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Abstract We propose a modeling and optimization framework to cast a broad
range of fundamental multi-product pricing problems as tractable convex op-
timization problems. We consider a retailer offering an assortment of differ-
entiated substitutable products to a population of customers that are price-
sensitive. The retailer selects prices to maximize profits, subject to constraints
on sales arising from inventory and capacity availability, market share goals,
bounds on allowable prices and other considerations. Consumers’ response to
price changes is represented by attraction demand models, which subsume the
well known multinomial logit (MNL) and multiplicative competitive interac-
tion (MCI) demand models.

Our approach transforms seemingly non-convex pricing problems (both in
the objective function and constraints) into convex optimization problems that
can be solved efficiently with commercial software. We establish a condition
which ensures that the resulting problem is convex, prove that it can be solved
in polynomial time under MNL demand, and show computationally that our
new formulations reduce the solution time from days to seconds. We also pro-
pose an approximation of demand models with multiple overlapping customer
segments, and show that it falls within the class of demand models we are able
to solve. Such mixed demand models are highly desirable in practice, but yield
a pricing problem which appears computationally challenging to solve exactly.
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1 Introduction

In this paper, we study a general modeling and optimization framework that
captures fundamental multi-product pricing problems. We consider the basic
setting of a retailer offering an assortment of differentiated substitutable prod-
ucts to a population of customers who are price sensitive. The retailer selects
prices to maximize the total profit subject to constraints on sales arising from
inventory levels, capacity availability, market share goals, sales targets, price
bounds, joint constraints on allowable prices, and other considerations.

The profit functions and constraints we consider are captured in the fol-
lowing general nonlinear optimization problem. The decision variables xi are
the prices charged for each of the products indexed by i = 1, . . . , n.

max

n∑
i=1

aixidi(x)

s.t.

n∑
i=1

Akidi(x) ≤ uk k = 1, 2, . . .m

xi ≤ xi ≤ xi i = 1, 2, . . . n

(P)

The input data to this model are the profit margins ai > 0 for each product
i = 1, 2, . . . , n, the matrix A ∈ Rm×n and the vector u ∈ Rm defining m
constraints on the demand, and upper and lower bounds x,x ∈ Rn on allowable
prices.

The price-demand functions di(x), for i = 1, . . . , n, are central to the range
of models that can be captured, as well as to the computational tractability
of the resulting optimization problem. We represent customers’ purchasing
decisions through attraction demand models, which generalize the well-known
multinomial logit (MNL) and multiplicative competitive interaction (MCI) de-
mand models (McFadden 1974; Urban 1969). This approach is common in the
recent revenue management literature, as well as in marketing and economics.
The function di : Rn → (0, 1) maps the prices of all the products to the ob-
served customer demand for product i. We assume that attraction demand
models have the following form:

d0(x) =
1

1 +
∑
j fj(xj)

and di(x) =
fi(xi)

1 +
∑
j fj(xj)

, i = 1, . . . , n. (1)

The quantity d0(x) denotes the fraction of consumers opting not to purchase
any product, and di(x) is the demand for the ith product when i > 0. The
functions fi(xi) are called attraction functions and are assumed to satisfy the
following assumption:

Assumption 1 The attraction function fi : R → R++ for each product i =
1, 2, . . . , n, satisfies:

(i) fi(·) is strictly decreasing and twice differentiable on R, and
(ii) limx→−∞ fi(x) =∞, and limx→∞ xfi(x) = 0 (i.e., fi(x) ∈ o( 1

x )).
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Unlike much of the existing work in revenue management, these models al-
low the demands for each of the products to be interdependent functions of all
the prices. However, under attraction demand models, the profit as a function
of the prices set by the retailer is in general not quasi-concave (see Hanson
and Martin (1996) and Appendix C). Moreover, many realistic constraints
involving the demand model, such as production/inventory capacity bounds,
give rise to a non-convex region of feasible prices. Maximizing the profit thus
presents a challenging optimization problem. Our experiments show that com-
mercial software may take over a day to solve a pricing-based formulation, even
for relatively small instances. Furthermore, we have no a priori guarantee that
such an approach will converge to a globally optimal solution.

The contributions of this paper are multifold. First, we provide equivalent
reformulations of the pricing problem that are provably tractable and can
be solved efficiently by commercial software. Defining the inverse attraction
functions as gi(y) = f−1

i (y), y > 0, our reformulations take the following
general form:

max Π(θ) =
∑
i

aiθigi

(
θi
θ0

)

s.t.

n∑
i=1

Akiθi ≤ uk k = 1 . . .m′∑
i=0

θi = 1

θi > 0 i = 0 . . . n

(COP)

The decision variables θ1, . . . , θn represent the fraction of customers opting to
purchase each product and the set of constraints defined by (A,u) has been
extended with 2n additional linear constraints.

We establish a general and easily verifiable condition on the attraction
demand model under which the reformulation gives rise to convex optimiza-
tion problems. Specifically, our approach yields maximization problems of the
form (COP) with concave objective functions Π(θ) and linear constraints.
This is despite the nonlinear and non-separable nature of the demand model.
Moreover, we prove that the logarithmic barrier method solves the pricing
problem under MNL demand in a polynomial number of iterations of New-
ton’s method. We confirm through extensive computational experiments that
our formulations can be solved in seconds instead of days, compared to the
naive formulations, and that they scale well to instances with thousands of
products and constraints.

We then show how to apply our approach to obtain tractable approxima-
tions to the challenging pricing problem arising under weak market segmen-
tation, where the pricing decisions affect the demand in multiple overlapping
customer segments. Such models are exemplified by mixed multinomial logit
models (Boyd and Mellman 1980; Cardell and Dunbar 1980). Representing
even a small number of distinct segments, such as, for example, business and
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leisure travelers on a flight, may significantly improve accuracy over a single-
segment model. Moreover, any random utility maximization model can be
approximated arbitrarily closely by a mixed MNL model (see Mcfadden and
Train (2000)).

We approximate such mixed demand functions with valid attraction de-
mand models that yield convex optimization problems of the form (COP),
and we bound the error with respect to the true multi-segment model. The
attraction demand model in question is relatively complex, and the resulting
objective function in our reformulation does not have a closed form. Neverthe-
less, we show how the objective function, its gradient and its Hessian can be
computed efficiently, allowing standard optimization algorithms to be applied.

The remainder of this section reviews related work. Section 2 describes
the price optimization problem, Section 3 presents our reformulation and Sec-
tion 4 presents our approach for problems with multiple overlapping customer
segments. Section 5 states the dual of our reformulation. Section 6 compares
the different approaches we consider computationally. Omitted proofs may be
found in Appendix A. Further details about specific attraction demand mod-
els may be found in Appendices B and C. The derivation of the dual of our
reformulation and an algorithm for solving it are provided in Appendix D.

1.1 Literature Review

Pricing as a tool in revenue management usually arises in the context of per-
ishable and nonrenewable inventory such as seats on a flight, hotel rooms,
rental cars, internet service and electrical power supplies (see, e.g., the survey
by Bitran and Caldentey (2003)). Dynamic pricing policies are also adopted in
retail and other industries where short-term supply is more flexible, and the
interplay between inventory management and pricing may thus take on even
greater importance. (See Elmaghraby and Keskinocak (2003) for a survey of
the literature on pricing with inventory considerations.)

The modeling framework studied in this paper generalizes a variety of
more specialized pricing problems considered in the operations management
literature. Much of the work focuses on dynamic pricing, under stochastic
customer demand. The stochastic dynamic program arising under such models
is generally intractable. Solution methods common in practice often rely on
periodically re-solving single-period deterministic pricing problems, and this
approach is known to be asymptotically optimal in some cases (Gallego and van
Ryzin 1997; Talluri and van Ryzin 1998). Thus, the single-stage deterministic
problems we consider play a central role. Our modeling framework relaxes two
common but restrictive assumptions imposed in most existing multi-product
pricing work. First, customers’ substitution behavior can be modeled since
demands are functions of all the prices. Secondly, a broad class of practical
constraints can be enforced, well beyond just capacity bounds or inventory
constraints allowed in existing models.
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Specialized algorithms have been developed for solving certain single-period
pricing problems. Hanson and Martin (1996) devise a path following heuristic
for the unconstrained pricing problem under mixtures of MNL models, and
Gallego and Stefanescu (2009) propose a column generation algorithm for a
class of constrained problems with MNL demand (discussed in Section 2.2).
Neither of these heuristics is guaranteed to find a globally optimal solution in
finite time, nor can they be implemented directly with commercial software.
They may also be computationally expensive in practice.

A number of recent papers have proposed multi-product pricing formula-
tions using the inverse demand model to yield a concave objective function
in terms of sales. Examples include Aydin and Porteus (2008), Dong et al
(2008) and Song and Xue (2007). In contrast to our framework, these papers
focus on capturing inventory holding and replenishment costs in the objective
function rather than considering explicit constraints on prices and sales. They
also limit their attention to the MNL or other specific demand models. Schön
(2010) proposes a formulation of the product line design (PLD) problem with
continuous prices. The PLD problem is closely related to the pricing problems
we consider, but it involves discrete decision variables and specific types of ca-
pacity constraints. The variable transformation which arises when inverting the
demand in our pricing problem is similar to the generalized Charnes-Cooper
transformation described by Schaible (1974) for concave-convex fractional pro-
grams. However, the pricing problems studied in this paper are in general not
concave-convex fractional programs.

Recent work on quantity-based revenue management also relaxes the as-
sumption that the demands for different products are independent. In contrast
to multi-product price-based revenue management, network revenue manage-
ment (NRM) consists of choosing which subset of products to offer customers
at each period from a menu with fixed prices, under inventory or capacity con-
straints. Gallego et al (2004) and Liu and van Ryzin (2008) consider customer
substitution in this setting. Miranda Bront et al (2009) additionally consider
overlapping customer segments, like in the weak market segmentation setting
for which we provide an approximation. Talluri and van Ryzin (2004) provide
an in-depth treatment of both price- and quantity-based revenue management
and their relationship.

2 Modeling Framework

We first discuss the general pricing formulation (P), which has a non-concave
(nor quasi-concave) objective and non-convex constraints in general. Then in
Section 3 we describe the alternative formulation (COP), which is tractable.

A key question in pricing optimization is how to model the relationship
between prices and the demands for each product. Assumption 1 is natural
and captures, for example, the well known multinomial logit (MNL) model,
with the attraction functions

fi(xi) = vie
−xi , (2)
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and constant parameters vi > 0, i = 1, . . . , n. The technical requirement (ii) is
mild, and in fact any attraction function can be modified to satisfy it without
changing the objective values over the feasible region of (P). The demand di(x)
is equal to the attraction of product i normalized by the total attraction of all
the customers’ alternatives, including the option of not purchasing anything
from the retailer in question. Without loss of generality, the attraction of the
latter outside alternative is represented by the term 1 in the denominator.
(Notice that the model is invariant to scaling of the attraction functions.)
Further discussion of attraction demand models and explanations of how they
can be adapted to satisfy Assumption 1 above may be found in Appendices B
and C, respectively. Due to the demand model, the objective of problem (P) is
nonlinear and in general not quasi-concave. The problem appears challenging
even without any constraints. Nevertheless, we will show that the broad class of
constrained problems we consider is in fact tractable (specifically, unimodal).

