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Abstract

In this thesis, the relationship between packet loss and the accuracy of an autonomous
surface craft's trajectory estimate is explored. In experimental conditions, it is com-
mon to lose subframes of acoustic packets, or even entire packets during transmission.
Since packets are often used to encode localization information of and range measure-
ments to the sender, lost packets result in poorer navigation of the receiving vehicle.
Trajectory estimates, computed using nonlinear least squares optimization, are com-
puted for a variety of client node/server code configurations, and for a series of packet
transmission success rates in one of those configurations. Though it is possible for a
vehicle to receive some subset of the total number of frames in a packet, partial pack-
ets are not usable in current methods. This thesis proposes a method of preparing
acoustic packets containing navigation information, so that each frame of a packet
is independently useful to a receiver. It is shown in this work that in incorporat-
ing navigation information from partially received packets as well, a more accurate
trajectory estimate of a non-GPS-aided vehicle is achieved.
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Title: Samuel C. Collins Professor of Mechanical and Ocean Engineering
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Chapter 1

Introduction

Over the past few decades, the world has seen a significant number of cases where

autonomous underwater vehicles have been critical in searches and discoveries. Ex-

amples of Earth exploration in which autonomous underwater vehicles have been key

include the discovery of the pink terraces in New Zealand [1] and general exploration

of cavities under ice shelves in the Antarctic where globally important water mass

transformations occur [2]. It has been noted that the techniques used for exploration

on Earth, for example in Arctic exploration, could potentially be applied in extrater-

restrial exploration [3].

More recently, with the loss of Malaysian Airlines flight MH370, the world has seen

how important it is to deploy and execute missions in a time effective manner. The

thirty-day lifetime of the batteries sustaining the black boxes aboard MH370 [4] is only

one example in which efficient use of time is critical. Underwater vehicles also played

a role in search and rescue initiatives in Japan after the 2011 Tahoku earthquake and

tsunami [5], and in investigations following the 2010 Deepwater Horizon oil spill [6]

[7].

Missions involving vehicles on land or in the air generally have the advantage of

being able to utilize GPS measurements continuously so that their pose (position,

or position and orientation) is always known with acceptable certainty. However,

since electromagnetic waves are rapidly attenuated by seawater, underwater vehicles

cannot use GPS measurements to remain localized and must rely on other methods

17



to maintain an acceptable estimate of their pose. The combination of altimeters,

which measure depth, compasses, which measure orientation, and velocity sensors,

such as Doppler current profilers, allow for localization through velocity integration,

or dead reckoning (DR), but due to measurement noise, the error of DR pose estimates

inevitably grow without bound with time. Very expensive onboard sensors can slow

the growth of DR error, but cannot eliminate the issue.

To counteract the unbounded grow of DR estimates, additional external mea-

surements must be incorporated into a mission. An example of such an external

measurement is a GPS fix, in which a vehicle surfaces to get access to a GPS mea-

surement to reset its accumulated DR error. However, GPS fixes introduce extra

time into a mission, and in addition to wasting energy, this may be impractical in

time-sensitive cases, such as those mentioned above.

The long baseline acoustic positioning system (LBL) is one potential solution to

this problem. Using the speed of sound in water, the time of flight of acoustic signals

between vehicles and fixed beacons is used to compute the distance between them as

described in equation 1.1, where vSW is the speed of sound in seawater and OWTT

is the one-way travel time of the acoustic signal from the landmark beacon to the

vehicle.

dist = vSW -OWTT (1.1)

Since a vehicle's depth can be known with very high accuracy using low-cost

pressure sensors, the localization using range problem becomes a planar problem.

The ranges between a vehicle and three fixed beacons can be used to compute an

unambiguous estimate of a vehicle's position, as shown in Figure 1-1.

A challenge of LBL systems, however, is that they reduce the working area of the

autonomous vehicles to areas within a few kilometers of the fixed beacons [8]. In

response to this challenge, the moving long baseline navigation (MLBL) method was

proposed by Vaganay et al. [9], in which two unmanned surface vehicles (USVs) act

as beacons, or communications and navigation aids (CNAs).

18



b,

2 b3

Figure 1-1: When range measurements to two beacons (purple squares) with access

to GPS measurements are known, the set of possible positions of a vehicle of unknown

position can be reduced to two possibilities on opposite sides of the baseline (solid

green line) connecting the two beacons. If a range measurement to a third beacon is

also known, the ambiguity is eliminated.
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Other field experiments described in chapter 2 describe the extension of the MLBL,

in which a range measurements to a single CNA are used to correct the DR error.

In the problem of cooperative navigation, multiple AUVs use their own DR pose

estimated and intervehicular ranges to significantly slow the growth of the localization

error of each vehicle. The cooperative navigation problem relaxes the constraints of

the previous cases, in that GPS-aided CNAs are not necessary.

1.1 Thesis Roadmap

The work in this thesis tackles a problem commonly encountered in field experiments.

Acoustic packets containing localization estimates of vehicles, for example, are broad-

cast to other vehicles in a mission. Because of the scheme used to transmit acoustic

packets, they are transmitted as sets of frames. As can be seen in Figure 1-2, it is

common for packets to completely or partially be dropped. This is due to the numer-

ous limitations presented by the acoustic environment. One major limitation is the

attenuation of the acoustic signal due to the conversion of acoustic energy to heat,

which increases with distance traveled. Reflection off the surface of the water or sea

floor amplifies this problem, and multi-path also encourages distortion of the signal

through interference with itself. The signal may also attenuate due to dispersion of

the acoustic wave due to interaction with the turbulent ocean surface or the rough

bathymetry of the sea floor. Furthermore, the signal also undergoes inverse-square

law spherical geometric spreading; the intensity therefore decreases significantly the

further the signal must travel [10]. These challenges make it difficult for acoustic

packets to successfully reach their target receivers intact.

Whereas current methods functionally discard these partially received acoustic

packets, this work describes how pose marginalization through spatial relationship

compounding can be used to include low resolution information in each frame of

an acoustic packet so that even when it is only partially successfully transmitted,

an acoustic packet can still provide useful information to a target transducer for the

purpose of cooperative localization. Details of this approach are described in Chapter

20
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Figure 1-2: Figure showing packet success indicators superimposed on the

measured trajectories of three vehicles on a mission executed on November

2014 on the Charles River in Cambridge. MA.

GPS-
26th.

5.

Chapter 3 describes the sensor fusion maxiiumi likelihood estimation (NILE) prob-

lem used to estimate a vehicle's trajectory for three different CNA-client node vehicle

configurations, and for the case of two CNAs assisting one client node vehicle, the

effect of packet loss on the nonlinear least square (NLS) trajectory estimate accuracy

is explored. This method of computing the MLE of the client node's trajectory is

strongly based on the work conducted by Eustice et al. in [111. Chapter 4 describes

the use of data from a three-vehicle mission, carried out on November 26th, 2014 by

Dr. Liai Paull on the Charles River in Cambridge. MA, to determine the effect of

partial packet loss on NLS trajectory estimate accuracy. Chapter 4 also describes the

analysis of the error of that mission data and its use in estimating of the speed of

sound in the water during the mission. Conclusions and topics for future work are

included in Chapter 6.
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Chapter 2

Literature Review

In recent years especially, strides have been made in the quality of the communica-

tion and navigation of ocean vehicles. In this chapter, the landscape of the field of

the acoustic communication and cooperative navigation of autonomous underwater

vehicles (AUVs) and autonomous surface crafts (ASCs) is described and discussed.

A summary of the software used to obtain the data described later in the work is

given, followed by a discussion of the state-of-the-art methods being used currently in

acoustic cooperative navigation. Following that is an introduction to the pose graph

representation of mission data, and a brief discussion of the state-of-the-art methods

in state and trajectory estimation.

2.1 Relevant Software

The Mission Oriented Operating Suite-Interval Programming (MOOS-IvP) frame-

work is the means of communication between deployed vehicles and the shoreside

computer in the previously executed mission described in the results section of this

thesis. The MOOS-IvP framework was designed at MIT in two stages. MOOS was

developed at MIT by Dr. Paul Newman in 2001 as a method for coordinating com-

munication between a number of applications. The IvP Helm was written as an

extension of MOOS in 2004 by Dr. Mike Benjamin to coordinate vehicle behaviors

using multi-objective optimization. 1121
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MOOS is a publish-subscribe framework: each application subscribes to a set of

variables, and using the values of the variables at the time of subscription, performs

some set of operations, then publishes a set of variables, which may be subscribed to by

other MOOS applications within that community. Each vehicle in a vehicle network

is home to a separate MOOS community, but vehicles are able to communicate with

each other through other means, such as over wifi or using the acoustic channel.

The Goby Underwater Autonomy Project, hereafter referred to as Goby, was de-

veloped by Dr. Toby Schneider at MIT to enable the seamless integration of multiple

types of communication, from acoustic to wifi to serial to ethernet. The set of modules

created in the Goby Project include a set of MOOS applications that may be used to

coordinate acoustic communication during the missions described in this work.

