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Abstract

Stochastic programming provides a versatile framework for decision-making under uncertainty,

but the resulting optimization problems can be computationally demanding. It has recently been

shown that primal and dual linear decision rule approximations can yield tractable upper and lower

bounds on the optimal value of a stochastic program. Unfortunately, linear decision rules often

provide crude approximations that result in loose bounds. To address this problem, we propose

a lifting technique that maps a given stochastic program to an equivalent problem on a higher-

dimensional probability space. We prove that solving the lifted problem in primal and dual linear

decision rules provides tighter bounds than those obtained from applying linear decision rules to the

original problem. We also show that there is a one-to-one correspondence between linear decision

rules in the lifted problem and families of nonlinear decision rules in the original problem. Finally,

we identify structured liftings that give rise to highly flexible piecewise linear and nonlinear decision

rules, and we assess their performance in the context of a dynamic production planning problem.

1 Introduction

Stochastic programming studies models and algorithms for optimal decision making under uncertainty.

A salient feature of many stochastic programming problems is their dynamic nature: some of the uncer-

tain parameters are revealed sequentially as time progresses, and thus future decisions must be modeled

as functions of the observable data. These adaptive functional decisions are often referred to as deci-

sion rules, and their presence severely complicates numerical solution procedures. Indeed, when exact

solutions are sought, already two-stage stochastic programs whose random parameters obey independent
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uniform distributions are computationally intractable [23]. Multistage stochastic programs (with at least

two adaptive decision stages) remain intractable even if one searches only for approximate solutions of

medium accuracy [40].

Over many decades, substantial efforts have been devoted on designing solution schemes that dis-

cretize the distribution of the uncertain model parameters [13, 32]. These discretization techniques

typically achieve any desired level of accuracy at the expense of significant computational overheads.

An alternative solution scheme is obtained by restricting the set of feasible adaptive decisions to those

possessing a simple functional form, such as linear or piecewise linear decision rules. This decision rule

approach has been neglected for a long time due to a lack of efficient algorithms and due to the somewhat

disappointing result that the class of piecewise linear decision rules is not rich enough to contain the op-

timal solutions of generic linear stochastic programs with more than two stages [26, p. 123]. Only in 2004

it was realized that the best linear decision rules for linear stochastic and robust optimization problems

can be computed in polynomial time [7]. After this breakthrough, similar results emerged for piecewise

linear [29] and polynomial [12] decision rules. Even though linear decision rules are known to be optimal

for the linear quadratic regulator problem [1], certain classes of robust vehicle routing problems [30] and

some one-dimensional robust control problems [11], decision rule approximations generically sacrifice a

significant amount of optimality in return for scalability. In fact, the worst-case approximation ratio of

linear decision rules when applied to two-stage robust optimization problems with m linear constraints

is O(
√

m) [10].

The goal of this paper is to develop and analyze decision rules that provide more flexibility than crude

linear decision rules but preserve their favorable scalability properties. The idea is to map the original

stochastic program to an equivalent lifted stochastic program on a higher-dimensional probability space.

The relation between the uncertain parameters in the original and the lifted problems is determined

through a lifting operator which will be defined axiomatically. We will show that there is a one-to-one

correspondence between linear decision rules in the lifted problem and families of nonlinear decision rules

in the original problem that result from linear combinations of the components of the lifting operator.

Thus, solving the lifted stochastic program in linear decision rules, which can be done efficiently, is

tantamount to solving the original problem with respect to a class of nonlinear decision rules.

The trade-off between optimality and scalability is controlled by the richness of the lifting operator,

that is, by the number of its component mappings and their structure. In order to tailor the lifting

operator to a given problem instance, it is crucial that the corresponding approximation quality can be

estimated efficiently. In this paper we will measure the approximation quality of a lifting by solving the

primal as well as the dual of the lifted stochastic program in linear decision rules, thereby obtaining an

upper as well as a lower bound on the (exact) optimal value of the original problem. The difference
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between these bounds provides an efficiently computable measure for the approximation quality offered

by the lifting at hand. This primal-dual approach generalizes a method that was first used to estimate

the degree of suboptimality of naive linear decision rules, see [31, 35].

Our axiomatic lifting approach provides a unifying framework for several decision rule approximations

proposed in the recent literature. Indeed, piecewise linear [5], segregated linear [20, 21, 29], as well as

algebraic and trigonometric polynomial decision rules [5, 12] can be seen as special cases of our approach if

the lifting operator is suitably defined. To the best or our knowledge, no efficient a posteriori procedure

has yet been reported for measuring the approximation quality of these decision rules—the label ‘a

posteriori’ meaning that the resulting quality measure is specific for each problem instance.

Even though decision rule approximations have gained broader attention only since 2004 [7], they have

already found successful use in a variety of application areas ranging from supply chain management [6],

logistics [30] and portfolio optimization [19] to network design problems [3], project scheduling [28],

electricity procurement optimization [38] and automatic control [41]. The lifting techniques developed

in this paper enable the modeler to actively control the trade-off between optimality and scalability and

may therefore stimulate the exploration of additional application areas.

The main contributions of this paper may be summarized as follows.

1. We axiomatically introduce lifting operators that allow us to map a given stochastic program to

an equivalent problem on a higher-dimensional probability space. We prove that solving the lifted

problem in primal and dual linear decision rules results in upper and lower bounds on the original

problem that are tighter than the bounds obtained by solving the original problem in linear decision

rules. Moreover, we demonstrate that there is a one-to-one relation between linear decision rules in

the lifted problem and families of nonlinear decision rules in the original problem that correspond

to linear combinations of the components of the lifting operator.

2. We define a class of separable lifting operators that give rise to piecewise linear continuous decision

rules with an axial segmentation. These are closely related to the segregated linear decision rules

developed in [29]. We prove that the resulting lifted problems in primal and dual linear decision

rules are intractable. We then identify tractable special cases and construct tractable approxima-

tions for the generic case. Next, we propose a class of liftings that result in tractable piecewise

linear continuous decision rules with a general segmentation. We show that these decision rules can

offer a substantially better approximation quality than the decision rules with axial segmentation.

3. We introduce a class of nonlinear convex liftings, which includes quadratic liftings, power liftings,

monomial liftings and inverse monomial liftings as special cases. These liftings can offer additional

flexibility when piecewise linear decision rules perform poorly. Under mild assumptions, the re-
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sulting nonlinear decision rule problems are equivalent to tractable second-order cone programs.

We also define multilinear liftings, which display excellent approximation properties in numerical

tests. Maybe surprisingly, the resulting decision rule problems reduce to linear programs.

The decision rule methods developed in this paper offer similar guarantees as the classical bounding

methods of stochastic programming. The most popular bounding methods are those based on functional

approximations of the recourse costs [14, 16, 42, 43] and those approximating the true distribution of

the uncertain parameters by the (discrete) solution of a generalized moment problem [15, 22, 25, 27, 33].

For a general overview, see [13, Chapter 11] or the survey paper [24]. The bounds based on functional

approximations often rely on restrictive assumptions about the problem, such as simple or complete

recourse, independence of the uncertain parameters, discrete probability space and/or deterministic

objective function coefficients. The moment-based bounding approximations tend to be more flexible

and can sometimes be interpreted as multilinear decision rule approximations [34]. However, they exhibit

exponential complexity in the number of decision stages. In contrast, all the decision rule approximations

developed in this paper offer polynomial complexity. We will compare the tightness and the scalability

properties of classical bounds and decision rule approximations in Section 7.

Another approach that has been successfully used for solving large-scale stochastic dynamic programs

is approximate dynamic programming (ADP); see e.g. [9, 37]. ADP shares similarities with the deci-

sion rule approach discussed in this paper in that both methods use linear combinations of prescribed

basis functions to approximate more complex nonlinear functions. While ADP applies these parametric

approximations to the cost-to-go functions, however, the decision rule approach applies them to the

future adaptive decisions. ADP techniques enjoy great flexibility and can be applied even to nonconvex

problems and problems involving integer decisions. The decision rule approach presented here is only

applicable to convex problems but offers explicit and easily computable error bounds. Similar bounds

are often missing in descriptions of ADP methods. A notable exception are the popular performance

bounds based on information relaxations [18], which admit an interpretation as restricted dual stochastic

programs. We further remark that the decision rule approach can even find near-optimal solutions for

stochastic programs without relatively complete recourse [17]. In contrast, most ADP methods enforce

feasibility only on sample paths and may therefore fail to account for induced constraints.

The rest of this paper is organized as follows. Section 2 reviews recent results on primal and dual lin-

ear decision rules, highlighting the conditions needed to ensure tractability of the resulting optimization

problems. In Section 3 we introduce our axiomatic lifting approach for one-stage stochastic programs.

We show that if the convex hull of the support of the lifted uncertain parameters has a tractable repre-

sentation (or outer approximation) in terms of conic inequalities, then the resulting lifted problems can
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be solved (or approximated) efficiently in primal and dual linear decision rules. Two versatile classes of

piecewise linear liftings that ensure this tractability condition are discussed in Section 4, while nonlin-

ear convex liftings and multilinear liftings are studied in Section 5. We generalize the proposed lifting

techniques to the multistage case in Section 6, and we assess the performance of the new primal and

dual nonlinear decision rules in the context of a dynamic production planning problem in Section 7. The

electronic companion to this paper contains some of the proofs as well as further auxiliary results.

Notation We model uncertainty by a probability space
(
R

k,B
(
R

k
)
, Pξ

)
and denote the elements of

the sample space R
k by ξ. The Borel σ-algebra B

(
R

k
)

is the set of events that are assigned probabilities

by the probability measure Pξ. The support Ξ of Pξ represents the smallest closed subset of R
k which

has probability 1, and Eξ (·) denotes the expectation operator with respect to Pξ. For any m,n ∈ N, we

let Lm,n be the space of all measurable functions from R
m to R

n that are bounded on compact sets. As

usual, Tr (A) denotes the trace of a square matrix A ∈ R
n×n, while In represents the identity matrix in

R
n×n. By slight abuse of notation, the relations A ≤ B and A ≥ B denote component-wise inequalities

for A,B ∈ R
m×n. For a proper cone K (i.e., a closed, convex and pointed cone with nonempty interior),

the relation x �K y indicates that y − x ∈ K. Finally, we denote by ek the kth canonical basis vector,

while e denotes the vector whose components are all ones. In both cases, the dimension will usually be

clear from the context.

2 Primal and Dual Linear Decision Rules

In the first part of the paper we study one-stage stochastic programs of the following type. A decision

maker first observes an element ξ of the sample space R
k and then selects a decision x(ξ) ∈ R

n subject

to the constraints Ax(ξ) ≤ b(ξ) and at a cost c(ξ)⊤x(ξ). In the framework of stochastic programming,

the aim of the decision maker is to find a function x ∈ Lk,n which minimizes the expected cost. This

decision problem can be formalized as the following one-stage stochastic program.

minimize Eξ

(
c (ξ)

⊤
x (ξ)

)

subject to x ∈ Lk,n

Ax (ξ) ≤ b (ξ) Pξ-a.s.

(SP)

Since the matrix A ∈ R
m×n does not depend on the uncertain parameters, we say that SP has fixed

recourse. By convention, the function x is referred to as a decision rule, strategy or policy. To ensure

that SP is well-defined, we always assume that it satisfies the following regularity conditions.

(S1) Ξ is a compact subset of the hyperplane
{
ξ ∈ R

k : ξ1 = 1
}
, and its linear hull spans R

k.
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(S2) The objective function coefficients and the right hand sides in SP depend linearly on the uncertain

parameters, that is, c (ξ) = Cξ and b (ξ) = Bξ for some C ∈ R
n×k and B ∈ R

m×k.

(S3) SP is strictly feasible, that is, there exists δ > 0 and a policy x ∈ Lk,n which satisfies the inequality

constraint in SP with b(ξ) replaced by b(ξ) − δe.

Condition (S1) ensures that ξ1 = 1 almost surely with respect to Pξ. This non-restrictive assump-

tion will simplify notation, as it allows us to represent affine functions of the non-degenerate uncertain

parameters (ξ2, . . . , ξk) in a compact way as linear functions of ξ = (ξ1, . . . , ξk)
⊤

. The assumption about

the linear hull of Ξ ensures that the second order moment matrix Eξ

(
ξ ξ⊤

)
of the uncertain parameters

is invertible, see [35]. This assumption is also generic as it can always be enforced by reducing the

dimension of ξ if necessary. Condition (S2) is non-restrictive as we are free to redefine ξ to contain c (ξ)

and b (ξ) as subvectors. Finally, the unrestrictive condition (S3) is standard in stochastic programming.

