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Abstract The generation of meshes that correctly re-
produce a prescribed size function is crucial for quadri-
lateral meshing due to two reasons. First, quadrilat-
eral meshes are difficult to adapt to a given size field
by refining or coarsening the elements without com-
promising the element quality. Second, after the mesh-
ing algorithm is finished, it may be necessary to apply
a smoothing algorithm to improve the global quality.
This smoothing step may modify the element size and
the final mesh will not reproduce the prescribed ele-
ment size. To solve these issues, we propose to combine
the size-preserving method with a smoothing technique
that takes into account both the element shape and
size. The size-preserving technique allows directly gen-
erating a quadrilateral mesh that reproduces the size
function, while the proposed smoother allows obtain-
ing a high-quality mesh while maintaining the element
size. In adaptive processes, the proposed approach may
reduce the number of iterations to achieve convergence,
since at each iteration the background mesh is properly
reproduced. In addition, we detail new theoretical re-
sults that provide more insight to size-preserving size
functions. Specifically, we prove that the maximum gra-
dient of a one-dimensional size-preserving size function

E. Ruiz-Gironés · J. Sarrate
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is bounded. Finally, several applications that show the
benefits of applying the proposed techniques are pre-
sented.

Keywords Mesh size function · background mesh ·
adaptive process · quadrilateral mesh · gradient-
limiting · smoothing

1 Introduction

It is of major importance to generate meshes that cor-
rectly preserve the prescribed element size in adaptive
processes [1,2]. The element size is directly related to
the accuracy of the numerical solution and the com-
putational time to obtain it. On the one hand, small
elements are required to obtain a high-quality numer-
ical solution. On the other hand, large elements are
required to obtain the numerical solution in a reason-
able amount of time. While several techniques to assign
an isotropic size function have been developed, one of
the most used consists on assigning scalar values at the
nodes of a background mesh and then interpolate these
values over the whole domain. For instance, this tech-
nique is used in adaptive simulations, where starting
with an initial mesh, a size function is deduced from
the computed solution via an error estimate. Then, this
mesh is used as a background mesh to generate a new
spatial discretization.

In order to obtain an high-quality mesh, the size
function has to satisfy several properties. In addition,
each mesh generation algorithm has its own require-
ments on the size function. For instance, triangular and
tetrahedral algorithms [1–3] can easily follow the varia-
tion of the size function, since these kind of meshes can
be coarsened or refined where needed without generat-
ing low-quality elements. However, this is not true for
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quadrilateral meshing algorithms [4,5], where coarsen-
ing or refining the mesh is a difficult task which may
lead to low-quality elements after repeated modifica-
tions. Therefore, special attention is focused on the gen-
eration of size functions to ensure that a high-quality
mesh is directly obtained [6–8]. Current techniques limit
the gradient of the size function in order to bound the
size ratio of adjacent elements, see [9–11]. Thus, it is
easier for the mesh generation algorithm to obtain a
mesh composed by high-quality elements. However, the
final mesh may contain elements that are bigger than
the requested size. That is, the mesh does not repro-
duce the prescribed size function. For instance, if the
size function contains small areas with low values of the
prescribed size, they can be entirely missed by the fi-
nal mesh. Thus, the final mesh does not reproduce the
prescribed element size.

To solve this issue, we introduced the concept of
size-preserving size function in [12,13]. First, a quan-
titative criterion to asses when an element reproduces
a size function is defined. Then, using this criterion,
the size-preserving size function is deduced. The size
preserving-size function presents several advantages. First,
it enforces that a mesh generation algorithm obtains el-
ements that are smaller than the prescribed size func-
tion. Second, the gradient of the new size function is
bounded and, for this reason, high-quality elements can
be generated. Thus, quadrilateral meshes that repro-
duce a prescribed element size can be directly generated
without needing a refining or coarsening step.

Moreover, quadrilateral mesh generation algorithms
require that a smoothing process is applied to the final
mesh in order to untangle the inverted quadrilaterals
and to improve the element quality of the whole mesh.
However, the smoothing process usually does not take
into account the size function and, for this reason, when
applying the smoothing process, elements that do not
follow the size function may appear. In [14], a smooth-
ing process that takes into account the size function is
developed. The smoother is based on a minimization
approach that optimizes an objective function. The ob-
jective function is a combination of two functions. The
first is a distortion measure that takes into account the
shape of the element. The second is a measure that
takes into account the size of the element with respect
to the prescribed size. The result is a smoother process
that improves the quality of the whole mesh and, at the
same time, obtains elements of the correct size.

The main contribution of this work is to combine the
concept of size-preserving size functions with a smoother
that takes into account the size function. Thus, we ob-
tain a combined process to generate meshes that cor-
rectly reproduce the prescribed size function. Note that

the combined process is independent of the meshing al-
gorithm that has been used. It is important to point out
that we propose a non-intrusive technique to obtain the
final mesh. That is, we do not need to modify the core
of the meshing algorithms. In this work, we have used
an existing mesh generator, [5], and we only modified
the code that corresponds to the initialization of the
size function and the call to the smoothing process. In
addition, we present several theoretical results to show
that the maximum gradient of the size-preserving size
function is bounded.

Several applications benefit from the properties of
this combined approach. Specifically, we provide two
direct applications. First, in quadrilateral mesh gener-
ation, the final mesh directly reproduces the size func-
tion, without applying coarsening or refining algorithms.
Thus, the mesh quality is improved. Second, in adap-
tive analysis, we can reduce the number of iterations to
achieve convergence, since at each iteration the element
size prescribed at the background mesh is correctly re-
produced.

