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1 Introduction

The T-duality properties of heterotic string theory were studied in the seminal works of

Narain [1] and Narain, Sarmadi, and Witten [2]. The T-duality group O(d, d + 16;Z)

arises from a compactification on a d-dimensional torus that includes Wilson lines in the

Cartan subgroup of the gauge group. Duality symmetries have a counterpart in continuous

global symmetries of the low-energy action for the massless fields [3–6]. A particularly

clear discussion of this relationship was given by Maharana and Schwarz in [7]. (For earlier

results see [8, 9].) In order to explain the global O(d, d+ 16;R) of the low-energy limit of

compactified heterotic strings they considered heterotic supergravity with the gauge group

truncated to the maximal Cartan subgroup. They performed dimensional reduction and

displayed the expected global symmetry of the reduced theory. With the development

of double field theory formulations [10–14] of the low-energy limits of string theories, the

manifest display of global duality symmetries and the effect of α′ corrections is now the

subject of renewed interest [15–27]. Motivated by this, we revisit here some aspects of the

continuous T-duality symmetry of the heterotic string effective action.

Maharana and Schwarz (MS) truncate the higher dimensional heterotic supergravity

theory to the Cartan subgroup before performing the reduction. In fact, the O(d, d+16;R)

symmetry is not present upon reduction if one includes any non-abelian gauge group. This

is puzzling because, after all, the gauge group in heterotic string theory is E8 × E8 or

SO(32). The main goals of this paper are to clarify, on general string-theoretic grounds,

which duality symmetry we should expect for the effective spacetime theory of the massless

fields to any order in α′, and to exhibit this symmetry in a manifest form.
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We use the symmetries of S-matrix elements of massless states to explain that, to all

orders in α′, the effective action for the massless fields has a universal global O(d, d;R)

symmetry.1 The arguments, which are an elaboration of those in [5, 6], do not preclude

possible enhancements at points of the moduli space with reduced sets of massless fields. We

also perform the direct dimensional reduction of the non-abelian action. Since dimensional

reduction can be viewed physically as compactification on tori without any field dependence

on the toroidal coordinates, we verify that the non-abelian gauge field reduction is not

constrained by flux quantization.2 The resulting action (3.32) is similar to that of MS, with

new non-abelian gauge-covariant couplings and potential terms. The O(d, d;R) symmetry

of this action is not manifest (although it is certainly present). Introducing Wilson lines

for the Cartan gauge fields corresponds to giving expectation values to the scalars that

arise from the internal components of the Cartan gauge fields.3 In doing so, all scalars and

gauge fields arising from the non-Cartan gauge fields acquire masses via a Higgs mechanism.

They must be dropped to describe the proper effective action, given that we do not include

massive Kaluza-Klein modes nor massive string modes. Restricted to the massless fields,

the action now becomes the MS action with an enhanced O(d, d+ 16;R) symmetry.

The general presence of a global O(d, d;R) symmetry to lowest order in α′ is also

implied by the double field theory formulation of heterotic supergravity [10, 11, 15, 16].

The doubled formulation uses O(d, d + K;R) multiplets, with K the dimension of the

non-abelian gauge group. This O(d, d + K;R) group, however, is not a symmetry. As

discussed in [15], the actual global symmetry depends on the gauge group but contains

at least O(d, d). Guided by these results we cast the dimensionally reduced supergravity,

including all non-abelian gauge fields, into an O(d, d+K;R) ‘covariant’ form (see (4.1)).

Since only O(d, d) is always an actual symmetry, it is desirable to formulate the theory

in terms of O(d, d) multiplets. Let us stress that this is a non-trivial problem because the

symmetries are non-linearly realized. As the main technical result of this paper we present

such a formulation. We write the action in terms of an O(d, d) valued ‘generalized metric’

H and a Lie algebra valued O(d, d) vector C. Specifically, the scalars arising out of the

internal components of the metric, 2-form-field, and non-abelian gauge vectors, denoted by

G, B, and a, respectively, are encoded in the following fields:

O(d, d) field content: HMN , CMα , (1.1)

where M,N, . . . are fundamental O(d, d) indices and α, β denote the adjoint gauge group

1We exclude the massless non-abelian fields which could arise e.g. when some of the radii take self-dual

values. If we keep these non-abelian fields then the continuous duality symmetry of the tree effective action

of massless fields could be further reduced.
2Due to the commutator terms in non-abelian field strengths, even constant gauge field configurations

give rise to fluxes.
3Given a field with a space-time index, we will call the internal components those where the index

takes value on the compact coordinates. We will call the external components those where the index takes

value on the non-compact coordinates. For a gauge field, for example, the internal components represent

scalars of the lower-dimensional theory and the external components comprise a gauge field of the lower-

dimensional theory.

– 2 –
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indices. These fields satisfy the following constraints, written in matrix notation:

H ηH = η , (1 +H η) C = 0 , (1.2)

where η is the O(d, d) invariant metric. The first constraint simply states the familiar

property of the generalized metric, the second is an O(d, d) covariant constraint on C.
Given the first constraint, the second one is in fact a projector condition that cuts half of

the degrees of freedom in C. The fields can be parametrized in terms of G, B and a. For

H we find

H =

(
Ḡ−1 −Ḡ−1B

B Ḡ−1 Ḡ − B Ḡ−1B

)
, (1.3)

while C can be written as

C =
1

2

(
−Ḡ−1aTκ

−B Ḡ−1aTκ+ aTκ

)
, (1.4)

where κ denotes the Cartan-Killing metric of the gauge group. For H this is the familiar

form, except that the internal metric G is redefined with a contribution from the internal

E8 × E8 or SO(32) gauge field components:

Ḡ ≡ G+
1

2
aTκa . (1.5)

The action for dimensionally reduced heterotic supergravity in these new variables is given

in (5.43). We note that the redefinition (1.5) is compatible with the findings of refs. [32]

and [33], which determined the Buscher rules for the heterotic theory with a single circle

direction and found that such a redefinition naturally occurs. Interestingly, a redefinition

of the type (1.5) also featured in [34], for reasons seemingly unrelated to T-duality.

So far we have discussed two cases. One is heterotic string compactifications with

non-zero Wilson lines for the 16 gauge fields in the Cartan subalgebra of the gauge algebra

G, resulting in a moduli space O(d, d+16)/O(d)×O(d+16) and O(d, d+16;Z) dualities.

The other one represents the case where there is not a single Wilson line. Here the moduli

space is O(d, d)/O(d)×O(d) and we have O(d, d;Z) dualities. The intermediate situation,

however, is also of interest. Letting superscripts denote rank, consider a subgroup G(r) ×
G(16−r) of the rank 16 gauge group G. We can then imagine a compactification with Wilson

lines for the Cartan gauge fields U(1)(16−r) of the second factor. The moduli space of such

compactification is O(d, d+16− r)/O(d)×O(d+16− r) and the full string duality group

is O(d, d + 16 − r;Z). In this case the non-Cartan gauge fields of the second factor, as

well as the gauge fields outside the G(r) ×G(16−r) subgroup, acquire masses. The massless

fields, apart from those from the gravitational multiplet, are the internal and external

components of the full G(r) gauge fields and the internal and external components of the

U(1)(16−r) gauge fields. According to the argument given in section 2, the effective field

theory of such fields will have a global O(d, d + 16 − r;R) duality symmetry to all orders

in α′. The two-derivative version of this action is given by the same expression (5.43),

with H now interpreted as a symmetric O(d, d + 16 − r) matrix and C interpreted as a

(2d + 16 − r) × dimG(r) matrix, transforming as a vector of O(d, d + 16 − r) and as an

adjoint of G(r).

– 3 –
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This paper is organized as follows. In section 2 we give the string theoretic arguments

for the global duality symmetries of the effective field theories of heterotic massless fields.

The power of this argument is that it works to all orders in α′. We turn in section 3 to

the torus compactification of the heterotic supergravity action, including the effect of the

non-abelian gauge fields. In section 4 we recast this action in terms of a formal O(d, d+K)

symmetry, with K the dimension of the gauge group. Section 5 gives a rewriting of this

theory in terms of O(d, d) multiplets, making this symmetry manifest. In section 6 we

discuss the possible relevance of our analysis for double field theory formulations of heterotic

strings that include α′ corrections.

2 String theoretic argument

We shall review the string theoretic argument for the existence of O(d, d) symmetry in

the presence of non-abelian gauge fields [6]. This argument is valid in classical string

theory to all orders in α′. The main idea is to determine the symmetries of the action in

a consistently truncated sector by studying the symmetries of the S-matrix in the same

sector. We shall then combine this with the obvious symmetries of the effective action —

the GL(d) symmetry associated with the linear transformation of the compact coordinates

and the shift symmetry of the 2-form field — to determine the full symmetry group of

the truncated effective action. The latter symmetries are not visible as symmetries of the

S-matrix since they are typically spontaneously broken in a given background.

The theory under consideration is heterotic string theory and the truncation we are

interested in requires all fields to be independent of d of the spatial coordinates. The

corresponding S-matrix will involve external states which carry zero momentum along the

d directions but has no further restrictions. Also since we shall be interested in the classical

effective action where we have integrated out all the massive string fields, it is sufficient to

examine the S-matrix with massless external states only.