SP is #P-hard even if Pξ is the uniform distribution on the unit cube in R
k, see [23]. Hence, there

is no efficient algorithm to determine the optimal value of SP exactly unless P = NP. A convenient way

to obtain a tractable approximation for SP is to restrict the space of feasible policies to those exhibiting

a linear dependency on the uncertain parameters. Thus, we focus on linear decision rules that satisfy

x (ξ) = Xξ for some X ∈ R
n×k. Under this restriction, we obtain the following approximate problem.

minimize Eξ

(
c (ξ)

⊤
Xξ
)

subject to X ∈ R
n×k

AXξ ≤ b (ξ) Pξ-a.s.

(UB)

This problem is of semi-infinite type and provides a conservative approximation for the original stochastic

program because we have reduced the underlying feasible set. Thus, the optimal value of UB constitutes

an upper bound on the optimal value of SP.

We can bound the optimal value of SP from below if we dualize SP and afterwards restrict the

decision rules corresponding to the dual variables to be linear functions of the uncertain data, see [35].

This dual approximation gives rise to the stochastic program

minimize Eξ

(
c(ξ)⊤x(ξ)

)

subject to x ∈ Lk,n , s ∈ Lk,m

Eξ

(
[Ax(ξ) + s(ξ) − b(ξ)] ξ⊤

)
= 0

s(ξ) ≥ 0





Pξ-a.s.,

(LB)
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which is easily recognized as a relaxation of the original problem. Therefore, its optimal value provides

a lower bound on the optimal value of SP. For the derivation of problem LB, we refer to Section 2.3

in [35]. Note that LB involves only finitely many equality constraints. However, LB still appears to be

intractable as it involves a continuum of decision variables and non-negativity constraints.

Although the semi-infinite bounding problems UB and LB look intractable, they can be shown to be

equivalent to tractable conic problems under the following assumption about the convex hull of Ξ.

(S4) The convex hull of the support Ξ of Pξ is a compact set of the form

conv Ξ =
{
ξ ∈ R

k : ∃ζ ∈ R
p with Wξ + V ζ �K h

}
, (1)

where W ∈ R
l×k, V ∈ R

l×p, h ∈ R
l and K ⊆ R

l is a proper cone.

Theorem 2.1 If SP satisfies the regularity conditions (S1), (S2) and (S4), then UB is equivalent to

minimize Tr
(
MC⊤X

)

subject to X ∈ R
n×k,Λ ∈ Km

⋆

AX + ΛW = B

ΛV = 0, Λh ≥ 0.

(UB∗)

If SP additionally satisfies the regularity condition (S3), then LB is equivalent to

minimize Tr
(
MC⊤X

)

subject to X ∈ R
n×k, S ∈ R

m×k,Γ ∈ R
p×m

AX + S = B

(W − he⊤
1 )MS⊤ + V Γ �Km 0.

(LB∗)

In both formulations, M := Eξ

(
ξ ξ⊤

)
is the second order moment matrix of the uncertain parameters,

while K⋆ denotes the dual cone of K. The sizes of the conic problems UB∗ and LB∗ are polynomial in k,

l, m, n and p, implying that they are tractable.

Proof This is a straightforward generalization of the results from [35] to conic support sets Ξ.

Theorem 2.1 requires a description of the convex hull of Ξ in terms of conic inequalities, which may

not be available or difficult to obtain. In such situations, it may be possible to construct a tractable

outer approximation Ξ̂ for the convex hull of Ξ which satisfies the following condition.

(Ŝ4) There is a compact set Ξ̂ ⊇ conv Ξ of the form Ξ̂ =
{
ξ ∈ R

k : ∃ζ ∈ R
p with Wξ + V ζ �K h

}
,

where W , V , h and K are defined as in (S4).
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Under the relaxed assumption (Ŝ4), we can still bound the optimal value of SP.

Corollary 2.2 If SP satisfies the regularity conditions (S1), (S2) and (Ŝ4), then UB∗ provides a con-

servative approximation (i.e., a restriction) for UB. If SP additionally satisfies the regularity condition

(S3), then LB∗ provides a progressive approximation (i.e., a relaxation) for LB.

Remark 2.3 We remark that there is a duality symmetry between the problems UB∗ and LB∗. Indeed,

one can show that the dual approximation LB∗ may be obtained by applying the primal approximation

UB∗ to the dual of SP and dualizing the resulting conic program to recover a minimization problem.

3 Lifted Stochastic Programs

The bounds provided by Theorem 2.1 and Corollary 2.2 can be calculated efficiently by solving tractable

conic problems. However, the gap between these bounds can be large if the optimal primal and dual

decision rules for the original problem SP exhibit significant nonlinearities. In this section we elaborate a

systematic approach for tightening the bounds that preserves (to some extent) the desirable scalability of

the linear decision rule approximations. The basic idea is to lift SP to a higher-dimensional space and to

then apply the linear decision rule approximations to the lifted problem. In this section we axiomatically

define the concept of lifting and prove that the application of Theorem 2.1 and Corollary 2.2 to the lifted

problem leads to improved bounds on the original problem.

To this end, we introduce a generic lifting operator L : R
k → R

k′

, ξ 7→ ξ′, as well as a corresponding

retraction operator R : R
k′ → R

k, ξ′ 7→ ξ. By convention, we will refer to R
k′

as the lifted space. The

operators L and R are assumed to satisfy the following axioms:

(A1) L is continuous and satisfies e⊤
1 L(ξ) = 1 for all ξ ∈ Ξ;

(A2) R is linear;

(A3) R ◦ L = Ik;

(A4) The component mappings of L are linearly independent, that is, for each v ∈ R
k′

, we have

L (ξ)
⊤

v = 0 Pξ-a.s. =⇒ v = 0.

Axiom (A3) implies that L is an injective operator, which in turn implies that k′ ≥ k.

The following proposition illuminates the relationship between L and R.

Proposition 3.1 L ◦ R is the projection on the range of L along the null space of R.
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Proof By axiom (A3) we have L ◦ R ◦ L ◦ R = L ◦ R, which implies that L ◦ R is a projection. Axiom

(A3) further implies that L ◦R ◦L = L, that is, L ◦R is the identity on the range of L. Finally, we have

R (ξ′ − L ◦ R (ξ′)) = R (ξ′) − R ◦ L ◦ R (ξ′) = 0,

where the first and second identity follow from (A2) and (A3), respectively. Hence, ξ′ − L ◦ R (ξ′) is an

element of the null space of R for any ξ′ ∈ R
k′

, which concludes the proof.

We illustrate the axioms (A1)–(A4) and Proposition 3.1 with an example.

Example 3.2 Assume that the dimensions of the original and the lifted space are k = 2 and k′ = 3,

respectively. We define the lifting L through L((ξ1, ξ2)
⊤) :=

(
ξ1, ξ2, ξ2

2

)⊤
. Similarly, the retrac-

tion R is given by R (ξ′
1, ξ′

2, ξ
′
3)

⊤
:= (ξ′

1, ξ′
2)

⊤
. One readily verifies that L and R satisfy the axioms

(A1)–(A4). Figure 1 illustrates both operators. The lifting L maps ξ̂ to ξ̂′, and the retraction R

maps any point on the dashed line through ξ̂′ to ξ̂. The dashed line is given by ξ̂′ + kernel(R), where

kernel(R) = {(0, 0, α)
⊤

: α ∈ R} denotes the null space of R.

ξ1

11

ξ2

ξ′
1

ξ′
3

ξ′
2

Ξ

Ξ′ = L (Ξ)

L
(
R

2
)

L

R
ξ̂

ξ̂′ = L(ξ̂)

Figure 1: Illustration of L and R. The left and right diagram show the original and the lifted
space R

k and R
k′

, respectively. The shaded areas and thick solid lines represent R
k and Ξ in

the left diagram and their lifted counterparts L
�
R

k
�

and Ξ′ = L (Ξ) in the right diagram.

We define the probability measure Pξ′ on the lifted space
(
R

k′

,B
(
R

k′
))

in terms of the probability

measure Pξ on the original space through the relation

Pξ′ (B′) := Pξ

(
{ξ ∈ R

k : L(ξ) ∈ B′}
)

∀B′ ∈ B(Rk′

).

We also introduce the expectation operator Eξ′(·) and the support Ξ′ := L(Ξ) with respect to the proba-

bility measure Pξ′ . The following proposition explains the relation between expectations and constraints

in the original and lifted space.
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Proposition 3.3 For two measurable functions f :
(
R

k′

,B
(
R

k′
))

→ (R,B (R)) and g :
(
R

k,B
(
R

k
))

→

(R,B (R)), we have

(i) Eξ (f (L(ξ))) = Eξ′ (f (ξ′))

(ii) Eξ (g (ξ)) = Eξ′ (g (Rξ′))

(iii) f (L (ξ)) ≤ 0 Pξ-a.s. ⇐⇒ f (ξ′) ≤ 0 Pξ′-a.s.

(iv) g (ξ) ≤ 0 Pξ-a.s. ⇐⇒ g (Rξ′) ≤ 0 Pξ′-a.s.

Proof Statement (i) follows immediately from [2, Theorem 1.6.12]. In view of (ii), we observe that

Eξ (g (ξ)) = Eξ (g (R ◦ L (ξ))) = Eξ′ (g (Rξ′)) ,

where the first equality follows from (A3) and the second one from statement (i). As for (iii), we have

f (L (ξ)) ≤ 0 Pξ-a.s. ⇐⇒ Eξ (max{0, f (L (ξ))}) = 0

⇐⇒ Eξ′ (max{0, f (ξ′)}) = 0

⇐⇒ f (ξ′) ≤ 0 Pξ′ -a.s.

Here, the second equivalence follows from statement (i), while the first and the last equivalences follow

from [2, Theorem 1.6.6(b)]. Statement (iv) can be shown in a similar manner.

We now consider a variant of the one-stage stochastic program SP on the lifted probability space.

minimize Eξ′

(
c (Rξ′)

⊤
x(ξ′)

)

subject to x ∈ Lk′,n

Ax(ξ′) ≤ b (Rξ′) Pξ′ -a.s.

(LSP)

The following proposition shows that the lifted stochastic program LSP is equivalent to SP.

Proposition 3.4 SP and LSP are equivalent in the following sense: both problems have the same

optimal value, and there is a one-to-one mapping between feasible and optimal solutions in both problems.

Proof See electronic companion.

Remark 3.5 If two pairs of lifting and retraction operators L1 : R
k → R

k′

, R1 : R
k′ → R

k and L2 :

R
k′ → R

k′′

, R2 : R
k′′ → R

k′

satisfy (A1)–(A4), then the combined operators L := L2◦L1, R := R1◦R2

also satisfy (A1)–(A4). This means that lifted stochastic programs can be constructed iteratively, and

all of these lifted programs are equivalent to the original problem SP.
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Since SP and LSP are equivalent, an upper (lower) bound on the optimal value of LSP also consti-

tutes an upper (lower) bound on the optimal value of SP. It is therefore useful to investigate the lifted

upper bound LUB and the lifted lower bound LLB obtained by applying the primal and dual linear deci-

sion rules from the previous section to LSP instead of SP. In fact, it will turn out that LUB and LLB

provide a tighter approximation than UB and LB, which are obtained by applying the linear decision

rule approximations directly to SP.

The linear decision rule approximations LUB and LLB in the lifted space R
k′

correspond to nonlinear

decision rule approximations in the original space R
k. To show this, we write the lifting operator as

L = (L1, . . . , Lk′), where Li : R
k → R denotes the ith coordinate mapping. These coordinate mappings

can be viewed as basis functions for constructing nonlinear decision rules in the original space. To this

end, we consider a conservative approximation of SP that restricts the set of primal decision rules to

linear combinations of the coordinate mappings of L, that is, to x ∈ Lk,n that satisfy x (ξ) = X ′L (ξ) for

some X ′ ∈ R
n×k′

. We are thus led to the following nonlinear upper bound on SP.

minimize Eξ

(
c (ξ)

⊤
X ′L (ξ)

)

subject to X ′ ∈ R
n×k′

AX ′L (ξ) ≤ b (ξ) Pξ-a.s.

(NUB)

Similarly, we obtain a lower bound on SP by restricting the set of dual decisions y ∈ Lk,m in Section 2

to those that can be represented as y (ξ) = Y ′L (ξ) for some Y ′ ∈ R
m×k′

. By using similar arguments as

in Section 2, we obtain the following nonlinear lower bound on SP.

minimize Eξ

(
c(ξ)⊤x(ξ)

)

subject to x ∈ Lk,n , s ∈ Lk,m

Eξ

(
[Ax(ξ) + s(ξ) − b(ξ)] L (ξ)

⊤
)

= 0

s(ξ) ≥ 0





Pξ-a.s.