The outline of this paper is the following. In Sec-
tion 2, we summarize the concept of size-preserving
size function. In Section 3, we deduce some theoreti-
cal results of the size-preserving size function. In Sec-
tion 4, we show how to compute a size-preserving size-
function. In Section 5, we present the smoothing pro-
cedure. Finally, in Section 6, several examples are pre-
sented to illustrate the capabilities of combining the
size-preserving size function with a smoothing step that
improves the mesh quality while preserves the element
size.

2 Size-Preserving Size Function

Our goal is to generate a high-quality quadrilateral mesh
that correctly reproduces a prescribed element size func-
tion. That is, we want to ensure that the size of all the
elements of the quadrilateral mesh have the correct size.
To this end, we first introduce a quantitative criterion
to assess whether an element reproduces a size func-
tion. Then, we review the concept of size-preserving
size function, previously presented in [12,13].

Definition 1 A mesh M reproduces a prescribed size
function, h(x), if it satisfies

µ(e) ≤ βmin
x∈e

h(x), ∀e ∈M, (1)

where µ(e) is the size of element e, and β is a scaling
factor.
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By introducing the ratio

R(e) =
µ(e)

βmin
x∈e

h(x)
, (2)

a valid mesh has to satisfy

R(e) ≤ 1 ∀e ∈M. (3)

In order to generate a mesh that correctly preserves
the prescribed size function, we introduce the concept
of size-preserving size function. Given the original size
function, h(x), we will deduce an alternative size func-
tion, called size-preserving size function and denoted by
h∗(x), such that the final mesh reproduces the original
size function according to Equation (1).

The new size function, h∗(x), can be written in
terms of the original one, h(x). To obtain a mesh that
correctly reproduces the size function, we assume that
the new element size around a point x ∈ Ω has to
be h∗(x). Then, the new node is created at position
x + h∗(x)u, where u is a unit vector that denotes the
advancing direction of the meshing algorithm. For this
reason, the size of the new element, e, is µ(e) = h∗(x).
Taking into account condition (1), we deduce that the
following equation has to be satisfied:

h∗(x) = µ(e) ≤ βmin
y∈Bh∗(x)(x)

h(y),

where Br(x) is the set of points at distance at most
r from x. Note that we have to take the minimum of
the original size function over the whole ball, since we
do not know a priori the advancing direction of the
mesher. If we want h∗(x) as big as possible to generate
the minimum amount of elements, we have that

h∗(x) = βmin
y∈Bh∗(x)(x)

h(y).

To add more flexibility to our method, we include a
positive parameter α that determines the radius of the
ball where the minimum of the original size function is
extracted:

h∗(x) = βmin
y∈Bαh∗(x)(x)

h(y). (4)

Note that Equation (4) is an implicit and non-linear
definition of the size-preserving size function. We de-
tail an algorithm to compute it in Section 4. Parameter
α plays an important role in Equation (4). In fact, it
controls:

(i) The measure of local minima in the element size
function. This ensures that small element sizes
prescribed at local minima can be correctly re-
produced. That is, an element can be held at each
local minima.

Fig. 1 Simple size function (thick black line) and several size-
preserving size functions with different α parameters (gray
lines).

(ii) The maximum gradient allowed. This ensures that
a high-quality mesh can be generated. In Section
3, we prove that the maximum gradient of a one-
dimensional size-preserving size function is bounded
by 1/α.

Although in Equation (4) parameters α and β are ar-
bitrary, it is recommended to select β ≤ 1 and α ≥ 1
in order to obtain a mesh that satisfies Condition (1).
Specifically, we use β = 1 through the rest of the paper
if it is not explicitly stated.

Figure 1 shows a simple one-dimensional size func-
tion with several size-preserving size functions with dif-
ferent values of the α parameter. They have been com-
puted using the algorithm detailed in Section 4. As α
increases, the maximum gradient of the size-preserving
size function decreases, and the area around the mini-
mum size is increased to accommodate more elements
of the desired size.

Remark 1 By definition of size-preserving size function,
an ideal mesh generator should generate a mesh that
preserves the initial size field and reproduces all of its
features. However, in practice mesh generators are not
able to fully preserve a given size function and there-
fore, we can expect meshes that lead to maxR(e) >
1.0. For instance, an advancing front mesh generator
can close two converging fronts creating an element be-
tween them with a larger size than the prescribed size.
To facilitate the application of our method in a prac-
tical setting, the parameters α and β can be tuned.
As α increases, the size-preserving size function takes
smaller values and conversely, as α decreases, the size-
preserving size function takes larger values. In addi-
tion, as β increases, the size-preserving size function
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increases, and as β decreases, the size-preserving size
function decreases. Thus, if larger elements are desired,
one can use smaller values of α and higher values of
β. On the contrary, if smaller elements are desired, the
user can assign larger values of α and smaller values of
β.

Remark 2 In several applications it is required to pre-
serve different size functions. For instance, it can be
required to preserve a size field defined by the geomet-
ric features of the domain, and a size function defined
by an error estimation. Specifically, given the size fields
hi(x), i = 1, . . . , n, we can obtain a new size function
as:

h(x) = min
i=1,...,n

hi(x).

The resulting size function ensures that all the initial
size functions are preserved. For this reason, in this
work we only consider the modification of one size func-
tion. In the case where several size functions have to be
addressed, we can consider the minimum of all them.

