the solutions obtained via the

traditional robust optimization approach.
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Chapter 2

The Case of a Single Queue

In this chapter, we analyze the average performance of a multi-server queue with possi-

bly heavy-tailed arrivals and service times. We study the worst case behavior and then

leverage the worst case values to approximate the average performance. Our computational

results show that our approach yields (a) approximations that match the diffusion approxi-

mations for a single queue with light-tailed primitives, (b) achieves significant computational

tractability, and (c) provides accurate approximations for the expected system time relative

to simulated values.

2.1 Introduction

The origin of queueing theory dates back to the beginning of the 2 0 th century, when Erlang

[19091 published his fundamental paper on congestion in telephone traffic. Over the past

century queueing theory has found many other applications, particularly in service, man-

ufacturing and transportation industries. In recent years, new queueing applications have

emerged, such as data centers and cloud computing, call centers and the Internet. These

industries are experiencing surging growth rates, with call centers and cloud computing en-

joying respective annual growth of 20% and 38%, according to the 2012 Gartner and Global

Industry Analysts Survey.

Many applications operate under heavy-traffic conditions yielding a slow convergence to

steady state, which may not be reached within the operation time window. Analyzing such

queueing systems requires an understanding of (a) the evolution of the system time over
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time, and (b) the time it takes the queueing system to reach steady state. Furthermore,

queueing systems that are characterized by heavy tailed arrivals and/or service times never

reach steady state and therefore their behavior is essentially transient. For instance, heavy

tailed arrivals and service times have been reported for the Internet by Leland et al. [1995]

and Crovella [1997], for call centers by Barabasi [2005], and for data centers by Loboz [2012]

and Benson et al. [20101. A steady state analysis in these situations is not relevant.

Despite the need for an understanding of the transient behavior, the probabilistic analy-

sis of transient queues is by and large analytically intractable. For M/M/1 queues, the exact

analysis of the queue length involves an infinite sum of Bessel functions and for M/M/m

queues, Karlin and McGregor [1958] obtained the transition probabilities of the Markov chain

describing the queue length as functions of Poisson-Charlier polynomials. Bailey [1954a,b]

used double transforms with respect to space and time to describe the transient behavior

of an M/M/1 queue. This analysis was further extended in a series of papers (see Abate

and Whitt [1987b,c], Choudhury et al. [1994], Choudhury and Whitt [19951, Abate and

Whitt [1998]) to obtain additional insights on the queue length process. These analyses also

provide insights on the usefulness of reflected Brownian motion approximations for queues.

Bertsimas et al. [1991] formulate the problem of finding the distribution of the transient

waiting time as a two-dimensional Lindley process and then transform it to a Hilbert factor-

ization problem. They obtain the solution for GI/R/I, RIG/I queues, where R is the class

of distributions with rational Laplace transforms. Extending these results, Bertsimas and

Nakazato [1992] use the "method of stages" to study MGEL/MGEM/1 queueing systems,

where MGE is the class of mixed generalized Erlang distributions which can approximate

an arbitrary distribution. Massey [2002], Hampshire et al. [2006] study the transient analy-

sis problem for process sharing markovian queues with time-varying rates using a technique

known as "uniform acceleration". As discussed in Odoni and Roth [1983], there are multiple

approximations available but a tractable theory of transient analysis of G/G/m queues is

lacking (see also Gross and Harris [1974], Heyman and Sobel [1982], and Keilson [1979]).

Further complicating the transient analysis is the effect of initial conditions, which gives rise

to a significantly different behaviors as empirically investigated in Kelton and Law [1985]

and Odoni and Roth [1983]. Even numerically, the calculations involve complicated inte-

grals which do not allow sensitivity analysis, an integral requirement for a system designer

managing these systems.
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Given these difficulties, a body of work has concentrated on developing approximate nu-

merical solution techniques to investigate transient behavior (e.g., Koopman [1972], Neuts

[2004], Moore [1975], Rider [1976], Grassmann [1977], Chang [19771, Kotiah [1978], Grass-

mann [1980], and Rothkopf and Oren [1979]). Newell [1971], in his work on the diffusion

approximation of GI/G/1 queueing systems under heavy traffic, obtains a closed-form ex-

pression and proposes an order of magnitude estimate of the time required for the transient

effects to become negligible. Mori [19761, develops a numerical technique for estimating the

transient behavior of the expected waiting time for M/M/1 and MID/1 queueing systems

on the basis of a recursive relationship involving waiting times of successive jobs. All of

these approaches have focused on improving the efficiency and accuracy of numerical solu-

tion techniques, rather than on using their results to draw conclusions on general attributes

of transient behavior. More recently, based on earlier work by Bertsimas and Natarajan

[2007], Osogami and Raymond [2013] use a semi-definite optimization approach to obtain

qualitative insights on the transient behavior of queues. They derive upper bounds on the

tail distribution of the transient waiting time, and use it to bound the expected waiting time,

for GI/GI/1 queues starting with empty buffer for non-heavy-tailed distributions. However,

these approaches do not tackle heavy-tailed queues and the effect of initial buffer conditions.

In his opening lecture at the conference entitled "100 Years of Queueing-The Erlang

Centennial", Kingman [2009], one of the pioneers of queueing theory in the 2 0 th century,

writes, "If a queue has an arrival process which cannot be well modeled by a Poisson process

or one of its near relatives, it is likely to be difficult to fit any simple model, still less to

analyze it effectively. So why do we insist on regarding the arrival times as random variables,

quantities about which we can make sensible probabilistic statements? Would it not be better

to accept that the arrivals form an irregular sequence, and carry out our calculations without

positing a joint probability distribution over which that sequence can be averaged? ". In

practice, probability distributions are not inherent to the queueing system; they represent a

modeling choice of the modeler that attempts to approximate the actual underlying behavior

of the arrival and service processes.

Motivated by these challenges, we propose an alternative framework to model queueing

systems based on optimization theory. The motivation behind our idea stems from the

rich development of optimization as a scientific field during the second part of the 2 0 th

century. From its early years (Dantzig [1949]), modern optimization has had the objective
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to solve multi-dimensional problems efficiently from a practical point of view. Today, many

commercial codes are available which can solve truly large scale structured (linear, mixed

integer and quadratic) optimization problems. In particular, Robust Optimization (RO),

arguably one of the fastest growing areas in optimization in the last decade, provides, in

our opinion, a natural modeling framework for stochastic systems. For a review of robust

optimization, we refer the reader to Ben-Tal et al. [20091, and Bertsimas et al. [2011a]. The

present work is part of a broader investigation to analyze stochastic systems such as market

design, information theory, finance, and other areas via robust optimization (see Bandi and

Bertsimas [2012a]).

Specifically, we model the queueing primitives via polyhedral uncertainty sets indexed

by two parameters which control the degree of conservatism of the corresponding arrival and

service processes. We then consider a robust optimization perspective which yields closed

form formulas for the transient system time. These expressions offer new qualitative insights

on the dependence of the system time as a function of fundamental quantities in the queueing

system. We break new ground by treating the parameters characterizing the uncertainty sets

as random variables and infer their density from the conclusions of the reflected Brownian

principle. We then approximate the expected behavior via averaging the worst case values

over the variability parameters. This averaging approach achieves significant tractability by

reducing the problem of transient analysis to a low dimensional integral. Our results match

the diffusion approximations for a single queue with light-tailed primitives and extend to

analyzing multi-server queues with possibly heavy-tailed primitives.

The structure of this chapter is as follows. Section 2.2 provides an overview of our

framework and draws the relationship to diffusion approximations. Section 2.3 presents our

worst case approach for single and multi-server queues with possibly heavy-tailed arrivals

and/or service times. Section 2.4 presents our average case analysis and shows that our

results yield approximations that are comparable to simulated values. Section 2.5 concludes

the chapter.

2.2 Proposed Framework

In this section, we present the main components of our framework. Let T = (Ti,.... Tn)

and X = (X 1 , ... , X,) denote the interarrival times and service times of n jobs, respectively.
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Note that in the traditional probabilistic study of queues, these primitives are modeled via

renewal processes. In a first-come first-serve (FCFS) single-server queue, the waiting time

W, = W, (T, X) and the system time Sa, = Sn (T, X) are given by the Lindley recursion

(Lindley [19521) as follows

n n

Sn =Wn+Xn =max(Sn_1+Xn -Tn,Xn)= max Z Xi Z Ti) (2.1)
1-<k<n (i=k i=k+1

Analyzing the expected waiting and system times, given by

Wn = ET,X [Wn (T, X)] and S3 = ET,X [Sn (T, X)], (2.2)

entails the understanding of the complex relationships between the random variables associ-

ated with the interarrival and service times. The high dimensional nature of the performance

analysis problem makes the probabilistic analysis by and large intractable, especially in the

transient domain. The study of multi-server queues is even more challenging. Instead, we

propose an approximation of the average behavior by

(a) using the modeling framework introduced in Chapter 1 to model the uncertainty in the

arrival and service processes via parametrized polyhedral sets,

(b) computing closed-form expressions for the worst case system time under our assump-

tions, and

(c) taking advantage of the uncertainty dimensionality reduction and leveraging the worst

case values to obtain analytical expressions that approximate the average-case system

behavior.

We present an overview of our approach in this section and illustrate our methodology

through the case of a single-server queue with light-tailed arrivals and service times.

2.2.1 Uncertainty Modeling

Given the structure of the Lindley recursion, we model the uncertainty around the partial

sums of the interarrival and service times in Eq. (2.1) via uncertainty sets inspired by the

Central Limit Theorem. In particular, we constrain the quantities Tj and Xi to take values

31



while satisfying

n -n-k n n-k+
Z Ti- AZXi -

Vn- k vln --k+1I S

for some parameters F, and P, that we use to control the degree of conservatism.

Assumption 1 We make the following assumptions on the queueing primitives.

(a) The interarrival times belong to the parametrized uncertainty set

a=Ua() E(T T- n-k _ -k, VO k<

i=k+1 A a

where 1/A is the expected interarrival time and Pa E R controls the degree of conser-

vatism.

(b) For a single-server queue, the service times belong to the uncertainty set

U s ( ) (X,, X) Xi_- s v/n - k, V 0 k<n ,
i=k+1

where 1/p is the expected service time, and P E R controls the degree of conservatism.

We present the following remarks regarding the proposed uncertainty set assumptions.

(a) While the uncertainty sets are motivated by i.i.d. assumptions on the underlying ran-

dom variables, (T1 , T2 ,... , T) E Ua does not necessarily imply that (T1 , T2 ,. .. , T) are

independent.

(b) We allow Pa and P, to take both negative and positive values. When these parameters

are negative, the constraints on the inter arrival and service times imply

n n-k n-k
E T> , Vk!n-1 and E Xi , Vk:n-1,

i=k+1 A i=k+1

thus constraining the sums of the inter arrival times to exceed their mean and the sums of

the service times to take values below the mean. This scenario constrains the analysis

to realizations with generally longer inter arrival times and short service times, and

therefore the jobs enter service without waiting in the queue. When these parameters

are positive, the constraints on the partial sums of the inter arrival and service times
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allow realizations with shorter inter-arrival times and longer service times, and in these

cases jobs may need to wait in the queue before entering service.

2.2.2 Worst Case Behavior

To characterize the worst case behavior, we formulate the related performance analysis

question as a robust optimization problem. In particular, assuming the primitives satisfy

Assumption 1, we seek the worst case waiting and system times defined as

W, = max W, (T, X) and S, = max S (T, X). (2.4)
Uaxus Uaxu8

The problems in Eq. (2.4) yield simple nonlinear optimization problems.

Unstable Queue: For a light-tailed queue with p = A/p > 1, Eq. (2.4) gives rise to a

closed form characterization of the worst case waiting and system times with

Rn (F fn(F ' A_(\n-+ n)+('+F.9) (2.5)

where F = Fa+F, denotes the effective variability parameter and the notation a+ = max (0, a).

For the case where p > 1, the worst case waiting and system times increase linearly with the

value of n.

Stable Queue: For a light-tailed queue with p = A/p < 1, Eq. (2.4) gives rise to a closed

form characterization of the worst case waiting and system times with

Sn(F) Wn(F)+ + F
A

_-p_ A2[F+]
2

V\/--- Pn+ -+T F, if n < A2[]

max, ]2A ) 4(1 - p) 2 ' (2.6)

- - + (!+ F , otherwise,

where F = Fa + P. denotes the effective variability parameter and a' = max (0, a). The

evolution of the worst case behavior is characterized by two distinct states: (a) a transient

state where the behavior is dependent on n with the system time in an initially empty

queue increasing at an order of f/7 when F > 0; and (b) a steady state where the behavior

is independent of n. When P < 0, jobs do not experience any waiting time, and therefore

the worst case system time is equal to the worst case service time.
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The characterization of the worst case behavior bears qualitative similarity to the bounds

established by Osogami and Raymond [2013] and Kingman [1970] for the transient and

steady state expected waiting and system times in a GI/GI/1 queue, respectively,

-12 + ao2v5n-+ - , if n< <

E [ Sn] =E (Wn] + - a 2( )

02 ,2 1
a +-I otherwise,

2 1 -p A

where e exp(1) 2.718. For ease of notation, we rewrite the worst case behavior in Eq.

(2.6) as

Sn (F) n (F) -1n (F) + S (r) - is (r), (2.7)

where 9n and 3s respectively denote the quantities associated with the transient state and

the steady state, and the indicator functions It and 1' respectively reflect the condition for

the system to be in the transient state and the steady state, with

1F (r) = 1, if r >2
n A

1n (F) = 1, otherwise.

Note that the worst case values directly depend on the value of F. Larger values of F yield

increasingly more conservative estimates.

2.2.3 Average Case Behavior

We propose to analyze the average case behavior of a queue by averaging over the worst

case values. This key idea is driven by the observation that the expected value of a random

variable can be computed by averaging its quantiles with appropriate weights. Our selection

of the density of F is informed by this insight.

For a given value of n, we suppose that the waiting time W, = W (T, X) is governed

by a distribution Fe, which can be derived from the joint distribution over the interarrival

and service times. The expected waiting time is then written as

W,= f xdFn(x).
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For the purpose of our exposition, we assume that the distribution function F, is continuous.

The inverse of F (-) then corresponds to the quantile function, which we denote by

Qn(p) =F-(p) = {q:Fn(q) =p = {q:P(S q)=p

for some probability level p E (0, 1). By a simple variable substitution, we can view the

expected value as an "average" of quantiles. Specifically,

r1
Wn = J Q,(p)dp. (2.8)

Recall that we have obtained an analytic expression of the worst case waiting time as a

function of the variability parameter F. We can map each quantile value Q, (p) to a corre-

sponding worst case value WV7. (F). Let G, denote the function that maps p to F such that

Qn (p) = Wn (F), i.e.,

p = P (W. W (F) )Fn (W. (F)) =G. (F). (2.9)

In this context, the expected value of the waiting time in Eq. (2.8) can be written as an

average over the worst case values, with

Wn =f Wn (F) dGn (F) = Er Wn (F)]. (2.10)

Philosophically, this approach distills all the probabilistic information contained in the ran-

dom variables X's and T's into the parameter F, hence allowing a significant dimensionality

reduction of the uncertainty. This in turn yields a tractable approximation of the expected

transient waiting time by reducing the problem to solving a low-dimensional integral.

Note: The knowledge of Gn allows us to compute the expected waiting time Wn

exactly, however, this depends on the knowledge of the waiting time distribution function

Fn. This is feasible for simple systems, e.g., analyzing the steady-state waiting time in an

M/M/1 queue. For this particular example, it is well known that the conditional steady

state waiting time W, W. > 0 is exponentially distributed with rate P(1 - p). Therefore,

F.(q) = 1 - pe-p(1-P)q, for q >0, and Q(p) = ((1 , for p E (0, 1).
P(1 - p)
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In this case, we can derive an exact characterization of the function G, and obtain

p=F(WO(F))=G.(F)=1-p-exp - .(_+)2)

Applying Eq. (2.10) yields

W T o(F) dG. (F) f 0 - 2 (A F2 F-I = 
d ,

J0  4(1 -p) 2 \x 4 P( - p)

which matches the expression of the expected steady state waiting time W. in an M/M/1

queue. However, characterizing F, (and therefore G,) is challenging for more complex

queueing systems, and depends directly on the distributions of the interarrival and service

times. Instead, we propose an approximation to Gs, which we present next.

Robust Approximation

We consider an initially empty GI/GI/1 queue and employ conclusions from the theory

of diffusion approximations to obtain an approximation of the density G,. From applying

diffusion approximations to queueing theory, it is known that the waiting time of the n th job

arriving at the queue at time t = n/A is well approximated by a reflected Brownian motion

Wn ~ -RBM (n/A, A - p, A (A2 0r + p 2 
0)), (2.11)

P

where RBM (t, 0, a2 ) denotes the state of the reflected Brownian motion with drift 0 and

variance a2 at time t, and (Ca, -s) denote the standard deviations associated with the

interarrival and service times, respectively (see Abate and Whitt [1987a]). Therefore, The

distribution of the waiting time can be approximated by

P - (A - tt)n/A) -p - (A - M)n/A _( ) p,

where 0(-) denotes the distribution function of a standard normal and the variance a2

A (A 2
U + p 2a ). For heavy traffic systems, the traffic intensity p -+ 1, i.e., A ~ p, and the

cumulative distribution of the waiting time is approximated by

P (Wn 0 pw)~ P - "a ~ 2.0# -J1. (2.12)
ak ~~ o- +0-,24
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To derive an approximation of Gn, we assume p < 1 and focus on the worst case steady-state

waiting time given by
-- A T+)22 (F+)2()A (F)Wn ( F) =for n > .

4( -p)' 4(1 - p)2'

Conditioned on F being positive, and applying Eq. (2.12), we obtain

ED wlWlF)Fo2iAF/4(l~ - 1 2) (2 L~~~

S(Wn! Wn W(F) IF > 0) ~ < 1s2 - 1.

By differentiating the right hand side of the above expression, we obtain an approximation

to the conditional distribution of F, given F > 0 as follows

Vr--a +o5 (-2 J+ o).

which corresponds to the conditional distribution of a normal random variable Y with zero

mean and standard deviation of 2\Fa + US, given Y > 0.

This allows us to obtain an approximation of the expected waiting and system times as

Wn ~z Er [I, (F)] and Sn ~ Er [1 , (F)], (2.13)

where we treat the effective variability parameter as a normally distributed random variable

with

F ~ N (0, 2 + S). (2.14)

Recovering Diffusion Approximations

Despite approximating the density of F using arguments borrowed from our worst case

steady-state analysis, Eq. (2.13) yields values that match the standard approximation ob-

tained via diffusion theory for light-tailed queues. The following approximations prove useful

for our analysis (see Vasquez-Leal et al. [2012])

f 00 
00

f x4(x)dx ~ #(a) and f x2 q(x)dx ~ 1 - (P(a) + a#(a), (2.15)

where 0 (.) and 0 (-) denote the standard normal density and distribution functions.

(a) Proposed Approach: Applying the approximation in Eq. (2.13) and given the ex-
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pression of the worst case waiting time in Eq. (2.7), we obtain

1 4(1 - p)F<2 1 1E I\/- rn. 1
r>2j(1-p)/A + A -

2 . 102

- (2VOJ + o. -v/i. x - 1)n (x)dx+f+ ) . 2
95(x)dx,n~~ A1 - p

where #(-) and (.) denote the standard normal density and distribution functions,

and

i-p n,2 + )2
0 implying n = ( o)2 A 2 r2  - . (2.16)

Using Eq. (2.16) and applying the approximations given in Eq. (2.15),

-0p 2 + o 2)
W ~ /o- + v/nrO (n) - -- n [1 - 0(n)] + a(0) -0() - -

A 41-p)2

A (C2 +2f
a Os (q2 + _).[ (7)] + 770(77) .(2.17)

1 - p 12

(b) Diffusion Approximation: Given Eq. (2.11) and applying the results obtained by

Abate and Whitt [1987a] to analyze the transient behavior of the reflected Brownian

motion, Osogami and Raymond [2013] derive the diffusion approximation for Wn as

diff A(o-+o 1(2 + 0--()1 + ?70() ,
I - p 2

which matches our approximation given in Eq. (2.17).

Remark: For unstable queues (p > 1) and large n, we approximate the expected waiting

time as

1'~o2 + '' -p i-p
T;z Oa \/ A nA

where q is defined in Eq. (2.16). It is known that, for single-server queues, the expected

number of jobs in the queue is (A - p)t at any given time t. So on average, the nth job will

have to wait for (A - p)n/A jobs to clear the queue, which yields

n = (A - p) . - = -An,
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which matches our approximation.

Our approach extends beyond the simple example of single-server queues with light-

tailed arrivals and services. We next present our approach for multi-server queues with

possibly heavy-tailed arrivals and/or service times.

2.3 Worst Case Behavior

In this section, we study the worst case behavior of a single queue with potentially multiple

servers and heavy-tailed arrivals and service times. We assume queues follow an FCFS

scheduling policy. We show that the worst case performance analysis amounts to solving

single-dimensional nonlinear optimization problems that can be solved efficiently.

2.3.1 Uncertainty Modeling

To model uncertainty in the partial sums of the interarrival and service times, we invoke the

generalized Central Limit Theorem reproduced below in Theorem 2.

Theorem 2 Generalized CLT (Samorodnitsky and Taqqu [1994])

Let {Y1 , Y2 , ... } be a sequence of independent and identically distributed random variables,

with mean y and undefined variance. Then, the normalized sum

n

ZYi - ny
i=1 ~/ Y (2.18)
Can 1Io

where Y is a stable distribution with a tail coefficient Ce E (1, 2] and C, is a normalizing

constant.

To illustrate, the normalized sum of a large number of positive Pareto random variables

with common distribution may be approximated by a random variable Y following a standard

stable distribution with a tail coefficient a and

C, = [P(1 - a)cos(7ra/2)]1 1 ',
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where P(.) denotes the gamma function. For a tail coefficient of a = 1.5, we obtain

P (Y 6.5) ~ 0.975 and P (Y 19) ~ 0.995 via the tail probability approximations given

by Nolan [1997]. We therefore assume that the quantities T and Xi take values such that

the partial sums

Z TI - k -a(n -k)/1 and Xi - n Pk 5 (n - k)/c, (2.19)
i=k+1 i=k+1

where the variability parameters Fa and P, are chosen to ensure that the inter-arrival times

and the service times satisfy the corresponding inequality with high enough probability.

Since 0 (nl/a) > 0 (n1 /2 ) for 1 < a < 2, the scaling by (n - k)l/' in Eq. (2.19) allows the

selection of smaller inter-arrival times and larger service times compared to Eq. (2.3) with

the scaling by (n - k)

With the insight from Theorem 2, we adapt the uncertainty sets to handle possibly

heavy-tailed arrivals and service times.

Assumption 3 We make the following assumptions on the queueing primitives.

(a) The interarrival times (T,.+1,... ,Tn) belong to the parametrized uncertainty set

a~ =ua (F)1(T) n-k
U (a) = O+1, , Tn) T. - - k -Fa(n - k)1/a, Vno: k n,

where 1/A is the expected interarrival time, no is the initial buffer in the queue, Fa E R

controls the degree of conservatism, and 1 < aa 2 is a tail coefficient modeling possibly

heavy-tailed interarrival times.

(b) For a single-server queue, the service times belong to the uncertainty set

U U (PS) (Xi,... Xn) -k5 Ts (n - k)l/43, VO ! k ! n
i=k+1 k

where 1/p is the expected service time, s E R controls the degree of conservatism, and

1 < a, 2 is a tail coefficient modeling possibly heavy-tailed service times.

(c) For an m-server queue, m > 2, we let v be a non-negative integer such that V = [(n -

1)/mJ, where n is the index corresponding to the nth arriving job. We partition the job
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indices into sets Ki = {k: n: [(k - 1)/mj = i}, for i = 0, ... ,v,

Ko = {1,. .. ,m}, Ki = {m + 1, ... ,2m},..., K = {vm + 1, ... , n,..., (v + 1)m}.

Let ki E Ki denote the index that selects a job from set Ki, for i = 0,..., v. The service

times for a multi-server queue belong to the uncertainty set

Z Xk -- < Fm TI ,
um  Um (rm) = (X1, ... , X') irz I

V ki EKi, i E 19 ct{, ..., v}

where 1/- is the expected service time, Ti E R controls the degree of conservatism, and

1 < a, 2 is a tail coefficient modeling possibly heavy-tailed service times. Note that

U c U for the case of m = 1.

Note: In order to illustrate the set U, we consider the example for n = 5 and m = 2:

X1+X 3 +X 5  3/p+Ts-31/as X2 +X3 +X 5  3/p + F,311's
(|1|= 3)

X1+X4 +X5  3/p+Fs-31ks X 2 +X 4 +X 5  3/p+Fs-31/a"

X + X3  2/p + Fs 2 1/' X 2 + X3  2/p + tS -211's

(1112) X, +X 4  2/p+Fs2110s X 2 +X 4  2/ 1p+Fs.21/01-,

X1 +X 5  2/p+Fs -211's X 2 +X 5  2/p+Fs -2 11's

X3 +X 5  2/p+Fs-211's X 4 +X 5  2/p+ F.2 11's

(III 1) X 1 , X2 , X3 , X4 , X5:5 + FS

In general, the inequalities associated with the set I involve the sum of [II service times,

where each service time is selected out of a set Ki, for i E I, yielding 0 (ml") such inequal-

ities. Though the number of constraints in the set is exponential, we will show later that

the problem of finding the worst case system time given T E Ua and X E u m is efficiently

solvable and yields analytic bounds (refer to Section 3.2). Currently, the uncertainty set in-

cludes constraints involving jobs from different sets in the partition KO, K1 ,.. . , K, . While

we could have also added constraints with jobs selected from the same set Ki, the set um

represents a minimal set of inequalities for our bounds on the worst case system time to be

valid.
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2.3.2 Worst Case Behavior

Let Cn denote the completion time of the n th job, i.e., the time the nth job leaves the

system (including service), and C(n) denote the time of the nth departure from the system.

In general, the following recursions describe the dynamics in a multi-server queue (Krivulin

[1994])

Cn = max (An, C(n-m)) + Xn and Sn = Cn - An = max (C(n-m) - An, 0) + Xn, (2.20)

where An =i T denotes the time of arrival of the n job.

Proposition 4 presents an exact bound on the worst case system time in an rn-server queue,

for all possible realizations of the interarrival times.

Proposition 4 (Worst Case System Time in a Multi-Server Queue)

In an m-server queue under Assumption 3(c), the worst case system time for the nth job

for any realization of T is given by

Sn (T) max S (T, X) max S (T, X)
um(rm) Um (r.+)

max max ZXr()- Ti (2.21)
0 ku (Um(F,) i=k i=r(k)+1

where v = [(n -1)/mJ and r(i) =n -(v -i)m and FT =max(0,Pm).