(NLB)

We now show that optimizing over the linear decision rules in the lifted space is indeed equivalent to

optimizing over those decision rules in the original space that result from linear combinations of the basis

functions L1, . . . , Lk′ .

Proposition 3.6 The nonlinear stochastic programs NUB, NLB and the linear lifted stochastic pro-

grams LUB, LLB satisfy the following equivalences.

(i) NUB and LUB are equivalent.

(ii) NLB and LLB are equivalent.
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Equivalent problems attain the same optimal value, and there is a one-to-one mapping between feasible

and optimal solutions to equivalent problems.

Proof See electronic companion.

Example 3.7 In Example 3.2, the lifted linear decision rule X ′ξ′ with X ′ = (1, 1, 1) corresponds to the

nonlinear decision rule x(ξ) = ξ1 + ξ2 + ξ2
2 in the original space R

k.

We now show that the linear decision rule approximations in the lifted space R
k′

lead to tighter

bounds on the optimal value of SP than the linear decision rule approximations in the original space R
k.

Theorem 3.8 The optimal values of the approximate problems UB, LUB, LB and LLB satisfy the

following chain of inequalities.

inf LB ≤ inf LLB ≤ inf SP = inf LSP ≤ inf LUB ≤ inf UB (2)

Proof See electronic companion.

We have shown that the primal and dual linear decision rule approximations to LSP may result in im-

proved bounds on SP. We now prove that LSP satisfies the conditions (S1)–(S4), which are necessary to

obtain tractable reformulations for the approximate lifted problems via Theorem 2.1 and Corollary 2.2.

Proposition 3.9 If SP satisfies (S1)–(S3), then LSP satisfies these conditions as well.

Proof The support Ξ′ of Pξ′ is compact as it is the image of a compact set under the continuous

mapping L, see axiom (A1). Axiom (A1) also guarantees that L maps Ξ to a subset of the hyperplane

{ξ ∈ R
k′

: ξ′
1 = 1}. We now show that Ξ′ spans R

k′

. Assume to the contrary that Ξ′ does not span R
k′

.

Then there is v ∈ R
k′

, v 6= 0, such that

ξ′⊤v = 0 Pξ′ -a.s. ⇐⇒ L (ξ)
⊤

v = 0 Pξ-a.s.,

where the equivalence follows from Proposition 3.3 (iii). By axiom (A4) we conclude that v = 0. This

is a contradiction, and hence the claim follows. In summary, we have shown that LSP satisfies (S1).

Axiom (A2) ensures that the retraction operator R is linear. Hence, the objective and right hand

side coefficients of LSP are linear in the uncertain parameter ξ′, and thus LSP satisfies (S2).

To show that LSP satisfies (S3), we will use a similar argument as in Proposition 3.4. Suppose that

x ∈ Lk,n is strictly feasible in SP. We define the function x′ ∈ Lk′,n through

x′ (ξ′) := x (Rξ′) ∀ξ′ ∈ R
k′

.
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The strict feasibility of x in SP implies that there exists δ > 0 such that

Ax (ξ) ≤ b (ξ) − δe Pξ-a.s.

⇐⇒ Ax (Rξ′) ≤ b (Rξ′) − δe Pξ′ -a.s.

⇐⇒ Ax′ (ξ′) ≤ b (Rξ′) − δe Pξ′ -a.s.,

where the equivalences follow from Proposition 3.3 (iv) and the definition of x′, respectively. Therefore,

x′ is strictly feasible in LSP, and thus LSP satisfies (S3).

In order to apply Theorem 2.1 and Corollary 2.2 to LUB and LLB, we also need an exact represen-

tation or an outer approximation of the convex hull of Ξ′ in terms of conic inequalities, see conditions

(S4) and (Ŝ4). In the following sections we will show that these conditions hold in a number of relevant

special cases. We close this section with an explicit description of Ξ′ in terms of Ξ and L.

Proposition 3.10 The support Ξ′ of the probability measure Pξ′ on the lifted space is given by

Ξ′ =
{

ξ′ ∈ R
k′

: Rξ′ ∈ Ξ, L ◦ R (ξ′) = ξ′
}

.

Proof The support of Pξ′ can be expressed as

Ξ′ = L(Ξ) =
{

ξ′ ∈ R
k′

: ∃ξ ∈ R
k with ξ ∈ Ξ and L (ξ) = ξ′

}

=
{

ξ′ ∈ R
k′

: Rξ′ ∈ Ξ, L ◦ R (ξ′) = ξ′
}

,

where the identity in the second line follows from Proposition 3.1.

4 Piecewise Linear Continuous Decision Rules

In this section we propose a class of supports Ξ and piecewise linear lifting operators L that satisfy the

axioms (A1)–(A4) and that ensure that the convex hull of Ξ′ = L(Ξ) has a tractable representation

or outer approximation. We show that the sizes of the corresponding approximate problems LUB and

LLB are polynomial in the size of the original problem SP as well as the description of L. We can then

invoke Theorem 2.1 and Corollary 2.2 to conclude that LUB and LLB can be solved efficiently.
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4.1 Piecewise Linear Continuous Decision Rules with Axial Segmentation

The first step towards defining our nonlinear lifting is to select a set of breakpoints for each coordinate

axis in R
k. These breakpoints will define the structure of the lifted space, and they are denoted by

zi
1 < zi

2 < . . . < zi
ri−1 for i = 2, . . . , k,

where ri − 1 denotes the number of breakpoints along the ξi axis. We allow the case ri = 1, where there

are no breakpoints along the ξi axis. Due to the degenerate nature of the first uncertain parameter ξ1,

we always set r1 = 1. Without loss of generality, we assume that all breakpoints {zi
j}ri−1

j=1 are located

in the interior of the marginal support of ξi. In the remainder of this section we will work with a lifted

space whose dimension is given by k′ :=
∑k

i=1 ri. The vectors in the lifted space R
k′

can be written as

ξ′ =
(
ξ′
1,1, ξ′

2,1, . . . , ξ
′
2,r2

, ξ′
3,1, . . . , ξ

′
3,r3

, . . . , ξ′
k,1, . . . , ξ

′
k,rk

)⊤
.

Next, we use the breakpoints to define the lifting operator L = (L1,1, . . . , Lk,rk
), where the coordinate

mapping Li,j corresponds to the ξ′
i,j axis in the lifted space and is defined through

Li,j (ξ) :=





ξi if ri = 1,

min
{
ξi, z

i
1

}
if ri > 1, j = 1,

max
{
min

{
ξi, z

i
j

}
− zi

j−1, 0
}

if ri > 1, j = 2, . . . , ri − 1,

max
{
ξi − zi

j−1, 0
}

if ri > 1, j = ri.

(3)

By construction, Li,j is continuous and piecewise linear with respect to ξi and constant in all of its other

arguments, see Figure 2. If ri = 1 for all i = 1, . . . , k, then L reduces to the identity mapping on R
k.

The linear retraction operator corresponding to L is denoted by R = (R1, . . . , Rk), where the coordinate

mapping Ri corresponds to the ξi axis in the original space and is defined through

Ri (ξ′) :=

ri∑

j=1

ξ′
i,j . (4)

We now show that L and R satisfy the axioms (A1)–(A4).

Proposition 4.1 The operators L and R defined in (3) and (4) satisfy the axioms (A1)–(A4).

Proof The axioms (A1) and (A2) are satisfied by construction. Axiom (A3) is satisfied if

Ri (L (ξ)) =

ri∑

j=1

Li,j (ξ) = ξi ∀i = 1, . . . , k.
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ξi

ξ′
i,j

zi
j − zi

j−1 Li,j(ξ)

0

zi
j−1 zi

j

Figure 2: Graph of the coordinate mapping Li,j for 1 < i ≤ k and 1 < j < ri.

For ri = 1 this condition is trivially satisfied. For ri > 1 we distinguish the following two cases.

(i) If ξi ≤ zi
1, then Li,1 (ξ) = ξi and Li,j (ξ) = 0 for all j = 2, . . . , ri. Thus,

∑ri

j=1 Li,j (ξ) = ξi.

(ii) If ξi > zi
1, then set j∗ := max{j ∈ {1, . . . , ri − 1} : zi

j ≤ ξi} so that

Li,j (ξ) =





zi
j if j = 1

zi
j − zi

j−1 if j = 2, . . . , j∗ − 1

ξi − zi
j−1 if j = j∗

0 if j > j∗

and thus
ri∑

j=1

Li,j (ξ) = zi
1 +

j∗−1∑

j=2

(
zi
j − zi

j−1

)
+ ξi − zi

j∗−1 = ξi.

The above arguments apply for each i = 1, . . . , k, and thus (A3) follows. Axiom (A4) is also satisfied

since Li,1, . . . , Li,ri
are non-constant on disjoint subsets of R

k, each of which has a non-empty intersection

with Ξ.

As in Section 3, we use the lifting operator L to define the probability measure Pξ′ on the lifted

space and denote the support of Pξ′ by Ξ′. The lifted problems LSP, LUB and LLB, as well as the

problems NUB and NLB involving nonlinear decision rules, are defined in the usual way. One can show

that the space of nonlinear decision rules induced by the lifting (3) corresponds exactly to the space

of piecewise linear and continuous functions with kinks at the breakpoints. A proof is provided in the

electronic companion. We now demonstrate that the problems LUB and LLB are generically intractable

for liftings of the type (3).

Theorem 4.2 The approximate problems LUB and LLB defined through a lifting operator L of the

type (3) are NP-hard even if there is only one breakpoint per coordinate axis.

Proof See electronic companion.
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Theorem 4.2 implies that we cannot solve LUB and LLB efficiently for generic liftings of the type (3),

even though these problems arise from a linear decision rule approximation. However, Theorem 2.1

ensures that LUB and LLB can be solved efficiently if conv Ξ′ has a tractable representation of the

type (1). We now show that if Ξ constitutes a hyperrectangle within {ξ ∈ R
k : e⊤

1 ξ = 1}, then there

exists such a tractable representation for liftings of the type (3). Afterwards, we construct a tractable

outer approximation for conv Ξ′ in generic situations.

Let Ξ be a hyperrectangle of the type

Ξ =
{
ξ ∈ R

k : ℓ ≤ ξ ≤ u
}

, (5)

where ℓ1 = u1 = 1. By Proposition 3.10, the support Ξ′ of the lifted probability measure Pξ′ induced by

L is given by

Ξ′ =
{

ξ′ ∈ R
k′

: L ◦ R (ξ′) = ξ′, ξ′
1 = 1, ℓ ≤ R(ξ′) ≤ u

}

and constitutes a non-convex, connected and compact set, see (3). In order to calculate its convex hull,

we exploit a separability property of Ξ′ that originates from the rectangularity of Ξ. For the further

argumentation, we define the partial lifting operators

Li :=





R
k → R

ri

ξ 7→ ξ′
i := (Li,1 (ξ) , . . . , Li,ri

(ξ))
⊤

(6)

for i = 1, . . . , k. Note that due to (3) the vector-valued function Li is piecewise affine in ξi and constant

in its other arguments. By the rectangularity of Ξ we conclude that

Ξ′ = L (Ξ) =
k×

i=1
Li (Ξ) =

k×
i=1

Ξ′
i, (7)

where Ξ′
i := Li (Ξ). The marginal supports Ξ′

i inherit the non-convexity, connectedness and compactness

from Ξ′. Note that (7) implies

conv Ξ′ =
k×

i=1
conv Ξ′

i,

and therefore it is sufficient to derive a closed-form representation for the marginal convex hulls conv Ξ′
i.

Recall that ℓi < zi
1 and zi

ri−1 < ui for i = 2, . . . , k, that is, all breakpoints along the ξi-axis in R
k lie in

the interior of the marginal support [ℓi, ui].

Lemma 4.3 The convex hull of Ξ′
i, i = 2, . . . , k, is given by

conv Ξ′
i =

{
ξ′
i ∈ R

ri : V −1
i (1, ξ′⊤

i )⊤ ≥ 0
}

,
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ξ′
i,1ξ′

i,1

ξ′
i,3ξ′

i,3

ξ′
i,2ξ′

i,2

00
zi
1zi

1

zi
2 − zi

1zi
2 − zi

1

ui − zi
2

ℓi

Ξ′
i = Li (Ξ)

conv Ξ′
i

Li

(
R

k
)

Figure 3: The left diagram illustrates the range of the partial lifting Li, which consists of three

perpendicular line segments. Here, we assume that there are only two breakpoints at zi
1

and zi
2

along

the ξi direction (i.e., ri = 3). The right diagram shows the marginal support Ξ
′

i (thick line) as well

as its convex hull, which is given by a simplex (thick and dashed lines).

where

V −1
i :=




zi
1

zi
1
−ℓi

− 1
zi
1
−ℓi

− ℓi

zi
1
−ℓi

1
zi
1
−ℓi

− 1
zi
2
−zi

1

1
zi
2
−zi

1

. . .