3 Theoretical analysis

In this section, we prove that the maximum gradient
for a one-dimensional size-preserving size function is
limited to 1/α. To this end, we first present a definition
and several lemmas to introduce preliminary results.

Definition 2 Let h(x) be a one-dimensional size func-
tion in the interval [a, b]. Given x ∈ [a, b], we define x∗

as

x∗ = arg min
y∈Bαh∗(x)(x)

βh(y). (5)

Using Definition 2, it is straightforward to show that
h∗(x) = βh(x∗). In addition, since x∗ is the argument
of the minimum of the original size function, we have
that

x∗ ∈ Bαh∗(x)(x) = [x− αh∗(x), x+ αh∗(x)].

Lemma 1 Let h(x) be a one-dimensional size function
in the interval [a, b]. Assume that x∗ ∈ (x−αh∗(x), x+
αh∗(x)). If h∗(x) is differentiable at x, then,

(h∗(x))′ = 0.

Proof We prove this lemma by contradiction. That is,
assume that (h∗(x))′ 6= 0. Thus, we consider two cases
depending on the sign of the derivative.

(i) (h∗(x))′ > 0.
If the derivative is positive, then exists ε > 0 such
that h∗(x) < h∗(x + ε). In addition, since x∗ ∈
(x− αh∗(x), x+ αh∗(x)), if ε is small enough,

x∗ ∈ Bαh∗(x+ε)(x+ ε).

Thus, h∗(x+ε) < h∗(x), which is a contradiction.
(ii) (h∗(x))′ < 0.

In this case, there exists ε > 0 such that h∗(x) <
h∗(x− ε). Since x∗ ∈ (x− αh∗(x), x+ αh∗(x)), if
ε is small enough,

x∗ ∈ Bαh∗(x−ε)(x− ε).

Thus, h∗(x−ε) < h∗(x), which is a contradiction.

ut

Lemma 2 Let h(x) be a one-dimensional size function
in the interval [a, b], and x ∈ [a, b] such that x∗ = x −
αh∗(x). If h is differentiable at x∗, then h′(x∗) ≥ 0.

Proof We proof this lemma by contradiction. Assume
that h′(x − αh∗(x)) < 0. Then h(x − αh∗(x) + ε) <
h(x − αh∗(x)), for some value ε > 0. However, x −
αh∗(x)+ε is located inside the interval [x−αh∗(x), x+
αh∗(x)]. Thus, the hypotheses are invalidated, since
h(x− αh∗(x) + ε) < h∗(x). ut

Lemma 3 Let h(x) be a one-dimensional size function
in the interval [a, b], and x ∈ [a, b] such that x∗ = x +
αh∗(x). If h is differentiable at x∗, then h′(x∗) ≤ 0.

Proof The proof of this Lemma follows the same rea-
soning than the proof of Lemma 2. ut

Lemmas 2 and 3 establish the sign of the derivative
of the original size function at the end points of the test
interval.

Lemma 4 Let h(x) be a one-dimensional size function
in the interval [a, b]. Assume that there exists x ∈ [a, b]
such that (h∗(x))′ > 0. If h∗ is differentiable at x, then,
∃ε > 0 such that ∀y ∈ Bε(x), h∗(y) = βh(y− αh∗(y)).

Proof We also proof this lemma by contradiction. That
is, assume that ∀ε > 0, ∃y ∈ Bε(x) such that h∗(y) 6=
βh(y − αh∗(y)). Then, we can define a succession of
values in the following manner. Let ε = 1/n, for n ≥ 1.
Thus, there exists yn ∈ B1/n(x) such that h∗(yn) 6=
βh(y − αh∗(y)). Since y∗n 6= yn − αh∗(yn), we deduce
that y∗n belongs to the interior of the interval [yn −
αh∗(yn), yn + αh∗(yn)]. Thus, according to Lemma 1,
we obtain

(h∗(yn))′ = 0 ∀n ≥ 1.
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Taking limits,

lim
n→∞

yn = x.

Then, assuming that (h∗(x))′ is continuous at x,

(h∗(x))′ = lim
n→∞

(h∗(yn))′ = 0,

which is a contradiction. ut

Lemma 5 Let h(x) be a one-dimensional size function
in the interval [a, b]. Assume that there exists x ∈ [a, b]
such that h′(x∗) < 0. If h∗ is differentiable at x, then,
∃ε > 0 such that ∀y ∈ Bε(x), h∗(y) = βh(y+ αh∗(y)).

Proof The proof of Lemma 5 is performed in a similar
manner as Lemma 4. ut

Lemmas 4 and 5 state that the size-preserving size
function, h∗(x), can be locally expressed as an implicit
function using the original size function h(x), as long
as (h∗(x))′ 6= 0.

Theorem 1 Let h(x) be a one-dimensional size func-
tion in the interval [a, b]. Assuming that h∗(x) is differ-
entiable, then, |(h∗(x))′| ≤ 1/α, where α is the param-
eter introduced in (4).

Proof To prove this proposition, we consider three cases
depending on to the position of x∗.

(i) Let x∗ ∈ (x− αh∗(x), x+ αh∗(x)).
According to Lemma 1, (h∗(x))′ = 0, and the
proposition holds.

(ii) Let x∗ = x− αh∗(x). According to Lemma 2,

(h∗(x))′ ≥ 0.