To prove this result, we use the following procedure:

(1) We introduce a set of policies P that do not allow overtaking until some f < n, and

obtain an analytic expression of the system time under such policies (see Proposition

5),

(2) Then, for any T, we obtain an exact characterization of the the worst case system

time under P, which can be achieved via a sequence of nondecreasing service times (see

Proposition 6),

(3) Last, we show that, for any T, the worst case system time for an FCFS queue is equal

to the worst case system time for a multi-server queue under P (see Proposition 7).
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We next present the proofs of Propositions 5-7.

No-Overtaking Behavior

For all policies in P, no overtaking occurs until f. Hence, until f, the jobs depart in the

same order they arrive,(i.e., C_)' C, for all 1 k e. Under P, the recursion in Eq.

(2.20) therefore simplifies to

= max (CAe)+ X, and S = C - At = max (C_ -Ae,0)+ X. (2.22)

Using this recursive formula, Proposition 5 gives an explicit expression of the system time

., in a multi-server queue operating under P.

Proposition 5 Under a set of polices P that do not allow overtaking until job f n, where

f E K,, the system time of the fCh job in an m-server queue is given by

Sf = max L XS(i) - Z Tj,
0 k 'y i=k i=s(k)+1

(2.23)

where s(i) = f - (-y - i)m.

Let us now fix the vector of service times Xe+ = (Xe+1,...,Xn). Let Ti = (TI,... ,Te) and

Xe = (X 1, ... , Xe). By Assumption 3(c), the vector (Xe, Xe+) E U'. For some realization of

inter-arrival times Te and service times Xh+, we define the worst case system time under P

as

max
Xst

S..

SP (Te, Xe)

(Xe, Xe) E U".
(2.24)

By Proposition 5, for a given sequence (Te, Xe+) under P ,

S'(TXe) = max max Xs(i)
(Xe,Xe+)EUm Ok 'y i=k

< max max
0 k:y (Xt,Xe+)EUm

Proposition 6 shows that the bound in Eq. (2.25) is tight and that there

path which achieves the worst case value with nondecreasing service times.

exists a sample
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Proposition 6 In an rn-server queue, under a set of policies P that do not allow overtaking

until job f < n, where f E K,, and given a realization X' E U', there exists a sample path

( ',... ,?X') with non-decreasing service times achieving

3T (T', X )= max maxZ Xs(z) - 2  +Ti). (2.26)
0! k! y (Um i=k i=s(k)+1

In the special case where f = n, Eq. (A.2) implies that the worst case system time for the

nth job under P can be written as

Rp (T) = max max - Ti, (2.27)
Osku Xumi=k i=r(k)+1

where r(i) = n - (v - i)m. Additionally, there exists a nondecreasing sequence of service

times that achieves the worst case value, such that

XJ=P + F, [(v - k + 1)1/" - (v - k)'las Vk J Kk and k = 0,...,v. (2.28)

FCFS Behavior

We next relate the worst case behavior under P to the worst case behavior in a multi-server

FCFS queue.

Proposition 7 Given a sequence of inter-arrival times T = {T 1 ,...,T4}, and the services

X E U (Fm), where F, > 0, the worst case system time gn (T) is such that

gn (T) = S"' (T) = max max E Xr() - Ti (2.29)
0! k!v (UM i=k i=r(k)+1

where r(i) = n - (v - i)m and v = [(n - 1)/m].

Note that Proposition 7 is adapted from Eq. (2.29). Equipped with the exact characteriza-

tion of the system time, we next analyze initially empty and non-empty multi-server queues.

Initially Empty Queues

Given Assumption 3, we bound Eq. (2.21) by the following one-dimensional optimization
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problem

v - k+1I _n(v -k)1
S, < max + 7 (v - k + 1)11'-" - k+ Fa [ (v - k)]a. (2.30)

Okuv It m AL

This bound can be computed efficiently for the general case where as * aa by solving a

simple constrained non-linear optimization problem. Furthermore, we can obtain a closed

form expression for the upper bound on the worst case system time for the special case

where the arrival and service tail coefficients are equal, i.e., aa = a., as shown in Theorem

8.

Theorem 8 (Initially Empty Heavy-Tailed Queue)

In an initially empty m-server FCFS queue satisfying Assumptions 3, with aa = a= a and

p < 1, the worst-case system time is given by

I .-V1 -~ - v + V + + F ", if V <

An (F) i f A a(1 -p) (2.31)
a,- 1 AlI(0l-) . pVc

4
(a-l1) 1

a/(a-1) [r(1 - p)]/(a-) + + m , otherwise,

where v = [(n - 1)/m] and F = mlaFa + n > 0.

Proof of Theorem 8. Since (v - k + 1)1/" (v - k)lI + 1, and given f'+ > 0, we

bound Eq. (2.30) by

n < max v-k (v-k)11"-n(/ - +Ta[(-k)] + -+
0!L!v A (Air n

By making the transformation x = v - k, where x E N, we represent this problem as

,max #v -xiEN (X) max (0 -xi/a - 6 . x), (2.32)
OSX! V,XEN / OX!u,XER

where 3 = m1/'Fa + Fm+ and 6 = m(1 - p)/A > 0, given p < 1. If / 0, the function

h(x) = / -x1/c - 6 -x 0 for all values of x, implying S,/ = /,p + F,&. For / > 0, the function

h is concave in x with an unconstrained maximizer

(/3\a/(k-1) _(A(m + rnlTa) \c/(a-1)

x .= + a ) (2.33)
ao am(l - p)

Maximizing the function h(-) over the interval [0, v] involves a constrained one-dimensional
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concave maximization problem giving rise to closed-form solutions.

(a) If x* E [0, v], then x* is the maximizer of the function h over the interval [0, v], leading

to an expression that is independent of v,

Sn (p /(o-1) (/3)/( ) (1)

Sn 3 o- + - +FM+
ao ao

a -(2-34)
( -1) 6 1) + + (2.34)

(b) If x* > v, the function h is non-decreasing over the interval [0, v], with h(v) > h(x)

for all x E [0, v], leading to an expression that is dependent on v,

gn = O(V)1/' - 6(v) + 1 + IV . (2.35)

We obtain Eq. (2.31) by substituting / and 6 by their expressions in (a) and (b). E

Note that, for the case where F 0, the function in Eq. (2.31) is increasing in k over

the interval k E [0, V], for p = A/(mp) < 1. It is therefore maximized at k = V, which yields

Sn = max X! I + FM.
Urn A

In this case, the nth job does not experience a waiting time before entering service. This is

due to the fact that the condition F 0 involves typically long inter arrival times and short

service times.

Initially Nonempty Queues

We next analyze the case where no > 0. For a single-server queue, and given that Ti = 0 for

all i = 1, ... ,no, the system time in Eq. (2.1) reduces to

n n
(a) for n no: S, = max Z Xi = EXi (2.36)

1 k!no i=k i=1

(b) for n > no: Sn = max { Xi - E Ti, max _ X% - 1TI} (2.37)
i=1 i=no+1 (o1kni=k i=k+1

n n n

We note that Eqs. (2.36) and (2.37) involve the terms E Xi and E Xi - E T, respectively.
i=1 i=1 i=no+1

While the constraints in Assumption 1 allow us to obtain upper bounds on these terms, the
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resulting bound is not tight, since F,, and P, bound all of the sums Z T and Z Xi,
i=k+1 i=k+1

for all values of k. To obtain tighter bounds, we introduce the parameters -Ya and -Y, which

equal the sums
" n -no n i nE Ti-

____________ A=i=no+1 = -y and = (2.38)
(n - no)T/a- n/a

where the parameters -ya and y, are such that -ya Pa and -ys P5 . Similarly, for an m-server

queue, we introduce the parameter ym F Pm where

ZXk- -

i+1, V ki E Ki, (2.39)
(V + wa) /03

where the set Ki is defined as Ki = {k n : [(k - 1)/rn] = i}, for i = 0,... , v. Now, for an

m-server queue, let # = [(no - 1)/m]. The first m jobs in the queue are routed immediately

to the servers without any delays. For n > m, and given that T = 0 for all i = 1, . .. , no, we

rewrite Eq. (2.21) as

(a) for n 7 no: Sn (T) max max Xr(i) =imax ZXr(s) (2.40)
i=k i=O

V n

max E Xr(i) - E Ti,
ki=O i=no+)

(b) for n > no: Sn (T) max max rv i n , (2.41)
ma ax E Xr(i)-- T4<k:v Ur i=k i=r(k)+

where r = r(0) = n -vm and v = [(n- 1)/m]. By applying Assumption 3 and the inequalities

in Eqs. (2.38) and (2.39), we can bound Eqs. (2.40) and (2.41) and obtain an exact

characterization of the worst case system time in an initially nonempty queue with heavy

tails, where for n no

Sn + + -Ym(v + 1)1/a'-, (2.42)

and for n > no

(v - k + I +/,\ n -- no 1/aa

+ ym (v - k + 1)a)- T + y(n - no) (2.43)
SmaX + I (v - k) 1 la

max + , [v - k +1]I rn- + a [m(v - k)] / ("
O<k-.u Py
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As for initially empty queues, the optimization problem in Eq. (2.43) can be computed

efficiently for the general case where aa * a. Theorem 9 provides a closed form expression

for the upper bound on the worst case system time for the special case where aa = as.

Theorem 9 (Initially Nonempty Heavy-Tailed Queue)

In an m-server FCFS queue under Assumptions 3 with no E KO, i.e., # = [(no - 1)/m],

aa = a, = a, p < 1, and F = m1/'Fa + I,, > 0, the worst case system time Sn (F) is bounded

by

+l+7(V+1)1Ia)+ n-no +ya(n-no)/,

y A/

max {p( _)I / m(1-p) (i - + + i v - # < (a(i/ )a/(-1)

A'/(a-1) . a/(a 1)

a/(a-1) 1/-) + -+F ) otherwise.
a (( - p)]/ it

. (2.44)

Proof of Theorem 9. To bound the maximization problem in Eq. (2.43), we take

a similar approach to that presented in the proof of Theorem 8 and cast the problem in the

form

max 1(/-xi -6.) =
0! !V-#,XER _ Oa/(a-1)

aa/(a-1) 6ada /(-1) ,

where 3 = m1/'Fa'+T and 6 =m(1-p)/A. Substituting the

values in the above expression yields the desired result.

if (_L a/AZ-1)if v-# (,

otherwise,

terms 3 and # by their respective

El

Note that, for the case where F < 0, the worst case system time

() ! max +7Ym(v+1)I/S - + ya(n - no) , -+ F

In this case, the nth job experiences a waiting time only due to the buildup effect left by the

initial jobs. For big enough n, this effect becomes negligible and the system time eventually

becomes equal to the service times, stabilizing at the value 1/p + Fn.
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2.3.3 Implications and Insights

In a multi-server queue, the worst case system time is characterized by two distinct states of

behavior: (a) a transient state where the system time is dependent on n, and (b) a steady

state where the system time is independent of n. Figure 2-1 shows a graphical representation

of the evolution of the worst case system time under our modeling assumptions.

W. 10- 10-

(2)

s.( 
(2)

U

0L_

%0 100 200 3 0 0 200 4M0 600 800

Jobs Jobs
(a) (b)

Figure 2-1: Worst case system time for a single-server queue with p = 0.95, Pa = 0 and

I, = 0, 1 (respectively curves (1) and (2)), for (a) zero initial jobs, and (b) 5 initial jobs, i.e.,

no = 5. The dotted lines indicate the phase change from transient to steady state.

Steady State: Our approach leads to the same qualitative conclusions as stochastic queue-

ing theory with respect to the behavior of the system time in terms of the traffic intensity

and uncertainty on the inter-arrival and service times. In fact, the classical i.i.d. arrival

and service processes with finite variance can be modeled by setting a = 2. The worst case

steady state system time becomes

S A (Pa +Fs)2  1 - A (a +sM/) m
< A - + - and S,< - + (2.45)

4 1-p A 4 1-p A

for single server and multi-server queues, respectively. Kingman [1970] provides insightful

bounds on the expected waiting time in steady state for the GI/GI/1 and GI/GI/m queues.

Given that E [Sn] = E [Wn]+E [Xn], where E [Xn] = 1/p, the bounds on the expected system

times translate to

A 0 + U2 1 A 02 + o/m+ (1/m -1/m 2)/p2  1
E aSn] < - a 8 +- and E[Sn]<-.a+--

2 1-p y 2 1-p A
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The bounds in the proposed framework share the same functional dependence on A/(1 - p)

and on the variability parameters F2, J /m, (correspondingly U2, o2/m) as probabilistic

bounds. Note that the bounds in Eq. (2.45) depend on the magnitude of the variability

parameters.

Transient Regime: In the queueing literature, the time it takes the system to reach steady

state is referred to as relaxation time. We define the robust relaxation time as the number

of jobs observed by the queue before reaching steady state in the worst case setting. Table

2.1 summarizes the effect of the traffic intensity on the steady-state system time and the

robust relaxation time.

Table 2.1: Effect of traffic intensity and heavy tails on worst case behavior.

Worst Case Steady System Time* Robust Relaxation Time*

0( V /a-1 no/(a-1)[ F

0 (~5C~;7iIO))+0 (m-m(l - p)1/(a-1) I - p m(I - p)

* = = m 1 Fa + Fm.

Remark: Under probabilistic assumptions, heavy-tailed queues are characterized by an

infinitely long transient state as they never reach steady state (see Boxma and Cohen [19981).

However, in our robust framework, we attribute a steady state value, even for queues with

heavy-tailed arrivals/services. The concept of a worst case steady state for systems with

heavy tails stems from the assumptions of boundedness of the interarrival and service times

implied by Assumption 3, which involve a truncation of the tails. Specifically, under the

worst case paradigm, lower tail coefficients, and therefore heavier tails, yield an increase in

both the relaxation and steady state system times as suggested by Table 2.1. To illustrate

this, we consider an instance with p = 0.95, m = 1 and F = 1. By incrementally decreasing the

tail coefficient from a = 2 to a = 1.75 and from a = 1.75 to a = 1.5, the steady state worst case

system time experiences an respective increase by 115% and 420%, and the relaxation time

increases by 190% and 680% respectively. Our averaging technique allows us to reconcile

our approach with the conclusions from probabilistic queueing theory.

For ease of notation, we express the worst case system time in Eq. (2.44) as

max{$(-.Ya,'n), (i)s()+ 8(F)-1"a(F)}, (2.46)
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where S, S, and S' denote the quantities associated with the system time effected by the

initial buffer no, the transient state and the steady state, respectively, and the indicator

functions 1' and 1' reflect the condition for the system to be in the transient state and the

steady state, respectively. For aa = a, = a, the indicator functions are such that

am(1 - p)(-)/ill () = 1, if >P- [n/m] - [no/mj

1' (F) = 1, otherwise.

2.4 Average Case Behavior

To analyze the average behavior of a multi-server queue, we treat the parameters (7a, Ta),

and (-ymn, J,,,,) (correspondingly (ys, F8 ) for a single-server queue) as random variables and

compute the expected value of the worst case system time

Sn = E [S .

Similarly to the case of a single-server queue with light-tailed primitives, we propose to ap-

proximate the density of the variability parameters by invoking the limit laws of probability

and leveraging the characterization of the effective variability in Eq. (2.14) to fit the analysis

for multi-server queues with possibly heavy-tailed arrivals and services.

2.4.1 Choice of Variability Distribution

From Eq. (2.38), the parameters -Ya and -, can be viewed as normalized sums of the random

variables {T,0 1 ,...,T} and {X1,..., Xn}. Specifically,

n n -no n" n~

71 = - -Za and Y, ZS. (2.47)(n -[ nZo)~ ] (.7

By the limit laws of probability, 'Ya and -y, approximately behave as a random variable

following a limiting distribution.

(a) Light Tails: For large enough n, ya and -y can be well approximated as normally

distributed random variables by the central limit theorem. Specifically, Ya ~ K (0, 0a)

and -, ~A (0,as), where ca and a denote the standard deviations associated with
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the inter-arrival and service processes, respectively.

(b) Heavy Tails: By Theorem 2, the normalized sum of heavy-tailed random variables

with tail coefficient a follows a stable distribution Sa (4', , #) with a skewness param-

eter 4' = 1, a scale parameter = 1 and a location parameter # = 0. Therefore, -Ya and

7, as expressed in Eq. (2.47) are such that

ya~Sa(-1,Ca,0) and -ys~Sas (1,Ca 8 ,0),

where Ca is a normalizing constant as introduced in Eq. (2.18). As a concrete example,

for Pareto distributed interarrivals and service times,

Ca = [F (1- a) cos (7ra/2)] 1/0,

where F (-) denotes the Gamma function. Note that, unlike the case of light tails, the

distributions of y, and -y, are asymmetrical. More specifically, the skewness of Ya is

negative since -ya = -Z, where Za = Sa, (1, CaS,0).

In a multi-server queue, and assuming without loss of generality that n = (V + 1)m,

(v+1)m (V + 1)m " v + 1
max Xj - max Z X4,,mus~ I 1m IO A

Ni=1 [1 x o i+.- m i
[(v +1)m]l/a mi/as, V + 1)1/a. j=1

where the last inequality is due to Eq. (2.39). We can therefore express -ym as

1

'Ym -m(as-1)/as '

We next discuss how we choose the distribution of the effective parameter F. Since the

exact characterization of the density of F is challenging, as we have observed in Section 2,

we propose an approximation. Recall that for a single-server queue with light-tailed arrival

and service times, we have proposed to treat P as

P + P A (0, 2a/OV a and (2.48)

Put differently, we view F = Fa + F,, where Fa = O-Ya and F, = O-y, with 0 = 2. We take a
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similar approach for multi-server queues and model the variability parameters as functions

of 7a, -y and -y, as follows

Fa = 0ya and Ys = 7 m =

and then inform the choice of the scaling parameter 0 via known conclusions on the behav-

ior of the system time (e.g., the steady state bound on the system time given by Kingman

[19701).

(a) Light Tails: We select 0 so that the average worst case steady-state system time

matches the bound provided by Kingman [1970]. In other words, we ensure

( 1  . E [(Oy+) 2 ] = - ( , + o /m 2), (2.49)
4(1 -,o) 2(1 -- p) a s

where -Y = 7Y + -1/2 = 7Y + Y,*/m and the expected value E [(_Y) 2] F p (y 0).

(a2 + 2g/m
2 ). By rearranging the terms in Eq. (2.49), we obtain

[2 (U2 + /m2) (2.50)

E [(_7+)2] P (7 0) (.0

(b) Heavy Tails: The steady state in heavy-tailed queues does not exist. Instead, we

propose to extend the formula in Eq. (2.50). For aa = a, = a, we select the scaling

parameter as

0 P 0(2.51)

where the probability can be efficiently computed numerically. For asymmetric tails,

we propose to model the variability parameters Fa = OaYa and F, = 0,-m, with

( )~(&-1)/.(a-1/a
a ~ ( aa and 0, ~ as I . (2.52)

P(-Y0) an OS P(7 0))

53



By expressing Fa and Fm in terms of 'Ya and -y,, we can approximate S by

Sn ~; EaYs max{Qa ,s) ,

The above double integral can be efficiently computed using numerical integration. A key

feature of our approximation approach is its computational tractability. Computing the

average system time involves computing double integrals, which we compute by discretizing

the space of 'Ya and 7Ys.

The average runtime to compute gn for a given value of n is of the order of milli-seconds,

irrespective of the system parameters: traffic ratio (p), number of servers (m), and light or

heavy tailed nature (a). We contrast the computational requirement of our approach relative

to simulations.

(a) Computational Complexity: When using simulation to calculate E[Sn], it is required

to simulate all the jobs until n, requiring us to simulate an 0(n)-dimensional random

vectors of inter-arrival times and service times. On the other hand, in our approach, we

are required to perform only a double integration, which is significantly faster.

(b) Effect of Heavy Tails and Heavy Traffic: It is well known that the number of sample

paths required grows for heavy traffic as well as heavy tailed systems (see Fishman and

Adan [2006], Asmussen et al. [2000], Blanchet and Glynn [2008]). In our approach, even

for heavy tails and heavy traffic, we use the same level of discretization to calculate the

double integrals.

(c) Simulation of Multi-Server Systems: A key step in simulating FCFS multi-server

queues consists of sorting the workloads at each server to assign the next job to the first

available server. This sorting process is required for each sample path. On the other

hand, our approach provides a closed form expression for multi-server queues which does

not involve sorting.

We next compare the performance of our approximations with simulated values.

2.4.2 Computational Results

We investigate the performance of our approach relative to simulation and examine the

effect of the system's parameters (traffic intensity, initial buffer and number of servers)
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on its accuracy. We run simulations for single and multi-server queues with N = 5,000

job arrivals and compute the expected system time for each job using 20,000 simulation

replications. We pre-specify the arrival rate at the queue to be A = 0.1 for all simulation

instances, while varying the traffic intensity, the variances associated with the interarrival

and service processes, the number of servers in the queue, and the number of initial jobs.

We further consider a host of light-tailed distributions and simulate queues with normal,

exponential, lognormal, and uniform interarrival and service times (including the service

times for the initial jobs at the queue). To compare the simulated values S, with our

approximation 9., we report the average percent error defined as

1 5 5
Average Percent Error = -=::- - E -9. x 100%,

N n=1  Sn

where N = min (N, Fi,) and i, denotes the number of jobs the queue observes until our

approximation reaches steady state, i.e., W, = min (n : , = ). We next present our re-

sults for multi-server queues with (a) light-tails (aa = a, = 2), (b) symmetric heavy tails

(aa = as = a), and (c) asymmetric tails (aa * as).

Light Tails: Table 2.2 reports the average percent error between simulation and our

approximation for queues with normally distributed interarrival and service times. Note that

the choice of the mean and standard deviations ensures that no more than 0.6% of values

are negative. Whenever we obtain a negative value, we truncated at zero. Our approach

generally yields percent errors within 10% relative to simulation. Figure 2-2 compares our

approximation (dotted line) with simulation (solid line) for a single-server queue (top pan-

els) and a 20-server queue (bottom panels) with normally distributed primitives.

As shown by simulations and empirical studies performed by Odoni and Roth [1983] on

light-tailed queueing systems, the expected transient system time has broadly four different

behaviors depending on the initial jobs. Our averaging approach is capable of capturing

these behaviors.

(a) The first behavior occurs when the system is initially empty. The average system time

function is monotonic and concave in n. This behavior is detected in Figures 2-2(a), (d).
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Table 2.2: Errors relative to simulations for queues with normally distributed primitives.

1 Server* 10 Serverst 20 Serverst

p no=0 5 10 no=0 20 50 no=0 50 100

.95 5.14 3.32 6.82 1.06 3.04 2.19 0.87 1.53 1.03

(a) .97 4.04 2.26 5.98 0.44 3.12 2.25 0.60 1.99 1.10

.99 3.54 1.54 8.77 2.35 4.98 2.73 1.27 2.89 0.62

.95 2.23 2.57 6.44 0.64 3.28 3.59 1.21 2.60 2.11

(b) .97 1.75 2.16 7.65 1.49 4.14 4.85 0.59 3.33 3.39

.99 5.05 4.09 8.51 4.47 7.70 5.31 2.83 5.08 1.50

* Instances with (a) a = as = 2.5 and

t Instances with (a) oa = 2.5 and or =

t Instances with (a) o-a = 2.5 and a. =
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Figure 2-2: Simulated (solid line) versus approximated values (dotted line) for a queue

with normally distributed primitives with a = 4.0 and p = 0.97. Panels (a)-(c) show a

single-server queue with a = 4.0 and no = 0, 5, 10. .Panels (d)-(f) show a 20-server queue

with U 8 = 40 and no = 0, 50, 100.

(b) The second behavior occurs when the number of initial jobs is small creating an initial

system time 9n, that is below the steady state value. The system time in this case

initially decreases and subsequently increases until reaching steady state, as seen in
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Figure 2-2(b).

(c) The third behavior occurs when the number of initial jobs creates an initial system time

S,, that is higher than the steady state value. In this case, the average system time is

convex in n and decreases exponentially until reaching steady state, as detected in in

Figure 2-2(c).

(d) The fourth behavior occurs when the initial buffer creates an initial system time S 0 that

is substantially larger than the steady state value. The initial decrease is approximately

linear with jobs leaving the system at the rate of [L - A, as seen in Figures 2-2(e),(f).

Table 2.3 reports the average percent error between simulation and our approximation for

queues with various combinations of light-tailed distributions (with A = 0.1 and ca = 10). We

consider in particular three pairs of distributions: (A) exponential arrivals and lognormal

service times, (B) lognormal arrivals and service times, and (C) uniform arrivals and lognor-

mal service times. We also vary the coefficients of variation associated with the interarrival

times (ca = Age) and the service times (c, = puo,). Our approach yields errors within 10%

relative to simulation. Figure 2-3 compares our approximation (dotted line) with simula-

tion (solid lines) for an initially empty (a) single-server queue, (b) 10-server queue, and (c)

20-server queue for the various combination of distributions.

Table 2.3: Errors relative to simulation for queues with light-tailed primitives.

1 Server 10 Servers 20 Servers
Instance p = .95 .97 .99 p = .95 .97 .99 p = .95 .97 .99

A* 5.18 3.10 2.26 7.48 4.78 3.99 10.2 7.80 5.91

(1) Bt 2.64 2.06 2.62 9.06 5.46 4.10 10.9 8.76 7.04
C1 3.75 2.52 1.50 6.97 4.37 3.55 9.45 7.58 6.05
A 8.14 4.66 2.82 3.39 2.23 2.98 5.37 2.71 2.03

(2) B 6.21 4.36 3.44 5.42 1.96 2.85 6.34 3.50 1.88
C 4.70 3.14 1.17 2.11 2.52 2.97 4.25 1.72 1.87
A 4.17 3.63 1.71 5.81 2.51 2.09 6.18 3.77 1.48

(3) B 9.17 5.87 3.33 7.80 3.88 1.95 7.33 4.65 2.08
C 0.71 0.82 1.43 3.76 1.34 1.89 4.88 2.67 1.63

Instances with (1) ca = cs, (2) ca = 2c,, and (3) Ca = 5c,
* Instances with exponential arrivals and lognormal service times
t Instances with lognormal arrivals and service times
I Instances with uniform arrivals and lognormal service times
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Figure 2-3: Simulated (solid line) versus predicted values (dotted line) for a queue with

p = 0.97. Panel (a) shows a single-server queue with exponential arrivals and lognormal

service times with ca = c,. Panel (b) shows a 10-server queue with lognormal arrivals and

service times with ca = 2c,. Panel (c) shows a 20-server queue with uniform arrivals and

lognormal service times with ca = 5c.

Heavy Tails: Table 2.4 reports the average percent error between simulation and our

approximation for queues with Pareto distributed interarrival and service times with aa =

as = a. Our approach yields percent errors within 10% relative to simulation for single-server

queues. While errors are higher for multi-server queues, our approximation still captures the

heavy-tailed behavior. Figure 2-4 compares our approximation (dotted line) with simulation

(solid line) for a single-server queue (top panels) and a 20-server queue (bottom panels) with

Pareto distributed primitives (aa = as = 1.6).