While we shall consider a general set of external states subject to the condition of

independence of the d spatial coordinates, we shall work in a special background left in-

variant by a large subset of the duality symmetries: the two-form field and all gauge fields

are zero and the metric is the diagonal unit metric. Working with such special background

may seem a strong assumption but it is not so. Once we have determined the symmetries

of the S-matrix and translated them into a symmetry statement for the effective action

around the special background, the symmetry must also hold for the effective action in the

more general backgrounds that can be obtained by switching on fields within the truncated

class. This is true even if the symmetry is spontaneously broken in the new background

and is therefore not a symmetry of the S-matrix. In our case, since the massless set of

states include those for the internal components of the metric, two-form, and non abelian

gauge fields, the general backgrounds for which these have expectation values are covered

in the argument.

Let us denote by Xµ the space-time coordinates on which the fields are allowed to

depend and by Y m the d coordinates on which the fields do not depend. We also denote by

ψµ and χm their fermionic partners. The vertex operators of the massless bosonic states

– 4 –
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in the minus-one picture are then given by

ψµ ∂̄Xν eik·Xe−φ,

ψµ ∂̄Y n eik·Xe−φ, χm ∂̄Xµeik·Xe−φ,

χm ∂̄Y n eik·Xe−φ,

ψµ J̄α eik·Xe−φ , χm J̄α eik·Xe−φ ,

(2.1)

where φ is the scalar arising from bosonization of the superconformal ghost system [35]

and the J̄α are dimension (1,0) vertex operators in the anti-holomorphic sector describing

the E8×E8 or SO(32) currents. The vertex operators on the first line include those for the

lower-dimensional metric, two-form, and dilaton. On the second line we have those for the

lower-dimensional abelian gauge fields that arise from the metric and the two-form. On

the third line we have the vertex operators for the scalar fields that arise from the internal

components of the metric and two form. On the last line we have the vertex operators for

the lower-dimensional non-abelian gauge fields (first term) and for the scalars arising from

the internal components of the non-abelian gauge fields. None of the vertex operators in

the above list carry momentum or winding along the d compact coordinates.

The S-matrix will be computed from the correlation function of these vertex operators

together with suitable insertions of picture changing operators. The (holomorphic) picture

changing operator with picture number plus one has the form

− eφ(ψµ∂X
µ + χm∂Y

m) + · · · , (2.2)

where · · · denotes terms involving only ghost sector fields. In the following we shall focus

specifically on the tree level S-matrix which requires correlation functions of the conformal

field theory on the sphere. Now the key observations are the following:

1. In computing sphere correlation functions of operators in (2.1) and picture changing

operators, we can treat the d internal coordinates associated with the fields Y m as if

they were non-compact. The compactness of these coordinates will affect the corre-

lation functions of vertex operators carrying non-zero momentum or winding number

along these directions as well as higher-genus correlation functions of the vertex oper-

ators given in (2.1), but not the correlation functions of the vertex operators in (2.1)

on the sphere.

2. The correlation functions of the vertex operators (2.1), picture changing operators,

and the additional ghost insertions needed to provide the correct integration measure

over the moduli space of the punctured sphere can be expressed as a sum of correla-

tors each of which factorizes into three factors: a correlator involving (Y m, χm)’s, a

correlator involving the J̄α’s, and a correlator involving the other conformal fields.

3. On the sphere the correlation functions of the Y n’s satisfy holomorphic factorization.

As a result a correlation function involving the
(
∂Y m, ∂̄Y m

)
’s further factorizes into a

correlation function involving ∂Y m and one involving ∂̄Y n. This allows us to express

the correlation functions of vertex operators in (2.1), picture changing operators and

– 5 –
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other ghost insertions as sum of terms each of which has four parts: a correlator

involving (∂Y m, χm)’s, a correlator involving ∂̄Y m’s, a correlator involving the J̄α’s,

and a correlator involving the other conformal fields.

4. Given point 1, we can compute the required correlators in a theory where Y m’s are

non-compact. In this case both the world-sheet theory for the (Y m, χm) fields and the

picture changing operator are O(d) invariant, where O(d) acts as simultaneous rota-

tion of the Y m’s and χm’s. Thus the factor in the correlator involving the (∂Y m, χm)’s

is O(d) invariant. Furthermore due to holomorphic factorization the factor involving

the ∂̄Y n’s must also have an independent O(d) symmetry. As needed, this symmetry

is also a (trivial) symmetry of the picture changing operator, which does not involve

the operator ∂̄Y n. In summary, we have an O(d)×O(d) symmetry.

5. The vertex operators given in (2.1) provide a representation of this O(d) × O(d)

symmetry, ı.e. the action of O(d) × O(d) does not take us outside this list. Thus

the correlation functions and hence the S-matrix elements must have O(d) × O(d)

symmetry.

6. If we expand the tree level S-matrix elements of massless states in string theory in

powers of α′, then to any given order in α′ we can find a general coordinate invariant

effective action whose tree level S-matrix elements coincide with those computed

from string theory. The O(d)×O(d) symmetry of the S-matrix elements then implies

that the effective action that reproduces this S-matrix must also have O(d) × O(d)

symmetry. Furthermore at the linearized level the action of this symmetry on the

massless fields can be read out from their action on the vertex operators.

7. The effective action that reproduces the tree level S-matrix elements of massless

fields in toroidally compactified string theory can be regarded as the restriction of a

general covariant action in 9 + 1 dimensions to field configurations independent of d

coordinates. Since a general linear transformation on the d coordinates preserves the

property that the field configuration is independent of these d coordinates, it must

be a symmetry of the resulting action. More precisely, in a generic theory of this

kind, GL(d) is only a symmetry of the equation of motion and its SL(d) subgroup is a

symmetry of the action since the
√
detG factor in the Lagrangian density is notGL(d)

invariant. In tree level string theory, however, the change in
√
detG can be cancelled

by a shift in the dilaton field making GL(d) a symmetry of the effective action.

Note that not all of this GL(d) symmetry preserves the background and thus not

all of it is a symmetry of the S-matrix. The O(d) subgroup of GL(d) describing

the rotation of the y-coordinates preserves the background and is a symmetry of

the S-matrix.4 This can be identified as the diagonal subgroup of the O(d) × O(d)

symmetry discussed above.

4Even this O(d) symmetry is broken once we take into account the periodic identification of the internal

coordinates, but this effect is not visible at tree-level string theory when we have an effective theory for

states carrying zero momenta along the internal directions.

– 6 –
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8. The full symmetry of the effective action must include both O(d)×O(d) and GL(d).

The diagonal subgroup of O(d)×O(d) lies within GL(d); so the number of indepen-

dent generators we get this way is d2 from GL(d) and d(d − 1)/2 from one of the

O(d)’s. To this we must add the shift symmetry of the two-form fields; these are also

manifest symmetries of the dimensionally reduced action since in all terms in the

effective action the two-form appears with an exterior derivative acting on it. These

are parametrized by d × d anti-symmetric matrices and give d(d − 1)/2 more inde-

pendent generators. Together they account for the d(2d− 1) independent generators

of O(d, d). Thus O(d, d) must be a symmetry of the effective action to all orders in

the α′ expansion.

We would like to remark that instead of working with the S-matrix elements we could

also work with any string field theory of heterotic NS fields, such as [28]. In that case

our arguments will directly imply the O(d) × O(d) symmetry of the string field theory

action when we restrict the string fields to carry zero momentum along d of the spatial

directions. Since the effective action is obtained from this by integrating out the massive

string fields followed by possible field redefinitions, it will inherit the O(d)×O(d) symmetry.

Combining this with GL(d) and shift symmetries we can prove the O(d, d) symmetry of

the effective action.

The S-matrix argument can be easily generalized to consider a truncation where we

allow only gauge fields inside a subgroup G×U(1)p of E8×E8 or SO(32) to be switched on.

Let J̄α′

denote the currents for G and we represent the p abelian currents by i∂̄Uk, with

k = 1, . . . , p, and Uk new chiral world-sheet scalar fields.5 In this case the list of operators

in (2.1) is modified:

ψµ ∂̄Xν eik·Xe−φ,

ψµ ∂̄Y n̄ eik·Xe−φ, χm ∂̄Xµeik·Xe−φ,

χm ∂̄Y n̄ eik·Xe−φ,

ψµ J̄α′

eik·Xe−φ , χm J̄α′

eik·Xe−φ ,

(2.3)

with

∂̄Y n̄ =
{
∂̄Y 1, . . . , ∂̄Y d, ∂̄U1 , . . . ∂̄Up

}
, n̄ = 1, . . . , d+ p . (2.4)

The main effect has been to include the U(1) currents into an extended version ∂̄Y of the

∂̄Y conformal fields. Having truncated the gauge group, we now have less massless states.

