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Abstract Shape recognition deals with the study geometwhich are more sensitive to occlusions, were shown to per-
ric structures. Modern surface processing methods can cofierm favorably in holistic paradigmsgip,11,41,33]. At an-

with non-rigidity - by measuring the lack of isometry, deal other end, image simplification through geometric invarian
with similarity or scaling - by multiplying the Euclideanar heat processes were introduced and experimented with dur-
length by the Gaussian curvature, and manage equi-affiniag the late 90’s,%4,2,31]. At the beginning of this century,
transformations - by resorting to the special affine arglen scale space theories gave birth to the celebratade in-
definition in classical equi-affine differential geometigre, variant feature transforn{SIFT) [35] and the affine-scale
we propose a computational framework that is invariant tanvariant feature transform ASIFB), that are used to suc-
the full affine group of transformations (similarity and équ cessfully locate repeatable informative (invariant) teas
affine). Thus, by construction, it can handle non-rigid &sap in images.

Technically, we add the similarity invariant property to an  Matching surfaces while accounting for deformations was
equi-affine invariant one and establish an affine invarianperformed with conformal mapping84], embedding to fi-
pseudo-metric. As an example, we show how diffusion geomite dimensional Euclidean spacé§]and infinite onesf,

etry can encapsulate the proposed measure to provide rob&s]], topological graphs9,59], and exploiting the Gromov-
signatures and other analysis tools for affine invariant surHausdorff distance3s,8,19). Which is just a subset of the
face matching and comparison. numerous methods used in this exploding field. Another ex-
ample, relevant to this paper is diffusion geometry, intro-
duced in P2] for manifold learning that was first applied
for shape analysis irf]. This geometry can be constructed
from the eigen-strucutre of the Laplace-Beltrami operator
The same decomposition was recently usedsi® 42,43,

9] to construct surface descriptors for shape retrieval and

1 Introduction

Differential invariants for planar shape matching and geco
nition were introduced to computer vision in the 805

and studied in the early 90'sL$,12,20,14,17,16], where matching. ) _ )
global invariants were computed in a local manner to over- S0Me approaches in the field of shape matching, mea-

come numerical sensitivity of the differential forms. Sral SUre the discrepancy between surfaces and volumes by weigh-

space entered the game as a stabilizing mechanism, for &g the effort it takes to deform one geometric structure int
ample in [L5], where locality was tuned by a scalar indi- another. Such geometric constructions can be used to define

cating how far one should depart from the point of interest® Riémannian metric on the space of all possible shapes.
Along a different path, using a point matching oracle to re-These methods are popular, for example, in medical infor-

duce the number of derivatives, semi-differential sigregu Mation analysis. They incorporate statistical prid@3]use

were proposed ing7,58,38,44,18]. Non-local signatures, spherical harmonics3[], exploit global symmetric defor-
mations p1], and use smooth diffeomorphic mapping$. [

darav@mit.edu, Media Lab., MIT, USA Statistics of curved domains can be utilized, for example,
to overcome uncertainty, to evaluate different hypothesis
and compare between observatiods fi5]. The metric pro-
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Fig. 1. Voronoi diagrams of ten points selected by farthest point samgpbiffusion distances were used based on Euclidean metric (tap) a
an affine invariant one (bottom).

as a Riemannian structure rather than the space of all possithere

ble shapes as awhole: . o gy = (S:,8;) @)
In this paper, following the adoption of metric/differeati

geometry tools to image-analysis, we introduce a new geo

etry for affine invariant surface analysis. #8[49], the equi-

affine invariant metric was first introduced to the surface

analysis arena. Invariant curvatures were studied®3],  ds? = g11du® + 2g12dudv + goadv®. 3)

and a scale invariant metric was the main themelgiQl. o peyric coefficientdg,; } translate the surface parame-

Here, we introduce a framework that handles affine transfol;, tion coordinates andv into a Euclidean invariant dis-
mations in its most general form including similarity. The

o9 _ L tance measure on the surface. This distance would not change
proposed full affine invariant geometry for non-rigid sur- under Euclidean transformations of the surf&+b where
faces copes with linear (affine) transformations mcludng is a rotation matrix irR3. It would also be preserved w.r.t.
scaling and |so'metry ) . isometric (length preserving) transformations.