. . . − 1
zi

ri−1
−zi

ri−2

1
zi

ri−1
−zi

ri−2

− 1
ui−zi

ri−1

1
ui−zi

ri−1




.

Proof The set Ξ′
i is a union of ri connected finite line segments, see Figure 3. Its extreme points

are v0 = (ℓi, 0, · · · , 0)⊤ ∈ R
k′

, v1 = (zi
1, 0, · · · , 0)⊤ ∈ R

k′

, v2 = (zi
1, z

i
2 − zi

1, 0, · · · , 0)⊤ ∈ R
k′

, . . . ,

vri
= (zi

1, z
i
2 − zi

1, · · · , zi
ri−1 − zi

ri−2, ui − zi
ri−1)

⊤ ∈ R
k′

. Since ℓi < zi
1 < . . . < zi

ri−1 < ui, the difference

vectors {vj − v0}ri

j=1 are linearly independent. The convex hull of Ξ′
i is thus given by the non-degenerate

simplex with vertices {vj}ri

j=0, that is, it coincides with the set of all points representable as

ξ′
i =

ri∑

j=0

λjvj ,

ri∑

j=0

λj = 1, λ0, . . . , λri
≥ 0.

Therefore, we have

conv Ξ′
i =

{
ξ′
i ∈ R

ri : ∃λ ∈ R
ri+1 with Viλ = (1, ξ′⊤

i )⊤, λ ≥ 0
}

=
{
ξ′
i ∈ R

ri : V −1
i (1, ξ′⊤

i )⊤ ≥ 0
}

,
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where

Vi :=




1 · · · 1

v0 · · · vri


 ∈ R

(ri+1)×(ri+1),

and V −1
i is shown in the assertion of this lemma.

Lemma 4.3 allows us to write the convex hull of Ξ′ as

conv Ξ′ =
k×

i=1
conv Ξ′

i

=

{
ξ′ = (ξ′

1, . . . , ξ
′
k) ∈

k×
i=1

R
ri : ξ′

1 = 1, V −1
i (1, ξ′⊤

i )⊤ ≥ 0 ∀i = 2, . . . , k

}
.

(8)

Note that conv Ξ′ is of the form (1) and therefore satisfies condition (S4). This implies that Theorem 2.1

is applicable, which ensures that LUB and LLB are equivalent to the conic problems LUB∗ and LLB∗

that result from applying the upper and lower bound formulations from Section 2 to the lifted stochastic

program LSP. Moreover, since conv Ξ′ is described by O(k′) linear inequalities, the sizes of LUB∗ and

LLB∗ are polynomial in k, l, m, n and the total number k′ of breakpoints.

Assume now that Ξ is a generic set of the type (1). Then the convex hull of Ξ′ has no tractable

representation. However, we can systematically construct a tractable outer approximation for conv Ξ′.

To this end, let {ξ ∈ R
k : ℓ ≤ ξ ≤ u} be the smallest hyperrectangle containing Ξ. We have

Ξ =
{
ξ ∈ R

k : ∃ζ ∈ R
p with Wξ + V ζ �K h

}

=
{
ξ ∈ R

k : ∃ζ ∈ R
p with Wξ + V ζ �K h, ℓ ≤ ξ ≤ u

}
,

(9)

which implies that Ξ′ = Ξ′
1 ∩ Ξ′

2, where

Ξ′
1 :=

{
ξ′ ∈ R

k′

: ∃ζ ∈ R
p with WRξ′ + V ζ �K h

}

Ξ′
2 :=

{
ξ′ ∈ R

k′

: L ◦ R (ξ′) = ξ′, ℓ ≤ R(ξ′) ≤ u
}

.

We thus conclude that

Ξ̂′ :=
{

ξ′ ∈ R
k′

: ∃ζ ∈ R
p with WRξ′ + V ζ �K h, V −1

i (1, ξ′⊤
i )⊤ ≥ 0 ∀i = 2, . . . , k

}
⊇ conv Ξ′ (10)

since Ξ̂′ = Ξ′
1 ∩ conv Ξ′

2 and Ξ′
1 = conv Ξ′

1, see (8). Note that Ξ̂′ is of the form (1) and therefore satisfies

condition (Ŝ4). This implies that Corollary 2.2 is applicable, which ensures that LUB is conservatively

approximated by LUB∗, while LLB is progressively approximated by LLB∗. Moreover, the sizes of LUB∗

and LLB∗ are polynomial in k, l, m, n, p and the dimension k′ of the lifted space.

The main results of this subsection can be summarized in the following theorem.
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Theorem 4.4 Assume that the original problem SP satisfies (S1)–(S4) and consider any lifting of the

type (3). Then the following hold.

(i) The lifted problem LSP satisfies (S1)–(S3) and (Ŝ4).

(ii) If Ξ is a hyperrectangle of the type (5), then LSP satisfies the stronger conditions (S1)–(S4).

(iii) The sizes of the bounding problems LUB∗ and LLB∗ are polynomial in k, l, m, n, p and k′,

implying that they are efficiently solvable.

We emphasize the sizes of LUB∗ and LLB∗ are not only polynomial in the problem dimensions but

also in the number of breakpoints. Thus, it is relatively cheap to introduce enough breakpoints along

each coordinate direction until the bounds saturate. In contrast, determining the best positions of a

fixed number of breakpoints would require the solution of a non-convex global optimization problem.

4.2 Piecewise Linear Continuous Decision Rules with General Segmentation

Even though the liftings considered in Section 4.1 provide considerable flexibility in tailoring piecewise

linear decision rules, all pieces of linearity are rectangular and aligned with the coordinate axes in R
k.

It is easy to construct problems for which such an axial segmentation results in infeasible or severely

suboptimal decisions.

Example 4.5 Consider the stochastic program

minimize Eξ (x (ξ))

subject to x ∈ L3,1

x (ξ) ≥ max{|ξ2|, |ξ3|} Pξ-a.s.,

where ξ2 and ξ3 are independent and uniformly distributed on [−1, 1]. The optimal solution x(ξ) =

max{|ξ2|, |ξ3|} is kinked along the main diagonals in the (ξ2, ξ3)-plane, and the corresponding optimal

value amounts to 2/3. The best piecewise linear decision rule with axial segmentation (which is also the

best affine decision rule) is x(ξ) = 1 and achieves the suboptimal objective value 1.

Example 4.5 motivates us to investigate piecewise linear decision rules with generic segmentations

that are not necessarily aligned with the coordinate axes. Our aim is to construct piecewise linear decision

rules whose kinks are perpendicular to prescribed folding directions. In the following, we demonstrate

that such versatile decision rules can be constructed by generalizing the liftings discussed in Section 4.1.

19



Select finitely many folding directions fi ∈ R
k, i = 1, . . . , kη, which span R

k (thus, we have kη ≥ k).

Moreover, for each folding direction fi select finitely many breakpoints

zi
1 < zi

2 < . . . < zi
ri−1. (11)

For technical reasons, we always set f1 = e1 and r1 = 1. We now construct piecewise linear decision rules

with kinks along hyperplanes that are perpendicular to fi and at a distance zi
j/‖fi‖ from the origin. The

general idea is to apply a lifting of the type (3) to the augmented random vector η := Fξ instead of ξ,

where F := (f1, . . . , fkη
)⊤ is the rank-k matrix whose rows correspond to the folding directions.

Define now the piecewise linear lifting operator Lη : R
kη → R

k′

η , η 7→ η′, and the corresponding

retraction operator Rη : R
k′

η → R
kη , η′ 7→ η, as in (3) and (4) by using the breakpoints (11). We set

k′
η :=

∑kη

i=1 ri. One can show that the k′
η component mappings of the combined lifting Lη ◦ F span

the space of all piecewise linear continuous functions in R
k which are non-smooth on the hyperplanes

{ξ ∈ R
k : f⊤

i ξ = zi
j}. However, Lη ◦ F is not a valid lifting if kη > k, that is, if the number of folding

directions strictly exceeds the dimension of ξ, since then it violates axiom (A4). Indeed, for kη > k the

kernel of F⊤ is not a singleton. Therefore, there exists η ∈ kernel(F⊤), η 6= 0, such that by setting

v := (Rη)⊤η we observe that v 6= 0 since v⊤Lη(η) = η⊤η 6= 0 by axiom (A3), see Proposition 4.1.

Nevertheless, we have

v⊤Lη ◦ F (ξ) = η⊤F (ξ) = 0 Pξ-a.s.,

and thus Lη ◦ F fails to satisfy axiom (A4).

To remedy this shortcoming, we define E as the linear hull of Lη ◦F (Ξ) and let gi ∈ R
k′

η , i = 1, . . . , k′,

be a basis for E. For technical reasons, we always set g1 = e1. Note that k′ ≤ k′
η since E is a subspace

of R
k′

η . We now define the lifting L : R
k → R

k′

through

L := G ◦ Lη ◦ F, (12)

where G := (g1, . . . , gk′)⊤ ∈ R
k′×k′

η is the rank-k′ matrix whose rows correspond to the basis vectors of

E. The purpose of G in (12) is to remove all linear dependencies among the component mappings of

Lη ◦ F . The corresponding retraction R : R
k′ → R

k is defined through

R := F+ ◦ Rη ◦ G+, (13)

where F+ := (F⊤F )−1F⊤ ∈ R
k×kη and G+ := G⊤(GG⊤)−1 ∈ R

k′

η×k′

are the left and right inverses of

F and G, respectively.
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Proposition 4.6 The operators L and R defined in (12) and (13) satisfy (A1)–(A4).

Proof Axioms (A1) and (A2) are satisfied by construction. Axiom (A3) is satisfied if

R ◦ L = F+ ◦ Rη ◦ G+ ◦ G ◦ Lη ◦ F = Ik. (14)

We have F+ ◦ Rη ◦ Lη ◦ F = Ik since F+F = Ik by the definition of the left inverse and since Lη and Rη

satisfy axiom (A3), see Proposition 4.1. Thus, (14) follows if we can show that G+G acts as the identity

on the range of Lη ◦ F . As the columns of G⊤ constitute a basis for E, we conclude that for any η′ ∈ E

there exists v ∈ R
k′

such that G⊤v = η′. This implies that

G+Gη′ = G⊤
(
GG⊤

)−1
Gη′

= G⊤
(
GG⊤

)−1
GG⊤v

= G⊤v = η′ ∀η′ ∈ E.

Thus G+G acts as the identity on the range of Lη ◦ F , and therefore (A3) follows from (14).

To prove axiom (A4), we first show that the orthogonal complement of E satisfies

E⊥ ⊆
{
(Rη)⊤η : η ∈ kernel(F⊤)

}
. (15)

This holds if Lη ◦ F (ξ) is orthogonal to (Rη)⊤η for all ξ ∈ Ξ and η ∈ kernel(F⊤). Indeed, we have

η⊤Rη ◦ Lη ◦ F (ξ) = ξ⊤(F⊤η) = 0 ∀ξ ∈ Ξ, η ∈ kernel(F⊤),

and thus (15) follows. Next, choose v ∈ R
k′

, v 6= 0, and observe that G⊤v ∈ E since the row space of G

coincides with E. This implies that G⊤v 6∈ E⊥, and thus

∃η′ ∈ E : v⊤Gη′ 6= 0 =⇒ ∃ξ ∈ Ξ : v⊤G ◦ Lη ◦ F (ξ) = v⊤L(ξ) 6= 0.

Since L is continuous, v⊤L(ξ) cannot vanish Pξ-almost surely. This implies axiom (A4).

The liftings of type (12) provide much flexibility in designing piecewise linear decision rules. In

particular, they cover the class of liftings considered in Section 4.1 if we set F and G to Ik and Ik′

η
,

respectively. This implies that the lifted approximate problems LUB and LLB are computationally

intractable for generic liftings of the type (12) even if there is only one breakpoint per folding direction,

see Theorem 4.2. As in Section 4.1 we need to construct a tractable representation or outer approximation

for the convex hull of Ξ′ = L(Ξ) in order to invoke Theorem 2.1 or Corollary 2.2. In the following, we
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develop an outer approximation for the convex hull of hyperrectangular sets Ξ.

