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ABSTRACT

The hydrogen bromine laminar flow battery is a promising technology for grid-scale
energy storage. It dispenses with the expensive membrane used in traditional flow
batteries, instead using laminar flow to maintain the separation of fluid streams. It also
takes advantage of powerful, inexpensive chemical reactants. However, mixing between
the fluid streams within the battery reduces its single-pass performance and cyclability.
Conditions at the inlet junction where oxidant and electrolyte streams come together are
thought to influence mixing. This work investigates the relationship between fluid flow at
the inlet junction, mixing, and battery performance. Matching electrolyte- and oxidant-
stream flow rates or velocities is predicted to cause less mixing than employing
hydrodynamic focusing of the oxidant stream. When hydrodynamic focusing is used in
channels with heights on the order 500 pm or less, numerical simulations show
recirculating flows at the inlet junction and experimental results show a decrease in
limiting current. However, for matching inlet velocities or flow rates experimental results
show limiting current consistent with predictions that assume no mixing. This result
shows a path forward achieving higher power density in the hydrogen bromine laminar
flow battery by prioritizing symmetry of the inlet flow conditions as the channel height is
decreased.
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Chapter 1

Introduction

1.1 Energy storage

1.1.1 The need for grid-scale storage

The development of better, cheaper energy storage technology is poised to have far-

reaching impact. Today's electric vehicles, for example, are limited by existing storage

technology: extending their driving range depends on batteries becoming more energy dense.

On a larger scale, the electrical power grid is turning to storage as a means of improving the

grid's efficiency and incorporating renewable energy resources at a large scale. Further

development of inexpensive, scalable, and geographically flexible energy storage methods will

accelerate this change. 2

The power grid stands to benefit from incorporating storage in several ways. First,

storage allows better utilization of the most efficient generation equipment. In the United States,

most energy is produced and delivered to consumers with no intermediate storage available, so

the generation capacity that must be available to provide power during times of peak demand sits

idle during periods of low demand.3 With storage, energy produced by the most efficient

equipment available during times of low demand can offset the need for extra generation

capacity during times of peak demand, increasing the efficiency of the entire grid.

Additionally, storage makes it practical to incorporate intermittent renewable energy

resources as a large fraction of the grid's power generation base. For example, renewables such

as wind and solar come with no assurance that power will be reliable or even available when

users demand it. However, with sufficient storage, even a grid that is highly dependent on

intermittent resources can provide reliable power.4 Storage is an attractive solution to the

problem of intermittency if renewables are to provide more than a token fraction of the energy in

a power grid.
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1.1.2 The state of grid-scale energy storage

For the reasons discussed above, grid-scale energy storage is an area of increasing

interest. Several storage technologies are mature but limited in where they may be deployed,

while others promise greater flexibility, but remain in development.

Two successfully implemented energy storage techniques, pumped hydroelectric and

compressed air, are limited by their need for a particular geography. Pumped hydroelectric

facilities on the scale of a few thousand megawatts typically have efficiencies around 70-80%,

but this method requires sites that can provide two large water reservoirs at different elevations.5

Compressed air energy storage has also been implemented commercially. It relies on well-

studied technology (pumps and compressors) for power conversion, and stores compressed air in

geologic formations such as caverns and aquifers.6 Both methods are limited to specific kinds of

landscapes, though they are otherwise well suited to bulk energy storage.6 Though some

mechanical energy storage technologies are appropriate for long-term storage applications,

additional solutions will likely be needed to meet the demand for storage where these methods

are not practical. Electrochemical energy storage is an alternative that is not subject to these

geographical constraints.

1.1.3 Electrochemical energy storage

Electrochemical energy storage methods include batteries, which convert electrical to

chemical energy for storage via electrochemical reactions, and supercapacitors, which store

energy in the electric double layer that forms adjacent to a charged surface. In addition to

requiring no particular geography, electrochemical energy storage typically has a much faster

response time than other methods.2 In particular, redox batteries, which convert between stored

chemical energy and useful electrical energy via pairs of redox reactions, have been proposed for

grid-scale energy storage.

Batteries are ubiquitous in mobile power devices, but stationary batteries for grid-scale

power are a new market opportunity. Batteries engineered for different applications typically

differ in chemistry and architecture. Rechargeable lithium ion batteries, which typically power

laptops and cellular telephones, have a high energy density, and so are the best option when

battery weight is a concern.' Grid-scale storage, on the other hand, is often stationary and has a

less pressing need for high energy density.
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Battery performance is specified using several figures of merit. Cycle life refers to the

number of charge-discharge cycles that a battery can undergo without significant loss in

capacity, or energy that can be stored.' Several measures of efficiency are commonly specified as

well. Voltage efficiency is the ratio of voltage during discharge to voltage during charging at the

same current magnitude. Coulombic efficiency is the ratio of the charge extracted from the

battery during discharge to the charge passed into the cell during charging. The product of

voltage efficiency and coulombic efficiency, energy efficiency, is the fraction of the energy used

to charge the cell that can be extracted. 7

1.1.4 Redox flow batteries

In a battery, the electrochemical reactions that convert electrical to chemical energy occur

at the electrodes, which conduct electrons from or to the external circuit, and which are in

contact with the electrolyte, through which ions are transported across the cell. In a conventional

battery, electrode material is a product or reactant in those reactions, which means that chemical

energy is stored in the electrode. In contrast, in a redox flow battery, the products and reactants

remain dissolved in the electrolyte, which is pumped through the cell. The two electrolyte

streams, known as the anolyte and catholyte streams, each contain the products and reactants of

one of the pair of redox reactions. These streams are typically separated by an ion exchange

membrane. In this way, a flow battery is similar to a fuel cell, but, unlike fuel cell reactions, flow

battery reactions are easily reversible, so the batteries are rechargeable.

Because the redox products remain dissolved in the electrolyte, flow battery capacity is

determined by the size of the tanks that hold the electrolyte. Power, on the other hand, depends

on the size of the electrode. A basic advantage of the redox flow battery is that capacity and

power are uncoupled, allowing flexibility in system design.4 Other advantages of redox flow

batteries over other rechargeable batteries include a longer lifespan due to the lack of phase-

change, the absence of harmful effects if the battery is fully discharged, the flexibility to charge

and discharge the battery at different voltages, and the simplicity of maintenance and monitoring

of state of charge.7 Disadvantages include a more complicated system required to run the battery,

including pumps with moving parts.9

A broad range of flow battery chemistries has been proposed and demonstrated.4 Early

prototypes used all-vanadium chemistry. This chemistry avoids some problems associated with

17



crossover and mixing: any vanadium ion that crosses the membrane self-discharges harmlessly.