Table 2.4: Errors relative to simulations for queues with Pareto distributed primitives.

1 Server 10 Servers 20 Servers
p no=0 50 200 no =0 50 200 no =0 50 200

0.95 9.59 7.18 1.78 12.5 9.49 13.9 17.9 15.9 25.5
(a)* 0.97 4.86 1.49 5.98 12.1 9.56 13.7 19.6 17.8 28.6

0.99 2.59 2.08 6.63 11.9 11.9 15.6 24.5 22.6 29.3
0.95 9.59 7.18 1.78 9.22 7.85 5.44 21.6 18.5 17.4

(b)* 0.97 8.75 3.14 2.92 12.7 9.63 9.76 21.7 17.7 19.8
0.99 5.72 1.17 3.66 13.9 13.5 11.4 24.4 20.3 20.4

* Instances with (a) aa = a, = 1.6 and (b) aa = a, = 1.7

Asymmetric Tails: Figure 2-5 compares our approximation (dotted line) with simula-

tion (solid lines) for a single-server queue with p = 0.97 and asymmetric tail coefficients. In

particular, we consider three instances: (a) Pareto arrivals (aa = 1.6 and exponential service

times, (b) exponential arrivals and Pareto service times (a, = 1.6), and (c) Pareto arrivals
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and services (a, = 1.5, a, = 1.7).
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Figure 2-4: Simulated (solid line) versus predicted values (dotted line) for a single queue

with Pareto distributed primitives (a, = a, = 1.6) and p = 0.97. Panels (a)-(c) correspond

to an instance with m = 1 and no = 0,50, 200. Panels (d)-(f) correspond to an instance with

m = 20 and no = 0, 50,200.
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Figure 2-5: Simulated (solid line) versus predicted values (dotted line) for an initially empty

single-server queue with p = 0.97 and (a) Pareto arrivals (aa = 1.6) and exponential service

times, (b) exponential arrivals and Pareto service times (a, = 1.6), and (c) Pareto arrivals

and services (a, = 1.5 and a, = 1.7). Percent errors with respect to simulation are 6.50%,

2.82%, and 3.23%, respectively.

Note that our averaging technique allows us to reconcile our conclusions with prob-
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abilistic queueing theory. From Table 2.1, the average system time is proportional to

E [(F+)/(-l)] . For heavy-tailed primitives, the effective variability parameter F is gov-

erned by a heavy-tailed distribution (concluded for the stable law). This implies that

the moments of F higher than or equal to the second moment are infinite. As a result,

E [(p+)a/(ol)] is infinite for a < 2. The average steady-state system time S. and the

relaxation time are therefore infinite for heavy-tailed queues, which is in agreement with

conclusions of probabilistic analysis (see Boxma and Cohen [1998]).

2.5 Concluding Remarks

In this chapter, we applied our methodology to analyze the transient performance of single

queues with possibly heavy-tailed arrivals and service times. By averaging the worst case

values, we have shown that our approach (1) yields approximations that match the diffusion

approximations for light-tailed queues, (2) allows us to extend the analysis to heavy-tailed

queueing systems, and (3) yields approximations that closely compare with simulated values.

In the next chapter, we present how we leverage the tractability of our methodology to

analyze complex queueing networks.
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Chapter 3

The Case of a Network of Queues

In this chapter, we analyze the average performance of a multi-server queueing network

with possibly heavy-tailed arrivals and service times. We extend the approach presented in

Chapter 2 to (a) study the steady-state behavior of arbitrary queueing networks, and (b) the

transient behavior of tandem and feedforward networks. This chapter particularly highlights

the generalizability and the tractability of our approach to study complex systems.

3.1 Introduction

Analyzing the performance of single queues under generalized probabilistic assumptions is

challenging, as we have discussed in Chapter 2. The situation becomes even more difficult

if one considers analyzing the performance of queueing networks. A key result that allows

generalizations to networks of queues is Burke's theorem (Burke [19561) which states that

the departure process from an M/M/m queue in steady-state is Poisson. This property

allows one to analyze queueing networks and leads to product form solutions as in Jackson

[19571. However, when the queueing system is not M/M/m, the departure process is no

longer a renewal process. With the departure process lacking the renewal property, it is

difficult to determine performance measures exactly, even for a simple network with queues

in tandem. The transient analysis of queueing networks is even more complex.

The two avenues in such cases are simulation and approximation. Simulation provides

an accurate depiction of the system's performance, but can take a considerable amount of

time in order for the results to be statistically significant, especially for heavy-tailed systems
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in heavy traffic. In addition, simulation models are often complex, which makes it diffi-

cult to isolate and understand key qualitative insights. On the other hand, approximation

methods, such as QNA developed by Whitt [1983] and QNET developed by J. G. Dai and

J. M. Harrison [19921, provide a fair estimation of performance, but suffer from a lack of

generalizability to model heavy-tailed behavior. Given these challenges, the key problem

of performance analysis of queueing networks has remained open under the probabilistic

framework. We propose to apply our methodology outlined in Chapter 2 to study queueing

networks.

The structure of this chapter is as follows. Section 3.2 analyzes the departure process

from a multi-server queue and discusses the generalizability of our methodology to analyze

the steady-state behavior of arbitrary queueing networks. We also show that our approach

is capable of studying the transient performance of tandem networks (Section 3.3) and

feedforward networks (Section 3.4). Section 3.5 concludes this chapter.

3.2 Steady-State Queueing Networks

In this section, we study the output of a single queue under the assumption that servers

act adversarially to maximize the time spent in the queue. Specifically, we show that, with

adversarial servers, the interdeparture times D = {D1, D2,..., D} belong to the arrival

uncertainty set Ua. The characterization of the departure uncertainty set Ud as a subset of

the arrival uncertainty set Ua is increasingly tighter with larger values of n, and is therefore

akin to the Burke theorem. This result allows us to decompose complex networks and carry

a steady-state analysis station-by-station.

3.2.1 Output of a Queue

Fixing the value of n, we view the queueing system from an adversarial perspective, where

the servers act so as to maximize the system time of the nth job, for all possible sequences

of inter-arrival times. This assumption is reminiscent of the service curves approach of the

stochastic network calculus, see Jiang and Liu [2008]. In other words, the servers choose

their adversarial service times X = (91,... ,X9) to achieve S- (T), for all T. Given the
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results of Proposition 7, the servers choose their service times according to Eq. (2.28), i.e.,

i +F, (n - i+1)1/1 - (n -i) j, Vi = 1,..., n. (3.1)

Xki = F + (V - i + 1)'Is - -O , Vki E Ki and i=O, . .., v, (3.2)

for single and multi-server queues, respectively. The adversarial servers achieve the worst

case system time

n n n ,
max max EX - E T1= -T
1 k:n XEUS i=k i=k+1 15ku i=k i=k+1

S1 (T) = - (3.3)
/ V n2 V~ n

max maxZ Xr(i) - E Ti = max Zr() T ,
Ok:u' U4 i=k i=r(k)+1 /Osk: v \i=k i=r(k)+1

for all T, for single-server and multi-server queues, respectively. Note that the adversarial

service times are nondecreasing, implying X1  X 2  ... Xn. In a multi-server setting,

the monotonicity of the adversarial service times ensures no overtaking can occur, and as

a result, jobs leave in the same order of their arrival. We note that the adversarial service

times depend on the value of n, i.e., X = X('). We dropped the superscript n in our analy-

sis, for ease of notation. We next study the departure process in a multi-server queue with

adversarial servers.

Robust Burke Theorem

For a multi-server queue, the time between the kth and nth departures is the difference

between C(n) and C(k). Assuming servers act adversarially, no overtaking is allowed to occur.

As a result, the kth and nth departures correspond to the kth and nth jobs, respectively. In

this case, the partial sum of the interdeparture times is given by

n
E Di = C(n) -Ck) = Cn -Ck = An + Sn (T) - Ak - Sk (T)

i=k+1

= E Ti + Sn (T) - Sk (T). (3.4)
i=k+1

Characterizing the exact departure uncertainty set in an queue with adversarial servers can

be made via minimizing Eq. (3.4) with respect to T E U', for all 1 k n - 1. Theorem 10
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obtains a lower bound

n n - k
S192 -Fa(n-k) 1 4, forallO: k! n-1,

i=k+1 A

implying that, in an adversarial setting, the departure times belong to the arrival uncertainty

set.

Theorem 10 (Passing through a Queue With Adversarial Servers)

For a multi-server queue with inter-arrival times T E ua, adversarial service times X, and

p < 1, the interdeparture times D = {D1, D2,. .. , D} belongs to the set Ud

n n - kD.-kZ Di- -
ud CU a { (D1, D2, D) > -Fa, V 0 k: n -1}. (3.5)

(n - k)/a -

Proof of Theorem 10. We note that, for k =0, Eq. (3.4) results in Cn > An, yielding

the desired bound. In the remainder of this proof we assume k 1. We first consider the case

of a single-server queue which illustrates the main intuition of the proof In a single-server

queue with adversarial servers, we can express the system time of the kth job as

1k k \nn / nn n
Sk (T) = max ( 7 L Ti =  Ti- i+max Z i-ZTi),

1s ( 11=j %=j+1 i=k+1 i=k+1 1 (ski=j i=j+1

where we obtain the last equality by extracting the partial sums that are independent of the

index j out of the maximum term. Eq. (3.4) therefore becomes

n n n n

Z D%= ( Xi+Sn(T)- maxIZXi- ZTI. (3.6)
i=k+1 i=k+1 1 i=j i=j+1

We next consider the following two cases and analyze them separately:

" - n- k
(a) E X nkP -Fa(nk -k)1/ a.

i=k+1

n n - k
(b) F Xi < -- ra(n - k)'/aa.

i=k+1
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We treat each case separately as follows. For case (a), we note that for k n,

max (: ) max 9i -Z Ti=S(T).
1 j! k (i=j i=j+1 ) ! j i=j+ )

This results in the partial sum of interdeparture times to be lower bounded by the partial sum

of service times, and given the assumption in Case (a), we obtain

n-k
Di> 9 X+Sn (T)-n (T)= X A -Fa(n-k))a.

i=k+1 i=k+1 i=k+1

For case (b), we can bound the maximum term in Eq. (B.3) by

(n n n n
max E X - Ti) Xk + max I 1: - T),I
1 jsk i=j i=j+ 1  1jk i=j+1 =j+

where the inequality is due to Xj Xk for j k, since the adversarial service times are

nondecreasing. Given that Sn (T) Xn Xk, the partial sum of interdeparture times in Eq.

(B.3) is then lower-bounded by

n n n n

Di D2  E -max Zi-ZTiI. (3.7)
i=k+1 i=k+1 1 jJk (i=+ 1  i=j+1

Substituting the value of the adversarial service times and upper bounding the partial sum of

inter-arrival times according to Assumption 3(a),

max ( Zi - n T ! max g(n-j),
1 (ski=j+1 i=j+1 sl

where the function g(.) is such that

xX
g(x) = - + .- l/es + - -+Fa l . (3.8)

A A

The function g(-) is concave, monotonically increasing from zero to a positive maximum

value after which it becomes monotonically decreasing. Negative function values belong to

the phase where the function is decreasing. The assumption of Case (b) translates to

n n-k n-k
E Xi = + ,(n - k )1/' < Fa(n - k)l", implying that g(n-k)<O.

i=k+1 A A
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Since g(n - k) < 0, the function g(.) is decreasing. Therefore, for j k, i.e., n - j > n - k,

we have g(n - j) g(n - k), yielding

n n
max E - T : I max g(n - j) = g(n -k). (3.9)
1 3j k (i=j+1 i=j+1 / 1 j!k

Applying the bound obtained in Eq. (3.9) to Eq. (3.7), we obtain

D n - n k ( k)I+ n -k -a(nk)1/aa
i=k+1 i=k+1 It

n- k -Fa(n - k)'I" .
A

This completes the proof for a single-server queue. We extend the proof to a multi-server

queue in Appendix B. E

Implications and Insights

We present next the implications and insights that follow from the analysis of the departure

times for queues with adversarial servers.

(a) Tightness of the Departure Characterization: The characterization Ud C U a is

true for all values of n, though its tightness improves for increasing values of n. In other

words, in a queue with adversarial servers, the inequality

n n - k
min E Di >! - 1-a(n - k)'/a

i=k+1 A

becomes tighter as n increases. To illustrate this point, Figure 3-1 shows the percent

error between the left hand side and the right hand ride of the above inequality for

various values of k and n. We note that, the higher the value of n, the lower the error

is for all k values.

(b) Robust Burke Theorem: Asymptotically, the characterization of the departure pro-

cess in Theorem 10 is tight, which implies that the departure uncertainty set is therefore

approximately equal to the arrival uncertainty set for large values of n. This is akin to

the Burke Theorem from the stochastic queueing literature, which states that, asymp-

totically, the departure process in an M/M/m queue is a Poisson process with a rate

equal to that of the arrival process. By looking at asymptotics, Theorem 10 can be
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Figure 3-1: Percent error values generated by comparing the minimum value of the

sum Z'=k,1 Di (computed numerically by an optimization solver) and the expression

njk - ia(n - k) 110 for various values of k and n. The instance shown corresponds to

a single-server queue with adversarial servers, traffic intensity p = 0.9, service rate

p = 1, variability parameters Fa = F, = 1, and tail coefficient a = 2.

thought of as a generalization of the Burke's theorem to more general setting such as

heavy-tailed behavior. This result allows us to decompose a network of light-tailed

queues with adversarial servers to analyze the steady-state performance.

Note: Given that the characterization of the interdeparture times in Theorem 10 is not

tight for transient regimes, one would expect that proceeding with a network decomposition

and approximating the performance station-by-station would yield conservative estimates.

Since the characterization of the interdeparture times is tight in steady-state, we propose

next to extend our approach to study steady-state arbitrary networks via decomposition.

67

-A- n=1 00
-- n=200

1 1



3.2.2 Network Decomposition of Stead-State Networks

Consider a network of J queues serving a single class of jobs. Each job enters the network

through some queue j, and either leaves the network or departs towards another queue right

after completion of his service. The primitive data in the queueing network are:

(a) External arrival processes with (Ai, Fa,j, aa,j) that arrive to each node j = 1,... , J.

(b) Service processes with (pj, F,,I as,3 ), and number of servers m, j = 1,. ... , J.

(c) Routing matrix F = [fij], i, j =1,..., J, where fij denotes the fraction of jobs passing

through queue i and are routed to queue j. The fraction of jobs leaving the network

from queue i is 1 - Ej fij.

In order to analyze the system time in a particular queue j in the network, we need to

characterize the overall arrival process to queue j and then apply Theorem 8 for multi-

server queues. The arrival process in queue j is the superposition of different processes,

each of which is either an external arrival process, or a departure process from another

queue, or a thinning of a departure process from another queue, or a thinning of an external

arrival process. Correspondingly, in order to analyze the network, we need to characterize

the effect that the following operations have on the arrival process:

(a) Passing through a queue: Under this operation, the jobs exit the queue with interde-

parture times D = {D1,... , D,}. For queues with adversarial servers, Theorem 10 shows

that the interdeparture times satisfy the arrival uncertainty set. This characterization

is tighter in steady-state and is akin to the Burke's theorem.

(b) Superposition of arrival processes: Under this operation, p arrival processes Ti E

Uf, j = 1, ... ,p combine to form a single arrival process. Theorem 11 characterizes the

uncertainty set of the combined arrival process.

(c) Thinning of an arrival process: Under this operation, a fraction f of arrivals from

a given arrival process is classified as type I while the remaining arrivals are classified

as type II. In Theorem 12, we characterize the uncertainty set of the resulting thinned

type I process.

We note that the analysis of the departure times entails a queueing behavioral assumption,

namely that servers act adversarially so as to maximize the system time. However, the re-

sults for the superposition and thinning operations do not make assumptions regarding the
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behavior of servers. Taken together, our network analysis provides an exact characterization

of the steady-state performance of queueing networks under the assumption of adversarial

servers.

The Superposition Process

Let us consider a queue j that is fed by q arrival processes. Let W denote the uncertainty

set representing the inter-arrival times T = {T, T7} from arrival process j = 1,... ,p.

We denote the uncertainty set of the combined arrival process by U.",,. Given the prim-

itives (Aj, Fa,j, a), j = 1,...,p, we define the superposition operator (Asup, Fa,sup, as8 ,) =

Combine{ (Aj, Fa,j, a),j = 1,... ,p, where (Asup, Ja,sup, asup) characterize the merged ar-

rival process TSUP = {T"U, .. . , TsuP}.

Theorem 11 Superposition Operator

The superposition of arrival processes characterized by the uncertainty sets

n n - k
a Z Ti-

Ui = (TT...,T3 ) i=k+1 Aj -aj3 , Vk : n -1 (3.10)

(n k)Ie

results in a merged arrival process characterized by the uncertainty set

n n - k

(T"P,. .. , TIUP) ZT 2 -Aski=k+ 1/a > Fa,sup, V 0 k 5 n -I
(n -k)

where the effective arrival rate, tail coefficient and variability parameter are such that

p 1 a1/
= p A, as = a, Fa,sup = A L (A(3a,) .311)
j=1 j=1 (j=1

The proof is presented in Appendix B.

The Thinning Process

We consider an arrival process in which a fraction f of arrivals is classified as type I and the

remaining arrivals are classified as type II, where f = p/q is assumed rational and p 0 and

q > 0 are integers, with p q. We note that the assumption on the rationality of the fraction

f is not very restrictive, since any irrational number can be arbitrarily closely approximated
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by a rational number.

We consider the following routing scheme: (a) we first thin the original arrival process

T {T1,... , T,} into q split processes such that jobs j, j + q, j + 2q, etc. are selected to

form the split process j, where 1 - j q, (b) we then superpose p of these split processes to

form the desired thinned process. Our computational results suggest that this routing policy

provides a good approximation of the probabilistic routing policy. Given the primitives

(A, Pa) of the original process and the fraction f, we define the thinning operator

(Asplit, Fa,split, OZ) = SPlit{ (A, Fa, a), f ,

where (Asplit, Fa,spiit, a) characterizes the thinned arrivals T'Pli = {TsT, ... , T

Theorem 12 (Thinning Operator)

The thinned arrival process of a rational fraction f of arrivals belonging to Ua is described

by the uncertainty set

Tsplit _n - k

spl T, T.'. ) Z=+ T l plit , (3.12)
1>A - a,spit, VO k n - 1

(n - k)

where Asplit = A . f and Faspiit = (ai)

The proof is presented in Appendix B.

Remark: The superposition and thinning operators are consistent. In fact, it is easy to

check that, for splitting fractions f3 such that E'l fj = 1,

Combin~e Split f (A, -Va, c,), fj 1, j = I, .... , m = (A,Fa, a) .

The Overall Network Characterization

We perceive the queueing network as a collection of independent queues that could be

analyzed separately. The servers in each queue behave in an adversarial manner to maximize

the time jobs spend in the queue. We employ the Combine and Split operators in view of

characterizing the effective arrival process to each queue in the network. Knowledge of

the effective arrival process allows to study the system time spent at the queue through
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Theorem 8. The output of the queue belongs to the effective arrival uncertainty set as

shown in Theorem 10. Theorem 13 characterizes the effective arrival process perceived at

each queue in the network.

Theorem 13 (Queueing Network Characterization)

The behavior of a single class queueing network is equivalent to that of a collection of in-

dependent queues with adversarial servers, where the arrival process to node j characterized

by

T -k

jc (T' , TI) i=k+1 ' Aj
(n - k)'/ FUV : ! -11..J

where {XN, A2,..., AJ} and {Ta,i, a,2 ,... , Fa,j} satisfy the set of equations

J

Aj = A + Z(Xfi), (3.13)

Fa,j = I [(A - -aj)a/(a-1) + J (i a - T ,)1 f (3.14)
Aj Z= Ji-- i

Proof of Theorem 13. Let us consider a queue j receiving jobs from (a) external

arrivals described by parameters (Aj, ra,,ca), and (b) internal arrivals routed from queues

i, where i = 1,..., J, resulting from splitting the effective departure process from queue i

by fij. By Theorem 10, the effective departure process from queue i belongs to the uncer-

tainty set satisfied by the effective arrival process to queue i and described by the parameters

(0i,Ta,i, a). The effective arrival process to queue j can therefore be represented as

(N,Taj, a) = Combine (Aj,Fa,j,a), (Split{ (i,Iai, a), fi }) , i = 1,..., J (3.15)

By Theorem 12, we substitute the split processes by their resulting parameters and obtain the

superposition of J + 1 arrival processes

(N\,Yaj, a) = Combine (A 3 , ra,j, a), fi , oiFa, , a), i = 1, ... , J (3.16)

Applying now Theorem 11 yields Eqs. (3.13) and (3.14). c
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Note that in our analysis, we have assumed that each queue in the network perceives one

stream of external arrivals. However, Theorem 13 can be extended in the case where external

arrivals are thinned among different queues in the network. This can be done by adding a

node in the network for each thinned external arrival process and appending its thinning

probabilities to the transition matrix F. We next provide the main insights and implications

that arise from Theorem 13.

(a) Network Performance Analysis: Theorem 13 allows us to compute performance

measures in a queueing network by considering the queues separately. For instance,

the system time S^ at queue j can be determined through Theorem 8 with an effective

arrival parameters (AjF7,, a) and service parameters (p, s, a).
(b) Tractable System Solution: Determining the overall network parameters (AF)

amounts to solving a set of linear equations. To see this, substitute xj = (jfaJ)aa
for all j = 1,..., J, in Eqs. (3.13) and (3.14) to obtain the following linear system of

equations

Aj = Aj + Z ifi j = 1, ... , J,

j = (Ajra,)a/(1) + E fijxi j = 1,..., J.
i=1

Givcn that the routing matrix F = {fij} is sub-stochastic, the linear system of equatiOns

solves for (A 3 , xj), hence allowing to determine Ta,j, for all j = 1,..., J.

Average Case Steady-State Behavior

To analyze the average behavior of a queueing network in steady-state, one can treat the

variability parameters Pa,j and P,,j as random variables following each the distributions

introduced in section 2.4.1. Then, we can derive the distribution of the effective variability

parameters Paj, at all nodes j. We propose a simpler methodology which we introduced in

Bandi et al. [2015].

Derived Variability Parameters: We translate the stochastic primitive data into

uncertainty sets with appropriate variability parameters (Pa,j, F, 3 ) for each j =1,..., J.

Along the lines of QNA (see Whitt [19831), we construct appropriate functions to describe

the variability parameters Pa and P, in terms of the distributions' first and second-order data,
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namely the arrival and service rates and their corresponding variances. We then simulate

multiple isolated instances of a single queue with various arrival and service distributions

and use regression to compute the variability parameters associated with the primitives'

distributions. This allows us to build a dictionary or a look-up table of variability parameters

values for given arrival and service distributions. We note that this step is done prior to

observing a network instance, and is therefore independent of the network analysis.

We consider a single queue with m servers characterized by (P, Ua, 
0 s, a) and model its

variability parameters as Fa = ca and P, = f(p, 0 a, Us, a), where the functional form for f(-)
is motivated by the Kingman's bound (Kingman [1970])

S(p, o, a, a) = (0 + 01 . o2/m + 2 U2p2m)(-1)/a - am(a-1)/a.

We simulate multiple instances of the queue for various parameters of (p, 0 a, Us, aa, as)

and different arrival and service distributions. We employ linear regression to generate

appropriate values for 00, 01 and 02 to adapt the value K. obtained inTheorem 8 to the

expected value of the simulated system time. Table 3.1 provides the resulting values of the

variability parametrization (00, 01, 02).

Table 3.1: Parameters.
(60,61,02) Normal

00 -0.02

01 1.03
02 1.04

When presented with an instance of a queue, we readily plug the values of (00, 01, 02) into

the proposed functional form to derive the variability parameters and apply Theorem 8

to compute the steady-state system time. In summary, the adaptation of the variability

parameters allows a mapping of the expected system time obtained by simulations to the

worst case system time under our approach. In other words, the dictionary we populated in

this pre-algorithm step chooses variability parameters T, and F, that allow us to make the

following approximation E [S, (T, X)] ~ 9, (Fa, Fs).

The RQNA Algorithm: Having derived the required primitive data for our robust

approach, we next describe the RQNA algorithm we employ to compute performance mea-
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sures of a given network of queues. To do this, we keep track of all possible paths that a job

may follow throughout the network. A path p consists of a list of queues visited by some job

from entering until leaving the network. We denote the set of all possible paths by P. Let

f, be the fraction of jobs routed through each path p E P across the network. The expected

overall system time in a network can then be written as

E[S'o] = F 00[S]

pEP

where S. is the system time across each path p E P. Note that E[SS] can be obtained

by summing the individual expected system times at all nodes associated with this path.

Using our adaptation technique presented earlier, we estimate the the expected system time

at each node in path p by the worst case system expression using the generated variability

parameters. Using this process, we estimate the expected system time of the network by

computing a weighted sum of the worst case system times at each node. This is made

explicit in the algorithm presented below.

ALGORITHM (Robust Queueing Network Analyzer - RQNA)

Input: External arrival parameters (Ai, 0 aJ,, aa,), service parameters (p4, uo., a,.), and

routing matrix F = [fij], for i,j 1,..., J. Input also the service times distributions

for the case of service dependent adaptation regime.

Output: System times at each node j, j = 1,..., J.

1. For each external arrival process i in the network, set Fa,i = ga,.

2. For each queue j in the network with parameters (Gj', s~j, as,j), compute

(a) the effective parameters (A3 , ra,i, da,j) and set pj = Aj/pj,

(b) the variability parameter Fs,3 = f (p3 ,F7,j, 0 ,j, aj, a8 ,3 ), and

(c) the system time R.. at node j using Theorem 8.

3. Compute the total system time of the network by computing

(a) the set of all possible paths P in the network,

(b) the fraction f, of jobs routed through each path p E P,

(c) the corresponding total system time St across each path p E P by

summing the system times at all nodes associated with this path,

(d) the total system time in the nofork S^= Z1'p fp14.



Performance of RQNA: We consider the network shown in Figure 3-2 and perform

computations assuming queues have either single or multiple servers, with normal distributed

service times.

0.7

0.5 0.5

0.3

0.6 0.2 0.8

6 0.18 0.2 0.3

0.7

Figure 3-2: The Kuehn's Network (see Kuehn [19791).

Table 3.2 reports the percentage errors between the expected steady-state system times

calculated by simulation and those obtained by each of QNA and RQNA for single-server

queues, and the percentage errors for RQNA relative to simulation for queues with 3, 6, and

10 servers. RQNA produces results that are often significantly closer to simulated values

compared to QNA. Improvements generally range one order of magnitude better in favor of

RQNA. Furthermore, RQNA's performance is generally stable with respect to the number

of servers at each queue, yielding errors within the same range for instances with 3 to 10

servers per queue.

