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Abstract Evolutionary Algorithms (EAs) are emerging as competitive and reli-
able techniques for several optimization tasks. Juxtapositioning their higher-level
and implicit correspondence; it is provocative to query if one optimization algo-
rithm can benefit from another by studying underlying similarities and dissim-
ilarities. This paper establishes a clear and fundamental algorithmic linking be-
tween particle swarm optimization (PSO) algorithm and genetic algorithms (GAs).
Specifically, we select the task of solving unimodal optimization problems, and
demonstrate that key algorithmic features of an effective Generalized Generation
Gap based Genetic Algorithm can be introduced into the PSO by leveraging this
algorithmic linking while significantly enhance the PSO’s performance. However,
the goal of this paper is not to solve unimodal problems, neither is to demonstrate
that the modified PSO algorithm resembles a GA, but to highlight the concept
of algorithmic linking in an attempt towards designing efficient optimization al-
gorithms. We intend to emphasize that the evolutionary and other optimization
researchers should direct more efforts in establishing equivalence between different
genetic, evolutionary and other nature-inspired or non-traditional algorithms. In
addition to achieving performance gains, such an exercise shall deepen the under-
standing and scope of various operators from different paradigms in Evolutionary
Computation (EC) and other optimization methods.
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2 Kalyanmoy Deb and Nikhil Padhye

1 Introduction

Classical optimization algorithms are mainly classified into two categories – (i)
gradient based algorithms and (ii) direct search based algorithms [42,40,12]. Al-
though both these types of algorithms use a single solution point in each iteration,
there exist a number of population based classical optimization algorithms, such
as Box’s algorithm [7], adaptive random search methods [30], etc. Recent decades
have marked developments in several non-traditional optimization methods such as
simulated annealing [28], evolutionary algorithms [23,18], particle swarm optimiza-
tion [27], and other nature or bio-inspired algorithms. The emergence of several
optimization paradigms provokes following basic questions: How evolutionary al-
gorithms differ from one another in terms of their fundamental construct? Equally
and importantly, is there an algorithmic linking between these algorithms? If so,
can the desired properties of one algorithm can be transmitted over to another
effectively? A recent study has proved that the performance of a differential evolu-
tion (DE) algorithm can be significantly enhanced by adopting a unified approach
and borrowing operations from a real-parameter genetic algorithm (GA) [34].

Genetic algorithms were first suggested by John Holland in early sixties [22].
Thereafter in 1975 De Jong showed that GAs can be used as function optimizers
[14]. Today, GAs constitute one of the unarguably dominant optimization meth-
ods. GAs are population based search approaches in which an initial population
of solutions gets updated by three main operators: (i) selection – that chooses
better solutions from the population, (ii) recombination – that produces offspring

solutions by combining the selected solutions, and (iii) mutation – that alters the
offsprings one at a time with a goal of maintaining diversity in the population.
Over the past years, convergence properties of GAs have also been studied [44],
along with numerous customizations for different search and optimization tasks.
Similar developments have occurred in Evolutionary Programming (EP), Evolu-
tionary Strategies (ES), Genetic Programming (GP), etc., however, they are not
central focus of this paper.

In 1995 [27], a new paradigm in nature-inspired meta-heuristics named particle
swarm optimization (PSO) was introduced by simulating the behavior of organ-
isms like those in the bird flocks or fish schools. In the original proposal, authors
tied the roots of PSO to artificial life (A-life) and related it to GAs and evolu-
tionary programming methods [17] based on their structural similarities. Over the
past decade, PSO has gained a wide-spread popularity within research communi-
ties mainly due to its simplistic implementation, reported success on benchmark
test problems, and acceptable performance on application problems. Based on the
canonical form of original PSO, majority of research focus in the past has been
spent on improving the optimizer’s performance in various contexts. In the original
paper [27], the developers recognized that PSO’s child update procedure is sim-
ilar to a GA’s crossover operator. Another study [15] discussed a resemblance of
PSO with an evolutionary algorithm; and even considered PSO as an evolutionary
algorithm. Importantly, they recognized that each operator of an EA is somehow
present in a PSO, though not directly. They went on to describe that PSO does
not have a direct crossover operator, but the concept of a crossover is also present
in the PSO. Furthermore, a PSO does not have an explicit selection operator, but
its use of global best and personal best solutions in child creation acts as inherent
selection operators. Other studies have also looked at the similarities and differ-
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Algorithmic Linking of PSO and GAs 3

ences between EA and PSO, namely [1], and characterized an EA procedure as
primarily a competitive evolutionary process; whereas PSO as a cooperative one.

In spite of such studies, we argue that one of the striking features of a PSO
is that its child creation operator uses an individualistic approach in a sense that
each population member uses its past state, current state and its personal best to
create a new solution. The only information it shares with the other population
members is the global best solution (if a fully-connected topology is assumed).
In comparison, a GA allows its recombination operator to be applied among any
two or more population members, and relies its search on its recombinative aspect
involving multiple population members (populistic approach for creating new and
hopefully better solutions [18].

Although qualitative similarities exist between PSO and a GA, most of the
PSO approaches use the standard particle update rule (we shall refer to this as
child creation rule). Despite the original developer’s realizations of PSO’s similarity
with other evolutionary algorithms there are is no systematic or a revealing study
which develops an algorithmic link between a PSO and a GA. If a direct algorithmic
link can be established, then PSO researchers can borrow knowledge from GAs to
enhance the performance of the PSO algorithm and vice versa.

In this paper, we illustrate the advantage of building an algorithmic link be-
tween a PSO and a GA in the context of solving a particular class of unimodal
problems — the problems having one or very few optima. For the unimodal prob-
lems, an efficient algorithm, when initialized far away from the optimum, must
possess adequate diversity preserving and simultaneously convergence properties.
This is important to avoid stagnation and to maintain sufficient exploration capa-
bility in order to drive the search towards the optimum.

A real-parameter genetic algorithm (GA) was developed to efficiently handle
unimodal problems in the recent past [13] and reported a competitive number of
overall function evaluations needed to find a near-optimal solution in comparison
to a number of other evolutionary algorithms, including CMA-ES [20], evolution
strategies [45], differential evolution [48], and a classical optimization method. In
this study, we consider the same set of test problems and compare the performance
of existing PSO algorithms to the best-known results. Simulations reveal that
standard PSO implementations with commonly used parameter settings fail to
perform well. When faced with such a predicament, the existing PSO framework
does not provide a simple way forward. Instead of resorting to sophisticated options
(such as multiple swarms, adaptive change in parameters etc.), we attempt to
design a GA which is algorithmically identical to the basic PSO approach and
then borrow effective GA operators to PSO while preserving its individualistic
traits. Such a task helps to enhance the PSO performance significantly.

Our study here should not be misunderstood to say that if there already ex-
ists a GA to solve the problems of our interest, why do we care solving them by
some other optimization paradigm? Neither it should dismissed based on the fact
that we have focused on unimodal problems instead of more complex optimization
problems. The study should not also be viewed as a process of making one algo-
rithm similar to the other, rather the lack or presence of specific operators and
the process of inclusion of operators from one algorithm to the other should be
viewed as reflections of flexibilities and adaptibilities associated with algorithms
– a matter which will make our understanding of different algorithms better and
richer. Since every algorithm is likely to have a niche where it stands out as a pre-
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4 Kalyanmoy Deb and Nikhil Padhye

ferred candidate over the other algorithm, we do not advocate abandoning one for
the other based on the performance on certain set of problems. Rather, the goal
in this paper is to emphasize the importance of establishing an algorithmic linking
among different optimization algorithms, so that, as and when needed, ideas from
one can be borrowed to enhance the performance of the other. As observed in this
paper, while the ideas from GAs help to improve the performance of canonical
PSO, on one of the test problems the performance of our enhanced PSO surpasses
that of the best known GAs. We argue that the procedure adopted in this study
is generic and can be applied to develop efficient and collaborative algorithms for
solving other difficult optimization problems. In addition, such tasks should pro-
vide researchers with useful insights and understanding of different algorithmic
aspects needed in an efficient optimization method.

In the remainder of this paper, we begin by providing a brief discussion on
salient PSO studies. Thereafter, we present a genetic algorithm framework which is
essentially identical to a canonical PSO algorithm in terms of its working principle.
This is followed by a section in which we describe three unimodal test problems and
the best performance results from an earlier study. PSOs with standard parameter
settings are then applied to these problems1. Thereafter, additional operators from
the existing GA study are borrowed one by one and judiciously added to the PSO
algorithm in order to maintain PSO’s individualistic characteristics. Once the final
algorithm is developed, a detailed parametric study is performed to fine tune the
PSO algorithm. The performance of the proposed PSO algorithm is then tested
on large-dimensional (up to 500-variable) problems. Finally, the conclusions are
provided and the importance of this study is highlighted.

