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Abstract Shape recognition deals with the study geomet-
ric structures. Modern surface processing methods can cope
with non-rigidity - by measuring the lack of isometry, deal
with similarity or scaling - by multiplying the Euclidean arc-
length by the Gaussian curvature, and manage equi-affine
transformations - by resorting to the special affine arc-length
definition in classical equi-affine differential geometry.Here,
we propose a computational framework that is invariant to
the full affine group of transformations (similarity and equi-
affine). Thus, by construction, it can handle non-rigid shapes.
Technically, we add the similarity invariant property to an
equi-affine invariant one and establish an affine invariant
pseudo-metric. As an example, we show how diffusion geom-
etry can encapsulate the proposed measure to provide robust
signatures and other analysis tools for affine invariant sur-
face matching and comparison.

1 Introduction

Differential invariants for planar shape matching and recog-
nition were introduced to computer vision in the 80’s [60]
and studied in the early 90’s [13,12,20,14,17,16], where
global invariants were computed in a local manner to over-
come numerical sensitivity of the differential forms. Scale
space entered the game as a stabilizing mechanism, for ex-
ample in [15], where locality was tuned by a scalar indi-
cating how far one should depart from the point of interest.
Along a different path, using a point matching oracle to re-
duce the number of derivatives, semi-differential signatures
were proposed in [57,58,38,44,18]. Non-local signatures,
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which are more sensitive to occlusions, were shown to per-
form favorably in holistic paradigms [40,11,41,33]. At an-
other end, image simplification through geometric invariant
heat processes were introduced and experimented with dur-
ing the late 90’s, [54,2,31]. At the beginning of this century,
scale space theories gave birth to the celebratedscale in-
variant feature transform(SIFT) [35] and the affine-scale
invariant feature transform ASIFT [39], that are used to suc-
cessfully locate repeatable informative (invariant) features
in images.

Matching surfaces while accounting for deformations was
performed with conformal mappings [34], embedding to fi-
nite dimensional Euclidean spaces [26] and infinite ones [5,
53], topological graphs [29,59], and exploiting the Gromov-
Hausdorff distance [36,8,19]. Which is just a subset of the
numerous methods used in this exploding field. Another ex-
ample, relevant to this paper is diffusion geometry, intro-
duced in [22] for manifold learning that was first applied
for shape analysis in [9]. This geometry can be constructed
from the eigen-strucutre of the Laplace-Beltrami operator.
The same decomposition was recently used in [56,42,43,
9] to construct surface descriptors for shape retrieval and
matching.

Some approaches in the field of shape matching, mea-
sure the discrepancy between surfaces and volumes by weigh-
ing the effort it takes to deform one geometric structure into
another. Such geometric constructions can be used to define
a Riemannian metric on the space of all possible shapes.
These methods are popular, for example, in medical infor-
mation analysis. They incorporate statistical priors [23], use
spherical harmonics [30], exploit global symmetric defor-
mations [51], and use smooth diffeomorphic mappings [4].
Statistics of curved domains can be utilized, for example,
to overcome uncertainty, to evaluate different hypothesis,
and compare between observations [27,45]. The metric pro-
posed in this paper applies to the way a single shape is treated
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Fig. 1: Voronoi diagrams of ten points selected by farthest point sampling. Diffusion distances were used based on Euclidean metric (top) and
an affine invariant one (bottom).

as a Riemannian structure rather than the space of all possi-
ble shapes as a whole.

In this paper, following the adoption of metric/differential
geometry tools to image-analysis, we introduce a new geom-
etry for affine invariant surface analysis. In [48,49], the equi-
affine invariant metric was first introduced to the surface
analysis arena. Invariant curvatures were studied in [52,3],
and a scale invariant metric was the main theme of [1,10].
Here, we introduce a framework that handles affine transfor-
mations in its most general form including similarity. The
proposed full affine invariant geometry for non-rigid sur-
faces copes with linear (affine) transformations including
scaling and isometry.