The paper is organized as follows: In Sectimwe in- The equi-affine transformation, defined by the linear op-
troduce the affine invariant pseudo-metric. SecB@roves eratorAS + b, wheredet(A) = 1, requires a different treat-
the invariance of the construction. In Sectidmumerical ment, seed,55]. Consider the curve' € S, parametrized
implementation considerations are discussed. Next, @ecti by w. The equi-affine transformation is volume preserving,

5 briefly reviews some ideas behind diffusion geometry thag 1 thus, its invariant metric is constructed by restrigthe
could be used as a numerically stabilizing mechanism for thg | me defined byS.., S, andC,,., to one. That s,

proposed geometry. Secti@nis dedicated to expenmental
results, and Sectioniconcludes the paper.

nJTJ_sing the short hand notatidhy = 95/0u, Sy = 95/dv,
wherew andv are the coordinates df. An infinitesimal
displacements on the surface is thereby given by

= det(Sy, Sv, Coww)
= det (Su; Svs Sww)

du? du dv
= det SU,SU,Suui 2Suv77
¢ ( dw? " G dw
2 Affine metric construction dv? d*u d?v
Spvo— + S 5 + 5
dw? Y dw?
We model a surfacéS, g) as a compact two dimensional = dw~2 det (su, Sy, Suudu + 2S,vdudv + SdeQ)
Riemannian manifold with a metric tensog. Let us fur- = dw™? (ri1du® + 2riadudv + roadv?) 4)

ther assume tha$ is embedded iR? by a regular map
S : U c R? — R3. The Euclidean metric tensor can be ob-
tained from the re-parameterization invariant arc-lengith 75 = det (51,52, 5;) , (5)

of a parametrized curv€(s) onS. As the simplest Euclid-  and we extended the short hand notatlon to second order
ean invariant is length, we search for the parameterization derivatives by whichS;; = gig Soy = a 2°S andS;, =

that would satisfyC;| = 1, or explicitly,

where now, the metric elements are given by

9°S_ Note, that the second fundamental form in the Euclid-

dudv
1= (C,,Cy) = (S, Ss) ean case is given bly;; = /gr;; whereg = det(g;;) =
88:9 du 6§ ’dv 0Sdu 9Sdv g11922 — g%,. The equi-affine re-parametrization invariant
N <6u ds = Ovds Ouds * 81st> metric [55,6] reads

= ds™? (gr1du® + 2g12dudv + gaadv?) 1) g;= |7°\_%7“z‘j7 (6)



wherer = det(r;;) = ri1ras — 7i,. scaled surface by. The first and second fundamental forms
This equi-affine metric applies to surfaces with positiveare scaled by? anda respectively,
Euclidean Gaussian curvature, that are oriented so as+o pro 9 9
. - . . gij = <OéSi,OéSj> =« <Si,Sj> =« gij,
vide positive squared distances. See ads. [At hyperbolic 7% (@Si, NY = o (Si;, N} = abi; : ©)
points, when the Euclidean Gaussian curvature is negative;” ~— ' 2"/ EEA
we have one positive and one negative eigenvalue in thehich yields

metric r. In this case, we set the metric tensor to be zero. ~ 4
det(g) = o det(g)

((1) (1)) metric o det () = o det(b). (10)

that point, where is a small constant. That is, such regionsgince the Gaussian curvature is the ratio between the de-
would practically be ignored by the proposed geomeif}.[  (orminants of the second and first fundamental forms, we
Note that asS' is a compact manifold, we can define a CON-readily have that

tinuous shrinkage of the metric while the error is kept at _

the order ofe. In our implementation we chose a small - _ det(b) _ a’det(b) _ 1 . (11)

at all hyperbolic and parabolic points. It was numerically ~ det(§) atdet(g) a2 "’

validated and supported by the experimental results for thg ;. which we conclude that multiplying the Euclidean met-

non-trivial surfaces reported in this paper. ~ ric by the magnitude of its Gaussian curvature indeed pro-
Next, we resort to the similarity (scale and isometry) in-yiqes a scale invariant metric. That is

variant metric proposed irl]. Scale invariance is obtained

by multiplying the metric by the Gaussian curvature. In met—|f(|gij - ’12[(
ric notations, the Gaussian curvatuteis defined as the ra- @

tio between the determinants of the second and the first fun- O

damental forms. We propose to compute the Gaussian curva- L
ture with respect to the equi-affine invariant metric, arehth ' N€0rem 2 Letr; = det (51,52, Si;), anda; = [r|~#7ij,
construct a new metric by multiplying the equi-affine met-then.gi; is an equi-affine invariant quadratic form.