We can now repeat the above arguments. The correlation functions factorize into

correlators involving the J̄α′

and the rest. As before, the correlators involving (∂Y m, ψm)’s

are O(d) invariant. Furthermore the correlators involving ∂̄Y n̄’s factor from the rest and

have an O(d+p) symmetry. Thus the S-matrix and the effective action has O(d)×O(d+p)

symmetry to all orders in α′. We need to combine this with the manifest GL(d) symmetry,

the shift symmetry of the 2-form fields parametrized by d×d anti-symmetric matrices and

the shift symmetry of the internal components of the p gauge fields parametrized by d× p

5Strictly speaking the fields Uk do not exist as conformal fields but the currents ∂̄Uk do, and all our

manipulations will involve only the currents.
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matrices.6 Taking into account that the diagonal O(d) of O(d) × O(d + p) is included in

GL(d), we get altogether

d2 +
1

2
(d+ p)(d+ p− 1) +

1

2
d(d− 1) + dp =

1

2
(2d+ p)(2d+ p− 1) (2.5)

generators, which is the right number of generators of O(d, d+ p).

3 Torus compactifcation with non-abelian gauge groups

We perform the torus compactification of the spacetime action of heterotic strings for

the massless fields, to zeroth order in α′, but including all non-abelian gauge fields for

a group G. Our goal is to investigate which global duality symmetry emerges once the

massive Kaluza-Klein modes are truncated out. In the first subsection we make some

general remarks on torus compactification or dimensional reduction and the nature (or

rather absence) of flux quantization conditions. Then we present the technical details of

the Kaluza-Klein reduction, which will be used in the following sections in order to write

the action in terms of O(d, d+ dimG) and O(d, d) multiplets, respectively.

3.1 Remarks on flux quantization

Dimensional reduction, as distinguished from compactification, is generally understood as a

procedure in which a theory formulated in a D-dimensional space-time is used to construct

a D − p dimensional field theory with 0 < p < D. This is done by assuming that all

fields are independent of p spatial dimensions and evaluating the original action with this

assumption. The nature of the extra dimensions is left unspecified and any volume of the

extra dimensions is taken to be a constant that can be absorbed in the normalization of

the action, sometimes as a rescaling of a coupling constant.

In order for dimensional reduction to produce a theory that is physically related to

the original higher-dimensional theory, one must specify the shape of the extra dimensions;

one must do compactification. The simplest compact p-dimensional space in which fields

can consistently be set to be constant is the p-dimensional torus T p. Even this is not

completely obvious for the cause of gauge fields, as we will discuss below. The dimensionally

reduced theory is then obtained from the compactified theory by ignoring all Kaluza-Klein

excitations that arise from field configurations in which fields depend on the compact space.

Thus we view dimensional reduction as compactification on tori.

When an abelian gauge theory is defined on a torus there are configurations where the

gauge fields are not constant over the torus and as a result there are non-vanishing field

strengths. The total flux associated with an abelian field strength is quantized because

only then space-dependent gauge fields on the torus are well-defined globally.

For compactification on a torus we will consider the ansatz in which all higher-

dimensional non-abelian gauge fields Âµ̂
α are independent of the toroidal directions ym.

6Although the Chern-Simons terms are not invariant under the shift symmetry of the gauge fields, the

three form field strength can be made invariant under this transformation by including a compensating

transformation of the 2-form fields.

– 8 –



J
H
E
P
0
2
(
2
0
1
5
)
0
7
9

Letting am
α denote the components of the non-abelian gauge fields along toroidal direc-

tions, the field strength Fmn
α along toroidal directions is then given by

Fmn
α = ∂man

α − ∂nam
α + fαβγam

βan
γ = fαβγam

βan
γ . (3.1)

It is now clear that the dimensional reduction hypothesis of coordinate independence can

lead to non-vanishing non-abelian field strengths. This could not happen for abelian gauge

fields, where only spatial dependence can lead to field strengths. Moreover, unless the fields

am
α satisfy unusual constraints, the associated fields strengths will actually take arbitrary

continuous values. We claim that there is no condition on the constant non-abelian gauge

fields on the torus, and no quantization of the resulting fluxes. This is simply because

constant gauge fields on a torus are globally well-defined regardless of their value: they

require no gauge transformation to patch up as we traverse any non contractible closed

loop on the torus. This means that we can perform the dimensional reduction without

topological complications.

It should be noted that in general spatially varying non-abelian gauge field configura-

tions may require a quantization condition to be globally well defined, resulting in quantized

fluxes. Here we see that non-abelian field strengths arising from spatial derivatives are not

on the same footing as field strengths arising from the commutator term (for which there

is no quantization, if the connections are spatially constant). Indeed, one can find a sim-

ple example of non-abelian SU(2) gauge fields where gauge fields with spatial dependence

and gauge field without spatial dependence give rise to the same field strength. These

configurations are not even locally gauge equivalent.

3.2 Torus compactification of heterotic supergravity

We now perform the explicit compactification starting from the heterotic spacetime action.

Even though this theory is defined in 10 space-time dimensions we shall keep our analysis

slightly more general by taking the initial space-time dimension to be D. Denoting the

D-dimensional objects and indices by hats, the action is given by

S =

∫
dDx

√
−ĝ e−2φ̂

[
R̂+ 4

(
∂φ̂
)2 − 1

12
Ĥ µ̂ν̂ρ̂Ĥµ̂ν̂ρ̂ −

1

4
F̂ µ̂ν̂αF̂µ̂ν̂α

]
. (3.2)

The Einstein-Hilbert and dilaton terms are unchanged compared to the abelian case, but

the field strengths are now

Ĥµ̂ν̂ρ̂ = 3

(
∂[µ̂ b̂ν̂ρ̂] − Â[µ̂

α∂ν̂Âρ̂]α − 1

3
fαβγÂµ̂

αÂν̂
βÂρ̂

γ

)
,

F̂µ̂ν̂
α = ∂µ̂Âν̂

α − ∂ν̂Âµ̂
α + fβγ

αÂµ̂
βÂν̂

γ ,

(3.3)

where α, β are the adjoint indices of the Lie algebra associated with the gauge group.

With Lie algebra generators Tα we have [Tα, Tβ ] = fαβ
γTγ , where fαβ

γ are the structure

constants. For semisimple gauge algebras we use the Cartan-Killing metric

καβ ≡ −tr (adTα ◦ adTβ) = −fαγδ fβδγ , (3.4)
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to lower indices, leading to fαβγ ≡ fαβ
ρκργ that is totally antisymmetric. The inverse

of καβ exists and is written as καβ . Note also that the overall normalization of κ is not

important as it can be absorbed into a rescaling of the metric, dilaton and two form fields.

If the gauge group is of the form G′ × U(1)p with the Lie algebra of G′ semisimple, then

κ is defined to be a block diagonal matrix containing the p× p identity matrix Ip and the

Cartan-Killing metric κ′ for G′:

For G′ ×U(1)p : κ ≡
(
Ip 0

0 κ′

)
. (3.5)

This κ matrix is still invertible.

We perform the dimensional reduction by splitting the coordinates into non-compact

and compact ones, corresponding to a toroidal background

R
n−1,1 × T d , D = n+ d . (3.6)

Specifically, we write xµ̂ = (xµ, ym), corresponding to the index split

µ̂ = (µ,m) , â = (a, a) , (3.7)

where the second equation indicates the splitting of the flat (Lorentz) indices. The Lorentz

metric is

η̂
âb̂

=

(
ηab 0

0 δa b

)
, (3.8)

with ηab for the noncompact directions and δa b for the compact ones. The Kaluza-Klein

ansatz for the vielbein êµ̂
â (and its inverse êâ

µ̂) is

êµ̂
â =

(
eµ

a A
(1)m
µ Em

a

0 Em
a

)
, êâ

µ̂ =

(
ea

µ −eaνA(1)m
ν

0 Ea
m

)
, (3.9)

where eµ
a and ea

µ are inverses of each other, Em
a and Ea

m are inverses of each other, and

A
(1)m
µ denote a collection of Kaluza-Klein vectors labelled by m. We define

gµν ≡ eµ
aeν

bηab , Gmn ≡ Em
aEn

b δa b . (3.10)

In terms of these we have, with µ̂ = (µ,m) and ν̂ = (ν, n),

ĝµ̂ν̂ ≡ êµ̂
âêν̂

b̂η̂
âb̂

=

(
gµν +A

(1)m
µ GmnA

(1)n
ν A

(1)k
µ Gkn

A
(1)k
ν Gkm Gmn

)
. (3.11)

In order to obtain canonically normalized and manifestly gauge invariant kinetic terms

in the reduced theory we have to perform a number of field redefinitions for the vectors and

two-forms. The general prescription, as also employed by Maharana-Schwarz, is to define

components of the D-dimensional fields with flat indices and then to ‘un-flatten’ with the
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lower-dimensional vielbein. This is best explained using an object with a single index, as the

generalization to multiple indices is trivial. Given an object Ŵµ̂ with µ̂ = (µ,m) we define

Wm ≡ Ŵm ,

Wµ ≡ eµ
a êa

ν̂Ŵν̂ = eµ
a Ŵa .