The paper is organized as follows: In Section2 we in-
troduce the affine invariant pseudo-metric. Section3 proves
the invariance of the construction. In Section4 numerical
implementation considerations are discussed. Next, Section
5 briefly reviews some ideas behind diffusion geometry that
could be used as a numerically stabilizing mechanism for the
proposed geometry. Section6 is dedicated to experimental
results, and Section7 concludes the paper.

2 Affine metric construction

We model a surface(S, g) as a compact two dimensional
Riemannian manifoldS with a metric tensorg. Let us fur-
ther assume thatS is embedded inR3 by a regular map
S : U ⊂ R

2 → R
3. The Euclidean metric tensor can be ob-

tained from the re-parameterization invariant arc-lengthds

of a parametrized curveC(s) onS. As the simplest Euclid-
ean invariant is length, we search for the parameterizations
that would satisfy|Cs| = 1, or explicitly,

1 = 〈Cs, Cs〉 = 〈Ss, Ss〉
=

〈

∂S

∂u

du

ds
+

∂S

∂v

dv

ds
,
∂S

∂u

du

ds
+

∂S

∂v

dv

ds

〉

= ds−2
(

g11du2 + 2g12dudv + g22dv2
)

, (1)

where

gij = 〈Si, Sj〉, (2)

using the short hand notationS1 = ∂S/∂u, S2 = ∂S/∂v,
whereu and v are the coordinates ofU . An infinitesimal
displacementds on the surface is thereby given by

ds2 = g11du2 + 2g12dudv + g22dv2. (3)

The metric coefficients{gij} translate the surface parame-
trization coordinatesu andv into a Euclidean invariant dis-
tance measure on the surface. This distance would not change
under Euclidean transformations of the surfaceRS+b where
R is a rotation matrix inR3. It would also be preserved w.r.t.
isometric (length preserving) transformations.

The equi-affine transformation, defined by the linear op-
eratorAS +b, wheredet(A) = 1, requires a different treat-
ment, see [6,55]. Consider the curveC ∈ S, parametrized
by w. The equi-affine transformation is volume preserving,
and thus, its invariant metric is constructed by restricting the
volume defined bySu, Sv, andCww to one. That is,

1 = det(Su, Sv, Cww)

= det (Su, Sv, Sww)

= det

(

Su, Sv, Suu

du2

dw2
+ 2Suv

du

dw

dv

dw
+

Svv

dv2

dw2
+ Su

d2u

dw2
+ Sv

d2v

dw2

)

= dw−2 det
(

Su, Sv, Suudu2 + 2Suvdudv + Svvdv2
)

= dw−2
(

r11du2 + 2r12dudv + r22dv2
)

, (4)

where now, the metric elements are given by

rij = det (S1, S2, Sij) , (5)

and we extended the short hand notation to second order
derivatives by whichS11 = ∂2S

∂u2 , S22 = ∂2S
∂v2 , andS12 =

∂2S
∂u∂v

. Note, that the second fundamental form in the Euclid-
ean case is given bybij =

√
grij whereg = det(gij) =

g11g22 − g2

12
. The equi-affine re-parametrization invariant

metric [55,6] reads

qij = |r|− 1

4 rij , (6)
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wherer = det(rij) = r11r22 − r2

12
.

This equi-affine metric applies to surfaces with positive
Euclidean Gaussian curvature, that are oriented so as to pro-
vide positive squared distances. See also [48]. At hyperbolic
points, when the Euclidean Gaussian curvature is negative,
we have one positive and one negative eigenvalue in the
metric r. In this case, we set the metric tensor to be zero.

Numerically, we assign(qij) = ǫI = ǫ

(

1 0

0 1

)

metric to

that point, whereǫ is a small constant. That is, such regions
would practically be ignored by the proposed geometry [50].
Note that asS is a compact manifold, we can define a con-
tinuous shrinkage of the metric while the error is kept at
the order ofǫ. In our implementation we chose a smallǫ

at all hyperbolic and parabolic points. It was numerically
validated and supported by the experimental results for the
non-trivial surfaces reported in this paper.

