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Abstract: Path integrals calculate probabilities by summing over classical configurations

of variables such as fields, assigning each configuration a phase equal to the action of that

configuration. This paper defines a universal path integral, which sums over all computable

structures. This path integral contains as sub-integrals all possible computable path inte-

grals, including those of field theory, the standard model of elementary particles, discrete

models of quantum gravity, string theory, etc. The universal path integral possesses a well-

defined measure that guarantees its finiteness. The probabilities for events corresponding

to sub-integrals can be calculated using the method of decoherent histories. The universal

path integral supports a quantum theory of the universe in which the world that we see

around us arises out of the interference between all computable structures.
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Over the past few decades it has become clear that physicists must contemplate se-

riously the possibility that the observed laws of physics may only represent one out of a

large number of possible laws. In string theory, for example, the string theory landscape

identifies some 10500 possible vacua, each of which could give rise to different properties for

the laws of elementary particles, and only one of which might correspond to our observed

laws [1]. If our laws are plucked from an ensemble of possible laws, it makes sense to inves-

tigate from what types of ensembles of laws ours might arise, and how one particular set

of laws is plucked from the ensemble. The theory of algorithmic information [2-4] provides

a classical specification of an ensemble from which structures could arise: to each com-

putable structure s it postulates an algorithmic probability p(s) proportional the sum over

all programs π that produce the structure of 2−|π|, where |π| is the length of |π| in bits.

Algorithmic probability was originally proposed to make precise the notion of a universal

prior probability for Bayesian inference [2]. It assigns high probability to structures that

can be computed from short programs. At bottom, however, the observed universe does

not arise from classical probablities but from quantum probability amplitudes. Probabili-

ties are derived from superpositions of complex amplitudes, which can exhibit constructive

and destructive interference. Accordingly, it makes sense to investigate algorithmic meth-

ods for constructing universal superpositions of quantum amplitudes, and to compare how

a quantum algorithmic theory of probability differs from the classical one.

The framework on which we base this quantum algorithmic theory is that of path

integrals [5-7]. We propose a universal path integral that encompasses all computable path

integrals. The path integral possesses a well-defined measure that makes finite all path

integrals derived from it. The method of decoherent histories provides a natural method for

assigning probabilities to subsets of paths [8-13]. When the paths correspond to physical

quantities, such as histories of quantum fields with a particular Lagrangian dynamics,

then the probabilities that the universal path integral assigns to decohering coarse-grained

subsets of probabilities can be identified with observable probabilities within a universe

that obeys that dynamics. The universal path integral provides a mathematically well-

defined framework for describing the ensemble of computable quantum theories, and the

laws of nature as we observe them formally exist in this ensemble.

The ingredients of a conventional path integral are a set of classical configurations

or ‘paths’ {Φ}, for example, a set of configurations for classical fields over spacetime,

together with an action S(Φ), a computable function of the classical configurations [5-6].
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To perform the integral, one integrates over all configurations that are compatible with

the conditions Γ that one wants to observe, e.g., configurations of fields on initial and final

spacelike surfaces, yielding an amplitude for those conditions:

A(Γ) =

∫
Φ∈Γ

DΦ eiS(Φ). (1)

The probability of Γ is then proportional to |A(Γ)|2. There are a number of technical issues

associated with evaluating such path integrals. First of all, one must define the measure

of integration DΦ in a sensible way. Secondly, one must actually perform the integral: the

integral itself is highly oscillatory and hard to approximate. Finally, in the case of theories

such as string theory or eternal inflation that attempt to provide a quantum-mechanical

description of the universe as a whole, the issue arises of how to extract probabilities for

observed features of the universe out of the path integral [7].

The universal path integral provides a mathematically rigorous way of addressing

these issues. The classical configurations in the universal path integral are configurations

of discrete sequences of symbols such as integers or bits, with actions that are computable

functions of those configurations. The path integral sums over all possible computable

configurations: as a result, any path integral that is itself computable – for example,

a conventional path integral performed in lattice gauge theory – is contained as a sub-

integral in the universal path integral. As will be shown, the universal path integral gives

well-defined predictions for probabilities of events or sequences of events. In particular,

the universal path integral provides a mechanism for how the classical world that we see

around us arises out of constructive and destructive interference between different quantum

paths.