Performance of RQNA as a Function of Network Parameters: We investigate

the performance of RQNA as a function of the system's parameters (network size, degree of

feedback, maximum traffic intensity among all queues and number of distinct distributions

for the external arrival processes) in families of randomly generated queueing networks. We

note that we randomly assign 3, 6 or 10 servers to each of the multi-server queues in the

75



Table 3.2: Percent errors relative to simulation for normally distributed primitives.
Case Single-Server Multi-Server

(CajCs,j) QNA RQNA m=3 m=6 m=6
(0.5,0) 15.28 1.39 2.10 2.63 2.84
(0.5,1) 12.08 3.87 3.26 4.03 4.42
(0.5,2) 11.57 -3.88 -2.07 -2.56 -2.76

(1, 1) 5.84 -2.56 -3.18 -4.13 5.12
(1,2) -10.45 -0.68 3.86 4.98 5.12
(2,0) 10.95 1.29 -3.85 -5.82 -5.43
(2, 1) 14.18 -3.51 -3.27 -4.37 -4.23
(2,2) 11.55 1.67 -3.28 -5.82 -5.83

network independently of each other. Table 3.3

of RQNA relative to simulation as a function of

report the system time

the size of the network

percentage errors

and the degree of

feedback for queues with possibly multiple servers. RQNA's performance is generally stable

for higher degrees of feedback with errors below 6.2%. Also, RQNA is fairly insensitive to

network size with a slight increase in percent errors between 10-node and 30-node networks.

Table 3.3: Percent error as a function of network size and feedback.
% Feedback loops / No of nodes 10 15 20 25 30

Feed-forward networks 0% 3.59 3.55 3.76 3.43 3.85
20% 3.70 4.01 4.02 4.39 4.45
35% 4.32 4.78 4.95 5.03 4.88
50% 4.95 4.81 5.36 5.67 6.19
70% 5.02 5.56 5.93 5.96 6.03

Table 3.4 present the system time percentage errors for RQNA relative to simulation as

a function of the maximum traffic intensity among all queues in the network and the number

of distinct distributions for the external arrival processes. Specifically, we design four sets

of experiments in which we use (1) one type (normal), (2) two types (Pareto and normal),

(3) three types (Pareto, normal and Erlang), and (4) four types (Pareto, normal, Erlang

and exponential) of arrival distributions. Note that we truncate the Pareto distributions

to treat them as light-tailed distributions with a finite variance. RQNA presents slightly

improved results for lower traffic intensity levels. It is nevertheless fairly stable with respect

to higher traffic intensity levels. Also, he percentage errors generally increase with diversity

of external arrival distributions, but still are below 8.5% relative to simulation.
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Table 3.4: Percent error as a function of traffic intensity and arrival distributions.
No of distributions p = 0.95 p = 0.9 p = 0.8 p = 0.65 p = 0.5

1 4.05 4.09 3.62 3.68 3.23
2 5.08 7.10 6.42 6.11 3.71
3 5.92 6.32 6.90 7.34 5.68
4 7.67 8.64 7.28 6.85 5.37

We next explore how we can leverage our approach to study the transient performance

of queueing networks. We show that we can extend our methodology to analyze queueing

networks without feedback loops.

3.3 Transient Queues in Series

In this section, we extend our analysis of single queues to the analysis of tandem queues.

We consider a network of J queues in series and study the expected overall system time 3n

given by
J J U

j=1 j=1

where Sn is the system time of the nth job in the jth queue. Similarly to the analysis of a

single queue, we assume the interarrival and service times belong to polyhedral sets which

allow us to study the worst case system time. We then leverage the worst case values to

perform an average case analysis. We assume that the inter arrival times T = (T1,... , Tn)

to the tandem network belong to the uncertainty set u', and the service times XW =

(X , ... , X' at each queue j, for j= 1,..., J satisfy the uncertainty sets as described in

Assumption 3. We summarize the assumptions on the service times as follows.

Assumption 14 We make the following assumptions on the service times.

(a) For a single-server queue j, the service times belong to the uncertainty set

X j)- n/f yj n a"

US= (XU,.. Xin) i=1

X - j) (F - k)1/0a ), VO: k < f: n
i=k+1 Aj

where U), FSU E R control the degree of conservatism, and 1 < as U 2 is a tail

coefficient modeling possibly heavy tailed service times.
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(b) For an m-server queue j, the service times belong to the uncertainty set

X j - V+I U) (+) ,S kY,= ZXki < Vy (+l)1/ai) IV kiEKj
i=0 A

ix~) zx - I 
r~ 11/k~

Vk eKi, andiEIC;{0,...,v}

where v = [(n - 1)/mj, the set Ki = {im+1, ... (i + 1)m}, the parameters -ymP E I l

control the degree of conservatism, and 1 < as 2 is a tail coefficient modeling possibly

heavy tailed service times.

In a single-server tandem network, the system time at the jth queue is given by

S (j = max U)X~ - ( T)
kj n ( i=kj i=kj+1

where T (T(),..., TU) denotes the interarrival times to queue j.

Note that T() corresponds to the vector of inter departure times DU-1) from queue

j - 1, which are given by

T rj)= D = T +--S .
i=kj+1 i=kj+1 i=kj+1

Recursively, the inter arrival times to queue j can be expressed as a function of the inter

arrival times T to the network and the service times X(M through XU-0.

Theorem 10 shows that the interdeparture times belong to the inter-arrival uncertainty

set U', under the assumption of adversarial servers. We discuss the implications of this result

on our steady-state and transient analysis of tandem networks and illustrate our points using

a simple example of single-server queues in tandem with aa = as = c, for all j =1,..., J.

Steady-State Analysis: To compute the overall system time under steady-state, Bandi

et al. [20151 decomposed the queueing networks and obtained formulas to compute the

effective arrival rate \j and the effective parameter Fa observed at each queue j in the

network. For a tandem queueing network, Aj = A and ral = Fa for all j =1,...,J. By
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Theorem 8, the worst case steady-state system time at queue j can then be expressed as

1/(a-1) ()
- j) a -1 Ai. (p(i)+)I~l + I+ (3.17

00 =(A T (3.17)

where r(B) = r, +rTs , for all j = 1,...,J.

For light-tailed queues, we compute 99 as in Section 3.2, and approximate the overall

expected steady-state system time value by

S90~ Sj = EAE+())= E 1 + (3.18)
j=1 j=1 j=1 2(1 - p) pg

In particular, when pj = p and _, a for all j = 1,..., J, the steady-state system time

becomes

S0 ~ J - + -. (3.19)
2(1 - p) p]

Note that this case is a special case of a feedforward with equal coefficient of variation for all

service times. Harrison and Williams [19921 have shown that approximating the behavior

of such systems under heavy traffic assumptions can be done through a reflected Brownian

motion with a product-form stationary distribution. This implies a decoupling of the queues

in steady-state, which is in agreement with our findings. Given that our approximations at

each station match those obtained by diffusion approximations, our approach yields the

same conclusions of Harrison and Williams [19921.

Transient Analysis: As noted earlier, the characterization of the interdeparture times

in Theorem 10 holds for transient regimes, however, it generates loose upper bounds for

smaller values of n. Consequently, decoupling the queues and taking a similar approach

to the one we took for the steady-state analysis does not generate approximations that are

close to simulated values. Figure 3-3 illustrates our point.

Instead of decomposing the network, we propose to use the recursive formulas that define

the dynamics in a network of queues in series to study the overall system time. Bertsimas

et al. [2011b] obtain an exact characterization of the system time for single-server queues in
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series, with

Sn =Snl +..+ S9j

max E X + E XZ + X - T
1 k1 ... k kj<n i=k1 i=k2 i=kj i=k 1+1

(3.20)

Given Eq. (3.20), we analyze the worst case system time and leverage these values to

approximate the average behavior. Our approximations are comparable with simulations

(see Figure 3-4).
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Figure 3-3: Simulated (solid line) versus approximation via network decomposition (dotted
line) for initially empty tandem networks with normally distributed primitives, p = p3 = 0.96

and -a = oUP = 4.0 for all j = 1,..., J, where (a) J = 10, (b) J = 25, and (c) J = 50.
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Figure 3-4: Simulated (solid line) versus our approximation (dotted line) for initially empty

tandem networks with normally distributed primitives, p = p3 = 0.96 and c-a = o) = 4.0 for

all j = 1,...,J, where (a) J = 10, (b) J = 25, and (c) J = 50. The average percent

errors between simulation and our approximation are (a) 2.49% (N = 5, 000), (b) 5.02%

(N = 10, 000), and (c) 5.01% (N = 15,000). Our approximations yield results that are closer

to simulations as opposed to a station-by-station approximation (see Figure 3-3).
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3.3.1 Worst Case Performance

Under the worst case approach, and applying the adversarial service times at each queue,

the worst case system time of the n th job for any realization of T is given by

= max max Z Xi) +...+ maxE7(J) - T. (3.21)
1 k1...k j~ sUN1 i=k1  J i=kj i=k1 +1

Proposition 15 provides a similar result for multi-server queues in series, under the assump-

tion that each queue acts adversarially in view of maximizing its system time, for all possible

values of T.

Proposition 15 (Worst Case System Time in a Tandem Queue)

In a network of J multi-server queues in series satisfying Assumption 14(b), the overall

system time of the n h job for all T is given by

k2 (1) Zn (3.22)
n (T) = max max E X() +... + m[x ZX( - E Ti (3.22)ski ... 5kjv( U1k i=ki UJ i=k i=r(k)+1

where r(i) = n - (v - i)m.

The proof is presented in Appendix B.

By minimizing the partial sum of the interarrival times, we obtain an exact characteri-

zation of the worst case system time in a tandem queue as

k2-()n IMn

n = max max X (1) + + ma Z X - min Ti . (3.23)Sk. ... ik)!V ( 1 i=ki UJ i=kj i=r(ki)+1

Initially Empty Queues in Tandem

By Assumption 3, the worst case system time Sn is bounded by

max - + FIj)f [k,+1 - kj + 1] - m(vki) + Fa [m (v - k1)]1a, (3.24)
kl i..!k =1

which involves a J-dimensional nonlinear optimization problem. Theorem 16 provides a

closed form upper bound on the worst case system time in an initially empty network of J

identical queues in tandem, with p1=... = pi and aa = a0)= ... = (J) .
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Theorem 16 (Initially Empty Tandem Queue)

In an initially empty network of J multi-server queues in series satisfying Assumptions 1(a)

and 14(b), with aa = a =... a?) a, pi j, p < 1, and F m + m>,

where

Fm = ((1~)I)QlI& (3.25)
j=1

the worst-case system time of the nth job with v [(n - 1)/mi is given by

,/ 1  m(1-p) ifJ J if ]a/(01)
F- -V+ +(T fu

Sn (3.26)

a - 1 A'/(a-') . Fa/(a-1) J IsJ
+ (-+ F(i+) otherwise.

aa/(a-l) [rm(1 - p)]l/(a -)

The proof is presented in Appendix B. The case where F = mlkxFa + FTm 0 arises when

Fa < 0, since Fm > 0 as defined in Eq. (3.25). This scenario is characterized by long inter-

arrival times yielding zero waiting times. The worst case system time therefore reduces

to
J J J

=n Z~j < -+ EFj
j=1 j=1

Initially Nonempty Queues in Tandem

We next analyze the case where no > 0 and let q = [(no - 1)/m. The first m jobs in the

queue are routed immediately to the servers of the first queue without any delays. We are

interested in the behavior for no > m. Since T = 0 for all i = 1,. .. , no, we can rewrite Eq.

(3.23) as

Sn= max maxEX +... +rmax X , (3.27)
osk2.. ( 1 u4u i=k1 i=k j

for the case where n no, and

k2 ()n J)n
max max X(1) +. + max Z X(- min T,

- sk1! 5... !k j! sU M U irk i 0k Ua~n+

= max 1 =ki ) i=kj / =no+1  (3.28)

max maxZX +...+ max X -min I
<k1 ... kjsv U1 i=k1  i=kj i=r(k1 )+1

By Assumption 1, the worst case system time involves solving J-dimensional nonlinear

optimization problems. Theorem 17 provides a closed form bound on the worst case system
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time in an initially nonempty network of J queues in tandem, with a, = aM1 - = a(J) a

and p=

Theorem 17 (Initially Nonempty Tandem Queue)

In an initially nonempty network of J multi-server queues in series satisfying Assumptions

(1) PJ)1(a) and 14(b), with no > m , pi =...=i, aa = as ... a = a, p < 1, and

F = ml/&Fa + Fm > 0, where Fn is defined in Eq. (3.25), the worst-case system time S9 for

n > no is bounded by

v + J 1/os n-no +7a(nnO)

A j=1

max ( [ _1/a _ m(1-P) (V + + i)+) a/(a-1) (3.29)

A i=1

a-1A1
/
1 4-1 ) . pc/(c-l) J

c/(a-1) 1/(J-1) + -+ J r. ), otherwise
, ac/l [mn(1 - p)] P i=1

where v = [(n - 1)/m] and q = [(no - 1)/m].

The proof is presented in Appendix B. Note that, for the case where F = ml/(Fa + Fm 0,

the worst case system time is given by

Sr max + m " V + L - + no a (n -no)' + W+
A j=1 A =1

In this case, the nth job experiences a waiting time only due to the buildup effect left by the

initial jobs. For big enough n, this effect becomes negligible and the system time eventually

becomes equal to the sum of the service times.

For ease of notation, we express the worst case system time in Eq. (3.29) as

max S(aFm), R! (F)-1 (F) + (F)-1 (F) , (3.30)

where Sg, SA, and s denote the quantities associated with the system time effected by the

initial buffer no, the transient state and the steady state, respectively, and the indicator

functions It and 1s reflect the condition for the system to be in the transient state and the

steady state, respectively.
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3.3.2 Average Case Behavior

To analyze the average behavior of a multi-server queue, we treat the variability parameters

as random variables and compute the expected value of the worst case system time

gn = E [9n].

Similarly to the case of a single-server queue with light-tailed primitives, we propose to ap-

proximate the density of the variability parameters by invoking the limit laws of probability

and leveraging the characterization of the effective variability in Eq. (2.14) to fit the analysis

for tandem queueing networks with possibly heavy-tailed arrivals and services.

Choice of Variability Distributions

For a network of J queues in series, we express the parameters

Fa = Oa-Ya , 8 = 0,,y) and 1-j) = 0 7j = 0 -/

where Ya and y, follow limiting distributions as defined in the case of a single queue,

for j = 1,..., J. More specifically, ya ~ N(0,ca) and -y ~ N(0,0P) ) for light-tailed

primitives, 7a ~ S, (-1, Ca, 0) and 'r S (1, Ca, 0) for heavy-tailed primitives. Note that

the effective parameter Fm is captured as a function of IF, for j = 1,..., J. Specifically,

by Eq. (3.25),

FM= T(n)/a)a/a-1) = where y+ = .( )a/a-1i) (3.31)
(j=1 Ta(j=1

We approximate the distribution of y7* by fitting a generalized extreme value distribution

to the sampled distribution with a shape parameter 4's, scale parameter , and a location

parameter #s. This step allows us to reduce the computational effort to obtain S9 from

solving a (J + 1)-dimensional integral with respect to -ya and 7j to a double integral with

respect to -ya and y7.

Table 3.5 summarizes the parameters defining the generalized extreme value (GEV)

distribution for light-tailed service times with .) ... _ -and heavy-tailed queues

for J = 10, 25 and 50. Figure 3-5 shows that this fit provides a good approximation of the
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sampled distribution for J = 25.

Table 3.5: GEV distributions for -4 for light (a, = 1) and heavy-tailed services.

10 Queues 25 Queues 50 Queues

Parameters a = 2 1.6 1.7 a = 2 1.6 1.7 a = 2 1.6 1.7

s -0.20 0.32 0.42 -0.21 0.36 0.44 -0.22 0.42 0.50

G 0.76 1.70 1.95 0.77 2.34 2.94 0.78 3.10 4.10

Os 1 1.78 2.36 2.37 3.13 4.63 4.92 4.65 7.89 7.89
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Figure 3-5: Sampled distribution

for the effective service parameter

a = 2, (b) a = 1.7, and (c) a = 1.6.

and fitted generalized extreme value distribution

"Y for the case of J = 25 queues in series with (a)

We next inform the choice of the scaling parameters (Oa, 0,) via known conclusions on the

behavior of the system time in tandem queueing networks.

(a) Light Tails: We select the value of the scaling parameter 0 so that the average worst

case steady-state system time matches the steady-state bound obtained in Eq. (3.19).

We ensure that

A E (_Y)2] = - 2- + (, /m ,

4(1 - p) E2(1 - p) (3.32)

where y = 0 aYa + 9,,-/m and -4 is defined in Eq. (3.31). We approximate

E [(Y+)2 P (_ > 0) ( o2r + OZ2 (oi) /M2
j=1
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By rearranging the terms in Eq. (3.32), we obtain

)(1/2 / \1/2Oa ~P; 2J) and m E ( ) (3.33)
(P (y 0) P (-Y 0)

where the probability P (-y 0) = P (J 1 2 - y + _4/M 0) can be efficiently computed

numerically.

(b) Heavy Tails: The steady state in heavy-tailed queues does not exist. Instead, we

propose to extend the formula in Eq. (3.33). For aa = a, = a, we select the scaling

parameter as

a" ~) and 0, ~ , (3.34)
(P(-Y !0) P (-Y !0)

where the probability P (-y 0) = P(J(a-1 )/a .- + /m 0) can be efficiently com-

puted numerically given the distributions of Tha and -4.

Computational Results

We investigate the performance of our approach relative to simulation and examine the

effect of the system's parameters on its accuracy. We run simulations for tandem queueing

networks with N = 20,000 job arrivals and compute the expected system time for each

job using 20,000 simulation replications. We pre-specify the arrival rate at the queue to

be A = 0.1 for all simulation instances, while varying the traffic intensity, the variances

associated with the interarrival and service processes, the number of servers in the queue,

and the number of initial jobs. To compare the simulated values S" with our approximation

S, we report the average percent error

1 N n -
Average Percent Error = - . E I I x 100%,

N n=1  Sn

where N = min (N,K,) and 7ir denotes the number of jobs the queue observes until our

approximation reaches steady state, i.e., Wr = min (n : , = 9.). We next present our results

for tandem networks with (a) light-tails (a, = a, = 2), and (b) symmetric heavy tails

(as = as = a).

Light Tails: Table 3.6 reports the average percent error between simulation and our
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approximation for tandem queues with normally distributed interarrival and service times.

Our approach generally yields percent errors within 10% relative to simulation. Figure 3-

6(a)-(d) compares our approximation (dotted line) with simulation (solid line) for tandem

networks of queues with normally distributed primitives. Note that, for no > 0, the system

exhibits slower recovery from the initial perturbation than for a single queue.

Table 3.6: Errors for multi-server tandem queues with normally distributed primitives.

10 Queues* 25 Queuest 50 Queuest

p no=0 20 50 no=0 50 no=0 100
0.90 4.44 2.85 5.61 0.76 1.61 0.85 2.39
0.92 4.85 2.82 5.58 0.81 1.96 0.82 2.41

(a) 0.94 4.67 3.07 5.77 1.05 2.02 0.81 2.33
0.96 5.04 3.42 4.59 1.41 3.20 0.77 2.26
0.90 1.23 2.38 7.65 1.74 2.64 1.77 2.62
0.92 2.02 1.65 5.91 2.28 3.14 1.73 2.32

(b) 0.94 2.95 2.86 3.93 2.45 4.37 1.80 2.23
0.96 3.12 3.81 3.07 2.46 4.74 4.39 5.74
Instances (a) correspond to oa = 2.5 and 0' = mua.
Instances (b) correspond to oa = 4.0 and a. = mc-a.
*m=1 for J=10, tm= 10 for J=25, lm =20 for J=50.

Heavy Tails: Table 3.7 reports the average percent error between simulation and our

approximation for tandem queues with Pareto distributed interarrival and service times. Our

approach generally yields percent errors within 10% relative to simulation, with occasional

outliers. Figure 3-6(e)-(f) compare our approximation (dotted line) with simulation (solid

line) for tandem networks of queues with Pareto distributed primitives. Note that, since the

effective variability parameter ' is heavy-tailed distributed, E [(I+)a(-l] is infinite for

a < 2, suggesting that heavy-tailed tandem queueing systems never reach steady state.

Note: Simulating the expected overall system time of the nth job in a tandem queue requires

simulating each queue in the system for all n jobs, yielding runtimes which highly depend

on the number of queues J in the system. Our approach, on the other hand, involves (a)

running a simulation to fit a generalized extreme value distribution to -Y+ as defined in Eq.

(3.31) for a given a, and (b) computing double integrals with respect to -Y and -Y. Both

steps can be computed efficiently for both single and multi-server tandem queues irrespective

of the magnitude of J, with similar runtimes to those observed for a single queue.

We next extend our analysis to feedforward networks.
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Table 3.7: Errors for single-server tandem queues with Pareto distributed primitives.

10 Queues 25 Queues 50 Queues

p no= 0 2000 no= 0 3,500 no= 0 5,000
0.90 9.80 5.11 2.89 2.31 4.88 4.77
0.92 4.30 3.52 7.88 1.82 3.13 1.81
0.94 2.40 2.10 7.94 2.95 16.6 7.84
0.96 2.82 2.54 14.7 5.22 16.5 6.71
0.90 24.3 7.79 5.61 2.17 5.31 3.93
0.92 15.8 6.69 2.85 1.04 10.0 2.82
0.94 11.6 4.72 3.45 2.77 12.6 5.91
0.96 6.34 3.92 5.67 3.55 11.6 5.92
Instances (a) correspond to aa = as = 1.6.

Instances (b) correspond to aa = a, = 1.7.
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correspond to normally distributed queues in series with -a = 2.5 and p = 0.90 with J = 10,

m = 1, and no = 0, 20 (panels (a) and (b), respectively) and J = 25, m = 10, and no = 0, 50

(panels (c) and (d), respectively). Panels (e) and (f) correspond to a tandem network with

J= 50 single-server queues with Pareto distributed primitives (a. = a, = 1.7), p = 0.90, and

no = 0 and no = 5000, respectively.

3.4 Transient Feed-forward Networks

In this section, we extend our approach to analyze open feed-forward queueing networks

with no feedback. In feed-forward queueing networks, a job can visit a queue at most once
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before exiting the network. We consider a feed-forward network with a set of queueing nodes

J with

(a) external arrival processes with parameters (Aj, a,) that arrive at queue j E J,

(b) service processes with parameters (pj, a, ) with the number of servers mj at queue

j EJ,

(c) a routing matrix F = [fij], i,j E 5, where fij denotes the fraction of the jobs passing

through queue i which are routed to queue j. The fraction of jobs leaving queue i is

1 - Ej fi.

We study the expected overall system time of the nth job passing through the network. Let

P be the set of all possible paths that job n may take and fp denote the probability that a

job n takes a particular path P E P. The expected overall system time can the be expressed

as

Sn = fp -E [S = -
PEP PEP

where SP denote the system time of the n th job when traversing the network through path P.

Since it is challenging to analyze the expected system time using traditional probabilistic

approaches, we propose a similar approach to the one undertaken for single and tandem

queues.

To make the exposition clear, we assume that the network starts operation without any

initial jobs, i.e., no = 0 at all queues. We let CA denote the set of jobs departing from queue

i, and ij the set of jobs routed from queue i to queue j (see Figure 3-7 for an illustration).

Under a probabilistic routing scheme, these sets are not known until after an instance of the

network is realized. We propose to approximate the dynamics of a probabilistic feed-forward

(IH"D&&rf~f~fic Routing: We consider a deterministic approximation of probabilistic

routing. Suppose that fij and fik denote the fraction of the jobs leaving from queue i

that are routed to queues j and k, respectively, while the remaining jobs exit the system.

We assume that the fractions fij and fik are rational with

fij and fik = P ,

qi qi

where Pii, Pik 2 0 and qi > 0 are integers, with pii +Pik qi. This assumption of rationality

is not restrictive, since any irrational number can be arbitrarily closely approximated
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Figure 3-7: Feed-forward network with deterministic routing.

by a rational number. Under deterministic routing, the jobs are routed as follows. We

divide the set Li departing queue i into qi sets of jobs

Bt' = {t, t + qi, t + 2qi,...} , Vt =1, ... , qi,

and then route jobs from the jobs in sets Sij and Sik to queues j and k, respectively,

Ei=13u ... u1, and Eik B+ 1 U ... uB

Note that, with this deterministic routing scheme, for a large number of jobs, approx-

imately a fraction fij and fik of jobs are routed to queues j and k, respectively. To

illustrate, consider queue 2 in Figure 3-7, and suppose 2 = {2, 3, 5, 7,10, 11, 14, 15},

f24 = 1/3 and f25 = 2/3. Then, by our routing scheme,

924= {2,7,14} and E25 = {3,5,10,11,15}.

(b) External Arrivals: We assume that the external arrivals emanate from a single node

ao. In other words, we assume jobs enter the network at node ao with rate A = ZEjJ A3

and tail coefficient aa. The arrivals are then routed to the nodes j E J such that

fj=AVjEJ.
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Note: The number of jobs passing through some queue j E 3 is a subset of all the jobs

that are routed through the network. We let #j denote the fraction of jobs passing through

queue j, which is computed recursively using the routing matrix F as

#3= Y #i -fi. (3.35)
iEJ

Furthermore, under steady-state, the traffic intensity observed by queue j is equal to the

ratio of the arrival rate it experiences and its service rate. Given the fraction of jobs /j that

pass by queue j, the traffic intensity observed is

p, = = A . (3.36)
Y y

We assume that the inter arrival times to node ao satisfy the uncertainty set Ua as defined

in Assumption 1(a) and that the service times X( at node j satisfy U in case of a single

server (UT in case of multiple servers), for all j E 3.

Steady-State Analysis: Theorem 10 show that the interdeparture times belong to

the inter-arrival uncertainty set Ua. This characterization is akin to Burke's theorem and is

particularly tight under steady-state conditions. This allows us to study the phenomena of

merging and splitting with a queueing network. Specifically, the effective interarrival times

TO) to some queue j satisfy the uncertainty set

= (T..., T~ ' n r - ik >-TF (n - k)" V 0 k! n,

where Aj A - #j and _P = /q/# aa, for all j E 3 (see Theorem 13). By this network

decomposition, the worst case steady-state system time of a job passing by queue j is

expressed as
g(j a - I A + -+ (+

*0 /(-l) (1 - p )1/(a-1) + s J

where aa = as = a and F( = ia'/' + F.(j, for all j E J. For light-tailed queues,

obtaining 9 as in Chapter 2, we approximate the overall expected steady-state system
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time value by

PEP jEP

PE [0,/<0j+ (0j) /,M2 + '+ E [F * .+ (3.38)

S S fp E (1 )

PEP jEP -j

Transient Analysis: While the characterization of the interdeparture times in Theo-

rem 10 holds for transient regimes, it however provides loose bounds. Obtaining an exact

transient characterization of the interdeparture process is challenging.