Next, we resort to the similarity (scale and isometry) in-
variant metric proposed in [1]. Scale invariance is obtained
by multiplying the metric by the Gaussian curvature. In met-
ric notations, the Gaussian curvatureK is defined as the ra-
tio between the determinants of the second and the first fun-
damental forms. We propose to compute the Gaussian curva-
ture with respect to the equi-affine invariant metric, and then
construct a new metric by multiplying the equi-affine met-
ric elements by the equi-affine Gaussian curvature. Specif-
ically, consider the surface(S, q), whereqij is the equi-
affine invariant pseudo-metric, and compute the equi-affine
Gaussian curvatureKq of (S, q) at each point. The affine
invariant pseudo-metric is then defined by

hij = |Kq| qij . (7)

Let us next prove the affine invariance of the above construc-
tion for surfaces.

3 Invariance properties

In this section we prove affine invariance of the proposed
pseudo-metric. Let us first justify the scale invariant metric
constructed by multiplication of a given Euclidean metric by
the Gaussian curvature.

Theorem 1 Let K be the Gaussian curvature of a surface
S, andgij the elements of its Riemannian metric. Then,|K|gij

is scale invariant metric.

Proof Let the surfaceS be scaled by a scalarα > 0, such
that

S̃(u, v) = αS(u, v). (8)

In what follows, we omit the surface parameterizationu, v

for brevity, and denote the a quantityy computed for the

scaled surface bỹy. The first and second fundamental forms
are scaled byα2 andα respectively,

g̃ij = 〈αSi, αSj〉 = α2 〈Si, Sj〉 = α2gij ,

b̃ij = 〈αSij , N〉 = α 〈Sij , N〉 = αbij , (9)

which yields

det(g̃) = α4 det(g)

det(b̃) = α2 det(b). (10)

Since the Gaussian curvature is the ratio between the de-
terminants of the second and first fundamental forms, we
readily have that

K̃ ≡ det(b̃)

det(g̃)
=

α2 det(b)

α4 det(g)
=

1

α2
K, (11)

from which we conclude that multiplying the Euclidean met-
ric by the magnitude of its Gaussian curvature indeed pro-
vides a scale invariant metric. That is,

|K̃|g̃ij =

∣

∣

∣

∣

1

α2
K

∣

∣

∣

∣

α2gij = |K|gij . (12)

⊓⊔

Theorem 2 Letrij = det (S1, S2, Sij), andqij = |r|− 1

4 rij ,
then,qij is an equi-affine invariant quadratic form.

For proof see [55].

Corollary 1 Let Q = (qij) = UΓU
T andΓ =

(

γ1 0

0 γ2

)

then,

Q̂ =







U

(

|γ1| 0
0 |γ2|

)

U
T if sign(γ1)sign(γ2) > 0

0 if sign(γ1)sign(γ2) ≤ 0,

is an equi-affine invariant pseudo-metric.

Proof According to [55], the tensorQ is re-parametrization
equi-affine invariant form for all elliptic points. For all ellip-
tic points withγ1, γ2 > 0, we have the local metric structure
Q̂ = Q. For all elliptic points withγ1, γ2 < 0, we use our
freedom of surface orientation to obtain positive distances.
In other words, by virtually changing the surface orienta-
tion we obtain a re-parametrization invariant metric struc-

ture with two positive eigenvalues,̂Q = U

(

|γ1| 0

0 |γ2|

)

U
T.

For all hyperbolic, and parabolic points we have a trivial in-
variantQ̂ = 0, that altogether construct the equi-affine in-
variant pseudo-metric.⊓⊔

Using Brioschi formula [28] we can evaluate the Gaussian
curvature directly from the metric and its first and second
derivatives. Specifically, given the metric tensorqij , we have

Kq ≡ β − γ

det2(q)
, (13)
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where

β =

det





− 1

2
q11,vv + q12,vu − 1

2
q22,uu

1

2
q11,u q12,u − 1

2
q11,v

q12,v − 1

2
q22,u q11 q12

1

2
q22,v q12 q22





γ = det





0 1

2
q11,v

1

2
q22,u

1

2
q11,v q11 q12

1

2
q22,u q12 q22



 , (14)

hereqij,u denotes the derivation ofqij with respect tou, and
in a similar mannerqij,uv is the second derivative w.r.t.u
andv. Same notations follow forqij,v, qij,vv, andqij,uu.