However, the all-vanadium battery's power is limited by the solubility of vanadium. 4 In the first

decade of the 2000s, a number of vanadium redox flow batteries ranging from 1 kW to

eventually 1 MW scale were built and demonstrated in Japan, South Africa, China, and the

United States. However, due to the batteries' expense, they have yet to emerge as a truly

competitive option.'0 Several companies are working to commercialize vanadium flow battery

technology, but affordability remains a challenge."

1.2 Hydrogen bromine laminar flow battery

1.2.1 Laminar flow batteries

In a flow battery, the ion-exchange membrane functions to allow the transport of select

ions between the anolyte and catholyte streams, while preventing the transport of other species

and bulk mixing between the streams. Keeping the anolyte and catholyte streams separate is

important, because their separation provides the driving force for the electrochemical reaction

from which electrical energy can be harvested. Membranes, while very good at separating, add

expense and ion transport losses to a cell. Eliminating the membrane may be beneficial if there is

a less costly way to prevent the anolyte and catholyte streams from mixing with each other.

Microfluidics researchers have pointed out that in a low-Reynolds number laminar flow,

convective mixing is supprcsscd. Thus inamicrofluidic fuel cell operating at a low Reynolds

number, the anolyte and catholyte streams flow in parallel with very little mixing or crossover,

even without a membrane.' 2 These fuel cells and flow batteries that rely upon low-Reynolds

number flow to maintain separation of anolyte and catholyte streams are called membraneless or

laminar flow fuel cells or flow batteries. Figure 1-1 illustrates the difference between membrane-

equipped and membraneless flow batteries. Sometimes, as shown in Figure 1-1, a third

electrolyte stream helps to maintain the separation of the anolyte and catholyte stream. This is

the case in the hydrogen bromine laminar flow battery that is studied in this work.
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(a)
anolyte -0

lon-exchange membrane
ca...hflyt.-

(b)
anolyte
electrolyte -
catholyte--

Figure 1-1: (a) Traditional flow battery versus (b) membraneless flow battery.

1.2.2 Hydrogen bromine chemistry

Hydrogen bromine chemistry for flow batteries has been explored for several decades. In

1980, a hydrogen bromine flow battery was demonstrated with low kinetic losses and an

efficiency of over 70%13, and NASA also investigated the hydrogen bromine battery in the

1980s. In recent years, a hydrogen bromine flow battery being developed at Lawrence Berkeley

National Laboratory has demonstrated a peak power density of 1.46 W/cm 2 1 and energy

efficiency of around 70% during long-term cycling experiments, in which over 600 cycles were

demonstrated. 16 Unfortunately, the performance of their cell is limited by the resistance of the

membrane, which increases with increasing electrolyte concentration due to dehydration.1 6 The

membrane limitation makes the hydrogen bromine flow battery a good candidate for a

membraneless design.' 7

The relatively low cost of the both hydrogen and bromine is a large factor in the

attractiveness of hydrogen-bromine systems. Compared to vanadium, bromine is inexpensive

(about a quarter the price of vanadium in 2014, on a per-mole basis' 8 ) and abundant: global

vanadium resources are somewhere over 63 million metric tons; in contrast, an estimated 1

billion metric tons of bromine are to be found in the Dead Sea alone.18 In addition to being

relatively inexpensive, this redox couple typically exhibits fast kinetics, meaning that below

limiting current, losses are primarily ohmic and determined by the cell architecture.' 9
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hydrogen (gas) cell

hydrobromic acid 0 potential

bromine in
hydrobromic acid 4 -

current -

Figure 1-2: Hydrogen bromine laminar flow battery in discharge mode. Electrochemical
reactions at the electrode surface drive electrical current to the external circuit, as hydrogen and
bromine react to form hydrobromic acid.

There are some drawbacks to working with hydrogen-bromine chemistry. The hydrogen

storage system does contribute significantly to cost.20 Hydrobromic acid and bromine are

corrosive, which limits material compatibility. Additionally, working with hydrogen,

hydrobromic acid, and bromine presents hazards that must be managed. Nevertheless, the quick

kinetics and cheap reactants make hydrogen bromine chemistry a competitive candidate for grid

scale storage.

Figure 1-2 illustrates the hydrogen bromine laminar flow battery with the electrochemical

reactions shown in discharge mode. In this membraneless design, the hydrobromic acid

electrolyte stream separates the hydrogen gas stream from the bromine stream, which is also

referred to as the oxidant stream. This battery is the focus of the flow simulations and

polarization curve experiments presented in this work.

1.2.3 Mixing in the hydrogen bromine laminar flow battery

As in any membraneless flow battery, preventing mixing between streams is extremely

important. Mixing reduces the battery's state of charge without releasing power to the external

circuit. In the hydrogen bromine flow battery, mixing reduces the concentration of bromine

available to react at the cathode during discharge. It also exposes platinum catalyst on the anode

to bromide, which is suspected to poison the electrode.' 4

In previous work with the hydrogen bromine laminar flow battery, the battery achieved

the limiting current predicted by a boundary-layer analysis at a channel height of 800 pm,' 9 but

not at a channel height of 600 pm.2 Further studies suggested that mixing at the junction where

the bromine inlet channel joins the electrolyte inlet channel plays a role. In two-dimensional
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numerical simulations of fluid flow and transport of dilute species, the smaller channel height

exhibited a recirculating flow pattern within the oxidant stream at the inlet that enhanced

diffusion between the electrolyte and oxidant stream. 2 These experiments and simulations

employed a 10:1 flow electrolyte-to-oxidant flow rate ratio, in order to hydrodynamically focus

the oxidant stream against the electrode. The advantages and disadvantages of this and other inlet

flow conditions are discussed further in Chapter 2.

1.3 Organization

This work is centered on the questions of how the flow at the inlet junction in the

hydrogen bromine laminar flow battery influences mixing between the bromine and hydrobromic

acid streams, and how such mixing affects battery performance. It is organized as follows:

Chapter 2 provides an overview of the fluid mechanics, transport, and electrochemical

reactions occurring in the laminar flow battery. Chapter 3 presents the results from numerical

simulations for the fluid flow at the laminar flow battery inlet, demonstrating that the asymmetric

inlet flow conditions associated with hydrodynamic focusing of the oxidant are especially

conducive to recirculating flow in the inlet in the 2-dimensional case. Chapter 4 discusses the

design and construction of the hydrogen bromine laminar flow battery prototype. Chapter 5

presents experimental results from that prototype showing the dependence of the battery's

limiting current on inlet flow conditions and channel height, which show signs of mixing in the

same conditions that demonstrate the strongest recirculating flow at the inlet in the two-

dimensional numerical simulations. Chapter 6 discusses conclusions and future work.
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Chapter 2

Fluid Flow and Electrochemistry in the

Laminar Flow Battery

2.1 Introduction

This work is primarily concerned with optimizing the single-pass performance of the

hydrogen bromine flow battery. However, the ultimate goal is to evaluate its appropriateness as a

stationary battery, and these experiments should be considered in the context of their ultimate

applicability to battery cycling.

