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Abstract

Semi-autonomous and autonomous vehicles have been of interest for reasons such as
safety, efficiency, and convenience. The thesis proposes a homotopy-based hierarchi-
cal motion planning and control framework for vehicle navigation. A homotopy is,
roughly speaking, a set of trajectories with the same high-level navigation decision.
The motivation of the proposed hierarchical framework based on homotopy class
is twofold: compatibility with human’s decision and computational benefits. The
approach explicitly identifies and enumerates feasible homotopy classes correspond-
ing to different navigation decisions allowing for interaction with a human opera-
tor/supervisor. Also, the approach has computational benefits, specifically enabling
a divide-and-conquer strategy. In a collision-free trajectory generation problem, the
presence of obstacles serves to creating discontinuities in the set of feasible trajec-
tories. However, the complexity can be reduced significantly if we independently
consider multiple distinct continuous sets of feasible trajectories, where no disconti-
nuity is created.

The thesis first presents a method for enumeration and representation of the navi-
gation decisions by cell sequences to divide a collision-free vehicle navigation problem
using cell decomposition. Then, it proposes a sampling-based method to evaluate the
desirability of each navigation decisions in terms of control input safety margin. In
order to make a vehicle navigate safely within a chosen navigation decision, a model
predictive control framework is utilized with a corresponding navigation decision con-
straint. The constraint is non-convex, but a sequence of convex cells is prescribed
in advance. An efficient formulation of the problem into mixed integer programming
is proposed and validated in the thesis. Finally, a user study in a driving simulator
shows that users accept semi-autonomous/autonomous vehicles based on the proposed
framework on highways as much as regular vehicles.

Thesis Supervisor: Karl lagnemma
Title: Principal Research Scientist -
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Chapter 1

Introduction

1.1 Background and Motivation

1.1.1 State of the Art of Vehicle Automation

For decades, significant efforts have been made to save human lives on roads. Accord-
ing to the World Health Organization (WHQO), about 1.24 million people die each year
worldwide as a result of road traffic crashes [1]. Classical safety features had been
focused on passive safety that helps to protect occupants during crashes. Airbags,
seatbelts, and improvement of crashworthiness fall into this category. Also, indirect
and secondary tools for reducing accidents have been provided, such as alcohol de-
tection ignition locks [2]| or fatigue detection systems [3]. As a more active way of
achieving safety, vehicle automation has gained a lot of attention as a direct way to
reduce accidents. Besides the safety issues, the vehicle automation promised other
attractive benefits such as labor cost reduction, reduced fuel consumption, increase
of road capacity, etc.

In the early 1990s in the United States and Europe, the research tendency was
heading toward Automated Highway Systems (AHS) [4] to achieve regulated traffic
flow and, as a result, to achieve safer highways with higher capacities [5|. The main
concern was to improve the whole traffic characteristics such as traffic flow efficiency

and safety. The goal was to adjust spaces between vehicles and simultaneously achieve

21



close spaces to increase road capacity and safe distances. Such initiatives had been
implemented under different names such as Intelligent Vehicle-Highway Systems |6,
7], Intelligent Cruise Control System [8|, Autonomous Intelligent Cruise Control [9)],
Cooperative Adaptive Cruise Control {10].

In the late 1990s, the focus had been moved to Intelligent Vehicle Initiative (IVI)
to emphasize individual vehicle-level partial autonomy and interaction with drivers
[5]. The main focus of the initiative was to accelerate the use of integrated in-vehicle
systems that help drivers operate more safely and effectively [11]. Many car manu-
facturers started developing various types of driver assistance systems. They ranged
from informing or warning systems to deeper control engagement systems. In terms
of informing or warning systems, assistance with visual, auditory, or haptic feedback
[12] have been shown to improve safety in many cases such as blind spot detection
and warning [13], driver drowsiness detection, night vision assistance, lane departure
warning, traffic sign recognition, and so on. In forward collisions, for example, it was
claimed that 60%-90% of collisions could be avoided depending on the warning time

of the system [14].