Corollary 2 Let q be the equi-affine metric. Then,Kq is an
equi-affine invariant curvature.

Proof From Brioschi’s formula we have that the curvature
can be evaluated directly from the metric and its derivatives.
Hence, as by Corollary1 the metric is equi-affine invariant,
it follows that so does the equi-affine Gaussian curvature.
⊓⊔

Corollary 3 Let Kq be the equi-affine invariant Gaussian
curvature, then the metric defined byhij = |Kq| qij is scale
invariant.

Proof Scaling the surfaceS by α, the corresponding equi-
affine invariant components are

r̃ij = det(αS1, αS2, αSij) = α3rij

r̃ij,u = α3rij,u

r̃ij,uv = α3rij,uv

det(r̃) = α6 det(r), (15)

that leads to

q̃ij =
r̃ij

(det(r̃))
1

4

=
α3rij

(α6 det(r))
1

4

= α
3

2 qij , (16)

that yieldsdet(q̃) =
(

α
3

2

)2

det(q) = α3 det(q). Denote

the equi-affine Gaussian curvature of the scaled surfaceS̃ =

αS by K̃q. We have that

β̃ =
(

α
3

2

)3

β,

γ̃ =
(

α
3

2

)3

γ,

K̃q =
β̃ − γ̃

det2(q̃)
=

(

α
3

2

)3

(β − γ)

(α3)
2
det2(q)

= α− 3

2 Kq. (17)

It immediately follows that

|K̃q|q̃ij = |K̃q|α 3

2 qij = |α− 3

2 Kq|α 3

2 qij = |Kq|qij (18)

which concludes the proof.⊓⊔

Theorem 3 hij is an affine invariant pseudo-metric.

Proof Putting corollaries1, 2 and3 together, we obtain the
main result of this paper; Namely,hij is equi-affine invariant
as well as scale invariant and thus affine invariant.⊓⊔

4 Implementation considerations

Given a triangulated surface we use the Gaussian curvature
approximation proposed in [37] while operating on the equi-
affine metric tensor. The Gaussian curvature for smooth sur-
faces can be defined using the Global Gauss-Bonnet The-
orem, see [24]. Polthier and Schmies used this property to
approximate the Gaussian curvature of triangulated surfaces
in [46]. Given a vertex in a triangulated mesh that is shared
by p triangles such that the angle of each triangle at that ver-
tex is given byθi, wherei ∈ 1, ...p. The Gaussian curvature
K at that vertex can be approximated by

K ∼= 1
1

3

∑p
i=1

Ai

(

2π −
p
∑

i=1

θi

)

, (19)

whereAi is the area of thei-th triangle, andθi is the cor-
responding angle of thei-th triangle touching the vertex for
whichK is being approximated.

The metric tensor translates angles, distances, and areas
from the parametric plane to the surface. Let us justify some
known relations, as we use them in our numerical construc-
tion of the affine metric.

Corollary 4 Consider a triangleABC = {S(u0, v0), S(u0+
du, v0), S(u0, v0 + dv)}, infinitesimally defined on the sur-
faceS(u, v) with metric(qij), then,

cos θA =
q12√
q11q22

. (20)

Proof Consider the above infinitesimal triangleABC. For
simplicity of notations letdu = dv = 1. The length of the
edges of the triangle would then bel2c = (1 0)(qij)(1 0)T =

q11, l2b = q22, andl2a = (1 1)(qij)(1 1)T = q11 −2q12 +q22.
From the law of cosines we readily have that

cos θA =
q11 + q22 − (q11 − 2q12 + q22)

2
√

q11q22

=
q12√
q11q22

.

⊓⊔

Corollary 5 The area of the above triangle can be expressed
by the metric coefficients asAABC = 1

2

√

det(qij).