Indeed, a wide variety of constraints can be represented by the formula-
tion (P). Capacity and inventory bounds are very common and arise in revenue
management problems. For example, in a flight reservation system each prod-
uct may represent an itinerary with given travel restrictions, while seat avail-
ability on shared flight legs is represented by coupling resource constraints. To
capture these constraints in our model, Aki would be set to 1 if itinerary i uses
leg k and zero otherwise. The upper bound uk would be set to the number
of seats available for leg k, divided by the total size of the population. In a
retail setting, the identity matrix A = I may be used and uk may be set to the
inventory available for item k. Minimum sales targets for a group of products
may be represented with additional inequality constraints, with negative coef-
ficients since they place a lower bound on the demands. In product-line design
such operational constraints may be less important, but production capaci-
ties and minimum market-share targets take a similar form. Unfortunately,
even though the constraints of (P) are linear in the demands for each of the
products, they yield a non-linear and non-convex feasible region of prices in
general. See Appendix C for examples.

2.1 Marginal Costs, Joint Price Constraints and Other Extensions

We have defined the objective function of (P) in terms of relative profit mar-
gins, such as when a capacity reseller earns commissions. A per-unit production
cost may be incorporated by using the objective

n∑
i=1

(xi − ci)di(x),

redefining the “prices” in our general formulation as the profit margins x̂i ,
(xi − ci), i = 1, . . . , n, and shifting the attraction functions accordingly. This
motivates why we allow negative prices in general, since the profit margin x̂i
may be negative even if the price xi paid by the consumer is positive.
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Moreover, any joint constraint on prices of the form

xi ≥ xj + δij , δij ∈ R (3)

can be re-expressed as

fi(xi) ≤ fi(xj + δij) ⇔ fi(xi)d0(x) ≤ fi(xj + δij)d0(x)

⇔ di(x) ≤ fi(xj + δij)

fj(xj)
dj(x), (4)

where we have used the monotonicity of fi(·), the positivity of d0(x), and the
fact that

fi(xi) =
di(x)

d0(x)
. (5)

Under mild assumptions on an MNL demand model, the ratio in the last
inequality of (4) is a constant. The resulting linear constraint is captured by
the formulation (P). A similar transformation is possible for linear attraction
demand models. The details can be found in Appendix C.

We briefly mention two other straightforward extensions to our model.
First, multiple customer segments may be represented by distinct, indepen-
dent demand models. If it is possible to present different prices to each seg-
ment, or if disjoint subsets of products are offered to each segment, the pricing
problem corresponds to multiple instances of (P) coupled only through lin-
ear constraints. Our approach in the next section carries through directly in
such cases. (This is in contrast to the model discussed in Section 4 where
all customers are offered all products at the same prices.) Secondly, since the
equations describing inventory dynamics are linear, deterministic multi-stage
pricing problems can be expressed in a similar form. Each period can be rep-
resented by a copy of (P). The copies are coupled only through the linear
inventory dynamics constraints.

2.2 Special Cases with Convex Constraints

Proposition 1 below characterizes a class of constraints for which the feasi-
ble region of (P) is convex. Although the remainder of this paper considers
the general formulation (P), the sub-class of problems considered in this sub-
section has been implicitly studied in previous work. It arises naturally in
specific revenue management problems, and encompasses the problems involv-
ing customer choice considered by Gallego and Stefanescu (2009).

To our knowledge, the condition given here has never been made explicit.
We provide an explanation of why versions of the pricing problem satisfying
it have been found relatively easy to solve in Section 3.1.

Proposition 1 If the attraction functions f1, f2, . . . , fn are convex, and the
constraints satisfy

Aki ≥ uk ≥ 0, for each k = 1, 2, . . . ,m, and i = 1, 2, . . . , n, (6)

then the feasible region of (P) is a convex set.
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Proof Clearly the bounds on the prices define a convex set. The kth inequality
constraint, 1 ≤ k ≤ m, is convex since it may be expressed as a positive linear
combination of convex functions:

n∑
i=1

Akifi(xi)

1 +
∑n
j=1 fj(xj)

≤ uk ⇔
n∑
i=1

Akifi(xi) ≤

1 +

n∑
j=1

fj(xj)

uk

⇔
n∑
i=1

(Aki − uk)fi(xi) ≤ uk. ut

The assumption of convex attraction functions implies that the marginal
number of sales lost due to price increases is decreasing. This is in many
cases a natural assumption. Moreover, it can be verified that the MNL, MCI
and linear attraction demand models do satisfy it. Condition (6) is satisfied
in certain revenue management problems where the columns of the matrix
A represent the vectors of resources consumed in producing one unit of the
respective products, and u is the vector of the inventories available from each
resource. Suppose, for example, that each product represents a seat on the
same flight but with different fare restrictions. Then, as long as there are more
potential customers than seats on the flight, the condition is satisfied, because
the parameters Aki corresponding to the kth capacity constraint are all equal
to one, and 0 < uk ≤ 1 (since the demands are normalized by the population
size).

However, most problems of interest do not fall into this special class,
thereby motivating our more general approach. For instance, if the customers
choose between seats on different flights, some of the parameters Aki will be
set to 0, violating the condition. Thus, we consider the case of general input
data in the remainder of this paper.

3 Market Share Reformulation

In this section, we transform problem (P) into the equivalent optimization
problem (COP) over the space of market shares. This transformation elim-
inates the need to explicitly represent the nonlinear demand model in the
constraints, while preserving the bounds on prices as linear constraints. We
denote the fraction of lost sales and the market share of each product i in (1)
by θ0 = d0(x) and θi = di(x), respectively. The attraction functions f1, . . . , fn
are invertible since they are strictly decreasing by Assumption 1(i). Define the
inverse attraction function 1 gi : R++ → R as the inverse of fi, for each prod-
uct i. From (5), the prices corresponding to a given vector of market shares

1 Although the inverse attraction functions always exist, they may not have a closed form
for some complex demand models. In Section 4.2, we show that the objective function’s
derivatives can nevertheless be computed efficiently, allowing general purpose algorithms to
be used.



Efficient Formulations for Pricing under Attraction Demand Models 9

θ = (θ0, θ1, . . . , θn) can thus be expressed as,

xi = f−1
i

(
di(x)

d0(x)

)
= gi

(
θi
θ0

)
, for i = 1, 2, . . . , n. (7)

Optimization problem (P) can be rewritten as (COP). The market shares θi
play the role of decision variables, and the the prices xi are represented as
functions of θ. In addition to the original constraints in (P) there is a simplex
constraint on the market shares, and strict positivity of the market shares is
enforced. These constraints are implied in (P) since the fraction of lost sales
and the market share of each product i in (1) naturally satisfy

n∑
i=0

di(x) = 1, with di(x) > 0, for i = 0, 1, . . . , n. (8)

To solve (COP) in practice, we may relax the strict inequalities. As any of
the market shares θi go to zero, some of the prices go to positive or negative
infinity. The price bounds in (P) thus exclude such solutions. 2 These price
bounds are captured in (COP) by extending the matrix A and vector u. The
new number of inequality constraints on the demands is m′ = m+2n, and the
additional coefficients and right-hand sides are given by, ∀i, j ∈ {1, 2, . . . , n},

Am+2i−1,j =

{
fi(xi) if i 6= j

1 + fi(xi) if i = j
, um+2i−1 = fi(xi),

Am+2i,j =

{
−fi(xi) if i 6= j

−1− fi(xi) if i = j
, um+2i = −fi(xi).

(9)

The following lemma shows that (P) and (COP) are equivalent, in that there
is a one-to-one correspondence between feasible points of the two problems
which preserves the objective function value.

Lemma 1 Formulations (P) and (COP) are equivalent.

Proof Consider the problem

max
∑
i

aixidi(x)

s.t.
∑
i

Akidi(x) ≤ uk k = 1 . . .m′,
(P1)

where we have replaced the price bounds in (P) with the new constraints (9).
Using the monotonicity of fi and (5), the bounds on the price of the ith product

2 Even in the absence of these price bounds, Assumption 1 ensures that an optimal solution
to (COP) which is strictly positive in each component exists, when it satisfies the convexity
condition of the next section. This follows from Proposition 3 characterizing its dual in
Appendix D.
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may by expressed in terms of the attractions as

xi ≤ xi ≤ xi ⇔ fi(xi) ≥ fi(xi) ≥ fi(xi)
⇔ fi(xi)d0(x) ≥ di(x) ≥ fi(xi)d0(x). (10)

Using (8), the above can be written in terms of the market shares for all the
products as

fi(xi)

1−
n∑
j=1

dj(x)

 ≥ di(x) ≥ fi(xi)

1−
n∑
j=1

di(x)

 . (11)

These are precisely the constraints described by the (m+2i−1)th and (m+2i)th

rows of A and u in problem (P1). Consequently, the problems (P1) and (P)
are equivalent.

We define the mapping T : X → Θ from the feasible region X ⊆ Rn of (P)

to the feasible region Θ ⊂ (0, 1)n+1 of (COP) by T (x) = [d0(x), . . . , dn(x)]
>
.

The inverse mapping is given by T−1(θ) =
[
g1

(
θ1
θ0

)
, . . . , gn

(
θn
θ0

)]>
, as in

(7). For any x ∈ X , T (x) is feasible for (COP) because (i) the inequality
constraints are equivalent to those of (P1) above, and (ii) the simplex and
positivity constraints are satisfied by (8). Similarly, for any θ ∈ Θ, T−1(θ) is
feasible for (P1) and (P). Finally, the objective value Π(T (x)) of (COP) is
equal to the objective value of (P). ut

3.1 Convexity condition

Theorem 1 below provides a condition on the attraction functions f1, f2, . . . , fn
under which (COP) is a convex problem, and can thus be solved with general
purpose convex optimization algorithms. The condition is fairly general and
requires only a property of the individual attraction functions. Corollary 1 of
Appendix C verifies that it holds for MNL, MCI and linear attraction demand
models.

In light of Lemma 1, Theorem 1 also provides insights into the structure
of the original pricing problem (P). Specifically, it implies that there are no
(strict) local maxima. In particular, note that together with Proposition 1,
it implies that the pricing problems considered by Gallego and Stefanescu
(2009) are in fact maximizations of a unimodal profit function over a convex
feasible region. More generally, the theorem specifies a condition such that
under Assumption 1 problem (P) does not have any strict local maxima, even
when its feasible region is not convex.

Theorem 1 If the attraction functions are such that, in the space of market
shares,

2g′i(y) + yg′′i (y) ≤ 0, ∀y > 0, i = 1, 2, . . . , n, (12)
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or equivalently in the space of prices,

2 |f ′i(x)|
fi(x)

≥ f ′′i (x)

|f ′i(x)|
, ∀x ∈ R, i = 1, 2, . . . , n, (13)

then the objective Π(θ) of (COP) is concave. Furthermore,

(i) every local maximum of (COP) is a global maximum, and
(ii) every local maximum of (P) is a global maximum.