ric elements by the equi-affine Gaussian curvature. Speci‘for proof sees).

ically, consider the surfacéS, ¢), whereg;; is the equi-

affine invariant pseudo-metric, and compute the eqm'aﬁin%orollary 1 LetQ = (¢;;) = UTUT andT = (71 0 )
= (qij) = =

Numerically, we assigrig;;) = €Z = e

a’g;j = |K|gij. (12)

Gaussian curvatur&’? of (S, ¢) at each point. The affine 0 7
invariant pseudo-metric is then defined by then,
hij = |K| gij- () 0 — U G)% (‘)7 |> UT if sign(y1)sign(vz) > 0
- 2
Let us next prove the affine invariance of the above construc- 0 if sign(~y1)sign(y2) < 0,

tion for surfaces. _ o _
is an equi-affine invariant pseudo-metric.

Proof According to p5], the tensoiQ is re-parametrization
3 Invariance properties equi-affine invariant form for all elliptic points. For allligp-

tic points withvy, v» > 0, we have the local metric structure
In this section we prove affine invariance of the proposeq) — (). For all elliptic points withy;, 7, < 0, we use our
pseudo-metric. Let us first justify the scale invariant meetr freedom of surface orientation to obtain positive distance
constructed by multiplication of a given Euclidean metyc b | gther words, by virtually changing the surface orienta-

the Gaussian curvature. tion we obtain a re-parametrization invariant metric struc

. . .. . A 0
Theorem 1 Let K be the Gaussian curvature of a surface ture with two positive eigenvalueg, = U (l% ) UT.

its Ri i i 0 |yl
5, andg;; the elements of its Riemannian metric. Théfig;; oy 4l hyperbolic, and parabolic points we have a trivial in
is scale invariant metric.

variantQ = 0, that altogether construct the equi-affine in-

variant pseudo-metric. O
Proof Let the surfaces be scaled by a scalar > 0, such P

that Using Brioschi formula?8] we can evaluate the Gaussian

g s 8 curvature directly from the metric and its first and second
(u,v) = aS(u,v). ®)  derivatives. Specifically, given the metric tenggr, we have

In what follows, we omit the surface parameterizatigmw K= 06—

for brevity, and denote the a quantifycomputed for the - det?(q)

; (13)



where
—%QH,W + Q12,00 — %q22,uu %Qﬂl,u Q12,0 — %(Jn,v
det q12,0 — %q22,u qi1 qi12
%qQQ,’U q12 q22
0 %QH,U %(J22,u
v = det %QH,U a1 Q12 , (14)
%q22,u q12 q22

hereg;; ,, denotes the derivation qf; with respect ta;, and
in a similar manne;; .., is the second derivative w.r.
andv. Same notations follow faf;; ., ¢ij ve, ANAG;;, 4y

Corollary 2 Letq be the equi-affine metric. TheR? is an
equi-affine invariant curvature.

Proof From Brioschi’s formula we have that the curvature
can be evaluated directly from the metric and its derivative
Hence, as by Corollary the metric is equi-affine invariant,

4 Implementation considerations

Given a triangulated surface we use the Gaussian curvature
approximation proposed i3}] while operating on the equi-
affine metric tensor. The Gaussian curvature for smooth sur-
faces can be defined using the Global Gauss-Bonnet The-
orem, see44]. Polthier and Schmies used this property to
approximate the Gaussian curvature of triangulated sesfac

in [4€]. Given a vertex in a triangulated mesh that is shared
by p triangles such that the angle of each triangle at that ver-
tex is given byy;, wherei € 1,...p. The Gaussian curvature

K at that vertex can be approximated by

P
2m — 91 s
% Z‘f:l A; ( ; )

where A; is the area of thé-th triangle, and; is the cor-
responding angle of thieth triangle touching the vertex for

1
K

2

(19)

it follows that so does the equi-affine Gaussian curvaturevhich K is being approximated.

O

Corollary 3 Let K7 be the equi-affine invariant Gaussian
curvature, then the metric defined by, = |K| g;; is scale
invariant.