Proof From Corollary4 we have that

sin2 θA = 1 −
(

q12√
q11q22

)2

=
q11q22 − q2

12

q11q22

.

The area of the triangle is half the length of its base multi-
plied by its height,

AABC =
1

2

√
q22





√
q11

√

q11q22 − q2

12

q11q22



 =
1

2

√

det(qij).

⊓⊔
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Consider the surfaceS given by its three coordinate func-
tions x(u, v), y(u, v) andz(u, v), where, for example,x :
U ∈ R

2 → R, and

S(u, v) =





x(u, v)

y(u, v)

z(u, v)



 . (21)

In order to evaluate the equi-affine metric the surface is first
locally approximated by a quadratic form. For each triangle
we approximate

S(u, v) =





x(u, v)

y(u, v)

z(u, v)



 ≈ C

















1

u
v

uv

u2

v2

















. (22)

where the matrixC3×6 contains18 parameters. The local
coefficients matrixC is evaluated from six surface points
(vertices). Three vertices belong to the triangle for which
the metric is evaluated, and three to its nearest neighboring
triangles.

The equi-affine metric coefficients for each triangle are
then evaluated from our local quadratic approximation of
S(u, v) and its corresponding derivatives. Finally, the Gaussian
curvature with respect to the equi-affine metric is approx-
imated for each vertex from the local area and angle dis-
tortions as defined by the metric, see Eq. (19). In order to
construct the full-affine invariant metric we need to scale
the equi-affine metric by the equi-affine Gaussian curvature.
To that end, the curvature is linearly interpolated, from its
values at the vertices, at the center of each triangle.

Finally, following [48], we use the finite elements method
(FEM) presented in [25] to compute the spectral decompo-
sition of the affine invariant Laplace-Beltrami operator con-
structed from the metric provided by Eq. (7). The decom-
position based on an affine invariant pseudo-metric provides
invariant eigenvectors and corresponding invariant eigenval-
ues.

The equi-affine metric is well defined only at elliptic
points [55], that is, points with positive Euclidean Gaussian
curvature. At parabolic and hyperbolic points the equi-affine
metric trivially degenerates to zero, while at elliptic points
the local surface orientation is defined so as to provide pos-
itive distances. In order, to numerically handle non-elliptic
surface points we assigned a smallǫI to be the metric ma-
trix. The O(ǫ) error introduced to geodesic distances mea-
sured with such a regularization is bounded byǫD, whereD
is the diameter of the surface. As many interesting shapes
are dominated by elliptic points, the error is often smaller
than the above upper bound.

5 Metric invariant diffusion geometry

Diffusion Geometry introduced in [22,21], deals with geo-
metric analysis of metric spaces where usual distances are
replaced by integral difference between heat kernels. The
heat equation
(

∂

∂t
+ ∆h

)

f(x, t) = 0, (23)

describes the propagation of heat, wheref(x, t) is the heat
distribution at a pointx in timet. Initial conditions are given
as f(x, 0), and∆h is the Laplace Beltrami operator with
respect to the metrich. The fundamental solution of (23) is
called aheat kernel, and using spectral decomposition it can
be written as

kt(x, x′) =
∑

i≥0

e−λitφi(x)φi(x
′), (24)

whereφi andλi are the corresponding eigenfunctions and
eigenvalues of the Laplace-Beltrami operator satisfying

∆hφi = λiφi. (25)

As the Laplace-Beltrami operator is anintrinsic geometric
quantity, it can be expressed in terms of a metrich of the
surfaceS.

The value of the heat kernelkt(x, x′) can be interpreted
as the transition probability density of a random walk of
lengtht from pointx to pointx′. The length or timet defines
a family of diffusion distances

d2

t (x, x′) =

∫

(kt(x, ·) − kt(x
′, ·))2 da

=
∑

i>0

e−2λit(φi(x) − φi(x
′))2, (26)

between any two surface pointsx andx′. Special attention
was given to the diagonal of the kernelkt(x, x), that was
proposed as robust local descriptor, and referred to as the
heat kernel signatures(HKS), by Sunet al. in [56].

