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Abstract

Grain boundaries strongly affect many materials properties in polycrystalline materials. However, very
few structure-properties models exist for grain boundaries, due in large part to the complicated and poorly
understood way in which the properties of grain boundaries vary with their crystallographic structure. In the
present work, we infer grain boundary structure-properties correlations from measurements of the effective
properties of a polycrystal. We refer to this approach as grain boundary properties localization. We apply
this technique to a simple model system of grain boundary diffusivity in a two-dimensional microstructure,
and infer the properties of low- and high-angle grain boundaries from the effective diffusivity of the grain
boundary network. The generalization and use of these methods could greatly reduce the computational
and experimental effort required to establish structure-properties correlations for grain boundaries. More
broadly, the technique of properties localization could be used to infer the properties of many microstruc-
tural constituents in complex microstructures.
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1. Introduction

The effective properties of polycrystalline materials are influenced, and in some cases dominated, by
the character and connectivity of grain boundaries. For example hydrogen embrittlement [1], corrosion [2],
creep [3], weldability [4], and superconductivity [5] all depend strongly on the structure and spatial arrange-
ment of grain boundaries in the microstructure. Great effort has been invested by the scientific community
to correlate grain boundary structure and properties, but simple constitutive relations have been elusive.

One fundamental difficulty stems from the complex structure of grain boundaries, whose description
requires, at a minimum, the specification of five crystallographic parameters [6]. Three of these define
the lattice misorientation between adjacent grains and the other two specify the interfacial plane. In ad-
dition, there are microscopic degrees of freedom related to in-plane translations and associated structural
relaxations [7–9], though these will be neglected in the present study.

Another obstacle to correlating grain boundary structure with materials properties is the difficulty of
controlled grain boundary synthesis. Controlled production of grain boundaries in metals has predomi-
nantly been performed via seeded growth of bicrystals from the melt [10–12]. Single crystal seeds are first
synthesized, then cut and oriented appropriately, after which bicrystals can be grown from the melt by, e.g.
the vertical Bridgman method [10, 11]. Other techniques include sintering of metalic thin films [13, 14],
and the direct bonding technique for thin films of brittle materials [15–17]. In these techniques, single
crystals are first produced and aligned relative to one another, and then bonded either by hot pressing, in
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the case of metals, or through evaporation of an intermediate water layer (after a number of meticulous sur-
face preparation steps). Regardless of the method, controlled preparation of even a single grain boundary
involves numerous steps, sophisticated equipment, and a significant time investment.

Though still requiring significant time, atomistic simulations can be employed to ameliorate some of
the experimental difficulties and sources of error, as well as increase throughput [18–20]. However, such
simulations are not without their own complications. Accurate interatomic potentials are not available for
all materials and the development and validation of new models is a significant undertaking. Moreover,
the computational cost of atomistic simulations restricts one to the investigation of small material volumes.
This places a fundamental limitation on the number and types of grain boundaries that can be considered.

The largest catalog of grain boundary property data to date consists of calculated excess energies and
mobilities for 388 grain boundaries in 4 different metals [18–20]. While this constitutes a significant mile-
stone, a sample of O

(
102

)
points in a five-dimensional space is still relatively sparse coverage. A brute

force attempt to explore the space adequately, whether by experimental or computational means, remains
impractical due to the resources that would be required.

In contrast to the difficulties of synthesizing and studying individual grain boundaries, it is relatively
easy to produce polycrystalline samples. Commercial solutions now permit crystallographic characteriza-
tion of sample areas large enough to capture millions of grain boundaries. Automated electron backscatter
diffraction (EBSD) techniques allow for the rapid characterization of four of the five grain boundary para-
meters for every boundary that terminates at the sample surface. For microstructures with through-thickness
grains, and where out of plane curvature can be neglected, the final parameter can be obtained by correlat-
ing EBSD scans on opposite faces of the sample [21], or by comparing intensities of overlapping Kikuchi
patterns with interaction volume models [22]. For general microstructures, serial sectioning methods or
high energy diffraction techniques [23] may be used.

The relative ease of synthesizing and characterizing polycrystals suggests an alternative route to obtain
grain boundary structure-property correlations, beyond the one-by-one study of individual bicrystals. For
a grain boundary sensitive property in a polycrystal, the global effective response of the grain boundary
network is the result of a homogenization of the local properties of the constituent grain boundaries. This
is analogous to an electrical resistor network where the effective resistance of the circuit depends upon the
component resistances and the topology of the network. If one measures the effective resistance of such
an electrical network, then, under certain circumstances, it may be possible to deduce the resistance values
of the components. If one can, similarly, infer the local properties of grain boundaries in a polycrystalline
aggregate from measurements of the macroscopic effective response of the network it would facilitate a
more efficient approach to searching the five-dimensional grain boundary structure space for structure-
properties correlations.