2 Related PSO Studies and Algorithm Architecture

Popular studies in PSO have been focused on the task of single objective op-
timization. However, the swarm intelligence idea has been successfully applied
to multi-modal optimization [4], multi-objective optimization [35,11], and several
real-world applications. Few attempts have also been directed towards the develop-
ment of theoretical models for particle trajectories in PSO. The proposed models
have been validated empirically and often been found useful in explaining the
swarm behavior, for example, see [10,26,32]. A detailed and complete recollection
of past work is beyond the interest of this paper. For an extensive overview of past
work in PSO, readers are referred to a recent survey [3]. For reviews on multi-
objective optimization, multi-modal optimization, dynamic optimization, readers
are referred to [43,4,6]. Next, we shall visit some well known extensions of PSO
which have shown superior performance compared to the canonical PSO.

The canonical form of PSO consists of a population of particles, known as a
swarm, with each member of the swarm being associated with a position vector
xt and a velocity vector vt. The size of these vectors is equal to the dimension of
the search space. The term velocity (vt) at any iteration t indicates the directional
distance that the particle has covered in the (t− 1)-th iteration. Hence, this term
can also be called as a history term. The velocity of the population members moving

1 The source codes adopted in this paper are available at [33], or by e-mailing
npdhye@gmail.com.
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Algorithmic Linking of PSO and GAs 5

through the search space is calculated by assigning stochastic weights to vt and
the attractions from a particle’s personal-best or ‘pbest’ (pl) and swarm’s best or
‘gbest’ (pg), and computing their resultant vector. The ‘pbest’ vector indicates the
best position attained by a particle so far, whereas the ‘gbest’ vector indicates the
best location found so far in the entire swarm (this study implements popularly
used fully informed swarm topology, that is, each particle knows the best location
in the entire swarm rather than in any defined neighborhood).

The following equations describe the velocity and position update for i-th par-
ticle at any iteration t (we refer to this as the child creation rule):

vt+1
i = wvt

i + c1r1 .∗ (pt
l,i − xt

i) + c2r2 .∗ (pt
g − xt

i), (1)

xt+1
i = xt

i + vt+1
i . (2)

Here, r1 and r2 are random vectors (with each component in [0, 1]), and w, c1 and c2
are pre-specified constants. The .∗ symbol signifies component-wise multiplication
of two vectors. In each iteration, every particle in the population is updated serially
according to the above position and velocity rules.

A little thought will reveal that the above child creation rule involves a pop-
ulation member xi at the current generation, its position vector in the previous
generation, and its best position so far. We argue that these vectors are all in-

dividualistic entities of a population member. The only non-individualistic entity
used in the above child creation is the position of the globally best solution pg,
which solely justifies the population aspect of the PSO. In this study, we treat
the individualistic aspect as a trademark feature of PSO algorithm and argue that
this is one of major differences of child creation rule between a PSO and a GA.

The parametric study on coefficients (w, c1, and c2) for terms vt
i, (p

t
l,i−xt

i) and

(pg−xt
i), respectively, were conducted in [9,47] and empirical studies revealed that

in Equation (2), the w value should be about 0.7 to 0.8, and c1 and c2 around 1.5
to 1.7. Irrespective of the choice of w, c1 and c2, while working with the bounded
spaces the velocity expression often causes particles to ‘fly-out’ of the search space.
To control this problem, a velocity clamping mechanism was suggested in [16]. The
clamping mechanism restricted the velocity component to lie in [−vmax,j vmax,j ]
along each dimension (j). Usually, vmax,j along j-th dimension is taken as 0.1 to
1.0 times the maximum value of xi along the i-th dimension. Such a clamping
mechanism does not necessarily ensure that newly created particles shall remain
in the search space. However, since we are concentrating on solving unconstrained
problems in this study, a velocity restriction mechanism is not needed.

The velocity term (vt
i) indicates a particle’s ability to explore the search space

while it moves under the attraction of ‘pbest’ and ‘gbest’ points. In initial phases of
the search, a wide exploration is favored; whereas towards the end, a more focused
search is desired. To achieve this, the concept of decreasing inertia weight (w) was
introduced in [46]. The strategy has gained popularity in promoting convergence.
The idea of varying coefficients was also extended successfully to dynamically
update the parameters c1 and c2 in [41,49].

Premature convergence has been a major issue in PSO. The particles often
accelerate towards the swarm’s best location and the population collapses. A study
classified under swarm stability and explosion [10] proposed a velocity update
rule based on ‘constriction factor’ (χ). In the presence of χ, the velocity update
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Equation 1 becomes:

vt+1
i = χ

(
vt
i + c1r1 .∗ (pt

l,i − xt
i) + c2r2 .∗ (pt

g − xt
i)
)
. (3)

Equation 3, is one of the most popular versions of the velocity update rule in PSO
studies.

Another related topic of interest is PSO’s hybridization with evolutionary or
other methods, such as genetic algorithms (GAs), or differential evolution (DE)
and ant colony optimization (ACO). Although hybridizations are considered as de-
viation from the social metaphor of a swarm, as the notion of ‘pbest’ and ‘gbest’
is given lesser attention in such studies, but many instances of hybridization have
reported favorable results. Representative works in this direction are briefly sum-
marized as follows: In [2], the tournament selection was applied to replace the
velocity and position of poorly performing particles with those of good perform-
ers. NichPSO algorithm was developed by training the swarm using Kennedy’s
cognition only model [25] and then creating artificial niches. The approach was
successful in showing better convergence. In [29], a sub-population approach was
borrowed to improve PSO’s convergence. The sub-population approach was par-
ticularly beneficial in multi-modal problems but suffered on efficiency in unimodal
problem. In [50], PSO and DE were used in tandem to develop ‘DEPSO’. Here,
DE and canonical PSO operators were employed at alternate generations. DEPSO
showed an improvement on certain test problems with higher dimensionality. In
[21], a Gaussian mutation was combined with velocity update rule to improve
PSO’s performance. In [24], the upper half of best performing members were re-
garded as elites and treated as a separate swarm. The lower half was evolved with
genetic crossover and mutation operators. This approach was shown to outper-
form GA and PSO. In [38], authors replaced the particle update rules by using a
quadratic crossover operator to generate new solutions. The performance of their
approach was shown to be significantly better than the canonical PSO.

Despite some efforts in recognizing the similarity of PSOs and GAs and their
need for hybridization, a fundamental question remains: ‘How are these two algo-
rithms related to each other so that, if needed, some salient features of one can be
introduced to the other in order to enhance the latter’s performance?’ In this paper,
we attempt to understand their similarity and differences by presenting an equiv-
alent GA for a standard PSO algorithm. Once such an equivalence is established,
knowledge of one algorithm can be efficiently transferred to the other. Without
such algorithmic linking trial and error modification attempts may be futile. In
the following section, we draw one such an algorithmic linking and subsequently
illustrate how such a connection can be utilized to improve the performance of
PSO algorithm.

3 Algorithmic Linking Between PSO and GAs

Both PSO and GAs are population-based optimization procedures. As already
mentioned elsewhere [27], the child creation rule involving pl and pg in the particle
swarm optimizer is conceptually similar to the recombination operation used in the
GA. We illustrate this aspect by first outlining the essentials of a GA procedure.

First, a GA works with a population of solutions in each iteration. Second, an
explicit selection operator chooses a few good solutions from the population based
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Algorithmic Linking of PSO and GAs 7

on objective and constraint functions. Third, present and/or past good solutions
(called parents) are utilized to create new (called children) solutions by using es-
sentially two types of operations: recombination and mutation. Although these
terms are borrowed from natural genetics and natural selection; in the algorith-
mic context each operator has a specific role. Following the semantics of natural
genetics the recombination and mutation operations can be understood as follows:

Recombination operator: Each recombination event involvesmore than one evolv-
ing population members (parents) in creating a new solution (child). An evolv-
ing population member is one that is not fixed throughout a run, but is updated
with generations. The recombination operation can be an exchange of partial
information among participating parents, or a blending of parent entities, or
any other operation (or a series of operations) that involves information from
two or more evolving solutions directly or indirectly. In this sense, if the popu-
lation mean solution is used in the child creation process, it is a recombination
operator, since the determination of the population mean involves more than
one evolving population members and it is an evolving entity.

Mutation operator: Each mutation event involves one and only one evolving pop-
ulation member in creating a new solution. According to this principle, if an
update on a current population member involves a fixed variable vector (con-
stant throughout the GA run, say the best population member of the initial
population), it is still a mutation operation, despite the use of two solutions
in the process. If a current population member is updated by a point-by-point
hill-climbing method or a classical gradient-based optimization method, it is
still a mutation operation, despite the o creation of many intermediate solu-
tions along the way. It is important to note that these intermediate solutions
are derived from a single (current) population member and not using any other
member from any present or past evolving GA populations.