One MOOS application in particular, pAcommsHandler, plays an important role

in the coordination of intervehicular acoustic communication. Whenever messages to

be transmitted over the network are prepared, pAcommsHandler, queues them for

transmission and as the driver for the acoustic modem, also coordinates the subse-

quent broadcasting of acoustic packets.

Data marshalling is handled using the Dynamic Compact Control Language (DCCL),

also designed by Dr. Toby Schneider. The DCCL method of data encoding takes into

consideration the unreliability of the acoustic channel, and as such, uses a modified

arithmetic encoder to achieve compressions ratios of approximately 85% when com-

pared to standard 32-bit integers. Thus, a relatively small number of bits are used to

encode information, enabling more efficient use of the acoustic channel [13].

2.2 State-of-the-Art in AUV Navigation

In much of the previous work done in the field of acoustic communication of AUVs,

algorithms are tested on unmanned surface vehicles (USVs). Using USVs for testing

algorithms is highly preferable to using AUVs, because cost, risk, and complexity

of experiments are all significantly reduced. Furthermore, since USVs have access

to to GPS or real time kinematic (RTK) measurements, which are often taken to
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Figure 2-1: Autonomous kayak on the Charles River in Cambridge, MA.

be "ground truth." assessing of the quality of localization estimates becomes simple.

Platforms such as the low-cost Surface Craft for Oceanographic and Undersea Testing

(SCOUT) [14], the Autonomous Coastal Exploration System (ACES) 1151, and the

autonomous kayaks developed by the Hovergroup at MIT (shown in Figure 2-1) are

all examples of USVs that. when outfitted with acoustic transponders. can be used

to simulate AUVs in the testing of acoustic navigation and localization algorithms.

In the experinents described in this thesis, autonomous kayaks are used in place of

AUVs when running minssions.

As mentioned earlier, it is important for AUVs to utilize external measurements

to counteract the boundlessly increasing localization error associated with unaided

inertial measurement unit (IMU) and Doppler velocity log (DVL) navigation. In early

forms of such implementation using the acoustic channel, referred to as long baseline

(LBL) acoustic positioning, AUVs would send range "requests" to systems of fixed

beacons after which the fixed beacons would "respond" with acoustic signals. The

two-way travel time (TWTT) would be used to compute range measurements to the

fixed beacons, and given an appropriate number of independent range measurements,

the AUV would be able to determine an unambiguous estimate of its position. How-

ever, since vehicles had to request this information in turn, the rate of information
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gain for navigation fixes would inversely scale with the number of AUVs. Furthermore,

fixed LBL systems limit the range of AUV operation to only 5-10 km [16].

Later methods incorporated the use of synchronous clocks to form passive systems,

which eliminated this scaling issue. Instead of the request-respond architecture, bea-

cons of known position in the global frame would periodically broadcast acoustic

signals over the entire AUV network. Passively "listening" AUVs would then be able

to incorporate range measurements to these beacons, computed using the speed of

sound and the one-way travel time of the signals, into their own localization estima-

tion problem.

Eustice et al. were among the first to use this type of system. In 2006, results

were presented for a two node configuration: one surface vehicle (a ship) with con-

tinuous access to GPS measurements, which was in scheduled communication with

a second submerged vehicle equipped with a DVL 117], [18]. In these experiments,

the AUV received pseudo-range measurements (in the form of one-way travel times)

to the GPS-aided ship and packets containing position data of the ship. Papadop-

ulous et al. presented the results of an observability analysis of a system, consisting

of a single USV acting as a CNA for one or more AUVs, which showed that using

nonlinear least squares optimization was the best approach for using range and pro-

prioceptive measurements to compute vehicle trajectories, compared to the EKF, the

particle filter and the current point nonlinear least squares estimator [191. Using

a sensor fusion framework, Eustice et al. used nonlinear least squares optimization

(Levenberg-Marquardt, in particular), to solve for the maximum likelihood estimate

of each vehicle's trajectory in field experiments involving a GPS-aided ship, acting as

a CNA for a Doppler-aided AUV [11]. Results of these experiments showed significant

improvement over purely DR trajectory estimates.

Webster et al. presented results of the first deep water evaluation of this type of

system by conducting similar experiments in 2009. A GPS-equipped ship was used

as a CNA for a pressure depth sensor-, gyrocompass- and DVL-equipped AUV in the

southern Mid-Atlantic Ridge, which had the goal of locating and mapping hydrother-

mal vents in depths of about 4km. These experiments highlighted the increased
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length scales possible with synchronous clock-assisted navigation. Though the AUV

was renavigated in post-processing, methods for online navigation were presented [20].

Further enabling the use of acoustic communication between any combination of fixed

beacons, USVs and AUVs, Webster et al. developed a platform-independent acous-

tic communication and navigation system, which included host computers, acoustic

modems, precision clocks and software which handled modem configuration, acoustic

signal traffic and interfacing between the clocks and modems. [161.

Kalman filtering is a state estimation method which involves the use of a process

model to predict the state and error covariance of a system, and the use of measure-

ments to subsequently update that prediction. While Kalman filtering is acceptable

for linear systems, the extended Kalman filter linearizes about points of interest and is

therefore acceptable for nonlinear systems, such as trajectory estimation using range

measurements. Kalman filters and information filters serve the same purpose, but

when using the information filter, the inverse error covariance is tracked instead of

the error covariance [211.

Webster et al. presented in 2012 a centralized extended Kalman filter (CEKF) ap-

proach to solving for the trajectories of both a GPS-aided ship and a proprioceptive

sensor-outfitted AUV. In the CEKF method employed here, the state of the sys-

tem consisted of both the trajectory of the ship and the trajectory of the AUV. State

estimation was carried out in post processing, where the initial "guesses" of the trajec-

tories were the maximum likelihood estimates computed using the method previously

reported by Eustice et al. in [111]. In experiments carried out in 4km of water on the

southern Mid-Atlantic Ridge, LBL methods were used to determine "ground truth."

Experimental results of the CEKF implementation showed significant improvement in

both the localization estimate of the AUV and the spatial uncertainty of the estimate

when compared to DR estimates. [221

Bahr et al. conducted experiments showing successful cooperative navigation of

AUVs using an assortment of vehicles. In one experiment, two autonomous surface

crafts (ASCs) were used as CNAs in the trajectory estimation of a third ASC. Fur-

ther experiments conducted included the use of two ASCs as CNAs for localizing an
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underwater glider, and the use of two ASCs as CNAs for localizing a Bluefin12 AUV

[23]. The cooperative navigation algorithm presented by Bahr et al. addressed an

important weakness of the EKF. By incorporating a large number of historical range

measurements into each computation of a state estimate, the system was more robust

to outlier range measurements and could recover more quickly in the time step follow-

ing an outlier measurement. Another important takeaway from these experiments is

the disadvantage of the request and answer architecture for acoustic communication;

due to the lossy nature of the acoustic channel, some subset of requests were lost,

and some subset of the answers to those requests were also lost. The result was a low

measurement update frequency, which could be addressed by using a passive network

of broadcasting and "listening" vehicles with synchronous clocks.

As AUVs became less expensive, it became more reasonable to deploy networks

of multiple low cost vehicles for the collection of data over large areas, in which it

would be too risky and time-intensive to deploy a single vehicle outfitted with expen-

sive sensors. In using larger networks of AUVs with lower cost sensors, however, it

becomes difficult to implement a centralized state estimator over the entire network.

In 2013, Webster et al. presented work which showed that a decentralized extended

information filter (DEIF) produces an identical estimate of the current state of a sys-

tem as a centralized extended information filter (CEIF). In a decentralized system,

vehicles (or nodes) of a network maintain their own state estimate using their pro-

prioceptive sensors and intermittent external measurements. An advantage of using

a decentralized approach to state estimation is that it is more easily extensible to

larger networks of AUVs. Furthermore, whereas the centralized ematimator can only

be implemented in the post-processing of mission data, decentralized estimators may

be implemented in real time [24]. Experimental results for the DEIF in two cases were

presented: a node pair of a server node with continuous access to GPS and a client

node, which remained submerged; and a node pair of a server node with intermittent

access to GPS and a client node, which remained submerged [25]. The results of the

DEIF algorithm exactly replicated the results of the CEKF algorithm presented in

[221, which was used as a benchmark in testing the DEIF algorithm [26]. The only
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differences in estimation results between the two were linearization errors [27]. In

the discussion of these experiments, the difficulty of handling the lossy nature of the

acoustic communication channel was highlighted.

Walls et al. proposed in [28], 129] a method of addressing this problem by improving

robustness to packet loss, dubbed the origin state method. It was noted in this

work that it is impractical to send odometry measurements relative to a previously

transmitted pose estimate. By sending composed odometry measurements relative

to some predetermined origin, odometry information can robustly be shared over a

network of vehicles. In the proposed method, each client node in a network passively

"listens" for acoustic messages from a server node; these acoustic messages contain

the pose of the server node relative to an origin state known by each client. Each

time a message is received by a client node, a new pose can be added to a client-side

pose graph of the server node by decompounding the existing client-side pose graph

from the compounded origin-state pose.