The process of deconvoluting local quantities of a heterogeneous system from homogenized global
measurements is broadly referred to as localization. While this concept is not new, the use of localization
techniques in materials science has, until now, been limited to the calculation of local field quantities, e.g.
stress, in the presence of an applied macroscopic field [24–31], or single crystal elastic constants [32–34].
In this paper we address a new kind of localization problem, in which the goal is to determine the local
materials properties of grain boundaries from measured effective (macroscopic) properties of a polycrystal.
We also establish a general unifying framework for materials properties localization in the context of any
materials property and any relevant microstructural feature. For the case of grain boundary properties local-
ization, we consider a highly simplified two-dimensional polycrystalline model system and attempt to infer
the diffusivity of low- and high-angle grain boundaries from the effective diffusivity of the grain boundary
network. While this model problem does not represent a general microstructure, its simplicity permits us to
identify the important qualitative features that we would expect to observe in other microstructures.

2. Model

Our model microstructure was similar to that of Chen [35], consisting of a two-dimensional honeycomb
lattice (as shown schematically in Fig. 1) containing 6,889 hexagonal grains and 20,212 grain boundaries.
Crystal orientations were sampled from two-dimensional orientation distribution functions (ODFs) of the
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following form (see also Fig. 2):

f (θ) =

(2θmax)−1 for θ ∈ [−θmax, θmax]
0 otherwise

(1)

and assigned in a spatially uncorrelated manner. In Eq. 1, θmax ∈ [0, π/s] is a parameter that defines the
sharpness of the texture, and s represents the order of the appropriate symmetry point group. In the present
study, we considered triclinic crystals having a common 〈001〉 rotation axis parallel to the sample normal
direction, for which s = 1.
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Fig. 1: Schematic plot of the model microstructure showing the boundary conditions used for the diffusion simulations.
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Fig. 2: Two-dimensional ODFs with varying θmax according to Eq. 1.

Grain boundary diffusivities were assigned according to the disorientation angle, ω, between neighbor-
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ing grains with:

D(ω) =

D1 for ω ≤ ωt

D2 for ω > ωt
(2)

where ω is the disorientation angle, ωt is the threshold angle between low- and high-angle grain boundaries,
and D1 ≤ D2 are the low- and high-angle diffusivities, respectively. While the physical properties of grain
boundaries are known to depend, in some cases strongly, on the grain boundary plane inclination [36],
our model constitutive equation neglects this dependence. This simplifying assumption, as well as the
binary classification of grain boundaries into low- and high-angle classes, facilitate tractability and clarity
of exposition and can be improved upon in future work.

The boundary conditions, assumptions, and procedure for calculating the effective diffusivity of the
grain boundary network were the same as those used by Chen [35]. For our simulations we assumed that
diffusion occured only along the grain boundaries. This simplification is a good approximation in situations
for which the microstructure, experimental conditions, and kinetic regime is such that grain boundary dif-
fusion is the dominant pathway and all others (e.g. bulk, surface, dislocation, etc.) can safely be ignored.
Alternatively, as mentioned by Chen, these results can be interpreted as simply providing the contribution
of grain boundary diffusion to the overall diffusion [35]. The concentration of the diffusing species was
fixed at c = c0 and c = 0 at left and at the right side of the network, respectively, and zero-flux condi-
tions were imposed at the top and bottom (Fig. 1). Steady-state diffusion was considered, and conservation
conditions were enforced at triple junctions (i.e. no material accumulation at triple junctions was permit-
ted). This resulted in a linear system of equations that was solved to obtain the concentrations at each
triple junction and, thus, the concentration gradient and local flux along each grain boundary. By averaging
the microscopic grain boundary fluxes over any vertical section of the network, we obtained the effective
macroscopic diffusion flux, Jeff, of the network [35]. Finally, the effective diffusivity, Deff, was calculated by
dividing Jeff by the macroscopic concentration gradient of the network [35]. By varying the sharpness of the
textures (θmax) we obtained grain boundary networks with different grain boundary character distributions,
described by the fraction of high-diffusivity grain boundaries, p2, and, consequently, different values of Deff.
We performed simulations using 51 different textures with θmax varying between 7.5◦ and 180◦ (see Fig. 2).
The reported values of Deff are the median of 1,000 network realizations for each texture. Fig. 3 shows the
effective diffusivity, DSIM

eff that was obtained via simulation, as a function of the fraction of high-diffusivity
boundaries, p2, with D1 = 100 m2/s, D2 = 107 m2/s, and ωt = 15◦.
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Fig. 3: Effective diffusivity of simulated grain boundary networks for various fractions of type-2 (high-diffusivity) grain bound-
aries. The error bars for many of the microstructures are smaller than the markers, and, as expected, they are very large near the
percolation threshold. Marker color corresponds to the sharpness of the texture. As θmax was varied, we obtained networks with
DSIM

eff ranging from ∼5× 10−1 m2/s to ∼5× 106 m2/s. The red solid line connects the values predicted using DGEM
eff . This is shown

as a solid line rather than discrete markers only to improve visibility.

Based on the values we obtained for Deff, and a knowledge of the crystallographic details of the microstructure–
including the crystal orientations, and the resulting grain boundary misorientations–we would like to infer
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the parameters of our constitutive equation (D1, D2, and ωt). This inverse problem of grain boundary prop-
erties localization is tantamount to determining the local diffusivity of each type of boundary from measured
values of the effective network diffusivity.