Mixing can be a particularly important problem for membraneless flow batteries. In a

flow battery, active material (in this case bromine) can be lost from its own stream to another (in

this case the electrolyte) due to crossover. A small amount of crossover is expected due to

diffusion, especially with a membraneless cell. However, crossover is made much worse by

transverse flow across the cell. This can happen in a membraneless cell if the fluid flow is not

carefully managed.

Limiting mixing of fluid streams in membraneless flow batteries is necessary for

achieving optimal performance. State of charge describes a battery's location on the spectrum

between fully charged and fully discharged states. In a flow battery, the state of charge is related

to the concentration of reactants circulating through the battery. As reactants are consumed, the

state of charge drops; as they are replenished, the state of charge is restored. Mixing reduces the

concentration of reactants, and thus reduces the battery's state of charge without actually

producing current.

The electrochemical performance of the hydrogen bromine laminar flow battery depends

on its fluid mechanics in two primary ways. First, losses associated with transport reduce the

voltage the cell can provide at finite currents. As the current through the battery increases, the

cell reaches a limiting current, due to transport limitations. The transport of species in the cell is

through the moving fluid, and so depends on the fluid flow. Additionally, fluid flow that is

favorable to mixing between the electrolyte and oxidant streams will reduce the oxidant
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concentration adjacent to the electrode, thereby reducing the cell's open circuit potential in

accordance with the Nernst equation described in Section 2.2.1.

This chapter discusses the ways in which fluid flow and electrochemistry interact in the

hydrogen bromine flow battery. It provides background for predicting how the limiting current in

this battery will depend on channel height and for understanding flow conditions that encourage

mixing.

2.2 Electrochemistry and transport in the battery

2.2.1 Nernst: concentration affects open circuit potential

The electrochemical potential at which the anolyte and catholyte stream are in

electrochemical equilibrium is also known as the open circuit potential; it is the potential at

which no current flows into or out of the cell.

This potential depends upon the concentration of the redox products and reactants in the

anolyte and catholyte streams according to the Nernst equation:

RT n products (a'),products
zF reactants ( reactants

where Aq5[,, is the equilibrium cell potential (open circuit potential), A#,,1 is the standard cell

potential, R is the universal gas constant, T is the temperature, z is the number of electrons

transferred per reaction, F is Faraday's constant, a's are the activities of the products and

reactants, and v 's are the stoichiometric coefficients of the products and reactants. Assuming

dilute solutions, activities are approximately given by concentrations. The net reaction is

H2 + Br, -+ 2 HBr (2)

with a standard cell potential23 of 1.087 V and with two electrons transferred per reaction, as

shown in Figure 1-2.

It may be seen from (1) that as the concentration of bromine (a reactant) decreases, the

cell's open circuit potential also decreases. In cases where the fluid flow induces mixing

upstream of the channel, as it would if there were mixing at the inlet junction, the concentration

of bromine at the electrode is reduced, as illustrated in Figure 2-1. This leads to a reduction in the
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(a) no mixing of electrolyte and catholyte (b) complete mixing of electrolyte and catholyte

anolyte ano vte

electrolyte 10 diluted
catholyte

Figure 2-1: Extremes of mixing. (a) the fully unmixed case, where the bulk catholyte remains at
its inlet concentration over the length of the cell. (b) the fully mixed case, where complete
mixing has occurred upstream of the main channel, e.g. at the inlet, and the bulk catholyte has
been fully diluted by the electrolyte stream.

open circuit potential. This is observed in some of the polarization curves presented in Chapter 5,

where it is associated with mixing.

It can also be seen from the Nernst equation that as the concentration of bromine

approaches zero, the cell potential approaches -oo. This is the mechanism by which the

formation of a bromine depletion layer at electrode causes a limiting current, the value of which

depends on transport in the cell.

2.2.2 Limiting current behavior

Inside the cell, the transport of reactants to the electrodes must balance the current

through the external circuit, according to the stoichiometry of the electrochemical reactions

occurring at the electrodes. When the concentration of a reactant drops to zero at the electrode,

the current becomes limited to the rate at which that reactant can be transported to the electrode.

Braff et al.1 9 investigated the mass transfer limitation in the hydrogen bromine laminar

flow battery using a boundary layer analysis in the limiting case in which the concentration of

bromine is zero everywhere along the electrode, illustrated in Figure 2-2. The analysis assumes a

parabolic Poiseuille flow profile, which is expected for channels whose inter-electrode height is

much smaller than the channel width. The combination of this flow profile and this concentration

boundary condition produces a Leveque concentration boundary layer.
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(a)

.. y y} bulk catheWyt

0; y

Figure 2-2: Boundary layer formation at limiting current. (a) shows the location of (b),
illustrating a boundary layer of depleted oxidant forming along the cathode during discharge at

limiting current.

One result of this analysis is an expression for the length-averaged limiting current

density due to the depletion of bromine at the cathode during battery discharging:' 9

9Pe 1/3

7 _3zD aFc4 4#P (3)
h vI /3)

Uh V R L
The Peclet number is Pe = - Re, the length-height aspect ratio is #= , the bulk

D D h

concentration of bromine far from the wall is co , the diffusivity of bromine is DBr2, and the

channel height is h. For the same Reynolds number Re, the limiting current should scale as h

This expression provides the predicted limiting current at as a function of channel height. This

result is compared with experimental results in Chapter 5.

In this expression, limiting current depends linearly on the bulk concentration. If that

changes, for example due to mixing between the oxidant and electrolyte channel, the limiting

current density will decrease proportionally to the concentration.

2.2.3 Bulk electrolyte resistance

Channel height also affects the rate at which cell potential changes with increasing

current density. In the limiting case of small currents, (I Jim), the boundary layer is small

and provides very little resistance to transport. Because the hydrogen bromine battery typically

has very fast kinetics,2 4 the primary losses in the battery at low concentrations are expected to
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come from bulk electrolyte resistance and any additional hardware resistance. The bulk

electrolyte resistance is due to the conductivity of the electrolyte and the cell's geometry:

Rb h (4)

awL

Here a is the conductivity of the electrolyte, which is a function of electrolyte concentration.