Until this point, the previous work described has involved the localization of a

single client node with the aid of one or more server nodes or CNAs. A more de-

sirable case would involve the the localization of multiple AUVs or client nodes. A

potential issue that arises when multiple vehicles share state and range information

is the generation of inconsistent estimates. When a vehicle uses range measurements

more than once, its state estimates become overconfident and in addition to mak-

ing data association and outlier rejection more difficult, it significantly decreases the

likelihood of converging on the correct state estimate. Bahr et al. showed in 2009

that in executing careful bookkeeping of the sources of measurements, re-use of range

measurements can be avoided and estimates can be guaranteed to be consistent [30].

This method, though effective, proved to not scale well when used for a network

of more than three or four vehicles, since the error covariance matrices that had

to be transmitted among all vehicles would be too large, especially given the low

throughput of the acoustic channel. In response to this problem, Fallon et al. proposed

a framework which allowed for consistent and accurate cooperative navigation in a

network of any number of AUVs. A database containing intervehicle ranges between
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all vehicles and DR measurements of all vehicles is maintained on each vehicle, and

only when a complete set of data is received, will a vehicle perform state estimation

[31].

Paull et al. and Walls et al. have both presented decentralized methods of es-

timating the trajectory of multiple AUVs using communication methods robust to

packet loss. In [32], Paull et al. demonstrated the use of factor composition and

careful bookkeeping to robustly broadcast odometry measurements. Onboard each

vehicle is a pose graph, which consists of the vehicle's own pose for all time as well

as the poses of other vehicles in the network corresponding with each received mes-

sage. Through the use of acknowledgement bits, confirmed incoming and outgoing

"contact points" are determined, in which a "contact point" is the most recent in-

stance at which successful communication occurred. By tracking these contact points,

odometry measurements relative to these times are generated using a compounding

operation before being transmitted. Thus, received odometry measurements can be

correctly appended to the local pose graph of each vehicle, on which a smoothing

approach is taken to estimate the vehicle's trajectory.

In the approach outlined by Walls et al. in [33], instead of transmitting individual

poses to be added to the local factor graph of a receiving vehicle, poses are transmitted

as in the origin state method over the network. First, factor composition is used to

generate approximation of the vehicle's own chain (factor graph consisting of only

binary odometry factors and unary prior factors, such as GPS measurements), then

factor composition is utilized again to generate a the pose of a vehicle at the time

of launch (TOL) of a message. When a vehicle receives an acoustic message, it then

employs decomposition to reconstruct a relative odometry measurement using the

odometry factors already received to add to its own pose graph. Since the origin state

method is used when transmitting poses, every message can be used independently

by a receiving vehicle, so acknowledgement bits are not needed.
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Figure 2-2: Example of a factor graph of a single vehicle. Shaded pink circles rep-
resent the nodes. or poses. of the vehicle, shaded black circles represent odometry

measurements, and yellow circles represent priors. for example GPS fixes, which only
apply to the poses to which they are connected. The blue shaded circle encodes the

prior knowledge about the initial pose.

2.3 Algorithms for Trajectory Estimation

The factor graph, or pose graph, of a vehicle, as its name suggests, is a factorization

of the function used to estimate its trajectory over the course of a mission, which is

graphically represented as a bipartite graph. The graph consists of variable nodes

(which represent vehicle poses in the work described here), and edges, which may be

one of two types:

1. unary factors, which represent prior measurements. such as GPS fixes, and

2. binary factors, which represent spatial relationships between two successive

poses, usually odonmetry measurements in the work described here.

Figure 2-2 shows an exaniple of a vehicle's factor graph. Throughout the nission

of this particular vehicle, the vehicle has the set of N poses X = [xI ... XN]. It has

some belief on its initial pose, and at each pose, the vehicle has access to an external

measurement. A vehicle with an initial belief on its initial pose and continuous access

to GPS measurements could have such a pose graph. Note that such a system is over-

constrained; a least squares minimization approach could be applied, for example. to

solve for the set of poses or the trajectory of the vehicle over the course of this mission.

As previously described, the error in the DR. estimate of an AUV's pose will grow

without bound with tinie in the absence of external measurements. Range and bearing

measurements to landmarks may be incorporated into the pose graph of a vehicle.

as shown in Figure 2-3 below. A lanidmark is an object in the vehicle's environment,

which may be observed at multiple times (and therefore at multiple poses) throughout
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Figure 2-3: Factor graph of a single vehicle (pink shaded circles) with a prior on its
initial pose, odoinetry measurements and measurements to three landmarks (shaded

green circles).

a mission.

Range measurements to other vehicles may also be used to put a bound on the error

associated with the DR pose estimate, in which case the problem becomes cooperative

localization. The implementation of this method described in this thesis is strongly

based on the sensor fusion maximum likelihood estimation problem presented by

Eustice et al. in Jill.

An example of a cooperative localization factor graph is shown in Figure 2-4.

Chains of poses of multiple vehicles can be connected via range measurements between

poses on different vehicles. A least squares formnlation of the information provided

in that factor graph may be solvec to obtain trajectory estimates of each of the three

vehicles. The schematic in Figure 2-4 shows how this coinmnnication of information

would occur. At time t = 1. vehicle 2 broadcasts its pose. At tinie t = 2, it gets an

acoustic packet from vehicle 3; this packet is associated with a range measurement

and pose information about vehicle 3. A the next time step, vehicle 2 receives a

packet from vehicle 1, and at the following time step, vehicle 2 broadcasts its pose

information again.
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Figure 2-4: Schematic showing comiminicat ion as exp~erienlced1 by center vehicle (pink
varialble nodes), which intermittently broadcasts it~s ownl localization estimate and is

only aware of the state of the other two vehicles upon receipt of acoustic p~ackets

containing localization infornmation of those vehicles.

Since there is inherent noise in each measurement, which is assumed to b)e zero-

mean anid normally distributed. each measurement only gives information about the

vehicle's trajectory with a particular probability. For example. given the factor graph

in Figure 2-2. the likelihood function for a set of poses i.e. a trajectory, p(X1 ), is the

joint distribution over the initial belief, p(x0 ), and

1. the conditional prolbabiities that the (N -1) odlometry umeasureinents, zoa are

mnade givemn consecutive pos5es, xo and~ Xk+l , and~

2. the conditional probabilities that the N prior measurements are made given the

vehicle's pose at time of measurement. zk

Therefore, the likelihood function (!f the trajectory estimate, where the set of all

mecasurements is dlemoted as Z and the set of all poses is dlenoted as X. is

N-( N

p(Z IX) =p(xi ) J7 p(Zo(I( lX 1 Xj +) J7 P(pricsr x1) (2.1)
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The maximum likelihood estimate (MLE) of the trajectory is thus

XkML= arg max p(Z|X) (2.2)
x

which is equivalent to the minimization problem

XML = arg min - lnp(Z|X) (2.3)
x

If the trajectory is taken to be a random variable, the maximum a posteriori

(MAP) estimate of the trajectory may be computed. The MAP estimate is that

trajectory which maximizes the posterior distribution on the estimate given the mea-

surements obtained, that is

kMAP = arg max p(X|Z) (2.4)
x

which is equivalent to the minimization problem

-kMAP =argmin -Inp(X|Z) (2.5)
x

When the noise on the process model and the noise on the measurement model are

zero-mean and normally distributed, as is assumed in this work, computing the MLE

estimate or the MAP estimate becomes a nonlinear least squares problem 134]. Solv-

ing this nonlinear least squares problem for the MAP estimate of the entire trajectory

is known as smoothing, as opposed to filtering, which makes a prediction for the kth

pose estimate using the system's process model following the (k - 1)th pose, which it

updates once a measurement is taken. As a result, as mentioned before, smoothing

approaches tend to be more robust to outlier measurements than filtering approaches.

This least squares minimization problem can be solved using a number of iterative nu-

merical solvers, such as the gradient descent method, the Gauss-Newton algorithm or

the Levenberg-Marquardt algorithm, though more sophisticated methods for solving

these problems have been developed in recent years.
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Factor graphs like the ones described here result is what is known as a sparse least-

squares problem, since most pose (i.e. variable) nodes are not directly connected to

most other variable nodes in the factor graph. What results is a naturally sparse

information matrix. Dellaert et al. presented a method, Square Root Smoothing and

Mapping (vSAM) [34], which takes advantage of this natural sparsity to perform

fast QR factorization of the information matrix to quickly solve for the trajectory of

a vehicle.

