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Abstract

The runway configuration is a key driver of airport capacity at any time. Several
factors, such as wind speed, wind direction, visibility, traffic demand, air traffic con-
troller workload, and the coordination of flows with neighboring airports influence
the selection of the runway configuration.

This paper identifies a discrete-choice model of the configuration selection process
from empirical data. The model reflects the importance of various factors in terms of
a utility function. Given the weather, traffic demand and the current runway configu-
ration, the model provides a probabilistic forecast of the runway configuration at the
next 15-minute interval. This prediction is then extended to obtain the probabilistic
forecast of runway configuration on time horizons up to 6 hours.

Case studies for Newark (EWR), John F. Kennedy (JFK), LaGuardia (LGA),
and San-Francisco (SFO) airports are completed with this approach, first by assum-
ing perfect knowledge of future weather and demand, and then using the Terminal
Aerodrome Forecasts (TAFs). The results show that given the actual traffic demand
and weather conditions 3 hours in advance, the models predict the correct runway
configuration at EWR, JFK, LGA, and SFO with accuracies 79.5%, 63.8%, 81.3%
and 82.8% respectively. Given the forecast weather and scheduled demand 3 hours
in advance, the models predict the correct runway configuration at EWR, LGA, and
SFO with accuracies 78.9%, 78.9% and 80.8% respectively. Finally, the discrete-choice
method is applied to the entire New York Metroplex using two different methodolo-
gies and is shown to predict the Metroplex configuration with accuracies of 69.0% on
a 3 hour prediction horizon.

Thesis Supervisor: Hamsa Balakrishnan
Title: Associate Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

Airport congestion leads to significant flight delays at the busiest airports around the

world. Fundamentally, congestion is caused by an imbalance between demand (air-

port operations) and supply (airport capacity) within the air transportation system.

Airport expansion projects can increase the runway capacity at an airport, but are

expensive and take many years to complete; by contrast, the better utilization of ex-

isting airport capacity is a less expensive approach to mitigating airport congestion.

The key driver of airport capacity at a given time is the active runway configura-

tion [1], which is the combination of runways being used to handle the arrival and

departure flows at the airport under consideration.

When selecting a runway configuration, air traffic control personnel must con-

sider meteorological and operational factors such as wind speed, wind direction, ar-

rival demand, departure demand, noise mitigation, and inter-airport coordination.

A comprehensive understanding of the runway configuration selection process by air

traffic personnel is necessary for the future development of decision support tools

under SESAR and NextGen initiatives. A keen understanding of this process has

the potential to increase the operational efficiency of airport capacity utilization and

provides a key step toward airport capacity prediction. Airport capacity predictions

are important inputs needed for air traffic flow management [2, 3], airport surface

operations scheduling [4], and system-wide simulations [5]. Since the capacity of an

airport depends heavily on the runway configuration being used, the forecast of the
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runway configuration is a key step toward predicting the capacity of an airport.

This paper develops a data-driven model of the runway configuration selection pro-

cess using a discrete-choice modeling framework for Newark (EWR), John F. Kennedy

(JFK), LaGuardia (LGA), and San-Francisco (SFO) airports. It also extends this dis-

crete choice approach to model the configurations of the entire New York Metroplex

which includes EWR, LGA, and John F. Kennedy (JFK) airports. The models in-

fer the utility functions that best explain (that is, maximize the likelihood of) the

observed decisions. The utility functions give insight on the relative importance of

the different decision factors to air-traffic control personnel when selecting a runway

configuration. The resultant model yields a probabilistic prediction of the runway

configuration at any time, given a forecast of the influencing factors.

1.1 Related Work

1.1.1 Prescriptive Models

Two types of models have previously been developed for the runway configuration

selection problem: prescriptive and descriptive models. Prescriptive models account

for the weather and other operational constraints to recommend an optimal runway

configuration. An early example of a prescriptive model is the Enhanced Preferential

Runway Advisory System (ENPRAS) that was developed for Boston Logan Interna-

tional Airport (BOS) [6]. The ENPRAS was created to mitigate noise impacts from

aircraft arrivals and departures at BOS and provide noise relief to nearby commu-

nities by selecting optimal runway configurations (usually over water). The optimal

configuration was determined considering weather, demand, and runway conditions.

Both long-term aggregate noise pollution impacts and short-term impacts to nearby

communities were considered when developing the system. So far, the ENPRAS has

successfully helped operators at BOS lower the noise levels to surrounding communi-

ties, and future implementations will help airport operators plan for optimal runway

use over their entire shift period.
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Also motivated by aircraft noise considerations, runway allocation systems were

designed for Sydney and Brisbane airports [7]. These systems allowed for a more

robust method for detecting aircraft noise profiles by using time-stamped aircraft

movement composite-year data sets instead of the conventionally used day-average

movement data sets. These new composite-year data sets were then tested within

runway allocation models and was shown to predict the runway allocation at a higher

level of confidence than previously used methods.

More recently, several authors have considered the problem of optimally schedul-

ing runway configurations, taking into account different models of weather forecasts

and the loss of capacity during configuration switches [8, 9, 10, 11, 12]. Airports

are assumed to operate under capacity envelopes that govern the amount of arrivals

and departures that an be handled at an airport. These capacity envelopes directly

depend on the runway configuration being used. High-level approaches using these

concepts have attempted to describe the benefits to the entire National Airspace Sys-

tem (NAS) when operating in a certain runway configuration. More recent approaches

drill deeper and examine airports individually, focusing on their unique complexities

and attributes to predict future runway configuration changes [12]. Additionally,

models were also developed to determine the optimal relative sequencing of runway

configurations by applying mixed integer programming models. These models were

developed to reach an optimal balance of arriving aircraft and departing aircraft at

an airport over time [11]. Other models dealt with capacity loss at an airport dur-

ing a runway configuration switch, assigning transition penalties to mimic real-world

operating conditions during a runway configuration switch [10].

1.1.2 Descriptive Models

Descriptive models use data-mining approaches to predict the runway configuration

selection based on historical data. These models describe the decision selection pro-

cesses of decision makers and use those processes to make predictions rather than

simply recommending an optimal runway configuration. Descriptive models have re-

ceived less attention than prescriptive models, but recently research in this field has
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grown significantly. An example of a descriptive modeling approach uses data-mining

methods to forecast Airport Arrival Rates (AARs) using Terminal Aerodrome Fore-

cast (TAF) data. The TAF data is used to develop capacity profiles for airports

using different stochastic approaches such as k-means clustering and dynamic time

warping. A design of experiments methodology was taken by assigning the cost of

delay to an objective function. The stochastic capacity profiles forecast AARs by

minimizing the cost of delay objective function using the real-time data available to

airport operators when making decisions. This methodology also makes the approach

beneficial for Ground Delay Program (GDP) planning [14].

A 24-hour forecast of runway configuration was developed for Amsterdam Schiphol

airport using a probabilistic weather forecast [15]. The method used modified two-

dimensional Gaussian distribution with wind speed and wind direction as degrees of

freedom to develop probabilities of selecting a runway configuration. The intent of

this model is to provide airport operators with decision support tools based on future

weather forecasts. The model can also keep nearby civilians who live close to the

airport informed of the likely impacts that weather will have on airport operations

- and in turn the noise over their communities. In some cases, these models achieve

accuracies of up to 70%.

A logistic regression based approach was used to develop a descriptive model of

runway configuration selection at LGA and JFK, although this was not a predictive

model [16]. These models have been shown to have accuracies of up to 75%, however,

a difficult task has been modeling the observed resistance to configuration changes

from air traffic control personnel. Recent research using discrete-choice models of

the runway configuration selection process for year 2006 at EWR and LGA airports

have taken this observation into account with similar accuracies [17, 18]. The model

parameters in these discrete-choice models were set using standard operating proce-

dures at EWR and LGA, which are subject to change and can sometimes disagree

with the data.
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1.1.3 Extension of Previous Work

This paper will extend the aforementioned discrete-choice models at EWR and LGA

for years 2011-2012 with a more data-driven approach. The methodology will also be

applied to SFO and JFK for years 2011-2012. Finally, the discrete-choice approach

will be applied to the entire New York Metroplex for years 2011-2012. A key novelty in

this paper is that the constraints pertaining to the maximum allowable tailwinds and

crosswinds are learned from the actual data rather than the FAA operating manuals.

The utility functions within the discrete-choice framework capture the impor-

tance of wind speed and direction, air traffic demand, noise abatement procedures,

and the coordination of flows with neighboring airports. An advantage of the discrete-

choice approach is its ability to account for the resistance to configuration switches

by air-traffic control, called operational "inertia" in this paper. Switching a run-

way configuration requires increased coordination among airport stakeholders which

lowers airport throughput, and consequently makes air traffic control personnel to

resist frequent configuration changes. While the influence of inertia is arguably less

important on long forecast horizons (when the key factors are likely to be wind con-

ditions, visibility, and demand), the resistance to configuration changes play a much

more prominent role on short forecast horizons (such as 3-hours ahead). Without

accounting for inertia, tools that suggest possible choices for the optimal runway con-

figuration recommend significantly more frequent changes than were seen in actual

operations [12]. The discrete-choice modeling framework helps to accommodate the

effect of inertia, in addition to the other influencing factors.

This paper illustrates the proposed approach using case studies for EWR, JFK,

LGA, SFO, and the New York Metroplex, first assuming a knowledge of the actual

weather conditions and the traffic demand 3 hours ahead, and then using the most

recent Terminal Aerodrome Forecast (TAF) available 3 hours in advance.
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1.2 Airports Considered

1.2.1 EWR

Newark Liberty Internal Airport is one of three major airports in the New York

Metroplex. EWR handles approximately 35 million passengers a year on three run-

ways: 4L/22R, 4R/22L, and 11/29 [19]. EWR serves as a hub for United Airlines,

which handles approximately 70% of its passenger traffic [19].

An airport layout of EWR is shown in Figure 1.2.1. Typically, runway 4L/22R

is used for departures and 4R/22L is used to handle arrivals. Runway 11/29 is not

usually preferred because it is not capable of instrument landing approaches, however

during very strong crosswinds runway 11/29 may be used to handle either arrivals or

departures. 25 different runway configurations at EWR were reported in year 2011.

Table 1.2.1 shows the frequencies with which the most commonly-used configurations

at EWR were observed.

Aviation
Purking

29

F 
fpI

FEDEX

Figure 1.2.1: Layout of EWR airport.

20



1.2.2 JFK

John F. Kennedy International Airport is another of the three major airports in the

New York Metroplex. JFK handles approximately 55 million passengers a year and is

operationally the largest international airport in the United States [20]. The airport

serves as a hub for American Airlines, Delta Airlines, and JetBlue.

JFK has four runways: 13R/31L, 4R/22L, 4L/22R, and 13L/31R [21]. An airport

layout of JFK is shown in Figure 1.2.2. Commonly, arrivals are handled using runways

31L/13R or 4L/22R depending on the specific conditions, and departures are typically

handled with 13R/31L. 43 different runway configurations at JFK were reported

in 2011. Table 1.2.1 shows the frequencies with which the most commonly-used

configurations at JFK were observed.

Ir

Figure 1.2.2: Layout of JFK airport.

1.2.3 LGA

LaGuardia Airport is the final major airport in the New York Metroplex. LGA

handles approximately 25 million passengers a year on two runways: 4/22 and 13/31
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[22]. LaGuardia acts as a hub for Delta Airlines.

An airport layout of LGA is shown in Figure 1.2.3. The active runways for arrivals

and departures depends on the weather conditions, but typically, arrivals at LGA are

handled on runway 4/22 and departures are handled on runway 13/31. 27 different

runway configurations at LGA were reported in 2011. Table 1.2.1 shows the frequen-

cies with which the most commonly-used configurations at LGA were observed.

Aviation

Figure 1.2.3: Layout of LGA airport.

1.2.4 SFO

San Francisco International Airport is the major airport in the San Francisco Bay

Area, handling approximately 47 million passengers annually [23]. SFO acts as a hub

for United Airlines and Virgin America.

As shown in Figure 1.2.4, SFO has four runways: 1OL/28R, 1OR/28L, O1L/19R,

and O1R/19L [24]. Handling arrivals and departures at SFO is uniquely challenging

for air traffic control because the centerlines of runways 10L/28R, and 1OR/28L are

only separated by 750 feet. According to FAA regulations parallel approaches cannot

be allowed during poor weather conditions at such a small separation. This effec-

tively lowers the capacity of the airport during overcast weather, and will be shown
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to present a significant modeling challenge in this paper. 24 different runway config-

urations at SFO were reported in 2011. Table 1.2.1 shows the frequencies with which

the most commonly-used configurations at SFO were observed.

Figure 1.2.4: Layout of SFO airport.

1.2.5 New York Metroplex

The New York Metroplex is comprised of three major airports within a relatively

close proximity to another - EWR, JFK, and LGA. A map layout of the New York

Metroplex is shown in Figure 1.2.5 In come cases, the large general airport TEB is

included, but it will be left out for the purposes of this research. The New York

Metroplex is a very large bottleneck on the NAS because it has the largest number

of arrival and departure operations in the United States [35, 36]. Consequently, it

is the most congested airspace in the NAS [34]. Delays that occur in the New York

Metroplex propagate throughout the rest of the system and can have a heavy impact

on the overall delay state of the NAS.

Prior research has suggested that the New York Metroplex is beginning to reach

its maximum airspace capacity given the current operational landscape and physical
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Table 1.2.1: Frequent configurations observed at EWR,
2011.

JFK, LGA, and SFO in year

Airport Configuration Frequency % Frequency

21L,11122R 4,214 13%

22LI22R 16,559 50%

EWR 22LI22R,29 353 1%

4L,4R4L 528 2%

4R,1114L 1,576 5%

4R14L 10,221 31%

13L,22L113R 2,174 6%

13LI13R 1,395 4%

22L,22RI22R 2,579 7%

22L,22R122R,31L 1,785 5%

22LI22R 3,528 10%

JFK 22L122R,31L 4,085 12%

31L,31RI31L 7,064 20%

31R131L 3,233 9%

4L,4RJ4L 1,927 5%

4L,4R14L,31L 1,987 6%

4R14L 2,592 7%

4R14L,31L 1,835 5%

22113 6,846 24%

22131 5,556 19%

22,31131 852 3%

LGA 31131 2,676 9%

3114 7,608 26%

4113 4,113 14%

1 1 414 1,372 5%

19R,19LI10R,1OL 957 3%

28R,28L01R,01L 24,871 74%

SFO 28R,28L128R,28L 3,000 9%

28R01R,01L 467 1%

28L101R,O1L 4,244 13%

layout of EWR, JFK, and LGA [32]. Because of the large expected increase in air

travel demand over the next few decades, a major component of NextGen research

has been devoted to examining possible capacity enhancements for the New York

Metroplex. This paper will also model the New York Metroplex using a discrete

choice approach. The utility functions learned from these models could help future

models with capacity predictions or defining objective functions for decision support
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Figure 1.2.5: Layout of EWR, JFK, and LGA in the New York Metroplex.

tools.

Just as the previously mentioned airports were shown to have runway configu-

rations, the New York Metroplex is considered to have certain "configurations" as

well. The New York Metroplex runway configurations are simply the combined run-

way configurations of EWR, JFK, and LGA at any given time. By the nature of

this definition, the New York Metroplex configurations switch much more often and

have a lower number of occurrences compared to the configurations at each individual

airport. Table 1.2.2 shows the most frequent (filtered at 1%) configurations seen in

the New York Metroplex during 2011.