Advanced Driver Assistance Systems (ADAS) include not only informing or warn-
ing systems but also systems taking over driving tasks as necessary to operate vehicles
in a safer way. Adaptive Cruise Control (ACC) is the earliest ADAS that has been
introduced by the automotive industry [8]. Its purpose was to control time headway
[9] or spacing [8] between vehicles with controllers (e.g., linear feedback controller
[10], model predictive control [15]). In this approach, it would be an important is-
sue to set up a desired value of time headway or space. Another form of longitudinal
control intervention system, the Collision Mitigation Brake System (CMBS), engaged
braking operation to compensate for driver’s operation delays and insufficient brake
forces to avoid collisions with vehicles ahead in traffic [16, 17]. Lateral control in-
tervention systems (e.g., lane keeping system) and other automated controls in some
restrictive situations (e.g., automatic parking [18], overtaking assistance [19]) also had

been developed.

A higher level of autonomy toward full self-driving automation has recently gained
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a lot of attentions due to recent advances in technology. The DARPA Grand and
Urban Challenge contests initiated the advances in practical autonomous driving
technologies from 2004 to 2007 [20, 21]. Many people expected to have driverless

cars on the roads.

Level Description Examples

"1 | Function Specific Automation | Adaptive cruise control, electronic stability control, dynamic brake support in
: emergencies, lane keeping

Figure 1-1: Levels of vehicle automation defined by National Highway Traffic Safety
Administration (NHTSA)

However, it is a dominant opinion in the field of vehicle automation research that
fully automated and driverless vehicles require much more effort to be implemented
and placed on roads [22]. Even for driver assistance systems, there are still many issues
that need to be addressed |3, 23|. The National Highway Traffic Safety Administration
(NHTSA) has defined levels of vehicle autonomy ranging from vehicles that do not
have any of control systems automated (level 0) to fully automated vehicles (level 4)
as shown in Figure 1-1 [24]. According to this classification, we are now in the stage of
level 1 or level 2 in terms of implementation for practical uses. From 2011, for example,
NHTSA issued a standard that made Electronic Stability Control (ESC), a level-1
technology, mandatory on all new light vehicles. Also as of 2013, NHTSA engaged
extensive research on automatic braking technologies, which is a level-1 technology
[24]. The level-2 autonomy systems with technology that controls both of lateral and
longitudinal positioning in certain driving conditions are expected to be in production

shortly [22].
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1.1.2 Need for Human in the Loop

Some of main challenges of vehicle automation technology, including driver assistance
systems, are sensor technologies, visual intelligence, and context awareness [3]. Even
though significant progress has been made in understanding of traffic scenes and ex-
traction of information on surrounding environments, these technologies come with
many challenges [23]. More robust situation-recognition systems and reliable sen-
sory systems are required before such automated systems with the high-level control

engagement are in practical use [5].

A human driver is an excellent resource for sensing, situation recognition, and
context awareness as long as the driver is focusing on the driving task. The focus
on driving can be recovered from many distraction sources through various types of
detection or warning systems developed. There are, of course, limitations on humans’
sensory ability, such as blind spot and bad visibility conditions (e.g. low-visibility
weather, sﬁrong headlights, or direct sunlight). However, a human has still superior
ability in situation awareness, judging and reasoning in most normal driving situations
[25, 26]. In addition to his ability to process and parse rich sensory information, a
human’s ability to build predictive mental models for the environment have been

parts of reasons to keep the human in the control loop [27].

It has been recognized in the field that “combining the strengths of machines and
humans, and mitigating their shortcomings is the goal of intelligent-vehicle research”
and “how best to manage the on-board human resources is an intriguing question” [3].
There has been extensive research on enhancement of driver’s performance by keeping
humans in the control loop. These shared control frameworks have tried to utilize
different strengths of humans and machines by allocating tasks best suited to each one
respectively. In early 1950’s, Fitts [25] presented a list of tasks humans and machines
are better at respectively. For example, a human is good at inductive reasoning,
exercising judgement, improvising and using flexible procedures. Machines are better
at quick response to control signals, precise and smooth control of force, doing many

complex operations at once, and deductive reasoning [25, 28]. Also, it has shown
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that overall system performance can be enhanced by combining a robot’s control of
low-level functions with a human operator’s maintenance of high-level control [29].

Human have also been considered as an essential element in automation systems
for detecting and reacting to cases of failure of the automation, or recovering from
unexpected operating conditions [27, 28]. The need for a responsible driver or human’s
attention is argued for monitoring and intervening operations of autonomous driving
technology in the automotive community [22, 30].