Instead of decomposing the network, we propose to obtain a recursive formula that

defines the dynamics in a feed-forward network similarly to the one obtained for tandem

queues in Eq. (3.20). To make the exposition clear, we consider the case of a feed-forward

network with single-server queues.

To illustrate how we derive a characterization of the system time for the nth job in a

feed-forward network with deterministic routing, we consider the network instance depicted

in Figure 3-7. Suppose that job n exits the system at node 6 after passing through queue 1

and queue 4, i.e., n E E46 and n E 14. The overall system time of the nth job is given by

S" = S(1) + S(4) + S(6).

The system time of the nth job at queue 6 is given by

n () n (6
S(6) = max X 6 i6m 

1k6 
n i=k6  

i=k6
+1

iEL6 iEIC6

where T (6) denotes the inter arrival times of jobs entering queue 6. Job k6 could have either

come from queue 4, i.e., k6 E 46, or from queue 5, i.e., k6 E 56.

(a) If k6 E E46, and given that n e 46, the time between the arrivals of jobs k6 and n to

queue 6 is the same as the time between the departures of jobs k6 and n from queue 4,

i.e.,

n (6) = (4) = T T( 4 ) + S(4) - S ,

i=k6 +1 i=k6+1 i=k6+1
iEL6  iEL4 iEL4

where D(4) denotes the inter departure times from queue 4. Similarly to a tandem
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queue, the system time spent by the nth job at queues 4 and 6 is given by

( k6

max E Xi1<k4 k62n i=k4
(iEL4

n

+ ] X(6)
i=k6
iEt:6

_n (4)
i=k4 +1

iEt
4

(1) If k4 E 14, and since n E S14, the overall system time is given by

k4 k6 n n
Sn = max ( x + Z XM + Z X 6) - ( )

1 k 1 k4 k6 n i=k1  i=k4  i=k6 i=k1 +1
'iE , iEL4  jEt 6  Eti /

(2) If k4 E E24, then the time between the arrivals of jobs k4 and n to queue 4 is equal

to the time between the departures of jobs k4 and n from queues 2 and 1,

n ()=n Dl

i=k 4 +1 i=1
iEtC4 iEfl

k4

- D (2
i11
lE:

2

n

i=1
lEt:1

+S) -
k4

( znfT2+ S(2)i k4

Under this scenario, the overall system time of the nth job becomes

Sn = max
1 k 2 k4 k6 n

k4( X (2)+
i=k2

Ur=L2

k6

i=k4
iEt 4

n

+ Z X (6

i=k6
iEt

6

n

i=L1

T + Ti
i=1

lEt:2

(b) If k6 E 56, and by similar arguments to those presented in part (a),

(1) If k 5 E 25, then

Sn = max
1 k2 k5 k6 n

k5 k6

SX (2) +
i=k2  i=k5
iet: 2 iEt 5

() n (6
X + E X 6)

i=k
6

jEt:6

(2) If k5 E 35, then

(k5
max Z X (3

1 k3 k5 5k6 n i=k3

jet 3

k 6

+ z X
i=k5
ieL5

n () n
+ E X 6 ) - 1

i=k 6  j=1
jEt 6 jEt 1
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Note that the arrival times of jobs to queues 1, 2 and 3 is equal to the time of arrival at

node ao, since there is no service delay at node ao, which yields

ke k,
T -= T, for all jobs ke arriving at queue f = 1, 2,3.

=1 i=1
iE~e

Consequently, for job n E L6 leaving the system at queue 6, combining parts (a) and (b)

gives us the following characterization of the overall system time

r ( k
Sn (P6 ) = max max j " + ... + i xf) - T (3.39)

PEP6 1 ka1 ... k62n i=k i=k
6  i=ka

ka EIaa iEL 6

where P6  {(1,4,6),(2,4,6), (2,5,6),(3,5,6)} is the set of all the paths P of the form

(ao, al, a2,. .. , t) that leave the network at queue 6. Proposition 18 presents the characteri-

zation of the overall system time of the nth job in a generalized feed-forward network with

deterministic routing.

Proposition 18 (System Time in Feed-Forward Networks)

In a feed-forward network composed of single-server queues with service times X B, j E J

and external interarrivals T, the overall system time of the nith job exiting at node f is given

by

(k, 2 Xa) n M n
Sn (P)= max max X "1)+...+ E X ' - Ti (3.40)

P E Pf 1! kai!kaa ... \ke n i=kal i=ke i=ka1+1

Ikj+1 Eaj aj+1 iE~a1  E~

where P denotes the set of all paths P = (ao,a1,a2,, ..

A detailed proof of Proposition 18 is provided in Appendix B. Similarly to the analysis of

a single and tandem queue, we propose an analysis of the worst case overall system time in

a feed-forward network. We then leverage the analytic expressions of the worst case system

time to understand the behavior of feed-forward networks with deterministic routing.
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3.4.1 Worst Case Behavior

To analyze the worst case behavior of the system time in the feed-forward network, we apply

the bounds on the interarrival and service times presented in Assumptions 1(a) and 14(a)

and express the worst case system tine S, (Pe) as

Ska n n
max max max E Xia +...+max Z Xi -min E T 1 , (3.41)
P EPe 1 ka1 ... ke: n U- 1 i=ka e i=ke ika 1 +1

ka3 +1 Ee1a~ Ca~ CE , aj+ 1 gLaj+l iEC, iEfe

where P denotes the set of all paths P = (ao, al, a2,... ,) that leave the network at node f.

By Assumptions 1, Eq. (3.41) involves solving a IP1-dimensional optimization problem for

every path P e P, which can be computed efficiently.

Theorem 19 provides a closed form upper bound for the worst case system time of the

nth job exiting the network at node i in a feed-forward network with aa = a. = c, for all

j EJ.

Theorem 19 (Highest System Time in a Feed-Forward Network)

In a feed-forward network composed of single-server queues satisfying Assumptions 1(a) and

14(a) with aa A = a, for all j E 3, the set Pj containing all paths P = (ao, a1, a2 ,...,

that leave from node f, and

pp = and Pp = Pa + [1 (/ 1 p1 > 0, (3.42)
min pAj# 10j an F,+jP

'jEPI

the overall worst case system time S (Pt) of the nth job exiting the network at node f is

bounded by

pn- n -, n +- + P j if n s A (i-p p ) J

A jEP It a'-P

max (3.43)

aa/( -1) A 1 )". P / + i+ ,1 otherwise.

The proof is presented in Appendix B. The bound presented in Theorem 19 is particularly

tight for the special case where p3 = p (i.e., pj = A -#j/p) for all j e J for some value p.
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This yields pp = p for all P e Pf. For this case, a higher value of the effective parameter P

results in a higher system and relaxation times, as suggested by Eq. (3.43). The worst case

system time 9, (Pe) therefore corresponds to

r (Pe) = max Fp.
PE~f

Theorem 20 provides the analytic expression of the worst case system time of the nth job

exiting the network at node f in a feed-forward network with a_ = a = a and p3 = p for

all j E J.

Theorem 20 (Feed-Forward Network with Fixed Traffic Rate)

In a feed-forward network composed of single-server queues satisfying Assumptions 1(a) and

14 (a) with aa = a = a, and pj = p (i.e., t = A -Oj/ p) for all j E J, and given the set P

containing all paths P = (aoa1,...,), and

r(Pe) = Fa + Fs (Pe) = a + max (1c- > 0, (3.44)
PEPj jEP S aQ4

the overall worst case system time Sn (P ) of the n-- job exiting the network at node f is

bounded by

F 'P'1 ) .n1/a _ pn+ + (i)A+ if n )/1-f

(3.45)

aa/( -1) (1 p /(a-) + z z( - + otherwise.
- p)PE~j jEP Ai

The case where F (Pe) 0 arises when Fa < 0. This scenario is characterized by long inter-

arrival times yielding zero waiting times. The worst case system time therefore reduces

to

Sn(Pj) max (i +I' Zi)) Z + r +
EP \ Aj / PE~ jEP Pi

We next extend our averaging approach to analyze feed-forward queueing networks with

aa = a =a and pj = p (i.e., pj = A - Oj/p) for all j Ej.
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3.4.2 Average Case Behavior

The expected system time spent by the nth job in the feed-forward network can be computed

as

3= fP -P S = p -3n (Pe), (3.46)
PEP E

where P denotes the set of all possible paths that can be taken by jobs passing through the
-P

network, fp denotes the probability of taking a certain path P, S. denotes the expected

system time of the nth job that is routed through the network via path P, 3n (P) denotes

the expected system time of the nth job that leaves from node f (i.e., job n takes any path

P E Pe), and pi denotes the probability of a job exiting the network at node f, i.e.,

\t =Of Z

Instead of taking the expectation of the system time over the random variables T and X

to obtain S9 (P), for all paths P E P or Sn (Pe), for all f E J, we propose to compute the

expected value of the worst case system time with respect to the parameters Pa and P, (P)

which we treat as random variables. Mathematically, we compute

n = Z p -gn (P) = Ep -E- [3n (Pe)].
EJ f EJ

Given Theorem 20, we can express Sn (Pe) as a function of Fa and P8 (Pj) as follows

(Fa, f n [A (Pa + Ps (Pe))* "

( < if '(1-P) (3.47)

9' (Fa, F, (Pj)) , otherwise,

where P, (PE) is defined in Eq. (3.44) in terms of Prj, for j E -, and 9', and R' denote the

quantities associated with the transient state and the steady state, respectively. We rewrite

Eq. (3.47) as

' (Pa, Ps (Pe)) - 1 (Pa, Fs (Pe)) + 98 (Pa, Ps (Pe)) -1sn (Pa, s (Pe)) ,

where the indicator functions 1t and I'l reflect the condition for the system to be in the
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transient state and the steady state, respectively. By positing some assumptions on the

distributions of Pa and P. (Pe), we compute

gn = E [' (Pa, P5 (Pe)) - 1 (Pa, Ps (Pe)) + SR (Pa, Ps (TPi)) - Is (Pa, Ps (Pe))

which can be efficiently computed via numerical integration. We next discuss our choice of

the parameter distributions.

Choice of Variability Distributions

We propose to express the parameters Pa = 70ya and F5  = , where Ya and -y 9j follow

limiting distributions for all j E J. More specifically, Ya K V (0, Oa) and y K A (0, 0 (A) for

light-tailed primitives, Ya ~ SQ (-1, C, 0) and y, ~ S(1, C,, 0) for heavy-tailed primitives.

Note that the effective service parameter P8 (Pj) is captured as a function of F , for j E J.

Specifically, by Eq. (3.44),

Ps ('Pe) = Os*' (Pe) where -y+ (Pf) = max [ (')+. ] . (3.48)

Similarly to our approach for tandem queues, we propose an approximation of the distribu-

tion of -yt* by fitting generalized extreme value distribution to the sampled distribution.

For light-tailed queues, by Theorem 20, the expected value of the overall worst case

steady-state system time for a feed-forward network is given by

where we approximate the steady-state system time for jobs exiting at node f as

0 (Pe) =E [(_y (P))] + Epe + E Z(+,
4(1-p) PEfjEP A

SE [(y (P))] + Efp +ZE U , (3.49)
4(P1 -- pP) P

with y (Pe) = 0 aYa + Os* (Pf) and -y' (Pe) is defined in Eq. (3.48).
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The expected value in Eq. (3.49)

E (-y (P)+)] ~ P (-y (Pt) 0) -E [y (p,)2] = P (Y (pf) 0) . (OU2 + 02 E [-y, (Pf)2]

Similarly to the case of a single light-tailed queue, we select the parameters 0a and 0m to

ensure S. = S.. Finding S. in a general feedforward network is however challenging.

Instead, we ensure that the expression in Eq. (3.49) matches the approximation of the

expected steady-state system time obtained via network decomposition, presented in Eq.

(3.38). We then choose Oa and 0, as

fp -|P\ -1/2 2 E fp ( i) (1/]" ~ and 0, ~ p P EP . (3.50)
P (y (Pe) 0) ZIP (y (Pe) 0) . E [ + (P)21

fE EJ]

Note: We introduce the parameter pe = Oa7a+ OE , where

f+ (.(a)+. 01/)C/ ]a-1 . (3.51)
PE~t jEP

Notice that )f+ > -y (Pe), and therefore the parameter Ft > F (Pj), for all f e J. Since a

higher parameter value yields higher system and relaxation time, we can bound S" (Pf) =

Sn (F (Pe)) by Rn (F'), and hence we can bound S- by

Sn = E pSgn (Pt) E pj - n (Fe) = Z pj -E [9n (Fe)].

We next show that the choice of the parameters Oa and 0, for the above approximation

allows for simpler computations.

(a) Light- Tailed Primitives: By using the upper bound Sn (Fe) introduced above and Eq.

(3.49), we bound S. by

g.A .E[(A +)2] + Efp (
EJr -E~P) PYE ff + E [ )+ , (3.52)

where 'ye = 0a"Ya + O,- and yj+ is defined in Eq. (3.51). Then, we approximate

E[(y)2] P (ye 0).E[ y2]=P(_Ye 0)-(02-2+2E [(y,+)2])
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where, the second moment of ,' can be expressed as

= z 5 -E[()+ S (). Z --(o- )
PEPR jEP PEPe jEP

We proceed by performing an additional bounding procedure to help simplify the com-

putations. Specifically, we propose to bound the expression

P (ye 0) - Z (j- <
2  P (ye 0) -j (0- ()) 2 ,

fEj PEPf jEP fEJ E PEPf jEP

= ZIP'(y 0) - (0-(j)- (3.53)
fEJ PEP jEP

To match the approximation of the expected steady-state system time obtained via

network decomposition presented in Eq. (3.38) and the resulting upper bound on

from combining Eqs. (3.52) and (3.53), we choose 0 and Os as

2 E fp -IPI 1/2 
)1/2

02 and 06 ~ 2 . (3.54)
P (-Yf 0) P (-Yf 0) . P (7s,) > 0)fEJ fEJ

The above expressions reduce to Eq. (3.33) for the case of a tandem queue, where

'P = (ao,..., JI). Note that, given that -y is a normally distributed distributed

random variable centered around the origin, we have P (_Y > 0) = 1/2. Also,

OP(fy 0) = P (Oaia + Os'y 0) = P({P fP P } Ya +8P~y.N > 0)-i -yZ ,

which can be efficiently computed numerically.

(b) Heavy- Tailed Queues: Since the steady state does not exist for heavy-tailed queues, we

propose to extend the formulas for Oa and Os and obtain

a E fP .IPI I(a-1)/C' 
(a-1)/a

Oa ~ PE and 0, ~ a (3.55)P 0) E P (Y 0) -P H

where y = Oa-Ya + 0m7Y;/m, 'Y, is defined in Eq. (3.51)

Note that the above probabilities can be efficiently computed numerically given the
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distributions of -y7 and -y.

Insights and Computational Tractability

The insights we draw from our analysis of light-tailed and heavy-tailed feed-forward queueing

networks queues are similar to the ones obtained for single and tandem queues. Furthermore,

simulating the expected overall system time of the nth job in a feed-forward network requires

simulating all queues in every path P e P in the system for all n jobs. Our approach, on

the other hand, involves (a) running a simulation to fit the distribution of -Y+ as defined

in Eq. (3.51), and (b) computing double integrals with respect to 'Ya and "yr, for all nodes

f E J. Note that extending the results to multi-server feed-forward networks does not affect

the efficiency of our approach.

3.5 Concluding Remarks

In this chapter, we analyzed the expected performance of complex queueing networks. We

have shown that our methodology is capable of accurately approximating the steady-state

behavior in arbitrary networks of queues via the following key principle: (a) the departure

from a queue, (b) the superposition, and (c) the thinning of arrival processes have the same

uncertainty set representation as the original arrival processes. Furthermore, we obtain

analytic expressions that characterize the transient behavior in tandem and feedforward

networks with possibly heavy-tailed arrivals and service times. Our computations validated

our modeling approach and provided approximations that closely compare with simulated

values. In the next chapter, we go beyond performance analysis and propose to optimize

inventory policies for complex supply chain networks.
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Chapter 4

The Case of Supply Chain Networks

In this chapter, we go beyond the question of performance analysis and consider the problem

of system optimization. To illustrate our methodology, we apply the framework that we

have introduced in Chapter 1 to optimize inventory policies across complex supply chain

networks. Our approach allows us to obtain answers that are comparable to those obtained

via stochastic optimization, while avoiding the challenges of fitting probability distributions,

generating scenarios to describe the states of randomness, and sampling for evaluation in

simulation optimization methods.

4.1 Introduction

The analysis and optimization of (s, S) inventory policies has received considerable attention

since the 1950s. The seminal work of Arrow et al. [1951] introduced the multistage periodic

review inventory model, where the inventory is reviewed once every period and a decision

is made to place an order, if a replenishment is necessary. The (s, S) inventory policy

establishes a lower (minimum) stock point s and an upper (maximum) stock point S. When

the inventory level on hand drops below s, an order is placed "up to S". The (s, S) ordering

policy is proven optimal for simple stochastic inventory systems. In 1960, Scarf [1960] proved

that base-stock policies are optimal for a single installation model. Clark and Scarf [1960]

extended the result for serial supply chains without capacity constraints and showed that

the optimal ordering policy for the multiechelon system can be decomposed into decisions

based on the echelon inventories. Karlin [19601 and Morton 11978] showed that base-stock
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policies are optimal for single-state systems with non-stationary demands. Federgruen and

Zipkin [1986] generalized the analysis to a single-stage capacitated system, and Rosling [1989]

extended the analysis of serial systems to assembly systems. Further work has been done

to extend, refine and generalize the optimality results of base-stock policies; see Langenhoff

and Zijm [1990], Sethi and Cheng [1997], Muharremoglu and Tsitsiklis [2008], Huh and

Janakiraman [2008]. Determining the optimal policy for general supply chain networks is

a challenging problem. It involves a complex stochastic optimization problem with a high-

dimensional state space. This sparked interest in simulation-based approaches, notably the

work of Glasserman and Tayyur [1995] and Fu [1994].

Furthermore, generating demand scenarios and fitting demand distributions is challeng-

ing. In reality, we only have access to historical demand realizations, and it is not immedi-

ately clear which distribution drives the source of uncertainty. In that regard, Scarf [1958],

Kasugai and Kasegai [1961], Gallego and Moon [1993], Graves and Willems [2000] developed

distribution-free approaches to inventory theory. Bertsimas and Thiele [2006] first took a

robust optimization approach to inventory theory and have shown that base-stock policies

are optimal in the case of serial supply chain networks. Bienstock and Ozbay [2008] pre-

sented a family of decomposition algorithms aimed at solving for the optimal base-stock

policies using a robust optimization approach. Rikun [2011] extended the robust framework

framework introduced by Bienstock and Ozbay [20081 to compute optimal (s, S) policies

in supply chain networks and compared their performance to optimal policies obtained via

stochastic optimization.

In addition to base-stock policies, the research community has also considered adaptive

policies that are function of the realized demand. In particular, disturbance-affine policies

are expressed as affine parameterizations in the historically observed demand. Such policies

belong to the general class of decision rules which have originally been introduced in the

context of stochastic programming by Charnes et al. [1958] and Garstka and Wets [1974].

Ben-Tal et al. [2004b] extended the robust optimization framework to dynamic settings

and explored the use of disturbance-affine policies in allowing the decision maker to adjust

their strategy given the information revealed over time. Within the robust optimization

framework, affine policies have gained much attention due to their tractability; depending

on the class of the nominal problem, the optimal policy parameters can be solved via linear,

quadratic, conic or semidefinite programs (see Ldfberg [2003], Kerrigan and Maciejowski
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[2004], Ben-Tal et al. [2004a]). Empirically, Ben-Tal et al. [2005] and Kuhn et al. [2011]

have reported that affine policies perform excellently and have shown many instances in

which they were optimal. Bertsimas et al. [2010] proved the optimality of disturbance-affine

control policies for one-dimensional, constrained, multistage robust optimization and showed

that these results hold for the finite-horizon case with minimax objective. In particular,

Bertsimas et al. [2010] have shown that, under the robust setting, affine policies are optimal

for a single-product, single-echelon, multi-period supply chain with zero fixed costs.

In this chapter, we propose to bridge the stochastic and robust optimization approaches

and apply our methodology to obtain optimal base-stock and affine policies that minimize

the average cost. The structure of this chapter is as follows. Section 4.2 provides a synopsis

of our approach geared towards optimizing supply chain networks. Section 4.3 treats the case

of optimizing base-stock policies in generalized networks. Section 4.4 applies our framework

to find optimal affine policies. Section 4.5 concludes the chapter.

4.2 Proposed Framework

We consider a supply chain network in which inventories are reviewed periodically and

unfulfilled orders are backlogged. For simplicity, we assume zero lead times throughout the

network; however, our framework can be easily applied to systems with non-zero lead times.

We consider a T-period time horizon and, within each period, events occur in the following

order: (1) the ordering decision is made at the beginning of the period, (2) demands for

the period then occur and are filled or backlogged depending on the available inventory, (3)

the stock availability is updated for the next period. To describe the system dynamics, we

define the following sets.

M Set of all installations within the inventory network,

S Set of all installations with external demand (sink nodes),

L Set of all links (edges) within the inventory network,

94 Set of installations belonging to echelon n,

S, Set of sink installations at the nth echelon. Note that S" 9 S,

L4 Set of all links (or edges) supplying stock to the nth echelon.

Note that we view the dynamics of the system from an echelon perspective, where an echelon
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n is defined as the set of all installations within the network that receive stock from some

installation n, including installation n, and the links or edges between them. This definition

was first introduced by Clark and Scarf [1960] for tree networks, however it can be generalized

for more complex networks. In the special case of a network with installations in series,

and assuming that the items transit from installation n to installation n - 1, then the

sets E, = {n,n - 1,.. .,1}, S, = {1} and 4, = {fn, 1,n}, where fn+1,n is the link between

installation n + 1 and n. Figure 4-1 illustrates the definition of an echelon for a more

complex supply chain network.

2 5

8
3 6

9
4 7

Figure 4-1: For this nine-installation network with 4 sink nodes, we consider nine echelons
defined as follows. (1) i = {1, 5, 6, 8, 9} and S, = {5, 8, 9}, (2) S2 = {2, 5, 6, 8, 9} and S2 =

{5,8,9}, (3) 53 = {3,5,6,7,8,9} and S3 = {5,7,8,9}, (4) S4 = {4,6,7,8,9} and S4 = {7,8,9},
(5) E5 {5,8} and S5 = {5,8}, (6) E6 = {6,8,9} and S6 = {8,9}, (7) E7 = {7,9} and
57 = {7,9}, (8) E8 = {8} and Ss = {8}, and (9) S9 = {9} and S9 = {9}.

To track the system's operation, we capture information about the stock available and the

stock ordered at each echelon at the beginning of each time period as well as the demand

at each installation sink throughout each time period. Specifically, we define the following

notation.

4n Stock available at at the beginning of period t and echelon n,

Ut Total stock ordered at the beginning of period t at echelon n,

ot Stock ordered and moved along link f E L at the beginning of period t,

W" Demand observed at sink k E S throughout time period t.

In accordance with the sequence of events that we have presented earlier and given our

notation, we can express the dynamics of the echelon inventories for all n E K and t =

0,..., T-l as
t t

t+1 t t 0X1n = X + un - k Zw=a4?n+Z - E I ZrWT, (4.1)
kESn 7=O kESnr=O
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n4, denotes the initially available stock at echelon n, and the ordering quantity at each

echelon is simply the sum of all stock ordered from the edges feeding into the nth echelon,

i.e.,

UT= LoT. (4.2)
eCn

Note that the ordering quantities xt = 4L (7r, w), and therefore the amount of available stock

u Ut(7r, w), are functions of the ordering policy rr and the demand vector. Note that, for

the simple example of a single-installation system, the available stock level at the beginning

of time t + 1 is a function of the sum of the demand realizations at that installation over the

time horizon
t t

xt+1 =xt +ut -wt =x 0 + Eu - w T. (4.3)
r=O T=O

The high-dimensional nature of modeling the demand uncertainty probabilistically and the

complex dependence of the system on the random variables highlight the difficulty of an-

alyzing and optimizing the expected total cost across the supply chain network. Instead

of taking a probabilistic approach, we propose a framework that builds upon the robust

optimization framework to approximate the expected system behavior. We next present a

synopsis of our approach.

4.2.1 Uncertainty Modeling

For the sake of simplicity, we assume that there is no demand seasonality and that the

demand realizations are light-tailed in nature (i.e., the demand variance is finite). At in-

stallation k, we denote the demand mean by pk and the demand standard deviation by

Ok, which could be inferred from historical data. Instead of describing the uncertainty in

the demand using stochastic processes, we leverage the partial sums in Eq. (4.1) and pro-

pose polyhedral sets inspired by the limit laws of probability. Given that we are interested

in modeling the amount of holding stock (x ) = max (0, x' ) and the backorder quantity

= - min (0,.x'), we wish to upper and lower bound the partial sums in Eq. (4.1). We

therefore propose to constrain the absolute value of the partial sums and introduce a single

variability parameter I. We make the following assumptions.

Assumption 21 We make the following assumptions regarding the demand.

(a) For inventory systems with a single sink node, the demand realizations w = (w 0, ... ,wT)
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belong to the parametrized uncertainty set

U(F)={(wo,...,wT) - t, V t=1,...,T+1 ,

where F 0 is a parameter that controls the degree of conservatism, p and o- respectively

denote the mean and the standard deviation of the demand.

(b) For inventory systems with multiple sink nodes, the demand realizations w = (wk,...

belong to the parametrized uncertainty set

1 Wk -t -Pk

W( )= TS,.., ) < , V nEA/', t=1,...,T+1U~~k~ (Fk k k E

where F 0 is a parameter that controls the degree of conservatism, pk and ak re-

spectively denote the mean and the standard deviation of the demand at the sink node

k.

Note: By the central limit theorem, the expression

t-1

wt - Pk

ISnI kES k

follows a standard normal distribution for a big enough value of t, under the assumption that

demand realizations are independent and identically distributed at each sink node k E S.

Under Assumption 21 and given an ordering policy 7r, the traditional robust approach

analyzes the worst case performance by solving the following optimization problem

L(7r,F)= max L(7r,w). (4.4)
wEU(F)

The optimization problem in Eq. (4.4) effectively selects the scenario where the realizations

of the random variables produce the worst performance. The selection of F dictates how

much variability we allow the normalized sums to exhibit around zero. With higher vari-

ability, the uncertainty set includes more extreme scenarios which directly drive the worst

case performance measure.
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Instead of pre-selecting a specific value for F and carrying out a worst case performance

analysis, we propose to treat variability parameter F as a random variable and devise a

methodology to model the average system behavior.