As shown, in Table 1.2.2, many configurations seem similar to others and typically

occur less frequently than most of the individual airport configurations. For these

reasons the New York Metroplex configurations are difficult to model. To help manage

these difficulties, prior research used the configurations at each individual airport to

develop overarching configurations for the New York Metroplex [34]. This paper will

draw from that work and define similar overarching runway configurations using the

frequent configurations shown in Table 1.2.2. The overarching New York Metroplex

runway configurations follow eight structures
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Table 1.2.2: Frequent New York Metroplex configurations in year 2011.

NY Metro Config. ID EWR Config. JFK Config. LGA Config. Freq. % Freq.

1 11,22L122R 13L,22L113R 22113 565 1.6%

2 11,22L122R 22L122R,31L 22113 358 2.6%

3 22LI22R 13LI13R 22113 442 3.2%

4 22LI22R 22L,22R22R 22113 884 6.3%

5 22LI22R 22L,22RI22R,31L 22131 628 4.5%

6 22LI22R 22LI22R 22113 1,149 8.2%

7 22L|22R 22LI22R 22131 516 3.7%

8 22LI22R 22LI22R,31L 13,22113 368 2.6%

9 22LI22R 22L122R,31L 22113 1,061 7.6%

10 22L122R 22L122R,31L 22131 739 5.3%

11 22LI22R 31L,31RI31L 22131 1,060 7.6%

12 22LI22R 31L,31R31L 31131 392 2.8%

13 22LI22R 31L,31RI31L 3114 416 3.0%

14 22L|22R 31R131L 22131 356 2.5%

15 4R,1114L 31L,31RI31L 3114 518 3.7%

16 4R14L 31L,31RI31L 3114 1,273 9.1%

17 4R14L 31RI31L 3114 580 4.2%

18 4R14L 4L,4R14L 4113 750 5.4%

19 4R14L 4R14L 3114 425 3.0%

20 4R14L 4R14L 4113 623 4.5%

21 4R14L 4R14L,31L 3114 487 3.5%

22 4R14L 4R14L,31L 4113 371 2.7%

Southern aircraft flow under

Southern aircraft flow under I

Southern aircraft flow under

Mixed southern and northern

Mixed southern and northern

Northern aircraft flow under

Northern aircraft flow under I

Northern aircraft flow under

VMC

MC.

VMC

flow

flow

VTMC

MC.

VfMC

with an arrival priority.

with a departure priority.

with an emphasis on northern flow.

with an emphasis on southern flow.

with an arrival priority.

with a departure priority.

The overarching New York Metroplex configurations and their components are

shown in Table 1.2.3.
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Table 1.2.3: Combined NY Metro. configurations.

NY Metro Config. ID EWR Config. JFK Config. LGA Config. Freq. % Freq.

1 11,22LI22R 13L,22L113R 22113 565 1.6%

3 22LI22R 13LI13R 22113 442 3.2%

South Flow - VMC - Arrival Priority (S-VMC-AP) 2,794 20%

2 11,22L122R 22L122R,31L 22113 358 2.6%

4 22LI22R 22L,22R122R 22113 884 6.3%

6 22L122R 22LI22R 22113 1,149 8.2%

8 22LI22R 22L122R,31L 13,22113 368 2.6%

9 22LI22R 22L122R,31L 22113 1,061 7.6%

South Flow - IMC (S-IMC) 1 2,033 14.6%

5 22LI22R 22L,22R122R,31L 22131 628 4.5%

7 22LI22R 22L1,22R. 22131 516 3.7%

10 22LI22R 22L122R,31L 22131 739 5.3%

South Flow - VMC - Departure Priority (S-VMC-DP) 1,883 13.5%

11 22LI22R 31L,31R31L 22131 1,060 7.6%

14 22LI22R 31RI31L 22131 356 2.5%

Mixed North and South Flow with South Emphasis (Mixed S to N) 1,416 10.1%

12 22LI22R 31L,31R31L 31131 392 2.8%

13 22LI22R 31L,31R31L 3114 416 3.0%

Mixed North and South Flow with North Emphasis (Mixed N to S) 808 5.8%

15 4R,1114L 31L,31RI31L 3114 518 3.7%

16 4R14L 31L,31R31L 3114 1,273 9.1%

17 4R14L 31R131L 3114 580 4.2%

North Flow - VMC - Arrival Priority (N-VMC-AP) 2,371 17.0%

18 4R14L 4L,4R14L 4113 750 5.4%

20 4R14L 4R14L 4113 623 4.5%

22 4R14L 4R14L,31L 4113 371 2.7%

North Flow - IMC (N-IMC) 1,744 12.5%

19 4R14L] 4R14L 3114 425 3.0%

21 4R14L 4R14L,31L 3114 487 3.5%

North Flow - VMC - Departure Priority (N-VMC-DP) 912 6.5%

1.3 Notation

Runway configurations are typically designated in the form of 'Al,A2 I D1, D2' where

Al and A2 are the arrival runways, and Dl and D2 are the departure runways. The

numbers for each active runway are reported based on their bearing from magnetic

north (in degrees) divided by 10. Pairs of parallel runways are differentiated by

'R' and 'L'. For instance, if Newark, shown in Figure 1.3.1, is operating in runway
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configuration 22LI22R, aircraft arrivals are handled on runway 22L which faces 220

degrees from magnetic north and departures are handled on parallel runway 22R

which also faces 220 degrees from magnetic north.

Theoretically, an airport with N runways has O(6N) possible configurations, since

each runway can be used for arrivals, departures or both, and in either direction.

Throughout a year, many different runway configurations are seen, however, typically

5-10 runway configurations are used the majority of the time. In addition, due to the

additional coordination required during switches, runway configurations only change

1-3 times per day on average.

29

41
22L|22R

Figure 1.3.1: Example of runway configuration notation.
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Chapter 2

Methodology

2.1 Discrete-Choice Modeling Framework

Discrete-choice models are behavioral models that describe the choice selection of a

decision maker, or the nominal decision selection among an exhaustive set of possible

alternative options, called the choice set [26]. Each alternative in the choice set is

assigned a utility function based on defining attributes that are related to the decision

selection process. At any given time, the feasible alternative with the maximum utility

is assumed to be selected by the decision maker.

The utility function is modeled as stochastic random variable, with an observed

(deterministic) component, V, and a stochastic error component, 6. For the nth

selection, given a set of feasible alternatives Cs, the utility of choice ci E C, is

represented as

Un,i = Vn,i + 6ri. (2.1.1)

The decision maker selects the alternative with maximum utility, that is, cj E Cn

such that

j = argmax(Un,j) (2.1.2)
i:ciECn

The observable component of the utility function is defined as a linear function

of the observed vector of attributes, Xn,,. The attributes include the different factors

that can influence the decision. They are weighted by the values in vector, /
3 ,j, and
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include alternative specific constants, an,,, as follows:

Vn' i = an'i + [On,3 - Xn,i]. (2.1.3)

The random error component of the utility function reflects all measurement er-

rors, including unobserved attributes, variations between different decision-makers,

proxy variable effects, and reporting errors. The error term is assumed to be dis-

tributed according to a Type I Extreme Value (or Gumbel) distribution with a loca-

tion parameter of zero, that is:

f(x) = PC e-?7 (2.1.4)

where p is the scale parameter and rq is the location parameter. The location parame-

ter is set to zero when defining the discrete choice models. The Gumbel distribution is

used to approximate a normal distribution due to its computational advantages. The

Multinomial Logit (MNL) model assumes that the error components of each utility

function are independent from one another, as shown in Figure 2.1.1.

Decision

Alt. 1 Alt. 2 Alt. 3 Alt. 41 Alt. 5

Figure 2.1.1: Example of a MNL model structure.

Under the assumptions of the MNL model, the probability that choice i is chosen

during the rIth selection is given by

P"' .= (2.1.5)

Pnci E~ CCn 'C

The independence among the error terms of each utility function in the MNL

model assumes that all correlation among alternatives has been captured by the

attributes included in the utility function [26]. The Nested Logit (NL) model relaxes
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this assumption by grouping alternatives into subsets, or nests (denoted Bk), which

have correlation between their error terms (Figure 2.1.2).

Decision

Nest I Nest 1
AAtA. 4 A

Figure 2.1.2: Example of a NL model structure.

The NL model splits the observable part of the utility function into a component

that is common among the alternatives within a nest, and a component that varies

between the different alternatives in a nest. The NL model can then be treated as

nested MNL models using conditional probabilities. The probability that a specific

alternative is chosen is given by the probability that its nest is chosen, multiplied by

the probability that the specific alternative is chosen from among the alternatives in

that nest. In other words

Pn (ci) =Pn(cilBk)Pn(Bk), (2.1.6)

where Pn(Bk) = (2.1.7)

ZEjBk fexp(PkVn,j)]

In,k Iln(Z exp([ukVn,i)). (2.1.9)
I-k j(EBk

Equation (2.1.7) has an additional term in the numerator called the inclusive

value, that acts as a bridge between the "lower level MNL structures" within each

nest, and the "upper level MNL structure" comprised of the nests themselves.
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2.2 Maximum-Likelihood Estimation of Model Pa-

rameters

Maximum-likelihood estimates of the linear weighting parameters, alternative specific

constants, and scale parameters are estimated from the training data. The maximum-

likelihood function is defined as the joint probability that the vector of sample data

will occur, given a vector of parameters 0 =< a, /, p.> as follows,

L(O) = P(X; 0). (2.2.1)

The estimated parameters are those that maximize the likelihood of the observa-

tions:

(a, 3, /l) = ( C(a, 3, p)). (2.2.2)

The resulting nonlinear optimization problem is solved computationally using an

open-source software package called BIOGEME [27].

2.3 Statistical Tests

The discrete-choice models for EWR, JFK, LGA, SFO, and the New York Metroplex

were realized iteratively, adding or removing variables based on their statistical signif-

icance as determined by the Students t-test. The significance of each attribute to the

overall model was tested using likelihood ratio testing. Different nested logit model

tree structures were also evaluated for statistical significance using likelihood-ratio

testing [26].
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Chapter 3

Pre-processing The Data

3.1 Training and Testing Data

The training and test datasets for each airport were taken from the FAA's Avia-

tion System Performance Metrics (ASPM) database [28]. The data is reported in

15-minute intervals and includes the active runway configuration, the arrival and

departure demand, cloud ceiling, visibility conditions, wind speed, and wind direc-

tion. Training data for SFO, LGA, and EWR was taken from year 2011 and the test

datasets were taken from year 2012. Results from the prediction models that use

ASPM test data assume perfect knowledge of the wind, visibility, and demand for

the subsequent three hour interval. Test data sets will also be created using Terminal

Aerodrome Forecast (TAF) data and schedule demand data which does not assume

precise knowledge of the weather and demand over the next three hours. Predic-

tion results using the TAF and schedule demand data effectively simulate predictions

using data that air traffic control personnel would have in real time.

3.2 Attribute Selection

The utility function is assumed to be a linear function of the observed vector of at-

tributes, or factors, that influence the decision. For the runway configuration selection

problem, the following attributes were considered.
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3.2.1 Inertia

During a runway configuration switch it is necessary to have increased coordination

among all stakeholders (airlines, air traffic control, ground operations,etc.), which

reduces the airport throughput [111. Operational "inertia" is a term used to describe

the preference of air traffic control to resist runway configuration changes, due to

the high operational effort required during the switch. Tools designed to suggest

an optimal runway configuration have been shown to recommend significantly more

frequent runway configuration switches than is actually observed in practice. An

inertia variable was added as an attribute in the models to reflect the preference

of air traffic controllers to resist configuration changes. The inertia variable adds a

positive contribution to the utility function of the incumbent configuration.

3.2.2 Wind Speed and Wind Direction

Wind speed and direction are key factors that influence the choice of runway configura-

tion. High tailwinds and crosswinds are operationally unsafe in many circumstances,

and as a result, render certain runways unusable. The Federal Aviation Administra-

tion (FAA) has specified the maximum allowable tailwind and crosswind thresholds

for the safe operation of a runway in standard operating procedures (SOPs). Prior

work on runway configuration selection based runway availability on SOPs in the

model. In this paper, the threshold values of runway tailwinds and crosswinds are

directly backed out of the ASPM year 2011 training data sets for each airport.

The ASPM dataset gives both the wind direction with respect to true north, 0 and

wind speed, v, for each 15-minute interval. Figure 3.2.1 illustrates that the headwind

and crosswind components are given by,

Headwind = v cos( o - 0) (3.2.1)

Crosswind = v sin(o - 6) (3.2.2)

where p denotes the orientation of the runway with respect to true north. Note
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that p does not correspond to the angle implied by the runway number, which is given

with respect to magnetic north. The runway angle relative to true north is calculated

by adding an offset that depends on the geographic location of the airport, shown in

Table 3.2.1. Tailwinds occur when the headwind function takes a negative value.

Figure 3.2.1: Determination of the headwind and crosswind components.

Table 3.2.1: Runway angles at EWR, JFK, LGA, and SFO with respect to true north

and magnetic north.

Airport Runway # Angle TN [deg] % Angle MN [deg]

4 26 39

11 95 108
EWR (Mag. Variation 13W)

22 206 219

29 275 288

4 31 45

13 121 135
JFK (Mag. Variation 14W)

22 211 225

31 301 315

4 32 44

13 122 134
LGA (Mag. Variation 12W)

22 212 224

31 302 314

01 27 13

10 117 103
SFO (Mag. Variation 14E)

19 207 193

28 297 283

Figures 3.2.2, 3.2.3, 3.2.4, 3.2.5 show the identified

and wind direction for each runway at EWR, JFK,

ranges of feasible wind speed

LGA, and SFO respectively.

These figures also show the observed wind speed and wind direction combinations for
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year 2011 at these airports. The identified ranges of tailwind and crosswind values

for runway feasibility were learned directly from the 2011 ASPM data and are also

shown on the plot. Note that air traffic controllers prefer headwinds to tailwinds and

crosswinds, and while there is no headwind threshold for runway feasibility, headwind

thresholds were plotted at 40 knots in the diagrams for better illustration. The

tailwind and crosswind limits were taken on a "per-runway" basis, and were calculated

via the following procedure.

1. Aggregate all tailwind and crosswind values for each runway at EWR, JFK,

LGA, and SFO.

2. For each runway list, remove tailwind and crosswind combinations from time

periods when the active configurations did not include any operations on the

runway.

3. Take tailwind thresholds at 90th percentile and crosswind thresholds at the

95th percentile to remove possible reporting errors. In the plots, the solid line

corresponds to the aforementioned thresholds for each runway, and the dashed

lines correspond to the 75th percentile.

EWR 2011 _unw..0. 2

0 ~~-Runwey22
0 0 Runm 0 291

330 30
330 130 306 0

300 60

270 
0

jj~~iII j -j100

240 120 240 120

so
210 150 210 150

180 180

Thresholds Wind Rose

Figure 3.2.2: Wind speed, wind direction, and wind thresholds learned from year
2011 EWR data.
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Figure 3.2.3: Wind speed,
2011 JFK data.
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Figure 3.2.4: Wind speed, wind direction, and wind thresholds learned from year
2011 LGA data.
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SFO 2011
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Figure 3.2.5: Wind speed, wind direction, and wind thresholds learned from year
2011 SFO data.

The available choice set during a given selection period can change in a discrete

choice framework. Even with the maximum tailwind and crosswind limitations, sev-

eral runway configurations may be feasible at any time. Runway feasibility was used

to directly govern the available subset of runway configurations in the discrete choice

model during each time interval. If the wind speed and wind direction combination

fell outside any of the thresholds for a runway, all configurations using that runway

were removed from the available choice set during the given decision selection period.