In older methods, online pose estimation, such as in the case of online simulta-

neous mapping and localization (SLAM), was carried out by recomputing the entire

trajectory as an independent problem each time a new factor was added to the factor

graph (equivalent to adding a new summand to the least squares problem described

above). Kaess et al. introduced the incremental smoothing and mapping (iSAM) al-

gorithm, which took advantage of the sequential nature of the problem of online pose

estimation by using new data to not recompute an entire new trajectory, but rather

update the previous estimate of the trajectory. As opposed to older methods, which

would re-execute the QR factorization of the entire information matrix upon the addi-

tion of every new pose, iSAM only updates the previous factorization by recomputing

only the entries that change. Even when many landmark re-observations (i.e. loop

closures) occur, the information matrix remains sparse since iSAM periodically re-

orders the variables to prevent the information matrix from becoming unnecessarily

dense [35].

iSAM initially used the Gauss-Newton method to perform the least-squares mini-

mization problem of trajectory estimation. The Gauss-Newton method is an iterative

numerical method that uses an initial estimate and a number of quadratic approx-

imations about that estimate and subsequent estimates to minimize a function to

some predetermined satisfactory level. However, with the Gauss-Newton method,

there is risk involved in that if a poor initial estimate is chosen for a significantly

nonlinear problem, it is possible that an (incorrect) local minimum will be chosen as

the solution to the problem.
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Rosen et. al, in response to this issue, presented the Robust Incremental Least-

Squares Estimation (RISE) approach, which is not only faster than the Gauss-Newton

method for solving sparse least-squares problems, but also much more robust to this

issue associated with significantly nonlinear least squares problems 136]. The RISE

approach is now implemented iSAM.

2.4 Summary

In this chapter, the landscape of the field of acoustic communications-aided cooper-

ative navigation and the state-of-the art methods in state and trajectory estimation

were described. In the following chapter, the factor graph representation presented in

this chapter is used to formulate the factorization of the maximum likelihood function

of vehicles' trajectories. Nonlinear least squares optimization is then used to compute

estimates of the vehicles' trajectories using simulated measurement data.
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Chapter 3

Cooperative Localization Using Pose

Graph Optimization

This chapter describes how the trajectories of client nodes may be solved for in a num-

ber of different experimental configurations, by generating a least squares formulation

of the maximum likelihood equation for the trajectory estimates. Measurements from

a number of different sensors are related to the trajectory variables, and a nonlinear

least squares optimizer (here, the Levenberg-Marquardt algorithm) is used to solve

for an estimate of the maximum likelihood trajectory. This method is very strongly

based on the sensor fusion MLE problem presented by Eustice et al. in [11]. A least

squares representation of the maximum likelihood estimate and the results of the

optimization problem using simulated measurements are presented for the following

cases.

1. Two client node vehicles, each with an initial GPS measurement, then noisy

odometry measurements and noisy range measurements to a single CNA with

access to GPS measurements thereafter.

2. Three vehicles, each with an initial GPS measurement, then only noisy odom-

etry measurements and inter-vehicle range measurements thereafter.

3. A single client node vehicle with an initial GPS measurement, then noisy odom-

etry measurements and noisy range measurements to two CNAs with access to
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GPS measurements thereafter.

Using the ground truth (GPS) trajectory measurements of three vehicles from

an actual mission, artificial range measurements and odometry measurements with

added zero-mean, normally distributed noise were generated at regular time intervals

and used to generate the trajectory estimates for the three vehicle configurations

below.

3.1 State Description and Observation Models

In the presentation of the least squares problems to be solved, the state of a vehicle

is fully described by its x- and y-coordinates in the global frame of the problem. The

state vector for the ith vehicle in a mission is shown below.

xi(t) = [xi(t), yi(t)]T = X1 = [xI, y1]T (3.1)

The index, k, is used to encode the inherent time dependence of the states of the

vehicles. The states xk- 1 and xk represent consecutive states of the ith vehicle.

The GPS-derived observation model of the ith vehicle is defined as

Zk k k(32
zPsi = + WGPS (32

The term wi 8s represents the additive noise in the measurement; it is assumed

to be zero-mean and normally distributed, with wGPS ( (O PSi)-

The vehicle-derived odometry measurement observation model for the ith vehicle

is defined as

Zdo -- Xi - i + Wdo (3.3)

in which the term w koi represents the additive noise in the measurement provided

by the odometry sensor onboard the ith vehicle. It is assumed to be zero-mean and

normally distributed with wodoi ~ A(O, Eod03,.
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The inter-vehicle range between the ith and jth vehicle at the kth time-step is

defined as

kf = k - (3.4)

in which the term wi represents the additive noise in the range measurement,

derived from the one-way travel time of the acoustic signal from the ith vehicle to the

jth vehicle or vice versa. It is also assumed to be zero-mean and normally distributed

with w ~ .(0, Ek,)

For all three cases described below, the odometry error covariances, based on the

artificially added noise, were taken to be

2 r 2 4 0
Eodo - 7X " ' - (3.5)

The range error covariance, based on the error analysis of the mission data, was

taken to be

E= =9 (3.6)

And the error covariance of the GPS-measurements was estimated to be

a2 o2 0.01 0
EGPS - XX I (3.7)

U o2 0 0.01

3.2 Maximum Likelihood Estimation Problems

The maximum likelihood trajectory estimation problem is described in this section

for the three vehicle configurations previously described. The objective function to

be minimized in solving for the maximum likelihood trajectory estimate is presented

along with the result of the optimization problem obtained using the Levenberg-

Marquardt algorithm in conjunction with the artificial measurements.
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Figure 3-1: Pose graph of one CNA with access to GPS measurements (yellow shaded

circles) assisting two client node vehicles (purple and red shaded circles). Binary

factors connecting poses of different vehicles represent range-only measurements be-

tween vehicles. Binary factors connecting the poses of one of the client nodes represent

odometry measurements.

3.2.1 One CNA Assisting Two Client Nodes

For the case of one CNA with access to GPS measurements assisting two client node

vehicles, the problem is set up so that there are n time steps represented for each of

the three vehicles. The CNA has access to o GPS measurements corresponding to

its o poses, at tunes at which range measurements to each of the client nodes are

made. Each client, node vehicle also has access to (o - 1) odometry measurements,

which in the field would come from its proprioceptive sensors. The pose graph for

this configuration is shown in Figure 3-1., in which the CNA's poses are represented

as pink shaded circles. The trajectories of the two client nodes are denoted as X =

[xt.x] and X2 = [xI ... XN]

The sets of poses and measurements are defined as follows:

9 The poses of the the CNA's trajectory:

XCNA NA}() (3.8)
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* The poses of the first client node vehicle's trajectory:

X1 = (3.9)

e The poses of the second client node vehicle's trajectory:

(3.10)

o The GPS measurements of the CNA:

ZGPS -GPS (3.11)

o The odometry measurements of the first client node vehicle's trajectory:

k 

dni

(3.12)

* The odometry measurements of the second client node vehicle's trajectory:

(3.13)

* The inter-vehicle range measurements between the CNA and the first client

node vehicle:
n-{

Zi = rzl,CNA A
(3.14)

* The inter-vehicle range measurements between the CNA and the second client

node vehicle:

Zr2 ={f Zk n-1
Zr2 (z2,CNA (

(3.15)

All the poses form the variable X as

X = {X CNA, X1, X 2 } (3.16)
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All the measurements form variable Z as

Z { {ZGPS, Zodoi, Zod 02, Zn, Zr2}

The maximum likelihood is thus

XML - arg max p(ZIX)

which, when expanded, becomes

XML = arg max p(ZGPS|
x

XCNA)P (Zodo, X1)
(3.19)

p(ZodO 2 |X 2)p(Zri XCN A, X1)p(Zr 2 XCN A, X 2 )

This is converted to a least squared minimization problem as

(3.20)XML= arg min - In p(Z IX)
x

Using the previously defined observation models with additive, zero-mean, Gaus-

sian noise, the nonlinear least squares minimization problem is written as

XML = arg max [ZrlCNA

k=O

1

1

1

1

CN A 1 ,CN i 1CNA- 1

Zr
2 ,CNA~

k Ck C AkX2XCNA 11 1[1 r2, CNA] ILr2 ,CNA

XCN A

2N CNA

k=O

ZGPS - XCNAl
k=O
n-1

k=1
n-i

E1 do2
k=1

[G PS] -1 [ZGPS _ XCNA]

(X k Xk-1) T [k0do1]1 [k

x k _ Xk-1 T

(3.21)
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Figure 3-2: Results of NLS optimization of the trajectories of two vehicles, each with

an initial GPS measurement, and odonietry and inter-vehicle range measurements

to a GPS-aided CNA (shown in black) thereafter. Ground truth as measured using

GPS is shown with a solid line, dead-reckoned trajectory estimates are indicated with

crosses, and NLS trajectory estimates are indicated with circles. Data of the same

color indicates data for the same vehicle.

This nonlinear least squares minimization problem was solved using the MATLAB

function, lsqnonlin, in conjunction with the artificial measurements. The result of

the trajectory estimation problem for this configuration is shown below in Figure

3-2. The initial state estimate for the optimization problem was taken to be the

dead-reckoned trajectory estimate of the two client node vehicles and the actual GPS-

measured positions of the CNA.

43

x x ox

soo x

8x x
x 0 X

xx t : 3

0 x 3

I I I I I

)00



C x x

)(x2 x 2

N-IN
x3 X

Figure 3-3: Pose graph of a three-vehicle network, each with an initial GPS nea-

sureinent and none thereafter. Binary factors connecting poses of different vehicles

represent the N range-only neasureients between each pair of vehicles. For clarity.

the binary factors indicating range measurements between vehicles 1 and 3 are col-

ored green. Binary factors connecting the each vehicle's consecutive poses represent

odonetry measurements.