4.2.2 Performance Analysis

For a given ordering policy ir, analyzing the expected performance L (7r) entails under-

standing the dependence of the system on the demand uncertainty. Suppose that L (7r, W)

is governed by a distribution F which can be derived from the joint distribution over the

random variables w. We express the expected performance as

L(7r) = f dF( ).

For the purpose of our exposition, suppose that the distribution function is continuous. The

inverse of F (-) then corresponds to the quantile function, which we denote by

Q(p) =F-1 (p) = q:F(q) = p = q:P(L(7r,w) q)=p ,

for some probability level p E (0,1). By a simple variable substitution, we can view the

expected value as an "average" of quantiles,

L (7r) = JQ(p)dp.

We can map each quantile value Q(p) to a corresponding worst case value f (7r, F). Let G

denote the function that maps p to F such that Q(p) = Z (7r, r), i.e.,

p = P (L (7r, w) L (7r, F)) = F (L (7r, F)) = G (F). (4.5)

In this context, the expected value can be written as an average over the worst case values,

with

L (7r) = Er [L (7r, r)] = f^(7r, F) dG (F) . (4.6)

Philosophically, our averaging approach distills the probabilistic information contained in

the random variables o into F, hence allowing a significant dimensionality reduction of
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the uncertainty. This in turn yields a tractable approximation of the expected system

performance by reducing the problem to solving a low-dimensional integral.

Note that knowledge of G allows us to compute the expected performance measure

L (7r) exactly; this however depends on the knowledge of the distribution function F. While

feasible for simple systems, characterizing F, and therefore G, is otherwise challenging and

is immediately dependent on the distributional assumptions over the random variables W.

Instead of deriving the exact distribution G(.), we propose an approximation 0(.) inspired

by the conclusions of probability theory and approximate the expected performance as

L (7r) ~ L (7r, F) dC(F) . (4.7)

We next approximate the distribution of the variability parameter F by considering a single

installation system with a simple base-stock policy and approximating the behavior of the

inventory shortfall via the theory of reflected Brownian motion.

Variability Distribution

We consider a multi-period single-installation system that operates under a base-stock policy

7r in which stock is ordered at the beginning of each time period to restore the inventory to

a target level S, while not exceeding the per-period ordering capacity r'. Given the amount

xt of stock available at the beginning of period t, the ordering quantity ut at the beginning

of time period t can be expressed as min (KS - xt). As a result, the recursion in Eq. (4.3)

becomes

Xt+1 = Xt + min (K, S - x t ) - w-1 = min (xt + K - wt, S - ) (4.8)

We define the amount by which the target inventory exceeds the amount of stock available

at the beginning of the time period as the shortfall

Lt.1 = Lt+1 (7r, w) = S - x.

The terms Lt+1 and xt*l convey equivalent information about the state of the system. For

the purpose of our analysis, Lt.+ depicts the performance measure of interest and we let F

be its distribution function. We (a) show that we can approximate the distribution F using

ideas from reflection Brownian motion, and (b) derive an approximation of the density G of

the variability parameter F.
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Shortfall Distribution: Given Eq. (4.8), the shortfall is given by

Lt.1 = S - xt** = max (S - xt + K - wt, I W)
(t-1

= max(Lt+wt-K, w') =wt + max {Z(Wi ~l),- (4.9)

The shortfall sequence coincides with the system time sequence in a single-server queue with

service times {w, t > 0} and fixed interarrival time r,. A standard property of the Lindley

recursion implies

=maxA(i - K), 0 = max A7
Or t-1 i = Or t-1

is the maximum of the random walk A,. By the theory of reflected Brownian motion, Mt

is well approximated by a reflected Brownian motion with drift ([1- i) and variance a 2 . As

a result,

P(Mt <z) ~ ( 2 -(z - P)t 1,

where (-) denotes the distribution function of a standard normal. Then, the density of the

shortfall

F(f) = IP (Lt.+ f) = P (Lt.1 ! f 1) -ft dwt, (4.10)

where fot denotes the density of the demand at time t and the conditional probability

P (Lt. 1 k fjwt) = P (Mt s f - wt) ~ 2 -. -jt(Pj-)t 1. (4.11)

Variability Density: Conditioned on wt, the worst case shortfall is given by

Lt.1(r) = wt + max max { (wi - r), 0,
WEU(I') 0! T!t-1(-

= wt + Fit-+(ILp- )t. (4.12)

Given Eq. (4.12), we can rewrite the conditional probability in Eq. (4.11) as

By (Lt (5 Ln (7r, t) i-1) = 2 - F -aiabilit 1 = 2 - a (m) - 1.

By Eqs. (4.5) and (4. 10), the distribution of the variability parameter F can be approximated
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by

G(F) = F (L(7r, F)) f [2 -. (F) - 1] - fwt dw = 2 -0(F) -1.

This implies that the density of F can be well approximated by a half-normal, where

dG(F) V_2 2

g(r)= =F20(') = -"r.exp .

We employ the above approximation for the distribution of F throughout the remaining of

this paper. We next discuss how we approximate the expected behavior under our frame-

work.

Robust Approximation

For more complex systems, we propose to approximate the expected performance as

L (7r) = Er [L (7r, F)], (4.13)

where F follows a half-normal distribution. Note that, for complex supply chain networks,

the worst case cost may not be determined analytically. Therefore, we propose to approx-

imate the expected value in Eq. (4.13) by discretizing the space of values that F can take

on, giving rise to the following approximation

Er [T (7r, F)] fi (7r, F), (4.14)
iEI

where (Fi)iE1 denotes the values of F in the discretization I, fi denotes the corresponding

density, and f (7r, 1i) denotes the worst case performance given the demand W E U (Fi).

To find the weights fi, i E I, one could use methods for numerical integration. Applying

the Gaussian-Hermite quadrature (see Abramowitz and Stegun [1972]),

2'n!
fi =( -)21

n2 (Hn_1 (i/_,/2)

where n = 2 I denotes the level of discretization, H_1 (.) is the Hermite polynomial with

degree n, and Fi denote the non-negative roots associate with Hn. Table 4.1 tabulates the

values of (fi, 19) for the cases where I = 5 and I = 10.

Note: The discretization need not include a large number of values to obtain a very accurate
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Table 4.1: Gaussian-Hermite quadrature and coefficients for Il = 5 and III = 10.

I = 5 11= 10

fi 6.9E-1, 2.7E-1, 3.8E-2, 1.5E-3, 8.6E-6 5.2E-1, 3.2E-1, 1.2E-1, 2.8E-2, 3.7E-3

2.6E-4, 8.8E-6, 1.1E-7, 4E-10, 2E-13 J
i 0.4849, 1.4660, 2.4843, 3.5818, 4.8592 0.3470, 1.0429, 1.7452, 2.4587, 3.1890

J 3.9440, 4.7346, 5.5787, 6.5106, 7.6190 J

approximation of the integral. To illustrate this fact, we consider the single-installation

example we introduced earlier in this section with the simple base-stock policy. For t = 10,

W = 10 and n = -= 5, the average over the worst case shortfall is given by

Er [Z (7r, F)] = Er [wt + F -o- + (pI - K)t] = 72.6 (4.15)

The expression in Eq. (4.15) can be well approximated using numerical integration, without

an exhaustive discretization as follows

Er [T (7r, F)] ~Z fi - (7r, i) = fi -(wt + Fi -or-d' + (P - 00t) (4.16)
iEI iEI

Using the Gaussian-Hermite approximation with I = 5 yields Er[Z(7r, F)] 73.1, corre-

sponding to an error of 0.68% relative to the exact integral value. This implies that we can

achieve good approximations of average cost in our framework by evaluating the worst case

performance for a small number of values of F.

4.2.3 Performance Optimization

A major consideration in the study of inventory systems consists of determining optimal

policies that minimize the average cost of moving inventory across the supply chain network.

We consider four types of costs.

K, Fixed cost of order at echelon n,

hn Holding cost per unit of inventory hold at echelon n,

pn Backorder penalty cost per unit of negative inventory at echelon n,

ce Variable cost per unity of order moved along edge f E L.

The total cost incurred in period t across the inventory network accounts for (1) the holding
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cost at each echelon, (2) the penalty cost associated with a shortage at each echelon, and

(3) the fixed cost of ordering stock at each echelon, i.e.,

Ct (7r, w) = ce -o+ Z h. (-x')' + p, - + K, - 1 o], (4.17)

where the terms = max (0, x' ) and (x) = -min (0, xt ) denote the holding and

the backordered stock, respectively. Note that the amount of stock ordered ut = ut (7r, w)

and the amount of stock available x4 = 4t(7r, w) depend on the policy 7r and the demand

realizations.

To obtain an optimal ordering policy from a set of available ordering policies II, the

traditional approach solves the following stochastic optimization problem

C7 = min E, [C (7r, w)]
7rEll

Instead, we leverage the worst case values and cast the problem of finding an optimal policy

as

min Er [0 (7r, F) ~ min Z fi U(7r, i)
7rEH7rEHiEI

where C (ir, Fj) denotes the worst case total cost of moving inventory through the entire

time horizon, given the demand W E U (Fi). The above optimization problem can be cast as

a robust optimization problem with the following re-formulation

min Z fi -yiE1  fy. (4.18)
s.t. yj > C (7r, w) VO E U (Fi), and Ji : i E I

We note that, in the traditional robust optimization setting, the designer selects a particular

value of F reflecting their risk preference and solves the resulting problem

min y
min max C (7r, w) = rE. (4.19)
7reH WEU(F) s.t. y > C (7r, w) VO E U (F)

Both formulations in Eqs. (4.18) and (4.19) belong to the same class of problems. Our

proposed approach in Eq. (4.18) therefore conserves the desirable tractability of the robust

optimization approach, while exploring different levels of protection against uncertainty.
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Note: The size of the robust optimization problem in Eq. (4.18) depends on the level

of discretization over the space of possible values that F can take on. Quadrature methods

help numerically approximate the value of a definite integral with few possible evaluations.

Using such methods ensures a good level of precision while keeping control over the size of

the discretization set I.

We propose a variant of the generic algorithm developed by Bienstock and Ozbay [2008]

to iteratively solve Eq. (4.18) for the optimal inventory policy. The algorithm maintains

a working list U? of demand patterns C = {(00)',... (O)} that satisfy the uncertainty

set U (Fi), for all i E I. At every iteration, we increment the list while computing an upper

bound U and a lower bound L on the value of the problem in Eq. (4.18). The algorithm is

stopped whenever the difference between the upper and lower bounds becomes small enough.

This algorithm is inspired by the Bender's decomposition method, commonly used in the

stochastic optimization literature.

Note that, at a given iteration of the algorithm, the set i is finite as it is incrementally

populated by the vectors of demand realizations 0'. As a result, the size of the set U is equal

to the number of iterations run thus far, compared to the exponential size of the uncertainty

set U (Fi). The size of problem (DM) in Eq. (4.20) grows with the number of iterations.

However, if converge occurs within a few number of iterations (as shown in Section 3), the

size of problem (DM) is kept small.

ALGORITHM (Optimizing the Ordering Policy)

Input: Accuracy level e. Available ordering policies H.

Output: Optimal policy lr* for the inventory network.

Step 0. Initialize lower bound LB = 0, upper bound UB = +oo, U1 = 0, for all Fi : i E I.

Step 1. Solve the decision maker's problem (DM) and let 7r* to be its optimal solution.

LB = min x (C (7r, W) . (4.20)
7rEIIi1 W l

Step 2. For i E I, solve the adversarial problem (AP) and let ci be its optimal solution.

UBi = max C (lr* W). (4.21)
WEU(Fi)
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Step 3. Set the upper bound UB = Z fi -UBi.
iET

Step 4. If U - L < E, exit. Else, add the vector 0' to Ui for all i E I and go to Step 1.

On the other hand, the size of problem (AP) in Eq. (4.21) is a function of the

size of the inventory network. Bienstock and Ozbay [2008] present an approximation

that uses simple combinatorial arguments which proves more efficient than solving

the integer optimization program. Since the size of I need not be large to obtain

good approximations, the number of problems (AP) that we would need to solve is

relatively small. In the stochastic programming framework, Bender's decomposition

is used to reduce the large deterministic equivalent to a number of smaller problems

that can be solved independently. In our case, the usefulness of the decomposition

algorithm lies in reducing the combinatorial complexity of the problem in Eq. (4.18).

We next apply our framework to study generalized inventory networks with base-

stock and affinely adaptive ordering policies.

4.3 Optimizing Base-Stock Policies

In this section, we employ the methodology we proposed in Section 4.2.4 to compute

optimal base-stock policies that minimize the average cost within the inventory net-

work, without making distributional assumptions regarding the demand uncertainty.

4.3.1 Problem Formulation

We define s, and S, to be the lower (minimum) and the upper (maximum) stock

points, respectively, at echelon n. In vector form, we refer to the base-stock levels as

(s, S) across the network's echelons. Given a set of echelon base-stock levels (s,, S"),

the ordering quantity at each time period t at echelon n is given by

U t = Ut (s, S, W) = (422
n n (4.22)

0) otherwise,
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where x4 = x' (s, S, w) denotes the stock available at the beginning of time t at

echelon n.

Finding the optimal base-stock levels in our framework calls for solving a robust

optimization problem of the form of Eq. (4.18). Specifically, we consider the following

formulation

min fi -yi
(s'S) iE , (4.23)

s.t. yi >! C (S, S, LO) VO E U (I'j) and Fj : i E _T

where the total cost across the inventory network is given by

T T

C(s, S, w) = ce - + E[h, - (a )+ + p (- ) + K1 >o], (4.24)
t=1 EL t=1 nEAr

with o', 4t, and ul are functions of (s, S, w), for all values of n and t. We solve the

problem in Eq. (4.23) via decomposition by solving iteratively (a) the adversarial

problems (AP), and (b) the decision maker's problem (DM).

Adversarial Problems: In our setting, problem (AP) consists of solving for

the worst case cost given the parameterized uncertainty set U (Fti) and retrieve the

optimal solution Oi that drives the worst case value. For a given 1i, problem (AP)

in Eq. (4.21) can be re-written as

T T

max c - ot + [h- (X) +Pn - (Xt ) + Kn - >0]
t=O feE t=O nEA

s.t. X$+ 1 = 4 t + Ut - 4, Vt, n,
kESn

= sot, Vt, n,

n ST, - z, if Xnt <- sn Vt, n.
0, otherwise

Note that problem (AP) is a non-concave maximization problem and the optimal

solution Oi may not occur at a corner point of the uncertainty set U (fi). Furthermore,

the structure of the ordering policy involves non-convex ordering constraints.
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By introducing the following two sets of auxiliary binary variables

1, if X , 1, ifXt > 0
y= and z={ ,

0, otherwise 0, otherwise

we can formulate problem (AP) as a mixed integer optimization problem which can be

solved relatively efficiently using available optimization solvers. Constraints (4.25)-

(4.26) linearize the term associated with the amount of holding stock (x )', con-

straints (4.27)-(4.28) linearize the term associated with the amount of backordered

stock (4I )-, and constraints (4.29)-(4.31) provide a linear description of the dynamics

associated with a base-stock policy.

T T

max( Z E ce o +n[h - (t) + pn- (x) + K y]
t=O EL t=0 nEJV

s.t. Vt=0,...,T and n EA:

Xt+1 Xt +Ut ct
n n n k,

keSn

Ut t

s (xt)+ z + M -(1- zt), (4.25)

0 (t)+ <M + z, (4.26)

- y(4.29)

-M-(1 -y)u t - (S -) < M-(1-y) , (4.30)

y, z.IE {0, 1}. (4.32)

Note that we may devise an algorithm to approximately solve problem (AP); see for

instance the work by Bienstock and Ozbay 2008].
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Decision Maker's Problem: At each iteration of the algorithm, problem (DM)

consists of finding the best base-stock policy, given a finite collection of demand

realizations stored thus far. Specifically, for each index i E I, we populate the set U

with the optimal solutions Ci that we obtain from solving the ith adversarial problem

(AP) at each iteration of the algorithm. Mathematically, we formulate problem (DM)

in Eq. (4.20) as

min f - q
(S1s) i (4.33)
s.t. qj >! C (s , S, L-i),I VQ' E i IZE I

where the total cost across the inventory network is given by Eq. (4.24).

Note that the size of problem (DM) grows with the number of iterations needed

for the algorithm to converge. For a small number of iterations, solving the integer

optimization problem may not constitute a challenge. In fact, as our computations

suggest, the algorithm converges within an accuracy of 2% in no more than four

iterations.

4.3.2 Computational Results

We investigate the performance of our framework relative to simulation and examine

the effect of the system's parameters, i.e., time horizon, demand distribution and

variability, and network size on the accuracy of our solutions. We consider five network

topologies (see Figure 4-2).

Instance (1): single installation (IMI = ISI = 1) with normal/lognormal distributed

demand, mean p = 100, and standard deviation o- = 30 (unless oth-

erwise specified)

Instance (2): three-installation network with a single sink node (I.AI = 3, 1SI =

1) with gamma/uniform distributed demand, mean P3 = 100, and

standard deviation -3 = 30 (unless otherwise specified),

Instance (3): three-installation network with two sink nodes (|.I = 3, |S| = 2) with
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Instance (4):

Instance (5):

demand mean (A2, P3) = (100,50), standard deviation (9 2 ,o 3 ) =

(30, 25), and two possible distributional inputs: (a) gamma dis-

tributed demand at both sinks, and (b) normal demand at sink 2

and lognormal demand at sink 3,

five-installation network with three sink nodes (IKI = 5, ISI = 3)

with demand mean (P3, P4, P5 ) = (100,50,120), standard deviation

(03, u4 , -5) = (30, 25, 40), and two possible distributional inputs: (a)

lognormal distributed demand at all sinks, and (b) normal, gamma

and uniform distributed demand at sinks 3, 4, and 5, respectively,

nine-installation network (IAPI = 9, SI = 4) with the following de-

mand mean (P5 , P7, /18, 109) = (100, 50,120,80) and standard devia-

tion (0-5 , 0-7 , o-', 0'g) = (30,25,40,80), and two possible distributional

inputs: (a) uniform distributed demand at all sinks, and (b) normal,

lognormal, gamma and uniform distributed demand at sinks 5, 7,

8, and 9, respectively.

3
2

Instance (2)

2
1

3
Instance (3)

4

2

5
3

Instance (4)

1

2 5

8 -
3 6

9
4 7

Instance (5)

Figure 4-2: Simulated (solid line) versus approximated values (dotted line) for a single
installation with an order-up-to policy, demand mean y = 150, standard deviation o = 30,
holding cost h = $2 and penalty cost p = $4, and zero fixed cost. Simulated values computed
for normally distributed demand. Panels (a)-(c) correspond to time horizons (a) T = 1, (b)
T = 12, and (c) T = 24.

Impact of Time Horizon
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We consider an instance with a single installation and assume that the fixed cost is

zero. In this case, it is well-known that an order-up-to policy is optimal. This is a

special case of the (s, S) policy where s = S, i.e., an order up to S is placed when

the inventory position drops below S. For some given value of S, we (a) simulate the

average total cost over T time periods using 10,000 simulation replications of normally

distributed demand and report the simulated cost C(S), and (b) approximate the

average cost using our framework by applying Eq. (4.14) and the discretization

corresponding to I1 = 5 (see Table 4.1), and report the approximated cost C(S).

Table 4.2: Associated costs of interest.

Frameworkt Average Cost

Our Approach C(S) = Er[C(S, ')]

Stochastic Approach C(S) = E[C(S, w)]

t Computed as a function of a given value of S.

Figure 4-3 compares the simulated values to our approximations for various values of

S for a single installation for (a) T = 1, (b) T = 12, and (c) T = 24. Our approximation

is closer to simulated values for larger time periods. This is expected given that our

uncertainty set in Assumption 1(a) and our approximation of the choice of distribution

for the variability parameter F rely on the accuracy of the central limit theorem.

300 k - Simulation 5000 '
Approximation 2500 \

0 250 - 4
- * 2000 '.4000

220 -

150 1500 .a 3000 ''

100) 1000 .. 2000 (c)(a) 00 (b)(C

100 150 200 100 150 200 100 150 200

Base-Stock Levels (S) Base-Stock Levels (S) Base-Stock Levels (S)

Figure 4-3: Simulated (solid line) versus approximated values (dotted line) for a single

installation with an order-up-to policy, demand mean p = 150, standard deviation o- = 30,
holding cost h = $2 and penalty cost p = $4, and zero fixed cost. Simulated values computed

for normally distributed demand. Panels (a)-(c) correspond to time horizons (a) T = 1, (b)

T = 12, and (c) T = 24.
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Furthermore, Figure 4-3 shows that both simulation and approximation point to

similar values of S that minimize the average cost. It is around the optimal order-

up-to policy that our approximation yields results that are closest to simulation. The

percent errors relative to the optimal simulated values are 19.2%, 6.5% and 4.4% for

T = 1, T = 12 and T = 24, respectively.

Impact of Demand Variability

We next assess the performance of our approach and the effect of the demand be-

havior on our solutions. To do so, we compute the optimal base-stock policy ('i, )

under our approach. We also evaluate the optimal policy (9, S) obtained via the

traditional robust optimization approach (using Eq. (4.19)) for different values of

P. We compare the solutions from our framework and the traditional robust opti-

mization approach with the optimal policy (s, S) obtained for the stochastic system

given some distributional assumptions on the demand at the sink node. To evaluate

the performance of policies (9, S) and (, S) against policy (9, S), we compute the

following quantities.

Table 4.3: Solutions and associated costs of interest.

Framework Optimal Policy Average Cost

Our Approach (gS ) =E,[C(1, 9, w)]

Robust Approacht (Si) C=E [C(, , ow)]

Stochastic Approach (g,5) C = E'[C(g,5, w)]

t Computed as a function of a given value of F.

Note that the expected values are taken with respect to some particular demand

distribution. We report the relative percent errors with respect to the stochastic

optimal cost, i.e.,

x 100 and x 100.

To illustrate our results, we consider the example of Instance (2) with three echelons

and a single sink node with time horizon T = 8, demand mean p = 100. Figure 4-4

compares the percent relative errors obtained using our framework and the robust

approach (F = 2 and F = 3) versus stochastic optimization. We report the errors for
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various values of - E [10, 100] with four different demand distributions at the sink

node (normal, lognormal, gamma and uniform distributions). Our approximation

compares well with the stochastic solutions. The errors are generally negligible for

lower values of o and tend to increase slightly for larger values of o, though not

exceeding 10%. The robust approach for r = 2 and r = 3 yield larger errors for all

considered instances. Note that the effect of variability is more visible for lognormal

and gamma distributed demand.

Impact of Network Size

We consider the network instances depicted in Figure 4-2 and use our framework to

obtain the optimal inventory policy (sS). We then assess the performance of our

solution to the optimal inventory policy (-9,S) obtained in the stochastic setting under

some given distributional assumptions around the demand behavior. We compute the

solution percent error

x 100,

where C and C are defined in Table 4.3. Table 4.4 compares the performance of

our approach for Instances (1)-(5) for various demand distributions. The solution

percent errors generally lie within 5%, suggesting that our approach yields solutions

that perform well compared to the stochastic optimal solution for a variety of networks

and demand distributions.

Computational Performance

Similarly to the observations made by Bienstock and Ozbay [2008], the iterative algo-

rithm converges to good solutions within a few iterations. Figure 4-5 shows that, for

instance (4) with time horizons ranging from T = 6 to T = 12, the algorithm converges

to the solution within 4 iterations. Figure 4-6 shows that the fast convergence of the

algorithm is carried through for networks of different sizes. Runtimes are however

sensitive to these two input parameters, as shown in Table 4.5.
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Figure 4-4: Percent errors associated with implementing the solutions given by our approx-
imation and the robust optimization approach (F = 2 and F = 3) relative to implementing

the optimal stochastic solution. Errors are depicted for Instance (2) with demand mean

p = 100, T = 8, while varying the demand standard deviation in the range of [10, 100]. Panel

(a)-(d) compare the performance to the stochastic instance with the demand at the sink node

following (a) normal distribution, (b) a lognormal distribution, (c) a gamma distribution,
and (d) a uniform distribution, respectively.

Table 4.4: Errors (%) relative to the stochastic solution.
Solution Percent Errort

Instance Demandt T = 6 T = 9 T = 12

N 0.33 0.41 1.19
(1) L 4.67 4.85 4.85

G 2.28 2.83 2.05
(2) U 2.33 2.43 1.86

G 2.64 3.23 2.42
(3) N,L 3.44 9.38 2.16
(4) L 2.79 3.37 4.72

(4) N,G,U 2.41 2.94 4.32

(5) U 2.07 1.77 1.43

(5) N,L,G,U 2.05 1.81 1.33

t Convergence within 2% gap between the lower and upper bounds.

MIO gap of 2% and 120s time limit allowed for each MIO problem.

* N, L, G, and U stand for normal, lognormal, gamma and uniform.
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Figure 4-5: Evolution of the lower (solid line) and upper (dotted line) bounds through the

iterative algorithm. Panels (a), (b) and (c) correspond to Instance (4) with an (s, S) policy

and variable cost for T = 6, T = 9 and T = 12, respectively.
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Figure 4-6: Evolution of the lower (solid line) and upper (dotted line) bounds through

the iterative algorithm. Panels (a), (b) and (c) correspond to an inventory network with

a horizon T = 8, a (s, S) policy, and zero variable costs for instance (2), instance (4) and

instance (5), respectively.

Table 4.5: Number of iterations and runtime (in seconds).

T=6 T=9 T=12

Instance Iterations Runtime Iterations Runtime Iterations Runtime

(1) 4 2.0 5 5.1 4 22.0

(2) 4 7.0 2 18.3 4 489.7

(3) 3 7.2 3 75.5 3 448.9

(4) 4 27.2 3 269.1 3 1,112.7

(5) 3 87.8 3 1,185.7 3 1,527.2

T Convergence to within 2% gap. between the lower and upper bound
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4.4 Optimizing Affine Policies

In this section, we employ our methodology to compute optimal affine parameteriza-

tions and compare their performance with the solutions obtained via the traditional

robust optimization approach. Furthermore, we evaluate the trade-off between the

richness of affine policies and the simplicity of base-stock policies with respect to their

corresponding performance for generalized inventory networks.

4.4.1 Problem Formulation

Under an affine policy, we represent the echelon order quantities at the beginning of

time period t as a function of the historical demand observed by that echelon until

time t - 1. We define

= + E -w - , (4.34)
kES, j=1

where the vector 3t = {i3, j = 0, ... , t} denote the affine parameters associated with

echelon n at time t.