Bulk electrolyte resistance depends linearly on channel height, so it is advantageous to reduce

the channel height to improve power output and round-trip efficiency.

2.2.4 Net effect on battery performance

At zero current, the total cell potential is equal to the open circuit potential. As the

magnitude of the current is increased, during discharge, the potential drops. Some of the drop in

cell potential is due to the bulk electrolyte resistance, which depends linearly on the current.

There is an additional drop in potential due to the formation of the boundary layer, whose

dependence on current is more complicated.' 9

2.2.5 A note on mixing within vs. across streams

Mixing within the anolyte or catholyte streams, which has been achieved through such

means as patterned electrodes,2 5 is a desirable feature in planar electrode flow cells. This is

distinct from the mixing between the oxidant and electrolyte streams, which this work is trying to

understand and avoid. In the hydrogen bromine laminar flow battery's architecture, the role of

the electrolyte stream is to keep the bromine from reaching the hydrogen electrode. Mixing

between the electrolyte and oxidant streams allows bromine to reach the hydrogen electrode,

contributing to degradation of cell materials, loss of single-pass performance due to dilution of

the catholyte, and loss of cycling performance due to the loss of active material.

2.2.6 Bounds on the effects of mixing

Leaving a discussion of how mixing might occur at the inlet until Section 2.3, it can

already be seen that a reduction in the concentration of bromine will affect the performance of

the hydrogen bromine laminar flow battery. This occurs in two ways: a decrease in bromine

concentration reduces both the open circuit potential, via the Nernst equation, and the limiting

current, via the boundary layer limiting current.

27



A lower bound on the limiting current as affected by mixing, can be given by assuming

the case in which the electrolyte and oxidant stream mix completely. Evaluating the limiting

current assuming the bulk bromine concentration is the concentration of the bromine stream

upstream of the inlet gives an upper bound, while evaluating the limiting current assuming the

bromine and electrolyte streams have fully mixed gives a lower bound. These correspond to the

unmixed and fully mixed cases in Figure 2-1. Partial mixing may result in a limiting current

somewhere between these bounds. The unmixed predicted limiting current and the fully mixed

predicted limiting current are plotted alongside the experimental limiting current data in

Chapter 5.

2.3 Flow

In the hydrogen bromine laminar flow battery, the interface between the electrolyte and

the oxidant streams is supposed to be protected from convective mixing by low-Reynolds

number flow. However, in this hydrogen bromine laminar flow battery, the Reynolds number is

typically around 10. As noted with other large microfluidic devices, 26 for flow in devices with

moderate Reynolds numbers, the Stokes flow assumption of negligible inertia terms in the

Navier-Stokes equation is not valid.

2.3.1 Unidirectional flow in the main channel

The geometry n0 irion Vv lin y11t f i hey U1oIg 0111n111 Lamiar fow UatLtey aie

labeled in Figure 2-3. In the main channel, inertia may be neglected, as the channel is straight

and of constant cross-sectional area, and the velocity field is well described by unidirectional

planar Poiseuille flow. However, this assumption is not appropriate at the inlet junction, where

the oxidant flow is forced to turn a corner.
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Figure 2-3: Geometry and flow in the hydrogen bromine laminar flow battery. The main channel
is in contact with the electrodes and coincides with the active area. The electrolyte inlet channel
is an extension of the main channel, with the same height h and width. The oxidant inlet channel
joins the main channel at a 450 angle, and has height h,,.

2.3.2 Flow at the inlet junction

Upstream of the main channel, the oxidant stream inlet channel joins the electrolyte inlet

channel at a 45-degree angle. In this study, the oxidant inlet channel is always the same height

(800 pm), while the electrolyte inlet channel height is always the same as the main channel

height, which varies. The Reynolds number throughout this study (Re = 10) is neither very large

nor very small, and the geometry at the junction is not simple, so the Navier-Stokes equation

cannot be simplified to give an analytical solution for the flow profile.

2.3.3 Hydrodynamic focusing of the oxidant

All previous work with the planar-electrode hydrogen bromine flow battery used

hydrodynamic focusing to focus the bromine stream against the adjacent electrode, in order to

increase fuel utilization.' 7 Hydrodynamic focusing is the process of introducing fluid streams

into a channel at different flow rates, so that as the flow develops, the faster flow slows down

and takes up a larger fraction of the width of the channel, and the slower flow speeds up and is

"focused" into a small fraction of the width of the channel.

Hydrodynamic focusing has been shown to improve fuel utilization in laminar flow fuel

cells.2 Fuel utilization is important for fuel cells, because any oxidant that isn't used in a single

pass is wasted. However, in a battery, each stream is recirculated, so fuel utilization is less of a

concern. The importance of mixing between streams, on the other hand, is magnified, because of

the associated reduction in state of charge.

It is not immediately obvious to what extent hydrodynamic focusing should affect mixing

at the inlet junction. Hydrodynamic focusing at intermediate Reynolds numbers has been shown
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to produce a curved interface due to inertial effects, especially when the higher inertia sheath

flow is introduced through a side channel and so must bend. Previous simulations of the flow in

the inlet of the hydrogen bromine laminar flow battery using hydrodynamic focusing showed the

formation of a recirculating flow in the bromine inlet stream, but did not compare that case to

cases without focusing.

For batteries, the usefulness of hydrodynamic focusing of the oxidant stream is marginal.

A more important goal in setting oxidant and inlet flow rates for a given Reynolds number is to

minimize mixing.

2.3.4 Designing inlet and flow rates for low mixing

Experimental studies and numerical modeling of mixing in T-junction micromixers show

that for symmetric geometries and equal inlet flow rates, the onset of mixing downstream of the

junction occurs at a Reynolds number of over 100.29-31 Figure 2-4 illustrates a common T-

junction geometry for mixing studies. The Reynolds number in the hydrogen bromine laminar

flow battery is typically of order 10. The T-mixer studies suggest that if the battery were

redesigned as a T-junction, with equal electrolyte and oxidant flow rates, it would be possible to

maintain an undisturbed interface along the length of the channel at the Reynolds number of

interest. In the T-junction studies, the geometric symmetry means that equal inlet flow rates

imply equal inlet velocities. In the hydrogen bromine laminar flow battery, the inlet channels are

typically not the same height, so either the flow rates or the velocities can be matched, but not

both.