3. Strategy

3.1. Overview
The relationship between the properties of a material and its microstructure can be expressed as a func-

tional of the following form:

P̄ = H(M, P) (3)

where P̄ is the macroscopic effective property of interest, M contains microstructural information, P is a
representation of the relevant local constitutive equation, and H is a homogenization relation. Eq. 3 can be
used in several ways:

Materials Properties Prediction
In materials properties prediction the microstructure (M) is known, as is the constitutive equation (P),
and one evaluates Eq. 3 to obtain the unknown effective property (P̄). A common example of this is
the prediction of the effective elastic constants of a polycrystal.

Materials Design
In materials design, a target effective property (P̄) is specified, the constitutive equation (P) is as-
sumed to be known, and Eq. 3 is solved for the unknown microstructure (M) that is commensurate
with the target effective property.

Materials Properties Localization
Materials properties localization completes this set of materials problems by asking the following
question: “Having characterized a heterogeneous microstructure (M), and measured its effective
properties (P̄), is it possible to infer the unknown local properties of its constituents (P)?”

These applications and the known and unknown variables in each case are summarized in Table 1.

Application P̄ M P

Prediction ? X X

Design X ? X

Localization X X ?

Table 1: Summary of the applications of Eq. 3. In this table P̄ is the macroscopic effective property of interest, M is the
microstructure, and P represents the relevant local constitutive equation (i.e. the local properties). The ‘?’ symbol indicates the
unknown quantity that is to be solved for in a given application, and the ‘X’ symbol indicates a known or specified quantity.

In the context of the present model problem, P̄ = Deff. For real microstructures, it could be obtained
experimentally using, e.g., accumulation methods [37, 38]. From Eq. 2, the parameters of the proposed
constitutive relation are P = [D1,D2, ωt]T. As will be explained subsequently, the relevant microstruc-
tural parameters for the grain boundary diffusion problem are M = [J1, J2, J3]T, where {Ji | i ∈ [0, 3]}, are
called triple junction fractions and denote the population of triple junctions coordinated by i “special” grain
boundaries [39–47], which, for our purposes, correspond to low-angle grain boundaries with diffusivity
D1. The elements of M are easily measured experimentally using various destructive [48–50] or non-
destructive [23, 51–54] crystallographic characterization techniques. Because

∑
i Ji = 1, only three of the

four Ji appear in M.
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3.2. Homogenization
The specific form of H(M, P) is of critical importance for accurate predictions of P̄ in the forward

problem of homogenization, and consequently is also crucial for solving the inverse problem of localization.
One common form of H(M, P) is the standard effective medium theory (EMT) [35, 55]. EMT works well
in systems for which the variation in the local material property values (property contrast) is small [35, 56].
However, in situations where the local values of a material property differ significantly from point to point,
the detailed structure of the medium dominates the effective response [35, 56]. In such cases, the true
effective property values exhibit a sharp transition at the percolation threshold that EMT models fail to
capture.

Experimental measurements of grain boundary diffusivity in bicrystals as a function of disorientation
angle have demonstrated that the difference between the minimum and maximum diffusivities can span
many orders of magnitude [57]. Because of this strong constrast in the spectrum of grain boundary dif-
fusivities, standard EMT predictions for Deff are inadequate [56]. Chen and Schuh demonstrated that the
phenomenological Generalized Effective Medium (GEM) equation, proposed by McLachlan [58, 59], pro-
vides quantitatively accurate predictions of Deff across a broad range of contrast ratios (from 5 to 108) when
compared to simulation results [35]. The GEM is an implicit relation that combines aspects of effective
medium theory and percolation theory, and may be expressed as1:

p1
D1/s

1 − (2Deff)1/s

D1/s
1 +

(
p−1

c,2 − 1
)

(2Deff)1/s
+ p2

D1/t
2 − (2Deff)1/t

D1/t
2 +

(
p−1

c,2 − 1
)

(2Deff)1/t
= 0 (4)

where pi is the fraction of grain boundaries exhibiting diffusivity Di, and pc,i is the percolation threshold
for the i-th grain boundary type. The values of the critical exponents s and t are generally considered to be
universal, depending only on the dimensionality of the problem. For the present case we use s = 1.09 and
t = 1.13. These values differ slightly from those given in [35], however, we found that small deviations
in the numerical values of s and t did not affect the results of the GEM significantly and the value of pc,2

proved to be of much greater moment. Eq. 4 can be solved numerically, using, e.g. bisection methods [35]
to obtain Deff as a function of D1, D2, and the microstructural parameters pi and pc,2.

To validate the GEM for use as our homogenization relation, we computed Deff using Eq. 4 for each of
the simulated textures. We denote the effective diffusivity predicted by Eq. 4 as DGEM

eff , to distinguish it from
the values that were obtained directly from our simulations, DSIM

eff . The agreement between the predicted
and simulated diffusivities is excellent (see Figs. 3 and 4). Strictly speaking, Eq. 4 holds only for infinite
systems, and a scaling factor should be used for finite microstructures. However, the value of the scaling
factor for our simulations is very close to unity (see [35]), particularly after considering 1000 replications
of each microstructure, and we therefore omit it.