Proof Since the objective function is Π(θ) =
∑n
i=1 aiθigi(

θi
θ0

), with positive

coefficients ai, we need only show concavity of each term Πi(θ0, θi) , θigi(
θi
θ0

).
The gradient and Hessian of Πi(θ0, θi) are

∇Πi =

 − θ
2
i

θ20
g′i

(
θi
θ0

)
gi

(
θi
θ0

)
+ θi

θ0
g′i

(
θi
θ0

) and (14)

∇2Πi =

(
2g′i(

θi
θ0

) +
θi
θ0
g′′i (

θi
θ0

)

)[ θ2i
θ30

−θi
θ20

−θi
θ20

1
θ0

]
. (15)

The first factor is non-positive by condition (12). Taking any vector z =
[u, v]> ∈ R2, we have that

z>

[
θ2i
θ30

−θi
θ20

−θi
θ20

1
θ0

]
z =

1

θ0

(
u2

(
θi
θ0

)2

− 2uv

(
θi
θ0

)
+ v2

)
=

1

θ0

(
u

(
θi
θ0

)
− v
)2

≥ 0,

so the Hessian of Πi is negative semi-definite, and Πi is concave.
Differentiating x = g(y) , gi(y), for some fixed i, with respect to y, we

have

g′(y) =
(
f−1(y)

)′
=

1

f ′ (f−1(y))
=

1

f ′ (g(y))
=

1

f ′ (x)
, (16)

and using the chain rule,

g′′(y) =
−1

(f ′ (g(y)))
2 f
′′ (g(y)) g′(y) =

−1

(f ′ (x))
2 f
′′ (x)

1

f ′(x)
=
−f ′′(x)

(f ′ (x))
3 . (17)

Substituting into (12) and multiplying by the strictly positive quantity (f ′(x))
2
,

2

f ′(x)
+ y
−f ′′(x)

(f ′ (x))
3 ≤ 0 ⇔ 2f ′(x)− f(x)f ′′(x)

f ′(x)
≤ 0 ⇔ 2f ′(x)

f(x)
≤ f ′′(x)

f ′(x)
.

We used the fact that f ′(x) < 0 while f(x) > 0. The equivalence with (13)
follows since f ′(x) is negative.

Then (i) follows directly from the concavity of the objective function and
convexity of the feasible region in (COP). As shown in the proof of Lemma 1,
there is a one-to-one, invertible, continuous mapping between feasible points
of (COP) and (P), and the mapping preserves the value of the continuous
objective function. Thus any local maximum of (P) would correspond to a
local maximum of (COP). ut
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3.2 Self-Concordant Barrier Method for the MNL Demand Model

In this section, we restrict our attention to the MNL demand model, and show
that problem (COP) may be solved in polynomial time using interior point
methods. In particular, we show that applying the barrier method to (COP)
gives rise to a self-concordant objective. (The latter concept is defined below.)

Note that a similar treatment could be applied to other attraction demand
models, but for ease of exposition, we focus on the more common MNL de-
mand model. Other optimization algorithms could also be applied. The barrier
subproblem (18) below minimizes a twice-differentiable convex function over
a simplex for any attraction functions satisfying the conditions of Theorem
1. Ahipasaoglu et al (2008) show that a first-order modified Frank-Wolfe al-
gorithm exhibits linear convergence for such problems. In Section 6, we use a
commercially available implementation of a primal-dual interior-point method
to solve (CMNL).

Under the MNL model, the attraction functions and their inverses are
defined for i = 1, . . . , n as fi(xi) , vie

−xi , and gi(yi) = − log(yi/vi). Then
problem (COP) is

max Π(θ) = −
n∑
i=1

aiθi log
θi
viθ0

s.t. Aθ ≤ u, e>θ = 1, θ > 0

(CMNL)

where e denotes the vector of ones. We note that the objective has a form
similar to the relative entropy, or Kullback-Leibler (KL) divergence,

K(π,η) ,
n∑
i=1

πi log
πi
ηi
.

This is a measure of the distance between two probability distributions π,η ∈
Rn+, e>π = e>η = 1. For problems involving the KL-divergence where the de-
nominators ηi are constant, the existence of a self-concordant barrier is known
(see (Calafiore 2007) and (den Hertog et al 1995)). Unfortunately these results
cannot be used in our setting, since the objective Π(θ) is not separable: each
term also depends on the decision variable θ0.

The barrier method solves (CMNL) by solving a series of problems param-
eterized by t > 0,

min Ψt(θ) = −tΠ(θ) + Φ(θ)

s.t. e>θ = 1
(18)

where the logarithmic barrier is defined by

Φ(θ) = −
n∑
i=1

log θi − n log θ0 −
m′∑
k=1

log

(
uk −

n∑
i=1

Akiθi

)
. (19)

We have changed the maximization problem to a minimization problem for
consistency with the literature. Each inequality constraint in (CMNL) has
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been replaced by a term in the barrier which goes to infinity as the constraint
becomes tight. The term for the positivity constraint on θ0 is replicated n
times for reasons that will become apparent. We let m̄ = m′+2n = m+4n be
the number of inequality constraints in a slightly modified version of problem
(CMNL), including the m′ = m + 2n constraints represented by the pair
(A,u), the n positivity constraints on the market share of each product, and
n replications of the positivity constraint θ0 > 0, for which n logarithmic
barrier terms were added to the barrier (19).

Denote the optimal solution of (18) for a given value of t > 0 by θ∗(t).
Given an appropriate, strictly feasible starting point θ, a positive initial value
for t, a constant factor µ > 1 and a tolerance ε > 0, the barrier method consists
of the following steps:

1. Solve (18) using equality-constrained Newton’s method with starting point
θ to obtain θ∗(t).

2. Update the starting point θ := θ∗(t).
3. Stop if m̄/t ≤ ε, otherwise update t := µt and go to Step 1.

As the value of t becomes large, the solution θ∗(t) tends towards the op-
timal solution of (CMNL). The termination condition in Step 3 guarantees
that the objective value is sufficiently close to its optimal value. In practice, a
phase I problem must be solved to find an appropriate initial point θ, and a
redundant constraint is added to (CMNL) for technical reasons.

The computational complexity of Newton’s method can be analyzed when
the objective function is self-concordant.

Definition 1 (Self-concordance.) A convex scalar function f : D → R is

said to be self-concordant when |f ′′′(x)| ≤ 2 (f ′′(x))
3/2

for every point x ∈ D ⊆
R in the domain of f . A multivariate function f : F → R is self-concordant if
it is self-concordant along every line in its domain F ⊆ Rn.

The class of self-concordant functions is closed under addition and composition
with affine functions (see, for example, (Boyd and Vandenberghe 2004)). Our
proof that the objective function of the problem (18) falls withing this class
relies on Theorem 2 presented here.

Theorem 2 The function

f(x, y) = tx log
x

βy
− log xy (20)

is strictly convex and self-concordant on R2
++ for β > 0 and t ≥ 0.

Proof We explicitly compute the derivatives of (20) and obtain

∇f(x, y) =

[
t+ t log x

y −
1
x − t log β

− tx+1
y

]
, ∇2f(x, y) =

[ tx+1
x2

−t
y

−t
y

tx+1
y2

]
,

and ∇3f(x, y) =

[
− tx+2

x3 0
0 t

y2

] [
0 t

y2
t
y2
−2tx−2
y3

]
.
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Then for an arbitrary direction h = [a, b]> ∈ R2 and any [x, y]> ∈ R2
++

∇2f [h,h] =
a2(tx+ 1)

x2
− 2abt

y
+
b2(tx+ 1)

y2

For ease of notation, define s ≥ 0 and u, v ∈ R such that s = tx ≥ 0, u = a/x
and v = b/y. Then rewrite

∇2f [h,h] = u2(s+ 1)− 2uvs+ v2(s+ 1) = s(u2 − 2uv + v2) + (u2 + v2)

= s (u− v)
2︸ ︷︷ ︸

A

+ (u2 + v2)︸ ︷︷ ︸
B

.

Both terms A and B are non-negative, and the second term B is positive unless
u = v = 0, i.e. a = b = 0. Thus the Hessian ∇2f is positive definite and f is
strictly convex on R++. We also expand

−∇3f [h,h,h] =
a3(tx+ 2)

x3
− 3ab2t

y2
+

2b3(tx+ 1)

y3

= u3(s+ 2)− 3uv2s+ 2v3(s+ 1)

= s(u3 − 3uv2 + 2v3) + 2(u3 + v3)

= s (u− v)2(u+ 2v)︸ ︷︷ ︸
K

+ 2(u3 + v3)︸ ︷︷ ︸
L

.

We now show that f is self-concordant, that is

|∇3f [h,h,h]| ≤ 2(∇2f [h,h])
3
2 ⇔ (∇3f [h,h,h])2 ≤ 4(∇2f [h,h])3, (21)

by appropriately factoring the difference of the two sides of the inequality, and
showing that it is non-negative. That is, we verify the non-negativity of

4(∇2f [h,h])3 − (∇3f [h,h,h])2 = 4(sA+B)3 − (sK + L)2

= (4s3A3 + 12s2A2B + 12sAB2 + 4B3)− (s2K2 + 2sKL+ L2)

= 4s3A3 + s2(12A2B −K2) + s(12AB2 − 2KL) + (4B3 − L2).
(22)

For the leading term that A3 = (u− v)6 ≥ 0. Then for the second term

12A2B −K2 = 12(u− v)4(u2 + v2)− (u− v)4(u+ 2v)2

= (u− v)4
(
12u2 + 12v2 − (u+ 2v)2

)
= (u− v)4(11u2 − 4uv + 8v2) ≥ 0,

since the quadratic form can be written as [ u,v ]
[

11 −2
−2 8

]
[ uv ] ≥ 0. For the term

in s,

12AB2 − 2KL = 12(u− v)2(u2 + v2)2 − 4(u− v)2(u+ 2v)(u3 + v3)

= 4(u− v)2
(
3(u4 + 2u2v2 + v4)− (u4 + uv3 + 2u3v + 2v4))

)
= 4(u− v)2

(
2u2(u2 − uv + v2) + v2(4u2 − uv + v2)

)
≥ 0.
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Finally, the last term is 4B3 − L2 = 4(u2 + v2)6 − 4(u3 + y3)2 = 4u2v2(3u2 −
2uv + 3v2) ≥ 0. Together, the preceding four inequalities with the fact that
s ≥ 0 show that (22) is non-negative, and that (21) holds. ut

In order to prove Theorem 3, we shall use the result of Section 11.5.5
in (Boyd and Vandenberghe 2004). The result applies to minimization prob-
lems, but the objective function of the maximization problem (CMNL) can
be negated to obtain an equivalent minimization problem. 3 We first define
some additional notation. The constant M is an a priori lower bound on the
optimal value of (CMNL) (and thus an upper bound for the corresponding
minimization problem). It is used in the phase I feasibility problem. The con-
stant G is an upper bound on the norm of the gradient of the constraints.
Since the positivity constraints have a gradient of norm 1, and the gradients
of the inequality constraints are the rows of the matrix A, which we denote
here by Ak,·, we set

G = max

{
1, max

1≤k≤m′
‖Ak,·‖

}
.