The above demarcation of recombination and mutation operators makes a clear
distinction of their working principles and can be utilized in developing or evaluat-
ing new recombination and mutation operators for solving a new class of problems.

After the new population (or a subpopulation) is created through selection,
recombination and mutation operations, it is usually compared with the current
(and previous) population and good solutions are preserved for the next genera-
tion. This is known as an elite-preservation operation. Often an external population
(commonly known as an archive) is maintained and updated at the end of each gen-
eration; to keep a record and utilize previously-found best solutions in subsequent
generations. One or more termination criteria are usually employed to decide the
completion of a GA run.

Based on the above general working principle, let us now consider a specific
GA algorithm with a population P t and an archive population At of size N at
generation t. In the initial generation, the archive population is identical to the
initial GA population, that is, the i-th population member and its partner in the
archive (the i-th archive member) are identical: A0

i = P 0
i for i = 1, 2, . . . , N . We

call the i-th archive member as pt
l,i. The best archive member at generation t

is declared as the globally-best solution (pt
g), since it preserves the best-so-far

member at every population slot. In order to create a new (i-th) child solution,
we choose to use three parent solutions for this GA: (i) the population member
itself, xt

i, (ii) its corresponding archive partner, pt
l,i, and (iii) always the current
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population
EA

population
EA

Generation t

p_l,i

Archive

Recombination

p_g

x_i

}Better

Archive

Generation t+1

Fig. 1: An archive based GA formulation having a recombination operator involv-
ing three evolving solutions.

globally best archive member, pt
g. The following child creation rule is used for this

purpose:

xt+1
i = xt

i + c1r1 .∗
(
pt
l,i − xt

i

)
+ c2r2 .∗

(
pt
g − xt

i

)
. (4)

In the above equation, c1 and c2 are user-specified constants, r1 and r2 are
random vectors whose components lie in [0,1]. The new solution is now compared
with the corresponding archive member pt

l,i and the better of the two replaces i-th
archive member. Figure 1, illustrates this child creation.

GA population members (along with their archive partners and the pt
g) are

selected serially one-by-one for the child creation process. After creating the new
population and updating the archive members, the globally best archive solution
for the next generation (pt+1

g ) is set as the best member in the archive population.
The procedure is continued iteratively till a termination criteria is met.

The GA described above follows a generational model and resembles an eli-
tist evolutionary optimization algorithm which assigns a deterministic and equal
selection pressure to each population member. Due to the use of three evolving
population and archive members in the child creation process described by Equa-
tion 4, this operation qualifies as a recombination operator. There is no specific
mutation operation introduced in the above GA procedure. The archive popula-
tion gets updated along with the GA population, but no explicit GA operations
are performed independently on the archive population.

A little thought will reveal that the procedure described above is fundamentally
a standard PSO algorithm without the velocity term. We suggest a modification
to the above archive-based GA procedure a little later to establish an exact algo-
rithmic link with the velocity-based PSO algorithm. But the similarity of above
archive-based GA with PSO minus the velocity term is striking. In fact, both
algorithms though look different at the outset, are identical at their cores.
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EA
population

EA

Generation t

population
EA

p_l,i

population

Archive

Recombination

p_g

x_i

}Better

Archive

Generation t+1Generation t−1

Fig. 2: A sketch of an GA having a recombination operator involving four evolving
solutions.

Usually, in a GA the creation of the new population solely depends on the
current population members (and sometimes the current archive members). Thus,
conventionally a GA is also a Markov chain. However, a GA necessarily need not
always be a Markov chain and one can design a GA which uses multiple past
populations in creating the offspring population. In this spirit, we modify the
above GA by including i-th population member from the (t− 1)-th generation in
its recombination operation, as follows:

xt+1
i = xt

i + w
(
xt
i − xt−1

i

)
+ c1r1 .∗

(
pt
l,i − xt

i

)
+ c2r2 .∗

(
pt
g − xt

i

)
. (5)

Figure 2 shows a sketch of the procedure in which four solutions are involved in the
recombination process. Although this is an uncommon recombination operation
(due to the use of xt−1

i ), but it definitely qualifies as a recombination operation
due to the use of multiple existing evolving solutions as parents.

Often in PSO studies, an additional mutation operation is performed on xt+1
i

[21]. Such an operation is similar to the standard mutation operation employed
after the recombination in the GA.

The above discussions clearly indicate that for the standard PSO algorithm,
there exists an equivalent GA which is algorithmically identical to the PSO algo-
rithm. Next, we discuss the advantages of establishing such an algorithmic link.

3.1 Advantages of Linking Two Algorithms

Let us consider a scenario, in which we are interested in enhancing the performance
of a particular PSO algorithm by modifying its operators. The standard practice in
this direction is to perform a parametric study on w, c1 and c2. Other performance
enhancing methods include the use of non-uniform probability distributions for r1
and r2 as well [9,26] or the use of multiple swarms [31]. But most modifications
use the same child creation rule given in Equation 5. If the update rule is strictly
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10 Kalyanmoy Deb and Nikhil Padhye

followed, then we may be restricting its potential as an optimization algorithm for
solving a wide-range of problems. A clear understanding of each term in the PSO
child creation rule and their equivalence with an algorithmically linked GA opens
up new ways of performing child creation in PSO. Embracing the equivalence with
an GA procedure allows us to employ several other strategies and operations which
have been developed since the inception of GAs and other evolutionary algorithms,
such as evolution strategies and evolutionary programming.

The discussions so far indicate that the dominant difference between the PSO
and GA child creation processes lies in the use of the history term (the velocity
term w(xt

i−xt−1
i )). We speculate that the PSO can benefit from the vast GA liter-

ature, and by noting the similarities and fundamental differences between the two
algorithms ideas can be borrowed from one algorithm to enhance the performance
of the other.

4 PSO and Unimodal Optimization

In this study, we consider unimodal problems (having one optimum solution) or
problems having a few optimal solutions, so as to test an algorithm’s ability (i)
to progress towards the optimal region from the supplied initial search space, and
(ii) to focus and find the optimum with a pre-defined precision. A previous study
[13] considered a number of evolutionary algorithms for these problems, such as
a generalized generation gap (G3) model using a parent-centric crossover (PCX)
operator, a differential evolution, a number of evolution strategies (ESs), the CMA-
ES, and a classical gradient-based optimization method. Following test problems
were used:

Felp =
n∑

i=1

ix2i (Ellipsoidal function) (6)

Fsch =
n∑

i=1

⎛
⎝

i∑
j=1

xj

⎞
⎠

2

(Schwefel’s function) (7)

Fros =
n−1∑
i=1

(
100(x2i − xi+1)

2 + (xi − 1)2
)

(Generalized Rosenbrock’s function) (8)

We use them in our study and initially consider n = 20 dimensional version of
the problems. The first two problems have their minimum at x∗i = 0 with F ∗ = 0
and the third function has its minimum at x∗i = 1 with F ∗ = 0. In order to study
an algorithm’s ability to progress towards the optimal region, we initialize the
population by restricting xi ∈ [−10,−5] for all i, in all the problems; however in
the subsequent generations we do not confine the solutions to lie in the above
range. Most of the PSO studies initialize their population randomly around the
optimal solution (since the optimal solution is known a priori in test problems) and
employ different strategies to enforce the solutions back into the feasible region by
modifying particle velocities and/or positions. The boundary handling strategies
used in such studies may provide an undue advantage to the algorithm and hence
we exempt from using any such procedure [36] here. Initializing population around
the known optimum region does not allow to test an algorithm’s ability to approach
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Algorithmic Linking of PSO and GAs 11

towards the optimal region, rather in most cases it only tests the algorithm’s ability
to focus on the optimal solution. In this study, we investigate both aspects of an
optimization algorithm by considering two evaluation criteria.

First, a population is initialized away from the optimal region and we count the
number of function evaluations needed for the algorithm to find a solution close
to the optima and we call this our first evaluation criterion S1. We arbitrarily
choose a limiting objective function value of F = 0.1 for this purpose. Due to
unimodality of the search space, this criterion will denote how fast an algorithm is
able to reach the optimal region. The second evaluation criterion (S2) involves the
overall number of function evaluations needed to find a solution having a function
value very close to the optimal function value. We choose F = 10−20 for this
purpose. The difference between these two criteria provides us with an idea of the
algorithm’s ability to approach to and also to focus near the true optimum.

4.1 An Effective Generalized Generation Gap based Genetic Algorithm
(G3-PCX)

A previous study [13] proposed a steady-state GA which solved the above test
problems in a computationally efficient manner. The G3-PCX algorithm was de-
signed to solve unimodal problems and utilized a real-parameter based parent-
centric recombination (PCX) operator. One iteration of algorithm is described as
follows:

Step 1: From the population P , select the best solution as a parent and choose
μ− 1 other parents randomly.