(3.12)

Using the explicit form of the vielbein we get

Wµ = eµ
a
(
êa

νŴν + êa
n Ŵn

)
= Ŵµ − eµ

aea
νA(1)n

ν Ŵn , (3.13)

and therefore

Wµ = Ŵµ −A(1)n
µ Ŵn . (3.14)

When we deal with multiple indices we apply the rule in (3.12) to each of the indices. The

logic behind the rule is that one can quickly verify that

WµWµ ≡ gµνWµWν = ηabŴaŴb ≡ Ŵ aŴa ,

WmWm ≡ GmnWmWn = δa bŴaŴb ,
(3.15)

and this leads to

Ŵ µ̂Ŵµ̂ ≡ ĝµ̂ν̂Ŵµ̂Ŵν̂ = η̂âb̂ŴâŴb̂
=WµWµ +WmWm , (3.16)

giving a very simple way to expand contracted full-dimensional indices, without off-diagonal

metric contributions involving bare Kaluza-Klein vectors.

We turn now to the decomposition of the gauge kinetic terms. For the field strength

Ĥµ̂ν̂ρ̂ we have, for example,

Hµmn ≡ eµ
aêa

ν̂Ĥν̂mn → Hµmn ≡ Ĥµmn −A(1)k
µ Ĥkmn . (3.17)

For the full set of components we find

Hmnk ≡ Ĥmnk ,

Hµmn ≡ Ĥµmn −A(1)k
µ Ĥkmn ,

Hµνm ≡ Ĥµνm − 2A
(1)n
[µ Ĥν]mn +A(1)n

µ A(1)k
ν Ĥmnk ,

Hµνρ ≡ Ĥµνρ − 3A
(1)m
[µ Ĥνρ]m + 3A

(1)m
[µ A(1)n

ν Ĥρ]mn −A(1)m
µ A(1)n

ν A(1)k
ρ Ĥmnk .

(3.18)

Analogous redefinitions are needed for the Yang-Mills field strength:

Fmn
α ≡ F̂mn

α ,

Fµm
α ≡ F̂µm

α +A(1)n
µ F̂mn

α ,

Fµν
α ≡ F̂µν

α + 2A
(1)m
[µ F̂ν]m

α +A(1)m
µ A(1)n

ν F̂mn
α .

(3.19)

Our formula (3.16) makes the expansion of kinetic terms trivial. It follows that the

Yang-Mills kinetic term decomposes as

− 1

4
F̂ µ̂ν̂αF̂µ̂ν̂α = −1

4
FµναFµνα − 1

2
FµmαFµmα − 1

4
FmnαFmnα . (3.20)
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Similarly, for the two-form kinetic term:

− 1

12
Ĥ µ̂ν̂ρ̂Ĥµ̂ν̂ρ̂ = − 1

12
HµνρHµνρ−

1

4
HµνmHµνm− 1

4
HµmnHµmn−

1

12
HmnkHmnk . (3.21)

The index contractions above are done using the metrics gµν and Gmn. In the two equations

above, the new terms compared to MS are those with purely internal coordinates: F 2
mnα

and H2
mnk. These vanish when fields are y independent and the gauge group is abelian but

are non-zero when the gauge group is non-abelian. These terms simply give the potential:

− V = − 1

12
HmnkHmnk −

1

4
FmnαFmnα . (3.22)

The little less trivial part of the computation is to express the above field strengths in

terms of the gauge potentials that are redefined as well in order to exhibit the non-abelian

symmetry in conventional form. For the gauge potentials the original field Âµ̂
α yield fields

am
α and Aµ

α from the postulated rule:

am
α ≡ Âm

α ,

Aµ
α ≡ Âµ

α −A(1)m
µ Âm

α .
(3.23)

Solving for the hatted components we get

Âm
α = am

α ,

Âµ
α = Aµ

α +A(1)m
µ am

α .
(3.24)

From the two-form potentials b̂µ̂ν̂ we get scalar fields Bmn, lower-dimensional abelian gauge

fields A
(2)
µm, and a lower-dimensional two-form bµν defined from the relations:7

Bmn ≡ b̂mn ,

A(2)
µm ≡ b̂µm −A(1)k

µ b̂km +
1

2
am

αAµα ,

bµν ≡ b̂µν +A
(1)m
[µ b̂ν]m − 1

2
am

αA
(1)m
[µ Aν]α .

(3.25)

Solving for the hatted components we find:

b̂mn = Bmn ,

b̂µm = A(2)
µm −A(1)n

µ Bmn − 1

2
am

αAµα ,

b̂µν = bµν −A
(1)m
[µ A

(2)
ν]m +A(1)m

µ A(1)n
ν Bmn + am

αA
(1)m
[µ Aν]α .

(3.26)

7The last terms on the right hand side of the last two equations in (3.25) are needed due to the presence of

the Chern-Simons term in the D dimensional action. Also note that, apart from those terms, the definition

of bµν in terms of b̂µ̂ν̂ differs from the prescription given earlier: the second term on the right hand side

has coefficient 1 rather than 2 and there is a missing A(1)A(1)b̂ term. As a result, bµν has an anomalous

transformation under the gauge symmetry associated with A
(1)m
µ . However, it also has an anomalous

transformation under the gauge symmetry associated with A
(2)
µ m, and only for the above redefinition do

they combine into a manifestly O(d, d) invariant gauge symmetry.
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Note that the abelian gauge fields arising from the metric have the internal index up while

those arising from the antisymmetric two-form have the internal index down. The super-

scripts (1) and (2) are thus not strictly needed, but they help distinguish those two sets.

For these gauge fields we neither raise nor lower the internal index. A straightforward but

somewhat tedious computation gives for the field strength in terms of the redefined fields,

Hmnk = −fαβγ amαan
βak

γ ,

Hµmn = ∂µBmn + a[m
αDµan]α ,

Hµνm = F (2)
µνm − CmnF (1)n

µν − am
αFµνα ,

(3.27)

where we use the covariant derivatives, non-abelian field strengths, abelian field strengths,

and the auxiliary scalars defined by

Dµamα ≡ ∂µamα −Aµ
γfγαβ am

β ,

Fµνα ≡ 2∂[µAν]α + f αβγAµ
βAν

γ ,

F (1)m
µν ≡ ∂µA

(1)m
ν − ∂νA

(1)m
µ ,

F (2)
µνm ≡ ∂µA

(2)
νm − ∂νA

(2)
µm ,

Cmn ≡ Bmn +
1

2
am

α anα .

(3.28)

The most laborious part of the calculation is to verify that

Hµνρ=3

(
∂[µ bνρ]−A(1)m

[µ ∂νA
(2)
ρ]m−∂[νA(1)m

ρ A
(2)
µ]m−A[µ

α∂νAρ]α−
1

3
fαβγAµ

αAν
βAρ

γ

)
, (3.29)

so that it can be combined into the O(d, d) covariant form, to be given in (5.46) below.

Similarly, the components of the (redefined) Yang-Mills field strength become

Fµν
α = Fµν

α + F (1)m
µν am

α ,

Fµm
α = Dµ am

α ,

Fmn
α = fαβγ am

βan
γ .

(3.30)

This is close to the Maharana-Schwarz result but there are some differences. First, all

partial derivatives become covariant derivatives when acting on objects with α index. Sec-

ond, abelian field strengths become non-abelian field strengths. Finally, we have additional

terms involving purely internal field strength components.

Given (3.22) and the above results, the last contribution can be expressed as

− V = − 1

12
fαβγfα′β′γ′ am

αan
βak

γ amα′

anβ
′

akγ
′ − 1

4
fαβγfαβ′γ′am

βan
γamβ′

anγ
′

. (3.31)

We summarize this section by assembling the pieces and giving the final form of the di-

mensionally reduced action:

S =

∫
dnx

√−g e−2φ

[
R(g) + 4 ∂µφ∂µφ+

1

4
∂µGmn∂µGmn − 1

4
GmnFµν(1)mF (1)n

µν

− 1

4
καβF

µναFµν
β − 1

2
καβGmnF

µmαFµ
nβ

− 1

12
HµνρHµνρ −

1

4
HµνmHµνm − 1

4
HµmnHµmn − V

]
.

(3.32)

– 13 –



J
H
E
P
0
2
(
2
0
1
5
)
0
7
9

Here the volume element takes the ‘string frame’ canonical form thanks to the redefinition

φ = φ̂− 1

4
log detGmn . (3.33)

The terms in the first line of the action originate from the Einstein-Hilbert and dilaton

terms in D dimensions, which are not affected by the non-abelian gauge couplings and

therefore can be taken directly from [7]. The terms in the second line originate from the

Yang-Mills kinetic term, cf. (3.20), while the terms in the third line other than V originate

from the kinetic term of the b-field in (3.21). Finally, the potential V is given in (3.31) and

encodes the terms not present in the Maharana-Schwarz analysis (beyond those originating

from covariantizing gauge couplings).

In the next section we write the above action in an O(d, d +K) covariant form, with

K = dimG, although the theory only has O(d, d) as a proper symmetry. For this purpose

we assemble the terms in the above action in slightly different order

S=

∫
dnx

√−g e−2φ

[
R(g) + 4∂µφ∂µφ− 1

12
HµνρHµνρ

+
1

4
∂µGmn∂µGmn − 1

2
καβGmnF

µmαFµ
nβ − 1

4
HµmnHµmn

− 1

4
GmnFµν(1)mF (1)n

µν − 1

4
καβF

µναFµν
β − 1

4
HµνmHµνm−V

]
.