We define R to be the radius of a ball centered at the origin containing the
feasible set. Since any feasible vector θ lies in the unit simplex, we may set R =
1. We define two constants depending on the parameters of the backtracking

line search algorithm used in Newton’s method. We let γ = αβ(1−2α)2

20−8α and

c = log2 log2
1
ε . Typical values are α ∈ [0.01, 0.3] and β ∈ [0.1, 0.8]. The

constant c can reasonably be approximated by c = 6. Finally, we let p∗ > M
be the optimal value of (CMNL), and we define p̄∗ to be the optimal value
of the phase I feasibility problem used to find a suitable starting point (see
Section 11.5.4 of (Boyd and Vandenberghe 2004)). The latter value is close to
zero when a problem is nearly infeasible or nearly feasible, and is far from zero
if the problem is clearly feasible or infeasible.

The bound of Theorem 3 depends on the number of constraints and the
number of products through m̄ = m + 4n, and on two terms that depend on
the problem data, C1 = log2

G
|p̄∗| and C2 = log2

p∗−M
ε . The constant C1 should

be interpreted as measuring the difficulty of the phase I feasibility problem,
while C2 can be interpreted as measuring the difficulty of solving the phase II
problem.

Theorem 3 Problem (CMNL) may be solved to within a tolerance ε > 0 in a
polynomial number N = NI +NII iterations of Newton’s method, where

NI =

⌈√
m̄+ 2 log2

(
(m̄+ 1)(m̄+ 2)GR

|p̄∗|

)⌉(
1

2γ
+ c

)
3 Because of this negation, the values of M and p∗ defined below are also the negation

of the corresponding values in (Boyd and Vandenberghe 2004). Therefore the phase I min-
imization problem is unchanged, but the objective function of the phase II minimization
problem is the negation of the objective of (CMNL).
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is the number of iterations required to solve the phase I problem, and

NII =

⌈√
m̄+ 1 log2

(
(m̄+ 1)(p∗ −M)

ε

)⌉(
1

2γ
+ c

)
is the number of iterations required to solve the phase II problem.

Proof The objective of (18) is

Ψt(θ) = −tΠ(θ) + Φ(θ)

= t

n∑
i=1

aiθi log(θi/(θ0vi))−
n∑
i=1

log θi − n log θ0 −
m′∑
k=1

log(uk −
n∑
i=1

Akiθi)

=

n∑
i=1

(aitθi log(θi/(θ0vi))− log θiθ0)−
m′∑
k=1

log(uk −
n∑
i=1

Akiθi). (23)

We show that Φ is a self-concordant barrier for (CMNL), that is, the func-
tion Ψt(θ) is self-concordant, convex and closed on the domain

{
θ ∈ Rn+1 :

θ > 0, e>θ = 1,Aθ < u
}
. The terms of the first summation in (23) are self-

concordant and convex by Theorem 2, since ai > 0,∀i. The function − log x
is self-concordant and convex, and so are the terms of the second summation
since both properties are preserved by composition with an affine function.
Finally, Ψt is self-concordant and convex since both properties are preserved
through addition. The function is closed on its domain since the barrier terms
become infinite at the boundary, and all terms are bounded from below.

We observe that the level sets of (CMNL) are bounded, since the feasible
set is bounded. We can now apply the result of Section 11.5.5 in (Boyd and
Vandenberghe 2004) to show that no more than NI Newton steps are required
to solve a phase I problem yielding an initial strictly feasible point on the
central path of an appropriate auxiliary phase II problem. The phase II prob-
lem may in turn be solved to within tolerance ε in at most N2 Newton steps.
The total number of Newton steps required to solve (CMNL) is thus at most
NI +NII. ut

4 Multiple Overlapping Customer Segments

In many cases, it is desirable to represent a number of customer segments, such
as when business and leisure travelers are buying the same airline tickets. Sup-
pose that different attraction demand models are available for each segment
of the population. Regardless of her segment, a customer may purchase any
of the products offered, but her choice probabilities depend on her particular
segment. That is, we would like to be able to optimize over a demand model
of the form

dMIX
i (x) =

L∑
`=1

Γ`d
`
i(x) =

L∑
`=1

Γ`
f `i (xi)

1 +
∑n
j=1 f

`
j (xj)

, (24)
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where the mixture coefficient Γ` represents the relative size of the `th market
segment, whose demand is itself modeled by an attraction demand model. To
continue representing demand as a fraction of the population, we assume that∑L
`=1 Γ` = 1, and Γ` > 0,∀`. We define the notation d`0(x), d`1(x), . . . , d`n(x)

for the lost sales and demand functions of the `th segment, as in (1).
We point out that this model implicitly assumes that consumers from each

segment may purchase any product. It is more general than the models from
network revenue management that assume consumers only purchase products
specific to their segment. Similarly, the work of Schön (2010) assumes that
the retailer can set different prices for each of the segments. Both of these
situations are better represented by standard attraction demand models, as
discussed in Section 2.1.

On the other hand, the mixture of attraction demand models defined in
(24) is not itself an attraction model. How to efficiently solve the pricing
problem with multiple segments to optimality remains an open problem, and
is beyond the scope of this paper. Hanson and Martin (1996) have shown that
the pricing objective may have multiple local maxima, and solution methods
from network revenue management give rise to NP-hard sub-problems (see,
e.g., Miranda Bront et al (2009), who solve them heuristically). Instead, we
propose an approximation to the multi-segment demand functions dMIX

i (x) by
a valid attraction demand model.

4.1 Approximation by an Attraction Demand Model

Aydin and Porteus (2008) suggest (for the specific case of MNL models) the
following approximation, based on valid attraction functions

f̄i(xi) =

L∑
`=1

γ`f
`
i (xi), i = 1, . . . , n, (25)

where the coefficients γ1, . . . , γL ∈ R+ are set equal to the segment sizes Γ`
of (24). We also introduce the notation d̄1(x), . . . , d̄n(x) for the approximate
demands when using the attraction functions (25). We define

ΠMIX(x) =

n∑
i=1

aixid
MIX
i (x) and Π̄(x) =

n∑
i=1

aixid̄i(x)

as the exact and approximated profit functions, respectively.
In Theorem 4, proved in Appendix A, we show that setting coefficients γ`

as in (27) instead yields a local approximation to the desired multi-segment
model (24) for prices near some reference point x0 ∈ Rn. In particular, our
approximation is exact at the reference price x = x0.

Theorem 4 If the sets of attraction functions
{
f `i , i = 1, . . . , n

}
satisfy As-

sumption 1 for ` = 1, . . . , L, then so do the attraction functions f̄1, . . . , f̄n
defined in (25).
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Furthermore, suppose that for some constant B > 0 and reference prices
x0 ∈ Rn the attraction functions satisfy the local Lipschitz conditions

|f `i (xi)− f `i (x0
i )| ≤ B|xi − x0

i |, ∀x ∈ X , i = 1, . . . , n, ` = 1, . . . , L, (26)

where X ⊆ {x : ‖x − x0‖1 < 1/B} ⊂ Rn is a set around the reference prices
x0. Let the coefficients of the approximation be

γ` =
Γ`d

`
0(x0)∑L

`=1 Γ`d
`
0(x0)

, ` = 1, . . . , L. (27)

Then the approximate demand functions d̄1, . . . , d̄n satisfy,

(1− εx)dMIX
i (x) ≤ d̄i(x) ≤ (1 + εx)dMIX

i (x), ∀x ∈ X ,

where εx = 2B‖x−x0||1
1−B‖x−x0||1

. Moreover, if the feasible prices are positive, i.e.,

X ⊂ Rn+, the approximate profit function Π̄(x) satisfies

(1− εx)ΠMIX(x) ≤ Π̄(x) ≤ (1 + εx)ΠMIX(x), ∀x ∈ X .

An appropriate set X can be obtained by taking any set for which the Lips-
chitz condition (26) holds and restricting it to {x : ‖x−x0‖1 < 1/B}. Clearly,
the accuracy of the approximation is highly dependent on the smoothness of
the attraction functions. Such limitations are to be expected since the profit
function ΠMIX(x) may have multiple local maxima, while our approximation
Π̄(x) cannot by Theorem 1 (for common demand models).

4.2 Solving the Approximated Pricing Problem

Although the approximation presented in the preceding section uses an attrac-
tion demand model, the corresponding (COP) formulations cannot be solved
directly in practice even if Assumption 1 is satisfied. This is because, unlike for
simpler attraction demand models, the attraction functions (25) do not have
closed-form inverses. The same issue arises under other complex attraction
demand models, such as the semi-parametric attraction models proposed by
Hruschka (2002).

To solve (COP) using standard nonlinear optimization algorithms, we need
to evaluate the gradient and the Hessian matrix of the objective function Π(θ)
for any market shares θ. First, we note that the prices x corresponding to mar-
ket shares θ can be obtained efficiently. The equations (7) are equivalent to
fi(xi) = θi/θ0, i = 1, . . . , n. Since the attraction functions fi are decreas-
ing by Assumption 1, they have a unique solution and may be solved by n
one-dimensional line searches. The following proposition, proved in Appendix
A, then shows how the partial derivatives of the objective may be recovered
from the prices x1, . . . , xn corresponding to the market shares θ, and from the
derivatives of the original attraction functions f1, . . . , fn. In particular, the
derivatives of each f̄i in (25) are readily obtained from those of f1

i , . . . , f
L
i .
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Proposition 2 Let x1 . . . xn be the unique prices solving the equations (7)
for a given market share vector θ ∈ Rn+1

+ . Then the elements of the gradient
∇Π(θ) with respect to θ of the objective function Π(θ) are

∂Π

∂θ0
= −

n∑
i=1

ai
(fi(xi))

2

f ′i(xi)
, and

∂Π

∂θi
= ai

(
xi +

fi(xi)

f ′i(xi)

)
, i = 1, . . . n.

The elements of the Hessian ∇2Π(θ) are ∂2Π/∂θi∂θj = 0, for 1 ≤ i < j ≤ n,

∂2Π

∂θ2
0

=

n∑
i=1

ai
θ0

(
2(fi(xi))

2

f ′i(xi)
− (fi(xi))

3
f ′′i (xi)

(f ′i(xi))
3

)
,

∂2Π

∂θ2
i

=
ai
θ0

(
1

f ′i(xi)
− fi(xi)f

′′
i (xi)

(f ′i(xi))
3

)
, for i = 1, . . . , n,

and
∂2Π

∂θi∂θ0
= −ai

θ0

(
fi(xi)

f ′i(xi)
− (fi(xi))

2f ′′i (xi)

(f ′i(xi))
3

)
, for i = 1, . . . , n.