Step 2: Generate λ offspring from the chosen μ parents using the PCX recombi-
nation scheme.

Step 3: Choose two parents pa and pb at random from the population P .
Step 4: From a combined subpopulation of two chosen parents (pa and pb) and

λ created offspring, choose the best two solutions and replace the chosen two
parents (pa and pb).

Summarily, the G3-PCX algorithm has following key properties:

– It is a steady-state algorithm. In each iteration, at most two new solutions
are updated in the population. Instead of the newly created child solutions
to wait until all new offspring members are created, they can be chosen as a
parent right after their creation. For solving unimodal problems, this property
provides a high selection pressure for above-average population members.

– It uses an elite-preserving operator as the children are compared with the
parents before constructing the population for the next generation.

– It involves the globally best solution so far in every child creation process. For
solving unimodal problems, it is an efficient operation.

– It uses a recombination operator that creates new solutions around the best
solution. This strategy helps in quickly approaching the optimum solution for
the unimodal problems.

Clearly G3-PCX algorithm is a greedy optimization algorithm specifically designed
to solve unimodal problems efficiently. The earlier extensive study on G3-PCX
algorithm reported the best, median and worst number of function evaluations
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12 Kalyanmoy Deb and Nikhil Padhye

Table 1: G3-PCX results, as reported in [13].

Felp Fsch Fros

Best Median Worst Best Median Worst Best Median Worst

S2 5,744 6,624 7,372 14,643 16,326 17,712 14,847 (38) 22,368 25,797

needed based on 50 different runs on the 20-variable version of the three problems
with the identical S2 criterion. Table 1 presents these results. In a comparison with
a CMA-ES [19,20], a couple of self-adaptive evolution strategies [45,5], differential
evolution [48] and a quasi-Newton classical method [42], the function evaluations
with G3-PCX reported in the above table were found to be the smallest. The Fros

problem has two local optima and G3-PCX was able to converge to the globally
optimal solution in 38 out of 50 runs. Thus, we treat G3-PCX algorithm as the
benchmark algorithm for solving the selected test problems here.

4.2 Standard PSO Algorithms

Several PSO settings are applied on these test problems during the course of this
study and we evaluate their performances vis-a-vis our target results obtained
using G3-PCX. To eliminate the random effects and gather results of statistical
importance, every algorithm is tested on each problem 50 times (every run starting
with a different initial population). A particular run is terminated if the evaluation
criterion (S1 or S2 depending upon which one is chosen) is met, or the number of
function evaluations exceed one million. If less than 50 runs are successful then we
report the count of successful runs in brackets. In this case, the best, median and
worst number of function evaluations of the successful runs are reported. In case
none of the runs is successful i.e. neither S1 nor S2 is reached within a maximum
of one million function evaluations, ‘DNC’ (Did Not Converge) label is placed. In
‘DNC’ cases, we report the best, median and worst attained function values of the
best solution in 50 runs. To distinguish the unsuccessful results from successful
ones, we present the fitness value information of the unsuccessful runs in italics.

First, we consider the application of a standard PSO algorithm using following
commonly used parameter settings:

1. Equation 2 with (w = 0.5, c1 = 1.0, c2 = 1.0): This setting has been adopted
from [37], and gives equal average weight to velocity term and attractions
towards ‘gbest’ and ‘pbest’.

2. Equation 2 with (w = 0.7, c1 = 1.47, c2 = 1.47): This setting has been adopted
from [9] and reported to perform well based on several experimentations con-
ducted by the authors.

3. Equation 2 with (w̄, c1 = 1.47, c2 = 1.47): In this setting w is decreased linearly
(denoted by w̄) over the PSO iterations from an initial value of 0.7 to 0.0, as
discussed in [9]. Linearly decreasing w promotes a wider search in initial phases
and focused search towards the end.

4. Equation 3 with (χ = 0.729, c1 = 2.05, c2 = 2.05): This modified PSO move
prevents swarm explosion and ensures stability. The parameter settings have
been taken from [10]. It should be noted that this setting (χ = 0.729, c1 = c2 =
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Table 2: Different PSO results on three problems. The numbers shown are globally-
best function values obtained by the respective PSO.

Felp Fsch Fros

Best Median Worst Best Median Worst Best Median Worst

PSO with w = 0.5, c1 = 1.0 and c2 = 1.0

S1 1,683.0 2,577.5 3,709.4 3073.2 6,279.9 12,756.5 435,400.1 896,497.6 1,419,791.0

(DNC) (DNC) (DNC) (DNC) (DNC) (DNC) (DNC) (DNC) (DNC)

PSO with w = 0.7, c1 = 1.47, and c2 = 1.47

S1 7,600 8,800 11,700 20,200 26,000 33,200 49,400 (11) 338,400 997,700

S2 43,700 47,600 51,900 163,100 177,400 192,500 1.50e-11 3.99 11.53

(DNC) (DNC) (DNC)

PSO with constriction factor based update with χ = 0.729, c1 = 2.05 and c2 = 2.05

S1 9,600 11,000 131,000 24,800 34,000 42,000 422,800 (39) 493,700 832,700

S2 58,000 61,700 67,100 218,400 242,400 263,700 3.05e-05 4.84e-04 3.99

(DNC) (DNC) (DNC)

2.05) is equivalent to PSO with w = 0.729 and c1 = c2 = 1.49 in the form of
Equation 2.

The population size of swarm is set equal to 100 and kept fixed for the rest of this
paper unless stated otherwise.

For the standard PSO with w = 0.5, c1 = 1.0, and c2 = 1.0, results are reported
in Table 2. With this setting, PSO is unable to find a solution having a fitness
value of 0.1 or less even after spending one million function evaluations in each of
the 50 runs for all the problems. Since all runs are unsuccessful, we only report the
best, median and worst of the best function values obtained by the PSO procedure
over the 50 runs. The best function value for Felp is F = 1, 683, whereas the true
optimum function value for this problem is zero. Similarly, for Fsch and Fros, the
corresponding obtained function values are much bigger than zero. These results
indicate that when the standard PSO is set to evolve freely without any restrictions
for e.g. variable bounds its search is ineffective.

Next, another experiment is conducted based on a more popular parameter
setting with w = 0.7, c1 = 1.47 and c2 = 1.47 and results are shown in Table 2. The
performance of the PSO with this setting is significantly better compared to the
PSO with the previous parameter setting. For problems Felp and Fsch, this PSO is
successful in all 50 runs with both S1 and S2 criteria. Although this is a significant
improvement, the values corresponding to S2 criterion for both these problems are
much worse than those obtained using the G3-PCX algorithm (Table 1). For the
Fros problem, PSO is successful with S1 criterion only in 11 out of 50 runs and
no success is obtained with the S2 criterion. The best function value attained by
this PSO is 1.50(10−11). Large parameter values allowed the PSO to spread its
solutions faster towards the optimal region. The chosen parameter values make
a good balance between progress towards the current best solutions and laying
emphasis on history and making a remarkable convergence pattern.

Since the above parameter settings performed relatively well, we try a modi-
fication to the same setting by decreasing w from 0.7 to zero and keep c1 and c2
same as before (= 1.47). The best, median and worst results obtained are exactly
the same as that obtained as those with w = 0.7 (Table 2).
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14 Kalyanmoy Deb and Nikhil Padhye

As a final choice of PSO variants, the constriction factor based update rule for
velocity update is tried next and the results are tabulated in Table 2. The results
are comparable to those obtained with the previous parameter setting, requiring
a slightly higher function evaluations. But here, the number of successful runs
with the S1 criterion for Fros is better: 39 out of 50. Since the PSO works with
an unbounded search space the χ factor is useful in preventing disproportionate
increase in velocity. A closer investigation will reveal that a PSO move based on
Equation 3 with χ = 0.729, c1 = 2.05 and c2 = 2.05 is equivalent to a PSO move
based on Equation 2 with w = 0.729, c1 = 1.49 and c2 = 1.49. The constriction
based PSO lays slightly more emphasis on the history (or exploration) term. Due
to an overall good performance in general on all three problems, in rest of this
paper we shall base our modifications on PSO with the constriction factor based
update rule.

The above four parameter settings were also tested with different population
sizes and showed minor improvements in some occasions, but mostly resulted in
a deterioration. For the sake of brevity, we do not include these results here. It is
also worth mentioning that in [39] several useful techniques to enhance the per-
formance of the PSO have been used. In particular, the adaptation of the PSO
parameters using computational statistics was attempted and results were com-
pared with the standard settings leading to marginal improvements. However, the
reported accuracies were not close to the target error set in this study. Overall, the
performance of the standard PSOs on the chosen test problems needs a significant
improvement in order to match the results reported by the G3-PCX algorithm
(Table 1).