There are other compelling reasons to keep humans in the loop of the driving
system: not only superior sensory and context awareness ability, but also high au-
tomation costs, significant socioeconomic pressures, legal and liability issues, and
pleasure of operation [31]. Even if the human does not play central roles in the actual
control of the vehicle, it is often the case that the human is still contained in the

system.

1.1.3 Considerations for Shared Control

Issues related to incorporating humans in the automation systems have been investi-
gated for decades. The main considerations for the shared control between humans
and machines can be summarized as three questions in the literature: 1) communi-
cation of intentions between the two controllers (i.e., human and machine), 2) coor-
dination of control authorities from the human and machine, 3) user acceptance.

In a shared control framework, it is a challenge to estimate or predict what a user
wants and let the user know what the system intends to do. The two cooperating
controllers should communicate with each other about sensed information and control
plans [27]. Some works assume that the user is following one of a set of predefined
behaviors, and trains a classifier for the prediction [32]. However, in many real-world
scenarios, the system must adaptively consider possible intent of the user in dynam-
ically changing environments. It is also an important issue to design an appropriate
control interface for the shared control system in a way to allow the user to express
his/her intention and the system to provide feedback to the user about the system’s

intention [27, 33].
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How to combine control authorities from human and machine is also an important
question. It is a challenging aspect to determine when and which control commands
should be respected, or to assign appropriate weights to each commands. In this
procedure, responsibility division issues always follow and should be carefully negoti-
ated [27]. Different authority allocations depending on situation states (e.g. routine,
caution, and critical) have been considered in [28]. It is also pointed out that that dif-
ferent degrees of automation are appropriate depending on the systems and problems
[34].

Finally, user acceptance is also an important issue for widespread access and adop-
tion of new technologies [33]. For example, users would like to feel more comfortable
with an automation system that respects their preferences or high-level decisions, and

works in a similar way to the users’ cognitive driving procedure.

1.1.4 Need for Homotopy-based Approach

(a) Path-based approaches generate (b) The proposed homotopy-based ap-
the single best trajectory in a complex proach first identifies and represents
environment possible fields of safe travels corre-

sponding to distinct navigation deci-
sions before considering specific trajec-
tories.

Figure 1-2: Path-based approaches vs. the proposed homotopy-based approach

A homotopy is, roughly speaking, a set of trajectories with the same obstacle
avoidance manner. The role of homotopy classes in robotic navigation has been stud-
ied in [35]. The utility of homotopy class analysis is clear in certain applications
such as exploration and mapping, or multi-agent task planning [36]. Also, in semi-
autonomous robotic applications, in which a human and control system share control

of the robotic system (e.g. see [37]), it can be important to identify and respect a
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human operator’s intent, expressed through his/her navigation decision, correspond-
ing to a choice to navigate within a particular homotopy class. The distinct features
of the proposed homotopy-based approach are illustrated in Figure 1-2 as opposed to
traditional path-based approaches. This thesis argues that the need for a homotopy-
based approach is twofold: compatibility with human’s decision and computational

benefits.

Compatibility with human’s decision of the homotopy-based navigation enables
seamless shared control. Traditional approaches for autonomous vehicle navigation
are based on a single path planning in a complex environment. However, it is un-
comfortable or even dangerous in the human—iﬁ—the—loop systems since this single
solution does not always correspond to a human’s intention or preference. Humans
usually first make decisions about a desired goal or high-level avoidance strategies
before determining a specific path of travel. Besides it is arguably overly-restrictive
to confine the vehicle to a specific path in a semi-autonomous system sharing the
control authority with human operators because human operators tend to operate

vehicles within fields of safe travel [38] rather than rigidly follow a specific path [31].

A homotopy-based approach can explicitly identify and enumerate feasible homo-
topy classes consistent with different navigation decisions. This hierarchical approach
allows for choosing a maneuver coinciding with the driver’s intent. For example, the
vehicle can be guided toward a longer but wider passage which the driver prefers
rather than a shorter but narrower passage. Even within a single homotopy, the pro-
posed approach can allow control freedom of the human driver while ensuring safety.
In other words, the system is able to respect the driver’s control input unless it leads
to collisions with obstacles. Also, different arbitration strategies can be designed in
two levels of a navigation framework: high-level navigation decision and low-level

control for safe navigation, respectively.