3.2.2 Trajectory Estimation of Three Vehicles Without CNAs

For the case in which there are no CNAs with access to GPS measurements throughout

the mission, the probleim is set up once again so that there are n time steps represented

for each of the three vehicles. At each of each vehicle's a poses there are range

measurements to each of other two vehicles in the mission. Each vehicle also has

access to its (n - 1) odometry measurements. The pose graph for this configuration

is shown in Figure 3-4. The trajectories of each of the three vehicles are denoted as

[xl, ... , x'] and X3

The sets of poses and measurements are defined as follows:

e The poses of the first vehicle's trajectory:

X1 ={}xA
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* The poses of the second vehicle's trajectory:

X2 = {x} (

" The poses of the third vehicle's trajectory:

X3 = {x} (

" The odometry measurements of the first vehicle:

Zodol = {I o }I

" The odometry measurements of the second vehicle:

Zod02 = ozd02} (

" The odometry measurements of the third vehicle:

Zod3= Zodo3 1(

" The inter-vehicle range measurements between first and second vehicles:

k n-1
Z,2 =z 2 }

" The inter-vehicle range measurements between first and third vehicles:

Z 3
n -

" The inter-vehicle range measurements between second and third vehicles:

Z r2 ,3  
= Zk n-1

Zr2,3 =0z
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All the poses form the variable X as

X= {X1, X2,X3} (3.31)

All the measurements form variable Z as

Z = I{Zodol, Zod0 2 , ZodO, Zrl, 1,31 Z r2,3 } (3.32)

The maximum likelihood is thus

XML = argmaxp(ZIX)
x

(3.33)

which, when expanded, becomes

XML = arg max p(Zodo|X 1)p(Z od02 IX 2 )p(Zodo3  X 3 )
X (3.34)

p(Z,1 2 1X 1, X 2 )p(Zr, IX, X 3 )p(Zr2, X 2 , X 3 )

This is converted to a least squared minimization problem as

XML = argmin - Inp(ZIX)
x

(3.35)

Using the previously defined observation models with additive, zero-mean, Gaus-

sian noise, the nonlinear least squares minimization problem is written as
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-k L = a g ax 1n-1 - - , T -1l [ k
X EL -rg 2-X 11 2 r 2 r,2 X1 2

k=0
n-1

0
do 1 kk _ - 1 ]T 1k

1 [ ik __ -]

k=1

1 - [I~ - k~ ]T [ k ] 1 [Zk23 H -Xk

do: kZ _ 12 - k3dr2 k _ -

k=O

n- i d1 - ( - )] T [ k] -1 [zdO k kx - 1)]

Z 03 _ (X k_ -x )]T[dO 1 [ 01o - (Xi - xi)

2 dd k k- T dol odo k__ -

k=1
n-i-1] y Zk k-)

~~Z[zn-1 ( - 1)] T [ZrO3 - [Zkd3 (k -1)

(3.36)

This nonlinear least squares minimization problem was solved using the MATLAB

function, lsqnonlin, in conjunction with the artificial measurements. The resulting

trajectory estimation problem for this case is shown below in Figure 3-4. The ini-

tial state estimate for the optimization problem was taken to be the dead-reckoned

trajectory estimates of each of the three vehicles. Notably, the absence of any global

positioning updates for any vehicles throughout the mission results in a somewhat

poor estimate even after using nonlinear least squares optimization. However, Figure

3-5 shows that the overall NLS estimation error in the mission still remained lower

than the overall dead-reckoned trajectory estimate error, particularly towards the end

of the mission.

3.2.3 Two CNAs Assisting One Client Node

For the case of two CNAs with access to GPS measurements assisting one vehicle,

the problem is set up so that there are n time steps represented for each of the three

vehicles. For each of the CNAs, there are n GPS measurements, (n - 1) odometry
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Figure 3-4: Results of NLS optimization of the trajectories of three vehicles each

with an initial GPS measurement. and only odometry and inter-vehicle range inea-

surements thereafter. Ground truth as measured using GPS is shown with a, solid

line, dead-reckoned trajectory estimates are indicated with crosses, and NLS trajec-

tory estimates are indicated with circles.

the same vehicle.

Data of the same color indicates data for
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Figure 3-5: The sum of the NLS error and the DR error of all three vehicles over the

course of the duration of the mission.

measurements for the vehicle without direct access to GPS measurements., and n

OWTT-derived measured range measurements between the client, node and each of

the CNAs. The trajectory of the CNAs are denoted as X1  [x..x and X

[x"..., xN] in the vehicle network's pose graph shown in Figure 3-6. The trajectory

of the client node is denoted as X, [x, ..., x1].

The sets of poses and measurements are defined as follows:

" The poses of the first CNAs trajectory:

X -= (3.37)

" The poses of the second CNAs trajectory:

X2 = { 1i} (3.38)
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Figure 3-6: Pose graph of two CNAs with access to GPS measurements (yellow shaded

circles) assisting one client node (pink shaded circles) with a single GPS measurement

initialization (shaded green circle). Binary factors connecting poses of different vehi-

cles represent range-only measurements between vehicles. Binary vehicles connecting

the poses of the client node represent odometry measurements.
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* The poses of the trajectory of "unknown" trajectory:

Xu ={

. The GPS measurements of the first CNA:

ZGPS1 ~ GPS110
(3.40)

e The GPS measurements of the second CNA:

ZGPS 2 {ZGPS 2 } 0
(3.41)

. The odometry measurements of the vehicle of "unknown" trajectory:

Zodo= {z } (3.42)

* The inter-vehicle range measurements between the first CNA and the vehicle of

"unknown" trajectory:

-= { Z~ n -

Zri = 0z
(3.43)

* The inter-vehicle range measurements between the second CNA and the vehicle

of "unknown" trajectory:

Z rk {- 1
Z r 2 = 2 uz I (3.44)

All the poses form the variable X as

X = {X 1 , X 2 , Xu}

All the measurements form variable Z as

Z = { ZGPs1, ZGPS2 , Zodou, Zru , Zr2,u}

(3.45)

(3.46)
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The maximum likelihood is thus

XML = arg max p(ZIX)
x

(3.47)

which, when expanded, becomes

kML arg max P(ZGPS1 XI)p(ZGPS 2 X 2 )
X

p(, I1X 1, X. p( Zr2|1X 2, Xu)P( Zodo, |Xu)

(3.48)

This is converted to a nonlinear least squares minimization problem as

XML = arg min - Inp(ZIX)
x

(3.49)

Using the previously defined observation models with zero-mean, normally dis-

tributed additive noise, the nonlinear least squares minimization problem is stated

as:

ru,1 ]
-1

ru , x

- ]T [k ' [Z- -xU -x2 zu2 r

k]T [kPS1 G -PS_

zGPS2 ~ lT [ Ps2 -1 [ZPS2 X]

zdo k _ - k--)1T - k _ k-1)]

k=l

k=1

(3.50)

This nonlinear least squares minimization problem was solved using the MATLAB

function, lsqnonlin, in conjunction with the artificial measurements. The resulting

52

XkML = arg max
x

1 ru, [
k=O

1

1

n-1

k=z
n-I

GPS1
k=0
n-1

x -x~ ||

X k

d odo,, 1 1



50 f 1 1

50

0 -

-50 - x x x x cC x --

-100 --

-150

-200 - >

-250 -DR x >
o NLS o

GPS D

-300

-350

-50 0 50 100 150 200 250 300

Figure 3-7: Results of NLS optimization of the trajectory a single client node vehicle
with an initial GPS measurement. and only odometry and inter-vehicle range mea-
surements to a GPS-aided CNA thereafter. Ground truth as measured using GPS
is shown with a solid line, the dead-reckoned trajectory estimate of the vehicle is
indicated using crosses, and the NLS trajectory estimate is indicated using circles.

trajectory estimate for this problem is shown below in Figure 3-7. The initial state

estimate for the optimization problem was taken to be the dead-reckoned trajectory

estimate of the client node and the actual GPS-mneasured positions of the two CNAs.

In this result, the assumption of a lossless channel was made, that is, all measure-

ments were used. In the experinmental equivalent under this assumption, every gener-

ated measurement (or sent acoustic packet) would be received by the intended target.

However, the acoustic channel is far from lossless, and it is likely that some mea-

surements would be dropped over the course of a mission. Here, the NLS trajectory

estimate is recomputed for four cases: the 30%. 50%, 70% or 90% packet transmission

success cases. Range measurements, and thus CNA GPS measurements as well, were

artificially "lost" in the N% success case by randomly elinminating (100 - N)% of the

generated measurements.

Figures 3-8, 3-9, 3-10 and 3-11 show the NLS trajectory estimate of the client

node (circles), its dead-reckoned trajectory estimate (crosses) and its GPS-measured
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Figure 3-8: Maximum likelihood state estimation results with client
using 30% of measurements from each CNA. Solid line: ground truth.
trajectory estimate. Circles: Maximum likelihood trajectory estimate.

node (black)
Crosses: DR

trajectory (solid line), which was taken to be ground truth. It is apparent from the

estimates that the quality of the trajectory estimate decreases as the proportion of

packets lost increases.