Under current circumstances where PSOs with popularly used parameter set-
tings of child creation rule and population sizes are unable to yield satisfactory
results within defined number of function evaluations, what options does a PSO
practitioner have to proceed further? The PSO literature offers a number of compli-
cated options: (a) instead of using static values of c1 and c2 throughout a run, these
parameters can be changed adaptively as a linear/quadratic/exponential function
of the generation count, (b) rather than using a uniform distribution for c1 and c2
in [0, 1] other distributions (may be a Gaussian) be tried, (c) use of multi-swarm,
or memory swarms, or tribes approach, and a number of other modifications be
employed [9]. These options have their own additional parameters which must be
set right for the resulting algorithm to work well. For the dynamically changing
parameters functional forms of variations are required. Other distributions like
Gaussian require mean and variance values. The multi-swarm approaches require
the neighborhood size, number of swarms, etc. Due to intricateness with these
concepts and additional requirement of identifying correct parameters settings,
the dynamics for the evolution of good solutions may not be obvious. Moreover,
if the sophisticated implementations fail to work, there is no straight-forward way
to find clues in order to set the parameters appropriately.

When faced with such a predicament, instead of going for complicated exten-
sions, we resort to the algorithmic link between PSO and the specialized G3-PCX
algorithm, and investigate which features are missing in the PSO.
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If (RandomDouble(0.0,1.0)≤ tf )

For i=1:N

If (particle.xi≤=gbest.xi)

{
Low=particle.xi - δ*(gbest.xi- particle.xi);

High=particle.xi + δ*(gbest.xi- particle.xi);

}
Else

{
Low=particle.xi - δ*(particle.xi-gbest.xi);

High=particle.xi + δ*( particle.xi-gbest.xi);

}
End

particle.xi=particle.xi+

RandomDouble(Low-particle.xi, High-particle.xi);

End

End

Fig. 3: Proposed mutation operator for PSO.

5 Modifying PSO using Strategies from Genetic Algorithms

In this section, we borrow the algorithmic link between the archive-based GA and
PSO discussed in Section 3, and import ideas from G3-PCX algorithm in order to
enhance PSO’s performance.

5.1 Using a Mutation Operator

First and foremost, we realize that mutation is a straight-forward concept which
can be applied without much thought. The importance of mutation operator is
discussed later in Section 5.1.1. Mutation operator has already been used by re-
searchers in PSO [21]. The concept that resembles mutation in PSO was originally
introduced as ‘craziness’. Now this is popularly known as the ‘turbulence factor’
(having a parameter tf ). The goal of adding a turbulence factor in PSO is to pro-
mote diversity in the PSO population so as to avoid pre-mature convergence. In
the past, Random, Gaussian, Cauchy, etc., distribution based mutations have been
employed for this purpose [9] and often reported to improve the performance of
PSO. Since, we are working with an unbounded search space, its appropriate to
define the operating space for the mutation. We prescribe this to be the region
between the particle and the ‘gbest’. The details of the mutation operator are
given in Figure 3. The proposed mutation operator considers a solution to be al-
tered and calculates its position with respect to the global best solution along each
dimension. Then, using a fraction (δ) of the distance along each dimension, new
particle position is computed in the neighborhood of global best. This mechanism
is expected to promote both, diversity and search, around the global best solution,
which can be regarded desirable feature for the case of unimodal problems.
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Table 3: The χ-PSO algorithm with mutation operator having tf = 0.25.

Felp Fsch Fros

Best Median Worst Best Median Worst Best Median Worst

S1 7,400 8,500 10,200 19,500 258,000 31,900 53,200 (39) 177,900 243,000

S2 42,100 45,200 48,600 159,200 170,300 184,600 1.75e-18 1.18e-12 3.99

(DNC) (DNC) (DNC)

Best S2 42,100 45,200 48,600 159,200 170,300 184,600 1.75e-18 1.18e-12 3.99

so far (DNC) (DNC) (DNC)

Table 3 shows the results with tf = 0.25 and δ = 0.5 (chosen based on some
preliminary experiments and kept fixed, unless specified otherwise). It can be
observed from the Table 3 that the resulting PSO performs better on Felp and
Fsch compared to PSO without mutation. For Fros problem, median and worst
function evaluations for the S1 criterion are also better. However, the mutation-
based PSO is still not able to reach our S2 targetted accuracy of the order 10−20.
Still the best function value found in this case is better than the earlier PSO
algorithms.

The final row in the table shows the best results obtained so far. Since the
current mutation-based PSO has achieved better results compared to original PSO
algorithms, we show these numbers in bold.

5.1.1 An Analysis Through a Diversity Measure

To further understand the effect of mutation operator, we compare the perfor-
mances of two χ-PSO algorithms (one with tf = 0.0 and another with tf = 0.25)
against the benchmark G3-PCX algorithm. This is done through studying the
Diversity Metric defined as follows:

Diversity Metric =

∑K
i=1

√
(x(i) − xc) · (x(i) − xc)T

K
, (9)

where, xc =
∑K

i=1 x
(i)

K , is the position vector of the centroid of the top K (≤ N)
population members. In this study, we use K = 0.5N . Thus, the above metric
indicates the diversity of top 50% population members in the variable space. The
idea is to compute this metric periodically after a few function evaluations for all
the three algorithms and compare their evolution trends.

The diversity metric plots for Felp and Fsch for a typical simulation run are
shown in Figures 4 and 5, respectively. To keep the comparison fair, we start
with the same initial population for all the three algorithms. We plot these figures
till a function value of 0.1 is achieved. The figures show that the diversity of the
top half of the population with G3-PCX algorithm shows in initial rise and then
rapidly falls down, indicating that the population first expands itself to locate the
optimal region and thereafter the population diversity rapidly decreases to find
the optimum solution with an accuracy of 0.1 in the optimal function value. Since,
G3-PCX is successful in finding the optimum in a computationally fast manner, it
is reasonable to assume that while solving the same problem by another population
based algorithm the population diversity should also follow a similar trend.
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Fig. 4: Diversity metric for Felp func-
tion for χ-PSO with tf = 0.0, tf =
0.25, and G3-PCX.
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Fig. 5: Diversity metric for Fsch func-
tion for χ-PSO with tf = 0.0, tf =
0.25, and G3-PCX.

We observe that the evolution of the population diversity of χ-PSO is quite
different and slow compared to that of G3-PCX. However, when the mutation
operator is added, the diversity behavior starts approaching G3-PCX trend. In-
terestingly, all three algorithms have a similar behavior i.e. diversity increases in
the beginning and then reduces, except that their rates of diversity rise and fall
are different.

The function evaluations of PSO with mutation (Table 3) are also better com-
pared to PSO without mutation (Table 2). We conclude that the trend of faster
rise followed by a fall in the population diversity is a desired characteristic while
solving unimodal problems. We also observed a similar outcome with Fros (but
due to space considerations do not show that plot).

After successful introduction of mutation operator in χ-PSO, we are now ready
to add other GA operators one at a time, hopefully, to reduce the difference in
performances between the resulting PSO and G3-PCX and also understand the
missing operators in standard PSO needed to be efficient in solving unimodal prob-
lems. In all these efforts, we maintain the individuality aspect of PSO (discussed
in Section 2).

5.2 Steady-State Update of Global Best Solution

In a standard PSO algorithm, the same global best solution is used for all N

population members to create N child-solutions. If we think of the PSO procedure
as an equivalent GA procedure as discussed in Section 3 and compare that GA
procedure with the G3-PCX algorithm, we can immediately think of a steady-state
PSO implementation; in which after every child is created, the global best solution
is updated, that is, every newly created child is compared with the current global
best solution and if the child is found to be better, then the child replaces the global
best solution. With this elite-preservation, if a good child solution is created it can
immediately start contributing to the creation of new solutions by participating in
recombination with other population members. In solving unimodal (or likewise)
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Table 4: Results using the χ-PSO algorithm with global solution update after
creation of every child (steady-state approach) and mutation with tf = 0.25.

Felp Fsch Fros

Best Median Worst Best Median Worst Best Median Worst

S1 6,900 8,200 9,700 18,900 25,800 33,500 353,000 (41) 217,800 265,000

S2 42,300 43,700 46,900 146,600 164,800 178,600 1.37e-17 2.14e-10 3.99

(DNC) (DNC) (DNC)

Best S2 42,300 43,700 46,900 146,600 164,800 178,600 1.75e-18 1.18e-12 3.99

so far (DNC) (DNC) (DNC)

problems, such a steady-state approach, reportedly, has been useful; particularly
the example of G3-PCX [13].

Table 4 shows the results obtained by using the steady-state and mutation-
based PSO. An improvement in terms of function values is obtained for Felp (in
terms of median performance) and Fsch. The algorithm is still not able to solve
Fros with the desired accuracy.