Also, the proposed homotopy-based approach has computational benefits, specif-
ically by enabling a divide-and-conquer strategy. In a collision-free trajectory gen-
eration problem, the presence of obstacles serves to create holes in the collision-free

configuration space, leading to discontinuities in the set of feasible trajectories. This
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discontinuity of the search space increases the computational burden. However, the
complexity can be reduced significantly if we independently consider multiple distinct
continuous sets of feasible trajectories, where no discontinuity is created. This thesis
presents a way to exploit this advantage of continuous search space for Computafional

efficiency.

1.2 Previous Works in Shared Control

One of the first instances of shared control focused on controling manipulators with
imprecise operator inputs, in 1963 [32, 39]. Since then, shared control between hu-
man and machine has been a traditional topic in many robotic applications, such as
manipulation, robotic surgery, powered wheel chairs, assistive robotic arms, upper
or lower limb prostheses, and exoskeletons [33, 40]. In the context of vehicle driv-
ing, interventions from the control system were implemented and tested based on a
time-based threat metric; for example, steering intervention based on time to line
crossing [41], and braking intervention based on time to collision [42]. Also, different
types of feedback have been investigated in terms of user acceptance. For instance,
users preferred some form of auditory feedback with a bar-length type display for
time headway information [43]. On the other hand, visual warnings were found to be
more effective than auditory warnings [44].

A traditional approach to shared control is a haptic interface to allow mutual
communication of intention and arbitration of the two controllers, human and ma-
chine. Various advantages of the haptic feedback have been shown in extensive prior
researches such as reduced learning times, improved task performance quality, in-
creased dexterity, and increased feelings of realism and presence [29]. Also in auto-
motive applications, haptic shared control has been one of the dominant approaches
[45]. In particular, motorized steering wheel [27] and gas pedal [46] have been utilized
to provide feedbacks. The haptic shared control frameworks have been demonstrated
successfully in terms of reduction of visual demands and reaction times 27| in the

automotive application.

28



In haptic shared control, ultimate control authority is retained by the human oper-
ator by allowing override of the machine’s intention. More explicit arbitration strate-
gies in the shared control area are mainly classified into three types in the literature:
linear blending with appropriate weighing factors [32, 47}, threshold-based binary
switching, and intervention considering operator behavior models [48, 49]. However,
these arbitration strategies cannot explicitly consider discrete decisions arising from
the existence of obstacles. In the case of existence of two opposing objectives, for
instance, lane keeping and lane changing, which cannot be met at the same time, a
mismatch between the goal of the support system and the goal of the driver have not

only increased control effort, but also degraded safety [45].

A hierarchical approach employing the notion of homotopies to explicitly consider
these discrete decisions was proposed by Anderson et al. [50]. In this approach,
discrete homotopic regions consistent with a human’s decision were first identified in
advance. The “goodness” of each homotopic region was then evaluated by a heuris-
tics, such as average length, width, and curvature. One of the identified homotopic
regions was chosen by the control system based on the evaluated goodness. In nav-
igation within the chosen homotopy, the human’s control commands and system’s
commands were combined linearly with varying weights based on aggressiveness of
the best (optimal) trajectory obtained as a solution to a model predictive control

problem.

One of the main features of this approach was that the homotopy was chosen by
the system. Hence, a human’s intention was not included in this high-level decision
making step. Also, the level of assistance was determined based on a heuristic func-
tion to estimate threats posed to the vehicle under the assumption that assistance
was required in high-threat situations. Finally, the problem with the homotopy re-
gion constraints fitted into linear model predictive control (MPC) framework since it
restricted the problem to one-dimensional lateral steering control problem. In gen-
eral, more than a one-dimensional optimal control frameworks incorporating obstacle
avoidance constraints are computationally demanding, so that it requires either the

online solution of a mixed integer program, or the offline computation of a large
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lookup table [48].
The literatures related each component for the proposed shared control framework

are presented in each chapter of the thesis.

1.3 Purpose of this Thesis

This thesis proposes and develops a planning and control framework for autonomous
and semi-autonomous vehicles based on the notion of “fields of safe travel” or “homo-
topy class”. In other words, planning and control are performed in terms of groups of
distinct high-level navigation decisions rather than specific trajectories.