Figure 3-12 shows the absolute spatial error in the NLS trajectory estimate with

time, using the GPS-measured trajectory of the client node vehicle as ground truth.

Throughout the mission, the NLS estimate of the client node's position remains in

better agreement with ground truth in cases of higher packet transmission success

rates.

In Figure 3-13, the quality of the NLS trajectory estimate is made more explicit

for each of the four cases by showing the cumulative error in the trajectory estimate

over the course of the mission.

3.3 The Levenberg-Marquardt Algorithm

The objective functions stated above for the various configurations of client nodes and

CNAs were solved using the artificial measurements with the Levenberg-Marquardt
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Figure 3-9: Maximum likelihood state estimation results with client node (black)
using 50% of measurements from each CNA. Solid line: ground truth.
trajectory estimate. Circles: Maximum likelihood trajectory estimate.

Crosses: DR
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Figure 3-10: Maximum likelihood state estimation results with client node (black)

using 70% of measurements from each CNA. Solid line: ground truth.
trajectory estimate. Circles: Maximum likelihood trajectory estimate.
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Figure 3-11: Maxinmm likelihood state estimation results with client node (black)
using 90% of measurements from each CNA. Solid line: ground truth. Crosses: DR

trajectory estimate. Circles: Maximum likelihood trajectory estimate.

algorithm, implemented in using the MATL AB function, lsqnonlin. The Levenberg-

Marquardt method of minimizing an objective function involves the adaptive switch-

ing between two other iterative minimization methods: the gradient descent method

and the Gauss-Newton method.

The gradient descent method starts with an initial belief of the state which min-

imizes the objective function. The gradient of the objective function is computed at

this initial belief, and a step of size proportional to the magnitude of the gradient

is taken in the direction opposite to the direction of the gradient. This is repeated

until some stopping criterion is met. Though highly convergent, the gradient-descent

method tends to perform more poorly near minima, since a large gradient near a

minimum results in a larger step size, causing repeated overshooting of the minimum

or "rattling out of the minimum" amid thus slower convergence. t37]
The Gauss-Newton method shows better performance near minima by assuming

that the function is approxinmately quadratic near the minimum and taking the curva-

ture of the function into account. However, the gradient descent method has superior
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Figure 3-12: Error of current position estimate, using RTK-measured trajectory as
ground truth, of both the DR trajectory estimate and the maximum likelihood tra-
jectory estimate for all four success cases. Top left: 30% measurements used. Top

right: 50% measurements used. Bottom left: 70% of measurements used. Bottom

right: 90% of measurements used.

performance to the Gauss-Newton method far away from the local minimum.

The Levenberg-Marquardt method takes advantage of these two methods by it-

eratively recomputing an algorithmic parameter, which determines whether the al-

gorithm makes a gradient descent state estimate update or a Gauss-Newton state

estimate update. [38]

I
3.4 Summary

This chapter has presented the formulation of the nonlinear least squares optimiza-

tion problem for computing the maximum likelihood estimate of the trajectory of a

vehicle or multiple vehicles using a combination of measurements. The formulation,

including the state description and the observation models, has been presented for

a three particular experimental topographies: the configuration in which one GPS-
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Figure 3-13: Cumulative error of current position estimate, using RTK-measured

trajectory as ground truth, of both the DR trajectory estimate and the maximum
likelihood trajectory estimate for all four success cases. Top left: 30% measurements
used. Top right: 50% measurements used. Bottom left: 70% of measurements used.

Bottom right: 90% of measurements used.

aided CNA assists two client nodes, the configuration in which three vehicles each

have an initial GPS-measurement. then only inter-vehicle ranges and odometry inea-

surements thereafter, and finally the configuration in which two GPS-aided CNAs

assist one client node. By introducing measurement dropouts, it was shown that

greater packet transmission success rates induce more accurate NLS trajectory esti-

mates. The following chapter describes an actual mission carried out on the Charles

River in Cambridge, MA, and how data from that mission was used to estimate the

trajectory of one vehicle as in the third configuration described in this chapter.
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Chapter 4

Experimental Results

In this chapter, treatment of data from a mission conducted on the Charles River in

Cambridge, MA on November 26, 2014 is described. The quality of the data from

the mission is briefly described through analysis of the error in the OWTT-derived

range information, and the error analysis is used to determine a superior estimate

of the speed of sound in the water during the mission for use in converting the

OWTT measurements to range measurements. Following that, the NLS trajectory

estimate is computed for one client node vehicle using range measurements to two

GPS-aided CNAs in two cases: firstly using the range measurements for both partially

and completely successfully received acoustic packets, and secondly using the range

measurements only when an acoustic packet is completely successfully received.

4.1 Experimental Setup

Both experiments described in this work utilized autonomous kayaks outfitted with

computers in a frontseat-backseat configuration. Vehicle commands, including thruster

commands, for example, are handled by the frontseat computer, while custom applica-

tions of a vehicle's MOOS community are run on the backseat computer. Furthermore,

each vehicle is outfitted with a Woods Hole Oceanographic Institute Micromodem,

shown in Figure 4-1, which receives and transmits acoustic packets.
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Figure 4-1: The WHOI M\icro-lodem.

4.2 Error Analysis on Previous Mission Data

On November 26th, 2014, a simple mission was executed, in whiclh three autonomous

kayaks. Kestrel, Nostroino and Silvana, each followed a lawnmower path by approach-

ing predetermined waypoints. while broadcasting acoustic packets in turn. The three

vehicles during this mission are shown in Figure 4-2.

Upon completion or termination of a mission, a number of log files are gener-

ated for each vehicle. For this error analysis, we use the asynchronous mission log

(alog) file of each of the three vehicles: the asynchronous log file gives all values

of all variables throughout a mission. Using the alogParse tool written by Josh

Leighton, it was possible to get values for desired variables only at times at which

chosen variables were updated from the unwieldy alog files. The following variables

were thus extracted from each vehicle's alog file at each time at which the variable

SYSTEM_TIMESECONDS was updated:

" SYSTEM _ TIME _SECONDS, which is the mission timestaip, synchronized

across the entire vehicle network.

" ACOMMS ONEWAYTRAVEL_TIME, which indicates the time taken for

the acoustic packet to reach a vehicle after being broadcast by another vehicle.

" ACOMMS RECEIVED_ STATUS., which can take the value of 0, 1 or 2. A

value of 0 indicates that all frames of the packet were successfully received. A
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Figure 4-2: Autonomous kayaks on the Charles River in Cambridge, MA during
mission on November 26. 2015.

value of 1 indicates that only some of the frames of a packet were received. A

value of 2 indicates that none of the packet was successfully received. In the

case in which none of the frames of a packet are successfully received, we still

obtain the one way travel tine of the acoustic signal.

" RTKX & RTK Y the real time kinematic (RTK) satellite navigation x- and

y-coordinate measurements, which were used as the vehicle's ground truth po-

sition on the surface of water. Throughout this thesis, the RTK data is treated

as GPS data.

" ACOMMSSOURCE _ID, which is the ID of the vehicle that broadcast the

received acoustic packet. For this mission, Silvana had ID 2, Nostrono had ID

3, and Kestrel had ID 4. For failed acoustic packet, it was not possible for the

system to determine which vehicle broadcast the received acoustic packet; in

this case, the ACOMMS SOURCE ID holds the value of -1.

Indicators for received packet success superimposed on the GPS-measured trajec-

tory of each vehicle are shown in Figures 4-3, 4-4 and 4-5: all frames successfully
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Figure 4-3: Packet success indicators overlaid on Kestrel's GPS-measured trajectory

during November 26th, 2014 mission.

Vehicle Name Kestrel Nostromo Silvana

Completely Successful (%) 75 69 72
Partially Successful (%) 18 22 20
Completely Unsuccessful (%) 7 9 8

Table 4.1: Percentage of received packets which were completely successfully received,
partially successfully received, or completely unsuccessfully received.

received (green shaded circle), frames of packet partially successfully received (blue

unshaded circle), or all packets failed (red cross). Table 4.1 shows the percentage

of all packets to be received which were completely successful, partially successful or

completely unsuccessful for each vehicle.

This data highlights the issue with discarding partially successfully received pack-

ets. If the information encoded in these partially successfully received packets can be

used, that increases the number of packets used from approximately 70% to approx-

imately 90%. In increasing the number of range measurements, there should be an

improvement in the accuracy of the trajectory estimate of a vehicle.
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4.3 Using Error Analysis Results to Compute the

Speed of Sound

The speed of sound in water is dependent on a number of physical properties: tem-

perature, salinity and depth. While pressure and salinity increase linearly with depth,

the relationship between temperature and depth is nonlinear. As a result, the depth

profile of the speed of sound in the open ocean also nonlinear. This relationship was

characterized in 1981 by Mackenzie, who presented an empirical equation and the

following coefficients for the speed of sound, c, in meters per second, in water as a

function of temperature,T, in degrees Celsius, salinity, S, in parts per thousand, and

depth, z, in meters 1391.

c = a, + a2T + a3T 2 + a4T3 + as(S - 35) + a6 z+

a7 z2 + asT(S - 35) + aTz3 (4.1)

a, = 1448.96 a2 = 4.591 a3 = -5.304 x 10-2

a4 = 2.374 x 10-4 a5 =1.340 a6 =1.630 x 10-2

a7 =1.675 x 10-7 a8 = -1.025 x 102 a9 = -7.139 x 10-13

As is evident from the above equation, the speed of sound can vary significantly

throughout the course of a mission, especially over long distances in the open ocean.