If (h∗(x))′ = 0, then |(h∗(x))′| ≤ 1/α. Otherwise,
using Lemma 4, h∗(x) can be locally expressed
as h∗(x) = βh(x − αh∗(x)). Taking derivatives
in both sides of the equality and rearranging the
terms, we obtain:

(h∗(x))′ =
βh′(x∗)

1 + αβh′(x∗)
.

According to Lemma 2, h′(x∗) ≥ 0. In addition,
the function f(t) = t

1+αt is increasing for t ≥ 0.
Thus,

(h∗(x))′ ≤ lim
t→∞

f(t) =
1
α
,

and the proposition holds.
(iii) Let x∗ = x+ αh∗(x), and the proposition holds.

This case is proved in a similar manner as case
(ii), but using Lemmas 3 and 5. ut

Note that Theorem 1 provides an upper bound of
the maximum gradient for a one-dimensional size-preser-
ving size function that is independent of the chosen
value of β. The maximum gradient only depends on the
value of parameter α and, for this reason, high-quality
meshes can be generated for any value of β. However,
as we have already pointed out, in order to obtain a
high-quality mesh that correctly preserves the original
size function, it is recommended to use β ≤ 1.

4 Size-Preserving Size Function Generation

In this section, we present an algorithm to compute
a size-preserving size function, h∗(x), from an original
size function, h(x). Although the algorithm is already
presented in [12,13], we include it for the sake of com-
pleteness. The process of computing the value of the
size-preserving size function is performed for each node
of the background mesh. That is, at each node of the
background mesh we compute h∗(x) such that Equa-
tion (4) is satisfied.

Given a node, n0, of the background mesh, located
at x0 ∈ Ω, the main idea of the algorithm is to shrink
a ball centered at x0 and, at the same time, compute
the minimum value of h(y) in the ball. The ball radius,
r, is decreased until the following equation is satisfied:

r = αmin
y∈Br(x0)

βh(y). (6)

Thus, by construction, the size-preserving size function
is less or equal to the original one. To compute the
nodes that belong to the ball, we store the nodes using
a min-heap. A min-heap is a complete binary tree where
each children node is greater than or equal to the par-
ent node. In this case, the nodes in the min-heap are
sorted according to the distance to the center of the
ball. Since we compute the value of the size-preserving
size function node by node, we only need to create and
maintain one min-heap at a time. Thus, the memory
foot-print is small. Algorithm 1 details the calculation
of h∗(x) for a given node n0. In this algorithm, the dis-
tance between an arbitrary node n of the background
mesh and node n0 is computed as the distance along
the edges. The distance to node n0 is initialized to in-
finity (for instance, the maximum value for an object
of type double).

First, some variables are initialized, Lines 2–6. The
initial node, n0, located at distance 0 from the center
of the ball, is inserted in the min-heap container. The
radius of the ball is initialized as r = αβh(x0). The
main loop of the algorithm begins at this point. Each
node, n, of the min-heap is removed from the container
and then it is processed. We denote by d the distance
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Algorithm 1 Computation of h∗(x)
Ensure: h∗(x)
1: function sizePreserving(BackgroundMesh M, Node
n0, Real α)

2: NodeMinHeap N
3: setDistance(n0,0)
4: insert(n0,N )
5: Real v0 ← βh(x0)
6: Real r ← α · v0
7: while getSize(N ) > 0 do
8: Node n← firstNode(N )
9: removeNode(n,N )

10: Real d← getDistance(n)
11: Real v ← βh(xn)
12: Real r′ ← α · v
13: if r′ < r then
14: if d ≤ r′ then
15: r ← r′

16: updateAdjacentNodesDistance(n,r,N )
17: else if d ≤ r then

18: r ← r
r − d
r − r′

+ r′
d− r′

r − r′
19: end if
20: else if r′ ≥ r and d ≤ r then
21: updateAdjacentNodesDistance(n,r,N )
22: end if
23: end while
24: h∗(x0)← r/α
25: end function

Algorithm 2 Update the distance of adjacent nodes
1: function updateAdjacentNodesDistance(Node n, Real
r, NodeMinHeap N )

2: Real d← getDistance(n)
3: for all Edge e adjacent to n do
4: Real le ← length(e)
5: Node ne ← oppositeNode(e,n)
6: Real de ← getDistance(ne)
7: Real d′e ← d+ le
8: if (d′e < de) and (d′e < r) then
9: setDistance(ne,d′e)

10: updateHeap(ne,N ) . Since the distance of the
node has changed

11: end if
12: end for
13: end function

between this node and node n0. Note that in our im-
plementation, the distance between two nodes, d, is not
computed as the Euclidean distance but rather as the
length of the shortest path of edges between them. In
this way, we can deal with non-convex domains. That
is, we can deal with nodes that are close in the Eu-
clidean sense, but separated when the shortest path of
edges that connects them is long. In addition, we de-
note by xn the location of node n and we define an
auxiliary variable r′ = αβh(xn) that stores the radius
of a ball centered at x0 and computed according to the
prescribed size at node n. Then, the algorithm updates
the value of the ball radius, r, (and thus the value of

the size-preserving size function at x0) according to the
values of r, r′ and d. Five cases are considered:

(i) r′ < r and d ≤ r′, Lines 14–16.
In this case, the radius defined by the current
node, r′, is less than the previous value, r. In ad-
dition, this node belongs to Br′(x0), since d ≤ r′.
For this reason, the value of r is updated to r =
r′. Then, we update the distance of the adjacent
nodes to node n according to Algorithm 2.