Qin{

Qint
Figure 2-4: Schematic of two streams coming together in a symmetric T-junction with equal inlet

flow rates, exhibiting no mixing.
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Considering the hydrogen bromine laminar flow battery, a T-junction is not the most

practical geometry to build. The present architecture (Figure 2-3) allows the electrolyte inlet

channel to be an extension of the main channel, cut from the same gaskets. This simplifies cell

fabrication, but causes asymmetry in the angle at which the electrolyte and oxidant flows are

introduced. This geometric asymmetry is exacerbated when the main channel height is decreased

while the oxidant inlet channel, which is cut into the electrode, stays the same.

A hypothesis explored in this work is that, even with these geometric asymmetries,

matching either the flow rate or the velocity of the two inlet streams will prevent mixing.

Furthermore, it is expected that a reduction in mixing will lead to higher limiting currents as

channel heights decrease, as predicted by the boundary layer analysis. Matching velocities is a

good candidate for reducing mixing, because the inertia of each inlet stream is directly dependent

on the velocity. However, the location of the interface between the oxidant and the electrolyte in

the main channel downstream of the junction depends more directly upon the inlet flow rates.

These three conditions, hydrodynamic focusing, matched inlet flow rates, and matched inlet

velocities, are examined in simulation of the flow in Chapter 3, and in experiments with the

battery prototype in Chapter 5.
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Chapter 3

Modeling of Inlet Flow

3.1 Introduction

Even in the simplified case of two-dimensional flow, the geometry at the junction of the

oxidant and the electrolyte inlet channels is complex enough to require a numerical solution to

the Navier-Stokes equations governing fluid flow. Here, numerical simulation using Comsol

Multiphysics software (Comsol, Burlington, MA) was used to explore the effect of the relative

magnitude of inlet flow rates on the flow at the junction for several channel heights. The results

show that, in the two-dimensional case, hydrodynamic focusing conditions contribute to the

formation of a recirculating flow in the inlet channel, especially when the difference in height

between the main channel and inlet branch channel is large.

3.2 Flow at the inlet junction

3.2.1 Background

Previously, the idea that that the hydrogen bromine laminar flow battery's failure to

achieve the predicted limiting current at a height of 600 iim was due to inertial mixing at the inlet

was supported with modeling showing the presence of a recirculating vortex at the inlet. 2 In that

2-dimensional model, at low channel heights, the hydrodynamic focusing of the bromine stream

occurs before the end of the junction with the bromine inlet, which remains 800 pim high in all

cases. This causes the electrolyte to flow into the mouth of the bromine inlet, contributing to a

recirculating flow.
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3.2.2 Numerical simulation

A two-dimensional numerical simulation of the fluid flow at the inlet is presented here,

carried out for a range of values of channel height, h, and flow rate ratio, rf. The geometry of the

simulated region is shown in Figure 3-1, with values for the geometric parameters and fluid

properties given in Table 3-1. The flow, which is laminar with a Reynolds number of 10 in the

main channel, is modeled using the Navier-Stokes equation

Df _(5)
-= -V P+pV 2

Dt

where i; is the velocity vector, P is the pressure, and p and p are the fluid density and viscosity,

respectively.

L-e IC

QeI

Le

QOX
*FA

Figure 3-1: Schematic of geometry for Comsol modeling of the fluid flow at the inlet and its
dependence on channel height and flow rate ratio.
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Table 3-1: Parameters for fluid modeling at flow battery inlet junction.

Symbol Value Parameter

Re 10 Reynolds number

p 103 kg/M 3  Fluid density

10- Fluid viscosity

rf 0.1 Flow rate ratio

hox 0.8 mm Height of oxidant
inlet channel

h 0.746 mm Height of main
channel

Le 10 mm Length of entrance
channels

Lc 13 mm Length of main
channel

U p Velocity in main

ph echannel

The boundary conditions for the fluid flow are no slip at the channel walls and zero

pressure at the downstream channel exit. The inlet flow rates were also set according to the

prescribed conditions.

The first case of interest was the case in which r, = = 0.1, where Q, and Qet are the
QeI

inlet flow rates of oxidant and electrolyte, respectively. This case is the same as the

hydrodynamic focusing case examined by Braff et al.2 The second case is that of rf =1. For

both, the inlet flow rates can be specified in terms of r,.

- pR (6)

Qi1+r, p

Q - -'Re
S1+r p
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Holding Reynolds number constant, for each flow rate ratio, the inlet flow rates do not change as

the channel height varies.

The third case of interest is the case of matched velocities, or r ,= Or = I. From a mass
Ulf

flow balance into and out of the junction simplifies, the net flow rate out of the junction is

Qel = Qei + Q. (7)

or

Uh =Ue h+UX h, (8)

The average velocities at the inlet then are

h R (9)
+ h+h r ph

hrpU - , ReOX h+h r ph

The boundary conditions for flow rate are

h yRe (10)
hi h+hor,, p

hr, ph e
)X' Re

h+h rp h

When r A Re wA arVhldcstn, the + low rates Go cLange as thle height n is

varied.

For each of these three inlet flow conditions, simulations are carried out for channel

heights of 746 jim, 566 pim, 386 jim, and 206 pm. This is the same set of channel heights in the

experiments described in Chapter 5. The two largest sizes are also close to the 800-pm and 600-

jim channels investigated by Braff et al.

3.2.3 Results of inlet flow simulations

For each of the twelve cases studied, the results of the simulations near the inlet are

shown in Figure 3-2. The magnitude of the velocity is indicated by the fill color, and streamlines

in the electrolyte stream are plotted in white, while streamlines in the oxidant stream are plotted

in yellow.
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Figure 3-2: Simulated results for velocity magnitude and streamlines at the junction of oxidant
and electrolyte channels. The x- and y-axis have units of millimeters. The fill color corresponds
to the magnitude of the velocity, and has units of meters per second.
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These results show recirculating flow in channel with height smaller than and including

566 pm, when hydrodynamic focusing is employed with a 10:1 flow rate ratio. This is consistent

with what was observed by Braff et al.2 However, in the cases of 1:1 flow rate ratio and 1:1

velocity ratio, no recirculation is seen at any of the channel heights studied. Furthermore, in the

case of matched velocities, the electrolyte stream is barely even deflected into the oxidant inlet

side of the junction.