Proof Scaling the surfac& by «, the corresponding equi-
affine invariant components are

fij = det(aSl, Oé527 aSZ-j) = ()437“ij

Fiju = @ Tiju

Fijouw = QT4
det(7) = af det(r), (15)
that leads to

- 3

~ Tij QT E

ij T = ) T = Q2¢y, 16
W= det()i  (aSdet(r)t T (16)

3\ 2
that yieldsdet(q) (oﬁ) det(q) = a3det(q). Denote

the equi-affine Gaussian curvature of the scaled suace
aS by K1. We have that

. 3
5=(at) s,
3
vy = (a%) s
3
1o q B*:Y (a%) (5-1) -3 K (17)
= = = 2 .
detz((j) (a3)2 detQ(q) “

It immediately follows that
|K9g;; = |f<q|0¢%%’j = \a_%Kq\Oé%Qij = |K%q; (18)

which concludes the proof.O
Theorem 3 h;; is an affine invariant pseudo-metric.

Proof Putting corollariesl, 2 and3 together, we obtain the
main result of this paper; Namely;; is equi-affine invariant
as well as scale invariant and thus affine invariant.

The metric tensor translates angles, distances, and areas
from the parametric plane to the surface. Let us justify some
known relations, as we use them in our numerical construc-
tion of the affine metric.

Corollary 4 Consider atriangleABC' = {S(ug, vo), S(uo+
du,vg), S(up, vo + dv)}, infinitesimally defined on the sur-
faceS(u,v) with metric(g;,), then,

q12

\/(111(]22.

Proof Consider the above infinitesimal triangteBC. For
simplicity of notations letlu = dv = 1. The length of the
edges of the triangle would then tre= (10)(g;;)(10)" =
Q11,1 = qoo, andi? = (11)(gi;)(11)" = qu1 — 212 + g2
From the law of cosines we readily have that

cosfa = (20)

cosfy — q11 + q22 — (11 — 212 + q22) _ Qe
2\/411(]22 V411422
O

Corollary 5 The area of the above triangle can be expressed
by the metric coefficients aéapc = 5+/det(q;;).

Proof From Corollary4 we have that

2 2
. 9 q12 q11922 — 412
sin“fy4 =1— ( ) = .
v 411922 q11922

The area of the triangle is half the length of its base multi-
plied by its height,

q114922 — Q%g
q114922

Aapc = 3

1 1
V22 | Va1 = 5\/d€t(qz‘j)-



Consider the surfacg given by its three coordinate func- 5 Metric invariant diffusion geometry
tions z:(u, v), y(u,v) and z(u, v), where, for exampley :

UeR?—-R,and Diffusion Geometry introduced ir2p, 21], deals with geo-
metric analysis of metric spaces where usual distances are
x(u,v) replaced by integral difference between heat kernels. The
S(u,v) = | y(u,v) | . (21) heat equation
z(u,v) P
<8t + Ah> f(z,t) =0, (23)

In order to evaluate the equi-affine metric the surface it firs

locally approximated by a quadratic form. For each trianglélescribes the propagation of heat, whé(e, ?) is the heat
we approximate distribution at a point in timet. Initial conditions are given

as f(x,0), and Ay, is the Laplace Beltrami operator with
1 respect to the metrik. The fundamental solution o28) is
called aheat kerneland using spectral decomposition it can

S(u,v) xg“’“; . z 22) be written as
) 2 | w,x’):;ewt@(@@@q, (24)
'U2 h

where¢; and \; are the corresponding eigenfunctions and

. . eigenvalues of the Laplace-Beltrami operator satisfyin
where the matrixC5.¢ containsl8 parameters. The local g P P fying

coefficients matrixC' is evaluated from six surface points 4n¢i = Ai¢;. (25)

(vertices). Three vertices belong to the triangle for whichyg the Laplace-Beltrami operator is amtrinsic geometric

the metric is evaluated, and three to its nearest neigr@orirhuamity it can be expressed in terms of a mekriof the

triangles. surfaces.