(ii) r′ < r and r′ < d ≤ r, Lines 17–18.
In this case, the radius defined by the current
node, r′, is also less than the previous value, r.
However, the node does not belong to Br′(x0) al-
though it belongs to Br(x0). We update the value
of the radius, r, according to Line 18. Since the
node is outside of Br′(x0), we do not need to up-
date the distance of the adjacent nodes.

(iii) r′ < r and r < d.
In this case, no actions have to be taken because
the node is outside of the ball Br(x0).

(iv) r′ ≥ r and d ≤ r, Lines 20–21.
The radius, r, is not updated, because r′ ≥ r.
However, the node belongs to Br(x0), since d ≤ r.
For this reason, the distance of the adjacent nodes
has to be updated.

(v) r′ ≥ r and r < d.
In this case, no actions have to be taken, because
the node is outside of the ball Br(x0).

When the min-heap is empty, the process is finished
and the value the size-preserving size function is com-
puted as h∗(x) = r/α.

Given a node, n, Algorithm 2 updates the approx-
imation to the distance from its adjacent nodes to the
center of the ball Br(x0). Since this information is trans-
mitted from the nodes with smaller values to the nodes
with larger values, the node that holds the smallest
value contains the correct value of the distance. Re-
call that this node, n, is the first node of the min-heap.
The new approximation to the distance, d′e, of a node,
ne, adjacent to n through edge e is computed as:

d′e = min{de, d+ le},

where d and de are the current computed approxima-
tion to the distance of node n and ne, respectively, and
le is the length of edge e. If the new approximation to
the distance, d′e is less than r, the current radius of the
ball, node ne is inserted in the min-heap with distance
d′e.
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5 Smoothing Process

In order to improve the mesh quality, after generat-
ing the mesh, we have to apply a smoothing technique.
However, the smoothing technique has to be aware of
the prescribed size function to obtain a high-quality
mesh that correctly reproduces the element size. To
this end, we have applied the smoothing technique pre-
sented in [14]. The main idea of the smoothing process
is to define a quality for each element that depends on
the position of its nodes. Then, a minimization pro-
cess is performed in which the optimal position of the
nodes are computed. In [14], the authors propose an ele-
ment quality that is a combination of the shape quality
[15] and the target size for each element. The result
is a quality function that improves the element quality
and, at the same time, the prescribed element size is
preserved.

Let S be the matrix that transforms the ideal ele-
ment, eI , to the physical element, eP . Then, the element
quality function is:

η(eP ) = ηsh(eP )ηsi(eP ), (7)

where ηsh(eP ) corresponds to the shape quality,

ηsh(eP ) =
||S||2

2|σ|
, (8)

and ηsi(eP ) corresponds to the size quality,

ηsi(eP ) =
1

µ(σ)
, (9)

In Equations (8) and (9), ||S|| and σ are the Frobenius
norm and the determinant of matrix S, and

µ(σ) =
e

2

(
σe−σ + σ−1e−σ

−1
)
,

being e the Euler’s number. The ηsh function presents
asymptotes when σ = 0. For this reason, and according
to references [16,14], we regularize this shape distortion
measure in the following way:

η∗sh(eP ) =
||S||2

2|z(σ)|
,

where

z(σ) =
1
2

(σ +
√
σ2 + 4δ2)

being δ is a small parameter.
Using the element quality function (7), a continu-

ous minimization problem is stated, and the optimum
position of the nodes is computed. For more details on
minimizing function (7), see reference [14].

(a)

(b)

(c)

Fig. 2 Quadrilateral meshes generated using size function in
Equation (10). Final mesh obtained: (a) without any smooth-
ing applied; (b) with a smoothing step that only considers the
shape distortion measure; and (c) with a smoothing step that
considers the shape distortion measure and the size function.
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Table 1 Statistics for the quadrilateral meshes generated us-
ing size function (10).

smoothing no shape size+shape
method smoothing smoother smoother

max R(e) 1.02 1.10 1.06
min quality 0.0 0.388 0.353
max quality 0.999 0.999 0.999
mean quality 0.801 0.897 0.895

quality deviation 0.247 0.121 0.124

Finally, we present a simple two-dimensional size
function to illustrate the behavior of the presented smoo-
ther. To this end, we consider the square domain [−1, 1]×
[−1, 1], and we define the size function

h(x, y) = min{1
3
, 0.005 + |16x− 9|}. (10)

We generate three quadrilateral meshes using a back-
ground mesh to prescribe the size function in Equation
(10). In the first one, we do not smooth the quadrilat-
eral mesh, see Figure 2(a). In this case, we obtain a
mesh that correctly reproduces the size function. How-
ever, it contains low-quality and inverted elements. Note
that quadrilateral elements with triangular shape ap-
pear in Figure 2(a). To improve the quality of the ele-
ments, in the second case we smooth the mesh by taking
into account only the shape of the elements, see Fig-
ure 2(b). Now, the mesh is composed by high-quality
elements, but it does not reproduce the size function.
In the last case, we smooth the mesh with the pro-
posed smoother that takes into account both the ele-
ment quality and the size function, see Figure 2(c). In
this case, we obtain a high-quality mesh that reproduces
the original size function.