(3.34)

4 Compactified theory in terms of O(d, d + K) multiplets

We now rewrite the action (3.34) in a form that is covariant under O(d, d+K), where K is

the dimension of the gauge algebra. The gauge algebra type will be discussed below. We

will use the convention that indices and objects transforming covariantly under O(d, d+K)

are hatted. This should not be confused with the use of hats in the previous section,

where they refer to higher-dimensional objects and indices. Furthermore from this section

onwards we shall use the symbol η̂ and η to describe respectively the O(d, d + K) and

O(d, d) invariant metric and not the Minkowski metric as in the last section. We now

claim that the dimensionally reduced action (3.34) can be written as8

S =

∫
dnx

√−g e−2φ

(
R(g) + 4 ∂µφ∂µφ− 1

12
HµνρHµνρ

+
1

8
DµĤM̂N̂ DµĤM̂N̂

− 1

4
Ĥ

M̂N̂
F̂µνM̂ F̂µν

N̂ − V
(
Ĥ
))

,

(4.1)

where

DµĤM̂N̂ ≡ ∂µĤM̂N̂ − 2 Âµ
K̂f

K̂
(M̂

L̂
ĤN̂)L̂ ,

F̂µν
M̂ ≡ ∂µÂν

M̂ − ∂νÂµ
M̂ + fM̂

K̂L̂
Âµ

K̂Âν
L̂ ,

Hµνρ ≡ 3

(
∂[µbνρ] − Â[µ

M̂∂νÂρ]M̂ − 1

3
f
M̂K̂L̂

Â[µ
M̂ Âν

K̂Âρ]
L̂

)
,

(4.2)

8This action is of the same structural form as that obtained by Scherk-Schwarz compactification of

heterotic supergravity truncated to the Cartan subalgebra [30]. Moreover, it is closely related to that given

in [31], which considers group manifold reductions of heterotic supergravity including non-abelian gauge

fields and also displays the action with a formal O(d, d+K) symmetry.
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and the potential is

V (H) =
1

12
fM̂

K̂P̂
f N̂

L̂Q̂
Ĥ

M̂N̂
ĤK̂L̂ĤP̂ Q̂ +

1

4
fM̂

N̂K̂
f N̂

M̂L̂
ĤK̂L̂ +

1

6
fM̂N̂K̂f

M̂N̂K̂
. (4.3)

Here the fM̂
N̂K̂

are a set of constants which we shall call structure constants, and the

indices take values M̂, N̂ , . . . = 1, . . . , 2d+K. These indices are lowered and raised with a

metric η̂
M̂N̂

and its inverse η̂M̂N̂ ≡ (η̂−1)M̂N̂ :

η̂
M̂N̂

≡




0 δij 0

δi
j 0 0

0 0 καβ


 . (4.4)

Since κ is invertible, η̂ is also invertible. Associated with the constant invertible metric η̂

there is a set of matrices Ω that preserve it. With Ω carrying index structure Ω
M̂

N̂ the

matrices satisfying

Ω η̂ ΩT = η̂ , (4.5)

form a group under multiplication. Because all indices are properly contracted, the action

is invariant under duality transformations

Ĥ
M̂N̂

→
(
Ω ĤΩT

)
M̂N̂

, Âµ
M̂ →

(
η̂−1Ω η̂

)M̂
N̂
Âµ

N̂ ,

f
M̂N̂K̂

→ Ω
M̂

M̂ ′

Ω
N̂

N̂ ′

Ω
K̂

K̂′

f
M̂ ′N̂ ′K̂′ .

(4.6)

The action (4.1) is invariant if we set the structure constants to zero, but non-zero values

of the structure constants f will typically break this to a subgroup.

Let us now discuss the duality group that arises for the metric η̂ in (4.4). If the

matrices Ω satisfying (4.5) are changed to A−1ΩA, with A invertible, they still form the

same group. This time, however, the invariant metric is changed η̂ → A η̂ AT . If the Lie

algebra of the theory is compact and semisimple the Cartan-Killing metric κ is positive

definite and there is a matrix ω such that ω κωT = IK , with IK the K × K identity

matrix. It then follows that by taking A to be of the block-diagonal form (Id, ω), the

metric η̂ can be put in the form (η, IK), with η the O(d, d) metric. We then recognize

that for compact semisimple Lie algebras we have the duality group O(d, d+K). The case

when the gauge group contains U(1) factors will be discussed at the end of the section.

These are the situations we have in mind, and we will simply speak of O(d, d+K) as the

duality group. We have introduced explicitly the Cartan-Killing metric, however, to allow

for the possibility of future generalizations, including non-compact semisimple algebras, as

we discuss in the conclusions.

In order to make contact with (3.34) we need the explicit expressions for Ĥ
M̂N̂

and

Âµ
M̂ in terms of the fields obtained in the previous section after dimensional reduction,

and also the values of the structure constants f
M̂N̂K̂

. The matrix Ĥ is parameterized

by the internal (scalar) components G,B, and a of the metric, b-field, and gauge fields,
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respectively as follows:

Ĥ
M̂N̂

=



Ĥmn Ĥm

n Ĥm
β

Ĥm
n Ĥmn Ĥmβ

Ĥα
n Ĥαn Ĥαβ




=




Gmn −GmkCkn −Gmkakβ

−GnkCkm Gmn + CkmG
klCln + am

γanγ CkmG
klalβ + amβ

−Gnkakα CknG
klalα + anα καβ + akαG

klalβ


 ,

(4.7)

with

Cmn = Bmn +
1

2
am

αanα . (4.8)

It is easy to see that the generalized metric Ĥ with matrix element Ĥ
M̂N̂

satisfies:

Ĥ η̂−1 ∈ O(d, d+K) ⇐⇒ Ĥ
M̂

P̂ Ĥ
N̂

Q̂ η̂
P̂ Q̂

= η̂
M̂N̂

. (4.9)

The gauge fields A
(2)
µm , A

(1)m
µ , and Aµ

α of the previous section are combined into an

O(d, d+K) vector as

Âµ
M̂ ≡

(
A(2)

µm , A
(1)m
µ , Aµ

α
)
, (4.10)

and so are the corresponding field strengths,

F̂µν
M̂ ≡

(
F (2)
µνm , F (1)m

µν , Fµν
α
)
. (4.11)

The first two field strengths are abelian while the final one takes the non-abelian form (3.28).

Finally the structure constants are chosen to be

fM̂
N̂K̂

=

{
fαβγ if

(
M̂, N̂ , K̂

)
= (α, β, γ)

0 otherwise
, (4.12)

with α, β denoting the K gauge algebra directions and where fαβγ are the structure con-

stants of the gauge group G.

We shall now show that the action (4.1) indeed coincides with the dimensionally re-

duced action (3.34). The first line on each of the two actions is exactly the same. The

second line on (3.34) reproduces the 1
8DĤDĤ term in (4.1). Similarly, the third line

on (3.34), except for the potential V , reproduces the −1
4Ĥ F̂F̂ term in (4.1). The only dif-

ference so far with the Maharana-Schwarz analysis is the presence of covariant derivatives

and non-abelian field strengths instead of partial derivatives and abelian field strengths.

Since fM̂
N̂K̂

is non-trivial only in the gauge algebra directions it reproduces the non-

abelian gauge structures of the reduced theory. Finally, it is a straightforward computa-

tion to verify that the potential (4.3) reproduces the potential (3.31) of the reduced theory.

Inserting (4.12) into (4.3) we have

V =
1

12
fαγδ fβǫκ ĤαβĤγǫĤδκ +

1

4
fαβγf

β
αδĤγδ +

1

6
fαβγfαβγ . (4.13)
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This can be simplified using the value of Ĥαβ from (4.7), and the result is indeed (3.31).

We finally note that in the limit fαβγ → 0 the action reduces to that found by Maharana-

Schwarz, in which case the theory is properly invariant under a global O(d, d+K) symmetry.

If we are willing to accept the Maharana-Schwarz action as a valid starting point, we

could arrive at the action (4.1) using the following short argument. First of all we note that

the D dimensional action has terms quadratic in fαβγ , linear in fαβγ and independent of

fαβγ . The MS action corresponds to terms independent of fαβγ , and as pointed out above,

the fαβγ independent part of the action (4.1) coincides with the MS action. Thus we only

need to verify that the terms linear and quadratic in fαβγ are correct. Now by examining

the D dimensional action (3.2) we see that all the terms linear in fαβγ have a single

derivative and all the terms quadratic in fαβγ have no derivatives. Thus the dimensionally

reduced action must also have this property. We see that (4.1) does share this property.

Thus if (4.1) is not the correct dimensionally reduced action then any additional term must

share this property. Furthermore since both the original action (3.2) and the dimensionally

reduced action (4.1) are gauge invariant, any additional term must also be gauge invariant.

It is easy to see that it is impossible to write down a gauge invariant term with a single

derivative involving the fields which appear in (4.1) or equivalently in (3.34). This shows

that there are no additional terms with a single power of fαβγ . This leaves us to check

that (4.1) reproduces correctly the derivative free terms quadratic in fαβγ , i.e. that the

potential term (4.3) is correct.9 As discussed earlier, this term comes from (3.22) and

can be easily computed, leading to (4.3). This shows that the action (4.1) is the correct

dimensionally reduced action.