The universal path integral

Now define the universal path integral. The method of definition relies on the theory

of algorithmic probability [2-4]. Let the action S be the output of a classical universal

computer UL that takes input programs bit strings b = b1b2 . . . written in language L,

producing as output the bit string S(b). The bit strings can be either finite or infinite in

length. We can think of such bit strings as real numbers in the interval [0, 1], written in

binary, e.g., 0.1011 = 11/16. If S halts in finite time given input b, then it reads only

a finite number of bits of b. Call such a set of bits a halting program p: all input bit

strings that begin with the same program p yield the same output S(p). That is, programs

are ‘prefix-free’: no halting program is the prefix of another. A halting program p then
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corresponds to a sub-interval of measure 2−|p| where |p| is the length of the program p: if

one generates the bits of the input program by flipping a fair coin, the probability that

the first |p| bits of the input string yield the program p is 2−|p|.

Because UL is universal, some programs never halt and give an output. Membership in

the set of halting programs cannot be computed [2-4] (the halting problem). To cope with

the halting problem, introduce a computer that always halts in finite time t: St(b) = S(b)

if UL halts in time t given input b, St(b) = 0, otherwise. The universal path integral is

then

ΣL = lim
t→∞

∫ 1

0

e2πiSt(b)db. (2)

Note that for any finite time t, the computer only reads a finite number of bits in the

program before giving an output. Accordingly, equation (2) does not suffer from the

ambiguity .1000 . . . = .0111 . . . that occurs for infinite bit strings. Because programs are

prefix free, the universal path integral can be rewritten as a universal path sum over

programs for St, all of which halt by time t by definition:

ΣL = lim
t→∞

∑
p:|p|≤t

2−|p|e2πiSt(p). (3)

The universal path integral ΣL is a complex number with amplitude between zero and one.

To verify convergence of the universal path integral, note that the magnitude of the

difference between the integral evaluated at time t1 and at time t2 > t1 can be at most

equal to the fraction of programs that fail to halt by time t1 but that have halted by time

t2. If we simply define t2 to be equal to the time at which half of the halting programs

that failed to halt by time t1 have halted, and t3 the same relative to t2, we note that

the maximum possible magnitude of the difference between successive estimates of ΣL at

times tk and tk+1 goes down by at least a factor of two at each step. Consequently, the

universal path integral converges in the limit t → ∞. Since at each time t the sum (3)

consists of a finite number of terms, the integral is also absolutely convergent.

Because the halting set is uncomputable, the t → ∞ limit in the universal path inte-

gral/sum converges more slowly than any computable sum. The amplitude for everything

cannot be computed in practice. While it might sound bad at first, the uncomputability of

Σ is in fact acceptable: we are interested not in the absolute amplitude for everything, but

rather in the amplitudes that predict the results of experiments, given our observations.

As will be seen below, such amplitudes represent computable sub-integrals of Σ.
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To make the connection to conventional path integrals, we can assume that programs

written in language L consist of two parts, p = p0p1, where the first part of the program p0

specifies a finite set of paths W (p0) and the method for computing an action for members

of that set w ∈ W (p0). The second part of the program p1 picks out a particular path

w(p0p1) = w(p) from the set, and generates the action S(p) for that path.

The universal path integral sums over all computable configurations of bits and ac-

tions. It includes as sub-integrals all the path integrals that physicists would like to per-

form. Even if the desired path integral consists of a continuous, uncountable set of paths,

the universal path integral nonetheless contains sub-integrals that approximate that inte-

gral to any desired accuracy. For example, any lattice gauge theory path integral over a

finite lattice with the field values truncated to a finite precision corresponds to some finite

interval of the universal path integral.

Quantum computing and the universal path integral

All quantum computations are included in the universal path integral. A quantum

computation can always be written as a sequence of controlled-NOT gates, Hadamard

gates, and so-called π/8 gates (rotations by π/4 about the z-axis) [14]. Controlled-NOT

gates flip quantum bits conditioned on the values of other bits, Hadamard gates take

qubits to equal superpositions of |0〉 and |1〉, and π/8 gates apply a phase of eiπ/8 to |0〉
and e−iπ/8 to |1〉. A quantum computation can then be written as a uniform superposition

of sequences of bit configurations (paths) determined by the quantum logic gates of the

computation, where each Hadamard gate doubles the number of paths and each π/8 gate

applies a phase to each path.