The equi-affine metric coefficients for each triangle are  The value of the heat kerng)(z, z’) can be interpreted
then evaluated from our local quadratic approximation ofas the transition probability density of a random walk of
S(u,v) and its corresponding derivatives. Finally, the Gaussi@ngtht from pointz to pointz’. The length or time defines
curvature with respect to the equi-affine metric is approxa family of diffusion distances
imated for each vertex from the local area and angle dis-
tortions as defined by the metric, see Et)( In order to ~ d; (z,2') = /(kt(x, ) = k(') da
construct the full-affine invariant metric we need to scale

_ —2Xit (o S OWANY
the equi-affine metric by the equi-affine Gaussian curvature o ; € (#i(2) = ¢i(=))", (26)
To that end, the curvature is linearly interpolated, from it ' ] ) ] .
values at the vertices, at the center of each triangle. between any two surface pointsand.’. Special attention

was given to the diagonal of the kerrigl(z, x), that was
proposed as robust local descriptor, and referred to as the
heat kernel signature@KS), by Suret al.in [56].

Finally, following [48], we use the finite elements method
(FEM) presented ing5] to compute the spectral decompo-
sition of the affine invariant Laplace-Beltrami operaton€o
structed from the metric provided by Eq)( The decom-
position based on an affine invariant pseudo-metric pravideg Experimental results
invariant eigenvectors and corresponding invariant eiglen

ues. The first experiment presents eigenfunctions of the Laplace
The equi-affine metric is well defined only at elliptic Beltrami operator defined by various metrics and different
points p5], that is, points with positive Euclidean Gaussiandeformations. In Figur@ we present th€'th eigenfunction
curvature. At parabolic and hyperbolic points the equireffi textured mapped on the surface using a Euclidean metric,
metric trivially degenerates to zero, while at elliptic pia  scale invariant, equi-affine and the proposed affine inaaria
the local surface orientation is defined so as to provide pogpseudo-metric. At each row a different deformation of the
itive distances. In order, to numerically handle non-&llip surface is presented. Local scaling was applied to the shape
surface points we assigned a smdllto be the metric ma- at the second row, while surfaces on the third row underwent
trix. The O(e) error introduced to geodesic distances meavolume preserving stretching (equi-affine). The bottom row
sured with such a regularization is bounded®y whereD  shows a full affine transformation that was applied to the sur
is the diameter of the surface. As many interesting shapdace (including local scaling). The accumulated histogram
are dominated by elliptic points, the error is often smallenvalues of the correspondirith eigenfunction are plotted at
than the above upper bound. the top of each column. Blue is used for the original shape,



Fig. 2: The9'th LBO eigenfunction textured mapped on the surface using difterent metrics, from left to right: Euclidean, scale-irieat,
equi-affine, and affine. Deformations from top to bottom: Ndoeal scale, equi-affine, and affine. At the top, the accumdl@iestogram) values
of the eigenfunction are displayed. The blue curve depiet®tlginal shape, red the a locally scaled one, green the dine-and black the affine

transformation.



red for the locally scaled one, green for the equi-affinedran scaling of the surface. We demonstrated the proposed geom-
formed one, and black for the affine transformed version. etry by incorporating it with known shape analysis toold tha

In the second experiment, shown in Figiewe eval-  were evaluated by computing the correspondence, matching,
uate the Heat Kernel Signatures of a surface subject to amnd retrieval of synthetic surfaces. The power to deal with a
affine transformations using the Euclidean metric and theicher set of transformations when analyzing shapes has al-
affine pseudo-metric. We plot the signatures using log-logeady proven to be useful in the analysis of textured shapes
axes for three different corresponding points on the segfac as shown in32]. We hope that the proposed affine geometry

The third experiment, Figureshows diffusion distances could be found useful in the future for shape processing and
measured from the nose of a cat after anisotropic scaling arahalysis applicants.
stretching as well as an almost isomeric pose transformatio

Next, we compute the Voronoi diagrams for ten points
selected by the farthest point sampling strategy, as seen §1Acknowledgement
Figures5 and 1. Distances are measured with the global
scale invariant commute time distancég][ and diffusion We thank the editor and the reviewers for their valuable
distances receptively, using a Euclidean and the proposembmments that helped us improve the presentation and yriteu
affine metrics. Again, the affine metric is proven to be in-of the paper. This research was supported by the Office of
variant to affine transformations as expected. Naval Research (ONR) award number N0O0014-12-1-0517

In the next experiment we used the affine metric for find-and by Israel Science Foundation (ISF) grant number 1031/12
ing the correspondence between two shapes. We used the
GMDS framework 8] with diffusion distances using the
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