In the experiments conducted on the Charles River described here, however, it may

be assumed that the speed of sound remained approximately constant over the course

of each mission, which was only a few hours long, and it may also be assumed that the

acoustic modems remained at approximately the same depth. Without conductivity,

temperature and actual depth (CTD) measurements, however, this equation could

not be used to determine the correct speed of sound.

Error in the speed of sound used to compute the inter-vehicle range measurements
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using the the one-way travel times of acoustic signals introduces systematic error

into the data. The equations below shows that the error introduced in the speed

of sound estimate is directly proportional to the error in the OWTT-derived range

measurement. The true speed of sound in water during the mission is denoted as

VSW, the error in the speed of sound is denoted as c, the true distance traveled by the

acoustic signal is r, and the computed distance traveled using the incorrect speed of

sound, V'Ws, is r'.

r' =vsw - OWTT

r + r = (vSW + c) - OWTT

r +Er =vsw -OWTT +Ev -OWTT

er Ev - OWTT

EV

VSW

If the error in the speed of sound is zero and the assumption of zero-mean,

normally-distributed measurement noise holds, the linear regression of the scatter

plot data of error in range versus inter-vehicular range should have a gradient of zero.

Figure 4-6 shows the scatter plot of the data using the usual estimate of 1500 m/s

for the speed of sound. The non-zero gradient of the linear regression indicates that

that estimate is incorrect, but in using 1500 m/s as a starting estimate of the speed

of sound, the method described in algorithm 1, not unlike the proportional control

algorithm, could be used to converge on the correct speed of sound during the mission.

Algorithm 1 Converging on speed of sound, Vest, in water during mission

1: Vprev < initial guess for speed of sound
2: data <- error in acoustically measured inter-vehicular range vs. true range

3: while g > TOL do t> some predetermined stopping point
4: Vest <- Vprev - g
5: g <- gradient of linear regression of data using new Vest

6: Vprev +- Vest
7: end while
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Figure 4-6: Linear regression of range error versus GPS-measured inter-vehicle range
using an speed of sound estimate of 1500 m is.

In another method, the gradient of the linear regression could also be plotted

against speed of sound, and the speed of sound corresponding with a zero gradient

could be estimated via interpolation. The latter method was used, and the resulting

plot is shown in Figure 4-7. Using this method, the speed of sound during the mission

was found to be approximately 1481 mn s.

4.4 NLS Optimization Results Using Mission Data

In this mission, vehicles broadcasted acoustic signals in turn. Therefore, at any given

time step, a client, node would receive a signal from one of the CNAs or neither CNA.

A schematic showing the pose graph of this problem is shown below in Figure 4-8.

Using the data from this nission, the maximum likelihood trajectory of one client

node vehicle was estimated using its range measurements to the other two vehicles

(the GPS-aided CNAs). For each time at which a new packet was received, the

GPS-measured position of the sender at send time (computed by subtracting the

one-way travel time of the packet from the packet reception time) was found via

linear interpolation of the sender's GPS and time data. NLS optimization was used

on the resulting maxinnumn likelihood function to obtain the most likely positions of

the vehicle (client node) over the course of the mission at times of message reception.
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Figure 4-8: Pose graph of the problem, in wich a client node vehicle is assisted lby
two GPS-aided CNAs. In this case, vehicles broadcast information in turn, so a~t

any given time, tihe chit iiode vehicle nmay gain information from either one CNA or
neither CNA. The CNAs have constant access to GPS measurements. The client iiode
vehicle has access to an initial GPS measurement of its position, its OWnl odometry
measurements, and intermittent range-only measurements to the GPS-aided CNAs.
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The initial state estimate used in the optimization problen was taken to be the GPS

measured positions of the sender vehicles and the dead-reckoned trajectory estimate

of the client node vehicle. The cases for the two sets of results are described below.

Case 1 Range-only measurements to and RTK-measurements of the CNAs were only

used if the packet was completely successfully received.

Case 2 Range-only measurements to and RTK-measurements of the CNAs were used

if the packet was completely or partially successfully received.

Figure 4-9 shows the results of the maximum likelihood trajectory estimation

problem for the two cases. The improvement in accuracy of the trajectory estimate

in the case in which RTK measurements of both partially received and totally received

packets are used can be seen, but is nore apparent in the error and cumulative error

plots shown in Figures 4-10 and 4-11. respectively. At the end of the mission, the

cumulative error in the trajectory estimate in the case in which measurements were

used only at times at which complete packets were received was 44% higher than in

the case in which measurements from both partially and totally received packets were

used.
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Figure 4-9: RTK-measured ground truth, the dead-reckoned trajectory estimate, and
the Levenberg-MIarquardt method-conputed maximum likelihood trajectory estimate
of the vehicle, Silvana, for two cases: using only completely received packets (left)
and using both completely and partially received packets (right).
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4.5 Summary

In this chapter, the results of the NLS optimization of the trajectory of a vehicle with

the assistance of two CNAs were presented for two cases: one in which range and

GPS-derived pose information was used if packets were either partially successful or

completely successful, and one in which that information was only used if a packet was

completely successfully received. The results showed that the NLS trajectory estimate

was superior over the course of the mission in the case in which both sets of packets

could be used. In being able to use information from packets, even when partially

received, the navigation estimate onboard a vehicle in a decentralized configuration

becomes more accurate. Furthermore, in this decentralized configuration, each vehicle

will maintain a higher resolution estimate of other vehicles' trajectories, which in turn

results in improved behavior in cooperative tasks, such as cooperative area coverage.

The results in this chapter justify the implementation of a method of improving the

robustness to partial packet loss, which is introduced and described in the following

chapter.

71



72



Chapter 5

Partial Packet Loss-Aware

Cooperative Localization

The work thus far in this thesis has shown that using an increased number of range

measurements to GPS-aided CNAs results in a more accurate NLS estimate of that

vehicle's trajectory. In this chapter, a method of improving robustness to partial

packet loss is introduced. In this method, packets are organized such that in each

frame of the packet, there is low resolution spatial information about the trajectory

of the transmitting vehicle, so that regardless of the number of frames received by

a target, some information about the transmitting vehicle's trajectory may be used

to bolster the receiving vehicle's onboard factor graph, and therefore improve the

accuracy of its trajectory estimate. This low resolution spatial information is gener-

ated using Smith and Cheeseman's method of spatial relationship compounding, and

on the receiver's end, the inverse process of decompounding is used to recover binary

factors to append to the receiving vehicle's version of the transmitting vehicle's factor

graph. The details of this method are described in this chapter.
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5.1 Acoustic Transmission of Navigation Informa-

tion

The WHOI Micromodem uses frequency modulation, a method of varying the instan-

taneous frequency of a carrier wave, to encode the information to be transmitted in

acoustic carrier waves using one of two schemes: the frequency-shift keying (FSK)

scheme or the phase-shift keying (PSK) scheme. When FSK is used, data is transmit-

ted by shifting the frequency of the carrier wave across a predefined set of frequencies.

When PSK is used, data is transmitted by changing the phase of the carrier wave.

As an example, given a set of binary digits, is would be transmitted at frequency, fi

whereas Os would be transmitted at frequency, f2 in the FSK scheme. In the PSK

scheme, Is could be transmitted with a zero-degree phase and Os could be transmitted

with a 180-degree phase.

While the FSK scheme is more effective when it comes to noise rejection, the PSK

scheme uses the available bandwidth more efficiently, that is, it allows for higher data

rates. In fact, of the seven data rates available with the WHOI Micromodem, six use

the PSK scheme; in each of these six data rates, each acoustic packet is sent as a

collection of n frames, where the total number of bytes transmitted is the product of

the frame size and the number of frames, n. In the mission described in Chapter 4, the

Rate 1 was used, in which there were three frames per acoustic packet transmitted.

In that mission, it was noted that of all the acoustic messages intended for the

client node vehicle, approximately 70% were completely successfully received, ap-

proximately 20% were only partially received and approximately 10% were never

received, even in part. If range-information to and GPS-measurements of the CNAs

could be used by the client node vehicle both when packets were completely success-

fully received or partially received, then 90% of the packets received could result in

measurements used to augment the NLS problem, which would, as shown chapters

3 and 4, result in a more accurate result in the trajectory estimate of the receiving

vehicle.