Note: We can simplify the model by expressing the ordering cost as an affine

function of a subset of demand realizations. For instance, we can invoke the past T

time periods with 3t = { , j =0, ... ,T } and obtain the following functional form

ut= O1,O + Z Z 43J . w- . (4.35)
kESn j=1

Finding the optimal affine parameters in our framework calls for solving a robust

optimization problem of the form of Eq. (4.18). Specifically, we consider the following

problem formulation

min Zfi-yi
fy a F, (4.36)

st. yi % C (3, W) VW E U(Fi) and Fj : i E _
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where the vector 3 = {i3, Vn, t} and the total inventory cost is given by

T T

C (0, LO) = Ce -0' + [h, x.*+p xs + Kn - 12t>O], (4.37)
t=1 eEL t=1 n&'.

with o', xt, and ut are functions of (3, w), for all values of n and t. We solve the

problem in Eq. (4.36) via decomposition by solving iteratively (a) the adversarial

problems (AP), and (b) the decision maker's problem (DM).

Adversarial Problems: In our setting, problem (AP) consists of solving for

the worst case cost given the parameterized uncertainty set U (FI) and retrieve the

optimal solution V that drives the worst case value. For a given parameter F, and

a vector Ot = { 3,,j =0,... ,T}, for all n and t, problem (AP) in Eq. (4.21) can be

re-written as

T T

max cj -o t + [h n -()+p A()+K 1 >o]
WEU(Fi) t=Oe L t=O nEn

s.t. xt+1 = X3 + ut - wVt 0, T,
keSn

Ut = o, Vt 0, ... T

kESn j=1

Problem (AP) is a non-concave maximization problem and the optimal solution V

may not occur at a corner point of the uncertainty set U (Fti). Problem (AP) can be

cast as a mixed integer optimization (MIO) problem and solved relatively efficiently

using available optimization solvers. Similarly to the case of base-stock policies, we

introduce two sets of auxiliary binary variables to formulate problem (AP) as a mixed

integer optimization problem

1, if U > 0 1, if X > 0
yi = and zt =

01 otherwise 0, otherwise

Note that, given the affine structure of the ordering policy, the problem above is easier

to solve compared to the adversarial problem that we obtain for base-stock policies.
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Decision Maker's Problem: At each iteration of the algorithm, problem (DM)

consists of finding the best affine policy, given a finite collection of demand realizations

stored thus far. Specifically, for each index i E I, we populate the set tj with the

optimal solutions Ci that we obtain from solving problem (AP) at each iteration of

the algorithm. Mathematically, we formulate problem (DM) in Eq. (4.20) as

min (fi -q
m iE. (4.38)

s.t. qj >C(/,i), V'EUa, ZEI}

where the total cost is given by Eq. (4.37). For the generalized case where the fixed

costs are non-zero, problem (DM) can be cast as an MIO whose size grows with the

number of iterations. Our computations suggest that more iterations are needed to

achieve a convergence within 5% for affine policies compared to base-stock policies.

This suggests that affine policies are harder to solve for. However, they achieve lower

costs, as shown in Section 4.4.2.

Note: For the case where the fixed costs are zero, we can implement the method-

ology provided by Ben-Tal et al. [2005] to formulate an approximation of (4.36) that

can be cast as a linear optimization problem and achieve better tractability. For

the case where the fixed costs are non-zero, we employ the generic decomposition

algorithm presented in Section 4.4.2. However, one may investigate the performance

of novel decomposition techniques such as the algorithms developed by Postek and

Hertog [20141 and Bertsimas and Dunning [2015]. We next evaluate the performance

of affine policies and compare our solutions to those obtained for base-stock policies.

4.4.2 Computational Results

We investigate the performance of affine policies and examine the effect of the system's

parameters on our solutions. For our computations, we consider the five network

topologies presented in Figure 4-2. We assume throughout that the fixed costs are

non-zero.
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Impact of Demand Variability

We assess the performance of our approach and the effect of the demand behavior on

our solutions. To do so, we apply our approach and compute the optimal affine policy

A7= {,Vn, t}, where )3 = {0,j =0, .. ., r}, for all n and t. We also evaluate the

optimal policy 3 obtained via the traditional robust optimization approach (using

Eq. (4.19)). We compare the cost implied by the solutions from our framework and

the traditional robust optimization approach to the optimal cost that we obtain using

base-stock policies. In particular, we compute the following quantities.

Table 4.6: Solutions and associated costs of interest.

Framework Optimal Policy Average Cost

Our Affine Approach W =1Ee[C(/,w)]

Robust Affine Approacht C3 = E4[C( [ , w)]

Base-Stock Approach (iS) C = EW[C( , w)]

t Computed as a function of a given value of F.

Note that the expected values are taking with respect to some particular demand

distribution. We report the relative percent errors with respect to the base-stock

optimal cost, i.e.,

x 100 and - x 100.
C C

Note that negative percent errors indicate that the optimal affine policy yields a lower

cost compared to the optimal cost obtained under a base-stock policy.

To illustrate our results, we consider the example of Instance (2) with three eche-

lons and a single sink node with time horizon T = 8, demand mean P = 100. Further-

more, we assume a fully affinely adaptive policy where r = t (i.e., we invoke all past

historical demand realizations for the affine parameterization). Figure 4-7 compares

the percent relative errors for the affine policies obtained using our framework and

the robust approach (F = 2 and r = 3) versus the optimal base-stock policy obtained

via stochastic optimization. We report the errors for various values of - E [10,100]

with four different demand distributions at the sink node (normal, lognormal, gamma

and uniform distributions).
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Figure 4-7: Percent errors of the average cost values implementing the solutions given by

our approximation and the robust optimization approach (F = 2 and F = 3) relative to the

optimal average cost implementing the optimal stochastic solution. Errors are depicted for

Instance (2) with demand mean p = 100, T = 8, and zero variable costs, while varying the

demand standard deviation in the range of [10, 100]. Panel (a)-(d) compare the performance

to the stochastic instance with the demand at the sink node following (a) normal distribution,
(b) a lognormal distribution, (c) a gamma distribution, and (d) a uniform distribution,
respectively.

The optimal affine policy we obtain in our framework generates an average cost

that is consistently below the optimal cost obtained under a base-stock policy (the as-

sociated percent errors are negative throughout). The benefits of implementing affine

policies compared with base-stock policies are highlighted especially for the case of

lower demand variability. Furthermore, our approach yields solutions with lower av-

erage costs compared to the traditional robust optimization framework. While the

robust approach with F = 2 yields good solutions for lower demand variability, this

does not carry through for higher demand variability.

Impact of Network Size

We consider the network instances depicted in Figure 4-2 and use our framework and
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the traditional robust approach (with _ = 2) to obtain the optimal affine policies /

and 3. We then assess the performance of our solution to the optimal inventory policy

(9,S) obtained in the stochastic setting under some given distributional assumptions

around the demand behavior. We compute

x 

x 100 and _ x 100,

where C and C are defined in Table 4.6. We report herein our results for simplified

affine policies with T = 2, i.e., we assume the ordering amount at time t is an affine

function of the demand realizations at times t - 1 and t - 2.

Table 4.7: Percent errors relative to the optimal base-stock solution t .

F = 2 Random F

Instance Demandt T = 6 T = 9 T = 6 T = 9

G -8.39 -1.21 -14.7 -9.54

U -9.49 -2.56 -15.0 -9.76
G -9.08 0.66 -14.1 -8.77

N,L -9.30 0.48 -14.2 -8.78
L -5.26 1.22 -11.4 -7.05

N,G,U -6.50 0.02 -11.7 -7.34

U -3.38 -2.53 -11.6 -5.64
N,L,G,U -4.30 -3.56 -12.8 -7.09

t Convergence within 5% gap and time limit of 300s per MIO problem.

* N, L, G, and U stand for normal, lognormal, gamma and uniform.

Table 4.7 compares the performance of our approach and the traditional robust

setting with respect to the optimal base-stock policy for Instances (2)-(5) for vari-

ous demand distributions and time horizons. Note that we set the overall time limit

to 7,200 seconds (2 hours) for the entire algorithm. Affine policies obtained un-

der our approach oftentimes outperform the base-stock policies under the simplified

parametrization with T = 2. Furthermore, our framework generates affine policies

that allow to achieve lower costs compared to the traditional robust approach.

Computational Performance

Under the assumption that fixed costs are non-zero, the iterative algorithm takes
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longer to converge for problems optimizing affine policies compared to those optimiz-

ing base-stock policies. Figure 4-8 shows the rate of convergence for Instance (2) and

-r = 2 with time horizons ranging from T = 6 to T = 12. Figure 4-9 shows that the

convergence of the algorithm is highly dependent on the size of the network. Con-

sequently, for affine policies, the network size and length of the time horizon seem

to have a direct effect on the rate of convergence. Runtimes in Table 4.8 reflect the

tradeoff between the cost savings of implementing affine policies versus the associated

computational challenge.
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Figure 4-8: Evolution of the lower (solid line) and upper (dotted line) bounds through the

iterative algorithm. Panels (a), (b) and (c) correspond to Instance (2) with three installations

and a single sink nodes with an affine policy (r = 2) for T = 6, T = 9 and T = 12, respectively.
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Figure 4-9: Evolution of the lower (solid line) and upper (dotted line) bounds through

the iterative algorithm. Panels (a), (b) and (c) correspond to an inventory network with a

horizon T = 6, an affine policy with r = 2 for Instances (2), (4) and (5), respectively.

Note: The lower bound in Figure 4-8 may not increase monotonically. This is due to

forcing a time limit of 300s to solve problem (DM). The reported cost is associated

with the incumbent solution retrieved at that time, and could be far from optimal.
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Table 4.8: Number of iterations and runtime (in seconds)t.
T=6 T=9

Instance Iterations Runtime Iterations Runtime
(2) 5 20.7 7 796.7
(3) 6 328.9 13 2,589.1
(4) 7 547.0 13 5,574.5
(5) >20 >7,200 >7 >7,200

t Convergence to within 5% gap between the lower and upper bound

4.5 Concluding Remarks

In this chapter, we applied our framework to analyze and optimize base-stock and

affine policies. We showed that our methodology obtains base-stock levels whose ex-

pected performance matches that of optimal base-stock levels obtained via stochastic

optimization. Furthermore, our approach provided optimal affine policies which of-

ten times yield better results compared with optimal base-stock policies. Last but

not least, our framework generates policies that consistently outperform the solu-

tions obtained via the traditional robust optimization approach in terms of expected

performance.

133





Chapter 5

Conclusions

Given the uncertain nature of the environments in which many systems evolve, ac-

counting for the impact of uncertainty and randomness is key in the process of deci-

sion making. To understand the effect of uncertainty, traditional models often adopt

one of two avenues: (a) describing the randomness probabilistically and (b) describ-

ing randomness deterministically. Stochastic analysis and optimization assume the

knowledge of specific distributions that model the uncertainty. However, such precise

knowledge is rarely available in practice. Robust optimization models the uncertainty

deterministically through convex sets and protects the system against the worst case

scenario. However, taking a robust approach may yield conservative solutions.

We proposed a novel framework which leverages the conclusions of probability

theory and the tractability of the robust optimization approach to approximate and

optimize the expected behavior in a given system. Similarly to the robust optimiza-

tion framework, we modeled uncertainty via convex sets and controlled their size via

variability parameters. The size of the uncertainty sets controls the degree of conser-

vatism and the level of probabilistic protection of the robust model. Under the robust

setting, we obtained worst case values which are function of the variability parame-

ters. We broke new ground by treating the variability parameters as random variables

and inferred their distribution using the conclusions of probability theory. This al-

lowed us to devise an averaging scheme to approximate and optimize the expected

behavior while leveraging the tractability of the robust optimization approach.
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Our framework (a) avoids the challenges of fitting probability distributions to

the uncertain variables, (b) eliminates the need to generate scenarios to describe the

states of randomness, (c) does not require simulation replications to evaluate the

performance, and (d) demonstrates the use of robust optimization to evaluate and

optimize expected performance. To illustrate the applicability of our methodology, we

considered analyzing queueing networks and optimizing supply chain networks. Our

approach specifically allowed us to achieve considerable tractability while providing

solutions that matched the ones obtained via stochastic analysis and optimization.

We summarize below the merits of our framework.

(a) For simple queueing systems, our approach (a) provided approximations that

match the diffusion approximations for light-tailed queues in heavy traffic, and

(b) extended the framework to analyze the transient behavior of heavy-tailed

queues (Chapter 2).

(b) We have shown that our approach extends to study more complex queueing net-

works. In particular, we (a) developed a calculus which allowed us to decompose a

steady-state network of queues and provide a station-by-station approximation,

and (b) analyzed the transient behavior of tandem and feedforward networks

(Chapter 3).

(c) For the problem of optimizing supply chain networks, our methodology (a) gen-

erated base-stock levels matching the solutions obtained via stochastic optimiza-

tion, and (b) investigated the merits of implementing affine policies compared to

base-stock policies. We have also shown that the optimal policies associated with

our approach outperformed those obtain via the traditional robust optimization

framework (Chapter 4).

Overall, our approach constitutes a bridge between the modeling power of stochastic

analysis and optimization and the tractability power of robust optimization. Future

research extending this framework include deriving ways to analyze and optimize

other risk measures, such as the conditional value-at-risk, as well as extending the

boundaries to include more complex systems which may not be governed by simple

linear dynamics.
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Appendix A

The Case of a Single Queue

In this appendix, we provide the proofs of Propositions 5-7 from Chapter 2. These

propositions allow us to obtain an exact characterization of the worst case system

time in a multi-server queue operating under an FCFS scheduling policy.

System Time under No-Overtaking

We obtain an exact characterization of the system time in a multi-server queue under

a set of policies P that do not allow overtaking.

Proposition 5. Under a set of polices P that do not allow overtaking until job e < n,

where f e K7, the system time of the fth job in an m-server queue is given by

Se = max L XS(i) -Ok 'y i=k
(A.1)

where s(i) = t - -i)m.

Proof of Proposition 5. Utilizing Eq. (2.22), and since CTM = ST_ + Aem,

Se = max (ST_ + Am - A0)+ XT = max( SM+ Xf' - (At - At), Xt .
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Applying the recursion expression to the term SP_, above yields

Se= max (max (ST 2m+ Xj-m - (A-m - Af-2 m), Xin) + Xe - (At - Ae-m), Xe)

= max(5' 2m + (Xe +Xe) - (-A-A 2m), (Xfm +Xe) - (Ae - Aem) ,Xe)

Since E K = { ym+1, .. .,(y + 1)m}, we have E Q (y +1)m, implying 1 e- -ym: m.

Hence, we can apply the recursion until S_ and obtain

St = max ST-ym + -Xe-im - (Ae -A-m), X-y-1)m) . . . X .
i=0 i=O

Note that the first m jobs enter service without waiting, implying that their system

time is equal to their service time. Since f - ym < m, we have Sfym = X -.. And

expressing the arrival times Aj as the sum of the interarrival times T1 ,...,T, the

system time can then be written as

ST= max Xt-,. + Z Xeim - Z T, Z Xe-in - Z Ti,
i=O i=f--ym+1 i=O i=e-(-y-1)m+1

max ( Xt,,, - Ti, Xf-1i- Z Ti
i= i=f--ym+1 i=O i=f-(-Y-1)m+1

= max L Xe-( )m - E Ti, Xe-(-i)m- Ti
( i=0 i=f--ym+1 i=1 iE(-) +

The compact representation of the above expression becomes

= max ( X-(-)m- Tjj.
0!sk: y L~ f7i= -( -i)\i=k

Substituting s(i) = f - (-y - iOm yields Eq. (A. 1).

S, Xe)

Xe).
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Worst Case Behavior under No-Overtaking

We obtain an exact characterization of the worst case system time in a multi-server

queue under a set of policies P that do not allow overtaking.

Proposition 6. In an m-server queue, under a set of policies P that do not allow

overtaking until job f: n, where E EK,, and given a realization XE+ E Um, there exists

a sample path (', ... , X ) with non-decreasing service times achieving

S' (Te, Xe+) = max max L X,(j) -
f I 

k: y ( U i=k

where s(i) = f - (-y - i)m.

Proof of Proposition 6. The index s(i) = f - (7 - i)m =( - -ym) + im. And,

since fE K, = {-ym+1,...,( +1)m}, we have ym +1 f (Y+ 1)rm, implying

1 f-"ymm. Therefore,

im + 1 s(i) = (f - ym) + im (i + 1)m,

yielding s(i) E Ji. Since, for i j, the indices s(i) and s(j) belong to different sets in

the partition Ko,..., Ky. Hence, we can use Assumption 3(c) for I= {k, . . ,Y } u I',

where I' c {y+1,...,v} and III =--k+ II'j+1, to obtain

S-k +|11'1 + 1F1"--k+ V+IX+(ik) + E X +I+ .
i=k iEI' 1I

This implies the following bound the partial sums of the service times in Eq. (2.25)

7 -y - k +|I'll+ 1
LXs) + F, (-y - k + I'I + 1)1"-g - E X i, (A.3

i=k iEI'

for all k =0,..., y. Since Eq. (A.3) is true for all I' c {y+1,...,v}, then

-y ( Ia

Z X,(j) min k +11I1 + s (+ - k + I'I + 1)1/a - Z X 7j , (A.4)
i=k / {y+1, V} pe'

k 

-1 k +I*+ F )1, -Xj A5(x-, (A.5)
[1 Elk
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where I* is the minimizer in Eq. (A.4). Eq. (A.5) implies, for all k = 0,... ,y, that

y - - k +|I+J1
max XIlk + F, (-y - k +|*|+ 1)"8 - Xj,.

(Xe,Xe+)EUm i ft

We next show that there exists a sequence (X,... , 2 I) that achieves

7 7 7 -k + *+ 1
- max +X(i) - +s (k+ 1+ 1)"c" - Z X, (A.6)

i=k i=k P iE-E*

for all k = 0,..., . Due to its triangular structure, the above system of equalities

yields a unique solution ' s..., _ ,sP)) which can be computed via back-

ward substitution. Specifically,

S + s (|I*I+ 1 - X-i ,

s~-P IEk I-Ixk+l+1k+-
X -(k) A + SI (y -k + I*j +1)1""- (-y-k+IE*| 1- X +E X1*,

JiEI +I
i k k+1

for all k =0,... , -1. To complete the sequence, we propose to set the service times

of all jobs belonging to a partition Ki to have the same value as job s(i) E K , for all

=0,...,7, I e.,

T= Sg for all ji e Ki, where i= 0,..., y. (A.7)

(a) We next show that, given X+, the chosen sequence of service times satisfies the

inequalities of set U"n. Since the service times are nondecreasing, the sum of

service times selected from a set I" c {0,.... <y}, such that II"I = -y - k + 1, can be

upper-bounded by

XI'- XsPi)'
iel" i=k

And given Eqs. (A.3)-(A.6), we obtain

XT= EX7i +fX < + +Tt%+|I'
iE-T iET iEl"P
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for all I = T u" ; {,. .. ,v}. The sequence of service times (Xi',...,XT)

therefore satisfies the inequalities of the uncertainty set Urn, for any realization

X&+, and is hence feasible. As a result, the bound in Eq. (2.25) can be achieved

with equality.

(b) The chosen sequence of service times is also nondecreasing.

(1) Given the optimality of set IT* from Eq. (A.5), we have

+ F,[- - k +|I*|1+ 1] " Xy Xj, +Fs [-y - k + I*+1|+ 1]1 "E Xj,.
iE& * i *

k 'k+1

Rearranging the terms in the above inequality yields

I-k -T+1I+F,[-y-k+|IT*|+1]U1"" EXj +EXj, sI [--k+|I*+1|+1]ll"(A.8)
P' iEI* iE2*1

By Eq. (A. 7) and using the characterization of X', Eq. (A.8) leads to the

following upper bound on the service times

SJ 1 + FS k + IE*,I+ 1)1/" - (- - k + IT*n) , V jE J. (A.9)

(2) Moreover, as in Eq. (A.6), we have

S-Y -(k +1) + I*+ I+ 1
L XP + F, (-y - (k + 1) + IT*+j + 1)"- xj XIs

i=k+ = iEIz+

which simplifies to

XP - k +|ITk+1| + Fs (-y - k +|IE*,| " 1) +1X0. ( A.10 )sk+l) =~+ (YkI+IlIA XS i) + i E ) (A.1

By Assumption 3(c), for {k + 2,...,y} u I*, we obtain

k -y - (k +)+I
E X,~i + E Xii 5 * ,1-( 1+Ign}"

i=k+2 iE *kA
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Applying the above bound to Eq. (A.10), we obtain

jk+1 - LS(k+1)

S + T(7-(k + 1) + IEk*+1)""" 7-( +1 s ) .(.1

Combining the bounds obtained in Eqs. (A.9) and (A.11), we obtain for all

k = -0..7 l-1

Xjk + FS ( k +|IE*+,| + 1)'1a - (-y - k +|IE*+| 1)

<A + Fs (y - (k + 1) +(I-*,I+ 1) 11 - (k + 1) +Il+,) 'Is -jSk+1

where the first and last inequalities are due to Eqs. (A.9) and (A.11), respectively,

and the second inequality holds since the function f(i) = (v -i+ 1)1/s - (v -i)/as

is increasing in i. Hence,

!x' <g' <..< p

By the construction in Eq. (A. 7), we conclude that the sequence of service times

is nondecreasing. This completes the proof. 0

Worst-Case Behavior in a Multi-Server Queue

We obtain an exact characterization of the worst case system time in an FCFS multi-

server queue, for any sequence of interarrivals T.

Proposition 7 Given a sequence of inter-arrival times T = {T1 ,...,T}, the worst

case system time S, (T) in an FCFS queue is such that

Sn (T) = Sn (T)=max max (A.12)
Osksu Urn i=k i=r(k)+1

where r(i) = n - (v - i)m and v = [(n - 1)/m].
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Proof of Proposition 7. Consider job i. In an FCFS queue, jobs enter service

in the order of their arrival. Hence, job i enters service prior to all future incoming

jobs. As a result, the system time of job i depends on Ti = (T1 ,...,T) and Xi =

(X,..., Xi). For some realization of inter-arrival times Ti and service times Xi+,

we define the worst case system time in an FCFS queue as

S (Ti, Xi+) = max

s. t.

Si (Ti, Xi)

(Xi, Xi+) E Um.
(A.13)

We next prove our result using the technique of mathematical induction. We postulate

and verify the following inductive hypothesis: Under an FCFS policy, there exists a

sequence of service times Xi that achieves the worst case system time Si (Ti, Xi+),

with X 1  ... X Xi, for any given T and Xi+, such that (ii, XI+) EU m .

Note that, for i j > k, job k enters service before job j under an FCFS policy.

Given the nondecreasing service times, we have X3  Xk, implying that job j cannot

depart the queue before job k. As a result, under our inductive hypothesis, in an FCFS

queue with 1  ... Xi, no overtaking occurs until job i, yielding Si (Ti, Xi+) =

S'(T Itxi+).

(a) Initial Step: We first show that the inductive hypothesis holds for i = 1,...,m.

Since we address the steady-state, we assume, without loss of generality, that the

queue is initially empty. Hence, the first m jobs enter service immediately with

Si = Xi, for i E KO = {1,...,m}. Applying Assumption 3(c) for l = {0} u T', for

all sets I' {1,..., v}, we obtain

X1 + Y Xlk + F, 1, + 11
kET

This implies that

fri + 1 *
Xi + s I'|+ 1 )/,- Z X, V 11 C V1,...

< min J + I'+ 1 - Xk..
S V} kET'

143



Let 1* be the minimizer.

Thus, to maximize their system time for given (T, X,,... , X,), it suffices to

set their service time to their highest value, i.e.,

11*|+1 (l~
X = +F, I*|+1 -- X, for alli=1,...,m.

P1 kEI*

This results in X 1 = ... = Xm, which satisfies the inductive hypothesis Vi.

(b) Inductive Step: We suppose that the inductive hypothesis is true until i = n - 1

and prove it for i = n. Let f < n be the last job that was served by the server which

is currently serving job n. Then, the system time Su, is given by

S, = max(Ce - An,0) + Xn = max(Se+ At- An,0)+ Xn

= max Se- Ti,0 + X =max Si + Xn - T, Xn.
j=fl j=fl

For any given realization T, the worst case system time is bounded by

-n (T) max max Sf+Xn- TI, XnS~T)-XEU m  
j;f+1

( n
max max St + Xn - E T. max X ) (A.14)

Let ( 1, ... , X) be some sequence of service times that maximizes Se + Xn, i.e.,

max Se + X, = Se (TE, X)+ n.

From the induction hypothesis, given a realization T and Xe+, there a sequence

of non -decreasing service times X that achieves the worst case system time,

implying

Se (Te, Xf) S (Te, Xf+) = 1T (T', X'+).

Hence, we bound the expression in Eq. (A.14) by
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Sn (T) max Z (, X'+) + Xn T, maxXnf

< max max VXsi) - Ti + 1n 1 Ti, maxXn ,05k i=k i=s(k)+1 i=f+1 U J

where the second inequality expresses Sf (T, X&+) explicitly using Eq. (A.2).

Rearranging the terms, and since (Xi, X+) E U"n, we obtain

Sn (T) max max E Xs(i) + Xn - L Ti - E Ti , maxXnO:ksl i=k i=s(k)+1 i=+i U

< max max max + X - Ti), maxX 1 . (A.15)
IOk ,y i=k i=s(k)+1

Recall that s(k) = f- (-y - k)m E Kk. Given that no overtaking occurrs until

f, at the time job n enters service, the jobs served by the remaining (M - 1)

servers should have arrived after job f and before job n, i.e., they belong to the

set I = + 1, . . . , n - 1}. Since there are (m - 1) such jobs, we have

m-i Il = n - 1 - ( + 1) + 1 =n - - 1,

yielding n - f m. Consider the partition KO, K 1,... , K, that we considered in

Assumption 3(c). Since two jobs j and k in the same set satisfy Ij - kl< m, jobs

n and f belong to two distinct sets in the partition KO, K 1,..., K,. With E Ky,

and n E Ka, this implies v 2-y + 1. We consider the following two cases.

(1) If v = + 1, then by Assumption 3(c),

{(} 
v- k+I+(max LXsti) + Xn +T (v - k + 1)"c""

U i=kP

max { Xski) = + , (v - k + 1)"a
w r( i=k

where r (i ) = n - (v - iOm. Therefore, we have
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max { i)
Ii=k

+ X" = max
Urn

(A.16)
i=k

Also, the index r(k) = n - (v - k)m = n - (-y + 1 - k)m. Given that n ! f + m, we

have r(k) f - (-k)m = s(k), which results in

n n

Z T ! Z Ti, for all 0 k . (A.17)
i=s(k)+1 i=r(k)+1

Combining Eqs. (A.16) and (A.17), Eq. (A.15) becomes

V n
S (T) max jmax, max EXr(j) Z T , maxX . (A.18)

5k!,v ( M =k i=r(k)+1 U

(2) If v y+ 2, then by Assumption 3(c),

max {L
U i=k

XS(i) + Xn}

-Y+
1

= max E Xr() +
Urn i=k+1

Xn} Xr()} (A.19)

Also, since s(k) EKk and r(k+1) EKk+1, we have s(k) r(k+1), which implies

n

T
2=4~k)+l-

T, for all 0 k: y. (A.20)
i=r(k+ 1

Applying the bounds in Eqs. (A.19) and (A.20), Eq. (A.15) becomes

( V
n (T) max max max Z Xri) -

( i=k+1

= max jmax
I

V

maxE Xr ()( =k

E
i=r(k+1)+

n

Z T
i=r(k)+1

Ti max Xn
1 U

Smax Xn .