Figures 3.2.2, 3.2.3, 3.2.4, and 3.2.5 show that the majority of points correspond to

conditions in which all the runway configurations are considered feasible.

Headwinds are expected to add a positive contribution to the utility functions and

tailwinds are expected to add a negative contribution. Significantly high headwinds,

however, could potentially have an adverse effect on airport operations by decreasing

the space between aircraft arrivals during landing - a phenomenon known as com-

pression [29]. Shown in Figure 3.2.6, compression occurs when there are significantly

higher headwinds near the ground than at cruise altitude during the arrival approach.

If the ground headwinds are high enough, the relative spacing between consecutive

arrivals will begin to decrease as the flights begin their descent toward the airport,

which can cause safety problems and congestion.
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Figure 3.2.6: Diagram explaining aircraft compression upon arrival.

To account for the effects of compression, headwinds above the 85th percentile

were treated as "high headwinds". Variables for "normal headwinds" (below the

85th percentile) and "tailwinds" were added to each model as well.

3.2.3 Demand

Airport arrival and departure demand play a significant role when selecting the run-

way configuration. Specifically, in high demand situations, high capacity configura-

tions are preferred. These typically include an extra arrival or departure runway.

Figures 3.2.7, 3.2.8, 3.2.9, and 3.2.10 show the active arrival demand variation

throughout the time of day at EWR, JFK, LGA and SFO airports during year 2011.

Demand typically peaks around 9:00 - 11:00 AM because it is the most convenient time

to arrive for business travel. Because of the time-dependence of arrival demand at each

airport, adding demand into the utility functions of the runway configurations also

brings time-of-day effects into the model. One would assume that if demand typically

peaks at an airport during a certain time of day, the high capacity configurations are

more likely to be used during that time of day.
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Figure 3.2.7: Temporal active arrival demand profile at EWR airport for year 2011.
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Figure 3.2.8: Temporal active arrival demand profile at JFK airport for year 2011.
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Figure 3.2.9: Temporal active arrival demand profile at LGA airport for year 2011.
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Figure 3.2.10: Temporal active arrival demand profile at SFO airport for year 2011.

3.2.4 Noise Abatement Procedures

Noise abatement procedures are used at many major airports to reduce the impacts

of noise on communities in the vicinity of the airport, especially during early morning

and nighttime hours. At EWR, JFK, and LGA, configurations with flight paths

over the city and away from populated areas are preferred during the nighttime. At

SFO, runway configurations that arrive and depart over the water are preferred to

configurations that fly over populated areas. Variables were included in each model

to account for these effects.

3.2.5 Cloud Ceiling and Visibility

Meteorological conditions, as represented by the cloud ceiling and visibility, are im-

portant considerations for air traffic control personnel when selecting the runway con-

figuration. Visual Meteorological Conditions (VMC) refer to times when the visibility

is sufficient for pilots to maintain visual separation from the ground and other aircraft.

Instrument Meteorological Conditions (IMC) refer to times when pilots are required

to use their flight instruments. IMC is defined by a visibility less than 3 miles and

a ceiling less than 1,000 feet [30]. The runway configuration selection could depend

on whether VMC or IMC is implemented. The EWR and LGA models incorporates

variables for each utility function corresponding to visual and instrument conditions.

In this manner, these variables will capture any preferences for one configuration over

another configuration under VMC or IMC.
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The optimal capacity configuration at SFO is 28R,2811R,1L. The runways used

in this operation are closely-spaced at 750 feet apart. As per FAA regulations, si-

multaneous arrivals are not allowed under IMC [30]. Therefore, one would expect

that the 28R11R,1L or 28L11R,1L configurations (which involve using only one of the

two runways for arrivals) would be favored under IMC. Table 3.2.2 shows the relative

use of each of these configurations under VMC and IMC. As shown, even though the

single arrival runway configurations are used a greater fraction of the time in IMC

than in VMC, the runway configuration 28R,28L11R,1L is still used a majority of

the time in IMC. During IMC, simultaneous "side-by" landings are not possible, and

the airport operates as if it would be in a single arrival runway configuration using a

"staggered" arrival approach. Operationally, the staggered 28R,281,1R,1L configura-

tion under IMC may have a small capacity benefit over the 28RI1R,1L and 28LI1R,1L

configurations. In order to evaluate these effects, new variables that combine the ef-

fects of visibility and demand were used in the SFO model. Four categorical variables

were defined for periods of:

1. IMC + low demand,
2. IMC + high demand,
3. VMC + low demand,
4. VMC + high demand,

where a low demand period was defined as less than 5 arrivals per 15-minute period

and high demand was defined as greater than 8 arrivals per 15-minute interval.

Table 3.2.2: Occurrences of 28R,28L11R,1L and 28R/L11R,1L at SFO in 2011.

Configuration VMC IMC

28R,28LI1R,1L 19,832 (82.7%) 4,161 (17.3%)

28R/LI1R,1L 3,466 (65.3%) 1,844 (34.7%)

3.2.6 Coordination With Surrounding Airports

The four airports in the New York Metroplex - Newark (EWR), John F. Kennedy

International Airport (JFK), LaGuardia (LGA), and Teterboro (TEB) - are all in
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a very close proximity to one another. Air traffic controllers at each airport must

therefore coordinate their aircraft arrival and departure flows with the other neigh-

boring airports. In the EWR and LGA individual airport models, the impacts of

TEB are ignored and categorical variables were added to account for operations at

JFK. JFK was chosen because of its large volume of operations, which was expected

to have a significant impact on the runway configurations at EWR and LGA. The

JFK discrete-choice model includes coordination variables for both EWR and LGA,

but also ignores the impacts from TEB.

3.2.7 Switch Proximity

If the airport conditions necessitate a runway configuration switch, certain configu-

ration switches require more coordination from airport stakeholders than others. For

instance, the addition of an extra arrival runway may be easier to implement than a

complete reversal in the direction of operations. To account for these effects, variables

were added to weight each utility function differently depending on the previous con-

figuration. The switch proximity variables are fundamentally the same as the inertia

variables, but are applied only to the utility functions of the runway configurations

that were not seen in the previous time interval instead of the incumbent configura-

tion. In this sense, they do not account for the low likelihood of switching between

two runway configurations that require a high amount of operational effort once the

decision to switch the configuration has been made.

3.2.8 New York Metroplex Model Data Processing

The New York Metroplex model uses slightly different definitions than the attributes

mentioned above. Since each overarching New York Metroplex configuration consisted

of several different runway configurations at multiple airports, runway availability

plays a much smaller role than it does in the individual airport models. The wind

parameters were processed to align with the primary flow of arrivals and departures

(i.e. North or South flow). Arrival and departure demand variables were taken as
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the total arrival or departure demand from EWR, JFK, and LGA. Additionally, the

VMC/IMC classifiers from EWR, JFK, and LGA were all averaged to create an

overall New York Metroplex VMC/IMC classifier. The averaging allows the utility

bonus or penalty to be reduced for a New York Metroplex configuration if EWR,

JFK, and LGA are not all in VMC or IMC.

3.3 Runway Configuration Filtering

Runway configurations that were seen less than 1% of the time throughout the year

were removed at EWR, JFK, and SFO to reduce possible reporting errors or cases of

special operations that would make it difficult to reliably estimate the weights and

predict with the models. For LGA, the filter was set to 2% for the individual airport

model to further help reduce reporting errors that occurred during nighttime hours.

Similarly, the New York Metroplex configuration model uses a 1% cutoff.
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Chapter 4

Estimated Discrete-Choice Utility

Functions

4.1 EWR

EWR

22L,1122 2222R2R 22L 12211,29 Arrival on 4

4R,4LI4L 4R,114L 4Rj4L

Figure 4.1.1: EWR model specification.

In the EWR model, configurations were removed if they were not seen at least

1% of the decision selection periods throughout the year. Many model structures

were tested, and the final final model was chosen as a nested logit structure with

nest containing all alternatives using runway 4 for arrivals with a scale parameter of

PAr,4 = 1.22, shown in Figure 4.1.1.

The estimated weighting parameters for the utility function for the EWR model

are shown along with their standard errors and t-statistics in Table 4.1.1. Any pa-
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rameter that was not statistically significant, i.e. the t-statistic had an estimated

value less than 1.96, was removed from the model except in cases when removing the

variable could bias the predictions.

As expected, the estimated weights indicate that inertia is the most important

factor to air traffic controllers when selecting a runway configuration at EWR. Because

configurations within a common nest have a very similar directional aircraft flow

structure, they were constrained to have the same inertia value. This helped prevent

biases during the prediction.

Compression effects at EWR were not statistically significant during estimation

and are therefore not shown in Table 4.1.1. Additionally, headwinds and tailwinds

showed a linear correlation. As a result, the high headwind, normal headwind, and

tailwind variables were all linearly constrained in the final model. The wind vari-

ables for the departure runways at EWR were not statistically significant, which may

indicate that air traffic control prioritizes arrivals over departures when selecting a

runway configuration.

Arrival demand was shown as statistically significant for runway configurations

with extra arrival runways; namely, 22L,11122R , 4R,4L14L, and 4R,1114L. As arrival

demand increased, these configurations received a utility bonus which encourages

the addition of an arrival runway to handle the increasing demand. The threshold

values used in the model were determined as a nuisance parameter. Interestingly, a

similar variable dealing with the departure demand was not statistically significant

for runway configuration 22LI22R,29.

4.2 JFK

Configurations that were not seen within at least 1% of the decision selection periods

in 2011 were removed from the JFK model. The final model was specified as a nested

logit structure with nests containing arrivals and departures on the 4 runways, 13

runways, the 22 runways, and the 31 runways, shown in Figure 4.2.1. The scale

parameters are p4, =1.02, P13s 1.00, P22s = 1.04, and P31s = 1.07 respectively.
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Table 4.1.1: Estimated utility function weights for EWR.

Parameters Value Std. error t-statistic

Inertia parameters

Config. 22L,11122R 4.70 0.329 14.29

Config. 22L122R 4.70 0.329 14.29

Config. 22L122R,29 4.70 0.329 14.29

Config. 4L,4R14L 5.04 0.251 20.10

Config. 4L,1114L 5.04 0.251 20.10

Config. 4RI4L 5.04 0.251 20.10

Wind parameters

High headwind on arrival runway 0.107 0.0114 9.38

Normal headwind on arrival Runway 0.107 0.0114 9.38

Tailwind on arrival runway -0.107 0.0114 -9.38

Tailwind on extra arrival runway -0.295 0.0284 -10.39

VMC/IMC parameters

VMC on 4R,4L14 -2.48 0.187 -13.28

Noise parameters

Arrival demand on 22L,11122R (thresh =12) 1.97 0.819 2.41

Arrival demand on 4R,4Lj4L (thresh=12) 2.26 0.419 5.41

Arrival demand on 4R,1114L (thresh=12) 4.09 4.09 5.57

Tables 4.2.1 - 4.2.3 show the estimated values of the attribute weights in the utility

functions, their standard errors, and their t-statistics. The estimated weights show

that as before, inertia is the most important factor for a runway configuration se-

lection at JFK, however the other parameters such as demand and visibility play a

much more significant role than at EWR. Headwinds and especially tailwinds are still

very significant with high t-statistics. In most cases, the arrival demand and depar-

ture demand variables give a higher positive bonus to higher capacity configurations

as would be expected. 27 of the 132 possible switch proximity variables for JFK

converged for this model. It appears that the switch proximity variables favor config-

uration switches that require less operational coordination, such as 22L,22RI22R,31L

to 22LI22R. The exception seems to be runway switches to configurations involving

the 31 Runways, which are always very likely to have a configuration switch. Ad-

ditionally, coordination variables between EWR and LGA with JFK were extremely

important in this model. In many cases, utilities in the JFK model receive a positive

bonus if the configuration effectively aligns the arrival or departure flows with the
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JFK

Arrival on 13 Arrival on 31

Arrival on 22 Arrival on 4

13L 13R 13,22L I13R 31RI31L 31L,31R13

22L,22RI22R 22LI22R,31L 4R14L 4L,4RI4L

22L,22R1 R,31L 22LI22R 4L,4R 14L,31L 141,31L

Figure 4.2.1: JFK model specification.

other airports and receives a negative bonus if it does not align arrival or departure

flows.

Many of the filtered configurations are extremely similar in structure, such as

22LI22R and 22L,22RI22R, which causes confusion within the prediction models since

many of the attributes give the same value within their respective utility functions.

The higher uncertainty with the demand variables makes it difficult to distinguish

between these two configurations except in extreme cases. Additionally, the ASPM

data does not give any indication if configurations are reported as side-by or parallel

landings and takeoffs which causes more confusion within the prediction models. Since

in many cases, the FAA would consider these configurations the same when predicting

on certain horizon, the runway configurations that were very similar in structure are

combined and the utilities were re-estimated in a new combined configuration model

for JFK. The combined configurations are shown in Table 4.2.4 and the updated

model specification is shown in Figure 4.2.2. The prediction models shown later use

the combined configurations.

The updated utility parameters estimated on the combined model is shown in

Table 4.2.5. The utility weights in the combined model are a reflection of the utility

weights from the other model. Inertia is still shown as the most important parameter.
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Table 4.2.1: Estimated utility function weights for JFK - Part I.

Parameters Value Std. error t-statistic

Inertia parameters

Config. 13L,22L113R 4.62 0.233 19.82

Config. 13LI13R 4.97 0.261 19.06

Config. 22L,22R122R 6.21 0.286 21.72

Config. 22L,22Rj22R,31L 6.28 0.38 16.53

Config. 22LI22R 6.43 0.338 19.03

Config. 22L122R,31L 6.57 0.372 17.64

Config. 31L,31R31L 6.01 0.335 17.94

Config. 31R131L 5.58 0.235 23.73

Config. 4L,4Rj4L 4.17 0.171 24.44

Config. 4L,4R14L,31L 5.83 0.193 30.27

Config. 4R14L 5.94 0.224 26.52

Config. 4R14L,31L 6.61 0.352 18.76

Wind parameters

headwind on arrival runway 0.0365 0.0096 3.8

Tailwind on arrival runway -0.138 0.0171 -8.06

Demand parameters

Arrival demand on 13L,22L113R 0.257 0.022 11.65

Arrival demand on 4L,4R14L,31L 0.106 0.0312 3.4

Arrival demand on 31L,31RI31L 0.151 0.0196 7.69

Arrival demand on 4L,4R114L 0.124 0.0307 4.04

Departure demand on 4L,4R14L,31L 0.307 0.0286 10.73

Departure demand on 4R14L 0.139 0.0306 4.55

Departure demand on 4Rj4L,31L 0.361 0.0255 14.19

Departure demand on 13LI13R 0.187 0.0298 6.28

Departure demand on 22L,22R122R 0.0981 0.0300 3.27

Departure demand on 22L,22R|22R,31L 0.346 0.0245 14.12

Departure demand on 22LI22R 0.154 0.0248 6.23

Departure demand on 22L122R,31L 0.348 0.0191 18.24

Departure demand on 31R131L 0.201 0.0248 8.13

VMC/IMC parameters

4L,4R4L,31L under VMC -1.05 0.248 -4.24

4R14L under VMC -0.754 0.232 -3.24

4R14L,31L under VMC -0.866 0.226 -3.83

4L,4R14L under VMC -0.709 0.239 -2.97

Noise parameters

Morning/evening arrivals on runway 4 0.418 0.137 3.06

Morning/evening departures on runway 22 0.418 0.137 3.06

Headwinds give positive contributions to the utility functions of each runway configu-

ration. Tailwinds contribute a larger negative bonus to the utility functions, reflecting
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Table 4.2.2: Estimated utility function weights for JFK - Part II.