3.3. Microstructural Parameters
An important quantity that appears in the GEM is the percolation threshold, pc,2. For a randomly

assembled two dimensional honeycomb network the percolation threshold is known analytically to be
pc = 1 − sin (π/18) ≈ 0.6527 [60]. However, the spatial distribution of grain boundary types in real poly-
crystals is markedly non-random as a result of crystallographic constraints [61]. The resulting local corre-
lations lead to a shift in the percolation threshold [61] and, consequently, must be accounted for in order to
obtain accurate predictions of Deff. These short range correlations can be quantified using the triple junc-
tion fractions, Ji. Frary and Schuh obtained an empirical relation that predicts the percolation threshold
for two-dimensional networks from the Ji [62]. As mentioned earlier, we are interested in the percolation
threshold for type-2 grain boundaries, pc,2, but the common convention defines the Ji as the fraction of triple

1There are two distinct concepts of effective diffusivity (or conductivity) in the literature. One is the diffusivity of the actual
heterogeneous network as a whole, and the other is the diffusivity of a single boundary in a hypothetical homogeneous sample
whose network diffusivity matches that of the real sample. The two notions are related and we take the former interpretation,
which is the reason that Eq. 4 differs from the form appearing in [35, 58, 59].
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Fig. 4: Comparison of the effective diffusivity predicted by the GEM, DGEM
eff , to that obtained via simulation, DSIM

eff . The dashed
red line indicates a 1 : 1 relationship (i.e. perfect agreement). Error bars for many of the data points are smaller than the
respective markers. Marker color indicates the sharpness of the texture, and is referenced to the color scale of Fig. 3.

junctions coordinated by i type-1 (low-angle) grain boundaries. In this case the percolation threshold can
be approximated by a second order polynomial of two variables2:

pc,2 = d1 + d2χ + d3χ
2 + d4σ + d5χσ + d6σ

2 (5a)

with the values of the coefficients, d j given in Table 2. The variables σ and χ are topological order parame-
ters, the prior measuring the tendency of grain boundaries of differing types to segregate or form ordered
arrangements, and the latter indicating the tendency for grain boundaries of like type to be found in elon-
gated or compact clusters. These are defined in terms of certain ratios of the Ji according to:

σ =

1 − jσ for jσ ≤ 1
j−1
σ − 1 for jσ > 1

(5b)

χ =

1 − jχ for jχ ≤ 1
j−1
χ − 1 for jχ > 1

(5c)

jσ =
(

J1 + J2

J0 + J3

) (
J0r + J3r

J1r + J2r

)
(5d)

jχ =
J1

J2

J2r

J1r
(5e)

where Eq. 5e is the reciprocal of the expression given in [62] because we are considering pc,2. In Eq. 5d
and 5e, the Jir are the triple junction fractions for a randomly assembled network (i.e. in the absence of
crystallographic constraints), and are given by a binomial distribution:

Jir =

(
3
i

)
(1 − p2)3−i pi

2 (6)

Consideration of Eq. 5 reveals that if a grain boundary network were to be totally uncorrelated then Ji = Jir

and σ = χ = 0 resulting in pc,2 = d1, which is the percolation threshold for the random network. Correla-
tions in the grain boundary network result from the physical requirements of crystallographic constraints as
well as other influences such as, e.g, crystallographic texture. Our simulations are crystallographically con-
sistent and, therefore, include both of these effects. The strength and type of these correlations is reflected
in the non-random values of the Ji, which, in turn, lead to non-zero values of the order parameters σ and χ
and a commensurate shift in the percolation threshold due to the additional terms in Eq. 5a.

2There is an error in this formula as printed in [62]. If the values of the d j presented in Table II of [62] are to be used, then
the signs of all terms in Eq. 8 of [62] should be positive. This is corrected in Eq. 5a of the present work.
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j 1 2 3 4 5 6

d j 0.6527 0.0651 0.0117 −0.0961 0.0233 −0.0715

Table 2: Numerical values of the coefficients appearing in Eq. 5a.

The other microstructural parameters in the GEM (Eq. 4) are the pi. These may also be expressed in
terms of the Ji according to [47]:

p1 ≈
1
3

J1 +
2
3

J2 + J3 (7)

and

p1 + p2 = 1 (8)

where the approximation becomes exact in the limit of infinite systems (or for finite systems with periodic
boundary conditions). Thus, for the present model system the relevant details of the microstructure are fully
specified by the Ji and we have M = [J1, J2, J3]T.

It is important to note, however, that the Ji also have a subtle dependence on the parameters of the
constitutive equation. As mentioned earlier, the Ji are defined as the fraction of triple junctions coordinated
by i low-angle grain boundaries (type-1 in the present model); however, the distinction between type-1 and
type-2 boundaries is governed by the constitutive parameter ωt. As a result, not only do the Ji depend upon
the value of ωt, but so do the pi, and pc,2. This interaction between the constitutive parameters, P, and the
microstructural parameters, M, complicates the solution of this particular localization problem. For each
trial value of ωt the microstructure must be re-analyzed: the Ji must be determined anew, and the pi and pc,2

must be recomputed before H(M, P) can be evaluated. This does not preclude solution of the localization
problem, but care must be taken not to exclude this feedback loop in the solution process.