3.2.4 Connection to battery performance

These results show that in a simplified two-dimensional model of the flow battery inlet,

hydrodynamic focusing conditions tend to contribute to recirculating flow patterns where

matched flow rates or matched velocities do not. Braff et al.'s previous work has suggested a link

between this recirculation and mixing between the streams.2 2

In these simulations, matching inlet flow rates or velocities eliminates the recirculating

flow associated with extreme mixing. It does not necessarily follow that applying these

conditions will eliminate the mixing problem in the actual battery. The actual battery exists in

three dimensional space, and may experience out-of-plane flow that enhances mixing. However,

these results do identify the matched flow rate and matched velocity conditions as worth further

investigation. An experimental study including these flow conditions is carried out in Chapter 5.
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Chapter 4

Hydrogen Bromine Laminar Flow Battery

Prototype

4.1 Introduction

The first published laminar flow fuel cell was a simple Y-channel design, molded in

poly(dimethylsiloxane) (PDMS), using fabrication techniques common among microfluidic

devices. Later planar microchannels in stacked assemblies were introduced. 3 Stacked

assemblies allowed the easy addition of gas diffusion electrodes, meaning reactants did not need

to be in liquid solutions. 34 As gas diffusion electrodes were introduced, the logistics of handling

several streams of gases and liquids led some to abandon the symmetric Y-channel design. Later,

porous electrodes were introduced for liquid reactants in order to reduce transport limitations.3 5

Herringbone grooves on planar electrode surfaces were also shown to increase transport and

improve power. Another cell used nanoporous electrodes to further enhance surface area to

overcome kinetic limitations.36

Hydrogen-based flow batteries have drawn inspiration from hydrogen fuel cells.

Hydrogen is flowed through a porous gas diffusion electrode, which interfaces with the

electrolyte on one side and the current collector on the other. In a variation on this design, the

anolyte or catholyte stream is a gas instead of a liquid, and flows through a porous electrode,

often with a third electrolyte stream separating the two streams. 34

Early laminar flow-based electrochemical cells were fuel cells, and were accordingly

designed for high power density and fuel utilization. Flow batteries also benefit from high power

density, but cyclability replaces fuel utilization as a figure of merit. The first iteration of the

hydrogen bromine laminar flow battery included a porous gas diffusion electrode on the

hydrogen side, a planar graphite electrode on the bromine side, and a stream of hydrobromic acid

electrolyte separating the bromine from the gas diffusion electrode.' 7

Design of laminar flow batteries for cycling is gaining attention. Recently, a

membraneless vanadium redox flow battery with porous electrodes demonstrated a single round-
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trip cycle.3 7 High cyclability was promoted by a geometry that was symmetric in the transverse

and axial directions. Other recent experiments with a dual-pass membraneless fuel cell design

highlight how, as membraneless flow cells approach cycling, diffusive mixing reduces

performance. 38

4.2 Cell components and their fabrication

4.2.1 Overview

The electrochemical cell of the flow battery is outlined by channel gaskets inserted

between electrodes and current collectors. This assembly is clamped by two porting plates,

which also provide ports through which the battery fluids can be introduced and removed. A

photograph of the assembled cell is shown in Figure 4-1, and an exploded view is shown in

Figure 4-2.

Figure 4-1: Photograph of battery prototype, including (a) hydrogen inlet, (b) electrolyte inlet
(with unused port behind it), (c) hydrogen outlet, (d) oxidant inlet, (e) oxidant and electrolyte
outlet, (f) connection tab for bromine electrode current collector, (g) connection tab for hydrogen
electrode current collector.
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Figure 4-2: Exploded view of hydrogen bromine laminar flow battery stack assembly.
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Figure 4-3: Interior view of the hydrogen bromine laminar flow battery stack assembly, sliced
through the center of the stack along the centerline of the channel. O-rings, not pictured, create a

seal between the posts on the current collectors and the recesses in the porting plates.

4.2.2 Materials

Bromine and hydrobromic a4 r are corrosive, and all parts of the cell that may contact

these chemicals must be compatible with them. For this reason, other than the bolts, the cell is

built out of carbon, glass, titanium, and fluoropolymer components.

4.2.3 Current collectors

The battery's current collectors are both machined from carbon-based materials. On the

bromine side of the cell, the current collector is also the positive electrode and is made of

graphite (McMaster-Carr, Robbinsville, NJ). Two channels for the injection and removal of the

bromine stream are cut at 45-degree angles from the flow axis, and can be observed in Figure

4-3. This angled inlet and outlet connect inside the current collector to holes drilled straight into

the current collector from the connectors to the porting plates.

The hydrogen-side current collector is made of a carbon composite. Less porous than

graphite, it is better at containing the hydrogen gas. The electrolyte is injected and removed

through holes machined through the current collector that line up with the beginning of the

electrolyte channel in the electrolyte gaskets and the electrolyte inlet port in the porting plate.

Hydrogen gas is introduced through the current collector into a channel that runs behind the

recess in which the gas diffusion electrode sits. This hydrogen inlet flow field is labeled in
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Figure 4-3. The hydrogen the flows outward through the gas diffusion electrode to reach two

channels on either side of and parallel to the original channel, and is then removed through the

current collector to the hydrogen outlet port. The connections to the porting plates are similar to

those on the bromine current collector. Both current collectors are machined using a CNC mill

(Roland DGA, Irvine, CA).

A titanium sheet backs the current collector, to reduce the electrical resistance from the

active area to the tabs at the edges of the current collectors, where the cell is clipped to the

potentiostat cables. This sheet is the same size as the current collector, with holes for bolts and

porting.

On each side, between the titanium sheet and the current collector, a Viton rubber sheet

(McMaster-Carr, Robbinsville, NJ) evens out irregularities to provide uniform compression in

the cell, which is important for sealing and repeatable performance.

4.2.4 Hydrogen electrode

The hydrogen electrode is a carbon cloth gas diffusion electrode with 0.5 g/cm 2 platinum

loading (FuelCellsEtc, College Station, TX). This material has a hydrophobic coating in addition

to platinum loading, so it is suitable for creating a three-phase boundary between the hydrogen

gas, the aqueous electrolyte, and the platinum catalyst on the electrolyte. It is cut to size using a

cutting machine (Silhouette Cameo, Lehi, UT). The electrode fits into a recess machined in the

hydrogen-side current collector. A fresh electrode is used with each cell build.

4.2.5 Channel gaskets

The channels through which the electrolyte and oxidant flow are made of

polytetrafluoroethylene- (PTFE-) coated glass fiber cloth (Saint-Gobain, Malvern, PA). Each

gasket is 180 [im thick. Like the hydrogen electrode, they are cut using the computer-controlled

cutting machine. In the experiments described here, between one and four channel gaskets are

stacked to achieve the desired channel height.

An additional thin sheet (13 pm) of perfluoroalkoxy alkane (PFA) (Saint-Gobain,

Malvern, PA) between the channel gasket and the electrode and current collector blocks the

electrolyte from contacting the electrode or current collector except in the intended active area

and where necessary for porting. The active area is a 1.9 mm by 13 mm rectangle that falls

between the oxidant inlet and the outlet.
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Figure 4-4 is a photograph of the cell halfway disassembled, split through the stack of

channel gaskets. On the bromine side, the channel gaskets are stacked on top of the current

collector, titanium backing sheet, Viton gasket (not visible), and porting plate. On the hydrogen

side, the PFA layer is visible where the channel appears slightly lighter outside the active area.