6 Experimental results

The first experiment presents eigenfunctions of the Laplace
Beltrami operator defined by various metrics and different
deformations. In Figure2 we present the9’th eigenfunction
textured mapped on the surface using a Euclidean metric,
scale invariant, equi-affine and the proposed affine invariant
pseudo-metric. At each row a different deformation of the
surface is presented. Local scaling was applied to the shapes
at the second row, while surfaces on the third row underwent
volume preserving stretching (equi-affine). The bottom row
shows a full affine transformation that was applied to the sur-
face (including local scaling). The accumulated histogram
values of the corresponding9’th eigenfunction are plotted at
the top of each column. Blue is used for the original shape,
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Fig. 2: The9’th LBO eigenfunction textured mapped on the surface using fourdifferent metrics, from left to right: Euclidean, scale-invariant,
equi-affine, and affine. Deformations from top to bottom: None,local scale, equi-affine, and affine. At the top, the accumulated (histogram) values
of the eigenfunction are displayed. The blue curve depicts the original shape, red the a locally scaled one, green the equi-affine and black the affine
transformation.
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red for the locally scaled one, green for the equi-affine trans-
formed one, and black for the affine transformed version.

In the second experiment, shown in Figure3, we eval-
uate the Heat Kernel Signatures of a surface subject to an
affine transformations using the Euclidean metric and the
affine pseudo-metric. We plot the signatures using log-log
axes for three different corresponding points on the surfaces.

The third experiment, Figure4 shows diffusion distances
measured from the nose of a cat after anisotropic scaling and
stretching as well as an almost isomeric pose transformation.

Next, we compute the Voronoi diagrams for ten points
selected by the farthest point sampling strategy, as seen in
Figures5 and 1. Distances are measured with the global
scale invariant commute time distances [47], and diffusion
distances receptively, using a Euclidean and the proposed
affine metrics. Again, the affine metric is proven to be in-
variant to affine transformations as expected.

In the next experiment we used the affine metric for find-
ing the correspondence between two shapes. We used the
GMDS framework [8] with diffusion distances using the
same initialization for both experiments. Figure6 displays
the Voronoi cells of matching surface segments.

Finally, we evaluated the proposed metric on the SHREC
2010 dataset [7] using the shapeGoogle framework [42],
while introducing four new deformations; equi-affine, isom-
etry and equi-affine, affine, and a combination of isometry
and affine. Table1 shows that the new affine metric discrim-
inative power is as good as the Euclidean one, performs well
on scaling as the scale invariant metric, and similar to the
equi-affine one for handling volume preserving affine trans-
formations. Moreover, the new metric is the only one capa-
ble of dealing with the full affine deformations. Note that
shapes which were considered to be locally scaled in that
database, were in fact treated with an offset operation (mor-
phological erosion) rather than scaling. This explains part of
the performance degradation in the local scale examples.

Performance was evaluated using precision/recall char-
acteristics.PrecisionP(r) is defined as the percentage of rel-
evant shapes in the firstr top-ranked retrieved shapes.Mean
average precision(mAP) is defined as mAP=

∑

r P(r) ·
rel(r), where rel(r) the relevance of a given rank, was used
as a single measure of performance. Intuitively, mAP is in-
terpreted as the area below the precision-recall curve. Ideal
retrieval (mAP=100%) is achieved when all queries provide
the correct answer as first match. Performance results are
summarized by the transformation class and strength.

7 Conclusions

A new affine invariant pseudo-metric for surfaces was in-
troduced. Assuming the limbs of an articulated objects are
connected with non-elliptic regions, the proposed differen-
tial structure allows us to cope with per-limb stretching and

scaling of the surface. We demonstrated the proposed geom-
etry by incorporating it with known shape analysis tools that
were evaluated by computing the correspondence, matching,
and retrieval of synthetic surfaces. The power to deal with a
richer set of transformations when analyzing shapes has al-
ready proven to be useful in the analysis of textured shapes
as shown in [32]. We hope that the proposed affine geometry
could be found useful in the future for shape processing and
analysis applicants.
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