In current methods, odometry information about a transmitting vehicle is sent in
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a packet as a sequence of binary odometry factors, each of which is relative to its

precursor; although the first odometry factor in the packet may be relative to some

origin or contact point known over the network, the odometry factors thereafter are

relative to other poses in the packet. Therefore, if a packet is only partially received,

odometry measurements are received without information about the pose to which

they are relative. The information contained in the packet, as a result, cannot be

used to augment the receiving vehicle's factor graph, so it must discarded. This

problem can be circumvented by implementing the concept introduced by Walls et al.

in their presentation of the origin state method [28], previously discussed in chapter

2 of this thesis. By transmitting each odometry measurement so that it is relative to

the network's global origin, and not relative to other poses represented in the acoustic

packet, each odometry measurement can independently be used to add information

to the receiver's factor graph.

5.2 Designing Custom Packets for Robustness to Par-

tial Packet Loss

Odometry measurements may be described as spatial relationships since they describe

the motion undergone by a vehicle to get from one pose to another. Each binary

odometry measurement factor connecting two successive poses of a vehicle is relative

to the frame of the vehicle in its earlier pose of the two. Two successive odometry

measurements, or spatial relationships, may be combined using factor composition or

spatial compounding, a process which was first described in 1990 by Smith, Self and

Cheeseman [401. An intermediate pose, xi, between two poses, xi and Xk, may thus

be marginalized out to obtain the composed odometry measurement, Zik. Thusly, a

series of odometry measurements can be compounded to yield a single, exact odometry

measurement relative to an origin state. The work described in this thesis takes the

state-of-the-art method of robustly sharing odometry measurements relative to an

origin state over a network of vehicles, and applies the same concept to enabling
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robustness to partial packet loss.

As an example, the schematic in Figure 5-1 shows how four successive odometry

measurements would be packed into separate frames for the case in which an acoustic

packet is made up of three frames.

Instead of taking the four odometry measurements of the full "message" to be

broadcast and packing them in sequence into frames, each odometry measurement

is reworked so that it is relative to the origin state, then each reworked odometry

measurement is packed into separate frames of the packet, such that they can in-

dependently provide useful odometry information to the receiver of the data. For

example, if frames 1 and 3 are lost in transmission and only frame 2 of the packet

is received by another vehicle, z03 and zjl can be recovered by the receiving vehicle

through decompounding and that information can then be incorporated into that

vehicle's factor graph of the vehicle network.

A sequence of odometry measurements can be compounded as described in Algo-

rithm 2. The method of preparing acoustic packets on the sender side, so that each

frame consists of an odometry measurement relative to the origin state, is outlined

in Algorithm 3, and the method of recovering an odometry measurement on the re-

ceiver side using decompounding is described in Algorithm 4. Details of the process

of compounding and decompounding odometry factors are presented in the following

section.

Algorithm 2 Compound a time-ordered vector of odometry measurements

1: procedure COMPOUND(odometries)

2: 1 +- length of odometries
3: result +- odometries(1)
4: for i <- 2,l do
5: result <- result e odometries(i)
6: end for
7: return result
8: end procedure
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Figure 5-1: Schematic showing how compounded odonetry measurements would be

packed into three separate frames, enabling robustness to partial packet loss. Each

frame of this packet is independently useful to a receiver.
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Algorithm 3 Packing acoustic packets for partial packet loss-aware cooperative nav-
igation

Ensure: timestamps and odometries are of the same length
1: timestamps +- all own-ship timestamps, time-ordered
2: odometries <- all own-ship odometry measurements, time-ordered
3: frames +- frames of packet to be transmitted
4: 1 +- length of odometries
5: n <- number of frames per packet

6: for i +- 1, n do
7: compoundedTime +- COMPOUND(timestamps(1 : 1 - n + i))
8: compoundedOdometries +- COMPOUND(odometries(1 : 1 - n + i))
9: add compoundedTime to frames(i)

10: add compoundedOdometries to frames(i)
11: while frames(i) is not full do
12: add "filler" bits to frames(i)
13: end while
14: end for

Algorithm 4 Recovering odometry measurements from received compounded mea-

surements
Ensure: received frames are time-ordered

1: odometries -- all odometry measurements previously received from sender

2: state -- COMPOUND(odometries)
3: n +- number of received frames

4: for i <- 1, n do
5: newMeasurement -- compoundedOdometries from frames(i)
6: newOdometry <-- Estate e newMeasurement
7: append newOdometry to odometries
8: end for
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5.3 Spatial Relationship Composition & Decompo-

sition

Throughout this work, all motion is assumed to be planar. Thus, a vehicle's pose

is described by its coordinates in a two-dimensional Cartesian frame, x and y, and

its orientation, 0, the rotation about the z-axis. Vehicles lie on the surface of the

water, and the z-axis points downwards, aligning with gravity. The pose of a vehicle

is denoted as x; the pose may also be described as a spatial variable. The spatial

relationship between two poses xi and x3 is xi1 , and it represents the spatial change

in the vehicle's pose, reference from the body frame of the vehicle when it holds pose

xi. The odometry measurement of this spatial change is denoted as zij.

The compounding of two odometry measurements, zij and Zjk to obtain com-

pounded odometry measurement Zik is denoted as

Zik = Zij T Zjk (5.1)

The odometry measurement zij denotes the measurement of the change in the

vehicle's pose from xi to xi, measured in the body frame of the vehicle when it

holds pose, xi. Similarly, the odometry measurement Zjk denotes the measurement

of the change in the vehicle's pose from xj to Xk, measured in the body frame of the

vehicle when it holds pose, x3 . Because the two measurements being composed are

in two different frames, the composition does not trivially reduce to addition. The

measurement, Zjk must be converted to the frame of the vehicle when it holds pose,

zi, if addition is to be used to obtain the compounded measurement Zik, that is, the

change in the vehicle's pose from xi to Xk, measured in the body frame of the vehicle

when it holds pose, xi.

The odometry measurement, Zjk converted to the frame of the vehicle when it

holds pose, zi, is
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Xjk cos #i/ - Yjk sin <;Oij

Xjk sin <;ij - Yjk COS ;ij

lJk

Thus, the compounded odometry measurement is computed as

Xij + Xjk cos #ij - Yjk sin ;i1

Zik Yij + Xjk sin ij- Yjk COS qij (5.2)

#ij + #jk

Once a vehicle receives two compounded odometry measurements, the inverse

process, decomposition, may then be implemented to recover the odometry factor

composed to produce the low resolution spatial relationship prior to transmission.

The inverse process of composition is denoted as

zji = Ezij (5.3)

Given the odometry measurement when the vehicle transitions from pose xi to

pose x3 , zij, the odometry measurement that should result when the vehicle transi-

tions from xj to xi, zji, in the frame of the vehicle as it hold pose xj is computed

as

-zi cos #/i - yij sin O$j

zi = xi sin #ij - yij cos #ij (5.4)

-#ij

The process for recovering the odometry measurement, Zjk, from the odometry

measurement, zij, and the compounded odometry measurement, Zik, is therefore

Zjk = Zji G Zik (5.5)

Zjk = eZij E Zik (5.6)
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5.4 Summary

In this chapter, a method of partial packet loss-aware cooperative navigation was

proposed. By compounding all odometry measurements so that they are relative to a

network-wide origin state then packing them into individual frames of a packet, loss

of some number of frames of a packet no longer renders a packet unsuable, since the

frames become independently useful. Regardless of the number of frames of a packet

received, decompounding can be used on the receiver end to recover the odometry

measurement encoded in each received frame. Due to time constraints, it was not

possible to fully implement this method, and full implementation in both simulation

and field experiments remains an area for future research. Areas for future research

and a summary of the work presented in this thesis are stated in the following chapter.
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Chapter 6

Summary and Future Work

6.1 Thesis Summary

This thesis described the process of computing the maximum likelihood trajectory

estimate of a vehicle in a number of CNA-client node configurations. For the config-

uration in which two CNAs assist one client node without access to its own global

positioning estimate, it was shown that the number of range measurements between

the CNAs and the client node correlates with'the accuracy of the resulting NLS tra-

jectory estimate of the client node. This result was used to hypothesize that if a client

node could use measurements associated with both completely successfully and par-

tially successfully received packets, instead of only those associated with completely

successfully received packets, a more accurate trajectory estimate would result. Data

from field experiments conducted using three autonomous kayaks equipped with an

acoustic communications system was used to verify this hypothesis. Finally, a method

was proposed to allow for the use of partially received packets; by utilizing spatial

relationship compounding, poses can be expressed relative to a network-wide origin

state, and by packing compounded odometry measurements into individual frames,

odometry measurements can be recovered from the resulting independently useful

frames through the inverse process of spatial relationship decompounding.
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6.2 Proposed Future Work

In this thesis, all computation was carried out by solving the maximum-likelihood

estimation problem using the collection of proprioceptive measurements and range

measurements to GPS-aided CNAs in post-processing. For many missions, it is much

more useful to have an acceptable estimate of a vehicle's position during the course

of a mission, so in future work, it would be preferable to implement an online es-

timator, such as the incremental smoothing and mapping (iSAM) algorithm, which

would provide a continuous estimate of a vehicle's state in the field throughout a

mission. Implementation of this proposed method of partial packet loss-aware coop-

erative navigation, using the proposed method of odometry compounding to generate

independently useful frames, in simulation then eventually in field experiments re-

mains an area for future research.
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