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Abstract
The goal of the present thematic series is to showcase some of the most relevant
contributions submitted to the ‘Telecom Italia Big Data Challenge 2014’ and to
provide a discussion venue about recent advances in the appplication of mobile
phone and social media data to the study of individual and collective behaviors.
Particular attention is devoted to data-driven studies aimed at understanding city
dynamics. These studies include: modeling individual and collective traffic patterns
and automatically identifying areas with traffic congestion, creating high-resolution
population estimates for Milan inhabitants, clustering urban dynamics of migrants
and visitors traveling to a city for business or tourism, and investigating the
relationship between urban communication and urban happiness.

Keywords: mobile phone data; social media data; human behavior; city dynamics

1 Introduction
We live in a world of data. Nowadays, there are . billion of mobile phone subscribers
worldwide, with millions of new subscribers every day []. More importantly, the almost
universal adoption of mobile phones and the exponential increase in the use of social me-
dia and other Internet services is generating an enormous amount of data about human be-
haviors with a breadth and depth that was previously inconceivable. As recently reviewed
by Blondel et al. [], the Call Detail Records (CDRs), needed by the mobile phone operators
for billing purposes, can be exploited to extract mobility patterns [–], to model social
interactions [, ], city’s structures [], and epidemic spreading [, ], to estimate popu-
lation densities [], and to predict socio-economic indicators and outcomes of territories
[, ]. Similarly, the emergence of social media (e.g. Twitter, Foursquare, Facebook) pro-
vides further opportunities to researchers to study different aspects of human behavior
such as people’s mobility [] and social well-being of individuals and communities [].

In this context, research challenges that provide access to a large number of research
teams to the same dataset are becoming a valuable framework to advance the state of the
art in the field and to sustain the process of reproducibility needed by the scientific com-
munity. An example is the Orange’s ‘Data for Development’ (DD) initiative [, ]. Last
year, Telecom Italia with support from MIT Media Lab, Northeastern University, Fon-
dazione Bruno Kessler, Polytechnic University of Milan, University of Trento, EIT ICT
Labs, Trento Rise, and Spazio Dati organized the ‘Telecom Italia Big Data Challenge’ [],
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providing a multi-source geo-referenced and anonymized dataset composed by telecom-
munications, weather, news, Twitter and electricity data from two Italian areas: the city of
Milan and the Trentino province [].

More than  teams from more than  universities have participated to the ‘Telecom
Italia Big Data Challenge’. The projects ranged from predicting energy consumption to
exploring the impact on mobility of some specific events and comparing mobile phone
calling patterns with economic, demographic, and well-being indicators.

The goal of the present thematic series is to showcase some of the most outstanding
contributions submitted to the ‘Telecom Italia Big Data Challenge ’ and to provide a
discussion venue about recent advances in the application of CDRs and social media data
to the study of individual and collective behaviors, with a particular attention devoted to
the city dynamics.

2 Contributions
The first contribution, by De Domenico et al. [], investigates route assignments in smart
multimodal systems [, ], where individual daily trips follow recommendations based
on personal and community constraints. The proposed approach is of special interest for
designing efficient cities, where inhabitants could be automatically routed in order to re-
duce traffic and pollution. A person might want to avoid routes with high traffic or ar-
eas with high criminality, or to favorite routes across shopping and touristic areas. How-
ever, the individual choices of certain routes, without accounting for the state of the whole
urban system, may lead to traffic congestion, increasing pollution, etc. []. In their pa-
per, the authors proposed to model the trips in an urban system as interacting particles
with data-driven origin-destination pairs. The route choices of the interacting particles are
based on a time-varying potential energy landscape that seeks to simultaneously satisfy
individual’s (e.g. avoiding specific areas of the city) and community’s (e.g. traffic and pol-
lution reduction in specific city areas) constraints. Specifically, the proposed framework
integrates multiple layers of constraints to favor certain routes and to study the effects
of the proposed recommendations. The obtained results showed that the synergy among
the individual choices plays a fundamental role in designing an efficient and smart city:
only when all the individuals move according to the recommended routes, the city traffic
is closer to the most ideal mobility scenario. Interestingly, the proposed method allows to
monitor the traffic state of the city in real time, automatically identifying areas that are
experiencing a congestion and hence supporting urban authorities and policy makers in
planning interventions.