3.4. Localization
The solution of the localization problem is accomplished by solving Eq. 3 for the unknown constitutive

parameters of P. However, if one considers P̄ and M of only a single microstructure then the system will
be underdetermined if P contains more than one parameter, as in the present case. Even if the number of
microstructures, N, is equal to the number of parameters, np, errors arising from imperfect measurements
or inexact homogenization models (H) could still preclude the solution of the resulting system of equations.
A more flexible approach is to minimize the total error, in some sense, between the measured values of P̄
and the predicted values of H(M, P) for a large number, N, of microstructures, over the domain of P. For
the present problem this can be stated as:

minimize
P

E(P)

subject to 0 ≤ D1,D2

0 ≤ ωt ≤ π/s

(9)

where E(P) is a function that provides some measure of the total error. One choice of objective function
is the sum of squared errors over all N measurements; however, given that the values of Deff vary over
many orders of magnitude, such a procedure would give too much weight to errors at the high end of the
Deff spectrum. For instance, a difference of 10−3 m2/s is small when Deff = O

(
100

)
m2/s, and a difference

of 103 m2/s is small when Deff = O
(
106

)
m2/s, but the magnitude of the error in the latter case would

completely dominate so that measurements for small Deff would have negligible influence on the solution.
To correct for this effect, we defined the following objective function:

E(P) =
1
N

N∑
i=1

[
log

(
(i)DSIM

eff

)
− log

(
(i)DGEM

eff (P)
)]2

=
1
N

N∑
i=1

log
 (i)DSIM

eff
(i)DGEM

eff (P)

2 (10)

8



where (i)DSIM
eff and (i)DGEM

eff are the effective diffusivities of the i-th microstructure (i.e. one of the 51 possible
textures) as calculated via simulation and as predicted from the GEM homogenization relation respectively.
Eq. 10 represents a least-squares type measure of the error between the logarithms of the effective diffusiv-
ities obtained via simulation and those predicted by the GEM for a fixed set of parameter values, P, when
considering N different microstructures. Using Eq. 10 as the objective function, we solved Eq. 9 in order
to infer P from the observed values of (i)DSIM

eff . Physically, this corresponds to a situation in which we have
characterized the Ji of N different microstructures, and measured the effective diffusivity of their respective
grain boundary networks ((i)DSIM

eff for i ∈ [1,N]). We then want to know what values of P = [D1,D2, ωt]T

are commensurate with our observations. In this way, we can infer the local grain boundary properties (D1

and D2), from measurements of the macroscopic effective properties ((i)DSIM
eff ).

In an effort to visualize the solution space, and to avoid uncertainty resulting from questions of conver-
gence, we employed a brute force method by evaluating Eq. 10 over a grid of points, Λ = D1 ×D2 ×Ωt,
withD1 =

{
10−8, 10−7.5, . . . , 108

}
m2/s,D2 =

{
10−8, 10−7.5, . . . , 1012

}
m2/s, andΩt = {0◦, 1.5◦, . . . , 45◦}. The

resolution of this grid defines the precision of our solutions. For each N ∈ {3, 5, 10, 20, 50}, we selected N
textures uniformly at random from those that were simulated and evaluated Eq. 10 over Λ. This procedure
was performed 100 times for each N. Figure 5 depicts isosurfaces through the solution space for constant
values of E(P), with N = 3, and illustrates that E(P) decreases monotonically to its global minimum near
the true values of D1 = 100 m2/s, D2 = 107 m2/s, and ωt = 15◦.
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4. Discussion

In the context of a general localization problem in which the true parameter values of a proposed con-
stitutive relation are not known a priori, one seeks to infer them while simultaneously minimizing experi-
mental/computational expense and effort. In order to accomplish this, one would naturally ask (1) “What is
the minimum number of polycrystalline microstructures that I need to consider?” and (2) “What character-
istics should those microstructures possess to facilitate the solution of the localization problem?”. General
answers to these questions are not yet known for arbitrary microstructures and properties and they are sub-
jects worthy of future inquiry. However, some insight into these issues can be gained by considering the
simplified and specific case at hand.

With respect to the number of microstructures required, the theoretical minimum, Nmin, is equal to np, the
number of parameters in P, if the form of the constitutive equation is known. However, multiple copies of an
identical microstructure would be redundant and would not permit the solution of the localization problem.
Distinct microstructures whose structures are statistically equivalent would also exhibit this redundancy.
Consequently, there must be at least as many non-redundant microstructures—i.e. microstructures that
are, in some sense, different enough—as there are parameters in P. We did not explicitly investigate the
influence of the size of the microstructures used for localization. However, we note that in addition to
having a sufficient number of non-redundant microstructures, each one should be large enough to satisfy any
assumptions (e.g. statistical homogeneity) implicit in the chosen homogenization relation. As illustrated
in Fig. 5, it was, indeed, possible to recover the true parameter values to within the resolution of Λ using
Nmin = np = 3 microstructures. However, not all sets of 3 microstructures resulted in the correct solution.