5 The Dual Problem

The structure of the pricing problem (P) goes beyond concavity of the trans-
formed objective. Notice that the reformulation (COP) is not separable over
the market shares θ1, . . . , θn only because of the occurrence of θ0 in each term
of the objective. Nevertheless, as is often the case with separable problems, its
Lagrangian dual yields a tractable decomposition. The dual of (COP) is

min µ+

m′∑
k=1

λkuk

s.t. µ =

n∑
i=1

max
yi>0

φi(yi,λ, µ)

λ ≥ 0

(DCOP)

where we define for i = 1, 2, . . . , n

φi(y,λ, µ) , y

aigi (y)−
m′∑
k=1

λkAki − µ

 , y > 0. (28)

The dual (DCOP) is expressed in terms of one-dimensional maximization prob-
lems for each product. These subproblems are coupled through a single linear
constraint.

From a practical point of view, the dual problem does not require work-
ing with the inverse attractions, or with their derivatives, directly. A column
generation algorithm for solving the dual is provided in Appendix D, along
with the derivation of the dual itself. The algorithm requires the solution of



20 Philipp W. Keller et al.

a linear program and n one-dimensional maximization problems involving the
original attraction functions fi at each iteration (as opposed to their inverses
gi). It can be used even when the convexity condition (12) is not satisfied,
or when the derivatives of the attraction functions described in Proposition
2 are not readily available. Moreover, Proposition 5 of Appendix D provides
an alternate condition on the attraction functions which guarantees that a
unique primal solution corresponds to each dual solution, without requiring
the convexity condition (12).

For the special case of the MNL demand model, the inner maximization
problems can in fact be solved in closed form, yielding the following dual
problem.

min µ+

m′∑
k=1

λkuk

s.t. µ ≥
n∑
i=1

aivi exp

{
−1−

∑m′

k=1 λkAki + µ

ai

}
λ ≥ 0

(DMNL)

The minimization (DMNL) is a convex optimization problem. As a result, it
can also be solved with general-purpose algorithms. However, our experiments
in the next section suggest this is less efficient than solving the primal (COP)
directly.

6 Computational Experiments

We have proposed three formulations of the pricing problem in (P), (COP)
and (DCOP). First, we have shown that under certain conditions, any local
maximum of the non-convex problem (P) in terms of the prices is also a global
maximum. Second, under the same conditions, the equivalent problem (COP)
is a convex optimization problem with linear constraints. Third, we can recover
a solution from the dual problem (DCOP).

To compare the efficiency of the three formulations, we evaluate the so-
lution times of instances with an MNL demand model using the commer-
cial LOQO solver (see Vanderbei and Shanno (1999); Shanno and Vanderbei
(2000)). This solver uses a primal-dual interior point algorithm for sequential
quadratic programming. It was chosen because it is commercially available
and is intended for both convex and non-convex problems. However, LOQO
does not employ the barrier method analyzed in Section 3.2. The AMPL (see
Fourer et al (1990)) modeling language provides automatic differentiation for
all problems. All the experiments were run on computer with dual 2.83GHz
Intel Xeon CPUs and 32GB of RAM.

The MNL demand model was chosen since it allows (DCOP) to be solved
directly. The demand model parameters are sampled as described in Appendix
B.1 to ensure that the aggregate demand is near 0 and 1 as the prices approach
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Iterations Iterations Iterations
2 256 7 0.02              15 0.00              19 0.28              
4 256 7 0.03              15 0.01              20 0.34              
8 256 10 0.12              17 0.01              22 0.50              

16 256 16 0.83              24 0.03              28 0.99              
32 256 21 4.22              26 0.07              25 1.68              
64 256 24 17.48            25 0.16              26 4.28              

128 256 27 75.69            29 0.64              25 13.30            
256 256 24 265.10          29 1.90              24 55.77            
512 256 25 1,307.78      34 4.38              33 451.61          

1,024 256 27 5,181.45      34 9.03              27 2,346.63      
2,048 256 29 22,818.30    36 20.66            33 19,560.10    
4,096 256 38 123,123.50  38 49.09            - -
256 2 19 1.63              26 0.04              28 28.72            
256 4 16 2.13              26 0.04              30 30.42            
256 8 19 4.38              28 0.05              28 28.80            
256 16 23 14.95            27 0.07              29 30.84            
256 32 21 31.09            30 0.11              27 31.10            
256 64 21 59.52            29 0.21              38 49.54            
256 128 20 114.26          29 0.56              26 41.40            
256 256 24 265.10          29 1.90              24 55.77            
256 512 36 964.53          36 5.26              28 122.72          
256 1,024 50 2,411.04      36 8.83              31 338.77          
256 2,048 60 5,549.19      45 22.95            35 1,226.33      
256 4,096 69 13,003.43    53 59.36            43 5,918.61      

 Price Formulation  Market Share Form.  Dual Formulation 
 Products                                           

(n) 
 Constraints                                                              

(m) 
 (P)  (COP)  (DCOP) 

Time Time Time

Table 1 Number of iterations and solution time in seconds as a function of the number of
products and constraints for the three problem formulations. (Averages over 10 randomly
generated instances.)

the bounds xi and xi = 0, respectively, for each product i. Constraints are
sampled uniformly from the tangents to the sphere of radius 1

2 ·
1

n+1 centered

at the uniform distribution θ0 = θ1 = . . . = θn = 1
n+1 . Specifically, the kth

constraint is defined by

z>k

(
θ − 1

n+ 1
e

)
≤ 1

2
· 1

n+ 1
⇔ z>k θ ≤

1

n+ 1

(
1

2
+ z>k e

)
, (29)

where zk is sampled uniformly from the unit sphere centered at the origin,
and e is the vector of all ones. This choice ensures that we do not generate
any redundant constraints, and that a number of constraints are likely to be
active at optimality.

Table 1 shows the average number of iterations and the average solution
times over 10 randomly generated instances of various size when solving each of
the three formulations. We note that for the market share formulation (COP)
and the dual formulation (DCOP), the price bounds on xi are converted to lin-
ear constraints by replacing di(x) with θi in equation (10) of Lemma 1, yielding
a total of m′ = m + 2n constraints. However, the additional 2n constraints
are sparse and we do not expect them to be active at optimality. In contrast,
using (11) would result in dense constraints for (COP). Default parameters
are used for the LOQO solver except that the tolerance is reduced from 8 to 6
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significant digits of agreement between the primal and dual solution, and a pa-
rameter governing the criteria used to declare problems infeasible is relaxed to
prevent premature termination (we set inftol2=100). These adjustments are
necessary since convergence is sometimes very slow in the first few iterations,
and again after five or six digits or accuracy have been achieved.

As is generally the case with interior point methods, LOQO terminates
in a moderate number of iterations for all the instances, but there is signifi-
cant variability in the time per iteration. Examining first the results for the
price formulation (P), we observe that the total solution time increases rapidly
with both the number of products and the number of constraints. With 4,096
products and 256 constraints, approximately 34 hours of computation time
are needed. The solution time scales somewhat better with the number of con-
straints, but 3.6 hours are still needed with 4,096 constraints and only 256
products. We cannot theoretically guarantee convergence when solving (P)
in general. Nevertheless, the optimal solution is eventually found in all the
instances we considered, with the chosen parameters.

In contrast, the market share formulation we introduced, even for the
largest instances we considered, is solved in about one minute, and is about
2,500 times faster than the price formulation in the most extreme case. We
believe this difference may be due to the sparsity of the Hessian matrix of the
objective function and the linearity of the constraint in (COP). In the price
formulation (P), the Hessian of the Lagrangian is dense since each term of both
the constraints and the objective depends nonlinearly on all the variables. The
non-convexity of the constraints and objective in (P) may also be the reason
for the slow performance, though we would expect this effect to increase the
number of iterations rather than the time per iteration, which does not appear
to be the case.

Finally, the dual formulation (DCOP) is observed to be much slower for a
large number of products than for a large number of constraints. In fact, the
specific dual formulation (DMNL) has a single constraint involving a summa-
tion over all n products with nonlinear terms. The number of terms in the sum
increases with the number of products, but adding constraints in the primal
problem (i.e., increasing m) only increases the number of dual variables λi,
which are zero unless the constraint in question is active. We note that we were
not able to obtain a solution for the (DCOP) instances with n = 4, 096 and
m = 256 because AMPL required an excessive amount of memory. This may
be due to the fact that the actual number of primal constraints (corresponding
to the number of dual variables) is not m = 256, but m′ , m + 2n = 8, 448
when including the converted price bounds. Then the Hessian of the dual con-
straint is a dense matrix with (m′)2 entries. It seems likely that a more efficient
solution approach is possible for the dual problem, since most of the dual vari-
ables are zero at optimality (i.e., most of the constraints are inactive). Indeed,
an efficient algorithm tailored to the special case of Proposition 1 is possible,
but we see limited interest in pursuing this approach for the MNL demand
model since the primal problem (COP) can be solved efficiently.
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6.1 Approximation to Multiple Segment Demand Models

To illustrate the performance of the algorithm for solving the multiple-segment
approximation, Table 2 shows the number of iterations and the running time
needed to solve instances of varying size. For each evaluation of the gradient
and Hessian, the equations in (7) are solved with Brent’s method (see Brent
(1973)) and the derivatives in Proposition 2 are computed.

Iterations Iterations Error

256 256 23 601.94          58 4.73         0.57% 1.2E-03

1024 256 26 10,812.00     46 11.94       2.22% 2.3E-03

4096 256 19 165,090.00  35 46.11       0.56% 3.4E-04

256 256 23 601.94          58 4.73         0.57% 1.2E-03

256 1024 39 4,066.70       67 16.46       0.05% 2.4E-04

256 4096 45 18,741.00     50 65.31       0.03% 1.3E-04

256 256 27 1,400.30       48 3.96         0.51% 1.0E-03

1024 256 27 25,549.00     73 18.51       2.27% 1.9E-03

4096 256 - - 33 44.67       - 3.5E-04

256 256 27 1,400.30       48 3.96         0.51% 1.0E-03

256 1024 47 9,705.20       52 13.05       0.02% 1.0E-04

256 4096 53 43,809.00     59 74.96       0.03% 1.5E-04

256 256 36 3,787.10       37 3.12         0.55% 1.4E-03

1024 256 37 77,454.00     68 17.53       2.02% 2.4E-03

4096 256 - - 38 49.79       - 2.6E-04

256 256 36 3,787.10       37 3.12         0.55% 1.4E-03

256 1024 58 24,259.00     56 13.98       0.01% 6.5E-05

256 4096 - - 57 72.80       - 5.5E-05

256 256 48 11,818.00     37 3.21         0.55% 1.4E-03

1024 256 68 298,770.00  59 15.77       1.86% 1.9E-03

4096 256 - - 42 53.79       - 2.9E-04

256 256 48 11,818.00     37 3.21         0.55% 1.4E-03

256 1024 82 80,675.00     55 13.90       0.02% 5.9E-05

256 4096 - - 86 103.45     - 2.4E-05

2

4

8

16

 (COP) with demand model approximation Products                                      

(n)

Constraints                                                              

(m) Time (sec.) Time (sec.)

Segments                                      

(k)

 (P) 

Infeasibility

Table 2 Number of iterations and solution time in seconds to solve the exact, non-convex
multi-segment pricing problem in terms of prices, as well as the convex multi-segment ap-
proximation in terms of market shares.