Table 1 presents the statistical information corre-
sponding to the meshes generated using the size func-
tion (10). When no smoothing is applied, the minimum
ratio R(e) is obtained, 1.02. However, inverted elements
are present in the mesh. Thus, the minimum quality is
zero. When the smoother that only takes into account
the element shape is applied, the mesh does not con-
tain inverted elements and the minimum element qual-
ity is 0.388. However, the ratio R(e) is 1.10, the max-
imum value of the three meshes. Only when applying
the smoother that takes into account both the shape
and the size of the element, a high-quality mesh that
correctly reproduces the size function is obtained. The
ratio R(e) is 1.06, and the minimum quality is 0.353.

6 Examples

This section presents three examples in order to illus-
trate the behavior of the size-preserving size function

Algorithm 3 Adaptive process
Ensure: Mesh M
1: function AdaptiveProcess

2: SizeFunction h← getAnalyticalSizeFunction

3: Mesh M← createUniformMesh

4: BackgroundMesh bm← getElementSize(M,h)
5: processBackgroundMesh(bm) . grad-lim, size-pres.
6: Boolean converged← checkConvergence(M,bm)
7: while not converged do
8: M← createNewMesh(M,bm)
9: BackgroundMesh bm← getElementSize(M,h)

10: processBackgroundMesh(bm) . grad-lim,
size-pres.

11: Boolean converged← checkConvergence(M,bm)
12: end while
13: end function

and compare it with the gradient-limiting method. The
size-preserving size function has been successfully im-
plemented in the ez4u meshing environment [17–19].
The first example presents the advantages of using the
size-preserving size function to represent a two-dimen-
sional size field. The second example shows how a size-
preserving size function is able to reduce the number
of iterations to converge an adaptive process. The third
example shows the mesh generated for a complex 2D
size function defined using an MRI image. All the meshes
have been generated using the quadrilateral algorithm
presented in [5]. The smoothing process detailed in Sec-
tion 5 has been applied in order to improve the quality
of the mesh while preserving the prescribed size of the
elements. In all the examples we have used the shape
quality to measure the quality of the mesh, see Equa-
tion (8). Finally, we have used comparable parameters
for the gradient-limiting and size-preserving approaches
in order to better compare the resulting meshes. That
is, we use ε = 1/α, where ε is the maximum gradient
allowed in the gradient-limiting technique.

6.1 Representing a two-dimensional size field using an
adaptive process

The objective of this example is to show that the pro-
posed size preserving approach reduces the number of
iterations required to converge an adaptive process. The
goal of the adaptive process is to represent an initially
prescribed size field. To this end, we present two differ-
ent executions of the process presented in Algorithm 3.
We define, for all the executions of the adaptive process,
the same analytical element size function:

h = min
{

0.25, |d− 0.2575|+ 0.25 · 10−3
}
, (11)

where d =
√

(x− 0.5)2 + (y − 0.5)2, and the spatial
domain is defined as the [0, 1]× [0, 1] square.
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(a) (b)

(c) (d)

Fig. 3 Adaptive process, not converged after 50 iterations, using the gradient-limiting technique: (a) mesh at the last iteration;
(b) detail of the mesh; (c) evolution of the ratio R(e) versus the current background mesh, and (d) evolution of the ratio R(e)
versus the analytical function.

First, we create a uniform mesh composed of 80 ele-
ments per side. From the analytical size function, Equa-
tion (11), we compute the desired element size at the
nodes of this mesh, and we set it as the background
mesh of the first iteration of the adaptive process and
we generate a new mesh. At each iteration, the new
background mesh is constructed from the mesh of the
previous iteration. From this background mesh we gen-
erate the new mesh. This process is iterated until the
mesh reproduces the analytical size function with a rel-
ative error below 0.1. That is, we accept all the elements
whose size is, at most, 10% above the prescribed size of
the analytical size function.

To check that the mesh generated at each iteration
satisfies the prescribed element size we compare the size
of the elements against the values stored at the vertices
of the current background mesh and against the ana-
lytical size function, Equation (11).

In the first execution, we process the size field using
a gradient-limiting technique with parameter ε = 0.5.
That is, the maximum gradient in the processed size
function is 0.5. The process is not able to converge us-
ing 50 iterations. Figure 3(a) presents the generated
mesh at the last iteration, while Figure 3(b) shows a
detailed view. Figure 3(c) and 3(d) show the evolution
of the ratio R(e) computed versus the background mesh
of the current iteration and the analytic function, re-
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(a) (b)

(c) (d)

Fig. 4 Adaptive process, converged in 4 iterations, using the size-preserving technique: (a) mesh at the last iteration; (b)
detail of the mesh; (c) evolution of the ratio R(e) versus the current background mesh, and (d) evolution of the ratio R(e)
versus the analytical function.

spectively. Note that the ratio R(e) computed versus
the background mesh is always above 1.28 and, for this
reason, the size function prescribed by the background
mesh is not correctly captured. Thus, the adaptive pro-
cess is not able to generate a mesh that correctly pre-
serves the analytic size function.

In the second execution, we process the background
mesh using the proposed size-preserving technique, α =
2. In this case, the whole process has been converged
using only four iterations. Figure 4(a) and Figure 4(b)
show the mesh after the last iteration and a detailed
view, respectively. Note that at each iteration, the back-
ground mesh is correctly captured, see Figure 4(c) and,
for this reason, the process is able to generate a mesh

Table 2 Statistics for the meshes of the adaptive process
after the last iteration.

method gradient-limiting size-preserving
total elements 64845 111092

correct elements 51506 110847
correct elements (%) 79.42% 99.77%

max R(e) 1.268 1.046
min quality 0.333 0.356
max quality 0.999 0.999
mean quality 0.843 0.895

quality deviation 0.121 0.107

that correctly preserves the analytical size function, see
Figure 4(d).

