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Abstract

Each member of a team of decision agents receives a conditionally

independent observation about some underlying discrete hypothesis. Subject

to causality constraints, the agents seek to optimize a team cost functional

by making discrete decisions which are conveyed to other agents on capacity

constrained channels. This paper derives optimal decision rules for a

class of problems of this type and discusses their properties.
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I.Introduction

Purpose: Team theory has long sought to unify the joint estimation/

communication/ control problems that arise when several agents that receive

different information attempt to cooperate [2]. These problems have

proven to be rather difficult in many cases [11], although a suprising

number of them can be reduced to an equivalent static framework [3,4]

through reformulation.

Building on [8], this paper describes the solution of

a number of specific team problems with non-partially nested (non-NP)

information structures. The problem is made tractable by assuming that the

underlying natural randomness takes the form of a fixed, discrete

hypothesis and that the decision agents receive conditionally independent

observations. This permits explicit computation of decision rules,

even when communication (preassigned flow pattern) is allowed between

agents. The decision rules themselves display an interesting structure

which aids interpretation of the solution (e.g. in terms of an optimal

quantization of the local information). The insight gained from this

work will serve as a stepping-stone for the development of a general

solution procedure for distributed hypothesis testing with communication

constraints.

Related Work: As the logical sequel to [8], Sections 2 and 3 present results

for two special classes of structures: tandem and hierarchical. The
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problems discussed are endowed with digital communication links between

the decision-makers (DMs). A predetermined causal precedence ordering

is imposed as each DM needs the decisions of his predecessors before

it can generate its own decision. We retain however, the assumption that

the actions of the DMs do not in any way affect any system dynamics.

However-, unlike problems with predetermined communication variables

(e.g. one-step delay information sharing [7], [5] and [10), the communicated

variables are limited to m discrete values with their content to be

determined. Messages are conveyed error free, i.e. we do not consider

noisy channels [1], although generalizations to this case can readily

be drawn. While the m discrete value channels provide encoding capability,

we are not interested in coding per se [1] but rather seek the overall

optimal communication and decision strategy. Note that this allows explicit

signalling [9] from a DM to "downstream" DMs through the communication

links.

Problem Statement: Find Xi ':Zf ii)i {0,1, .-.. ,N}, to minimize

J(Y,,...... Y. ) = E J(uo ,H)} where u is the output of the detection

network; {u,u,...,uN are internal communication variables; and Zi is

the information available to DMi as specified by its access to: (1) a

local observation yi and (2) other decisions specified by the topology

of the communication network (Figure 1). Finally H is the underlying

discrete state of nature.

Overview of results: Solutions are available for binary problems where

HCfH°,Hlj and Ui{O,lj, and a number of network topologies. Extensions to
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Figure 1: Topology of Communication Network
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M-ary hypotheses and mi symbol channels are straightforward and discussed

in Sections 2 and 3.

II.Tandem Team Configuration

Assumptions: The tandem network topology is illustrated in Figure 2. H°

and H1 arise with known a priori probabilities

P(Ho) = PO P(H 1) = (1)

The joint conditional observation distribution is

P(y0 ,Yl/H
j ) for jEtO,11 (2)

where the subscripts denote the DM. (The yi s may be random vectors generated

by "preprocessing" of the original measurements). The global cost function is

defined by J(uo,H) where

J : |0,1} X AH ,H } r NR (3)

The objective of the team is to minimize

E {J(uO,H) (4)

and we will interpret

0O~ H0 is declared

u (5)
o 1

H is declared

The following assumptions simplify in the derivation of the
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Phenomenon H

y y1 0 

U1 0
DM1 DMO

Figure 2: Two DM Tandem Topology
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decision rules:

Assumption 1: The observations yo and y1 are statistically independent,

i.e.

p(yl/oy,H) = p(y1/H) (6)

p(yo/Yl,H) = p(yo/H)

(See [6] for a case of dependent measurements without communication).