Parameters Value Std. error t-statistic

Switch proximity parameters

31L,31R31L to 4L,4R4L,31L 0.945 0.325 2.91

4L,4R14L to 4L,4R4L,31L 1.78 0.446 3.99

4R14L,31L to 4R14L 3.53 0.428 8.26

31L,31R131L to 4R14L 1.76 0.431 4.09

4L,4R14L to 4R14L,31L 1.18 0.424 2.79

13LI13R to 13L,22LI13R 1.7 0.458 3.71

22LI22R to 13L,22L113R 0.923 0.365 2.53

22L,22R122R,31L to 22L,22R122R 2.21 0.472 4.68

22LI22R to 22L,22R22R 1.71 0.342 4.98

22L,22R122R to 22L,22R122R,31L 1.68 0.543 3.09

31L,31R31L to 22L,22Rj22R,31L 1.02 0.283 3.58

22L,22R122R to 22LI22R 1.39 0.475 2.93

22L,22R122R,31L to 22LI22R 1.42 0.503 2.83

22L122R,31L to 22L122R 1.38 0.258 5.34

22L,22R122R to 22LI22R,31L 1.3 0.422 3.07

4R14L to 31L,31RI31L 1.18 0.402 2.93

4R14L,31L to 31L,31R31L 2.31 0.461 5.01

13LI13R to 31L,31R31L 1.49 0.557 2.68

22L,22R122R to 31L,31R31L 1.38 0.525 2.63

22L,22R122R,31L to 31L,31RI31L 1.59 0.431 3.68

22LI22R to 31L,31R31L 1.48 0.348 4.25

22L|22R,31L to 31L,31R31L 0.664 0.31 2.14

31RI31L to 31L,31R31L 1.02 0.359 2.85

4L,4R14L to 31L,31RI31L 1.46 0.509 2.86

4L,4R4L,31L to 4L,4R14L 1.68 0.388 4.33

4R14L to 4L,4R14L 1.62 0.45 3.61

4R14L,31L to 4L,4R14L 2.79 0.496 5.63

a larger preference from air traffic control to choose runway configurations that elim-

inate tailwinds than to chose runway configurations that have high headwinds. The

noise parameter indicates that during evening and morning hours, departures are

likely to occur using runway 22 and arrivals are likely to occur on runway 4. Addi-

tionally, the switch proximity variables only converged for 4 out of the 30 possible

combined configuration switches.

Arrival demand for combined configurations 13 Runways and 31 Runways are

statistically significant and departure demand for configuration 22 Runways High

Arrival and 22 Runways Low Arrival are statistically significant. Additionally, utilities
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Table 4.2.3: Estimated utility function weights for JFK - Part III.

Parameters Value Std. error t-statistic

Inter-airport coordination parameters

EWR 21L,11122R VS. JFK 13L,22L113R

EWR 21L,11122R VS. JFK 13LI13R

EWR 21L,11122R VS. JFK 22L22R,31L

EWR 21LI22R VS. JFK 4L,4Rl4L,31L

EWR 21Ll22R VS. JFK 4R14L

EWR 21LI22R VS. JFK 22L,22RI22R

EWR 21LI22R VS. JFK 22L,22R122R,31L

EWR 21LI22R VS. JFK 22LI22R

EWR 4R,1114L VS. JFK 13L,22L113R

EWR 4R,1114L VS. JFK 4L,4Rj4L,31L

EWR 4R,1114L VS. JFK 31L,31R131L

EWR 4R14L VS. JFK 13L,22L113R

EWR 4R14L VS. JFK 4R14L

EWR 4R14L VS. JFK 22L,22RI22R,31L

EWR 4R14L VS. JFK 22L122R,31L

EWR 4R14L VS. JFK 31L,31R31L

LGA 22113 VS. JFK 13L,22Ll13R

LGA 22113 VS. JFK 4L,4Rj4L,31L

LGA 22113 VS. JFK 4R14L,31L

LGA 22113 VS. JFK 22L,22RI22R,31L

LGA 22113 VS. JFK 22LI22R

LGA 22131 VS. JFK 4L,4R14L,31L

LGA 22131 VS. JFK 4R14L,31L

LGA 22131 VS. JFK 31L,31R31L

LGA 22,31131 VS. JFK 31L,31RI31L

LGA 4113 VS. JFK 4L,4R14L,31L

LGA 4113 VS. JFK 4R14L

LGA 4113 VS. JFK 13LI13R

LGA 4113 VS. JFK 22L,22RI22R,31L

LGA 4113 VS. JFK 4L,4RI4

LGA 414 VS. JFK 4R14L,31L

0.882

-0.718

0.479

-0.639

0.621

0.287

-0.979

0.434

1.5

1.37

1.21

-0.91

0.574

-0.818

-0.652

0.529

-0.9

-0.843

-1.22

-1.76

0.466

-1.56

-1.35

0.413

1.66

-0.949

0.581

-1.19

-2.41

1.01

-0.934

0.242

0.439

0.2

0.257

0.236

0.214

0.238

0.177

0.432

0.366

0.303

0.369

0.228

0.317

0.249

0.175

0.24

0.335

0.338

0.372

0.178

0.651

0.653

0.188

0.335

0.326

0.237

0.497

0.675

0.27

0.382

3.64

-1.64

2.39

-2.48

2.63

1.34

-4.11

2.45

3.48

3.74

4

-2.46

2.52

-2.58

-2.62

3.02

-3.74

-2.51

-3.61

-4.72

2.61

-2.39

-2.06

2.2

4.96

-2.91

2.45

-2.4

-3.57

3.74

-2.44

for configurations 4 Runways High Arrival and 4 Runways Low Arrival receive a

negative contribution if VMC are in effect. Prior reports from the FAA confirm

that configuration 13 Runways is primarily used under arrival priority operations,

configurations 22 Runways High Arrival and 22 Runways Low Arrival are used for

operations under departure priority, and configurations 4 Runways High Arrival and

4 Runways Low Arrival are used for IMC operations [25]. The fact that the data-
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Table 4.2.4: Combined JFK configurations.

ID

1

2

3

4

22

5

6

221

7

8

9

10

4

11

1 1

-IIIConfiguration

13L,22L13R

13LI13R

13 Runways

22L,22R22R

22L,22R122R,31L

Runways High Arrival

22LI22R

22L122R,31L

Runways Low Arrival

31L,31RI31L

31RI31L

31 Runways

4L,4Rj4L

4L,4R14L,31L

Runways High Arrival

4R14L

4R14L,31L

4 Runways Low Arrival 4,427 13.0%

driven approach aligns with previous research on FAA ATC is promising, because

it reflects the potential of the discrete-choice models to capture the importance of

various attributes in a choice selection. Furthermore, it opens the door for new

insights if attributes that may not be obvious are statistically significant.

Additionally, coordination with EWR and LGA seems to be important to the

runway configuration selection at JFK, moreso than with the other airport models.

JFK is the largest airport in the New York Metropolitan area, which may make have

a larger influence on the operations in the Metroplex. This could effectively make it

more important for ATC at JFK to coordinate their operations with the other nearby

airports.
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10,297

1,927
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JFK

Arrival on 13 Arrival on 22 Arrival on 4] Arrival on 31

13 Runways H 31 Runways

22 Runways High Arrival 4 Runways High Arrival

22 Runways Low Arrival 4Runways Low Arrival]

Figure 4.2.2: JFK Combined Configuration Model specification.

4.3 LGA

In the LGA model, configurations were removed if they were not seen in at least

2% of the decision selection periods throughout the year. Many model structures

were tested, and the final model was chosen as a nested logit structure with a single

nest containing all alternatives using runway 22 for arrivals with a scale parameter of

1pArr22 1.1, shown in Fig. 4.3.1.

LGA

4II4 4|1] Ariaon 22 313] [III4

4R1,41- 4L 411,11 14L 4R114L

Figure 4.3.1: LGA model specification.

The estimated values of the of the weights on different attributes (i.e., j), their

standard errors and t-statistics are presented in Tables 4.3.1 - 4.3.2 . Again, the

estimated weights indicate that inertia is the most important factor when selecting a

runway configuration at LGA, particularly for configurations 22131 and 22,31131.
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Table 4.2.5: Estimated utility function weights for JFK's Combined Configuration
Model.

Parameters Value Std. error t-statistic

Inertia parameters

Config. 13 Runways 4.86 0.185 26.31

Config. 22 Runways High Arrival 4.31 0.0931 46.30

Config. 22 Runways Low Arrival 4.31 0.0931 46.30

Config. 31 Runways 3.82 0.224 17.08

Config. 4 Runways High Arrival 5.81 0.175 33.23

Config. 4 Runways Low Arrival 5.81 0.175 33.23

Wind parameters

High headwind on arrival runway 0.0194 0.0148 1.32

Normal headwind on arrival runway 0.0356 0.0122 6.26

Tailwind on arrival runway -0.159 0.0179 -8.91

Demand parameters

Arrival demand on 13 Runways 0.151 0.0186 8.09

Arrival demand on 31 Runways 0.208 0.0175 11.86

Departure demand 22 Runways High Arrival 0.203 0.0176 11.55

Departure demand 4 Runways High Arrival 0.204 0.0222 9.17

Noise parameters

Morning/evening arrivals on runway 22 -0.208 0.128 -1.63

Morning/evening departures on runway 4 -0.208 0.128 -1.63

VMC/IMC parameters

VMC on 4 Runways-High Arrival -0.898 0.199 -4.52

VMC on 4 Runways Low Arrival -1.09 0.198 -5.52

Switch proximity parameters

31 Runways to 13 Runways -0.885 0.335 -2.64

31 Runways to 22 Runways High Arrival -1.36 0.327 -4.18

31 Runways to 22 Runways Low Arrival -0.735 0.271 -2.71

31 Runways to 4 Runways Low Arrival 2.12 0.294 7.23

Inter-airport coordination parameters

JFK config. 31 Runways VS. EWR config. 21L,11122R -0.666 0.218 -3.05

JFK config. 4 Runways High Arrival VS. EWR config. 21LI22R -0.357 0.194 -1.84

JFK config. 13 Runways VS. EWR config. 4R,1114L 0.942 0.391 2.41

JFK config. 4 Runways Low Arrival VS. EWR config. 4R,1114L -1.05 0.372 -2.82

JFK config. 22 Runways Low Arrival VS. EWR config. 4R14L -0.593 0.197 -3.01

JFK config. 22 Runways Low Arrival VS. LGA config. 22113 0.651 0.133 4.88

JFK config. 4 Runways High Arrival VS. LGA config. 22131 -1.77 0.544 -3.25

JFK config. 4 Runways Low Arrival VS. LGA config. 22131 -1.19 0.513 -2.32

JFK config. 22 Runways Low Arrival VS. LGA config. 22,31131 -1.13 0.371 -3.05

JFK config. 22 Runways High Arrival VS. LGA config. 3114 0.324 0.246 1.32

JFK config. 4 Runways Low Arrival VS. LGA config. 414 -1.49 0.364 -4.10
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Additionally, the results indicate that the headwind parameters are statistically

significant for the primary arrival runway, but not for the primary departure runway

or the extra arrival runway. This finding seems to suggest that the alignment of the

primary arrival runway is more important than the alignment of the departure or

extra arrival runways. This could be due to the fact that aircraft arrivals must be

served, whereas departures could be held under extreme conditions. Furthermore,

the negative influence of tailwinds was found to be statistically significant across the

board. Note that the high headwind variable for the primary arrival runway had

a slightly lower value than the normal headwind variable, which suggests that high

headwinds are slightly less preferable due to compression.

Arrival demand effects were statistically significant for the low capacity runway

configurations 31131 and 414. During high demand scenarios, these configurations

were less likely to be selected. VMC was seen to be important for configurations

31131 and 3114. This seems to suggest that VMC is an important consideration for

arrivals on runway 31.

Switch proximity was only significant for 10 out of the 42 possible configura-

tion switches. All had negative values, reflecting resistances to certain configuration

switches. The relative weights suggest that, in general, air traffic controllers prefer

not to reverse the direction of airport operations if at all possible.

4.4 SFO

4.4.1 SFO Model Using Raw ASPM Data

SFO Model Using Raw ASPM Data

In the SFO model, configurations that were removed if they were not seen in at

least 1% of the decision selection periods throughout the year. Shown in Fig. 4.4.1,

the chosen model had a nested logit structure with 6 possible runway configuration

alternatives. The model structure grouped similar configurations 28R,28L iR,iL

28Lj1R,1L , and 28R1R,1L into a common nest with scale parameter ptArr28,Dep1
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Table 4.3.1: Estimated utility function

1.16.

The estimated weighting parameters for the utility function (/3 values from (2.1.3))

for the SFO model are shown in Table 4.4.1. The table includes the estimated value,

the standard error, and the t-statistics.

Similar to the EWR, JFK, and LGA models, the inertia variables were identi-

fied as the most important factors for the air traffic controller's decision selection

at SFO. Note that all configurations within the common nest have the same inertia

variable value because they were modeled with a common inertia variable. This was a

necessary constraint because of the aforementioned VMC/IMC reporting challenges,

which caused the runway configurations in this nest to be very sensitive to biases in

the prediction model.

Wind was another significant factor for the SFO decision selection. During es-

timation, compression did not show a significant influence on the high headwind

attributes. Additionally, the headwind and tailwind were linearly correlated. There-
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Parameters Value Std. error t-statistic

Inertia parameters

Config. 22113 4.58 0.187 24.5

Config. 22131 7.41 0.36 20.57

Config. 22,31131 7.41 0.36 20.57

Config. 31131 4.91 0.401 12.24

Config. 3114 3.16 0.25 12.6

Config. 4113 3.99 0.196 20.34

Config. 414 5.44 0.416 13.1

Wind parameters

High headwind on arrival runway 0.0952 0.0161 5.89

Normal headwind on arrival runway 0.123 0.0197 6.26

Tailwind on arrival runway -0.0946 0.0199 -4.74

Tailwind on departure runway -0.211 0.0173 -12.2

Tailwind on extra arrival runway -0.348 0.07 -4.97

Demand parameters

Arrival demand; 31131 -0.101 0.0312 -3.24

Arrival demand; 414 -0.0807 0.0327 -2.47

VMC/IMC parameters

VMC on 31131 2.09 0.402 5.19

VMC on 3114 1.36 0.231 5.9

weights for LGA - Part I.



Table 4.3.2: Estimated utility function weights for LGA - Part II.