We observe that the solution times for (COP) are comparable to those for
the single-segment instances, since the computational cost is dominated by
the optimization algorithm rather than by the function evaluations. Indeed,
the number of distinct segments only impact the time needed to evaluate the
objective, and we observe that increasing the number of segments does not
increase the solution time significantly.

In contrast, solving the price formulation (P) with the exact demands
dMIX
i (x) of (24) takes significantly longer with multiple segments. For a given

problem size, doubling the number of segments more than doubles the solution
time. The largest successfully solved instance took over three days (298,770
seconds) to solve, compared to only 15.77 seconds for the (COP) formulation
with the approximate demand model.
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For our experiments, the reference price x0 and the coefficients γ` in (27)
were chosen such that the demand model approximation was exact at the
uniform demand distribution, θi = d̄i(x

0) = dMIX
i (x0) = 1/(n + 1), for

i = 0, . . . , n. Thus the demand model approximation is inexact at the com-
puted optimum. The second-last column in Table 2 shows the error in the
objective value relative to the solution obtained by solving (P) with the exact
demand model. The solution to (COP) overestimates the true maximum by
at most 2.27% in our experiments, and generally by much less. It is somewhat
unsurprising that the maximum of the approximation (COP) exceeds the true
maximum, because this occurs whenever the approximation exceeds the true
maximum of (P) at any feasible point. The rightmost column of Table 2 shows
the maximum absolute constraint violation for each instance. The constraint
violations are small despite the approximation, since the right hand side of
the constraints (29) is on the order of 1/(n + 1). For reference, the tolerance
used for the solver is 10−6. We remark that a different choice of the reference
point x0 may improve the accuracy at the optimum. Although it is unclear
how best to select this parameter of the approximation a priori, the accuracy
of the approximation and the constraint violations at the computed optimal
value can easily be checked empirically once the solution has been obtained.

7 Conclusions

We have developed an optimization framework for solving a large class of
constrained pricing problems under the important class of attraction demand
models. Our formulations incorporate a variety of constraints which naturally
occur in numerous problems studied in the literature. They provide increased
representation power for typical revenue management settings such as airline,
hotel and other booking systems. Moreover, they capture problems such as
product line pricing, or joint inventory and pricing problems where capacity
constraints alone may not be sufficient.

We provided a condition on the demand model guaranteeing that our for-
mulations are convex optimization problems with linear constraints. It is sat-
isfied by MNL, MCI and linear attraction demand models, in particular. We
further proved that the pricing problem can be solved in polynomial time un-
der MNL demand models using interior point methods. Our computational
experiments show that our new formulations can be solved orders of mag-
nitude faster than naive formulations, using commercially available software.
The efficiency of the solutions suggests our models may be effectively adapted
for use in multi-period stochastic pricing problems, where they promise to
increase modeling power at reasonable computational cost.

Furthermore, we proposed an approximation to the demand encountered
when there are multiple overlapping market segments. Such scenarios are an
active research topic in the closely related area of network revenue manage-
ment. We provided a bound on the approximation error, and showed that the
resulting pricing problems can be solved using standard nonlinear optimization
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algorithms despite the lack of a closed-form objective function. Our approxi-
mation represents a new way to approach pricing in the presence of multiple
overlapping market segments, and provides an efficient way to solve certain
instances.
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A Approximation for Multiple Customer Segments

Proof of Theorem 4. Assumption 1 holds since (i) the sum of decreasing functions is de-
creasing and the sum of differentiable functions is differentiable, and (ii) the limit of a finite
sum is the sum of the limits.

Since from the choice of coefficients
∑`
`=1 γ` = 1, we rewrite

d̄i(x) =
f̄i(xi)

1 +
∑n
j=1 f̄j(xj)

=

∑L
`=1 γ`f

`
i (xi)

1 +
∑n
j=1

∑L
`=1 γ`f

`
j (xj)

=

∑L
`=1 γ`f

`
i (xi)∑L

`=1 γ`

(
1 +

∑n
j=1 f

`
j (xj)

)
=

∑L
`=1 Γ`d

`
0(x0)

(
d`i(x)/d`0(x)

)∑L
`=1 Γ`d

`
0(x0)

(
1/d`0(x)

) =
L∑
`=1

(
d`0(x0)/d`0(x)

)∑L
`=1 Γ`

(
d`0(x0)/d`0(x)

)Γ`d`i(x) (30)

where we use fact (5) in the fourth equality. The ratios appearing in the last expression can
be expressed as

d`0(x0)

d`0(x)
=

1 +
∑n
i=1 f

`
i (xi)

1 +
∑n
i=1 f

`
i (xi)

= 1 + d`0(x0)

n∑
i=1

(
f`i (xi)− f`i (xi)

)

where d`0(x0) < 1. Then, using assumption (26), we obtain

1−B‖x− x0‖1 ≤
d`0(x0)

d`0(x)
≤ 1 +B‖x− x0‖1.

Note that the lower bound is non-negative by the definition of X . Since
∑`
`=1 Γ` = 1, we

obtain from (30)

d̄i(x) ≤
1 +B‖x− x0‖1
1−B‖x− x0‖1

∑̀
`=1

Γ`d
`
i(x) =

1 +B‖x− x0‖1
1−B‖x− x0‖1

dMIX
i (x)

d̄i(x) ≥
1−B‖x− x0‖1
1 +B‖x− x0‖1

∑̀
`=1

Γ`d
`
i(x) =

1−B‖x− x0‖1
1 +B‖x− x0‖1

dMIX
i (x)

Defining shorthand a = B‖x− x0‖1 < 1, notice that

1 + a

1− a
= 1 +

2a

1− a
= 1 + εx, and

1− a
1 + a

= 1−
2a

1 + a
≥ 1−

2a

1− a
= 1− εx.

The statement regarding the profit function follows immediately if the prices are also posi-
tive, by bounding each term of Π̄(x) individually. ut

Proof of Proposition 2. The quantities in the statement are obtained by summing

∇Π(θ) =

n∑
i=1

ai∇Πi(θ) and ∇2Π(θ) =

n∑
i=1

ai∇2Πi(θ),

with the non-zero elements of the terms ∇Πi(θ) and ∇2Πi(θ) given in (14) and (15). (By
a slight abuse of notation, we now consider the terms Πi(θ) to be functions of the entire
market share vector θ instead of only the variables θ0 and θi on which they each depend.)
Then, we substitute in fi(xi) and its first and second derivatives using (16) and (17). ut
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B Background on Attraction Demand Models

The class of attraction demand models subsumes a number of important customer choice
models by retaining only their fundamental properties. Namely, the form of the demands
(1) ensures that they are positive and sum to one. A related feature is the well known
independence from irrelevant alternatives (IIA) property which implies that the demand lost
from increasing the price of one product is distributed to other alternatives proportionally
to their initial demands.

The attraction functions fi(·), i = 1, . . . , n may depend on a number of product at-
tributes in general, but we limit our attention to the effect of price. The requirements of
Assumption 1 are mild. The positivity assumption and (i) imply that demand for a product
is smoothly decreasing in its price but always positive. The requirement (ii) implies that the
demand grows to 1 if the price is sufficiently negative, and ensures that increasing the price
eventually becomes unprofitable for a seller. As we demonstrate for specific instances be-
low, if the latter two assumptions are not satisfied, the attraction functions can be suitably
modified.

Though the class of attraction demand models is very general, certain instances are well
studied and admit straightforward estimation methods to calibrate their parameters. This
is the case for the MNL and MCI demand models (McFadden 1974; Nakanishi and Cooper
1982). On the other hand, if assumptions have been made on customers responses to price
changes, appropriate attraction functions can be defined to model the desired behavior.
Examples of this approach include the linear attraction demand model, and the mixtures of
attraction functions discussed in Section 4.

B.1 The multinomial logit (MNL) demand model

The MNL demand model is a discrete choice model founded on utility theory, where di(xi)
is interpreted as the probability that a utility-maximizing consumer will elect to purchase
product i. The utility a customer derives from buying product i is Ui = Vi+εiwhereas making
no purchase is has utility U0 = ε0. The Vi terms are deterministic quantities depending on
the product characteristics (including price) and the random variables εi are independent
with a standard Gumbel distribution. It can be shown that the probability of product i
having the highest realized utility is then in fact given by di(x) in (1), with fi(xi) replaced
by eVi . To model the impact of pricing, we let, for each alternative i = 1, . . . , n,

Vi , Vi(x̂i) = β0,i − β1,ix̂i, (31)

where β0,i > 0 represents the quality of product i and β1,i > 0 determines how sensitive a
customer is to its price, denoted here by x̂i. When there is a population of consumers with
independent utilities, the fractions di(x) represent the portion of the population opting for
each product in expectation. For ease of notation, we re-scale the true price x̂i by β1,i
to obtain the single-parameter attraction functions (2), with vi = eβ0,i and xi = β1,ix̂i,
rather than using the form of the exponents (31) directly. These functions clearly satisfy
Assumption 1.

Parameters for the demand model used in the experiments of Section 6 are generated
by sampling the mean linear utilities Vi(x̂i) in equation (31) for each product i. Specifically,
Vi(0) and Vi(xmax) are chosen uniformly over [2σ, 4σ] and [−4σ,−2σ] respectively, where
σ = π/

√
6 is the standard deviation of the random Gumbel-distributed customer utility

terms εi. The parameters β0,i and β1,i are set accordingly. Recall that the mean utility
of the outside alternative is fixed at V0 = 0. The choice of parameters thus ensures that
purchasing each product is preferred with large probability when its price is set to 0, and
that no purchase is made with large probability when the (unscaled) prices x̂i are near
xmax.
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B.2 The multiplicative competitive interaction (MCI) demand model

Another common choice of attraction functions is Cobb-Douglas attraction functions

f̂i(xi) = αix
−βi
i , with parameters αi > 0 and βi > 1. It yields the multiplicative com-

petitive interaction (MCI) model. Since the attraction is not defined for negative prices, we
use its linear extension below a small price ε. Let

fi(xi) =

{
αiε
−βi − (xi − ε)αiβiε−βi−1 if xi < ε,

αix
−βi
i otherwise.

(32)

This is a mathematical convenience, since one would expect problems involving MCI demand
to enforce positivity of the prices. The approximation can be made arbitrarily precise by
reducing ε.

B.3 The linear attraction demand model

This demand model approximates a linear relationship between prices and demands, while
ensuring that the demands remain positive and sum to less than one. The attraction function
for the ith product is f̂i(xi) = αi − βixi, with parameters αi, βi > 0. An appropriate
extension is needed to ensure positivity. For instance, by choosing the upper bound x̄i =
αi/βi − ε, the following attraction function satisfies our assumptions:

fi(xi) =

{
αi − βixi if xi ≤ xi,

βie
−(xi−xi)/ε otherwise.

(33)

C Pricing under Attraction Demand Models

C.1 Non-Convexity of the Naive Pricing Problem under MNL Demand

This sections illustrates why the pricing problem (P) is difficult to solve directly in terms
of prices, as claimed in Section 2. Figure 1 shows the profit in terms of the prices under an
MNL demand model when the number of products is n = 1 and n = 2. The dashed line in
the first plot shows the demand as a function of the price. The profit function is not concave
even for a single product. With multiple products, the level sets of the objective are not
convex, i.e., the objective is not even quasi-concave.