The convex hull of Ξ′ is given by

conv Ξ′ = conv L (Ξ) = conv G ◦ Lη ◦ F (Ξ)

= G (conv Lη ◦ F (Ξ)) ,

where the last equality holds since the linear operator G preserves convexity, see [39, Proposition 2.21].

Therefore, our problem reduces to finding an outer approximation for conv Lη ◦ F (Ξ). To this end, let

{η ∈ R
kη : ℓ ≤ η ≤ u} be the smallest hypercube that encloses Θ := F (Ξ). In analogy to Proposition 3.10,

one can show that

Θ = {η ∈ R
kη : ∃ξ ∈ Ξ with Fξ = η}

= {η ∈ R
kη : ∃ζ ∈ R

p with WF+η + V ζ �K h, FF+η = η}

= {η ∈ R
kη : ∃ζ ∈ R

p with WF+η + V ζ �K h, FF+η = η, ℓ ≤ η ≤ u},

where the second equality holds since FF+ is the orthogonal projection onto the range of F and since

ξ = F+η by definition of F+ and η. Note that Θ has the same structure as Ξ in (9) in the sense that it

involves a set of generic conic constraints as well as box constraints. Thus, an outer approximation for

the convex hull of Lη(Θ) is given by

Θ̂′ :=

{
η′ := (η′

1, . . . , η
′
kη

) ∈
kη×
i=1

R
ri : ∃ζ ∈ R

p with WF+ ◦ Rη(η′) + V ζ �K h, V −1
i (1, η′⊤

i )⊤ ≥ 0

}
,

see (10), where the matrices V −1
i are defined as in Lemma 4.3. Thus the resulting outer approximation

for conv Ξ′ is given by Ξ̂′ := G(Θ̂′), which satisfies condition (Ŝ4). This implies that Corollary 2.2 is

applicable, which ensures that LUB is conservatively approximated by LUB∗, while LLB is progressively

approximated by LLB∗.

The insights of this subsection are summarized in the following theorem.

Theorem 4.7 Assume that the original problem SP satisfies (S1)–(S4) and consider any lifting of the

type (12). Then the following hold.

(i) The lifted problem LSP satisfies (S1)–(S3) and (Ŝ4).

(iii) The sizes of the bounding problems LUB∗ and LLB∗ are polynomial in k, l, m, n, p and k′,

implying that they are efficiently solvable.

We emphasize that the sizes of LUB∗ and LLB∗ are not only polynomial in the problem dimensions

but also in the number of folding directions and breakpoints. Thus, it is relatively cheap to add enough
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breakpoints along each folding direction until the bounds saturate. More care needs to be taken when

choosing the folding directions. In the absence of structural knowledge about the optimal solution, we

propose to use the folding directions ei + ej and ei − ej for 1 ≤ i < j ≤ k and potentially similar

combinations of more than two basis vectors. For a practical example we refer to Section 7.

Example 4.8 Consider again the stylized stochastic program of Example 4.5. As the optimal solution

is kinked along the main diagonals in the (ξ2, ξ3)-plane, we define a lifting of the type (12) with a single

breakpoint along each (nontrivial) folding direction f2 = (1, 1) and f3 = (1,−1). Thus, we choose

F =




1 0 0

0 1 1

0 1 −1




, Lη(η) =




η1

min{η2, 0}

max{η2, 0}

min{η3, 0}

max{η3, 0}




, G = I5 =⇒ L(ξ) =




ξ1

min{ξ2 + ξ3, 0}

max{ξ2 + ξ3, 0}

min{ξ2 − ξ3, 0}

max{ξ2 − ξ3, 0}




.

Note that G can be set to the identity matrix as the number of folding directions matches the dimension

of ξ, which implies that the components of Lη(Fξ) constitute linearly independent functions on Ξ. It is

easy to verify directly that the linear retraction operator corresponding to L is of the form

R =




1 0 0 0 0

0 1
2

1
2

1
2

1
2

0 1
2

1
2 − 1

2 − 1
2




.

This pair of lifting and retraction operators gives rise to the following instance of LUB,

minimize Eξ′ (X ′ξ′)

subject to X ′ ∈ R
1×5

X ′ξ′ ≥ 1
2 max{|ξ′

2 + ξ′
3 + ξ′

4 + ξ′
5|, |ξ′

2 + ξ′
3 − ξ′

4 − ξ′
5|} ∀ξ′ ∈ Ξ̂′,

where

Ξ̂′ =
{

ξ′ ∈ R
5 : ξ1 = 1, − 1 ≤ 1

2 (ξ′
2 + ξ′

3 + ξ′
4 + ξ′

5) ≤ 1, − 1 ≤ 1
2 (ξ′

2 + ξ′
3 − ξ′

4 − ξ′
5) ≤ 1,

ξ′
2 ≤ 0, ξ′

3 ≥ 0, ξ′
4 ≤ 0, ξ′

5 ≥ 0, ξ′
3 − ξ′

2 ≤ 2, ξ′
5 − ξ′

4 ≤ 2
}

.

The first line in the definition of Ξ̂′ encodes the requirement Rξ′ ∈ Ξ, while the second line ensures that

ξ′ lies in the convex hull of Lη{η ∈ R
5 : ℓ ≤ η ≤ u} for ℓ = (−2, 0,−2, 0) and u = (0, 2, 0, 2). The optimal

solution of LUB is found to be X ′ = (0, 1
2 ,− 1

2 , 1
2 ,− 1

2 ). In fact, this solution remains optimal even if
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the support of ξ′ is extended to {ξ′ ∈ R
5 : ξ1 = 1, ξ′

2 ≤ 0, ξ′
3 ≥ 0, ξ′

4 ≤ 0, ξ′
5 ≥ 0}. The corresponding

objective value coincides with the minimum of the original stochastic program (i.e., 2/3). Unfortunately,

for the given lifting the optimal value of the lower bounding problem LLB amounts to 0.542 and is

therefore strictly smaller than the true minimum. The reason for this is that the optimal dual solution

is discontinuous along the main diagonals in the (ξ2, ξ3)-plane. However, a slightly more flexible lifting

with two breakpoints at ±ǫ along each of the folding directions f2 = (1, 1) and f3 = (1,−1) ensures that

the optimal values of LUP and LLB both converge to 2/3 as ǫ tends to zero.

5 Nonlinear Continuous Decision Rules

In this section we depart from the assumption that the lifting operator L is piecewise linear. In partic-

ular, we investigate different types of nonlinear convex liftings in Section 5.1, and we propose a class of

nonconvex multilinear liftings in Section 5.2. These liftings may offer additional flexibility when piece-

wise linear decision rules perform poorly, see Example 5.1. Moreover, they may prove useful for the

approximation of linear multistage stochastic programs, whose optimal solutions generically fail to be

piecewise linear [26, p. 123].

Example 5.1 Consider the stochastic program

minimize Eξ (−x (ξ))

subject to x ∈ L3,1

x(ξ) ≥ 0, x (ξ) ≤ ξ2, x(ξ) ≤ ξ3 Pξ-a.s.,

where ξ2 and ξ3 are independent and uniformly distributed on [0, 1]. The optimal solution x(ξ) =

min{ξ2, ξ3} with objective value −1/3 is kinked along the main diagonal of the (ξ2, ξ3)-plane. As ex-

pected, the best piecewise linear decision rule with axial segmentation is x(ξ) = 0 with objective value 0.

Maybe surprisingly, the best piecewise linear decision rule with general segmentation and folding direc-

tions f1 = (1, 0, 0) and f2 = (0, 1, 1) is also x(ξ) = 0 (irrespective of the number of breakpoints).

In the following, we represent ξ ∈ Ξ as ξ = (ξ1, . . . , ξT ), where the subvectors ξt ∈ R
kt satisfy k1 = 1

and
∑T

t=1 kt = k. We assume that the lifted random vector ξ′ := (ξ′
1, . . . , ξ

′
T ) has a similar structure as

ξ, and that the subvectors ξ′
t ∈ R

k′

t satisfy k′
1 = 1, ξ′

1 = 1 Pξ′ -a.s. and
∑T

t=1 k′
t = k′. The computational

tractability of our nonlinear decision rules is intimately related to a seperability property of the support

and the lifting operator.

Definition 5.2 (Separability) The support Ξ and the lifting operator L are called separable if

(i) the support Ξ satisfies Ξ = ×T
t=1 Ξt, where Ξt =

{
ξt ∈ R

kt : ξ ∈ Ξ
}
, and
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(ii) the lifting L satisfies L = (L1, . . . , LT ), where Lt : R
kt → R

k′

t , ξt 7→ ξ′
t, depends only on ξt.

This definition is non-restrictive. In fact, any support Ξ and lifting operator L : R
k → R

k′

are

separable if we choose T = 2, k2 = k−1 and k′
2 = k′−1. As we will see below, however, the computational

complexity of the bounding problems LLB and LUB will depend on maxt kt, the maximum dimension

over all subvectors ξt of ξ. The decision rules in this section are therefore particularly suited for problem

instances where each of the subvectors ξt is of small dimension (e.g. below 10). This is the case, for

example, if the optimal decision can be approximated well through the combination of a ‘global’ decision

x ∈ Lk,n that is linear in ξ, as well as several ‘local’ decisions xt ∈ Lkt,n that may be highly nonlinear

in the components of each subvector ξt. This assumption is naturally satisfied for multi-stage stochastic

programs with stagewise independent random vectors, see Section 6. It may also be justified in operations

management, where manufacturing and distribution decisions can exhibit strong nonlinearities in the

random demands for related products or in adjacent regions, whereas the decisions relating to different

products or distant regions can be almost independent.

As before, we require the lifting and retraction operators to satisfy (A1)–(A4). In view of (A2) and

(A3), this implies that ξ′
t must contain ξt (or an invertible linear transformation thereof) as a subvector.

5.1 Nonlinear Convex Liftings

In this section we assume that Ξ is polyhedral and that Ξ and L are separable in the sense of Definition 5.2.

We also assume that the lifting operator L satisfies L1(ξ1) = 1 and Lt(ξt) = (ξ′
t,1, ξ

′
t,2), t = 2, . . . , T ,

where ξ′
t,1 = ξt and ξ′

t,2 = ft(ξt) for functions ft : R
kt → R that have conic representable epigraphs. A

function ft has a conic representable epigraph if the set {(x, y) ∈ Ξt × R : ft(x) ≤ y} can be expressed

through conic inequalities that may involve additional auxiliary variables.

Proposition 5.3 The convex hull of L(Ξ) is described through the conic representable set

Ξ′ =

{
ξ′ ∈ R

k′

: ξ′
1 = 1, ∃λt(v) ∈ R+, t = 2, . . . , T and v ∈ Vt, such that

∑

v∈Vt

λt(v) = 1,

ξ′
t,1 =

∑

v∈Vt

λt(v)v and ξ′
t,2 ∈

[
ft(ξ

′
t,1),

∑

v∈Vt

λt(v)ft(v)

]
∀t = 2, . . . , T

}
,

where Vt = ext Ξt denotes the set of extreme points defining Ξt.

Proof Note that for any two sets A and B, we have conv (A×B) = conv (A)×conv (B). Due to the sepa-

rability of Ξ and L, as well as the fact that by construction, Ξ′ = ×T
t=1 Ξ′

t for Ξ′
t =

{
ξ′
t ∈ R

k′

t : ξ′ ∈ Ξ′
}

,

we can therefore restrict ourselves to the case T = 2.

25



We first show that conv L(Ξ) ⊆ Ξ′. To this end, fix any ξ′ ∈ conv L(Ξ). Carathéodory’s Theorem

implies that there is δ ∈ R
k+1
+ and u1, . . . , uk+1 ∈ Ξ2 such that e⊤δ = 1, ξ′

1 = 1, ξ′
2,1 =

∑k+1
i=1 δi ui

and ξ′
2,2 =

∑k+1
i=1 δi f2(ui). Since Ξ2 is convex, we have Ξ2 = conv ext Ξ2, and another application of

Carathéodory’s Theorem implies that for each ui there is κi(v) ∈ R+, v ∈ V2, such that
∑

v∈V2
κi(v) = 1

and ui =
∑

v∈V2
κi(v)v. We now set λ2(v) =

∑k+1
i=1 δi κi(v) for all v ∈ V2. By construction, we have

λ2(v) ≥ 0, v ∈ V2,
∑

v∈V2
λ2(v) = 1 and ξ′

2,1 =
∑

v∈V2
λ2(v)v. Moreover, one readily verifies that

f2(ξ
′
2,1) = f2

(
k+1∑

i=1

δi ui

)
= f2

(
k+1∑

i=1

δi

∑

v∈V2

κi(v)v

)
≤

k+1∑

i=1

δi f2

(∑

v∈V2

κi(v)v

)

≤
k+1∑

i=1

δi

∑

v∈V2

κi(v)f2(v) =
∑

v∈V2

λ2(v)f2(v),

where both inequalities follow from the convexity of f2. Since the last expression in the first row equals

∑k+1
i=1 δi f2(ui) = ξ′

2,2, we have ξ′
2,2 ∈

[
f2(ξ

′
2,1),

∑
v∈V2

λ2(v)f2(v)
]
, and the assertion follows.