Improved performance can be explained based on the fact that a better solution
(if created by the child update process from any population member) does not have
to wait at most N solution creations (meaning at most N function evaluations)
to contribute to the search process. This has a domino effect in finding better
solutions swiftly.

Importantly, this simple idea may not have surfaced easily if we only focused
on the PSO child creation rule alone, as it is normally done. An equivalence of PSO
with a GA framework and the importance of the steady-state operation in G3-PCX
in solving similar problems allows us to modify the PSO algorithm to a steady-
state PSO algorithm, and makes a significant improvement in the performance of
the PSO.

We have also tested the performance of purely mutation driven steady-state
PSOs by switching off the velocity and position updates and discovered worse
performances. Thus, the mutation operator presented in this paper by itself is
unable to carry out an adequate search and is effective only in presence of other
PSO operations.

5.3 Pre-selection: Comparison of Parent and Child

The above modification is sufficiently interesting to look for other updates by which
we can enhance the performance of the PSO algorithm. The G3-PCX algorithm
replaces a randomly chosen solution from the population with the newly created
child or the parent solution (whichever is better). In a PSO, every population
member has a meaningful ancestor which is the corresponding population member
from the previous generation. An update of a random population member will
render the notion of ancestor meaningless. However, the concept of comparing a
population member with its newly created child, and accepting the better of the
two can be a good idea in general and is helpful in maintaining the population
diversity (suggested as early as in 1970 in the context to GAs [8]).
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Table 5: Results of mutation-based χ-PSO with steady-state and parent-child com-
parison approaches.

Felp Fsch Fros

Best Median Worst Best Median Worst Best Median Worst

S1 20,400 25,600 31,700 78,000 119,600 178,000 103,200 (26) 491,700 969,800

S2 124,400 139,500 153,300 754,900 851,400 961,100 2.35e-10 5.08e-02 4.99

(DNC) (DNC) (DNC)

Best S2 42,300 43,700 46,900 146,600 164,800 178,600 1.75e-18 1.18e-12 3.99

so far (DNC) (DNC) (DNC)

Table 6: The χ-PSO algorithm with mutation tf = 0.25 and the parent-child
comparison approach.

Felp Fsch Fros

Best Median Worst Best Median Worst Best Median Worst

S1 18,700 23,500 31,000 66,900 106,500 170,500 197,600 (28) 710,000 989,300

S2 127,600 136,200 146,600 719,000 818,000 970,900 9.32e-09 3.69e-02 7.69

(DNC) (DNC) (DNC)

Best S2 42,300 43,700 46,900 146,600 164,800 178,600 1.75e-18 1.18e-12 3.99

so far (DNC) (DNC) (DNC)

5.3.1 Steady-State and Parent-Child Comparison

First, we implement parent-child comparison (pre-selection) along with the steady-
state approach on the mutation-based PSO. Table 5 shows that the results are not
as good as the mutation-based PSO approach (Table 3). The performances are
also poor compared to mutation-based PSO with steady-state approach (Table 4).

Overemphasis on newly created good solutions in conjunction with the steady-
state approach introduces additional selection pressure for the current best popu-
lation members. This causes a major degradation in the performance of the overall
procedure.

So far, the best performance is observed with the addition of the steady-state
approach and the mutation operator to the original χ-PSO algorithm (Table 4).
Next, we investigate if the parent-child comparison with mutation alone (instead
of steady-state update) provides a better balance between exploration and elite
preservation.

5.3.2 Parent-Child Comparison Alone

The parent-child comparison is used with the mutation-based PSO here. Table 6
shows the results. The performance here is not much different from the previous
approach and clearly the use of parent-child comparison as an elite enhancement
is detrimental. However, as seen in Table 4, the steady-state approach alone with
the mutation-based PSO is a better approach.
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Table 7: Results of mutation-based steady-state χ-PSO with a random parent
selection operation.

Felp Fsch Fros

Best Median Worst Best Median Worst Best Median Worst

S1 7,300 8,500 10,000 25,600 32,400 39,700 83,300 (35) 332,000 415,100

S2 43,100 45,500 48,000 187,200 212,700 233,000 3.13e-13 1.85e-06 3.99

(DNC) (DNC) (DNC)

Best S2 42,300 43,700 46,900 146,600 164,800 178,600 1.75e-18 1.18e-12 3.99

so far (DNC) (DNC) (DNC)

5.4 Selection of Parents

Since the steady-state approach has made a positive improvement in the perfor-
mance of the PSO algorithm, the order of selecting a parent for its child creation
may be an important matter. If a better parent is operated earlier, the possibility
of creating a good child early on is higher and in the presence of steady-state pro-
cedure; the performance of the overall algorithm may improve. In an evolutionary
algorithm, good parents are usually selected for child generation by a separate
selection operator. However, in the standard PSO the population members are
selected serially. Thus, noting the principle of GAs, we introduce two selection
operations one by one on the mutation-based steady-state PSO procedure as dis-
cussed previously in the subsection 5.2.

First, we introduce a random selection operation, in which a population mem-
ber is chosen randomly for creating a new child solution. Although the population
members are not expected to be in any order at any particular generation due to
the random initial placement of solutions in the original PSO algorithm, the use
of steady-state procedure may bias better solutions to be placed in some order
after a sufficiently large number of generations. Thus, we believe that the use of a
random selection procedure of parents may produce different results than without
the use of this operator. Table 7 presents these results.

In a comparison with Table 4, this table shows that the inclusion of random
selection does not improve the performance of the mutation based steady-state
PSO approach on any test problem. However, the performance is comparable.

Next, we use the commonly-used binary tournament selection (without replace-
ment) to select a parent solution. The PSO child creation rule is applied to the
selected parent. Table 8 presents the results. An improvement in performance is
obtained on Felp by using the tournament selection operator. The performances on
the other two problems do not show an improvement over the best results obtained
so far.

So far, we have observed that the constriction based PSO update rule with
an additional mutation operator, steady-state ‘gbest’ update, and tournament-
based parent selection scheme is a good combination. Of the three problems, Felp

and Fsch problems are solved well, however the problem Fros still remains to be
unsolved with the specified accuracy. We now revisit the parent-child comparison
operator along with the so far best designed PSO and make one final consideration
of the parent-child comparison operator.
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Table 8: Results of mutation-based steady-state χ-PSO with binary tournament
selection operation.

Felp Fsch Fros

Best Median Worst Best Median Worst Best Median Worst

S1 5,700 6,700 7,900 22,000 29,700 37,500 134,200 (41) 262,200 290,100

S2 34,600 36,600 38,400 169,900 191,200 217,600 1.93e-13 7.58e-09 3.99

(DNC) (DNC) (DNC)

Best S2 34,600 36,600 38,400 146,600 164,800 178,600 1.75e-18 1.18e-12 3.99

so far (DNC) (DNC) (DNC)

Table 9: Results of mutation-based steady state and parent-child χ-PSO with
tournament selection.

Felp Fsch Fros

Best Median Worst Best Median Worst Best Median Worst

S1 9,300 12,800 16,400 50,600 67,900 97,100 42,500 (36) 292,400 557,300

S2 67,900 75,100 80,700 400,600 460,300 542,700 3.99e-16 4.11e-07 3.99

(DNC) (DNC) (DNC)

Best S2 34,600 36,600 38,400 146,600 164,800 178,600 1.75e-18 1.18e-12 3.99

so far (DNC) (DNC) (DNC)

5.5 Mutation, Steady-state, Parent Selection and Parent-child Comparison

Table 9 shows that the combined approach with the parent-child comparison is not
better than the combined approach without the parent-child comparison (Table 8).
From these results, we conclude that the parent-child comparison, in general, is
not a good approach with other features already present in the PSO algorithm.
Thus, we do not continue with this operation any further.

5.6 Discussions on PSO Child Creation Rule

So far, we have used the standard PSO child creation rule with parameters ob-
tained after a detailed study (as discussed in Section 4.2). Several GA operators
are then introduced through the PSO-GA connection established in Section 3.

In Table 10, we compare the best PSO results found so far with those ob-
tained by the G3-PCX procedure [13] in achieving a function value of 10−20 for all
three problems. The problem Felp performs the best with mutation, steady-state,
tournament selection based PSO and the problem Fsch performs the best with
mutation based PSO alone, though the former algorithm is not too far in terms of
its performance. However, none of the PSO updates are able to solve Fros to the
desired accuracy.

The above table clearly shows that despite the enhancement in PSO’s perfor-
mance, the best PSO procedure still requires an order of magnitude more function
evaluations compared to the G3-PCX algorithm. If the PSO child creation rule is
to be strictly followed, we need to possibly now look for more sophisticated proce-
dures suggested in the PSO literature, such as multiple swarms, memory swarms,
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Table 10: Comparison of G3-PCX with best of PSO algorithms with PSO child
creation rule on three test problems for S2.