Parameters Value Std. error t-statistic

Switch proximity parameters

3114 to 31131 -1.4 0.463 -3.03

4113 to 31131 -2.52 0.714 -3.53

414 to 31131 -1.22 0.747 -1.77

22113 to 31131 -1.99 0.577 -3.45

4113 to 3114 -2.19 0.368 -5.94

414 to 3114 -1.05 0.515 -2.04

22113 to 3114 -2.14 0.355 -6.04

4113 to 4|4 -1.6 0.443 -3.61

22113 to 414 -1.92 0.532 -3.6

31131 to 22113 -1.05 0.573 -1.84

Inter-airport coordination parameters

LGA departures on runway 4 VS. JFK arrivals on runway 13 0.85 0.308 2.76

LGA departures on runway 13 VS. JFK arrivals on runway 13 1.27 0.464 2.75

LGA departures on runway 31 VS. JFK departures on runway 22 -1.99 0.224 -8.88

LGA departures on runway 22 VS. JFK arrivals on runway 22 -0.448 0.172 -2.6

LGA departures on runway 31 VS. JFK arrivals on runway 31 -1.61 0.222 -7.26

LGA departures on runway 13 VS. JFK arrivals on runway 31 0.796 0.25 3.19

LGA departures on runway 31 VS. JFK departures on runway 4 -2.5 0.341 -7.34

LGA departures on runway 4 VS. JFK arrivals on runway 4 -0.737 0.293 -2.51

LGA departures on runway 22 VS. JFK departures on runway 4 -1.15 0.312 -3.68

LGA arrivals on runway 22 VS. JFK arrivals on runway 13 0.85 0.308 2.76

LGA arrivals on runway 31 VS. JFK arrivals on runway 13 1.27 0.464 2.75

LGA arrivals on runway 13 VS. JFK departures on runway 22 -1.99 0.224 -8.88

LGA arrivals on runway 4 VS. JFK arrivals on runway 22 -0.448 0.172 -2.6

LGA arrivals on runway 13 VS. JFK arrivals on runway 31 -1.61 0.222 -7.26

LGA arrivals on runway 31 VS. JFK arrivals on runway 31 0.796 0.25 3.19

LGA arrivals on runway 13 VS. JFK departures on runway 4 -2.5 0.341 -7.34

LGA arrivals on runway 22 VS. JFK arrivals on runway 4 -0.737 0.293 -2.51

LGA arrivals on runway 4 VS. JFK departures on runway 4 -1.15 0.312 -3.68

fore, as shown in the table values, these variables were constrained linearly for the

final model. Shown in Fig. 3.2.5, the wind at SFO is predominantly from the San

Bruno Gap which corresponds to a headwind for arrivals on runway 28. Five of the

six unique configurations in the SFO model serve arrivals using runways 28R and

28L due to this headwind advantage. During poor weather conditions, low pressure

systems with high circulating winds disrupt the typical pattern, making runway con-

figuration 19R,19LI10R,10L a more attractive runway configuration decision for air
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SFO

28R,28LI28R,28L Primary Nest 19R,19LI 10R,10L

28R1R,1L 28R,28L|1R,1L 28LI1R,1L

Figure 4.4.1: SFO model specification.

traffic controllers [30]. As a consequence, the headwind variables in the model are

predominately used to distinguish between runway configuration options with arrivals

on the 28's or arrivals on the 19's.

In the SFO model, attributes that grouped the effects of demand and visibility

were estimated. As shown in Table 4.4.1, the utility functions for the 28R1R,1L and

28L 1R,1L configurations received a negative demand bonus under VMC and a posi-

tive demand bonus under IMC. Additionally, the noise parameters indicate that flights

over the water during the evening hours are preferred to flights departing over nearby

communities. This seems to coincide with noise abatement procedures at SFO [31],

and would likely be more prevalent if other configurations such as 28R,28L 10R,10L

were modeled in the future.

The switch proximity variables also showed statistically significant effects for 10

of the 30 possible switches in the SFO model. In particular, the estimated coefficients

reflected a preference to switch out of runway configuration 28R,28LI28R,28L which is

likely because this configuration is used primarily for long haul arrivals and departures

that fly over the Pacific Ocean. Also, configuration 19R,19LI10R,10L does not show

a preference to switch back to the configurations with the arrivals on the 28's. This

could be because the 19R,19LI10R,10L configuration would be used during significant

shifts in wind patterns over the San Bruno Gap.
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Table 4.4.1: Estimated utility function weights for SFO.

Parameters Value Std. error t-statistic

Inertia parameters

Config. 19R,19LI10R,10L 3.20 0.376 8.64

Config. 28R,28L1R,1L 4.48 0.139 31.87

Config. 28R,28L128R,28L 4.35 0.209 20.82

Config. 28RI1R,1L 4.48 0.139 31.87

Config. 28L|1R,1L 4.48 0.139 31.87

Wind parameters

High headwind on arrival Runway 0.0415 0.0131 3.20

Normal headwind on arrival Runway 0.0415 0.0131 3.20

Tailwind on arrival Runway -0.0415 0.0131 -3.20

High headwind on departure Runway 0.0608 0.0076 8.14

Normal headwind on departure Runway 0.0608 0.0076 8.14

Tailwind on departure Runway -0.0608 0.0076 -8.14

Demand/visibility parameters

VMC + high demand; 28R11R,1L -1.66 0.390 -3.44

VMC + high demand; 28LI1R,1L -1.66 0.390 -3.44

IMC + low demand; 28R|1R,1L -0.327 0.381 -0.93

IMC + low demand; 28L11R,1L -0.327 0.381 -0.93

Switch proximity parameters

28R,28L11R,1L to 28R,28L128R,28L -1.20 0.189 -5.98

28R11R,1L to 28R,28L128R,28L -1.20 0.189 -5.98

28L11R,1L to 28R,28L128R,28L -1.20 0.189 -5.98

19R,19LI10R,10L to 28R,28LI1R,1L -0.775 0.649 -1.22

19R,19LI10R,1OL to 28R11R,1L -0.775 0.649 -1.22

19R,19LI10R,1OL to 28LI1R,1L -0.775 0.649 -1.22

19R,19LI10R,10L to 28R,28L128R,28L -0.946 0.601 -1.57

28R,28L128R,28L to 28R,28LI1R,1L 1.33 0.251 4.97

28R,28L128R,28L to 28R11R,1L 1.33 0.251 4.97

28R,28LI28R,28L to 28L11R,1L 1.33 0.251 4.97

Noise abatement parameters

Depart Runway 28 during evening -0.356 0.176 -3.23

Arrive Runway 10 during evening -0.356 0.176 -3.23

4.4.2 SFO Proof-of-Concept Study Using Airport AARs to

Separate Sideby and Staggered Configurations

As stated previously, the nature of the airport layout, the ASPM data, and the

weather at SFO made it a difficult airport to model accurately. The optimal capacity

configuration at SFO is 28R,28L 1R,1L and the runways used in this operation are
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closely-spaced at 750 feet apart. As per FAA regulations, simultaneous arrivals are not

allowed under IMC conditions [29]. Therefore, one would expect that the 28R|1R,1L

and 28L 1R,1L configurations would be favored under IMC, however the ASPM data

suggests that configuration 28R,28LI1R,1L is used more times under IMC than con-

figurations 28R 1R,1L and 28Lj1R,1L (see table 4.4.2). The fact that SFO primarily

reports configuration 28R,28L 1R,1L under IMC seems like a possible reporting error

based on the FAA runway separation requirements, however it can be explained by

the nature of operations at SFO and the reporting intervals in the ASPM dataset.

Under IMC, simultaneous side-by landings are not possible, and the airport operates

as if it would be in a single arrival runway configuration using a staggered arrival ap-

proach. Because the ASPM data is reported for an entire 15-minute interval, side-by

and staggered approaches are both reported as configuration 28R,28L 1R,1L, when

in reality they are 28R,28Lj1R,1L-SIDEBY and 28R,28Lj1R,1L-STAG respectively.

Operationally, the 28R,28L|1R,1L-STAG configuration may have a small capacity

benefit over the 28RI1R,1L and 28LI1R,1L configurations.

The ASPM data does not specify whether configuration 28R,28L|1R,1L is being

operated in side-by or staggered. Because of this limitation on the data set, the prior

discrete-choice model for SFO does not attempt to classify configurations as either

side-by or staggered since the lack of any ground truth would make such a model very

difficult to validate. Since future models may want to develop a side-by/staggered

model in more rigor, a proof-of-concept analysis for SFO is evaluated by using the

ASPM data to classify configuration 28R,28L|1R,1L as either side-by or staggered.

Rather than specify a deterministic rule assigning all VMC flights to side-by and all

IMC flights to staggered, the calculated Airport Arrival Rates (AARs) in the ASPM

data were used as a tuning parameter. A histogram of the AARs under VMC and

IMC at SFO for year 2011 is shown in Figure 4.4.2. As shown, all AARs have a

higher count under VMC than under IMC. Note, however, that the number of counts

at low AARs for both VMC and IMC are comparable. When viewing probabilities

instead of counts, Figure 4.4.2 clearly shows that the low AAR ranges are much more

likely under IMC than under VMC as would be expected. After further examination,
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the runway configuration was classified as 28R,28LI1R,1L-SIDEBY if the AAR was

greater than or equal to 18, and it was classified as 28R,28Lj1R,1L-STAG if the AAR

was less than 18.
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Figure 4.4.2: SFO AARs under VMC and IMC in 2011.

While the AAR rate reported in the ASPM data seems like the best way to clas-

sify side-by and staggered configurations for this proof-of-concept analysis, it should

be noted that if this approach is taken to help develop future decision support tools

or airport capacity models, side-by and staggered configurations should be classified

more rigorously for several reasons. First, classifying side-by and staggered configura-

tions using AARs, which could act as a substitute for the airport capacity at a given

time, is a problem if the utilities are used to supplement airport capacity prediction

models. In this case, the model would be useless because the airport capacity would

essentially be included as an independent variable. Secondly, the AAR is determined

using a proprietary model from the FAA, which may not be accurate under all situa-

tions. Third and most importantly, since the ASPM dataset does not include side-by
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and staggered designations, there is no ground truth to be used for validating the

accuracy of the prediction model. It would be very difficult to justify a model's ac-

curacy without any solid data for validation. For these reasons, the utility functions

under this AAR classification approach will be estimated, but they will not be shown

within a prediction model.

After reclassifying the 28R,28LJ1R,1L configuration as either 28R,28LJ1R,1L- SIDEBY

or 28R,28L| 1R,1L-STAG according to the AAR cutoff determined above, the updated

discrete-choice utility beta parameters were estimated and are shown in Table 4.4.2.

Note that for the most part, the utility functions are consistent with the prior SFO

model using the raw ASPM data. The utility function for 28R,28LJ1R,1L-SIDEBY

revived a positive demand bonus under VMC. By contrast, 28R,28LJ1R,1L-STAG re-

ceived a positive demand bonus under IMC. Interestingly, configurations 28R 1R,1L

and 28L 1R,1L did not show any statistically significant demand bonuses or penal-

ties under VMC or IMC. As with the previous SFO model, the switch proximity

variables showed statistically significant effects. Here, they converged for configu-

ration switches between 28R,28L iR,iL-SIDEBY, 28R,28L iR,iL-STAG, 28LJ1R,1L,

and 28R1R,1L. This implies that switches between these configurations will occur

with a higher probability than between the others. Intuitively, this makes sense be-

cause the predominant operational runway structure at SFO is handling arrivals on

runway 28 and handling departures on runway 1. These configurations all hold this

same structure, so switches between them would be operationally easy. Additionally,

as before, the noise parameters indicate that flights over the water during the evening

hours are preferred to flights departing over nearby communities.
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Table 4.4.2: Estimated utility function weights for
and staggered.

SFO utilities designating side-by

Parameters Value Std. error t-statistic

Inertia parameters

Config. 19R,19LI10R,1OL 6.94 0.481 14.42

Config. 28R,28L|1R,1L - SIDEBY 5.12 0.102 50.07

Config. 28R,28L11R,1L - STAG 5.12 0.102 50.07

Config. 28R,28L128R,28L 6.20 0.149 41.52

Config. 28R11R,1L 5.12 0.102 50.07

Config. 28Lj1R,1L 5.12 0.102 50.07

Wind parameters

High headwind on arrival Runway 0.0944 0.0335 2.81

Normal headwind on arrival Runway 0.0944 0.0335 2.81

Tailwind on arrival Runway -0.0944 0.0335 -2.81

Demand/visibility parameters

Arrival demand for 28R,28L-1R,1L - SIDEBY under VMC 0.114 0.0371 3.07

Arrival demand for 28R,28L-1R,1L - STAG under IMC 0.105 0.0316 3.33

Switch proximity parameters

28Lj1R,1L to 28R,28L11R,1L - SIDEBY 0.679 0.181 3.75

28R11R,1L to 28R,28L11R,1L - SIDEBY 0.679 0.181 3.75

28R,28Lj1R,1L - SIDEBY to 28R,28L11R,1L - STAG 1.36 0.133 10.20

28R,28L11R,1L - SIDEBY to 28LI1R,1L 1.08 0.209 5.17

28R,28LI1R,1L - SIDEBY to 28Rj1R,1L 1.08 0.209 5.17

28R,28L1R,1L - STAG to 28L11R,1L 1.70 0.167 10.13

28R,28L11R,1L - STAG to 28R11R,1L 1.70 0.167 10.13

28R,28Lj1R,1L - STAG to 28R,28Lj1R,1L - SIDEBY 1.65 0.138 11.93

Noise abatement parameters

Arrivals on runways 28R and 28L between 23:00 and 7:00 0.531 0.308 1.73
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Chapter 5

Discrete-Choice Prediction Models

5.1 3-Hour Forecast Using Actual Weather and

Demand

The estimated utility functions from the discrete-choice model can be used within

equations 2.1.6 - 2.1.9 to calculate the probability of choosing a runway configuration

alternative during each 15-minute selection period. The utility functions require

attributes such as the runway configuration in the previous time interval, as well

as the wind conditions, weather conditions, and demand in the current time interval,

to complete the calculations for every 15-minute selection period throughout the

year. When predicting the runway configuration selection on a future time horizon,

all possible evolutions of the runway configuration that could occur within that time

horizon must be considered.

To consider all possible runway configuration evolutions, Bayes rule can be re-

cursively applied using the runway configuration selection probabilities from each

15-minute interval in the specified time horizon. The model inputs include the ac-

tual arrival and departure demand, cloud ceiling, visibility conditions, wind speed,

and wind direction for each 15-minute interval. The model outputs a probability

of selection for each possible runway configuration alternative on the specified time

horizon. The choice selection is taken as the runway alternative with the maximum
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probability of being chosen. For example, consider predicting the runway config-

uration selection on a 3-hour time horizon at SFO. If the attributes of the current

time at SFO, the runway configuration alternatives 28R,2811R,1L, 19R,19LI10R,10L,

28R,28128R,28L, 28R1R,1L, and 2811R,1L may have selection probabilities of 5%,

75%, 5%, 7%, and 8% respectively, for the next 15-minute interval. The probabil-

ities of being in each configuration 30 minutes (i.e., 2 time-periods) from now will

have to be conditioned on the runway configuration in the next time period, and so

on. In this manner, the probabilities of being in 28R,28L 1R,1L, 19R,19LI10R,10L,

28R,28LI28R,28L, 28R11R,1L, or 28Lj1R,1L 3 hours from now may have changed to

7%, 50%, 3%, 10%, and 30% respectively. Runway configuration 19R,19L 10R,1OL is

then taken as the 3-hour prediction because it has the highest probability.

The accuracy of the predictions are first evaluated assuming a perfect knowledge

of the wind, visibility, and demand variables for the subsequent time horizon under

consideration by using the meteorological and demand data from the 2012 ASPM

data set. Note that the test sets from year 2012 are independent data sets from the

training sets from year 2011. Accuracy is defined as the percentage of observed runway

configurations modeled that were predicted correctly. In other words, if a runway

configuration is observed 100 times throughout the year, and out of those times it

was predicted correctly 70 times, the accuracy for that particular configuration would

be reported as 70%. The overall accuracy of the entire model is the percentage of

correct predictions throughout the year for all runway configurations modeled.