To show that conv L(Ξ) ⊇ Ξ′, fix any ξ′ ∈ Ξ′. By construction, there is λ2(v) ∈ R+, v ∈ V2,

and δ ∈ [0, 1] such that ξ′
1 = 1,

∑
v∈V2

λ2(v) = 1, ξ′
2,1 =

∑
v∈V2

λ2(v)v and ξ′
2,2 = δf2(ξ

′
2,1) + (1 −

δ)
∑

v∈V2
λ2(v)f2(v). This implies that




ξ′
2,1

ξ′
2,2


 =

∑

v∈V2

(1 − δ)λ2(v)




v

f2(v)


+ δ




ξ′
2,1

f2(ξ
′
2,1)


 ,

that is, ξ′ is a convex combination of points contained in L(Ξ). This concludes the proof.

The number of auxiliary variables λt(v) in Ξ′ is proportional to maxt |ext Ξt|, which in general will

be exponential in maxt kt. We are therefore primarily interested in liftings where the dimensions of

the subvectors ξt are fairly small. Despite this limitation, Proposition 5.3 provides us with remarkable

flexibility in defining nonlinear decision rules. In the following, we present a few immediate applications

of the result. The involved epigraph formulations of ft are standard, see e.g. [8].

Example 5.4 (Quadratic Liftings) Consider the component lifting Lt(ξt) = (ξt, ξ⊤
t Qξt), where Q is

positive semidefinite. Then the epigraph of ft(ξt) = ξ⊤
t Qξt has a conic quadratic representation as





(x, y) ∈ R
kt × R :

∥∥∥∥∥∥∥




Q1/2x

(y − 1)/2




∥∥∥∥∥∥∥
2

≤ (y + 1)/2





.

Example 5.4 allows us to optimize over quadratic decision rules x(ξ1, . . . , ξT ) =
∑T

t=2 x1t(ξ
⊤
t Qt ξt) +

x⊤
2 ξ that are parametrized in x1 ∈ R

T and x2 ∈ R
k. The resulting bounding problems LLB and LUB
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are tractable conic quadratic programs if each subvector ξt is of modest dimension.

Example 5.5 (Power Liftings) Consider the component lifting Lt(ξt) = (ξt, g(ξt)
p/q), where g :

R
kt → R+ has a conic representable epigraph and p, q ∈ N with p > q. Then the epigraph of ft(ξt) =

g(ξt)
p/q has a conic representation as





(x, y) ∈ R
kt × R+ :

∃wr,s ∈ R+, r = 1, . . . , Q and s = 1, . . . , 2Q−r such that

wr,s ≤ √
wr−1,2s−1wr−1,2s ∀r = 1, . . . , Q, s = 1, . . . , 2Q−r, g(x) ≤ wQ,1





,

where we use the notational shorthands Q = ⌈log2 q⌉ and w0,s = wQ,1 for s = 1, . . . , 2Q − p; = y for

s = 2Q − p + 1, . . . , 2Q − p + q; = 1 otherwise. In particular, the epigraph of ft has a conic quadratic

representation whenever the function g has one.

Example 5.5 allows us to formulate conic quadratic bounding problems LLB and LUB that optimize

over decision rules such as x(ξ1, . . . , ξ6) = x1ξ
2
2 + x2 |ξ3|3/2

+ x3(ξ3 − ξ4)
4 + x4 [ξ5 − ξ6]

5/2
+ + x⊤

5 ξ, which

is parametrized in x1, . . . , x4 ∈ R and x5 ∈ R
6, since the mappings x 7→ |x| and y 7→

[
g⊤y

]
+

have

nonnegative polyhedral epigraphs.

Example 5.6 (Monomial Liftings) Consider the component lifting Lt(ξt) = (ξt,−
∏ℓ

l=1 gl(ξt)
pl/q),

where gl : R
kt → R+, l = 1, . . . , ℓ, have conic representable hypographs and pl, q ∈ N satisfy

∑ℓ
l=1

pl

q ≤ 1.

Then the epigraph of ft(ξt) = −∏ℓ
l=1 gl(ξt)

pl/q has a conic representation as





(x, y) ∈ R
kt × R :

∃wr,s ∈ R+, r = 1, . . . , Q, s = 1, . . . , 2Q−r and τ ∈ R
ℓ
+ such that

wr,s ≤ √
wr−1,2s−1wr−1,2s ∀r = 1, . . . , Q, s = 1, . . . , 2Q−r, τ ≤ g(x), y + wQ,1 ≥ 0





,

where we use the notational shorthands Q = ⌈log2 q⌉ and w0,s = τl for s =
∑l−1

l′=1 pl′ + 1, . . . ,
∑l

l′=1 pl′

and l ∈ {1, . . . , ℓ}; = wQ,1 for s =
∑ℓ

l=1 pl + 1, . . . ,
∑ℓ

l=1 pl + 2Q − q; = 1 otherwise. In particular, the

epigraph of ft has a conic quadratic representation whenever the function g has one.

Using Example 5.6 and the fact that x 7→ |x| and y 7→ [y]+ have polyhedral epigraphs, we can

formulate conic quadratic bounding problems that optimize over decision rules such as x(ξ1, . . . , ξ5) =

x1

√
M1 − (ξ2 − ξ3)2 + x2

√(
M2 − [ξ4]+

) (
M3 − [ξ5]+

)
+ x⊤

3 ξ, which is parametrized in x1, x2 ∈ R and

x3 ∈ R
5. Here, M1,M2,M3 are constants that ensure nonnegativity of the terms inside the square roots.

Example 5.7 (Inverse Monomial Liftings) Consider the lifting Lt(ξt) = (ξt,
∏ℓ

l=1 gl(ξt)
−pl/q), where

gl : R
kt → R+, l = 1, . . . , ℓ, are strictly positive functions with conic representable hypographs and
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pl, q ∈ N. Then the epigraph of ft(ξt) =
∏ℓ

l=1 gl(ξt)
−pl/q has a conic representation as





(x, y) ∈ R
kt × R :

∃wr,s ∈ R+, r = 1, . . . , Q − 1, s = 1, . . . , 2Q−r and τ ∈ R
ℓ
+ such that

wr,s ≤ √
wr−1,2s−1wr−1,2s ∀r = 1, . . . , Q, s = 1, . . . , 2Q−r, τ ≤ g(x)





,

where we use the notational shorthands Q =
⌈
log2

(∑ℓ
l=1 pl + q

)⌉
, wQ,1 = 1 and w0,s = τl for s =

∑l−1
l′=1 pl′ + 1, . . . ,

∑l
l′=1 pl′ and l ∈ {1, . . . , ℓ}; = y for s =

∑ℓ
l=1 pl + 1, . . . ,

∑ℓ
l=1 pl + q; = 1 otherwise.

In particular, the epigraph of ft has a conic quadratic representation whenever the function g has one.

Assuming that Ξ ⊆ int R
k
+, Example 5.7 allows us to formulate bounding problems that optimize

over decision rules such as x(ξ) = x1/
∏k

i=2 ξi + x⊤
2 ξ, which is parametrized in x1 ∈ R and x2 ∈ R

k,

as well as x(ξ1, . . . , ξ4) = x1/ξ2 + x2/ξ2
3 + x3/

√
ξ4 + x⊤

4 ξ, which is parametrized in x1, x2, x3 ∈ R and

x4 ∈ R
4. We can also model inverse power liftings of the form Lt(ξt) = (ξt, g(ξt)

−p/q) if we set ℓ = 1 in

Example 5.7.

We remark that the component liftings in this section can be combined with each other and with the

piecewise linear liftings from Section 4 as long as Ξ and L remain separable in the sense of Definition 5.2.

5.2 Multilinear Liftings

We now assume that the support of ξ is described by the hypercube Ξ =
{
ξ ∈ R

k : ℓ ≤ ξ ≤ u
}
. The

regularity condition (S1) then implies that ℓ1 = u1 = 1 and ℓi < ui for all i = 2, . . . , k. As in the

previous section, we require Ξ and L to be separable in the sense of Definition 5.2. We also assume

that the lifting operator L satisfies L1(ξ1) = 1 and Lt(ξt) = (ξ′
t,1, ξ

′
t,2), t = 2, . . . , T , where ξ′

t,1 = ξt and

ξ′
t,2 = ft(ξt) for multilinear functions ft : R

kt 7→ R
st of the form

ft(ξt) =




ft,1(ξt)

...

ft,st
(ξt)




=




∏

i∈It,1

ξt,i

...
∏

i∈It,st

ξt,i




,
where It,s ⊆ {1, . . . , kt} and |It,s| > 1,

t = 2, . . . , T and s = 1, . . . , st.

Consistency then requires that k′
1 = 1 and k′

t = kt + st for all t = 2, . . . , T .
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Proposition 5.8 The convex hull of L(Ξ) is described through the polyhedron

Ξ′ =

{
ξ′ ∈ R

k′

: ξ′
1 = 1, ∃λt(v) ∈ R+, t = 2, . . . , T and v ∈ Vt, such that

∑

v∈Vt

λt(v) = 1 and ξ′
t =

∑

v∈Vt

λt(v)




v

ft(v)


 ∀t = 2, . . . , T

}
,

where Vt = ext Ξt denotes the set of extreme points defining Ξt.

Proof In analogy to the proof of Proposition 5.3, it is sufficient to consider the case T = 2. By

construction, any element in Ξ′ is a convex combination of the points (1, v, f2(v)), v ∈ V2. Since all of

these points are elements of L(Ξ), we conclude that Ξ′ ⊆ conv L(Ξ).

We now show that conv L(Ξ) ⊆ Ξ′. Since Ξ′ is convex, it suffices to show that L(Ξ) ⊆ Ξ′. Fix

ξ′ ∈ L(Ξ) and choose the weights λ2(v) =
∏k2

i=1 φi(vi, ξ
′
2,1,i), v ∈ V2, where φi(vi, ξ

′
2,1,i) = (ui+1 −

ξ′
2,1,i)/(ui+1−li+1) if vi = ℓi+1 and φi(vi, ξ

′
2,1,i) = (ξ′

2,1,i−ℓi+1)/(ui+1−li+1) if vi = ui+1. By construction,

φi(vi, ξ
′
2,1,i) ≥ 0 for all i and v, which implies that λ2(v) ≥ 0 for all v ∈ V2. Moreover, we have that

∑

v∈V2

λ2(v) =
∑

v∈V2

k2∏

i=1

φi(vi, ξ
′
2,1,i) =

k2∏

i=1

[
φi(ℓi+1, ξ

′
2,1,i) + φi(ui+1, ξ

′
2,1,i)

]
= 1,

and for all i = 1, . . . , k2, we have that

∑

v∈V2

λ2(v)vi =
∑

v∈V2




k2∏

j=1

φj(vj , ξ
′
2,1,j)


 vi

= ℓi+1

∑

v∈V2:
vi=ℓi




k2∏

j=1

φj(vj , ξ
′
2,1,j)


+ ui+1

∑

v∈V2:
vi=ui




k2∏

j=1

φj(vj , ξ
′
2,1,j)




=
[
ℓi+1 φi(ℓi+1, ξ

′
2,1,i) + ui+1 φi(ui+1, ξ

′
2,1,i)

] ∏

j=1,...,k2

j 6=i

[
φj(ℓj+1, ξ

′
2,1,j) + φi(uj+1, ξ

′
2,1,j)

]

= ℓi+1φi(ℓi+1, ξ
′
2,1,i) + ui+1φi(ui+1, ξ

′
2,1,i) = ξ′

2,1,i.

One similarly shows that
∑

v∈V2
λ2(v)f2(v) = ξ′

2,2. We thus have ξ′ ∈ Ξ′, which concludes the proof.