To investigate what microstructural characteristics were required to solve the localization problem, we
evaluated Eq. 9 for all

(
51
3

)
= 20, 825 possible sets of N = 3 distinct microstructures out of the 51 that we

simulated. Because of the special class of microstructures considered here (honeycomb network with ODFs
specified by Eq. 1, and spatially uncorrelated grain orientations), the structure of the grain boundary network
can be fully specified by the fraction of high-angle grain boundaries, p2. Thus, an N = 3 microstructure
set can be described by the ordered triplet

(
p(1)

2 , p
(2)
2 , p

(3)
2

)
, where p(1)

2 ≤ p(2)
2 ≤ p(3)

2 are the fractions of
high-angle grain boundaries in the first, second, and third microstructures in the set, respectively. Fig. 6
reveals that microstructure sets that returned the true solution (to within the precision of Λ) and those
that did not were separated into, more or less, well defined regions. The planar boundaries separating
satisfactory microstructure sets (green polyhedral region) from unsatisfactory ones (red points) define the
microstructural characteristics that permit solution of the localization problem:

C.1 p(1)
2 < pc,2

C.2 p(3)
2 > pc,2

These two conditions simply mean that both sides of the percolation threshold must be sampled. While
necessary, conditions C.1 and C.2 are apparently insufficient to guarantee the correct solution as there are a
small number of microstructure sets falling in this region that still do not produce the correct results. These,
however, invariably fall near other facets of this region and can be eliminated by additionally enforcing the
following conditions:

C.3 p(2)
2 − p(1)

2 ≥ 0.0756
C.4 p(1)

2 ≥ 0.0092
C.5 p(2)

2 ≤ pc,2 or p(2)
2 ≥ pc,2 + 0.0202

C.6 p(3)
2 − pc,2 ≥ 0.0202

The necessity of C.3 confirms that solution of the localization problem is complicated when the first and
second microstructure in the set are too similar and quantifies how different is “different enough” to avoid
microstructural redundancy. Condition C.4 is required only to eliminate the single anomalous point at
(0, 0.3487, 0.9168), and could equally have been expressed as an upper-bound on p(3)

2 . In either case, the
surprising implication is that p(1)

2 and/or p(3)
2 should not be too far from pc,2. C.5 and C.6 indicate that

the second and third microstructures in the set, respectively, should posses high-angle boundary fractions
that are sufficiently far from the percolation threshold. Extrapolating these specific results to the general

10



p
(3

)

2

p
(2)

2

p
(1)

2

0

0.2

0.4

0.6

0.8

0
0.2

0.4
0.6

0.8

0.2

0.4

0.6

0.8

Fig. 6: All
(

51
3

)
= 20, 825 possible sets of N = 3 distinct microstructures as represented by their respective fractions of high-

angle grain boundaries. The coordinates of a point,
(
p(1)

2 , p
(2)
2 , p

(3)
2

)
, indicate the fraction of high-angle boundaries in each of

the three microstructures in the set, where p(1)
2 ≤ p(2)

2 ≤ p(3)
2 . The red points represent microstructure sets that did not result in

successful recovery of the true constitutive parameters. For the sake of visual clarity, the points representing microstructure sets
that did result in successful recovery of the true constitutive parameters are not shown, instead they are indicated by the green
semi-transparent region.

localization problem, we postulate that satisfactory microstructure sets should: (1) be sufficiently diverse
so as to avoid microstructural redundancy; (2) sample all regimes of the effective property of interest; and
(3) avoid critical points (e.g. percolation thresholds).

Having performed many simulations spanning the domain of p2, we had the luxury of knowing the
location of the percolation threshold, pc,2. Consequently, it would be possible for us to deliberately choose
a set of N = 3 microstructures satisfying the conditions C.1 to C.6. In general one may not know the salient
features of a candidate structure-properties model. In such cases one might attempt to uniformly sample the
structure space. For sets of randomly selected microstructures the accuracy and precision of the solution to
the localization problem increases with N. Using N = 3 randomly chosen microstructures (repeated 100
times), we succeeded in recovering the true parameter values to within the precision of Λ in 67% of the
trials. For N = 5, 10, 20, 50 the success rates were 87%, 98%, 100%, and 100%, respectively. Fig. 7 shows
95% confidence intervals for each of the parameters, as a function of N. The convergence of the confidence
interval for log(D2) was slower than for the other two parameters, and, expressed in terms of % error, it
scaled according to

%ERRlog(D2) = 0.13 exp (−0.2449N) (11)
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with a coefficient of determination of 0.9983. This scaling relationship serves as an upper bound3 on the
error in the solution of the localization problem and is useful as a means of estimating the marginal value
of performing an additional experiment. For example, assume one has characterized the microstructures
of N = 7 randomly chosen samples and measured their effective diffusivity. How much more accurate
would the estimates of D1, D2, and ωt be if N = 8 microstructures were used instead? Using the scaling
relationship we conclude that, with 95% confidence, all of the parameter estimates will be correct to within
2.34%. By adding an additional microstructure, the maximum error in the inferred parameter values would
be reduced to 1.83%. Alternatively, if one simply wants to know the minimum number of microstructures
needed to ensure that the error is less than, e.g, 5%, use of the scaling relationship would reveal that N = 4
microstructures are required.
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Fig. 7: 95% confidence intervals for each of the parameters as obtained by solving the localization problem with N microstruc-
tures chosen uniformly at random from among those considered here. The process was repeated 100 times for each N.