5.1.1 EWR

As shown in Table 5.1.1, the overall prediction accuracy for EWR in 2012 was 97.8%

on a short-term 15-minute time horizon, 79.5% on a standard 3-hour time horizon,

and 69.5% on a long-term 6-hour time horizon. The classification confusion matrix

for EWR in 2012 for a standard 3-hour prediction horizon is shown in Figure 5.1.1.

Note that the configurations which reported higher relative prediction accuracies had

higher relative frequencies. Presumably, this phenomenon occurs because the utility

parameters for configurations that are used more often than others have more accurate
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estimations. Also, the low number of average switches per day at EWR (2.6 switches

per day) increases the effects of inertia for more frequently used configurations.

Table 5.1.1: Prediction accuracy (using actual weather and demand) for EWR in
2012.

ID Configuration Frequency Prediction Accuracy

15 min 3 hr 6 hr

1 22L,11122R 3,705 (13.1%) 96.0% 61.3% 46.0%

2 22L I22R 13,245 (46.8%) 98.3% 83.5% 73.9%

3 22LI22R,29 147 (il%) 91.8% 36.7% 27.2%

4 4R,4LJ4L 65 (i1%) 90.8% 27.7% 4.6%

5 4R,1114L 1,202 (4.2%) 93.7% 40.0% 13.1%

6 4R14L 9,931 (35.1%) 98.3% 86.6% 68.6%

Total 28,295 97.8% 79.5%J69.5%

Interestingly, on a 3 hour prediction horizon configuration 4R4L had a higher

accuracy than configuration 22LI22R (86.6% vs. 83.5%) even though configuration

4R4L had a lower frequency than configuration 22LI22R (9,931 vs. 13,245). This

effect does not last as the prediction horizon increases to 6 hours. As expected, the

accuracies of all runway configuration predictions decreased as the prediction horizon

increased. In the short term, the inertia parameter heavily influences the utility

functions. Because configuration switches at EWR are infrequent, the short term

accuracy is very high. As the time horizon increases, inertia becomes less important,

and attributes such as wind, demand, and visibility have a larger influence on the

predictions. Since the prediction model considers all possible evolutions of the possible

runway configuration selection over time, the uncertainty present in the estimated

utility functions gets magnified with time and lowers the prediction accuracy on

longer time horizons.

Also, note that in 2011 configurations 4R,4LJ4L and 22LI22R,29 were seen 2%

and 1% of the year respectively. In 2012, they were both seen less than 1% of the

selection periods throughout the year. Correspondingly, both had very low prediction

accuracies at the 3 hour mark at 27.7% and 36.7% respectively. At the 6 hour

mark 4R,4L4L's prediction accuracy was only 4.6%. This demonstrates a major

limitation when predicting the runway configuration selection using a discrete choice
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Figure 5.1.1: EWR classification confusion matrix for 3 hour time horizon (ASPM
data).
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methodology. Configurations that are seen very infrequently in the training data set

will have poorly estimated utility functions which will result in a lower prediction

accuracy in the test data set. When the number of occurrences are significantly lower

in the test data set the effect is magnified because the estimated inertia and switch

proximity parameters (which are already highly uncertain) overstate the preferences

for the incumbent configuration staying or switching. New airport procedures, runway

maintenance schedules, or capacity enhancements can cause significant shifts in the

relative frequencies of the runway configurations from year to year. In these situations,

the models would likely have to be re-estimated to stay accurate.

Figure 5.1.1 shows that configurations 4R,4Lj4L and 4R,1114L typically get con-

fused with configuration 4R4L. Similarly, configurations 22L,11122R and 22LI22R,29

typically get confused for configuration 22LI22R. These two groups have very similar

inertia, switch, and wind parameter effects. When the wind is favorable for either

group, the choice of configuration is primarily driven by demand and VMC/IMC.

The demand and visibility attributes predict well in extreme cases, however under

normal conditions the EWR model still tends to over predict the high frequency

configurations 4R4L and 22LI22R.

To validate the benefit of the proposed models of the runway configuration se-

lection, the overall accuracies of the discrete-choice utility prediction models was

compared with a baseline heuristic. Operationally, since the runway configuration

changes only occur a handful of times during a day, a baseline heuristic that assumes

the airport remains in the current configuration for the allotted time-horizon is rel-

evant. A comparison of the discrete-choice prediction model for EWR against the

baseline heuristic prediction model for EWR has been shown for all 15-minute time

intervals up to a 6-hour time horizon in Figure 5.1.2. As shown, in short term hori-

zons when the airport usually stays in the same configuration, the accuracy of the

two models are comparable. However, as the forecast horizon increases, the difference

between the two models increases: At a 3-hour forecast horizon, there is a 3.3% im-

provement in the performance of the discrete-choice model, and at a 6-hour forecast

horizon, the discrete-choice model outperforms the baseline heuristic by more than
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Figure 5.1.2: Comparison with baseline heuristic for EWR in 2012.

5.1.2 JFK

Table 5.1.2 shows the overall prediction accuracy for JFK in 2012 using the combined

configuration model. The classification confusion matrix for JFK on a 3 hour horizon

is shown in Figure 5.1.3. On a short term 15-minute prediction horizon, a standard

3-hour prediction horizon, and a long-term 6 hour prediction horizon, the model

achieved an accuracies of 93.2%, 63.8%, and 48.2% respectively.

As with the EWR model, configurations that occurred more frequently through-

out the year had higher individual prediction accuracies and longer time horizons

had lower prediction accuracies. Configuration 31 Runways occurred the most dur-

ing 2012, and as a result always had the highest individual configuration accuracy.

Interestingly, configuration 22 Runways High Arrival had the lowest accuracy on a 6
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hour time horizon even though it had one of the highest number of occurrences.

Overall, the accuracy of the JFK model is much lower than the accuracy of the

EWR, LGA, and SFO models. On average, JFK has approximately 4.8 runway

configuration switches per day - significantly more than EWR, LGA, or SFO. The

high importance of the inertia variable in the short term, reduces the accuracy of the

discrete choice models in situations when the meteorological or demand conditions

do not highly favor a runway configuration switch. In many cases, JFK's switches

are not under conditions that favor a certain runway configuration switch, reducing

the models accuracy more quickly than the other models. While there seems to be

a high amount of misclassification's, the confusion matrix in Figure 5.1.3 shows that

typically the very similar configurations such as the 22's and the 4's are mistaken for

one another which is a positive sign because either captures the overall runway being

used at the airport which can still be useful within ATC decision support tools and

maintenance support tools for ground crews.

Table 5.1.2: Prediction accuracy (using actual weather and demand) for JFK in 2012.

ID Configuration Frequency Prediction Accuracy

15 min 3 hr 6 hr

1 13 Runways 3,109 (9.9%) 95.8% 54.8% 33.5%

2 22 Runways High Arrival 5,660 (18.1%) 95.8% 58.1% 28.0%

3 22 Runways 3,471 (11.1%) 94.3% 53.6% 53.2%

4 31 Runways 11,099 (35.5%) 97.3% 70.5% 57.9%

5 4 Runways High Arrival 5,983 (19.1%) 97.1% 68.9% 52.9%

6 4 Runways 1,955 (6.3%) 93.2% 58.5% 50.5%

Total 31,277 96.3% 63.8% 48.2%

Fig 5.1.4 shows the benefit of the JFK against the baseline heuristic described

above. The benefit between the short term and the long term models is practically

the same, but as the prediction horizon increases the model starts to show a ben-

eficial improvement: At a 3-hour forecast horizon, there is a 2.7% improvement in

the performance of the discrete-choice model, and at a 6-hour forecast horizon, the

discrete-choice model outperforms the baseline heuristic by more than 3.7%. Con-

sidering the high relative average number of switches per day at JFK, one would

expect a larger benefit against the baseline heuristic (which is the case with the LGA
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model shown later). At JFK, this is not the case and is likely because these switches

can appear somewhat unintuitive using only the ASPM data. Future models of JFK

could benefit from adding additional sources of data that incorporate things such as

wind gusts or aircraft size into the model. Additional data could give insight on what

is driving some of the switches that appear to be "random" only given the ASPM

data. It is also interesting that after the 5-hour prediction horizon, the accuracy of

the discrete-choice model and the baseline accuracy begin to converge.
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Figure 5.1.4: Comparison with baseline heursitic for JFK in 2012.

5.1.3 LGA

As shown in Table 5.1.3, the overall prediction accuracy for LGA in 2012 was 98.0%

on a short-term 15-minute time horizon, 81.3% on a standard 3 hour time horizon,

and 72.4% on a long-term 6 hour time horizon. The classification confusion matrix

for LGA in 2012 for a standard 3 hour prediction horizon is shown in Figure 5.1.5.
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These results are very promising considering prior research using logistic regression

models for LGA without any look-ahead, achieved a prediction accuracy of 75% at

LGA [16].

Similar to the EWR and JFK prediction models, configurations that were seen

more often had higher relative prediction accuracies and the prediction accuracies

typically lowered as the time horizon was increased. Configurations 22113 and 3114

were used the most frequently at LGA in 2012 having frequencies greater than 24%

of the total selection periods and had accuracies approaching 90% on a 3 hour time

horizon. Conversely, configurations 22131, 22,31131, 31131, and 414 were each seen less

than 10% of the decision selection periods throughout the year and had prediction

accuracies from 65%-70% on a 3 hour time horizon. Interestingly, the prediction

accuracy for configuration 3114 increases from 89.5% on a 3 hour horizon to 90.9% on

a 6 hour horizon. This may be because the model tends to bias the choice selection

away from the much less frequent and lower capacity 31131 and 414 configurations

when arrival demand increases.

The confusion matrix in Figure 5.1.5 suggests that on a 3 hour prediction horizon,

most runway configurations were correctly classified. Typically when runway config-

urations were not predicted correctly, they were misclassified as configurations with

either a common arrival or common departure runway.

Table 5.1.3: Prediction accuracy (using actual weather and demand) for LGA in 2012.

ID Configuration Frequency Prediction Accuracy

15 min 3 hr 6 hr

1 22113 7,626 (29.1%) 98.3% 88.1% 85.7%

2 22131 2,715 (10.3%) 97.1% 69.4% 47.6%

3 22,31131 1,721 (6.6%) 96.8% 67.4% 46.0%

4 31131 2,391 (9.1%) 97.3% 70.1% 37.1%

5 3114 6,457 (24.6%) 98.6% 89.5% 90.9%

6 4113 4,475 (17.1%) 98.1% 79.0% 73.1%

7 414 875 (3.3%) 96.9% 65.8% 42.0%

Total 26,260 1[ 98.0% 81.3% 72.4%

Fig 5.1.6 shows the benefit of the LGA against the baseline heuristic described

above. The same overall trend is seen at LGA as with the other prediction models.
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In short term horizons when the airport usually stays in the same configuration,

the accuracy of the two models are comparable. However, as the forecast horizon

increases, the difference between the two models increases: At a 3-hour forecast

horizon, there is a 7.5% improvement in the performance of the discrete-choice model,

and at a 6-hour forecast horizon, the discrete-choice model outperforms the baseline

heuristic by more than 17.4%. The LGA prediction model beats the baseline heuristic

by a higher percentage than the other prediction models. This may be because LGA

has more frequent switches (2.7 switches per day) than at SFO and EWR without

reaching the high frequency of switches seen at JFK, which gives the model more

opportunity to exploit attributes other than inertia such as demand, wind, visibility,

coordination, and noise when predicting.
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Figure 5.1.6: Comparison with baseline heuristic for LGA in 2012.
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5.1.4 SFO

As shown in Table 5.1.4, the overall prediction accuracy for SF0 in 2012 was 98.1% on

a short-term 15-minute time horizon, 82.8% on a standard 3-hour time horizon, and

72.8% on a long-term 6-hour time horizon. The classification confusion matrix for

SFO in 2012 for a standard 3-hour prediction horizon is shown in Figure 5.1.7. Unlike

the other models, relative frequency did not directly correlate with higher accuracy at

SFO, which could be an effect of the relatively low average number of configuration

switches per day at SFO (2.1 switches per day). The confusion matrix shows that

the similar configurations 28R,28LI1R,1L, 28RJ1R,1L, and 28LI1R,1L commonly got

confused for one another. The bias is heavily weighted toward predicting configuration

28R,28L 1R,1L because it occurred much more frequently throughout 2012. This

result is reflective of some of the modeling challenges present when predicting the

runway configuration at SFO.

A major challenge when modeling SFO is predicting between 28R,28LI1R,1L with

arrivals on the closely spaced parallel runways, and the single arrival runway con-

figurations, 28RJ1R,1L and 28LJ1R,1L. As mentioned before, simultaneous (side-by)

landings are not possible under 1MC, and the airport operates almost as it would in a

single arrival runway configuration, even in 28R,28L 1R,1L. The reported configura-

tions in the ASPM data set do not differentiate between simultaneous and staggered

parallel approaches, even though staggered approaches have a capacity that would

be closer to 28R11R,1L or 28LI1R,1L. This fact, along with the other similarities be-

tween these two runway configuration alternatives, makes it difficult to predict either

of these alternatives accurately without introducing a selection bias. As stated above,

predictions using the discrete-choice model which attempted to classify "side-by" and

"staggered" configurations using the AARs given in the ASPM datasets is not shown

due to lack of any ground truth in the data. Additionally, accurately predicting

28R,28L|28R,28L is also challenging due to the limitations from the ASPM dataset.

This runway configuration is typically only used for long-haul departures over the Pa-

cific Ocean and to Hawaii, and the aggregate flight counts in ASPM are not sufficient
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to account for this factor. Despite these challenges, the overall prediction accuracy in

2012 for SFO is promising and opens the door for future models that may potentially

include these types of data.

As with the other models, short prediction horizons were very accurate and the

longer horizons had lower relative prediction accuracies. Over time, configurations

19R,19LI10R,10L, 28R,28L 1R,1L, and 28R,28128R,28L all held relatively high pre-

diction accuracies. The two low capacity configurations 28R1R,1L and 28L 1R,1L

accuracies dropped significantly over time. This is partly due due to their relatively

low number of occurrences and because they get confused for one another during pre-

diction (see Figure 5.1.7). Interestingly, configuration 19R,19LI10R,10L which only

occurred 3.6% of the selection periods in 2012 had the highest prediction accuracy

over all time horizons tested. It is very likely that configuration 19R,19LI10R,10L

is the preferred configuration under poor weather conditions because the other four

configurations all align into the wind very similarly. This suggests that when un-

favorable weather patterns approach SFO, the preferred configuration switch is to

19R,19LI10R,10L.

Table 5.1.4: Prediction accuracy (using actual weather and demand) for SFO in 2012.

ID Configuration Frequency Prediction Accuracy

15 min 3 hr 6 hr

1 19R,19LI10R,10L 1,072 (3.6%) 99.3% 95.9% 95.5%

2 28R,28LI1R,1L 21,007 (71.6%) 98.7% 87.0% 78.6%

3 28R,28L128R,28L 2,389 (8.1%) 98.2% 88.7% 84.7%

4 28R11R,1L 921 (3.1%) 93.2% 50.5% 44.6%

5 28LI1R,1L 3,958 (13.5%) 11_96.0% 60.5% 35.0%

Total 29,348 ft_98.1% 82.8% 72.8%

Figure 5.1.8 shows the benefit of the SFO against the baseline heuristic. In short

term horizons when the airport usually stays in the same configuration, the accuracy

of the two models are comparable. However, as the forecast horizon increases, the

difference between the two models increases: At a 3-hour forecast horizon, there is a

3.1% percentage point improvement in the performance of the discrete-choice model,

and at a 6-hour forecast horizon, the discrete-choice model outperforms the base-
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line heuristic by more than 4.0% percentage points. The SFO model's improvement

against the baseline heuristic is lower than with the other models because configura-

tion 28R,28LI1R,1L was used 71.6% of the selection periods throughout 2012 which

keeps the baseline heuristic fairly accurate in most cases.
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Figure 5.1.8: Comparison with baseline heuristic for SFO in 2012.