Through the open channel, the hydrogen gas diffusion electrode is visible.

4.2.6 Porting plates

The porting plates are made of polyvinylidene fluoride (PVDF) (McMaster-Carr,

Robbinsville, NJ), and, like the current collectors, are machined on the CNC mill. They seal to

the connectors on the current collectors with a Viton 0-ring (McMaster-Carr., Robbinsville, NJ),

and, on the outside, port to the external tubing. PTFE tubing is used for chemical compatibility.

Figure 4-4: Photo of the interior of the battery prototype, split between two channel gaskets. On
the left, the bromine porting plate (a) lies beneath the Viton gasket (not visible here), titanium
sheet, and graphite current collector and bromine electrode (b). The electrode area is visible
through the main channel (c), and the angled bromine inlet and outlet are visible at the top and
bottom of the channel opening. On the right, the hydrogen and electrolyte porting plate (d) is
stacked beneath the Viton gasket, titanium sheet (not visible here), carbon composite current
collector (e), and channel gaskets through which the gas diffusion electrode is visible (f). The
electrolyte is introduced into the main channel at (g). For scale, the dimensions of the channel
gasket sheet are 4 cm by 6 cm.
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4.2.7 Assembly

The components described above are stacked in the manner illustrated in Figure 4-2. The

assembly is held together with eight 10-32 bolts, which are tightened with a torque wrench to 9

in-lb.
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Chapter 5

Experimental Investigation of Effects of

Mixing on Laminar Flow Battery

Performance

5.1 Introduction

Experiments further support the idea developed in Chapter 3, that hydrodynamic focusing

is particularly likely to contribute to mixing. This chapter presents the results from polarization

curve experiments with the cell operating in single-pass discharge mode. The experiments using

matched velocities match the predicted boundary layer limiting current density well for channel

heights as low as 206 pm, which was not possible using hydrodynamic focusing.

5.2 Single-pass test setup and procedures

5.2.1 Fluid handling

For single-pass experiments, the two liquid streams were controlled using a syringe pump

(Harvard Apparatus, Holliston, MA), and the hydrogen flow rate was maintained at 25 standard

cubic centimeters per minute by a mass flow controller (Cole Parmer, Vernon Hills, IL),

controlled by a Labview interface (National Instruments, Austin, TX).

The oxidant was 1 M bromine in 1 M hydrobromic acid, and the electrolyte was 1 M

hydrobromic acid. The bromine solution was pumped from a 10-mL glass syringe (Hamilton,

Reno, NV), and the hydrobromic acid solution was pumped from a 60-mL polypropylene syringe

(Becton, Dickinson and Company, Franklin Lakes, NJ). They were connected to the cell using

PTFE tubing (Cole Parmer, Vernon Hills, IL). Both lines of tubing were first filled with

hydrobromic acid before the bromine was connected, in order to prevent bromine from reaching

and degrading the anode during the first filling process.

The total flow rate of oxidant and electrolyte solutions was 1.15 mL/minute, which

corresponds to a Reynolds number of 10 downstream of the junction. Before each experiment,
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the cell was flushed with hydrobromic acid at 1.15 mL/minute for 30 seconds. After the flow

rates were adjusted to the appropriate experimental conditions, the pressure measured above the

cell was allowed to reach steady state before the polarization curve measurements were begun.

Figure 5-1 schematically illustrates the flows into and out of the cell. The oxidant and

electrolyte were pumped into the cell separately, but were removed via a single outlet. Separating

the oxidant and electrolyte downstream of the main channel will be necessary for operation as a

battery, but was not attempted here, where the focus was on the behavior at the inlet.

(b)
(d)

(e)

Figure 5-1: Schematic of experimental setup. In the single-pass setup, the flow of oxidant and
electrolyte are controlled by a syringe pump (a), and the flow of hydrogen, by a mass flow
controller (b). The cell stack assembly is (c). The hydrogen is bubbled out into a cylinder of
water (d) in order to impose a small back pressure, and the oxidant and electrolyte exit to a waste
container (e).
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5.2.2 Polarization curve experimental procedure

Polarization curves were measured by applying steps of decreasing current while

measuring the resulting cell voltage. In these experiments, each current density step was given a

duration of 30 seconds. The voltage typically reached steady state within the first 10 seconds, so

the voltage at each current step was taken to be the average of the last 20 seconds of voltage

measurements. The experiment was stopped when the voltage dropped below 0 V for any period

of time. Results are reported in terms of average current density, which is the current normalized

to the active area. The electrochemical measurements were made using a Reference 3000

potentiostat (Gamry Instruments, Warminster, PA). The polarization curve procedure was

programmed in Labview (National Instruments, Austin, TX).

Polarization curves with sudden drops in the middle of a current step were discarded--

this behavior can indicate the intrusion of gas bubbles in the channel, obstructing flow. This can

be a challenge especially at the smaller channel heights, because it can cause the experiment stop

running before reaching the diffusion-limited current.

5.2.3 Determination of limiting current

The expected polarization curve behavior is that activation losses are low, so that at low

currents, ohmic losses dominate, until the potential drops rapidly as it approaches some limiting

current. As long as the ohmic losses are not so large that they cause the cell to drop to 0 V before

reaching limiting current, and assuming that there is no overlimiting current mechanism that

presents itself first, the cell potential should drop to 0 V near the limiting current.

From the polarization curve, the limiting current density was approximated as the sum of

the last current density at which a full step's worth of measurements may be taken before

dropping below 0 V and half the current density step (Figure 5-2). This should be within half of a

current density step of the actual 0-V intercept, which was taken as a proxy for limiting current.
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5.3 Experimental results

5.3.1 Polarization curve results

The primary trend observed in the polatization curve results is that, moving from

hydrodynamic focusing, to matched inlet flow rate, to matched inlet velocity, the limiting current

increases up to a point, and the results become more consistent with each other.

With a Reynolds number of 10 and a 10:1 electrolyte-oxidant flow rate ratio, the cell

obeyed limiting current at a channel height of 746 pm (Figure 5-3), but not at a channel height of

566 pm (Figure 5-4). In the previous experiments by Braff et al., a similar difference was found

with channel heights of 800 ptm and 600 in.