Table 2 presents the statistics for the meshes of the
adaptive process at the last iteration. The mesh gener-
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ated using the size-preserving technique contains more
elements than the mesh generated using the gradient-
limiting method, since the size-preserving size function
is smaller or equal than the gradient-limiting function.
The percentage of correct elements using the gradient-
limiting function is around 80%, while the percentage of
correct elements using the proposed size-preserving ap-
proach is more than 99%. Note that the element quality
of both meshes are similar, although the mesh obtained
using the size-preserving approach presents better re-
sults. The minimum quality is higher using the size-
preserving method and the maximum quality is equal
in both cases. The mean quality is higher and the de-
viation is smaller when the size-preserving method is
used. That is, the smoothing process is able to main-
tain both the element quality and the element size only
when the size-preserving method is used. In the case
of the gradient-limiting method, the smoother process
obtains a high-quality mesh, but the mesh does not re-
produce the size function.

6.2 Accelerating a two-dimensional adaptive process

In this example we show that the size-preserving tech-
nique is able to reduce the number of iterations needed
to converge an adaptive process. To this end, we pro-
pose to solve the problem:
∆u = −2a2 tanh(ax)

(
1− (tanh(ax))2

)
,

(x, y) ∈ [−1, 1]× [−1, 1],
u = tanh(ax), x = ±1,
un = 0, y = ±1,

(12)

where a is a real parameter. The analytical solution of
problem (12) is

u = tanh(ax).

As |a| increases, the analytical solution present higher
gradients at x = 0. In this example, we use a = 100,
see Figure 5.

Since the analytical solution is known a priori, we
apply the adaptive process defined in Algorithm 4. We
first create an initial mesh composed of 20 elements
per side. Using this mesh, we solve the problem (12)
to obtain a numerical solution. Then, we check if the
error of the numerical solution in the L∞ norm is less
than a threshold prescribed by the user. If it is not the
case, we create a background mesh defined using a size
function deduced from the error field. Then, a new mesh
is generated using a background mesh defined with the

Fig. 5 Analytical solution of problem (12) for a = 100.

Algorithm 4 Adaptive process
Ensure: Mesh M
1: function AdaptiveProcess

2: Mesh M← createUniformMesh

3: Field uM ← computeSolution(M)
4: Boolean converged← checkConvergence(uM)
5: while not converged do
6: BackgroundMesh bm← getElementSize(M,uM)
7: processBackgroundMesh(bm) . grad-lim,

size-pres.
8: M← createNewMesh(M,bm)
9: Field uM ← computeSolution(M)

10: Boolean converged← checkConvergence(uM)
11: end while
12: end function

size function. The process is iterated until convergence
is achieved.

In the first execution, we use the gradient-limiting
technique with ε = 0.5 to process the background mesh.
The adaptive process is not able to converge after 76
iterations, since at each iteration, the background mesh
is not correctly preserved. Figure 6(a) shows the mesh
and the error field in the last iteration, and Figure 6(b)
shows a zoom at the sharp feature. Finally, Figure 6(c)
show the evolution of the error. Note that the error
is oscillating and the adaptive process is not able to
converge.

In the second execution, we process the background
mesh using the proposed size preserving technique with
α = 2. In this case, the adaptive process is converged
taking only 6 iterations. Figure 7(a) shows the mesh
and the error field after the last iteration, and Figure
7(b) presents a detailed view. The evolution of the error
during the adaptive process is shown in Figure 7(c).
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(a)

(b)

(c)

Fig. 6 Adaptive process, not converged in 76 iterations, us-
ing the gradient-limiting technique: (a) mesh and error field
after the last iteration; (b) detailed view of the sharp feature;
and (c) evolution of the error.

(a)

(b)

(c)

Fig. 7 Adaptive process, converged after 6 iterations, using
the size-preserving technique: (a) mesh and error field after
the last iteration; (b) detailed view of the sharp feature; and
(c) evolution of the error.
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(a)

(b)

Fig. 8 (a) MRI field defined on a square and (b) its associ-
ated size function.

6.3 Preserving a complex size function in quadrilateral
mesh generation

In this example, we present four quadrilateral meshes
generated using a size field derived from a MRI image,
courtesy of the Cardiac Atlas website and the Auckland
MRI research group [20], see Figure 8(a). The size field
is defined in terms of the mean curvature of the MRI
field. Thus, it determines a higher density of elements
where the variation of the gradient of the MRI field is
higher, see Figure 8(b). In each mesh, we have com-
puted the interpolation error of the initial MRI field
on the corresponding mesh, and the ratio R(e) for the
elements.

The first two meshes are obtained with the gradient-
limiting technique, ε = 0.5. The first mesh is obtained
using a smoothing technique in which only the shape
quality is considered. Figures 9(a) and 9(b) show the
interpolation error and the ratio R(e) of the obtained
mesh, respectively. Note that in this case, there are el-
ements that are double the prescribed size. The second
mesh is generated by applying the smoother technique
in which the element shape and size is taken into ac-
count. Figures 9(c) and 9(d) show the interpolation er-
ror and the ratio R(e) of the obtained mesh, respec-
tively. Although the interpolation error and the ratio
R(e) is lower in this case, there are elements that are
more than 90 % bigger than the requested size.