In analogy to Proposition 5.3, the number of auxiliary variables λt(v) in Proposition 5.8 is proportional

to maxt |ext Ξt| = maxt 2kt . For practical applications, the dimensions of the subvectors ξt should

therefore be sufficiently small. Proposition 5.8 allows us to formulate bounding problems LLB and

LUB that optimize over decision rules such as x(ξ1, . . . , ξ4) = x1ξ2ξ3 + x2ξ2ξ4 + x3ξ3ξ4 + x⊤
4 ξ, which is

parametrized in x1, x2, x3 ∈ R and x4 ∈ R
4. It is worth noting that the resulting bounding problems
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constitute linear programs, despite the fact that they optimize over nonlinear decision rules.

We now consider a special case of Proposition 5.8 that allows us to derive bounding problems LLB

and LUB which are tractable irrespective of the sizes kt of the subvectors ξt of ξ.

Proposition 5.9 Assume that in addition to the assumptions of Proposition 5.8, we have that

(i) the support Ξ satisfies either ℓi = 0 for all i = 2, . . . , k or ℓi = −ui for all i = 2, . . . , k, and

(ii) the functions ft in the lifting L satisfy st = 1 for all t = 2, . . . , T .

Then the convex hull of L(Ξ) is described through the polyhedron

Ξ′ =
{
ξ′ ∈ R

k′

: ξ′
1 = 1, ∃θt,i, t = 2, . . . , T and i = 1, . . . , nt, such that

θt,i ≥ κt,i ξ′
t,1,it,i

+ uit,i
θt,i+1 − κi,j uit,i

, θt,i ≥ λt,i ξ′
t,1,it,i

+ ℓit,i
θt,i+1 − λi,j ℓit,i

,

θt,i ≤ κt,i ξ′
t,1,it,i

+ ℓit,i
θt,i+1 − κi,j ℓit,i

, θt,i ≤ λt,i ξ′
t,1,it,i

+ uit,i
θt,i+1 − λi,j uit,i

,

ξ′
t,1 ∈ Ξt, ξ′

t,2 = θt,nt
∀t = 2, . . . , T, ∀i = 1, . . . , nt − 1

}
,

where It,1 = {it,1, . . . , it,nt
}, t = 2, . . . , T , λt,nt−1 = ℓit,nt

and κt,nt−1 = uit,nt
, and λt,i and κt,i denote

the minimum and maximum of
{
κt,i+1uit,i+1

, κt,i+1ℓit,i+1
, λt,i+1uit,i+1

, λt,i+1ℓit,i+1

}
for all t = 2, . . . , T

and i = 1, . . . , nt − 2, respectively.

Remark 5.10 The polyhedron Ξ′ emerges from a recursive application of the classical McCormick rep-

resentation of the convex hull of bilinear terms. The conditions in the statement guarantee that the

resulting outer approximation of conv L(Ξ) is tight, which is not the case in general.

Proof of Proposition 5.9 In analogy to the proof of Propositions 5.3, it is sufficient to consider the

case T = 2. The results then follow from Theorems 1 and 2, as well as Corollaries 1 and 2 in [36].

Contrary to Proposition 5.8, the description of conv L(Ξ) provided in Proposition 5.9 involves poly-

nomially many auxiliary variables and therefore scales gracefully with the dimensions kt of the subvectors

ξt of ξ. Note that the second condition in Proposition 5.9 is satisfied for the decision rule x(ξ1, . . . , ξ5) =

x1ξ2ξ3 + x2ξ4ξ5 + x⊤
3 ξ, but it is violated by the decision rule x(ξ1, . . . , ξ4) = x1ξ2ξ3 + x2ξ3ξ4 + x⊤

3 ξ since

the nonlinear terms ξ2ξ3 and ξ3ξ4 share a common component of ξ.

Example 5.11 Consider again the stochastic program of Example 5.1 and define the multilinear lifting

L(ξ) = (ξ1, ξ2, ξ3, ξ2ξ3) with retraction operator R(ξ′) = (ξ′
1, ξ

′
2, ξ

′
3). The convex hull of L(Ξ) is given by

Ξ′ =
{
ξ′ ∈ R

4 : ξ′
1 = 1, 0 ≤ ξ′

2 ≤ 1, 0 ≤ ξ′
3 ≤ 1, 0 ≤ ξ′

4 ≤ 1, ξ′
4 ≥ ξ′

2, ξ′
3 ≥ ξ′

4

}
.
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This lifting provides an upper bound of −1/4. Recall that all piecewise linear liftings resulted in the trivial

upper bound 0. The lower bounds associated with the piecewise linear liftings are given by −0.377 (axial

segmentation with 10 equispaced breakpoints) and −0.336 (general segmentation with folding directions

f1 = (1, 0, 0) and f2 = (0, 1, 1) and 10 equispaced breakpoints). Interestingly, the multilinear lifting offers

a weaker lower bound of only −0.416.

6 Multistage Stochastic Programs

In this section we demonstrate that the lifting techniques developed for the single-stage stochastic pro-

gram SP extend to multistage stochastic programs of the form

minimize Eξ

(
T∑

t=1

ct(ξ
t)⊤xt(ξ

t)

)

subject to xt ∈ Lkt,nt
∀ t ∈ T

t∑

s=1

Atsxs(ξ
s) ≤ bt(ξ

t) Pξ-a.s. ∀t ∈ T.

(MSP)

Here it is assumed that ξ is representable as ξ = (ξ1, . . . , ξT ) where the subvectors ξt ∈ R
kt are observed

sequentially at time points indexed by t ∈ T := {1, . . . , T}. Without loss of generality, we assume that

k1 = 1 and ξ1 = 1 Pξ-a.s. The history of observations up to time t is denoted by ξt := (ξ1, . . . , ξt) ∈ R
kt

,

where kt :=
∑t

s=1 ks. Consistency then requires that ξT = ξ and kT = k. The decision xt(ξ
t) ∈ R

nt is

selected at time t after the outcome history ξt has been observed but before the future outcomes {ξs}s>t

have been revealed. The objective is to find a sequence of decision rules xt ∈ Lkt,nt
, t ∈ T, which map

the available observations to decisions and minimize a linear expected cost function subject to linear

constraints. The requirement that xt depends solely on ξt reflects the non-anticipative nature of the

dynamic decision problem at hand and essentially ensures its causality. We will henceforth assume that

MSP satisfies the following regularity conditions.

(M1) The support Ξ of the probability measure Pξ of ξ is a compact subset of the hyperplane {ξ ∈ R
k :

ξ1 = 1} and its linear hull spans R
k.

(M2) The objective function coefficients and the right hand sides in MSP depend linearly on ξ, that is,

ct (ξt) = Ctξ
t and bt (ξt) = Btξ

t for some Ct ∈ R
nt×kt

and Bt ∈ R
mt×kt

, t ∈ T.

(M3) MSP is strictly feasible.

(M4) The random vectors {ξt}t∈T are mutually independent.

31



The conditions (M1)–(M3) are the multistage equivalents of the conditions (S1)–(S3) for SP. The

additional condition (M4) is a widely used standard assumption in multistage stochastic programming.

(M4) guarantees tractability of the lifted lower bound problem to be developed below.

As in the single-stage case, the intractable problem MSP can be bounded above and below by two

semi-infinite problems MUB and MLB, which are obtained by requiring the primal and dual decisions

in MSP to be linear in ξ, respectively [35]. These problems turn out to be tractable if the convex hull

of Ξ is representable by a finite set of conic inequalities, as stated in the following assumption.

(M5) The convex hull of the support Ξ of Pξ is a compact set of the form

conv Ξ =
{
ξ ∈ R

k : ∃ζ ∈ R
p with Wξ + V ζ �K h

}
,

where W ∈ R
l×k, V ∈ R

l×p, h ∈ R
l and K ⊆ R

l is a proper cone, see also condition (S4).

Condition (M5) is the multistage equivalent of (S4). We can now generalize Theorem 2.1 to MSP.

Theorem 6.1 If MSP satisfies the conditions (M1), (M2) and (M5), then MUB is equivalent to

minimize
T∑

t=1

Tr
(
PtMP⊤

t C⊤
t Xt

)

subject to Xt ∈ R
nt×kt

, Λt ∈ Kmt
⋆

t∑

s=1

AtsXsPs + ΛtW = BtPt

ΛtV = 0, Λth ≥ 0





∀t ∈ T,

(MUB∗)

where the truncation operators Pt, t ∈ T, are defined through Pt : R
k → R

kt

, ξ 7→ ξt. If MSP also

satisfies the conditions (M3) and (M4), then MLB is equivalent to

minimize

T∑

t=1

Tr
(
PtMP⊤

t C⊤
t Xt

)

subject to Xt ∈ R
nt×kt

, St ∈ R
mt×kt

, Γt ∈ R
p×mt

t∑

s=1

AtsXsPs + StPt = BtPt

(W − he1)MP⊤
t S⊤

t + V Γt �Kmt 0





∀t ∈ T

(MLB∗)

The sizes of the conic problems MUB∗ and MLB∗ are polynomial in k :=
∑T

t=1 kt, l, m :=
∑T

t=1 mt,

n :=
∑T

t=1 nt, and p, implying that they are efficiently solvable.

Proof This is a straightforward generalization of the results from [35] to conic support sets Ξ.
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If conv Ξ has no tractable representation, it may be possible to construct a tractable outer approxi-

mation Ξ̂ for the convex hull of Ξ which satisfies the following condition.

(M̂5) There is a compact set Ξ̂ ⊇ conv Ξ of the form Ξ̂ =
{
ξ ∈ R

k : ∃ζ ∈ R
p with Wξ + V ζ �K h

}
,

where W ∈ R
l×k, V ∈ R

l×p, h ∈ R
l and K ⊆ R

l is a proper cone, see also condition (Ŝ4).

If condition (M̂5) holds, then we can extend Corollary 2.2 to MSP as follows.

Corollary 6.2 If MSP satisfies the conditions (M1), (M2) and (M̂5), then MUB∗ provides a con-

servative approximation (i.e., a restriction) for MUB. If MSP additionally satisfies the conditions

(M3) and (M4), then MLB∗ provides a progressive approximation (i.e., a relaxation) for MLB.

We can use lifting techniques to improve the upper and lower bounds on MSP provided by MUB

and MLB. To this end, we introduce a lifting operator L : R
k → R

k′

, ξ 7→ ξ′, as well as a retraction

operator R : R
k′ → R

k, ξ′ 7→ ξ. We assume that the lifted random vector ξ′ := (ξ′
1, . . . , ξ

′
T ) has a similar

temporal structure as ξ, where ξ′
t ∈ R

k′

t , ξ′t := (ξ′
1, . . . , ξ

′
t) ∈ R

k′t

, k′t :=
∑t

s=1 k′
s, ξ′T = ξ′ and k′T = k′.

As in Section 3, admissible pairs of lifting and retraction operators must satisfy the axioms (A1)–(A4).

Due to the temporal structure inherent in MSP we need to impose the following additional axiom.

(A5) The lifting L satisfies L = (L1, . . . , LT ), where Lt : R
kt → R

k′

t , ξt 7→ ξ′
t, depends only on the

observation of ξ at time t. Likewise, the retraction R satisfies R = (R1, . . . , RT ), where Rt : R
k′

t →

R
kt , ξ′

t 7→ ξt, depends only on the observation of ξ′ at time t.

Intuitively, the new axiom (A5) guarantees that the lifting L preserves the non-anticipative nature of

the decision problem at hand. As before, we use L and R to define the lifted version of MSP:

minimize Eξ′

(
T∑

t=1

ct(PtRξ′)⊤x′
t(ξ

′t)

)

subject to x′
t ∈ Lk′t,nt

∀ t ∈ T

t∑

s=1

Atsx
′
s(ξ

′s) ≤ bt(PtRξ′) Pξ′ -a.s. ∀t ∈ T,

(LMSP)

where Pξ′ and Pt are defined in Section 3 and Theorem 6.1, respectively.

Proposition 6.3 MSP and LMSP are equivalent in the following sense: both problems attain the same

optimal value, and there is a one-to-one mapping between feasible and optimal solutions in both problems.

Proof The proof of this proposition widely parallels the proof of Proposition 3.4. The only difference

is that axiom (A5) is needed to establish a one-to-one correspondence between non-anticipative policies

in MSP and LMSP.

33



Our goal is to apply Theorem 6.1 and Corollary 6.2 to the lifted problem LMSP to obtain tighter

bounds on the original problem MSP. However, this is only possible if LMSP satisfies (M1)–(M4)

and a tractable representation or outer approximation of conv Ξ is given by (M5) or (M̂5), respectively.

In a first step we verify the satisfaction of the conditions (M1)–(M4).

Proposition 6.4 If MSP satisfies conditions (M1)–(M4), then LMSP also satisfies these conditions.