Since v y + 2, we can further bound Eq. (A.21) to obtain

gn (T) < max max

Combining the results in Eqs.

maxE(M Z Xr i) -( i=k
max X . (A.22)

(A.18) and (A.22) from cases (1) and (2), we

conclude that the worst case system time under FCFS is bounded by the worst
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(A.21)

Smax E
i=k+1

-

n

E Ti ,
i=r(k)+1



case system time under 'P, i.e.,

S,, (T) max max X()- T = S (T).
O: k:v Urn

Osku iusi=k i=r(k)+1

This bound is in fact tight and can be achieved under a scenario where the service

times are chosen such that (, . .. k,) = (5t', ... , ) E U" (see Eq. (2.28)).

Note that this optimal solution consists of nondecreasing service times, hence

proving the inductive hypothesis.
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Appendix B

The Case of a Network of Queues

In this appendix, we provide the proofs of related to Chapter 3. These proofs allow

us to extend the analysis for a single queue to more complex networks.

Output of a Multi-Server Queue

We provide the proof for the characterization of the interdeparture process for a

multi-server queue.

Theorem 10 For a multi-server queue with inter-arrival times T E Ua, adversarial

service times X, and p < 1, the interdeparture times D = {D1 , D2,..., Dn} belongs to

the set Ud

Dn n -k
DZ-A

d C Ua (D, D2, D ..., D) > -1a, V 0 s k ! n -1 . (B.1)
(n - k)ll/a _

Proof of Theorem 10 We now extend the proof to the more complex case of a

multi-server queue. Suppose k E K,. With adversarial service times and by Eq. (3.3),

Sk(T) =max LZX,(i) - Z T
0!sj! Y ( =j i=s(j)+1
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where s(i) = k - ('y - i)m. We analyze the cases where y v - 1 and -y = v separately.

(a) Suppose that -y v - 1. Rewriting the partial sums in terms of v - 1 and n,

n V-1
Sk (T) = Z T - Z X(i) +max

i=k+i i=Y+1 0!jsY

By replacing the system time Sk (T) in Eq. (3.4) by its value from Eq.

the bound on the sum of inter-departure times becomes

n V-1

Z D 1 , E s(j) + Sn (T)
i=k+1 i=-y+l

-max (vE -ks)O!sj! - .~
Ti . (B.3)

We consider the following two cases

V-1
-~i n - k

- - Fa(n - k j/a

V-1
2. X < n)k< _ Fa(n - k)

1. Sinces(i) EK and r(i+1) EKi+1 , we have s(i) < r(i+1) for alli = 0,...,v-1.

By the monotonicity of the adversarial service times, we have Xs(i) Xr(i+1), and

n

T
i=s(j)+1

TTi

Z Ti,

for all 0 _ i, j y v - 1. Hence, we can bound the maximum term in Eq. (B.3)

(v-1
max E ZXSw

n V-1Ti max

E Ti max E Zr(i+l)
i=s(j)+1 (ss i=j

= max Xr()
i=j

n

Z Ti
i=r(j+1)+1

n

-E T.
i=r(j)+1

Since -y v - 1, then y + 1 v, and we can further bound Eq. (B.4) to obtain

max ZX5-(i) ~0 j!-Y i=j
s Ti)

i=s(j)+1 )

(1n

max T Zgr- T Sn (T),
Osj v = i=r(j)+ )
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where the last equality is due to Eq. (3.3). Applying the bound in Eq. (B.5) to

Eq. (B.3), and given the assumption in Case 1.,

n v- v- -k

Z D 2 Xr() + Sn (T) -Sn (T) = X Xr() > - a(n - k)c'/.
i=k+1 i=Y+i i=Y+i A a

2. Since S, (T) 0, Eq. (B.3) becomes

n v-1 v-1 n

Z Di X X s( )-max Xsi) - Ti.
i=k+i i=Y+1 Oj i=s(j)+

By substituting the values of the adversarial service times and bounding the sum of

inter-arrival times by Assumption 3(a), the maximum term in the above equation

can be upper bounded by

( v-imax max h (v - (B.6)
0! j! ^ i=j i=s(j)+1 Osj<-y

where the function h(-) is such that

h(x)=- + . 1 - m - + a _ (m -x + c)l11a, (B.7)

and c is a constant with c = (n - vm) - (k - -ym). The function h(-) is concave,

monotonically increasing to some positive maximum value, after which it becomes

monotonically decreasing. Negative function values belong to the phase where h(.)

is decreasing. Note that, since n = r(n) = n-(v-v)m and k = s(7y) = k -

we can write

n - k = r(v) - s(-y) = [n - (v - v)m] - [k - (7- -y)m] = m - (v - -y) + c.

As a result, the assumption of Case 2. translates to

ZX- ) = v-Y +J i_(v-})"" < n - k - a (n - k) ""
i=-y+1A

A
M - (v - Y) + c - a( ( ja.

-Ae( v 7+c
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implying h(v - -y) < 0, and the function h(-) is decreasing beyond v - -y. For

j : , we have v - j v - -y, and since h(-) is decreasing beyond v - -y, we obtain

h(v -j) h(v - ). Therefore the bound in Eq. (B.6) becomes

(v-1
max ZX-

0 Ij!- 3 ~
Ti ) <max h(v -j) = (v -- ).

Osj 'y

Given the adversarial service times and the fact that n - k = m - (v - -y) + c,

h~v-~) v -1Kp ~ y1/ m.-(v -') + ch (v - ) = 1 + A 
(V -) /a -

+ a (m. (V + ) + c)

v-1 -n - k

i=-Y+1

As a result, the bound in Eq. (B.3) becomes

Z Di :ZJ -h(v -=
i=k+1 i=-Y+1

n-k
A

Fa(n -k)

(b) Suppose that -y = v, i.e. k, n E K,. Rewriting the sums in terms of v and n,

9k (T) Z Ti +max s (i) -
i=k+1 O JsV .

Ti .

By replacing the system time Sk (T) in Eq. (3.4) by its value from Eq.

the bound on the sum of inter-departure times becomes

n
Z Di &

i=k+1

/ 1
Sn(T) - max I XS(,)-

0 j! V (i=j

n

E
i=s(j)+1

(B.8)

(B.8),

(B.9)

We consider the following two cases

n - k
1. 0 F -la(n-k)I.

n - k
2. 0 < -Fa(n-k) 11 4.
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1. Under Case 1., and since the inter-departure times are non-negative,

i=k+1
Di 0 k - Fa(n - k)1/4.

2. Given that k = s(v), the maximum term in Eq. (B.9) can be rewritten as

(v-i

= Xk + max EXsi-
O!j!v .

Ti ). (B.10)

Using Eq. (B.10), and since Sn (T) X, Xk, by the monotonicity of the

adversarial service times, Eq. (B.9) becomes

V-1
Sn(T)-Xk -max Ex8smO!j!v i=j

> - max ( Zv s)-
Oj i=j

n
- T

i=s(j)+1

- maxh(v -j),O5j!5v

n

E Ti
i=s(j)+1 )

where the function h(-) is defined in Eq. (B. 7). Note that, since -y = v, we obtain

n - k = c. As a result, the assumption of Case 2. translates to

n-k c_ acb=
0 < - Fa(n - k)'/a = - - Fa -cl/4" = -h(0),

P A

implying h(0) < 0, and the function is decreasing beyond 0. For j : v, we have

v - j > 0, and since h(-) is decreasing beyond 0, we obtain h(v - j) h(0).

Therefore the bound in Eq. (B.11) becomes

E Di
i=k+1

-maxh(v-j) =O!j!v
n-k

-h(0)- -- a(n--k)1/*

This completes the proof.
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max E Ze(i)
0 j! V i=j

Ti )
n

.E
i=s(j)+1

n

E Di
i=k+1

(B.11)



Superposition Process

We next present the proof for the superposition operator.

Theorem 11 The superposition of arrival processes characterized by the sets

" n - k
ST

Uj = (T , . , Tnj) i=k+1 Aj . -Faj, Vk: n - 1 '

(n - k)'/a -

results in a merged arrival process characterized by the uncertainty set

up E (T , ... , T"p)

T n - k

F 

TiV 
su-

i=ksi >2 -Fa,,,p , V 0 < k: n - 1'
(n - k)'/

where the effective arrival rate, tail coefficient and variability parameter are such that

p

j= 1
Pasu - (L (A 3 aj )Q/(a-1)

P=1 Aj (j=1

Proof of Theorem 11. We first consider p = 2 and then generalize the result.

(a) By Eq. (3.10), T1 = {IT,..., Tfl} and T 2 = T/,. T2} are such that

Aj T' ! (nj - kj) - Aj Ta,j n kj)lla,j=1,2
i=kj+1

Summing over index j = 1, 2, we obtain

ni n2 (n,-k 1 +n 2 -k 2 )
A1 iT + A2 E T/ >.

i=k+1 i=k2+1 -AiFa,1 (n, - k1 )'1 a - A2Fa, 2 (n2 - k 2 )1/a

We consider the time window T between the arrival of the kh and the n th jobs

from the first arrival process. We assume that, within period T, the queue sees

arrivals of jobs (k 2 +1) up to n2 from the second arrival process. Therefore, period

T can be written in terms of the combined TsuP = {TUP,..., T.s'"} as
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T= Z T'= Z T"U, where k=ki+k 2 , and n=rni+n2. (B.13)
i=ki+1 i=k+1

Without loss of generality, we assume E T k2 +1 T2 and by Eq. (B. 13),

n ni n2

(A,+A2 ) ZTU > A T|+ A2 FT
2,

i=k+1 i=ki+1 i=k2 +1

> (n - k) - AiI',i (ni - k1)'1" - A2 a,2 (n2 - k2) /,

where the last inequality is obtained by applying the bound in Eq. (B.12) and

substituting n1 + n2 = n and k1 +k 2 = k. By rearranging and dividing both sides by

(A, + A 2) and (n - k)"/,

Tn " n -k
Z k+1 sup

i=k+( z k sup ,sup, where A5up = A, + A2, asup = a, and
(n - k)'/

A, Fa, ni-ki /a + A2  __ n2-k2 /a

, A1 + A2 (ni -ki +n 2 - k2 ) 1 A + A2  (ni -ki +n 2 - k2/

We let the fraction of arrivals from the first process be denoted by

X = , with X E [0,1]. (B.14)
ni - ki + n2 - k2l

The maximum value that "Ya,sup achieves over X E [0,1] can be determined by

optimizing the following one-dimensional concave maximization problem

max lx'"l + J (1 - x)1"} - (13/(o1) + &4/(a-))(a-)/, (B.15)
XE(0,1)

where 3 = 2a,1, and 6 - I a,2 . Substituting 0 and 6 by their respec-

tive values in Eq. (B.15) completes the proof for p = 2. We refer to this pro-

cedure of combining two arrival processes by the operator (Asu~,a,supaosu =

Combine {(A, a,i, a), (A2 , Fa,2, a)}.

(b) Suppose that the arrivals to a queue come from arrival processes 1 through (p-1).

We assume that the combined arrival process belongs to the proposed set, with
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A = Z Aj and Fa = - ( (A Iaj)/()- /
j=1 A j=1

Extending the proof to p sources can be easily done by repeating the procedure

shown in part (a) through the operator

(Asup, Fa,sup, aSsp) = Combine {(A,Ya, G) , (AP, a,p, a)}.

This completes the proof.

Thinning Process

We next present the detailed proof of the superposition process.

Theorem 12 The thinned arrival process of a rational fraction f of arrivals belonging

to Ua is described by the uncertainty set

Ts i n, -

n -k

spla (n-k)" Fppitt VOskln1lit M (Tn"' . i,"' =k41 >-sli -ra,split, VO s k: n - I
(n -k)ll

11/a
where Asput = A -f and Fa,split = Fa -)-

Proof of Theorem 12. We denote the rational fraction f = p/q, where p and

q > 0 are integers, with p q. By our routing mechanism, we first split the original

arrival process into q split processes Ti = {T7} , each associated with a thinning

fraction f3 = 1/q, where j = 1,... , q. We then combine p split processes and employ

the results from Theorem 11 to obtain the desired characterization for the thinned

process TsPlit = {TS It}

(a) The split process { T} is formed by selecting jobs j, j + q, j + 2q, etc. In other

words, the (kj + l)th job in the split process corresponds to the (j + kjq)th job in

the original process. Consider the time window T between the (kj + l)th and the

(nj + l)th arrivals in the split process JT . T corresponds to the time elapsed
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between the (j + kjq)th and the (j + njq)h arrivals in the original process, yielding

nj+1 j+njq
T= E T = E T

i=(k3 +1)+1 i=j+kjq+1

> _- _ a (nq - kkq) = -aj (nj -kj)lI ,
A Aj

where Aj = A-1/q = A-fj and Fa,j = qla-/ql = Fa-(1/ fj)11", and this characterization

is identical to all q split processes. Eq. (3.12) holds for fractions of the type

fj = 1/q, where q E N+.

(b) We next show that the above result can be extended for any rational fraction

f = p/q. The corresponding split process {TPit} 1 can be seen as a superposi-

tion of p out of the q split processes characterized by an uncertainty set of the

form described in Assumption 3 with parameters Aj and Fa,, as obtained in part

(a). Without loss of generality, suppose we combine split processes 1 through p.

Utilizing the findings of Theorem 11, we obtain Eq. (3.12) with

Asplit=L A=pA/q=A f, and a,spit - (AjFa,jY~/O
j=1 split j=1

Substituting the values of A 3 and Fa,j obtained in part (a) in the above expression

yields Fa,split = Ia - (1/f)11', hence concluding the proof.

Worst Case System Time in a Tandem Queue

We next detail how we obtain an exact characterization of the overall worst case

system time in a network of tandem multi-server queues.

Proposition 15 In a network of J multi-server queues in series satisfying Assump-

tion 14(b), the overall system time of the nth job for all T is given by

S~n(T)= max max[XU +...+ max E XZM Ti
k 1 i=ki J i=kj i=r(k1)+1

where r(i)= n - (v - i)m.
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Proof of Proposition 15 We prove the result using mathematical induction.

(a) Initial Step: The result holds for J = 1 since for an m-server queue

V n1

Sn(T) = g1) (T) = max max Z X - E T .
Oki v X(

1 )EU i=ki i=r(ki)+1

(b) Inductive Step: We now suppose that the result holds for J -1 queues in series,

which expresses the system time across queues 2 through J as

max max X, +...+ maxZX - E T ) (B.16)
Osk2 ... kJsv U2 i=k2  i=kj i=r(k2 )+1

where T ( = {T ( .. ,T } denotes the sequence of interarrival times to the

second queue. Note that the arrival to the second queue is simply the departure

from the first queue, and therefore, denoting the interderpature times from the

first queue by D = {D1) ,...,D), we have

T(2 = Z D = Ti+$(T)- )) (T), (B.17)
i=r(k 2 )+1 i=r(k 2 )+1 i=(k2)+1

where the last equality is due to the fact that no overtaking occurs at the first

queue in the worst case approach. Combining Eqs. (B.16)-(B.17), the worst case

system time Sn (T) can be expressed as

( k 3 
n n

max max + X - T) +S ( (T) (B.18)k25.._kjMu - r(7) rk

U2 i=k2  i=kj i=r(k2 )+1

Since no overtaking occurs in the first queue, and given that [r (k 2 ) /m] = k 2 , the

system time of the r (k 2 ) Job can be expressed as

SM~ ~ k2 r(k2),T
(T) = max maxEX -() T .

10 i=k i=r(ki)+1

Substituting the above expression in Eq. (B.18), and rearranging the terms proves

the inductive result. This concludes the inductive step.
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Worst Case System Time in an Initially Empty Tandem Queue

We next characterize a closed-form bound on the worst case system time in an initially

empty tandem network with identical queues.

Theorem 16 In an initially empty network of J multi-server queues in series satis-

fying Assumptions 1(a) and 14(b), with aa = = .. = = ,p = .. = P, p <1,

and F = ml/ITa + 'I'm > 0, where

_V j = 1

the worst-case system time of the nth job with v = [(n - 1)/m] is given by

I/,m(1- p) J j y Al ' a-
A vl"-V + (- + ( [,riJ'v ]

F-VA y+ _+ F if am(1 - p)

a -1 AN -' - Fa/c-') J E
+1- + . Tpl, otherwise.

[m(1 - p)]/(a- +) .+ (P 1

Proof of Theorem 16. From Eq. (3.24), the worst case system time is given by

- i r [r,(')+ (k,2- k + 1)1/0+... + 1-m) *(v -k, + 1)1/0 1 +
S=-+ max

" ~ ~ ~ -, p [1..s~u T (v - k1)]11" - m- (v - k1 )

Furthermore, since (kj+1 - k + 1)1/ (kj+1 - kj)ll" + 1, for all j=1,..., J, we obtain

+ m a x I T[ ( )+ ( k k ) I (J )+ ( l a ]U) (E k2 - k1)ll" + ... + FM* v kj)U +
Sns-+ E T + max / n(1 - p.

P j=1 Oki-.. kj" Fa j (m(v - k)] m(-p) (v - k1)

We will isolate the problem of maximizing [(1)+ (k 2 - k 1 )'Ia +... + (J)+ (v -kj)U"

for fixed values of k1, il, and make the transformations x1 = k2 - k 1 ,...,xj = v - ki,

where xj E N, for all j 1,..., J. With these transformations, the optimization
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problem simplifies to

max pui) + . . . +

m ax Aa[m(v-k1)1/a A (v-ki)+ s.t. x 1 +...+xj=v-ki, (B.19)

kj E N, Vj = 2,..., J.

The optimal solution to the inner optimization problem satisfies

,0*(z)J/(a-l _(+(X*)1/(a-l) =

by the first order optimality conditions. Using the additional condition that the sum

E1 X = v - k1 , the optimal solution can be found analytically as

* M ( ) ) ( -ki)

j=1

Vi=1,2,...,J,

(J)+( ( 1 ) [/a. [ a/ (a-1)/a
T (X*)l/a =) (v-k)+o Tn)a/a

1j=1I
(B.20)

Substituting the optimal solution of the inner problem in Eq. (B. 19), the performance

analysis reduces to solving the following one-dimensional optimization problem

max mil/aa + [(
i( [ =

( - (1i)/
m(1 - p) (v -k 1 ),

A
(B.21)

which can be cast in the form of the optimization problem in Eq. (2.32), with

=mil/aa + and 6=m(1--p)
A
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Referring to the proof of Theorem 8, the solution to Eq. (B.21) is

1/a 6.X -VI* - J- ii)
max O-x/a-i.

aa/(a-l) 61,(a_1)

We obtain the desired result by substituting 0 and 6 by their respective values.

Worst Case System Time in an Initially Nonempty Tandem Queue

We next characterize a closed-form bound on the worst case system time in an initially

nonempty tandem network with identical queues.

Theorem 17 In an initially nonempty network of J multi-server queues in series

satisfying Assumptions 1(a) and 14(b), with no > n , A1 = .l.. = plj, aa = a = ...

a~i = a, p < 1, and F = ml/aFa + Fm > 0, where Fm is defined in Eq. (3.25), the

worst-case system time Sg for n > no is bounded by

1) + + Fm - - 0 + Ya (n - no) ,

_ E _n m - v ) ,i v -# <-

=j=1 A

0A
1

/ i=O[-(P) Jv"c

a - 1 Alc-l- - p/a-1 J j (
aa/(a 1 ) (+ - + (i)+ otherwise

a[m(1 - p)]1(,' [I <=

where v = [(n - 1)/m] and 0 = [(no - 1)/m].

Proof of Theorem 17. We maximize both terms in Eq. (3.28) separately as

follows. By Assumption 1 and applying similar arguments to those presented in the

proof of Theorem 16, the first term in Eq. (3.28) is bounded by

vi - k
max - +

0!kj:5>, It
kiEN

max L x
j=1

J

s.. Zx=v - ki
j=1

x E N, Vj

I ++ + + ()' - o)'/'. (B.22)
j1=1 A
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The optimal objective function of the inner optimization problem in Eq. (B.22) is

given by Eq. (B.20). Hence, the bound on the first term in Eq. (3.28) becomes

max ( F - +Tm-(v-kl)IaU + + pM n- n0+aa(n-no)"/a,
Okiq# u P

where Fn is defined in Eq. (3.25). Since Fm 0, the term x/p + Fmxl/a is increasing

in x, yielding

max (-k1 + T - (v - km1( ) = + F -V
Ok1 4 \ /t p

To bound the second term in Eq. (3.28), we take a similar approach to that presented

in the proof of Theorem 16 and cast the problem in the form

0.- (V - #)'/Cl - 6 - (V - -Y) if V- (-L)
max (#-xl/" x) = Z - 1 Oa/(a-1)
max (V-#,xeR 3xla. = otherwise

Substituting #3 = ml/apa + Fm and 6 = m(1 - p)/A yields the desired result. u

System Time in Feedforward Networks

We derive next the system time of the nth job exiting at nodel f from a feedforward

network.

Proposition 18 In a feed-forward network composed of single-server queues with

service times X(U), j E J and external interarrivals T, the overall system time of the

nth job exiting at node f is given by

ka2 n n
Sn (Pe) = max max I X + ... + E Xi') - Z TiIPe 1!kai &k,2 ... kt<-n i=ka1 i=ke i=ka1 +1

where P denotes the set of all paths P = (ao, a1 ,a 2 ,..., 1.

Proof of Proposition 18 We use the principle of mathematical induction to

prove this result. Specifically, we assume that the result is true for any job j n - 1

passing by some node q from the feed-forward network (disregarding where the jth job
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goes next in the network after q), i.e.,

ka,2

Sj (Pq) =max max ( X|a" +j...+ X)- Ti , (B.23)
PEP 15ka ... kqj i=kbik ika 1 +1

ki+1 Etaiai+l iELa E 

iELq

where Pq denotes the set of all paths P = (ao, a1,... , q) that pass by q (disregarding

the network after q). We next proceed to show that the result holds for job n exiting

the network at queue f. The system time of the nth job at queue f can be expressed as

n n
S(' = max $X - T (B.24)

1!kCn i=kg i=k)

Suppose kf E t,

suppose that job

i.e., job ke enters queue f from queue q, and without loss of generality,

n enters queue f from queue r, i.e., n E gr . Then,

n=

i=ke+1
iEte

(B.25)
n k

(T+ Sn(Pr) -Ti +Sk, (Pq).

Combining Eqs. (B.24) and (B.25), we obtain

Sn + Sn (Pr)
n n kf

max Z X(') + S, (P,) - T + ,
1! ke n i1k
k fECf EL f

max Z X + Sk, (Pq) - T.
1 ke n i=ki=k+

By the induction hypothesis, we substitute the value of Sk, (Pq) in the above equation

S 0 + SnM) = Sn(Pt)

= max max
PEPqe I ka1 ... kq:kt

ki+iE6iaja+l

ka2 s l ki n n( X+ X- T

i 1kal i=kq i=ke i=kb1 +1
iECa1 iE iE
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where Pf and Pqe are the sets of paths that end at node r and q, respectively, and

then feed in to node f (disregarding what comes next in the network). Given that q

and r were chosen arbitrarily, the result holds for any nodes q and r that feed into

queue f, i.e. for all q,r E Pj. Hence,

k,,2 ke n n
Sn{(P)=max max (+X1 + . (X)+ X

PEPf 1 kai ... kq<ke<n i=ka1 i=kq i=ke i=ka+1
ki+1-Egai+1 - EL%=k P

This concludes the inductive step and proves the result for job n. Next considering the

base case of n = 1, it is trivial to check the validity of inductive hypothesis. Therefore,

the result follows from induction. This concludes the proof. 0

Worst Case System Time in Feedforward networks

We next present in details how we obtain a closed form expression for the worst case

system time observed by the nth job exiting at node f in a feedforward network.

Theorem 19 In a feed-forward network composed of single-server queues satisfying

Assumptions 1(a) and 14(a) with aa = a = a, for all j E 3, the set Pf containing

all paths P = (ao, al,a2 ,.. . ,f) that leave from node f, and

A_ _ 
01/a/a-

1 a-1/a

pP = and P = a++ ( & )- > 0,miPpa/ 1 jEPJ
jEP

the overall worst case system time S, (P) of the nth Job exiting the network at node

f is bounded by

Fp -n~ A n1 + (E + 8 1) if n a'-p

max
PEP

E 

a -1 A1/(a-1) .pa/(a-1)

ao/(- 1) (1 - pp)l/ +- /-+ otherwise.
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Proof of Theorem 19. The desired result is obtained by maximizing the system

time for each path P e Pf. In order to apply the bounds on the system times from

Assumption 1 to the quantity in Eq. (3.4 1), we need to account for the number of jobs

that pass through node aj between the arrivals of job kaj which belongs to Saj-1aj C Iai

and job kaj+i which belongs to Eaja3 !; La. Mathematically, we let Aa3 denote this

number, i.e.,

Aa = {k : kaji k: kaj+,kE Lai} . (B.26)

By Eq. (3.35), the fraction of jobs passing through queue aj is paj, yielding

Aa a = a (ka - ka + 1).

By Assumption 1, and given that 'S , for all j E J, we bound

max = + p(a)+ a3
a.j i=ka Araj.(a~ k 1 fhc

= #aj (kaj - k ea + 1) (a [ (k 21 /a
Paj + FS [Oj-(a kaj + I.j

By applying Assumptions 1, Eq. (3.41) becomes

ka 2 - kai -(a)+ (k k) +. n- k

.f7 + n - k a)11 1 - + a + -l/
1 () ~a1 pmax + *+ max (B. 27)

PEPe jEP 

n - kak (...2k)

where jiptgj = / and ti - pO). Y" for all j e J. We let fp = min{Kiaja3 E

pp = Ajp. By making the change of variable xai = kaj+i - kaj, for all a3 E P, we bound

the maximization problem in Eq. (B.27) by

1-pp max ( al+ Ia+.+ x
max Fa (n - ka,) - p p (n - ka) + max [p,( ai) + --c + Xa ]

1 ka 1 fn A .- a +.s.t. + x = n - kai

The optimal objective function for the inner optimization problem is given in Eq.
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(B.20). The performance analysis reduces to solving the following one-dimensional

optimization problem

z( 
)()/ a

j-EP S~,() I -( kal
) -PP

A (n - kai) } (B.28)

which can be cast in the form of the optimization problem in Eq. (2.32), with

# = '-a + (z (Ni)+)' a-1) and 6 =
A

Referring to the proof of Theorem 8, the solution to Eq. (B.28) is

3-n1/a - n,

max 3-nl/a-6-n=
0! 

1n/(a-1)

if n ( )

otherwise.

We obtain the desired result by substituting # and 6 by their respective values.
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