5.2 3-Hour Forecast Using Weather and Demand

Forecast Data

5.2.1 Data Pre-Processing

The discrete choice models developed in this study are also tested on Terminal Aero-

drome Forecast (TAF) data in order to test their predictive capability on data that

is not perfectly precise. This corresponds to a practical implementation, where the

actual values of the attributes for the utility functions used within the prediction
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model are not available, and weather forecast data and schedule data must be used

instead. Wind speed, wind direction, and visibility conditions was taken from the

TAF data for the prediction models using forecasts. Unfortunately, the TAF data

has many gaps, where the quality of the weather forecasts made available to air traf-

fic control personnel may be several minutes or several hours old. When this was

observed, the TAF data points were selected to replicate what forecasts would have

actually been available to air traffic control in real time. Additionally, future aircraft

arrival demand would not realistically be available to air traffic controllers for future

predictions. Therefore, when predicting the runway configuration using forecast data,

scheduled demand data is used in place of active arrival demand data. The scheduled

demand data used is taken from the ASPM data set.

5.2.2 EWR TAF Results

The overall accuracy using the TAF data for EWR is shown in Table 5.2.1 for pre-

diction horizons of 3 hours, 6 hours, 9 hours, 12 hours, and 15 hours. As shown, the

overall accuracy using TAF forecast data on a standard 3 hour prediction horizon

was 78.9% for EWR in 2012. The accuracy of the EWR model at the 3 hour pre-

diction horizon using TAF forecast data is only 0.6 percentage points lower than the

prediction model using actual weather and demand data. It is promising that the

accuracy of the model is not substantially degraded by using forecast data, which is

inherently prone to error. Note that configuration 22LI22R,29, which was seen much

less than 1% of the year according to the ASPM data, was counted as a reporting

error when using the TAF forecast data and the availability criterion. This means

that the TAF data forecast wind conditions that were outside of range for any feasible

use of configuration 22L22R,29.

5.2.3 LGA TAF Results

The overall accuracy using the TAF data for LGA is shown in Table 5.2.2 for pre-

diction horizons of 3 hours, 6 hours, 9 hours, 12 hours, and 15 hours. The overall
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Table 5.2.1: Prediction accuracy (using forecast weather and scheduled demand data)
for EWR in 2012.

ID Configuration Frequency Prediction Accuracy

3 hr 6 hr 9hr 12hr 15hr

1 22L,11122R 3,530 (12.6%) 60.7% 45.4% 22.8% 17.2% 52.5%

2 22LI22R 13,345 (47.6%) 83.2% 67.0% 63.1% 58.0% 37.2%

3 22LI22R,29 0 (0%) N/a N/a N/a N/a N/a

4 4R,4L14L 65 (il%) 27.7% 4.6% 0% 0% 0%

5 4R,1114L 1,123 (4.0%) 41.2% 27.1% 2.6% 4.9% 76.7%

6 4R14L 9,959 (35.5%) 84.1% 72.6% 61.0% 55.4% 46.0%

Total 28,022 78.9% 64.5% 55.7% 49.1% 43.8%

accuracy using TAF forecast data on a standard 3 hour prediction horizon was 78.9%

for LGA in 2012. The accuracy of the LGA model using TAF forecast data is only 2.4

percentage points lower at the 3 hour mark than the prediction model using actual

weather and demand data. On a very long 15 hour prediction horizon, the accuracy

of the model is primarily driven by the changes in forecast weather conditions and

the accuracy of the model is degraded to 53.7%. The uncertainty in the forecast is

magnified over longer time horizons, but it is very promising that the accuracy of the

models is not significantly lower than the models using actual weather and demand

data. For comparison, other research models for LGA achieved a prediction accu-

racy at 75% using logistic regression and no look ahead [16]. As with LGA model

predicted on the ASPM data, the accuracy of specific configurations increased as the

frequency of their occurrence increased with one exception. Runway configuration

3114's prediction slightly increased as the time horizon increased. This is likely for

the same reason described in the LGA model using actual weather and demand data

- the model's estimated utilities are such that it will bias the choice selection away

from the low capacity and less frequently observed configurations 31131 and 414 when

arrival demand increases. Over long time horizons, this effectively lowers the accuracy

of 31131 and 414 and does not degrade the accuracy of 3114.
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Table 5.2.2: Prediction accuracy (using forecast weather and scheduled demand data)
for LGA in 2012.

ID Configuration Frequency Prediction Accuracy

3hr 6 hr 9hr 12 hr 15 hr

1 22113 7,360 (28.3%) 77.4% 77.9% 74.1% 72.8% 69.1%

2 22131 2,645 (10.2%) 73.8% 47.8% 30.3% 22.5% 14.6%

3 22,31|31 1,679 (6.5%) 68.2% 47.7% 30.3% 19.4% 13.2%

4 31131 2,471 (9.5%) 65.1% 33.1% 28.9% 26.7% 25.2%

5 3114 6,401 (24.6%) 77.6% 87.0% 88.4% 88.5% 87.4%

6 4113 4,533 (17.5%) 76.2% 61.7% 48.0% 42.4% 40.8%

7 414 885 (3.4%) 61.2% 35.8% 28.2% 23.2% 22.1%

1 Total 25974 78.9% [_66.6% 59.9% 56.7%[53.7%

5.2.4 SFO TAF Results

The overall accuracy using the TAF data for SFO is shown in Table 5.2.3 for prediction

horizons of 3 hours, 6 hours, 9 hours, 12 hours, and 15 hours. As shown, the overall

accuracy using TAF forecast data on a standard 3 hour prediction horizon was 80.8%

for SFO in 2012 and is only 2.0 percentage points lower on a 3 hour time horizon than

the prediction model using ASPM data. Again, the accuracy of specific configurations

increased as the frequency of their occurrence increased.

The TAF model results for EWR, JFK, LGA, and SFO all suggest that the pre-

diction models using ASPM data are not significantly degraded when using real-time

forecasts. This is a very promising result because, realistically, future decision support

tools which use the estimated utility functions from the discrete-choice models will

not have perfectly precise data as an input. The TAF analysis shows that forecast

data will still provide a reasonably high level of prediction accuracy and, therefore,

can still be viable for decision support tools in the field.
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Table 5.2.3: Prediction accuracy (using forecast weather and scheduled demand data)
for SFO in 2012.

ID Configuration Frequency Prediction Accuracy

3 hr 6 hr 9hr 12hr l5hr

1 19R,19LI10R,1OL 1,063 (3.6%) 87.0% 77.2% 45.0% 73.4% 24.1%

2 28R,28LI1R,1L 21,362 (71.8%) 87.5% 80.2% 76.4% 73.9% 75.2%

3 28R,28L128R,28L 2,840 (9.5%) 67.8% 49.7% 31.4% 43.2% 28.9%

4 28R11R,1L 918 (3.1%) 50.1% 44.5% 40.8% 37.8% 36.0%

5 28Lj1R,1L 3,566 (12.0%) 57.2% 33.6% 19.8% 15.6% 17.7%

Total 29,750 80.8% 70.3% 64.3% 62.7% 61.7%
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Chapter 6

Modeling the New York Metroplex

6.1 Introducing the New York Metroplex Models

Because the New York Metroplex is very congested, a high level of coordination is

required between EWR, JFK, and LGA. It is relevant to discuss characterizing and

predicting the state of the entire New York Metroplex as a whole, particularly because

improving the capacity utilization of the New York Metroplex is one area of focus for

NextGen research.

This paper describes two different approaches to predicting the New York Metro-

plex runway configurations (mentioned in Section 1). The first approach, denoted

the Configuration Model, estimates a new discrete-choice model for the runway con-

figurations of the entire New York Metroplex as a whole. It then predicts the New

York Metroplex runway configuration using the same method used in the individual

airport models. The second approach, denoted the Stackedd Model, combines the

previously shown individual airport discrete-choice models for EWR, JFK, and LGA

to predict the runway configuration for the entire New York Metroplex.
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6.2 New York Metroplex Configuration Model

6.2.1 Utility Function Estimation

The discrete-choice model for the New York Metroplex configurations was taken as

a nested logit structure with a nest containing the South Flow configurations, a nest

containing the North Flow configurations, and a nest containing the Mixed Flow

configurations. The South Flow and North Flow nests have scale parameters of

ps 1.03 and pN =1.13, respectively.

NY Metroplex

S Flow INorth Flow

Mixed Flow

S-VMC-AP S-IMC S-VMC-DP N-VMC-AP N-IMC N-VMC-DP

N to S StoN

Figure 6.2.1: New York Metroplex Configuration Model specification.

The discrete-choice model is estimated for each 15-minute interval in the data

set. The estimated values of the attribute weights, their standard errors, and their t-

statistics are shown in Tables 6.2.1 - ??. Similar to the individual airport models, the

inertia variables for the New York Metroplex have the largest statistical significance

compared with the other attributes; however, the relative difference is not nearly

as large as with the individual airport models. Other parameters, such as wind,

demand, and VMC/IMC, are rather close to the level of significance of the inertia

variables in the New York Metroplex models. This effect is likely a result of the

frequent switching that occurs between New York Metroplex configurations (average

5.7 switches per day).

The wind variables are also very significant, particularly the negative penalty

associated with tailwinds. The high headwind and normal headwind weights indicate
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that there is a slightly lower preference to operate in high-headwinds rather than

normal-headwinds. This is likely driven by the compression effect mentioned in the

individual airport models. Note that the headwind variables in this model were

chosen to capture the effects of the overall flow of the New York Metroplex instead

of including wind parameters for each active runway at EWR, JFK, and LGA.

Both the total arrival demand and the total departure demand from EWR, JFK,

and LGA have a very significant effect on the New York Metroplex configuration.

The combined effect on the New York Metroplex appears to be more significant than

individual demand effects at EWR, JFK, or LGA. The utility weights confirm the

separation of New York Metroplex configurations into "Arrival Priority" and "De-

parture Priority" classes. Namely, arrival priority configurations received a positive

utility benefit from high arrival demands and all departure priority configurations

received a bonus for high departure demands. These demand variables also had high

t-statistics. Interestingly, the Mixed Flow S to N configuration converged for total

departure demand in 2011. It may be possible that departures are sometimes given

priority when the overall airspace flow is changing, which is likely happening during

a Mixed Flow configuration.

The Mixed Flow configurations both received a positive bonus under VMC, which

may indicate that VMC is preferred if the arriving and departing aircrafts are flying

in opposite directions. Also, as expected, both IMC configurations received a positive

bonus under IMC.

The switch proximity variables show that the South Flow configurations are much

more likely to switch with other South Flow configurations or the Mixed Flow S to

N configuration. Similarly, the North Flow configurations are much more likely to

switch with other North Flow configurations or the Mixed Flow N to S configuration.

This makes sense because it likely requires a large amount of coordination between

airports to switch from a North Flow configuration to a South Flow configuration

and vice versa.
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Table 6.2.1: Estimated utility function weights for New York Metroplex Configuration
Model - Part I.

Parameters Value Std. error t-statistic

Inertia parameters

Config. S-VMC-AP 5.02 0.262 19.15

Config. S-IMC 6.77 0.376 17.98

Config. S-VMC-DP 6.82 0.588 11.60

Config. Mixed Flow S to N 6.74 0.450 14.97

Config. Mixed Flow N to S 5.90 0.473 12.47

Config. N-VMC-AP 6.41 0.338 18.96

Config. N-IMC 5.05 0.429 11.76

Config. N-VMC-DP 7.06 0.627 11.25

Wind parameters

High headwind 0.0160 0.008 2.00

Normal headwind 0.0170 0.006 2.64

Tailwind -0.125 0.011 -11.37

Demand parameters

S-VMC-AP total arrival demand for EWR, JFK, and LGA 0.116 0.0107 10.87

N-VMC-AP total arrival demand for EWR, JFK, and LGA 0.0797 0.01 7.99

N-IMC total arrival demand for EWR, JFK, and LGA 0.0726 0.0124 5.87

S-VMC-DP total departure demand for EWR, JFK, and LGA 0.105 0.0105 9.95

S-IMC total departure demand for EWR, JFK, and LGA 0.0798 0.0107 7.47

Mixed Flow S to N total departure demand for EWR, JFK, and LGA 0.0320 0.0136 2.36

N-VMC-DP total arrival departure for EWR, JFK, and LGA 0.0368 0.01 3.81

VMC/IMC parameters

VMC on Mixed Flow S to N 0.523 0.269 1.94

VMC on Mixed Flow N to S 1.88 0.210 8.94

IMC on S-IMC 2.29 0.403 5.67

IMC on N-IMC 1.87 0.411 4.54

Switch proximity parameters

Mixed Flow S to N to S-VMC-DP 2.70 0.468 5.77

S-VMC-DP to Mixed Flow S to N 4.18 0.624 6.70

Mixed Flow N to S to N-VMC-AP 2.09 0.546 3.83

N-VMC-AP to N-VMC-DP 3.33 0.396 8.41

N-VMC-DP to N-VMC-AP 3.50 0.661 5.30

6.2.2 Prediction

As shown in Table 6.2.2, the overall prediction accuracy for the New York Metro-

plex Configuration Model in 2012 was 96.1% on a short-term 15-minute time horizon,

69.0% on a standard 3 hour time horizon, and 60.0% on a long-term 6 hour time hori-

zon. The classification confusion matrix for the New York Metroplex Configuration
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Model in 2012 for a standard 3 hour prediction horizon is shown in Figure 6.2.2.

As with the individual models, configurations that occurred more frequently had

a higher accuracy during prediction. This effect is not as significant as with the

other models because the frequencies of configurations in the New York Metroplex

were all comparable. In the short term, the accuracy of the prediction model is still

very high; however it falls quickly on longer time horizons. Uncertainties and errors

present within the data at each of the three airports are magnified when modeling the

combined New York Metroplex. The confusion matrix in Figure 5.1.5 suggests that

on a 3 hour prediction horizon, the New York Metroplex configurations were typically

confused among runway configurations in the same nest. The South Flow configura-

tions were almost exclusively confused with other South Flow configurations and some

were confused with the Mixed with South Priority configuration. Similarly, the North

Flow configurations were typically confused with other North Flow configurations and

some were confused with the Mixed with a North Flow Priority configuration. This

is a promising result since many situations require a prediction of the overall type of

airspace flow the system will be in on a future time horizon, rather than adding more

specificity with VMC/IMC and arrival or departure priority.

Table 6.2.2: Prediction accuracy (using actual weather and demand) for NY Metro.
Configuration Model in 2012.