Proof The proof that LMSP satisfies (M1)–(M3) is largely parallel to the proof of Proposition 3.9

and is thus omitted. To prove that LMSP satisfies (M4), recall that the random vectors {ξt}t∈T are

mutually independent, which implies via axiom (A5) that {Lt(ξt)}t∈T are also mutually independent

with respect to Pξ. By construction of the probability distribution Pξ′ of ξ′, the random vectors {ξ′
t}t∈T

are therefore also mutually independent with respect to Pξ′ . Hence, LMSP satisfies (M4).

The axioms (A1)–(A5) are not sufficient to guarantee that LMSP satisfies condition (M5) or (M̂5)

whenever MSP does so. However, if each of the stagewise liftings Lt : R
kt → R

k′

t , t ∈ T, is constructed

like the single-stage liftings in Section 4 or 5, then it is easy to show that LMSP satisfies either (M5)

or (M̂5) whenever MSP does so. In this situation, we can solve the approximate linear decision rule

problems LMUB∗ and LMLB∗ efficiently.

Remark 6.5 If we are only interested in the conservative approximation LMUB and have no intention

to solve LMLB, then the assumptions (M3) and (M4) on the original problem MSP are not needed.

Moreover, axiom (A5) can be amended to allow for history-dependent liftings of the form

Lt : R
kt → R

k′

t , ξt 7→ ξ′
t.

In this generalized setting, the lifted problem LMSP can still be shown to be equivalent to MSP and to

satisfy (M1) and (M2). Moreover, for the liftings discussed in Sections 4 and 5, LMSP can be shown

to satisfy (M5) or (M̂5) whenever MSP does so. Thus, LMUB∗ provides a tractable conservative

approximation for the original problem MSP.

7 Numerical Example

We test different decision rule approximations in the context of a stochastic dynamic inventory control

problem with multiple products and backlogging. The objective is to determine a sales and order policy

that maximizes the expected profit over a planning horizon of T months. At the beginning of month t,

we observe a vector of risk factors ξt that explains the uncertainty in the current demand Dt,p(ξt) and

the unit sales price Rt,p(ξt) of each product p = 1, . . . , P . Having observed ξt, we select the quantity

34



st,p of product p that is sold in month t at the current price. We also determine the amount ot,p of

the product that is ordered to replenish the inventory as well as the amount bt,p of the product that is

backlogged to the next month at unit cost CB. We require that the sales st,p in month t are served from

orders placed in month t − 1 or earlier. The inventory level at the beginning of month t is denoted by

It. For ease of exposition we assume that one unit of each product occupies the same amount of space

and incurs the same monthly inventory holding costs CI. We require that the inventory level remains

nonnegative and does not exceed the capacity limit I throughout the planning horizon.

The inventory control problem described above can be formulated as

maximize E

[
T∑

t=1

P∑

p=1

Rt,p(ξt)st,p(ξ
t) − CB · bt,p(ξ

t) − CI · It,p(ξ
t)

]

subject to It(ξ
t) = I[t6=1]It−1(ξ

t−1) +

P∑

p=1

I[t6=1]ot−1,p(ξ
t−1) − st,p(ξ

t) ∀t = 1, . . . , T,

bt,p(ξ
t) = I[t6=1]bt−1,p(ξ

t−1) + Dt,p(ξt) − st,p(ξ
t)

ot,p(ξ
t), st,p(ξ

t), bt,p(ξ
t), It,p(ξ

t) ≥ 0, It,p(ξ
t) ≤ I





∀t = 1, . . . , T,

∀p = 1, . . . , P,

(16)

where all constraints are assumed to hold with probability 1. We define the product prices as

Rt,p(ξt) = 2 + γR [α1,pξt,1 + α2,pξt,2]

with factor loadings α1,p, α2,p ∈ [−1, 1] and uncertainty level γR ∈ [0, 1]. Similarly, we set the demands

to

Dt,p(ξt) =





2 + sin
(

2π(t−1)
12

)
+ 1

2γD [α3,pξt,3 + α4,pξt,4] for p = 1, . . . , P/2

2 + cos
(

2π(t−1)
12

)
+ 1

2γD [α3,pξt,3 + α4,pξt,4] for p = P/2 + 1, . . . , P

with α3p, α4p ∈ [−1, 1] and γD ∈ [0, 1]. The sine (cosine) terms in the above expression encode the

stylized fact that the expected demands of the first (last) P/2 products are high in spring (winter) and

low in autumn (summer). We assume that the vectors of risk factors ξt ∈ R
4, t = 1, . . . , T , are serially

independent and uniformly distributed on [−1, 1]4. Note that ξt,1 and ξt,2 only impact the prices, while

ξt,3 and ξt,4 only impact the demands. This ensures the applicability of the scenario tree-based bounding

methods proposed in [25, 33]. We emphasize, however, that none of the decision rule approximations

developed in this paper require such a separation of the risk factors.

All numerical experiments are based on 25 randomly generated instances of the inventory control

problem with P = 4 products, identical backlogging and inventory holding costs CB = CI = 0.2 and

inventory capacity Ī = 24. The uncertainty levels of the prices and demands are set to γP = γD = 1,

and the factor loadings α1,p, α2,p, α3,p and α4,p are sampled uniformly from the interval [−1, 1]. Each
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instance is solved with the decision rule approximations induced by the following liftings: linear (LDR),

piecewise linear with axial segmentation and 5 equidistant breakpoints (AS5), piecewise linear with

general segmentation and one breakpoint at 0 (GS1), bilinear (BL) and trilinear (TL). The lifting GS1

uses the folding directions ei for i = 1, . . . , k as well as ei +ej and ei −ej for 1 ≤ i < j ≤ k. Moreover, the

liftings BL and TL include all possible pairs and triplets of mutually different random parameters of any

stage as component functions, respectively. A major benefit of the decision rule techniques developed in

this paper is their modularity, which allows us to combine basic liftings to generate more flexible liftings.

For instance, we can construct the combined liftings BL-1 and TL-1, which are defined as compositions

of a piecewise linear lifting with axial segmentation and one breakpoint at 0 with the bi- and trilinear

liftings BL and TL, respectively (thus resulting in piecewise bi- and trilinear decision rules).

We compare the different decision rule approximations with the scenario tree-based bounding method

described in [25, 33] (SCN). This method provides both upper and lower bounds that are reminiscent of

the classical Jensen and Edmundson-Madansky bounds of stochastic programming [13] and that can be

viewed as multilinear decision rule bounds [34]. However, the underlying scenario trees and—a fortiori—

the computational effort required to compute these bounds grows exponentially with the horizon length

T , whereas all decision rule approximations developed in this paper scale gracefully with T .
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Figure 4: Upper(UB) and lower(LB) bounds (left) and runtimes (right) of the linear and
piecewise linear decision rule approximations and the scenario tree-based approximation.

All numerical results are obtained using the IBM ILOG CPLEX 12 optimization package on a dual-

core 2.4GHz machine with 4GB RAM. Table 1 reports the relative gaps between the bounds obtained

from the different approximations and for planning horizons of up to 30 months. All numbers represent

averages over 25 randomly generated problem instances. As expected, the LDR bounds are the weakest

with gaps of up to 43.1%. The AS5 bounds already provide a noticeable improvement, but the cor-

responding gaps are still of the order of 25%. A truly substantial improvement is offered by the GS1

bounds, which collapse the gaps to less than 7.5% uniformly across all T ≤ 30; see also Figure 4 (left),
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Number of time stages
2 5 10 15 20 25 30

LDR 0.9% 28.4% 28.8% 28.8% 32.0% 36.2% 43.1%
AS5 0.5% 24.5% 27.3% 23.9% 27.3% 24.1% 29.1%
GS1 0.6% 5.9% 5.6% 5.7% 6.5% 6.3% 7.5%
BL 0.8% 14.1% 13.7% 15.5% 17.7% 12.6% 18.9%
TL 0.7% 14.1% 13.4% 15.3% 17.4% 12.4% 18.8%

BL-1 0.7% 6.8% 5.6% 5.5% 5.9% 6.1% 7.7%
TL-1 0.7% 5.5% 4.1% 4.4% 5.6% 4.1% 5.7%
SCN 1.1% 4.1% — — — — —

Table 1: Relative gaps between upper and lower bounds of different approximations.

where the upper GS1 bound is closer to the lower LDR and AS5 bounds than to the respective upper

bounds. The BL and TL bounds are also noticeably stronger than the AS5 bounds but do not achieve

the high level of precision of the GS1 bounds. However, multilinear liftings can still be of great value

when used in conjunction with piecewise linear liftings. Indeed, the TL-1 bounds dominate all other

bounds in terms of accuracy across all time horizons T ≤ 30. The scenario tree-based SCN bounds are

competitive with the best decision rule bounds whenever they are available. However, for T > 9 the

SCN bounds could not be solved within our memory limit of 4GB RAM. Table 2 reports the runtimes for

computing the different bounds and clearly illustrates the trade-off between accuracy and computational

cost. Note that the runtimes of all new decision rule bounds scale subexponentially with T , which is in

stark contrast to the SCN bounds, whose runtime grows exponentially; see Figure 4 (right).

Experiments with different parameter settings have shown that the complexity of solving the inventory

control problem with decision rules (as measured in terms of relative gap size) is largely independent of

the number of products P , the demand uncertainty level γD and the inventory capacity I but increases

with the price uncertainty level γP. Moreover, the problem is most difficult to solve if the backlogging and

inventory holding costs differ substantially from the average sales price Eξ(Rt,p(ξt)) = 2. The inventory

control problem is therefore particularly hard to solve for the specific parameters considered here.

In principle, one could also use polynomial decision rules of a fixed degree d ∈ N and sums-of-squares

polynomial inequalities to construct approximations for problem (16) [4, 12]. Polynomial decision rules

emerge as a special case of the lifting approach discussed in this paper if we define a lifting whose

component mappings coincide with the monomials of ξ up to degree d. The resulting primal and dual

approximations admit tractable semidefinite restrictions and relaxations, respectively. When applied to

problem (16), however, the resulting semidefinite programs would involve O(T 2d+1) decision variables

and O(T 2) linear matrix inequalities of dimension O(T d−1) each; see [4, Proposition 2.1]. More precisely,

for T = 5 and d = 2 these semidefinite programs would already accommodate 196,416 decision variables

and would thus be beyond the reach of current state-of-the-art semidefinite programming solvers. In
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Number of time stages
2 5 10 15 20 25 30

LDR 0.0 sec 0.0 sec 0.0 sec 0.1 sec 0.3 sec 0.6 sec 1.1 sec
0.0 sec 0.0 sec 0.2 sec 0.8 sec 2.0 sec 3.8 sec 6.6 sec

AS5 0.0 sec 0.0 sec 0.6 sec 2.3 sec 9.3 sec 20.7 sec 49.2 sec
0.0 sec 0.2 sec 1.2 sec 5.3 sec 18.0 sec 42.0 sec 85.2 sec

GS1 0.0 sec 0.1 sec 0.6 sec 2.1 sec 6.1 sec 15.1 sec 51.5 sec
0.0 sec 0.3 sec 2.6 sec 11.3 sec 34.1 sec 88.4 sec 158.3 sec

BL 0.0 sec 0.1 sec 0.3 sec 1.0 sec 2.6 sec 7.1 sec 12.5 sec
0.0 sec 0.3 sec 4.5 sec 20.3 sec 53.7 sec 160.6 sec 271.9 sec

TL 0.0 sec 0.1 sec 0.6 sec 1.5 sec 5.2 sec 13.7 sec 32.3 sec
0.0 sec 0.4 sec 6.2 sec 25.5 sec 78.9 sec 196.1 sec 281.4 sec

BL-1 0.0 sec 0.1 sec 0.5 sec 1.9 sec 5.3 sec 13.4 sec 29.5 sec
0.0 sec 0.6 sec 9.2 sec 36.9 sec 99.7 sec 215.75 sec 496.0 sec

TL-1 0.0 sec 0.1 sec 1.1 sec 2.5 sec 11.7 sec 21.3 sec 47.8 sec
0.0 sec 1.0 sec 13.2 sec 48.6 sec 174.6 sec 326.3 sec 623.0 sec

SCN 0.0 sec 0.1 sec — — — — —
0.0 sec 0.1 sec — — — — —

Table 2: Runtimes of primal (top) and dual (bottom) bounds for different approximations.

contrast, the new decision rules introduced in this paper result in linear and second-order cone programs

that display more attractive scaling properties. Nevertheless, they offer significant flexibility and, as a

consequence, high-quality solutions with provably small optimality gaps.
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