Assumption 2:

(a) J(1,H° ) > J(O,H° ) (7)

as per the interpretation of J

(b) p(uo=O/ul=O,Yo) P(uo=/ul=lYo) (8)

this disambiguates two possible symmetric solutions

Derivation: We begin with

Lemma 1:

J(u H°)[p(uo /ul = O yl) - P(Uo/u=l,y )]<0 (9)

0

Proof: Expanding expression (9)

J(O,H°)p(uo=O/ul=0,y0) + J(1,H°)p(uo=l/ul=O,yo)

-J(O,HO)p(uo=O/ul=l,yo) - J(1,HO)p(uo=l/ul=l,yo) (10)

But
P(Uo=l/ul=O,y o) = 1 - p(uo=/ul= 0 (1Yo)

p(uo=l/ul=l,y o) = 1 - p(uo=O/ul=l, o)

Substituting (11) into (10) and simplifying

[J(O,H °) - J(1,H°)] {p(u=0/ul=O,yo) - p(uo=0/ul=l,y)} (12)
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and Assumption 2 gives expression (12) is less than 0. Q.E.D.

This lemma is required for proving:

Theorem 1: The decision rule for DMO (Figure 2) is given by

UO = o (O, ,u,) (13)

and 'o(.) is the following likelihood ratio test:

ao;O

o ^ p(y 0/H') K p(I ')io)p(u,/F/)fj(o,,H).J , (,()

? (yPo/') < P(H°)p (u,/"/ °)[ ,, / H)--o o, )_

U,=t ,
{{/': U,,=

t° 7/ U,:/

The decision rule for DM1 is:

u,: , (,) (16)

and ,(') is the following likelihood ratio test:

p(A i,/') < E P(H ,7"o,,,,,/")[p(,o/I,,,-. H"o) -:, ,/u,,-o,//~

' t/

Proof: This proof parallels the one presented in [8].
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The objective

min E fJ(uo,H)3 (9)

is expanded explicitly as:

.£ u,,y~. , H) ,dyo d,

UuC~~o I YOXI/,(u o lu ,,yo H)p(u,,y0., /) 7.u, 4/) o ,yo y, (20)

>; f ) p(.4o/, sy, 114 ,)p(y/)) 7o( uo ) ) Jo J, (,)

Explicitly summing over u1 and ignoring constant term, the expression to

be minimized reduces to

ZJP(uDO./u. YO) IfP(/)/)(YJA11H)PYON//)bA(O Ht) - JL, )dyO dy, (22)

This expression is minimized by setting

I~O ;/ ZP(H)pfu./b)pf(yo/hN)/J(o,.) -- Jt,,)]>o C
H(Ho t O!. (.23) 

0/ o/Ae ,-*;.se

Expanding over H and invoking Assumption 2(a) yields the decision rule

for DMO given in expression (14).

For l(.) , write (21) as

o f P(),r(uo /, y¥ ) fpl/y ,) ?(y,/,) p( yo/#) 4?vi, , ) dyo y (24)

ex, y,,y,

Explicitly summing over u1, substituting p(ul=l/y1) = 1 - P(ul=O/y1)

and ignoring the constant term yields

The expression is minimized for
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0.,4)

/ olbe /w;(se

Expanding over H and invoking Lemma 1 yields the decision rule for

DM1 given in expression (17). Q.E.D.

Summary: The person-by-person optimal decision structure is based on

three thresholds that must be calculated together:

t fto = fo(l( ))/ u =0 (27)tl = fo('l(.))/Ul=l

where fl(.) and f0 (.) are defined in expressions (14) and (17). The

simultaneous solution of these equations yields the three thresholds.

Extensions:

Theorem 2: For the tertiary hypothesis case, i.e. HE {H ,H , H2 and

tertiary symbol channel capacity, i.e. u.if0,1,2J , itJ0,1}, the

decision rules for DM0 (Figure 2) is given by

NO t o (YO) U)( 8)

and lO(') is the following set of likelihood ratio tests:

uo i ork

A' po(Y/oh') < /(H gi)pf(u,//l [J(tJi/H)-f('; j ]P(Hkij(,6,,/)XA',J(/j/)-,J(j, H)

MO j ork 9)

for (i,j,k)( (0,1,2),(0,2,1),(1,2,0)1

The decision rule for DM1 is



uJ= Sr(y,) (30)

and '(') is given by the following set of likelihood ratio test:

M,,I I, k

'Iuv//./').> Pr/.9A, uok/).:~.
_ _-?_,_ -_ ,/;,to)]

4~ , LDO 3(Uou,:tff __(H_ _ ____ _ _ _ HO_ _;_p_(_, _ __ ,
(3/)

for (i,j,k)E {(0,1,2),(0,2,1),(1,2,0)}

Proof: Consider expression (20)

:E P(x)? .o I. ,),, 4 y,)p y, IH) p(yo/H)J(wo, H)yo dyl,
· , Yo,Y, ,(3 2)

Jlr(. olIu,,Y) o)P(/).p(u, I)P(Yyo/) w%7o,,) ,yo

Hence the decision rule is deterministic and is given by (29).