Furthermore, combining nonlinear constraints with a non-quasi-concave objective func-
tion introduces additional complications. First, it is easy to see that, because the objective
is not quasi-concave, even a linear inequality constraint in terms of prices could exclude the
global maximum in the right panel of Figure 1, and thus give rise to a local maximum on
each of the ridges leading to the peak. Secondly, the feasible region of (P) is in general not
convex. Figure 2 illustrates the constraints of problem (P) with data

A =

 1 1
−1 −1
1 − 1

2

 , u =

 0.6
−0.4
0.4

 .
The left panel shows the feasible region in terms of the prices, and the right panel shows the
polyhedral feasible region in terms of the demands. Observe that the last two constraints are
clearly non-convex in the space of prices. On the other hand, the first constraint happens
to belong to the class of convex constraints characterized by Proposition 1.
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Fig. 1 The objective functions of (P) with a single product (left) and two-products (right).
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Fig. 2 The feasible region of (P) with two products and three constraints on the demands.

C.2 Representing Joint Price Constraints

This section shows how to incorporate certain joint price constraints into the formulations
we have proposed. Under MNL demand models, it is natural to assume that the consumer’s
utility (31) is equally sensitive to the price regardless of the alternative she considers. That
is, β1,i = β1,j . Then the constraint (4) can be expressed as

di(x) ≤
fi(xj + δij)

fj(xj)
dj(x) =

vifj(xj + δij)

vjfj(xj)
dj(x) =

(
vi

vj
e−δij

)
dj(x).

The assumption regarding the sensitivity to price is required so that the same scaling de-
scribed in Appendix B.1 is used to relate xi and xj with x̂i and x̂j of equation (31),
respectively. This allows fi to be replaced with fj in the preceding equation. The resulting
constraint is evidently linear in terms of the demands and is captured by the formulation
(P). This transformation depends on the relationship between the attraction functions for
different products and is thus specific to the MNL model. A similar transformation is pos-
sible for the linear attraction demand model with the analogous uniform price sensitivity
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assumption, βi = βj in (33). From (4), we then have

fi(xi)d0(x) ≤ fi(xj + δij)d0(x) ⇔
di(x) ≤ (αi − βi(xj + δij))d0(x) = (αi − αj − βjδij)d0(x) + dj(x),

where the d0(x) terms can be substituted out using the simplex constraint (8).

C.3 Convexity of (COP) Under Common Attraction Demand Models

Corollary 1 Under the linear, MNL and MCI attraction demand models, the objective of
(COP) is a concave function and any local maximum of either (COP) or (P) is also a
global maximum.

Proof For each model, we verify the condition (12). For the MNL model (2), we have

gi(y) = − log
y

vi
, g′i(y) =

−1

y
, g′′i (y) =

1

y2
, and 2g′i(y) + yg′′i (y) =

−2

y
+

y

y2
=
−1

y
< 0.

Now consider the attractions (33) for the linear model. For x > xi (i.e., y < fi(xi)) we have
the MNL attraction function so the condition (12) holds as shown above. Elsewhere, when
x ≤ xi,

gi(y) =
αi − y
βi

, g′i(y) =
−1

βi
, g′′i (y) = 0, and 2g′i(y) + yg′′i (y) =

−2

βi
+ 0 =

−2

βi
< 0.

as desired. For the MCI attraction functions (32), we have the linear attraction function for
xi < ε, otherwise

gi(y) =

(
y

αi

)−1
βi
, g′i(y) =

−1

αiβi

(
y

αi

)−1
βi
−1

, g′′i (y) =
−1

α2
i βi

(
−1

βi
− 1

)(
y

αi

)−1
βi
−2

,

2g′i(y) + yg′′i (y) =
−2

αiβi

(
y

αi

)−1
βi
−1

+ y
−1

α2
i βi

(
−1

βi
− 1

)(
y

αi

)−1
βi
−2

=

(
−2 +

1

βi
+ 1

)
1

αiβi

(
y

αi

)−1
βi
−1

=

(
1

βi
− 1

)
1

αiβi

(
y

αi

)−1
βi
−1

< 0

where the inequality uses that βi > 1. So the condition (12) is also satisfied. ut

D The Dual Market Share Problem

Proposition 3 The dual of (COP) is given by (DCOP). For any λ ∈ Rm and µ ∈ R,
there exist optimal y∗i > 0, for i = 1, . . . , n, so that φi(y

∗
i ,λ, µ) > 0 in each of the inner

maximization problems that appear in the equality constraint of (DCOP). Furthermore,
when condition (12) (or equivalently, condition (13)) is satisfied and (λ, µ) is an optimal
solution of (DCOP), a primal optimal solution θ∗ of (COP) is given by

θ∗0 =
1

1 +
∑n
i=1 y

∗
i

, and θ∗i =
y∗i

1 +
∑n
i=1 y

∗
i

, i = 1, . . . , n. (34)
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Proof For each i = 1, . . . ,m′, let λi be the Lagrange multiplier associated with the ith

constraint in (COP). Let µ be the multiplier associated with the equality constraint. The
Lagrangian is

L(θ;λ, µ) =

n∑
i=1

aiθigi

(
θi

θ0

)
−

m′∑
k=1

λk

(
n∑
i=1

Akiθi − uk

)
− µ

(
n∑
i=0

θi − 1

)

=
n∑
i=1

θi

aigi ( θi
θ0

)
−

m′∑
k=1

λkAki − µ

− µθ0 + µ+
m′∑
k=1

λkuk.

Taking the supremum successively over the different variables, we obtain the dual function

L∗(λ, µ) , sup
θ>0

L(θ;λ, µ) = sup
θ0>0

{
sup

θ1...θn>0
L(θ;λ, µ)

}

= µ+

m′∑
k=1

λkuk + sup
θ0>0

−µθ0 + sup
θ1...θn>0

n∑
i=1

θi

aigi ( θi
θ0

)
−

m′∑
k=1

λkAki − µ


= µ+

m′∑
k=1

λkuk + sup
θ0>0

(
−µθ0 + sup

θ1...θn>0

n∑
i=1

θ0φi(
θi

θ0
,λ, µ)

)

= µ+

m′∑
k=1

λkuk + sup
θ0>0

θ0

(
−µ+

n∑
i=1

sup
θi>0

φi(
θi

θ0
,λ, µ)

)
, (35)

where φi(y,λ, µ) is defined as in (28). The value of θ0 has no impact on the value of the

inner supremums in (35) since the optimization is over the ratio θi
θ0

with the numerator free

to take any positive value. Thus we may write the dual problem as

inf
λ≥0,µ

L∗(λ, µ) = inf
λ≥0,µ

µ+

m′∑
k=1

λkuk + sup
θ0>0

θ0

(
−µ+

n∑
i=1

sup
yi>0

φi(yi,λ, µ)

) .

At optimality, the quantity in the inner parentheses must be non-positive, so we may write

inf µ+

m′∑
k=1

λkuk

s.t. µ ≥
n∑
i=1

sup
yi>0

φi(yi,λ, µ)

λ ≥ 0.

The inequality constraint is tight at optimality, because φi(yi,λ, µ) are strictly decreasing
in µ.

We now show that φi(yi,λ, µ) achieves a maximum at some yi = y∗i > 0, for any fixed
λ and µ. For ease of notation, we fix i and drop the subscript. Let

φ(y) , φi(y,λ, µ) = y (g(y)− ν) , (36)

where we define g(y) , aigi(y) and ν ,
∑m′

k=1 λkAki + µ. By Assumption 1, there exists a
value ŷ > 0 for which g(ŷ) = ν, since the attraction fi(·) is defined everywhere on R and g(·)
is its inverse. Moreover, φ(·) is strictly positive on the interval (0, ŷ) and strictly negative
on (ŷ,∞) since g(·) is strictly decreasing. Also by Assumption 1 (ii) ,

lim
y↓0

φ(y) , lim
y↓0

(yg(y)− yν) = lim
y↓0

aiygi(y) = lim
x→∞

aixfi(x) = 0.
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We consider the continuous extension of φ, with φ(0) = 0, without loss of generality. Then,
the continuous function φ(·) achieves a maximum y∗i on the closed interval [0, ŷ] by Weier-
strass’ Theorem. We have 0 < y∗i < ŷ and φ(y∗i ) > 0, since φ(0) = φ(ŷ) = 0 and φ is strictly
positive on the interval.

Suppose now that condition (12) (equivalently, condition (13)) holds. Then (COP) has
a concave objective, a bounded polyhedral feasible set and a finite maximum (because the
feasible set is bounded). Then the dual (DCOP) has an optimal solution and there is no
duality gap. Consider now an optimal dual solution (λ∗, µ∗) and corresponding maximiz-
ers y∗1 , . . . , y

∗
n. Then (34) is a primal optimal solution, since it maximizes the Lagrangian

L(θ;λ, µ) by definition of the dual: we have only made the change of variable yi = θi
θ0

. ut

D.1 The Dual Problem under MNL Demand Models

Proposition 4 The dual problem (DCOP) for the special case of MNL attraction functions
(2) is given by (DMNL).

Proof The inverse attraction functions for the MNL model (2) and their derivatives are
gi(y) = − log y

vi
, and g′i(y) = −1

y
, respectively. Then the first order necessary optimality

condition for the ith inner maximization in (DCOP) is

∂φi

∂y
=

aigi (y)−
m′∑
k=1

λkAki − µ

+ aiyg
′
i(y) = 0 ⇔

y = vi exp

{
−1−

∑m′

k=1 λkAki + µ

ai

}
.

The preceding line gives the unique maximizer since one exists by Proposition 3. Substituting
the optimal value of y back into (28) yields that

φi(y
∗
i ,λ, µ) = aivi exp

{
−1−

∑m′

k=1 λkAki + µ

ai

}
,

which can in turn be substituted into (DCOP) to obtain (DMNL). The constraint may be
relaxed to an inequality which is tight at optimality, since the right hand side is decreasing
in µ. ut

D.2 Solving the Dual Problem in General

More generally, there may not exist a closed form solution for the values φi(y
∗
i ,λ, µ). Then

the dual problem may not reduce to a tractable optimization problem. If there is no closed
form inverse for the attraction functions, not even the primal market share problem (COP)
can be solved directly, even if it has a concave objective function. This is notably the case
for the demand models discussed in Section 4 (although we have shown that the primal
objective function’s gradient and Hessian can nevertheless be computed efficiently).

In this section, we present a column generation algorithm to solve the dual which avoids
both of these difficulties. It is more general than solving either of the formulations (COP)
and (DCOP) directly, since it does not require the convexity of the primal objective func-
tion assumed in Theorem 1, and it does not require a closed form solution for the inner
maximizations of the dual problem.