For the sake of comparison, a scaling law for bicrystal experiments can be derived. Consider a set of
N bicrystals with respective misorientations, {ω1, ω2, . . . , ωN}, which are sampled from U(0, 180◦). One
could perform diffusion experiments on each of the N bicrystals in an attempt to infer the parameters,
P = [D1,D2, ωt]T, of the constitutive equation (Eq. 2). In the case of these bicrystal experiments the 95%
confidence interval for ωt will converge more slowly than for the other two parameters and thus the % error
on ωt will be the upper bound for the bicrystal experiments. As demonstrated in A, the % error in the
parameter estimates resulting from these bicrystal measurements scales according to

%ERRωt ≈ 0.0227N−1 (12)

Let us set a target value for a tolerable % error in our recovered parameter values, e.g. %ERR ≤ 5%.
Solving Eqs. 11 and 12 for N we find that the number of samples, NB, required to achieve a given level of
error with bicrystal experiments scales according to

NB ∝
1

%ERR
(13)

3The percent error for log(D2) is strictly greater than or equal to that of ωt. However, since log(D1) = 0 the concept of percent
error is not well defined for this parameter. Alternatively, considering the percent error in D1 instead of its logarithm would
be inconsistent with the rest of our analysis. While the absolute error of log(D1) is very large for N = 3, it is zero (or at least
smaller than the resolution of Λ) for all other values of N that were tested, and consequently its percent error can be reasonably
considered to be zero as well. Therefore, using the percent error of log(D2) as a bound is strictly only valid for N ≥ 5.
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In comparison, the required number of experiments using localization, NL, scales as

NL ∝ ln
(

1
%ERR

)
(14)

Figure 8 shows a graphical comparison of NB and NL as a function of %ERR, which confirms that local-
ization dramatically reduces the experimental effort required to infer P. For our chosen level of accuracy,
%ERR ≤ 5%, we would need to perform at least 882 bicrystal experiments on average, to infer the values
of the constitutive parameters. In constrast, localization would necessitate an average of only 4 experiments
for the same level of accuracy.

 

 

Bicrystal
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%Error
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Fig. 8: The number of experiments, N, required for one to recover the values of all of the constitutive parameters in Eq. 2 to
within a given level of uncertainty (%Error). The performance of the localization methods introduced in this paper is compared
with that of an exhaustive bicrystal approach.

As just mentioned, one of the great advantages of the localization approach to deducing the properties of
microstructural constituents and structure-property correlations is efficiency. We expect this experimental
economy to be a general feature of the localization method, extending beyond the model system considered
here. To obtain good coverage of a d-dimensional space (d = 5 for grain boundaries) and make meaningful
inferences about structure-property correlations would require O

(
10d

)
experiments (starting from a point

of complete ignorance). In contrast, given a pre-specified constitutive relation with np undetermined para-
meters, the localization methods described here allow inference of structure-property relations with as few
as O

(
np

)
experiments and there is evidence that even for more complex constitutive relations than what we

have here considered, np may be extremely small. For example, Bulatov et al. recently developed a function
for grain boundary energy in FCC metals that requires only 2 material specific parameters [63]. Thus, the
key to experimental determination of grain boundary structure-property relations may be the development
of physics-based constitutive models with clearly stated parameters. The present results suggest that sys-
tematic experimental calibration of such models may be possible and would require far less experimental
effort than an exhaustive bicrystal approach. Furthermore, the use of the localization approach presented
here, in conjunction with model selection techniques, could allow not only for the calibration of model
parameters, but also the deduction of the form of an appropriate model and the rigorous quantification of
the uncertainty in both model form and parameter values.

In this paper, the localization approach has been demonstrated in the specific context of a grain bound-
ary structure-properties model. However, the localization approach is not limited to a particular material,
property, or microstructural feature. Rather, the localization methodology is completely general and may
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be applied to any material, for the inference of any property, as long as a suitable homogenization relation
(H) and an appropriate ansatz for the relevant constitutive equation (P) exist.

5. Conclusions

In this paper we defined the problem of grain boundary properties localization, which permits one
to infer the parameters of a grain boundary structure-properties model from macroscopic measurements of
effective materials properties. Stated another way, the localization approach allows one to infer local physics
information from measurements of global structure and the effective response of the material. We applied
this technique to a simple model system of grain boundary diffusivity in a two-dimensional microstructure
and inferred the properties of low- and high-angle grain boundaries from the effective diffusivity of the
entire grain boundary network. Below we summarize the main conclusions of this investigation:

1. Under appropriate conditions the localization problem has a unique solution and the objective func-
tion converges monotonically towards it. In our model problem we found that this unique solution
coincided with the known true solution.