Conversely, the entire universal path integral can be computed on a quantum computer

in the infinite time limit. The universal path integral is simply equal to

ΣL = lim
t→∞

〈Ψ|V t
L|Ψ〉, (4)

where |Ψ〉 =
∫ 1

0
|b〉db is the uniform sum of all input bit strings, and V t

L is the action of the

quantum computer that implements the unitary transformation V t
L|p〉 = e2πiSt(p)|p〉. That

is, the amplitude modulus squared of the universal path integral ΣL is the probability that

the quantum computer remains in its initial state. The real and imaginary parts of the

amplitude can be extracted in a similar fashion. For example, start in the initial state |Ψ〉⊗
(1/

√
2)(|0〉 + |1〉), and use the quantum computer to construct the state 1/

√
2(V t

L|Ψ〉|0〉 +

V̄ t
L|Ψ〉|1〉. The probability that the quantum computer remains in its initial state is then
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proportional to the square of the real part of the amplitude. Sub-integrals of the universal

path integral are computable by a quantum computer by restricting the input state in

equation (4) to the appropriate sub-interval.

Obtaining probabilities from amplitudes

Let’s see how the universal path integral assigns probabilities to events. Use the two-

step description p = p0p1 given above, where p0 picks out a set of paths W (p0) and p1

picks out a particular path w(p) within that set. A coarse-grained path w̃ is some subset

of W . For example, if W is a set of bit strings, w̃ could be the set of bit strings where the

first bit takes on the value 0. The amplitude for w̃ is

A(w̃) =
∑

p:w(p)∈w̃

2−|p|e2πiS(p). (4)

The probability for an event in quantum mechanics is usually taken to be proportional

to the square of the magnitude of the amplitude for the event:

p(w̃) ∝ |A(w̃)|2. (5)

We must be careful here, as the prescription that probability is proportional to amplitude

squared conventionally refers to probabilities for the outcomes of measurements. It is not

yet clear what a ‘measurement’ consists of here: any measurement apparatus must itself

be somehow contained within the path integral. Fortunately, the method of consistent or

decoherent histories gives us a well-established way to proceed [8-13]: even in the absence

of a measurement apparatus, we can still assign probabilities as long as the probability

sum rules are obeyed.

Consider two non-overlapping coarse-grained states w̃ and w̃′, e.g., w̃′ = NOT w̃, the

set complementary to w̃. We would like to assign to these states the ‘probabilities’

p(w̃) = |A(w̃)|2, p(w̃′) = |A(w̃′)|2. (6)

Since w̃, w̃′ correspond to mutually exclusive sets of events, to qualify as probabilities

p(w̃), p(w̃′) should satisfy the probability sum rule:

p(w̃ OR w̃′) = p(w̃) + p(w̃′). (7)

In other words, defining the amplitude

A(w̃ OR w̃′) =
∑

w∈w̃∪w̃′

A(w), (8)
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we require that

|A(w̃ OR w̃′)|2 = |A(w̃)|2 + |A(w̃′)|2. (9)

This requirement to obey the probability sum rule is equivalent to demanding that

ReA(w̃)Ā(w̃′) = 0. (10)

More generally, two non-overlapping coarse-grained states obey the probability sum

rule to accuracy ε if
(ReA(w̃)Ā(w̃′))2

|A(w̃)|2|A(w̃′)|2 ≤ ε. (11)

This is the usual requirement for destructive interference from conventional quantum me-

chanics: an observer trying to determine whether the sequences of events w̃ and w̃′ obey

the probability sum rule would have to repeat the experiment of seeing how many times w̃

or w̃′ occured O(1/ε2) times in order to discern deviations from the probability sum rule

due to the effects of quantum interference. For example, if w̃ represents a particle showing

up in one region of the screen in a double slit experiment, and if w̃′ represents a particle

showing up in a non-overlapping part of the screen, the particle must be sent through the

slits O(1/ε2) times to detect the effects of quantum interference.