The second paper, contributed by Douglass et al. [], used telecommunications activity
data to create high-resolution population estimates. The traditional local census estimates
are expensive, contingent on participation, and often suffer from several logistical issues.
As shown by [], telecommunications data are a promising new source of real-time es-
timates of population. In their paper, Douglass et al. have shown that the correlation be-
tween call volume and population in a given area of Milan is scale invariant above a certain
population size. Then, the authors by means of a Random Forest regression [] provided
a reliable estimate of population for populous areas. The obtained results suggest that the
method could be extended also to estimate population in less dense areas and to create es-
timates by gender, age, and ethnicity. Finally, the authors evaluated models for predicting
the percentage of foreign population.
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In the third paper, Bajardi et al. [] studied urban spaces through the analysis of mobile
phone records of users with strong international links, e.g. migrants and visitors travelling
to a city for tourism or for business. More precisely, the authors focused on mobile phone
records collected in Milan and used an entropy function to measure the level of country
codes’ hetereogenity in the calling patterns of a city’s neighborhood. Then, they proposed
a topological classification based on persistent homology and clustered the nationalities
associated to the calls’ sources and destinations outside Italy into two main groups. The
first group comprises low-income countries, whose topological spatial patterns show a
strong cyclic spatial distribution. The second group is formed by high-income countries,
whose spatial distribution is scattered in small areas over the city. These results indicate
that migrant communities from low income countries tend to aggregate in cohesive spatial
structures and to live in the city’s residential areas, mainly around the city centre; while
communities associated with higher income countries tend to represent movement pat-
terns of tourists and/or highly specialized professionals in central and high-entropy ur-
ban areas. As pointed out by the authors, the findings are in line with the ones predicted
by the spatial assimilation theory [] and confirm the empirical observation that differ-
ent socio-economic migrant conditions can show distinct spatial clustering patterns [].
Moreover, the authors demonstrated how mobile phone data can provide very specific
spatial and temporal trajectories of visitors from a given country during a mass gathering
event (e.g. large sport events).

The fourth and last contribution, by Alshamsi et al. [] focuses on the relationship
between urban communication and urban happiness. Specifically, the authors analyzed
geo-located tweets within Milan to produce a detailed spatial map of urban sentiments.
Then, they used communication intensity data to build the directional network of urban
areas where the weights of the edges represent the communication strength between the
areas. Their results found that there is no correlation between the happiness level of urban
areas and the amount of communication the areas receive or initiate. Instead, happy urban
areas tend to interact with other happy areas more than they interact with unhappy areas
and, similarly, unhappy areas tend to interact with other unhappy areas more than they
interact with happy areas. Interestingly, the urban happiness homophily supports previous
findings on individual happiness homophily []. The obtained results may be relevant to
guide policy makers in setting strategies that increase urban happiness.

3 Conclusion
The fourth papers in this series are excellent demonstrations of how mobile phone and
social media data can contribute to many discoveries on daily life of individuals, commu-
nities and cities.

Telecom Italia is currently running a second edition of the Challenge []. This year, the
data are released on  Italian cities: Bari, Milan, Naples, Rome, Turin, Venice and Palermo.
Datasets include CDRs, demographic data from Telecom Italia (e.g. gender, age-range and
living area), Twitter data, energy consumption data, private mobility data (trips performed
by customers of some car security and insurance companies), and detailed Italian compa-
nies’ information (e.g employees, size and locations). Hence, there are good reasons to
continue with a second edition of this thematic series as follow up of the Big Data Chal-
lenge .
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