The action (4.1) given at the beginning of this section applies with some modifications

when the gauge group is G′×U(1)p, with G′ semisimple. As explained before, the κ matrix

then takes the block-diagonal form in (3.5), and the η̂ metric in (4.4) now becomes

For G′ ×U(1)p : η̂ ≡




0 Id 0 0

Id 0 0 0

0 0 Ip 0

0 0 0 κ′


 . (4.14)

With G′ compact semisimple, this metric is associated with the duality group O(d, d+ p+

K ′), where K ′ is the dimension of G′. The indices now run as M̂, N̂ . . . = 1, . . . , 2d+p+K ′.

The gauge fields are now an O(d, d+ p+K ′) vector:

Âµ
M̂ ≡

(
A(2)

µm , A
(1)m
µ , Ai

µ , Aµ
α′

)
, (4.15)

where Aµ
i, with i = 1, . . . , p are p abelian gauge fields, and α′ = 1, . . . ,K ′. The struc-

ture constants fM̂
N̂K̂

vanish except when all indices take values on the K ′ components

associated with the Lie algebra of G′. This time Ĥ is a (2d + p + K ′) × (2d + p + K ′)

matrix and

Ĥ η̂ −1 ∈ O
(
d , d+ p+K ′

)
. (4.16)

9The form of the potential can also be read off from the f -dependent terms in the heterotic double field

theory action given in [15].
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The parameterization of Ĥ can be obtained from that in (4.7) by letting the Lie algebra

gauge indices run over two kinds of values: α = (i, α′), again, with i = 1, . . . , p, and α′ =

1, . . . ,K ′. Moreover, we take κij = δij , κα′i = κiα′ = 0, and κα′β′ the matrix elements of κ′.

We have emphasized that O(d, d+K) (or O(d, d+p+K ′)) are formal duality symmetries

of the reduced action. Let us now discuss, following [15], the surviving global duality

symmetries of the reduced action. Consider first the case where G is compact semisimple

and of dimension K. We first note that in this case the tensor fM̂
N̂K̂

in (4.12) is not

O(d, d +K) invariant. Since the tensor vanishes whenever an index takes any of the first

2d values, it is invariant under the O(d, d) subgroup that shuffles these directions while

leaving the gauge algebra directions inert.10 Specifically, for the gauge groups relevant for

heterotic string theory we have

G = SO(32) or E8 × E8 → global duality symmetry: O(d, d) . (4.17)

If the gauge group is of the form G = G′ × U(1)p, with G′ semi-simple, the tensor fM̂
N̂K̂

vanishes whenever an index takes any of the first 2d+p values. Consequently, it is invariant

under the larger group O(d, d+ p), which is the true duality symmetry. For instance, if we

truncate the heterotic theory gauge group down to E8 ×U(1)8, the massless effective field

theory on T d will have:

G = E8 × U(1)8 → global duality symmetry: O(d, d+ 8) . (4.18)

5 Compactified theory in terms of O(d, d) multiplets

In the previous sections we have considered the heterotic string with its full non-abelian

gauge group G compactified on a torus. The low-energy effective field theory action was

displayed with a formal O(d, d +K) global symmetry, with K the dimension of the non-

abelian gauge group. We have also seen that the true global symmetry of the low energy

effective action is O(d, d) × G for compactifications without Wilson lines, and the gauge

fields give rise to massless adjoint scalars and lower-dimensional massless gauge fields of G.

The purpose of this section is to make this symmetry manifest by rewriting the low-energy

action (4.1) in terms of proper O(d, d)×G multiplets, instead of the fictitious O(d, d+K)

multiplets. The fields that will be used are

HMN , CMα , with constraints: H ηH = η , (1 +H η) C = 0 . (5.1)

When someWilson lines are included in the heterotic compactification, the gauge group

G can be broken to a group G′×U(1)p. The duality group of the low-energy effective theory

for the massless fields is enhanced to O(d, d+ p). The analysis of this section can also be

generalized to make the O(d, d+p) symmetry of the action manifest by using O(d, d+p)×G′

multiplets.

10More precisely, the global subgroup leaving (4.12) invariant is O(d, d)×G, with G the rigid subgroup

of the gauge group.
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5.1 Introducing O(d, d) field multiplets

Let us consider the (2d + K) × (2d + K) generalized metric of equation (4.7) written in

block form as follows:

Ĥ =

(
H̃ C̃
C̃ T Ñ

)
. (5.2)

With more explicit index notation

Ĥ
M̂N̂

=

(
H̃MN C̃Mβ

(C̃ T )αN Ñαβ

)
, (5.3)

where now the indices M,N run over 2d values. Thus the matrix dimensions are as follows

η̂ , Ĥ : (2d+K)× (2d+K) ,

η , H̃ : (2d)× (2d) ,

C̃ : (2d)×K ,

κ , Ñ : K ×K .

(5.4)

Since Ĥ η̂ −1 is an O(d, d+K) matrix it satisfies Ĥ η̂ −1Ĥ = η̂ (see (4.9)) and therefore

(
H̃ C̃
C̃T Ñ

)(
η 0

0 κ−1

)(
H̃ C̃
C̃ T Ñ

)
=

(
η 0

0 κ

)
, (5.5)

where

η ≡
(

0 δij
δi

j 0

)
, (5.6)

is the O(d, d) invariant tensor. The equality (5.5) implies three conditions for the block

matrices:

H̃ η H̃+ C̃ κ−1 C̃ T = η ,

H̃ η C̃ + C̃ κ−1 Ñ = 0 ,

C̃ T η C̃ + Ñ κ−1 Ñ = κ .

(5.7)

We shall now try to find a suitable parametrization of H̃, C̃, and Ñ satisfying these

relations. First of all, the last condition in (5.7) shows that Ñ and C̃ are not independent

variables. A useful way to express this dependence is to introduce a new O(d, d) vector C
via the equation

C̃ = C
(
1 + κ−1 Ñ

)
. (5.8)

Indeed, the equation leads to
(
1 + Ñκ−1

)
C T η C

(
1 + κ−1Ñ

)
= κ− Ñκ−1Ñ = κ

(
1− κ−1 Ñ

)(
1 + κ−1 Ñ

)
, (5.9)

giving us

Ñ =
(
κ− C T ηC

) (
κ+ C T ηC

)−1
κ = κ

(
κ+ C T ηC

)−1 (
κ− C T ηC

)
. (5.10)
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Eqs. (5.10) and (5.8) express both Ñ and C̃ in terms of C. For later use we note that

κ−1+κ−1Ñκ−1=κ−1
[(
κ+C T η C

)
+
(
κ−C T η C

) ] (
κ+C T ηC

)−1
=2
(
κ+ C T ηC

)−1
. (5.11)

We now introduce an O(d, d) valued generalized metric and an O(d, d) vector to

parametrize the above fields. We claim that the first two conditions in (5.7) can be solved

by taking

H̃ = H+ C
(
κ−1 + κ−1Ñκ−1

)
C T , (5.12)

where H is a symmetric matrix satisfying:11

H ηH = η , (1 +H η) C = 0 . (5.13)

This can be easily verifed by substituting (5.12) into the first two equations of (5.7) and

using (5.13), (5.8), and (5.10). Furthermore since H is determined uniquely from H̃, C̃,
and Ñ using eqs. (5.12) and (5.8), (5.12) is the most general form of H̃ satisfying (5.7).

These results can now by summarized in the statement that H̃, C̃, and Ñ satisfying (5.7)

can be parametrized by H and C satisfying (5.13) via the relations

H̃ = H+ C
(
κ−1 + κ−1Ñκ−1

)
C T ,

C̃ = C
(
1 + κ−1Ñ

)
,

1 + Ñκ−1 = 2κ
(
κ+ C T ηC

)−1
.

(5.14)

Alternatively, using (5.11), this can be written as

H̃ = H+ 2 C
(
κ+ CT ηC

)−1 C T ,

C̃ = 2 C
(
κ+ CT ηC

)−1
κ ,

Ñ = −κ+ 2κ
(
κ+ CT ηC

)−1
κ .