In the dual (DCOP), fixing the variables λ uniquely determines the value of the remain-
ing variable µ, because of the equality constraint. Notice that the right hand side of the
constraint is decreasing in µ, because all functions φi(y,λ, µ) are decreasing in µ for any
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value of y. Furthermore, any feasible µ is positive since the maxima φi(y
∗
i ,λ, µ) are positive

by Proposition 3. We define µ(λ) as the unique root of equation

Fλ(µ) = µ−
n∑
i=1

max
yi>0

φi(yi,λ, µ) = 0. (37)

Its value may be computed by a line search which computes the maximizers y∗i at each
evaluation. When these one-dimensional maximizations are tractable, it is possible to eval-
uate the dual objective efficiently, and the Dantzig-Wolfe column generation scheme can
be applied to solve (COP). (See, for instance, (Bertsekas 1999) for details.) Specifically, we
propose the following algorithm:

1. Initialization: Set lower and upper bounds LB = −∞ and UB =∞.
2. Master Problem: Given market share vectors θ0, θ1, . . . , θL−1, solve the following

linear program over the variables ξ0, ξ1, . . . , ξL−1:

γL = max

L−1∑
`=0

ξ`Π(θ`)

s.t.
n∑
i=1

Aki

(
L−1∑
`=0

ξ`θ`i

)
≤ uk k = 1 . . .m′

L−1∑
`=0

ξ` = 1, ξ` ≥ 0, ` = 0, . . . , L− 1.

(LP)

Let λL be the vector of optimal dual variables associated with the inequality constraints.
The master problem solves (COP) with the feasible region restricted to the convex hull
of the demand vectors θ0, θ1, . . . , θL−1. If the optimal value γL of (LP) exceeds the
lower bound LB, update LB := γL.

3. Dual Function Evaluation: Compute the root µ(λL) of the dual equality constraint
FλL (µ) shown in (37), and let θL be the primal solution (34) corresponding to the
maximizers {y∗i , i = 1, . . . , n}. If the dual objective value L(θL;λL, µ(λL)) is less than

the upper bound, set UB := L(θL;λL, µ(λL)).
4. Termination: If (UB − LB) is below a pre-specified tolerance, stop. Otherwise, let

L := L+ 1 and go to Step 2.

This algorithm requires at least one initial feasible solution θ0, which can be found by
solving any linear program with the constraints of (COP). It does not require (COP) to
have a concave objective, since it computes an optimal solution to its dual, which is always
a convex minimization problem. Moreover, it can be used even if there is no closed form for
the inverse attraction functions gi(·). Indeed, we can equivalently represent the functions
φi(y,λ, µ) in terms of the original attraction functions fi(xi), as

ψi(xi,λ, µ) , fi(xi)

aixi − m′∑
k=1

λkAki − µ

 . (38)

Then the maximization can be performed over the price xi, and the optimal price for given
dual variables (λ, µ) is

x∗i , arg max
xi

ψi(xi,λ, µ) = gi(y
∗
i ).

The maximum is guaranteed to exist since y∗i exists by Proposition 3. It can be computed
via a line search if it is the unique local maximum. The unimodality of φi (and equivalently,
of ψi) is guaranteed, for instance, by the assumption of Theorem 1, or more generally, by
the assumption of Proposition 5 below. In the column generation algorithm, the objective
of (LP) depends on the prices xi = gi

(
θ0i /θ

0
0

)
corresponding to the initial feasible point.

Because they must satisfy fi(xi) = θ0i /θ
0
0 and fi(xi) is monotone, they can also be found
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using line search procedures in practice. For each new point θL, corresponding prices x∗i are
computed in the maximizations of ψi over xi.

Finally, we remark that it is not necessary to dualize the price bounds represented by
the constraints k = (m + 1), . . . ,m′ defined in (9). These constraints may be omitted if
the price bounds xi ≤ xi ≤ xi are instead enforced when computing the maximizers x∗i
(or, equivalently, the bounds fi(xi) ≥ yi ≥ fi(xi) are enforced when computing y∗i ). This
modification reduces the number of constraints from m′ = (m+ 2n) to m.

The algorithm just described may also be viewed as a generalization of the procedure
presented by Gallego and Stefanescu (2009) to general attraction demand models and ar-
bitrary linear inequality constraints. (Although they arrive at their method by taking the
dual of the price-based formulation (P) for the special case of MNL demand.) Because con-
vergence of column generation algorithms is often slow near the optimum, we expect that
directly solving (COP) or (DCOP) will be more efficient when it is possible. This, for exam-
ple, is the case with the MNL demand models considered by Gallego and Stefanescu (2009).
However, the column generation algorithm applies to demand models where it is not possible
to solve the other formulations. It can provide an upper bound on the optimal profit when
the objective function of (COP) is not concave, and can often compute an approximate
solution quickly (accurate within a few percent in relatively few iterations, as shown in our
experiments).

We end this section with the following proposition providing a sufficient condition on
the inverse attractions guaranteeing unique maximizers y∗i . It requires that the inverse at-
traction functions are “sufficiently concave” (though not necessarily concave) up until some
ȳ, and then “sufficiently convex” afterward. Omitting the ratio x

y
, conditions (39) and (40)

below correspond to strict concavity and strict convexity, respectively. However, the first re-
quirement is weaker, and the second is stronger, because this ratio is less than one. (Recall
that g′i(x) < 0, ∀x since fi and gi are decreasing.) We note that the proposition allows ȳ = 0
or ȳ =∞, in which case one of the assumptions holds trivially.

Proposition 5 If for each i = 1, 2, . . . , n, there exists a point ȳi ∈ [0,∞] such that

gi(y) < gi(x) +
x

y
(y − x)g′i(x), ∀x, y ∈ (0, ȳi], x < y, and (39)

gi(y) > gi(x) +
x

y
(y − x)g′i(x), ∀x, y ∈ [ȳi,∞), x < y, (40)

then the maximizers
{
y∗i , i = 1, . . . , n

}
are unique for any values of λ and µ.

Proof We fix i and use the simplified notation defined in (36). From Proposition 3, the
maximizer y∗i > 0 exists, and it must be a stationary point of φ. We will show that the
rightmost stationary point to the left of ȳi maximizes φ(y) over (0, ȳi], and that the leftmost
stationary point to the right of ȳi maximizes φ(y) over [ȳi,∞), if they exist. At least one
of them must exist since we know a maximum is attained. If both exist, we deduce that
there is an additional stationary point between them by applying the mean value theorem.
This contradicts the fact that they are the rightmost and leftmost stationary points on their
respective intervals, proving uniqueness of the maximizer.

Suppose y ∈ (0, ȳi] is a stationary point of φ(·), i.e.

φ′(y) = g(y)− ν + yg′(y) = 0 ⇒ ν = g(y) + yg′(y). (41)

We will show that for any other point x ∈ (0, y), whether or not it is a stationary point,

φ(x) < φ(y) ⇔ x(g(x)− ν) < y(g(y)− ν) ⇔

x
(
g(x)− g(y)− yg′(y)

)
< −y2g′(y) ⇔ x(g(x)− g(y)) < (x− y) yg′(y) ⇔

g(x)− g(y) < (x− y)
y

x
g′(y) ⇔

x

y

(
g(x)− g(y)

x− y

)
> g′(y),

where we used (41). Having fixed y, we denote the left hand side as a function of x by

h(x) =
x

y

(
g(y)− g(x)

y − x

)
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and note that limx↑y h(x) = g′(y). Thus, to prove the inequality, it is sufficient to show
that the continuous function h(x) is decreasing in x on the interval (0, y). We consider the
derivative with respect to x

h′(x) =
g(x)− g(y)

y(x− y)
+
x

y

(
g′(x)

x− y
−
g(x)− g(y)

(x− y)2

)
=

1

(x− y)2

(
x− y
y

(g(x)− g(y)) +
x

y
(x− y)g′(x)−

x

y
(g(x)− g(y))

)
=

1

(x− y)2

(
x

y
(x− y)g′(x)− g(x) + g(y)

)
= ai

1

(x− y)2

(
−
x

y
(y − x)g′i(x)− gi(x) + gi(y)

)
< 0. (42)

The assumption (39) implies that the above derivative is negative, where we have substituted
gi(·) back in, and thus h(x) is decreasing.

A similar argument shows the analogous result for stationary points to the right of
ȳi. Take instead x ∈ (ȳi,∞) to be the leftmost stationary point in the half-line, and let
y ∈ (x,∞) be some other stationary point. We still have that x < y, but now φ(x) >
φ(y) ⇔ h(x) < g′(y), because h(x) is increasing in x. This is implied by the assumption
(40), which shows that the derivative in (42) is now positive. ut

D.3 Performance of the Column Generation Algorithm

Table 3 shows the accuracy achieved and the running time in seconds after a fixed number of
iterations of the column generation algorithm, when applied to randomly generated problem
instances with four overlapping customer segments, using the approximation of Section 4.
Only the most recently active 512 columns are retained in the master problem (LP). We
have no closed form for the inner maximizers y∗i and instead use a numerical minimization
algorithm based on Brent’s method to compute them. Brent’s method (see Brent (1973))
is also used to solve (37) numerically. The algorithm was halted if six significant digits of
accuracy were achieved.

Duality Gap Duality Gap Duality Gap
16 256 0.03% 0.41            (< 1e-6) 0.86            (< 1e-6) 0.86            
64 256 19.63% 1.10            0.68% 11.83          (< 1e-6) 90.05          

256 256 31.28% 2.49            4.18% 25.99          0.19% 198.75       
512 256 25.77% 4.05            4.75% 38.30          0.92% 263.76       

1,024 256 14.39% 8.74            4.12% 65.91          2.71% 393.85       
2,048 256 4.45% 18.31          1.25% 117.06       1.15% 605.92       
4,096 256 1.35% 35.50          0.52% 212.99       0.52% 1,150.80    
256 16 0.03% 1.49            0.01% 9.54            0.01% 55.87          
256 64 6.72% 1.36            0.10% 12.74          0.07% 68.91          
256 256 31.28% 2.49            4.18% 25.99          0.19% 198.75       
256 512 237.23% 4.02            12.77% 75.98          1.79% 638.32       
256 1,024 215.69% 9.98            24.42% 250.18       5.17% 1,882.00    
256 2,048 161.09% 20.73          26.25% 583.72       6.80% 4,636.20    
256 4,096 178.72% 64.33          28.96% 1,561.70    7.76% 10,944.00  

 Products                                           
(n) 

 Constraints                                                              
(m) Time Time Time

 500 Iterations  100 Iteration                          2000 Iterations 

Table 3 Duality gap as a percentage of LB and running time in seconds for the column
generation algorithm.

As is often the case for column generation algorithms, we observe fast convergence
early on. After 500 iterations, most of the instances are solved to within 10 percent of the
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optimal objective value. Quadrupling the number of iterations further reduces the duality
gap to a few percentage points in all but the largest instances. The solution times compare
favorably with the price formulation (P) and the dual formulation (DCOP) for the single-
segment case, but are significantly slower than for the market-share formulation (COP). Of
course, the latter formulation requires the custom objective evaluation code described in the
preceding section when multiple segments are being approximated. We conclude that the
column generation method offers a viable alternative when the other formulations cannot
be applied easily, and only limited accuracy is needed.