ID Configuration Frequency Prediction Accuracy

15 min 3 hr 6 hr

1 S-VMC-AP 1,199 (10.4%) 93.0% 60.6% 43.5%

2 S-IMC 2,367 (20.5%) 94.3% 79.3% 74.2%

3 S-VMC-DP 981 (8.5%) 92.4% 50.1% 39.7%

4 Mixed S to N 1,009 (8.8%) 92.2% 41.0% 29.2%

5 Mixed N to S 1,393 (12.1%) 93.0% 53.1% 31.7%

6 N-VMC-AP 2,380 (20.7%) 94.5% 90.4% 88.8%

7 N-IMC 1,733 (15.0%) 94.6% 86.0% 77.3%

8 N-VMC-DP 459 (4.0%) 90.6% 14.6% 12.4%

Total 11,521 96.1% 69.0% 60.0%
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Figure 6.2.2: NY Metro. Configuration classification confusion matrix for 3 hour time
horizon (ASPM data).
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6.3 New York Metroplex Stacked Model

6.3.1 Prediction

The New York Metroplex Stacked Model predicts the runway configuration on a spec-

ified time horizon individually at EWR, JFK, and LGA using the individual airport

discrete-choice models shown previously. It then combines each individual airport's

runway configuration prediction into a prediction for the overall New York Metroplex

configuration. To make for a relevant comparison, the New York Metroplex Stacked

Model is run on the same filtered data set as the New York Metroplex Configuration

Model. The New York Metroplex Stacked model also uses the same combined con-

figurations used in the New York Metroplex Configuration Model (shown in Table

1.2.3).

Table 6.3.1 shows the prediction accuracies of the New York Metroplex Stacked

Model. Figure 6.3.1 shows the corresponding classification confusion matrix for a 3

hour prediction horizon. Interestingly, the overall Stacked Model accuracy is much

lower than the Configuration Model accuracy across the board. In the short term

15 minute prediction horizon, the Stacked Model only achieves an accuracy of 80.5%

and in the long term 6 hour prediction horizon the accuracy plummets to 23.6%. The

accuracies of each individual combined New York Metroplex configuration follow the

same trends as with the other models; higher frequency configurations have higher

accuracies and lower frequency configurations have lower accuracies. Since the New

York Metroplex Stacked Model is limited by the configuration filtering cutoff of 1%

at each individual airport rather than a cutoff of 1% for the entire New York Metro-

plex configurations, it has many more configurations that it can predict upon, and

therefore a higher chance for error during each decision selection. Table 6.3.2 shows

the number of combined New York Metroplex configuration predictions against the

actual frequency for both the New York Metroplex Configuration Model and the New

York Metroplex Stacked Model. Not surprisingly, the New York Metroplex Stacked

Model under-predicts for all configurations (especially Mixed S to N) and has 49.2%

(5,664 periods) of its data set predicted as "Other". The "Other" configuration refers
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to times when the Stacked Model predicts a combined configuration that is not given

in Table 1.2.3 and is therefore not used within the Configuration Model. For the

same reasons as stated before, the major source of the New York Metroplex Stacked

Model's inaccuracy stems from predicting these "Other" configurations since it has

many more configuration possibilities. One could argue that since the data set is con-

strained to the filtered data from the New York Metroplex Configuration Model for

comparison, the New York Metroplex Stacked model's overall accuracy is degraded.

Initial tests using the entire data set and filtering by 1% at each individual airport

in the New York Metroplex show that this is not the case, and resulted in the much

lower overall accuracies of 27.1% using 26,500 decision periods. Threfore, for the

purposes of comparison, the data set will remain consistent between both New York

Metroplex Models.

Table 6.3.1: Prediction accuracy (using actual weather and demand) for NY Metro.
Stacked Model in 2012.

ID Configuration Frequency Prediction Accuracy

15 min 3 hr 6 hr

1 S-VMC-AP 1,199 (10.4%) 88.8% 35.0% 14.3%

2 S-IMC 2,367 (20.5%) 92.3% 45.4% 22.8%

3 S-VMC-DP 981 (8.5%) 72.3% 38.5% 19.7%

4 Mixed S to N 1,009 (8.8%) 74.5% 19.6% 5.7%

5 Mixed N to S 1,393 (12.1%) 78.5% 41.6% 28.1%

6 N-VMC-AP 2,380 (20.7%) 75.1% 36.0% 28.3%

7 N-IMC 1,733 (15.0%) 74.7% 39.8% 30.3%

8 N-VMC-DP 459 (4.0%) 85.6% 41.4% 35.5%

Total 11,521 80.5% 38.1% 23.6%

Because the New York Metroplex Stacked model has more configurations it can

predict upon, and therefore a lower accuracy than the New York Metroplex Con-

figuration Model, it is relevant to examine the nature of the misclassified runway

configuration predictions in the Stacked Model. Table 6.3.3 shows the number and

percentage of decision selection periods in which the stacked model predicted 0 con-

figurations correctly, 1 configuration correctly, 2 configurations correctly, and 3 con-

figurations correctly between EWR, JFK, and LGA. Note that the 3 configurations

predicted correctly percentage is not equal to the overall accuracy presented in Table
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Table 6.3.2: Comparison between NY Metro. Configuration Model and NY Metro.
Stacked Model predictions.

ID Configuration Frequency Prediction Frequency

Config. Model Stacked Model

1 S-VMC-AP 1,199 (10.4%) 1,032 570

2 S-IMC 2,367 (20.5%) 2,543 1,438

3 S-VMC-DP 981 (8.5%) 910 653

4 Mixed S to N 1,009 (8.8%) 929 235

5 Mixed N to S 1,393 (12.1%) 972 789

6 N-VMC-AP 2,380 (20.7%) 3,201 993

7 N-IMC 1,733 (15.0%) 1,627 717

8 N-VMC-DP 459 (4.0%) 307 462

0 N-VMC-DP 0 (0.0%) 0 5,664

Total 11,521 11,521 11,521

6.3.1. This is because the final model uses combined configurations for prediction,

and in many cases when the Stacked Model misclassified one airport's runway con-

figuration, it does so in such as way that the misclassification still falls under the

same overall New York Metroplex configuration shown in Table 1.2.3. For example,

if the actual overall Metroplex Configuration is 22LI22R - 31L,31RI31L - 31131 which

corresponds to a combined configuration of Mixed N to S (Table 1.2.3) and the New

York Metroplex Stacked Model predicts configuration 22LI22R - 31L,31RI31L - 3114

which also falls under combined configuration Mixed N to S, it would be classified

as a correct prediction in Table 6.3.1, but placed under scenario "2 correct" in Table

6.3.3. Additionally, Table 6.3.3 shows the percentage of times that each individual

airport's prediction was wrong given that the Stacked Model predicted 0,1, or 2 of

the individual airport configurations correctly.

Table 6.3.3 shows that the New York Metroplex Stacked Model very rarely pre-

dicted all three individual airports incorrectly during any given decision period. This

fact is somewhat intuitive considering that the individual airport models all had a

much higher accuracy than the Stacked Model. Additionally, it can be seen that

the majority of the time (45.7%), the New York Metroplex Stacked Model predicts

2 of the 3 individual airport configurations correctly. This is promising because the

overall dynamics of the New York Metroplex could potentially be characterized using
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only 2 airports in future capacity models. In fact, the New York Metroplex Stacked

Model predicts at least 2 individual airports correctly 73.7% of the time, making

it competitive with the New York Metroplex Configuration Model in this sense. It

should also be noted that Table 6.3.3 indicates that majority of incorrect predictions

for all scenarios occur at JFK. This highlights some of the problems that were seen in

the individual JFK model. If the accuracy of the JFK model is increased by adding

more data periods or adding more attributes for prediction, it can be assumed that the

accuracy of the New York Metroplex Stacked Model would also increase substantially.

Table 6.3.3: New York Metroplex Stacked Model statistics.

Scenario Periods % Periods % Incorrect

EWR JFK LGA

0 Correct 368 3.2% 100.0% 100.0% 100.0%

1 Correct 2,662 23.1% 57.9% 81.9% 60.2%

2 Correct 5,261 45.7% 13.6% 59.7% 26.7%

3 Correct 3,230 28.0% 0.0% 0.0% 0.0%

Finally, it is relevant to examine if the New York Metroplex Stacked Model predicts

correctly when the New York Metroplex Configuration model predicts incorrectly. It

may be possible that each different model overcomes some of the shortcomings of

the other model, and combining these two models in the future could be beneficial.

Table 6.3.4 shows an overall confusion matrix for the New York Metroplex Config-

uration Model and Stacked Model. As shown, it appears that when the New York

Metroplex Configuration Model is incorrect, the Stacked Model is also often incor-

rect. Furthermore, when the Stacked Model is incorrect, the Configuration Model is

often correct. Going further, Figure 6.3.2 shows a confusion matrix between both the

Stacked Model and Configuration Model predictions for each specific configuration

on the data periods when the Configuration Model had correct predictions. Simi-

larly, Figure 6.3.3 shows a confusion matrix between both the Stacked Model and

Configuration Model predictions for each specific configuration on the data periods

when the Stacked Model had correct predictions. These figures reinforce the state-

ment above. When the Stacked Model is predicted correctly, the Configuration Model

also predicts very accurately (except for the N-VMC-DP configuration). When the
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Table 6.3.4: Confusion table comparing overall NY Metro. Configuration Model and
NY Metro. Stacked Model.

NY Metro. Config Model

Correct Incorrect Total

Correct 3,818 568 4,386

NY Metro. Stacked Model Incorrect 4,136 2,999 7,135

Total 7,954 3,567 11,521

Configuration Model is predicted correctly, the Stacked Model is not nearly as accu-

rate; usually predicting a configuration classified as "Other". This analysis seems to

suggest the there would not be any major benefit from combining the Stacked Model

and the Configuration Model when predicting the runway configuration of the New

York Metroplex.
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Chapter 7

Conclusions

This paper develops models of the nominal runway configuration selection process of

air traffic control personnel at Newark (EWR), John F. Kennedy (JFK), LaGuardia

(LGA), and San-Francisco (SFO) airports using a discrete-choice framework with em-

pirical observations and maximum likelihood estimation. The models for each airport

are trained on year 2011 data from the ASPM database and are tested using year

2012 ASPM data. Utility functions for different runway configurations at each airport

reflect the importance of various factors such as weather, wind speed, wind direction,

airport demand, noise mitigation, inter-airport coordination, and the incumbent run-

way configuration. The weights assigned to the utilities are used to infer the relative

importance of the different attributes. Across all models, the inertia variables were

seen to have the highest importance when making the decision selection. Additionally,

headwinds and tailwinds on the arrival runways were also found to be an important

factor. For EWR, JFK, and LGA, high capacity configurations were favored under

high arrival demand scenarios. At SFO, demand effects were coupled with visibility

because of runway separation procedures. Switch proximity reflected a preference to

reduce the operational effort required from a runway configuration switch.

The discrete-choice utility functions are then used within probabilistic models that

predict the runway configuration selection on a specified forecast horizon. Predictions

are first calculated assuming perfect knowledge of future weather conditions and air-

port demand. Assuming perfect knowledge, the EWR, JFK, LGA, and SFO models
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achieve accuracies of 97.8%, 96.3%, 98.0%, and 98.1% respectively on a short-term 15

minute planning horizon. On a standard 3 hour planning horizon, the EWR, JFK,

LGA, and SFO models achieve accuracies of 79.5%, 63.8%, 81.3%, and 82.8% respec-

tively. Finally, on a longer-term 6 hour planning horizon, the EWR, JFK, LGA, and

SFO models achieve accuracies of 69.5%, 48.2%, 72.4%, and 72.8% respectively.

To replicate the quality of predictions using information that is available to air

traffic controllers in real-time practical applications, the prediction models are then

calculated using forecast weather data and scheduled demand data. With forecast

data, the EWR, LGA, and SFO models achieve accuracies of 78.9%, 78.9%, and 80.8%

respectively on a 3 hour planning horizon. The results show that the accuracies of

the models are not significantly degraded by a practical implementation. This is

promising because future decision support tools would need to use forecast data in

real-time.

After creating models for each airport in the New York Metroplex individually, two

combined models of the overall New York Metroplex were created. Both models were

predicted on overall combined metroplex configurations that grouped several specific

configuration combinations together. The first model, denoted the New York Metro-

plex Configuration Model was developed by re-estimating a discrete choice model

for the combined Metroplex configurations and achieved accuracies of 96.1%, 69.0%,

60.0% on a short-term 15 minute planning horizon, a 3 hour planning horizon, and a

longer-term 6 hour planning horizon respectively. The second model, denoted the New

York Metroplex Stacked Model was developed by combining the individual airport

models and achieved much lower accuracies of 80.5%, 38.1%, 23.6% on a short-term

15 minute planning horizon, on a 3 hour planning horizon, and a longer-term 6 hour

planning horizon respectively. A detailed analysis of the Stacked model suggested

that it predicted at least 2 individual airports correctly 73.7% of the time and the

JFK component of the model was the largest source of error. It also suggested that

combining both the Configuration Model and the Stacked Model for prediction is

likely not very beneficial.
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7.1 Limitations of Approach

It is important to acknowledge the limitations that were seen in this study. Be-

cause the approach is inherently data-driven, the predictions are limited only the the

runway configurations that have been observed in the past. The models should be

re-estimated when there are major changes in the runway selection decision process,

such as new procedures or capacity enhancements [37]. Similarly, runway configura-

tions that are observed infrequently in the past will not have strong estimators and

are therefore difficult to predict accurately in the future. For the same reasons, run-

way configurations that switch more frequently than others also have a high level of

uncertainty and a lower prediction accuracy.

Additionally, the discrete-choice models do not account for variability among de-

cision makers, who may have differing levels of experience, diverse concerns, and

different rationales for selecting runway configurations. The proposed models cap-

ture nominal behavior which can cause instances of perceived reporting errors or

prediction errors. In other words, the model assumes the presence of rational deci-

sion makers who share the same utility functions, even though this may not be the

case.

Additionally, the recursive Bayesian approach to prediction inflates errors and

biases present within the discrete-choice utility functions on longer time horizons.

In many cases, the heavy influence of the inertia parameter biases the predictions to

hold the incumbent configuration even when a switch is preferable. When the weather

conditions do not heavily favor a configuration switch, these models tend to predict

that the configuration will remain the same. As a result, the prediction accuracy is

reduced in time periods close to a configuration switch [18].

7.2 Potential Extensions

Despite these limitations, the prediction performance of the proposed discrete choice

models suggests that they are a promising approach to predict the runway configu-
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ration a few hours ahead of time. Potential extensions of these models fall into two

major categories: broad scope extensions and model specific extensions. The broad

scope extension considers practically implementing these models for NAS-wide deci-

sion support. The model specific extensions focus on fine-tuning individual airport

models for better estimators and more accurate predictions.

On a broad scope, estimated discrete-choice utility functions and their correspond-

ing prediction models could be developed for all FAA core airports over multiple years

of data. The beta weight parameters for each utility function can then be clustered

for similarly defined variables such as inertia, wind, or demand and included in future

NextGen decision support tools.

Model specific extensions could include improving the inertia term by limiting

its effect as time progresses on long term prediction horizons. Biases within the

estimated parameters could be reduced by estimating the utility parameters using

a balanced training dataset. The effect of wind gust and aircraft size, which are

currently ignored, can also be included in the utility models. Adding more sources of

data could be particularly useful for the JFK model. The individual airport models

could benefit from adding coordination variables between all other airports in their

respective region. For example, the LGA model could include coordination variables

between EWR and TEB in addition to the coordination parameters for JFK. This

will likely increase the overall accuracy of the model, however, it should be noted

that adding these variables could effectively overstate the accuracy of the model if

they remove too much of the variability in the data set. Additionally, the New

York Metroplex Models could be improved by including effects from TEB on the

Metroplex. Furthermore, new models for SFO could be estimated by defining "side-

by" and "staggered" classes with more rigor. Challenges will still be present with

this type of modeling, because "side-by and "staggered operations are not reported

in the ASPM data. The lack of any ground truth will make it difficult to evaluate the

predictive performance of this type of model, however new insights could be gained

from the estimated utility functions.
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