Felp Fsch Fros

Best Median Worst Best Median Worst Best Median Worst

G3-PCX 5,744 6,624 7,372 14,643 16,326 17,712 14,847 (38) 22,368 25,797

Modified PSO 34,600 36,600 38,400 146,600 164,800 178,600 (DNC) (DNC) (DNC)

D

D

d

x

3

2

p_l

created here with a
biased prob. distribution

g

A child solution is

p_g

Fig. 6: For three solutions x, pl and pg, the region for creating a child solution is
shown using the proposed PCX update rule.

etc. Since, we could improve the performance of PSO by understanding its equiva-
lence with an GA procedure and borrowing GA operators to PSO (while using the
PSO child creation rule), it is time we may borrow further algorithmic ideas from
the GA literature and experiment by replacing PSO’s child creation rule itself. In
the next section, we perform this task using parent centric child creation operator
from G3-PCX.

6 Modifying PSO Further with Different Solution Update Rules

The PCX operator requires three or more parent solutions and uses a parent-
centric recombination in which the probability distribution is computed from the
vector differences of the parents utilized in creation of child solutions [13]. The
probability distribution is centered around the currently best parent solution. Fig-
ure 6 shows the working of the PCX operation on three parent solutions on a
two-variable problem. The description of PCX is provided next.

The mean vector g of the chosen μ (=3 is used here) parents is first computed.
For each child solution, one parent x(p) (= pg) is chosen. The direction vector

d(p) = x(p)−g is then calculated. Thereafter, from each of the other (μ−1) parents,
perpendicular distances Di to the line d(p) are computed and their average D̄ is
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computed. The child solution is then created as follows:

y = x(p) + wζ‖d(p)‖e(p) +
n∑

i=1, i �=p

wηD̄e(i), (10)

where e(i) are the n orthonormal bases that span the subspace. The direction
e(p) is along d(p). The parameters wζ and wη are zero-mean normally distributed
variables with variance σ2

ζ and σ2
η, respectively.

To borrow the PCX child creation operator into the PSO approach, we take
help of our PSO-GA link discussed in Section 3. If we treat Equation 5 as a
recombination process in which four evolving population members (xt−1, xt, pl

and pg) are blended together to create the child solution xt+1, we can think of other
blending operations that are commonly used in the GA literature. Here, we borrow
the blending idea from the PCX operator [13] involving three parents. Instead of
using equation 5 to create a child solution xt+1, we use the global best solution
pg, a population member’s personal best solution pl, and the population member
x itself, as three parents in the PCX operator. Later, we use all four parents in the
PCX operator. In some sense, the PCX update rule uses a different probability
distribution proportional to the differences between the parents (pg, pl and x)
than that used in the usual PSO child creation rule. This modification in the
child creation process still maintains the PSO’s individualistic trait, as discussed
before. Our effort in drawing the algorithmic link allows us to incorporate such
changes at this stage where we have pretty much exhausted different PSO variants
with various parameter settings and infusion of various evolutionary operators. We
shall now investigate whether the performance difference between PSO and G3-
PCX observed in Table 10 is due to the difference in the probability distribution
of creating the child solutions.

6.1 Steady-State PSO with PCX Update Rule with No History

Here, we study the effect of replacing the PSO child creation rule with the PCX
update rule. In the PCX operation child solutions are created around the globally
best solution pg and therefore there is a sufficient exploration potential. Whereas
using the PSO child update, solutions are only created in the space spanned by
the three vectors (i.e. velocity, attraction towards personal best, and attraction
towards the global best).

First, we do not consider the velocity term, that is, w = 0. Although there is
no direct way to compute velocity here, but we can still estimate velocity based
on the displacement that occurred over the previous iteration as vt = (xt+1 −xt).
Based on the findings of the previous sections we adopt mutation and steady-
state operations which were also the two most effective strategies. The two PCX
parameters are taken as wζ = 0.17 and wη = 0.17 based on some preliminary
experiments. The results for this case are shown in Table 11. The table indicates
that obtained solutions are not better than those presented in Table 10. These
results probably can be explained as follows. In the unimodal problems, the indi-
vidual population members are expected to improve in a continual manner and the
personal-best solution pl is most likely to be identical to the population member
(x) itself. When this happens, the PCX operator produces a child solution along
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Table 11: The χ-PSO algorithm with PCX update, mutation (tf = 0.25), steady
state, and w = 0. Individual, Gbest and Pbest are three parents.

Felp Fsch Fros

Best Median Worst Best Median Worst Best Median Worst

S1 18,200 33,600 53,200 19200.0 29,800 45,300 296,200 (19) 673,900 978,400

S2 134,000 170,500 211,600 157,700 184,800 201,900 1.59e-04 3.28e-01 1.12

(DNC) (DNC) (DNC)

Best S2 34,600 36,600 38,400 146,600 164,800 178,600 1.75e-18 1.18e-12 3.99

so far (DNC) (DNC) (DNC)

Table 12: The χ-PSO algorithm with distinct parent based PCX update rule,
mutation (tf = 0.25), and steady-state approach.

Felp Fsch Fros

Best Median Worst Best Median Worst Best Median Worst

S1 1,200 1,400 1,700 3,200 5,400 8,800 12,000 (42) 20,500 24,100

S2 5,600 6,200 6,600 29,800 33,900 40,600 61,100 (42) 80,600 93,400

Best S2 5,600 6,200 6,600 29,000 33,900 40,600 61,100 (42) 80,600 93,400

so far

the line joining x and the global best solution pg (this corresponds to the case
when D2 and D3 are zero in Figure 6). Such a line search may not be able to
maintain adequate diversity for the algorithm to constitute an effective search in
a 20-dimensional space. Thus, along with the PCX update rule, we may need to
introduce additional diversity.

We tested three mechanisms for this purpose: (i) inclusion of the velocity term,
(ii) increase of mutation probability, and (iii) choosing three distinct members as
parent solutions. The updates (i) and (ii) failed to improve the performance of the
resulting algorithms to the desired expectation, but the third approach makes a
significant improvement, as discussed next.

6.2 Steady-State PSO with PCX based Update Rule with Distinct Parents

In this approach, we first check three solutions (xt, pl and pg) for their candidacy
as parents. If they are distinct, we use them in the PCX child creation rule. If they
are not distinct, we find the three distinct solutions of the four solutions (xt−1,
xt, pl and pg) and use them as parents. If only two distinct solutions are present
among the above four solutions, we then perform a PCX operation with D̄ = 0. On
the other hand, if all solutions are identical, we do not perform the PCX update
at all (rather update the solutions based on velocity alone). Table 12 shows the
obtained results. The table shows a remarkable change in the performance of the
resulting algorithm. Now, all three problems are solved to the desired accuracy
and the required function evaluations are in the same ball-park as that obtained
by G3-PCX. In fact, for Felp, our proposed algorithm shows a better performance
than previous G3-PCX results. Since all three parents for PCX are now distinct
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(in most occasions), the PCX operator creates children solutions all around pg

and like in the G3-PCX operator, our proposed algorithm finds the right balance
between diversity preservation and convergence for its progress and convergence
towards the optimum.

To gain a sense of similarity, we again study the plots of the ‘Diversity metric’,
given in equation (9) for PCX-PSO and G3-PCX on the same initial population.
The plots for all three functions are shown in Figures 7, 8, and 9. The diversity
plots show a high degree of resemblance for the two optimizers. The corresponding
diversity metric value for the original χ-based PSO is also plotted in the figures
as well. From these figures we observe that proposed modifications have enhanced
the original χ-PSO approach to a level where not only the performances are very
similar to G3-PCX but evolution of population is also similar based on the plots.
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Fig. 7: Diversity metric values for
G3-PCX and PCX-PSO are similar
for Felp.
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Fsch.
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Fig. 10: Parametric study with velocity
factor w.
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There is a drastic change in the behavior of the modified PSO algorithm, evi-
dent from the dynamics of the population diversity with generation. Importantly,
if we did not draw the algorithmic link between the PSO algorithm and GA, it
would have been difficult to think of such a modification. It is also clear from the
performance of the PSO that its standard child creation rule was not as efficient
for solving unimodal problems as it is done with the PCX operator. The study
performed here discovered systematic improvements on the canonical PSO in order
to improve its performance.

6.3 Parametric Study

In the above PSO with PCX update, values for parameters such as tf (equal to
0.25), population size (equal to 100) and w (equal to zero) were chosen based on
some preliminary experiments. Next, we perform a detailed parametric study for
these three parameters in order to find the best performance of the modified PSO
approach.

First, we perform a parametric study on w by keeping tf = 0.25 and N =
100. Figure 10 indicates that a w value close to zero performs better on all three
problems. Any value within w ∈ [0, 10−6] performs almost equally well (including
w = 0.0). These results indicate that the history term has little importance for the
proposed algorithm in solving the unimodal problems. However, a small w may
improve the performance occasionally.
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Fig. 11: Parametric study with popu-
lation size.
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Fig. 12: Parametric study with muta-
tion factor tf .