To show (31) rewrite (32) as

E/'(Y ., lO F
and parallel the proof of Theorem 1. Q.E.D.

Theorem 3: For the Three Tandem DM case (Figure 3) and binary symbol

capacity channels, the decision rule for DM0 is biven by

U. = X. (YOo ,4) (34)

and Y'o(")is the following likelihood ratio test:

A4'=O)

0 P(yo/-') < PI')/( 1,/HO/)[jI, qo) J(oH 0 7
o0 /

a, (36)
_ o it ,: I



-12-

Phenomenon H

Y2 / YO

Y 2 Y 1 uOFu /3 he m Tply l

Figure 3: Three DM Tandem Topology.
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The decision rule for DM1 is

u, = / (y,, i) (37)

and Z (.) is the following likelihood ratio test:

.o(yt,,~ W" Ptuo pta,/.H). 7u,,#)f?(o l,:o,:)-F (uo/,,-,, 0 ])7 '" , A ;"'

The decision rule for DM2 is

and t2(T) is the following likelihood ratio test:

Proof: Invoking similar steps as in Theorem 1. Q.E.D.

Extensions to M-ary hypothesis, mi symbol channels and N-tandem DMs are

straightforward.

III.Tree Team Configuration

Assumption: Consider same assumptions as in Section II. First consider

the simplest tree topology (Data Fusion) illustrated in Figure 4.

Theorem 4: The decision rule for DMO is given by

o A ~Yo/NO) q1 > t,)p, /h),/,)[J ')-,, ') (4,)
A° ''o/' /H,') /' c< ?P(o)pe, ° /f )O)p(z / 9o)/j,,iHo) - J(oo )7

to if u1=0, u2=0

01
b toA to1 if ul=O, u2=1 (2)

10
to if ul=l, u2=0

11
to if ul=l, u2=1

The decision rule for DMi (i4f1,2}) is

ui = 7i (Yj 74--P- 2
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Phenomenon H

DMO

UOFigure 4: Optimal Data Fusion Topology0

Figure 4: Optimal Data Fusion Topology
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and i(,) is the following likelihood ratio test:

4; = 0

~ P( y3//M / 0) ____>_________________________________4

.AO, = , _

_: t (4a)

Proof: This proof parallels the one in Theorem 1. Q.E.D.

Extensions: Consider DM1 in the tree structure illustrate in Figure 5.

Assume the pair of decision rules in DM4 and DMO are fixed. Then a cost

function of u1 and H at DM1, J(ul,H), can be obtained by taking the

expectation over y and y4, i.e.

U, )i - ;vuo,) | TN(- ),x(o) 
YoI YIe

Given this cost, one can solve for decision rules fl',,7 and Vs using

Theorem 4. Inserting these decision rules into the the DMs, one can

compute p(ul/H). Then one can solve for the decision rules for DMO

and DM4 with u1 (described by p(ul/H)) by using the results from the

tandem case (Theorem 1). Note that u1 acts as an additional measurement

to DMO. The result of this process is an iterative procedure for alternately

computing ,6qIo, and 64' ')"' i, which exploits a decomposition

resulting from the independence of observations when conditioned on

H (Assumption 1). This suggests a procedure for extending the results for these

simple cases to larger networks.
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Y2 Y3 Y4
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U2 U3 U4
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Figure 5: Tree Hierarchical Topology
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IV.Summary

Optimal decision rules for a static non-PN detection team have

been derived. The decision rules are likelihood ratios in the actual

data, with thresholds determined by incoming communicated messages, The

number of thresholds at each DM is equal to the number of combinations

of these discreteinputs. Moreover, it is apparent that, at least for

some tree structured problems, a decomposition principle (along the

lines of spatial dynamic programming) can be found for methodically --

computing decision rules. This is a topic of current research and will

be reported in a subsequent paper.
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