(5.15)

Our next goal is to write the proper O(d, d) covariant objects H and C in terms of

the physical fields.12 Thus, consider the expressions for H̃, C̃, and Ñ in terms of the

dimensionally reduced physical variables given in (4.7). Using matrix notation for G, B,

11The second condition is a projector condition because P ≡ 1
2
(1+Hη) satisfies P 2 = P . The complemen-

tary orthogonal projector is P̄ ≡ 1
2
(1−Hη). We now explain that the alternative condition (1−Hη)C = 0

would not be viable. Consider the second constraint in (5.7), H̃ η C̃ + C̃ κ−1Ñ = 0, perturbatively around

zero C. To leading order we have Ñ = κ and we require C̃ = C and H̃ = H. The constraint becomes

(Hη + 1)C = 0. The choice of this projector was fixed by our convention for the duality group and its

associated metric. We picked O(d, d+K) where d+K is the number of positive eigenvalues of η̂, including

the positive eigenvalues of κ. Had we chosen O(d +K, d), we would have to change κ → −κ in η̂ and the

other projector would have been selected.
12Ref. [29] has examined the use of unconstrained O(d, d) vectors for a DFT of Yang-Mills fields.
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and (a)αi ≡ ai
α we read off

H̃ =

(
G−1 −G−1

(
B + 1

2a
Tκa

)
(
B − 1

2a
Tκa

)
G−1 G+

(
−B + 1

2a
Tκa

)
G−1

(
B + 1

2a
Tκa

)
+ aTκa

)
,

C̃ =

(
−G−1aTκ

(
−B + 1

2a
Tκa

)
G−1aTκ+ aTκ

)
=

(
−G−1aTκ

(
−B + Ḡ

)
G−1aTκ

)
,

Ñ = κ+ κ aG−1aT κ . (5.16)

Here we defined

Ḡ ≡ G+
1

2
aTκ a , (5.17)

for later convenience. Using this we can now express the new field variables H and C in

terms of the physical fields. We begin with C:

C = C̃
(
1 + κ−1Ñ

)−1
=

(
−G−1aTκ

(
−B + Ḡ

)
G−1aTκ

)
1

2

(
1 +

1

2
aG−1aTκ

)−1

. (5.18)

Working out the geometric series one finds that this can be written in terms of the redefined

metric Ḡ:

C =
1

2

(
−Ḡ−1aTκ

(
−B + Ḡ

)
Ḡ−1aTκ

)
=

1

2

(
−Ḡ−1aTκ

−BḠ−1aTκ+ aTκ

)
. (5.19)

Next we turn to H. From (5.14) and the last of (5.16) we have

H = H̃ − C
(
κ−1 + κ−1Ñκ−1

)
C T = H̃ − 2 C

(
κ−1 +

1

2
aG−1aT

)
CT . (5.20)

Using our expression for C in terms of the physical fields and that for H̃, an explicit

computation gives a very simple result for H:

H =

(
Ḡ−1 −Ḡ−1B

B Ḡ−1 Ḡ − B Ḡ−1B

)
. (5.21)

This O(d, d) valued generalized metric H takes the usual form with the metric G replaced

by Ḡ. It is a good exercise to verify that the constraint on C holds: (1 +Hη)C = 0.

Since H transforms in the familiar way under O(d, d) dualities, the fields Ḡ and B

transform in the familiar way. Since the transformation of Ḡ is known and C transforms as

an O(d, d) vector, this determines the duality transformation of the scalar fields a. Given

this, one can find the duality transformations of G.

Assembling the O(d, d) multiplets for the gauge fields requires no work. Recalling

equations (4.10) and (4.11) we write now

Âµ
M̂ ≡

(
Aµ

M , Aµ
α
)
,

F̂µν
M̂ ≡

(
Fµν

M , Fµν
α
)
.

(5.22)

The field strengths are computed in terms of the gauge fields as

Fµν
M ≡ ∂µAν

M − ∂νAµ
M ,

Fµν
α ≡ 2 ∂[µAν]

α + fαβγAµ
βAν

γ .
(5.23)
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5.2 Covariant action

We now treat H and C as independent variables and formulate the action in terms of these

fields. Since the action has an explicit expression in terms of H̃, C̃, and Ñ , which in turn

have known expressions in terms of H and C, the action is guaranteed to have an explicit

expression in terms of H and C.
We start with the scalar kinetic terms from (4.1),

Lkin =
1

8
DµĤM̂N̂DµĤ

M̂N̂
=

1

8
tr
[(
DµĤ

)
η̂−1

(
DµĤ

)
η̂−1

]
, (5.24)

where η̂ is the O(d, d+K) metric (4.4). Using (5.2) and expanding the blocks,

Lkin =
1

8
Tr
(
DµH̃ η DµH̃ η + 2DµC̃ T η DµC̃κ−1 +DµÑκ−1DµÑκ−1

)
. (5.25)

Next we insert (5.14) and use (5.10) to simplify these terms. The strategy is to rewrite

all terms so that only derivatives of C enter. To this end one uses the second constraint

in (5.13) to find

CT ηDµH = −DµCT (1 + ηH) , (5.26)

which allows us to eliminate derivatives of H (note that DµH = ∂µH), and the third

equation in (5.14) to find

Dµ

(
1 + Ñκ−1

)
= −2κ

(
κ+ CT ηC

)−1 (
DµCT ηC + CT ηDµC

) (
κ+ CT ηC

)−1
, (5.27)

which allows us to eliminate derivatives of Ñ . A direct but tedious computation then shows

that (5.25) can be written in the form

Lkin = Tr

[
1

8
η∂µHη ∂µH−DµC

(
κ+ CT ηC

)−1
DµCT ηHη

−DµCT ηC
(
κ+ CT ηC

)−1 CT ηDµC
(
κ+ CT ηC

)−1
]
.

(5.28)

This action can be written in various equivalent forms, some of which that may be more

illuminating are given in the following. Using that with the constraints (5.13) we have

H−1 = ηHη and hence

CT ηC = −CT ηHηC = −CTH−1C , (5.29)

we can write the action, upon cycling in the trace, as

Lkin = Tr

[
1

8
∂µH ∂µH−1 − H−1DµC

(
κ− CTH−1C

)−1
DµCT

−H−1C
(
κ− CTH−1C

)−1 CTH−1DµC
(
κ− CTH−1C

)−1
DµCT

]
.

(5.30)

Next we can group the last two terms as follows

Lkin=Tr

[
1

8
∂µH∂µH−1−

(
H−1+H−1C

(
κ−CTH−1C

)−1CTH−1
)
DµC

(
κ−CTH−1C

)−1
DµCT

]
.

(5.31)

– 22 –



J
H
E
P
0
2
(
2
0
1
5
)
0
7
9

The prefactor in the second term can be simplified, as one may verify by writing out the

geometric series, to obtain

Lkin = Tr

[
1

8
∂µH ∂µH−1 −

(
H− Cκ−1C T

)−1
DµC

(
κ− C T H−1C

)−1
DµC T

]
. (5.32)

This form of the kinetic terms makes it clear that the variables CMα have restricted domain

since the eigenvalues of
(
H− Cκ−1C T

)
and

(
κ− C T H−1C

)
should never vanish, and hence,

by the positivity of these eigenvalues at C = 0, must always remain positive. By writing

H = AAT and κ = BTB for some non-singular matrices A, B we can translate both these

conditions into positivity of the eigenvalues of

(
I2d − C̄ C̄T

)
, C̄ ≡ A−1CB−1 . (5.33)

This means that the eigenvalues of C̄ C̄T should be less than one. A particular consequence

of this is that Tr
(
C̄ C̄T

)
< 2d. Since the left hand side is the sum of squares of all the

components of C̄, this shows that each component of C̄ has a strict upper bound. Thus,

for fixed A and B, i.e. fixed H and κ, each component of C will also have a strict upper

bound. This does not impose, however, any condition on the physical fields am
α. To see

this we note that using the constraint (1 +Hη)C = 0, the third equation in (5.14) and the

third equation in (5.16) we find

(
κ− C T H−1C

)−1
=
(
κ+ C T η C

)−1
=

1

2
κ−1

(
1 + Ñκ−1

)
= κ−1 +

1

2
aG−1aT . (5.34)

This shows that the inverse matrix on the left-hand side always exists for finite am
α and

that the bounds on C do not impose extraneous conditions.

Let us now turn to the potential for the scalar fields, which can be obtained from

V = fαβγfα
′β′γ′

[
1

12
Ñαα′Ñββ′Ñγγ′ − 1

4
καα′κββ′Ñγγ′ +

1

6
καα′κββ′κγγ′

]
. (5.35)

Upon replacing Ñ with the second equation in (5.10) one may verify that the potential

can be brought into the form

V = fαβγf
α′β′γ′

[(
κ+ C T ηC

)−1
]αα′′ [(

κ+ C T ηC
)−1
]ββ′′ [(

κ+ C T ηC
)−1
]γγ′′

[
1

12

(
κ− C T ηC

)
α′′α′

(
κ− C T ηC

)
β′′β′

(
κ− C T ηC

)
γ′′γ′

−1

4

(
κ+ C T ηC

)
α′′α′

(
κ+ C T ηC

)
β′′β′

(
κ− C T ηC

)
γ′′γ′

+
1

6
(κ+ C T ηC)α′′α′

(
κ+ C T ηC

)
β′′β′

(
κ+ C T ηC

)
γ′′γ′

]
. (5.36)

Expanding and simplifying the terms inside the last square bracket and relabelling the

indices in some terms we get

V = fαβγf
α′β′γ′

[(
κ+ C T ηC

)−1 C T η C
]α

α′

[(
κ+ C T η C

)−1 C T η C
]β

β′

·
[(
κ+ C T ηC

)−1
(
κ+

1

3
C T ηC

)]γ
γ′ . (5.37)
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This form makes it manifest that the potential has no constant terms, i.e., there is no

cosmological constant, and no terms quadratic in C, i.e., there are no mass terms for vacua

in which the scalars have zero expectation value.

Finally, we rewrite the Yang-Mills term using the O(d, d) covariant field variables.