Next, we fix w = 10−6 and tf = 0.25 and vary the population size N . Figure 11
shows the obtained results. The problem Felp is quite sensitive to the population
size and works well for N = 100 or so. However, for Fsch and Fros problems, our
modified PSO performs well around N = 150 and N = 500, respectively. Small
population sizes do not provide adequate diversity for the algorithm to work at
its best. Interestingly, a large population size is also found to be detrimental, as
discovered in other PSO studies [10] as well.
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Table 13: Comparison of G3-PCX with the best of modified PSO algorithms of
this study for 20-variable problems.

Felp Fsch Fros

Best Median Worst Best Median Worst Best Median Worst

G3-PCX 5,744 6,624 7,372 14,643 16,326 17,712 14,847 (38) 22,368 25,797

Modified PSO 4,600 5,000 5,400 17,800 19,800 21,200 36,000 (44) 59,600 69,400

Preselection

PSO (w=0.5,c1=1,
c2=1)

PSO (w=0.7,

c1=1.47,c2=1.47)

Chi−PSO (chi=0.729,

c1=2.05,c2=2.05)

Chi−PSO +
Mutation (tf=0.25)

Chi−PSO + Mutation +
Steady−state + Preselection

Chi−PSO + Mutation
+ Steady−state

Chi−PSO + Mutation
+ Preselection

Chi−PSO + Mutation +
Steady−state +
Tournament selection

Chi−PSO + Mutation +
Steady−state +
Random selection

Chi−PSO + Mutation
+ Steady−state + PCX

Chi−PSO + Mutation +
Steady−state +
PCX (distinct parents)

Chi−PSO + Mutation +
Steady−state +
Tournament sel. +

Fig. 13: The flowchart of the PSO updates studied here.

Finally, we fix w = 10−6 and N = 100 and vary the mutation probability tf .
Figure 12 shows the results on all three problems. It is clear from the plot that
the optimal tf value depends on the problem. For Felp and Fsch problems, the
larger the value of tf , the better is the performance. For Fros, tf around 0.5 to
0.75 performs well. It is quite evident that the proposed methodology requires a
certain amount of mutation for good performance.

6.4 Final Comparison on 20-Variable Problems

Table 13 compares the best parametric results of the modified PSO approach with
the G3-PCX results.

Importantly, from a standard PSO algorithm (Table 2), we are able to system-
atically modify the PSO algorithm by comparing and borrowing operations from
an equivalent GA to develop a methodology which performs competitively. Fig-
ure 13 summarizes the flowchart of different updates tried in this study and their
outcome in solving the problems. If an update has resulted in an improvement of
performance it is shown with a bold arrowed line.

Interestingly, the resulting procedure is different from G3-PCX and it still fol-
lows a fundamental property of a PSO algorithm in that it maintains individuality
of population members. A population member in the modified PSO algorithm still
creates its child solution by using its immediate past solution, its personal-best
solution, and population’s global best solution – all the essential properties which
uniquely characterizes a PSO algorithm. However, the child creation rule used in
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Table 14: Parameters used for the scale-up study for all three problems.

n N tf wη = wζ

10 50 0.50 0.25

20 100 0.40 0.17

50 150 0.35 0.12

100 200 0.25 0.08

150 250 0.20 0.05

200 300 0.10 0.05

500 500 0.08 0.05

the modified approach is different from the usual PSO update rule. It uses a biased
distribution around the global best solution rather than using a more uniform dis-
tribution used in a standard PSO study. Besides, the use of a steady-state update
of the global best solution and a mutation operator are motivated by studying
efficient genetic algorithms for solving similar problems in the past.

It is interesting also to note that the updates borrowed from G3-PCX into
the PSO framework have outperformed the G3-PCX algorithm on Felp problem.
Compared to a median of 6,624 function evaluations over 50 runs (reported before),
the modified PSO requires only 5,000 function evaluations (a 24% improvement).
Developers of G3-PCX (including the first author of this study) could not foresee
the algorithmic features outlined in this study and the algorithmic linking of G3-
PCX, GA and PCX. The systematic experimentation have provided us with all
such knowledge about solving unimodal problems that were not known before.

7 Solving Higher-dimensional Problems

Motivated by the development of a successful PSO-based algorithm for 20-variable
problems, we now investigate its performance for solving higher-dimensional ver-
sion of the same problems. We consider a number of variable sizes: 10, 20, 50,
100, 150, and 200. For Felp and Fsch, we also try 500-variable versions. For each
test problem, the best, median and worst number of function evaluations over 10
runs, so as to meet a termination criterion of F = 10−10 from the true optimal
objective value (zero) are noted. As the dimension (n) of a problem is increased,
we use a larger population size (N) – a typical trend followed by EC researchers.
We also use a smaller mutation probability (tf ) and smaller values of wη and wζ ,
listed in Table 14. It is important to mention that we have not made an attempt
to find optimal setting of these parameters, rather used values based on some test
simulations.

The scale-up performances for three problems are shown in Figure 14. It is clear
that the PCX enabled PSO algorithm is robust in the sense that the variation in
the obtained solution over 10 independent runs is small. Importantly for problems
Felp and Fsch, the algorithm is able to converge in all 10 runs. Problem Fros is
reportedly a more difficult problem and the number of successful runs (out of 10
runs) are mentioned in the figure in brackets. These results amply demonstrate
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Fig. 14: Scale-up performances of PCX-PSO on 10 to 500 variables (a) Felp, all 10
runs in each case are successful. (b) Fsch, all 10 runs in each case are successful.
(c) Fros, the numbers in brackets show the successful runs in 10 runs.

the developed modified PSO algorithm’s ability to find a near-optimum solution
to large-dimensional version of the problems considered in this study.

8 Conclusions

Particle swarm optimization (PSO) algorithms are being practiced since 1995 for
real-parameter optimization problems. The basic principle behind PSO is the in-
dividualistic approach and child creation rule which only use a particle’s current
location, particle’s best location and population’s best location. The PSO system
is usually inferred as particles flying in the search space by combining social and
cognition models. However, the essential idea is to utilize information from fellow
population members and create better solutions.

In this paper, we have established a fundamental equivalence between PSO
and a recombinative archive-based genetic algorithm. The algorithmic linking has
allowed us to borrow useful operations from a previously reported efficient algo-
rithm so as to enhance the performance of the PSO algorithm in consideration. We
have chosen three 20-variable unimodal test problems from the literature. Stan-
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dard PSOs with a number of commonly used parameter settings were unable to
solve the problems to the desired accuracy. Thereafter, we have introduced several
evolutionary operators within PSO by borrowing ideas from a computationally
efficient genetic algorithm through the established algorithmic linking for solving
the same problems. The use of additional mutation operator, steady-state update,
and a binary tournament for parent selection on the constriction based PSO has
emerged as the best strategy for solving the chosen problems. Although, the results
obtained this far are significantly better than the standard PSO, yet an order of
magnitude worse than the benchmark performance of G3-PCX.

After several modifications and investigations, we have realized that PSO’s
child creation rule was a major bottleneck in improving its performance any fur-
ther. Next, we have modified the child creation step effectively, and introduced a
parent-centric operator such that individualistic character of the PSO is retained.
The usual entities, such as the population member, its personal best solution,
the globally best solution and member’s immediate past solution, all, have been
used in the PCX update rule. Furthermore, the PSO’s performance has been en-
hanced by using the steady-state approach and an additional mutation operator.
The resulting PCX-PSO approach showed a competitive performance against a
previously-reported efficient G3-PCX algorithm. A sensitivity study of parameters
associated with the PCX-based PSO has demonstrated the robustness of the pro-
posed approach. Finally, a scale-up study on as large as 500-variable problems has
revealed that the proposed PCX-PSO algorithm is able to solve large-dimensional
problems efficiently.

In summary, we emphasize here that one optimization algorithm can benefit
from another algorithm by understanding an algorithmic linking between them
and then borrowing important operators from one to the other. Although indi-
vidual operations and their implementations in two algorithms may be different,
the fundamental working principles and their contribution to the complete search
process are important to understand. In this paper, we have shown this aspect
between PSO and a specific GA in the context of solving unimodal problems. This
study can be extended to perform collaborative algorithm developments for sev-
eral other optimization tasks, such as multi-modal optimization, multi-objective
optimization, dynamic optimization, combinatorial optimization, just to name a
few. Furthermore, with the current frame-work in, possibly, the theoretical models
of GAs can also adopted to study the behavior of PSO or other algorithms. Such
research should give insights into the fundamental working principles of different
algorithms, and identify the key challenges in the area of algorithm development.
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