2. Solution of the localization problem requires at least N = np non-redundant microstructures.
3. General microstructural characteristics required to recover the correct solution to the model localiza-

tion problem considered here were that the microstructures should be sufficiently different, should
sample all unique effective properties regimes (i.e. both sides of the percolation threshold), and
should avoid regions where abrupt transitions occur in the effective properties (pc,2). For a general
localization problem the details will be problem specific.

4. If appropriate selection criteria are unknown and selection of microstructures is performed uniformly
at random, the accuracy and precision of the resulting inferences increase with N, the number of mi-
crostructures considered. At the 95% confidence level, an upper-bound to the % error in the inferred
parameter values was shown to decay exponentially with N. This scaling relationship can assist in
determining the marginal value of performing additional experiments or to identify the minimum
number of experiments one should perform to obtain a specified accuracy in the solution.

5. Materials properties localization provides an efficient means to infer structure-properties models for
grain boundaries. In the present case we found that, using brute force bicrystal experiments, the
number of experiments required to infer constitutive model parameters scales inversely with the de-
sired accuracy (NB ∝

1
%ERR ). In contrast, the number of experiments that localization requires is much

smaller and scales logarithmically with the inverse of the desired accuracy (NL ∝ ln
(

1
%ERR

)
). For

more general structure-properties models we expect that, for a specified accuracy (%ERR), the effort
required for localization will scale with np, the number of parameters in the model, which should
generally be small. In contrast, the experimental effort required for a brute force bicrystal approach
should scale exponentially with d, the number of degrees of freedom required to describe the mi-
crostructural feature of interest (for grain boundaries d = 5).
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A. Error Scaling for Bicrystal Experiments

In attempting to infer the parameters of the constitutive equation (Eq. 2) via bicrystal experiements, the
parameter D1 will be recovered exactly if at least one bicrystal that we test has a misorientation ω ≤ ωt,
assuming that there is no uncertainty in the value of D1 that we measure. Likewise, D2 will be recovered
exactly with at least one bicrystal having ω > ωt. To recover the final parameter, ωt, to within some
specified accuracy (%ERR), there must be at least one bicrystal with misorientation falling in the range
[ωt − δ, ωt] and another bicrystal with misorientation falling in the range [ωt, ωt + δ], where %ERR = δ/ωt.
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For small δ, the error in ωt will be larger than that of both D1 and D2. Specifically, this will be the case for
δ < ωt. We wish to identify the number of bicrystal experiments, N, required to recover ωt to within δ of
its true value at a 95% confidence level.

Consider a set of N bicrystals with respective misorientations, {ω1, ω2, . . . , ωN}, which are sampled from
Ω ∼ U(0, ωmax), where ωmax = 180◦ for the crystal system considered in this study . Let4 A be the event
that at least one of these bicrystals falls in the interval [ωt − δ, ωt], and let B be the event that at least one of
these bicrystals falls in the interval [ωt, ωt + δ]. We are interested in finding N such that:

P(A ∩ B) = 0.95 (15)

Thus, we seek an expression for the joint probability P(A ∩ B). This may be accomplished by considering
the complement:

P(A ∩ B) = 1 − P
(
AC ∪ BC

)
= 1 −

[
P
(
AC

)
+ P

(
BC

)
− P

(
AC ∩ BC

)] (16)

The probability that none of the N samples fall within [ωt − δ, ωt] is given by

P
(
AC

)
=

(
1 −

δ

ωmax

)N

(17)

Likewise, for the interval [ωt, ωt + δ] we have

P
(
BC

)
=

(
1 −

δ

ωmax

)N

(18)

The probability that none of the samples fall in the interval [ωt − δ, ωt + δ] is given by

P
(
AC ∩ BC

)
=

(
1 −

2δ
ωmax

)N

(19)

Substituting these results into Eq 16 we find

P(A ∩ B) = 1 − 2
(
1 −

δ

ωmax

)N

+

(
1 −

2δ
ωmax

)N

(20)

Substituting δ = ωt (%ERR), setting Eq. 20 equal to 0.95, and solving for N numerically for 100 values of
%ERR ∈ {0.001, 0.002, . . . , 0.100} we observe the N(%ERR) dependence shown in Fig. 9. These results
suggest a power-law dependence, and a fit to the data results in the following:

N = 44.0337(%ERR)−1.0003 (21)

with a coefficient of determination equal to R2 = 1.0000 and an RMS error of 1.0407. The 95% confidence
intervals for the parameters in Eq. 21 are [44.0216, 44.0459] and [−1.0002,−1.0003], respectively. For
comparison with the error scaling of the localization method (See Eq. 11), we can rearrange Eq. 21 to get
the error scaling law for a bicrystal approach:

%ERR = 0.0227N−0.9997 (22)

4The authors wish to acknowledge David K [64], of the Math Stack Exchange community, for suggesting the derivation
provided in Eqs. 15-20, which we subsequently validated both numerically and analytically.
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Fig. 9: Solutions of Eq. 15 for various values of %ERR ∈ {0.001, 0.002, . . . , 0.100}.
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