The last two meshes are generated using the size-
preserving method. The third one is generated by ap-
plying the smoother that only takes into account the
shape quality of the elements. Figures 10(a) and 10(b)
show the interpolation error and the ratio R(e), respec-
tively. Note that the obtained mesh presents lower inter-
polation error than the previous meshes, and the ratio
R(e) is also lower. Using the size-preserving approach,
even if the smoother does not take into account the
size function, better results are obtained. To generate
the fourth mesh, we have applied the size-preserving
technique combined with the smoother that takes into
account the element shape and size. The interpolation
error and the ratio R(e) are shown in Figures 10(c) and
10(d). Note that in this case, the lowest interpolation
error is obtained as well as the lowest ratio R(e).

Table 3 summarizes the statistics for the meshes
generated with the different size functions and smooth-
ing techniques. The gradient-limiting technique is not
able to reproduce the initial size function even when
it is combined with a smoother that takes into account
the size of the element, obtaining a maximum ratio R(e)
of 1.92 and only 81% of correct elements. In addition,
when the smoothing process only takes into account the
shape of the element, the percentage of elements with
ratio R(e) lower than one decreases to 79%, approxi-
mately. The meshes obtained with the size-preserving
method better represent the prescribed size function,
independently of the smoothing method. When the smoo-
thing method that takes into account the element shape
and size is used, the maximum ratio is 1.06, and are
more than 99% of elements are correct. When using
the smoothing approach that only takes into account
the element shape, the maximum ratio is 1.11 and more
than 98% percent of elements are correct. As expected,
when the smoother takes into account the element size,
the maximum ratio R(e) decreases and the percentage
of correct elements increases.
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(a) (b)

(c) (d)

Fig. 9 Mesh generated using the gradient-limiting technique: (a) and (b) interpolation error and ratio R(e) when the shape
quality is considered; and (c) and (d) interpolation error and ratio R(e) when the combined shape and size quality is considered.

Table 3 Statistics of the meshes generated for the MRI field.

gradient-limiting size-preserving
smoothing shape size+shape shape size+shape

method quality quality quality quality
total elements 69551 69551 161294 161294

correct elements 55279 56565 158573 160670
correct elements (%) 79.47% 81.32% 98.31% 99.61%

max R(e) 2.08 1.92 1.11 1.06
min quality 0.26 0.05 0.39 0.35
max quality 0.99 0.99 0.99 0.99
mean quality 0.80 0.80 0.93 0.88

quality deviation 0.12 0.15 0.09 0.10

The quality of the meshes generated using the size-
preserving approach is better than the meshes gener-
ated using the gradient-limiting method. In addition,
when the smoother only takes into account the ele-
ment shape, better qualities are obtained than when

the smoother takes into account both the shape and
the size of the elements. Nevertheless, the best results
are obtained when the mesh is generated by combining
the size-preserving method and the proposed smooth-
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(a) (b)

(c) (d)

Fig. 10 Mesh generated using the gradient-limiting technique: (a) and (b) interpolation error and ratio R(e) when the shape
quality is considered; and (c) and (d) interpolation error and ratio R(e) when the combined shape and size quality is considered.

ing procedure that takes into account the element shape
and size.

7 Conclusions

In this paper, we have combined the size-preserving
technique with a smoother that takes into account both
the element quality and the prescribed size function.
The size-preserving size function ensures that the mesh
generation algorithm obtains a mesh that correctly re-
produces the initial size function. However, the mesh
may have to be smoothed in order to remove tangled
elements and to improve the quality of the whole mesh.
Thus, we apply the smoother algorithm that takes into
account both the element quality and the size function
to obtain a high-quality mesh that reproduces the pre-

scribed size function. The total number of elements of
the meshes generated using the combined approach is
larger than the number of elements obtained using the
gradient-limiting technique. However, it is important to
point that using the combined approach, the ratio R(e)
is approximately equal to one around the local min-
ima of the size function. Therefore, the increase in the
number of elements remains acceptable.

Two applications have been proposed. The first one
is the generation of quadrilateral meshes. When us-
ing classical gradient-limiting techniques, the generated
mesh does not fully reproduce the initial size function.
For this reason, refining algorithms have to be applied,
which can potentially reduce the quality of the mesh.
Using the proposed technique, the generated mesh al-
ready preserves the initial size function and, for this rea-
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son, high-quality elements are directly generated. The
second application is that the proposed approach can
potentially reduce the number of iterations to converge
an adaptive process, since at each iteration, the pre-
scribed size function is correctly captured.

In addition, we have shown that the maximum gra-
dient of a one-dimensional size-preserving size function
is bounded by 1/α. Note that this bound is indepen-
dent of the chosen value of β and, for this reason, high-
quality meshes can be obtained for any value of the β
parameter. However, as we have already pointed out, in
order to reproduce the original size function, it is rec-
ommended to set β ≤ 1 and α ≥ 1. Although this result
has been proved for the one-dimensional case, further
analysis is needed to generalize it for higher dimensions.

The current size-preserving algorithm can be im-
proved in several aspects. For instance, we are using an
edge-based solver to compute the size-preserving func-
tion. However, we can use a Hamilton-Jacobi solver in
order to obtain more accurate solutions. In addition, we
can improve the speed of computing the size-preserving
size function. Since the value of each node is computed
independently, we can parallelize the code. Note that
the size-preserving size-function has been derived for
any dimension. In the near future, we would consider
to analyze its application to unstructured hexahedral
meshing. Finally, we would like to generalize this work
to deal with anisotropic size fields.
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