Figure 5-3 shows the polarization curve measurements for the 746-pm channel height

build. The sudden drop of voltage associated with approaching limiting current is evident. The

polarization curves for the three trials at matched inlet velocities and those at matched flow rates

reached the highest current density before dropping below 0 V, and the curves at matched

velocities appear the most repeatable.

The resistance of the cell at lower current densities is higher than predicted in Chapter 2.

This resistance is observed at all channel heights. While this extra resistance affects the cell's

power output significantly, it should not affect the limiting current.

Figure 5-4 shows results for the same set of inlet flow conditions in the 566-gm channel-

height build. Here, the matched flow rate and matched velocity cases are so consistent with each

other that the data for the matched flow rates are nearly obscured by the data for the matched

velocities. Again the 10:1 flow rate ratio case is the least repeatable and reaches the lowest

current density before falling below a potential of 0 V.

Figure 5-5 and Figure 5-6 show the polarization curve results for the 386-pm and 206-pm

channel height cases, respectively. These results also show higher limiting currents achieved for

matched flow rates and velocities. These two figures also show that a drop in open circuit

potential is observed in the same polarization curves that significantly fall short of the highest

limiting current density observed for that build. As discussed in Chapter 2, a drop in open circuit

potential is expected if mixing decreases the bulk concentration of the oxidant.
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Polarization curves: 746 prn channel height
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Figure 5-3: Polarization curves for battery with 746-jim channel height. Three trials are shown at
each of three inlet flow rate conditions. In all cases, Reynolds number is 10 in the main channel
downstream of the junction.
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Polarization curves: 566 pm channel height
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Figure 5-4: Polarization curves for battery with 566-ptm channel height. Three trials are shown at
each of three inlet flow rate conditions. In all cases, Reynolds number is 10 in the main channel
downstream of the junction.
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Polarization curves: 386 pm channel height
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Figure 5-5: Polarization curves for battery with 386-pm channel height. Three trials are shown at
each of three inlet flow rate conditions. In all cases, Reynolds number is 10 in the main channel
downstream of the junction.
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Polarization curves: 206 prm channel height
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Figure 5-6: Polarization curves for battery with 206-pm channel height. Three trials are shown at
each of three inlet flow rate conditions. In all cases, Reynolds number is 10 in the main channel
downstream of the junction.
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5.3.2 Limiting current behavior

These experiments show that, although the limiting current fails to increase with

decreasing channel heights as predicted when flow focusing is employed, the limiting current

behavior is consistent with predictions when velocities or flow rates are matched at the two

inlets.

The previous work discussed above, which employed flow focusing, had shown that,

counter to predictions, the limiting current decreased with decreasing channel height. This

same trend is shown in Figure 5-7, which is at the same flow rate conditions as the previous

work, with a 10:1 electrolyte-to-oxidant flow rate ratio. The solid black line shows the analytical

boundary-layer limiting current for the "bulk" concentrations consistent with no mixing; the

dashed black line, for concentrations consistent with complete mixing at the given flow rates.

The behavior of the measured results in the smaller channels is consistent with some mixing.

Given the uncertainty associated with the small number of experiments and the methodology, it

is impossible to specify the degree of mixing. However, this observation, in combination with

the evidence from the open circuit potential for the same two cases discussed above, supports the

conclusion that mixing is occurring at the two smallest channel heights when the electrolyte-

oxidant flow rate ratio is 10:1.

When flow rates are matched, however, a different trend begins to emerge, which is more

consistent with the predictions from the boundary layer analysis. These results are shown in

Figure 5-8. Here, the "fully mixed" limiting current has increased from the previous case,

because, when flow rates are matched, there is less electrolyte to dilute the oxidant in this worst-

case mixing scenario. Because of this, and because of the uncertainty of the measurements, these

results are somewhat inconclusive in the case of the 206-iim channel. Matching flow rates may

prevent mixing. Further experiments with more trials and smaller current steps in the polarization

curve procedure could provide stronger evidence.

The results for the case of matched average velocities in oxidant and electrolyte inlets

upstream of the junction are shown in Figure 5-9. More than in any other case, here at small

channel heights, the measurements agree well with the predicted limiting current.
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Limiting current density depends on channel height
10:1 flow rate ratio
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Figure 5-7: Measured limiting current density plotted versus channel height with an electrolyte-
to-oxidant flow rate ratio of 10:1. Each experiment has a Reynolds number of 10 in the main
channel. N=3.
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Limiting current density depends on channel height
1:1 flow rate ratio
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Figure 5-8: Measured limiting current density plotted versus channel height with an electrolyte-
to-oxidant flow rate ratio of 1:1. Each experiment has a Reynolds number of 10 in the main
channel. N=3.

58



Limiting current density depends on channel height
1:1 velocity ratio
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Figure 5-9: Measured limiting current density plotted versus channel height with an electrolyte-
to-oxidant velocity ratio of 1:1. Each experiment has a Reynolds number of 10 in the main
channel. N=3.
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Chapter 6

Conclusions and Future Work

6.1 Role of inertial mixing

The coinciding evidence of recirculating flows in two dimensional flow simulations and

drastic drops in observed limiting current in polarization curve experiments when hydrodynamic

focusing is employed at small channel heights supports the hypothesis that inertial flow at the

inlet is associated with poor battery performance.

These experiments also found it possible, for the first time with the hydrogen bromine

laminar flow battery, to experimentally reach the limiting current density predicted by boundary

layer analysis at channel heights less than or equal to 600 [1m, at least when matching velocity

ratios. This suggests a path forward, in which the next iteration of the hydrogen bromine laminar

flow battery architecture considers how the oxidant and electrolyte streams may be brought

together as symmetrically as possible.

6.2 Power density

In the original work with the hydrogen bromine laminar flow battery, the failure to reach

higher limiting currents in smaller channels was the limiting factor in increasing the power

density of the cell. Here, that limitation is lifted. Unfortunately, there is a new limitation: the

extra resistance mentioned in Section 5.3.1. These losses are associated with the bromine

reaction at the electrode, and were not observed previously. With these extra losses, a maximum

power density of 0.385 W/cm 2 was observed in one of the 206-pm, matched-velocity

experiments. If these losses are eliminated, the demonstrated improvements in limiting current

density promise to allow the planar-electrode hydrogen bromine laminar flow battery to reach its

highest power density yet.

6.3 Next steps

A pressing next step is to understand and eliminate the extra resistance described above.

Electrochemical impedance spectroscopy experiments have traced the resistance to the cathode,
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but more work is needed to understand what is happening. Once this is understood, the results on

mixing in the cell presented here will inform the design of new experiments without

hydrodynamic focusing, to investigate the maximum power density attainable with the planar-

electrode hydrogen bromine laminar flow battery.
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