Starting from

LYM = −1

4
Ĥ

M̂N̂
F̂µνM̂ F̂µν

N̂ , (5.38)

we insert the block components of Ĥ according to (5.15) and the components of the field

strengths F̂ according to (5.22). The resulting Yang-Mills term is simplified by introducing

the following combination,

Fµν
M ≡ Fµν

M − ηMNCNαFµν
α . (5.39)

A straightforward computation then shows that (5.38) can be written as

LYM = −1

4

(
H+ 2 C

(
κ+ CT ηC

)−1 CT
)
MN

Fµν M Fµν
N − 1

2
CMαFµν M Fµν

α

− 1

4

(
κ+ CT ηC

)
αβ

Fµν αFµν
β .

(5.40)

By using η C = −H−1C and expanding and resumming the geometric series we can also

rewrite this as

LYM = −1

4

(
H
(
H− Cκ−1CT

)−1 (H+ Cκ−1CT
))

MN
Fµν M Fµν

N − 1

2
CMαFµν M Fµν

α

− 1

4

(
κ+ CT η C

)
αβ

Fµν αFµν
β . (5.41)

We are now ready to assemble the pieces and give the final form of the dimension-

ally reduced action, thus summarizing our result. The action is written in terms of the

field content {
gµν , bµν , φ , Aµ

α , Aµ
M , HMN , CMα

}
. (5.42)

Here the first four fields are O(d, d) singlets, and the final three fields transform in O(d, d)

tensor representations. We use matrix notation: H for HMN and C for CMα. The matrix H
satisfies the familiar constraint of the generalized metric H ηH = η, while C is constrained

by (1 +Hη) C = 0. In terms of these variables and using matrix notation the action reads

S =

∫
dnx

√−ge−2φ

(
R(g) + 4 ∂µφ∂µφ− 1

12
HµνρHµνρ +

1

8
Tr
(
∂µH ∂µH−1

)

− Tr
[ (

H− Cκ−1C T
)−1

DµC K−1
C
DµC T

]
− V (C)

− 1

4

(
H
(
H− Cκ−1CT

)−1 (H+ Cκ−1CT
))

MN
Fµν M Fµν

N

− 1

2
CMαFµν M Fµν

α − 1

4
(KC)αβ Fµν αFµν

β

)
,

(5.43)

where we defined the C dependent extension KC of the Cartan-Killing metric:

KC ≡ κ− C T H−1C = κ+ CT ηC . (5.44)
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The potential V (C) is given by (5.37),

V =fαβγf
α′β′γ′ [

(KC)
−1C T η C

]α
α′

[
(KC)

−1C T η C
]β

β′

[
(KC)

−1

(
κ+

1

3
C T ηC

)]γ
γ′ , (5.45)

the 3-form curvature takes the form

Hµνρ = 3

(
∂[µ bνρ] −A[µ

M∂νAρ]M −A[µ
α∂νAρ]α − 1

3
fαβγAµ

αAν
βAρ

γ

)
, (5.46)

and the field strengths and covariant derivatives are

Fµν
M ≡ Fµν

M − ηMNCNαFµν
α ,

Fµν
M ≡ ∂µAν

M − ∂νAµ
M ,

Fµν
α ≡ 2∂[µAν]

α + fαβγAµ
βAν

γ ,

DµCMα ≡ ∂µCMα −Aµ
γ fγα

βCMβ .

(5.47)

This form of the action is manifestly O(d, d) invariant as it is written in terms of O(d, d)

covariant objects, with all indices properly contracted. Since both H and C are constrained,

an unconstrained parameterization of these objects is useful. If we parameterize the matrix

H using a symmetric matrix of scalars Ḡ and an antisymmetric matrix of scalars B:

H =

(
Ḡ−1 −Ḡ−1B

B Ḡ−1 Ḡ − B Ḡ−1B

)
, (5.48)

then we can give also an explicit parameterization of C in terms of a field A ≡ Amα:

C =
1

2

(
−Ḡ−1A

−B Ḡ−1A+A

)
. (5.49)

We can then view Ḡ, B, and A as independent fields. The connection to the original

supergravity variables yields a slightly different and more complex parameterization in

which A above is set equal to aTκ and Ḡ is set equal to G + 1
2 a

Tκa, as one can recall

from (5.17) and (5.19).

The results of this section apply also if the original higher-dimensional gauge group is

of the form G′×U(1)p, with G′ compact semisimple and of dimension K ′. As we discussed

at the end of the previous section, the reduced theory is formally O(d, d+p+K ′) invariant

but the true symmetry is only O(d, d+ p). This time we want to write the theory in terms

of O(d, d+ p) multiplets. The analysis in this case is a straightfoward generalization of the

analysis of this section. Following the discussion of this situation around (4.16), the matrix

Ĥ in (5.3) takes now a similar form

Ĥ
M̂N̂

=

(
H̃MN C̃Mβ

(C̃ T )αN Ñαβ

)
, (5.50)

but the matrix dimensions are now as follows

η̂ , Ĥ : (2d+ p+K ′)× (2d+ p+K ′) ,

η , H̃ : (2d+ p)× (2d+ p) ,

C̃ : (2d+ p)×K ′ ,

κ′ , Ñ : K ′ ×K ′ .

(5.51)
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η will now correspond to the matrix

η =




0 Id 0

Id 0 0

0 0 Ip


 .

The analysis proceeds as before. We parameterize H̃, C̃, and Ñ , with matrices H and C
of sizes

H : (2d+ p)× (2d+ p) ,

C : (2d+ p)×K ′ ,
(5.52)

that satisfy the same constraints as before (H ηH = η , (1 + H η) C = 0), and thus have

the same solutions. As a result, the action takes the form (5.43) with H η−1 an O(d, d+ p)

matrix and C an O(d, d+ p) vector valued in the Lie algebra of G′. Finally, κ is set equal

to the Cartan-Killing metric κ′ of the Lie algebra of G′.

6 Conclusions

In this paper we have revisited the effective action of heterotic string theory on a torus

and its duality symmetries. The seminal work of Maharana-Schwarz exhibited a global

O(d, d+16;R) symmetry in the reduction of heterotic supergravity truncated to the Cartan

subalgebra on a d-torus. This is the proper effective theory for the situation in which the

background fields corresponding to the metric g, b-field and the gauge fields of the Cartan

subalgebra all have non-trivial values. In fact, in this case the non-Cartan parts of the

gauge groups SO(32) or E8 ×E8 are ‘Higgsed’ and hence massive. Therefore they have to

be ignored in the massless effective action, giving the theory with global O(d, d + 16;R)

symmetry constructed by Maharana-Schwarz. However, we may also consider the situation

for which only g and b have non-trivial background values. In this case the full gauge fields

corresponding to SO(32) or E8 × E8 remain massless, and so the question arises what

is the global duality symmetry upon including all these non-abelian gauge fields. We

investigated this question, showed that the duality symmetry is O(d, d;R) in general and

exhibited this symmetry in the novel effective action (5.43) in manifest form. Interestingly,

such a formulation requires non-polynomial couplings in the O(d, d) covariant fields as is

manifest, for instance, in the form of the potential (5.37).

So far we have displayed the global O(d, d;R) symmetry of the two-derivative reduced

effective theory. The arguments in section 2 show, however, that this continuous symmetry

is preserved by arbitrary α′ corrections. How do we exhibit this symmetry to higher orders

in α′? To first order in α′ a natural possibility is suggested by the results of Bergshoeff

and de Roo [36], as recently used in double field theory [24]. They noted that the O(α′)

Riemann-squared corrections can be introduced by treating the torsionful spin connections

ω̂
(−)

µ̂ âb̂

(
ê, b̂
)
≡ ω̂

µ̂ âb̂
(ê)− 1

2
Ĥµ̂ν̂ρ̂ êâ

ν̂ ê
b̂
ρ̂ , (6.1)

on the same footing as the SO(32) or E8 × E8 gauge fields. These spin connections trans-

form like the gauge fields under supersymmetry and enter the action in the same way:
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with Chern-Simons-type modifications of the three-form field strength and a Yang-Mills

term that for the Lorentz connection encodes a Riemann-squared term. The coefficient of

the Lorentz Chern-Simons term, however, is opposite to that for the Yang-Mills Chern-

Simons term. Thus, we may simply include the O(α′) corrections by formally extending

the gauge group to include the Lorentz group, with κ chosen to be the negative of the

Cartan-Killing metric

κ̂
âb̂,ĉd̂

= − 1

2
α′ η̂ â[ĉ η̂ d̂]b̂ . (6.2)

Now our formulas of section 5 apply also for this case. There is, however, an important

subtlety: the definition (6.1) means we cannot treat ω̂(−) as an independent gauge field.

In particular we cannot assign to it independent O(d, d) transformations, as would follow

by taking ω̂(−) to be part of an extended generalized metric or constrained C field. Rather,

its O(d, d) transformations to lowest order are fixed by those of ê and b̂, and it needs to be

verified that these transformations are compatible. While this is very likely the case, given

the checks performed in [24, 32], it would be desirable to have a formalism in which this is

manifest. This may also shed a new light on the double field theory formulations including

higher derivative O(α′) corrections.
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