The method for obtaining probabilities for events from the path integral reveals a cru-

cial difference between quantum [15] and classical algorithmic descriptions of the universe

[16-17]. The classical algorithmic description simply assigns algorithmic probabilities 2−|p|

to programs and to the bit strings that they create. In the classical case, all computable

structures are represented, but they do not interfere with each other [16-17]. In the quan-

tum case, by contrast, the world that we see around is arises out of the interference between

different computable structures [15]. Computable structures effectively conspire with each

other via constructive and destructive interference to create the observable world.

Observable probabilities are language independent

The universal path integral allows us to assign probabilities to coarse grained histories

that obey the probability sum rules. As defined so far, these probabilities depend on the

language L used to define the universal path integral. The absolute probabilities defined

so far are not the same as the probabilities as measured by observers ‘living in’ the path

integral, however: the measured probabilities are not absolute but are conditioned on the

fact of the observer’s existence, and on the dynamics of the sub-integral that the observer
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inhabits. We now show the probabilities for observables as measured by observers are in

fact independent of the L.

First of all, note that the universal path integral defined according to one language

contains the universal path integrals defined according to every other language as a non-

zero measure sub-integrals. For any two fully recursive languages L, L′, there is a program

pL→L′ written in L, that instructs the computer to interpret what follows as a series

of instructions in language L′, where the symbols recognized by L′ have been suitably

encoded as bit strings of finite length. The universal path integral ΣL′ is then equal to

the universal path integral ΣL restricted to the interval in which the initial |pL→L′ | bits of

the input program in ΣL are pL→L′ . That is ΣL contains ΣL′ as a sub-integral. Note that

this means that ΣL also contains itself as a sub-integral (and does so an infinite number

of times). It also means that the amplitudes for events determined by the universal path

integral defined by L′ differ by at most a multiplicative constant from those defined by L.

Now consider the probabilities for events as observed by someone ‘living’ in the path

integral. The ‘life’ of such an observer is nothing more or less than a coarse-grained set

of events, whose joint probabilities are those for a system that is gathering and processing

information about other systems to which it has access. In Gell-Mann’s nomenclature [10],

an observer is an information gathering and using system, or IGUS, embedded in the path

integral. This observer sees events occurring with probabilities that depend on what part

of the path integral it occupies. The key point is that the observer has no access to the

absolute probabilities of events: it only has access to the probabilities of events conditioned

on its existence and on the laws in its sector of the path integral. In other words, this

observer, like all the rest of us, is subject to the weak anthropic principle: we only have

access to the part of the universe that supports our existence.

The universal path integral allows us to make this conditional nature of probabilities

precise: every observer occupies a sub-integral of the path integral governed at bottom

by a particular language L, which is typically only partly known to that observer. For

example, in our case, the language L specifies the part of the path integral that governs

the laws of elementary particles and quantum gravity as they figure in our particular sub-

integral, acting in a spacetime that obeys a particular set of initial conditions. Within

the part of the path integral specified by L, further sub-integrals pick out the quantum

accidents that specify our observed laws of chemistry, biology, economics, etc. [10]. That

is, L is the ‘language of nature’ for the part of the universal path integral accessible to us as

8



observers. The theory of algorithmic inference [2] then implies that Bayesian updating of

the probabilities of theories based on repeated observation, will lead us closer and closer to

a full knowledge of the language of nature that specifies our part of the path integral. The

nested nature of the universal path integral implies that knowledge of our ‘local’ language

of nature is just as good as knowledge of the ‘global’ language.

Discussion

The universal path integral contains as sub-integrals all computable path integrals,

including the path integrals for lattice gauge theories. It supports quantum computation

and can be computed by a quantum computer in the infinite time limit. It supplies

quantum amplitudes for fine-grained sequences of events, and predicts probabilities for

coarse-grained events. The probabilities for events as viewed by observers ‘living in’ the

universal path integral are independent of the language by which the path integral is

defined. The world that we see around us arises out of quantum interference between all

possible computable structures.

As in all theories where the observed laws of Nature are just some instance of possible

laws, e.g., the string theory landscape, the universal path integral theory of nature is not

as satisfying as a theory that predicts the exact laws that we see from one fundamental

principle. Because of its intrinsic connection to Occam’s razor, however, the universal

path integral does not discourage us from looking for ever simpler laws: on the contrary,

it exhorts us to carry on in the search for simplicity, in the hope that we will discover new

regularities in the language of Nature, and to use those regularities to predict the results

of future observations.
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