In a traditional path-based approach, a motion planning algorithm tries to find
a feasible trajectory and the vehicle is controlled to follow this reference trajectory.
On the other hand, the proposed homotopy-based approach first identifies and enu-
merates the feasible homotopy classes before performing path planning, assesses their
desirability, chooses one of the homotopies considering the human’s decisions, and

finally regulates the vehicle to remain within the chosen homotopy.

— Automation System - s 1 Human

Perception

— Homotopy Identification
d cnz |- : '['L

- Enumeration of possible homotopies
v
— Homotopy Evaluation

Ch.3

- Evaluation of desirability of the homotopies
v
— Homotopy Selection

- Selection of a single homotopy among
multiple possible homotopies

v
— Homotopy Navigation

Ch.4

- Safe control within the selected homotopy

Figure 1-3: The proposed framework of homotopy-based driving assistance system
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Figure 1-3 shows the proposed approach in this thesis for vehicle operation with
human in the loop. The main motivation of the thesis is extensive generalization of
the prior work for homotopy-based shared control framework [31] in more systematic
way. An important feature of the proposed approach is to consider a human’s driving
process from the perception stage to the control commands, and allow for interaction
with human at each different level of the driving process. The proposed procedure is

as follows.

1. The approach is to identify and enumerate these navigation decisions from the

beginning (homotopy identification).

2. After enumeration of these navigation decisions, the system explicitly analyzes
the desirability of corresponding navigation decisions, or spatial properties of

corresponding fields of safe travel (homotopy evaluation).

3. Then, a homotopy is selected by the automation system or the human operator

based on his or her own decision (homotopy selection).

4. Finally, safe navigation within the selected homotopy is conducted by the au-

tomation system or the human operator (homotopy navigation).

In the perception stage, the sensing data can be processed to recognize the state
of the host vehicle and other agents, and acquire road information. The environment
sensing is not the scope of this thesis, and it is assumed that the information of
the environment is given to the system based on sensor data such as radar, LIDAR,
vision systems, GPS, or vehicle-to-vehicle/infrastructure communication. Also the
future behavior of the surrounding vehicles are assumed to be predicted [51] and fed
into the decision and control system proposed in this thesis. However, the future
behaviors of target vehicles on the road is still not measured from the sensors. This
is a challenging task and a broad range of approaches from a simple regression to
sophisticated driver model is possible for this problem. The thesis also assumes

that target vehicles’ motion for the close near future can be predicted based on the
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physical properties or state history of the vehicles of the close past. An example of
the estimation is presented in Appendix G.

This thesis first presents the proposed algorithms for each components from homo-
topy identification to homotopy navigation. In homotopy identification, it proposes a
systematic method to decompose a global optimal trajectory generation problem into
multiple independent optimization problems with simpler constraints. Each local op-
timization problem corresponds to optimal trajectory generation within a homotopy
class. It also proposes practical heuristics for the decomposition method to provide
desirable local problems to acquire global optimal solutions.

In homotopy evaluation, a method for sampling-based estimation of control input
margins to safely navigate through a homotopy. For this purpose, an algorithm is
developed to efficiently explore a collision-free space with input samples representing
groups of nearby input sets resulting in similar maneuvers. It provides trajectories
for obstacle avoidance with maximum control input margins.

In homotopy navigation, a formulation of the decomposed optimal trajectory gen-
eration problem into mixed-integer programming is proposed. Computational effi-
ciency of the formulation is analyzed and demonstrated through simulations. Also,
applications of the proposed formulation in the context of model predictive control is
demonstrated in the thesis.

Then, the thesis applies the proposed framework to highway navigation and presents
user study results. It proposes different arbitration strategies between the system’s
control and human operator’s control authorities based on the homotopy-based frame-
work, and measures the performance of the system in terms of safety and operator

response.

1.4 Outline of the Thesis

Chapter 2 describes the proposed approach to identify and represent homotopy classes
corresponding to distinct navigation decisions. Also, the chapter explains the main

motivation of the proposed homotopy-based approach, a divide-and-conquer strat-
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egy. Chapter 3 then describes a method for evaluating desirability of each homotopy
class for the vehicle to safely navigate through. The desirability is assessed through
estimated control margin for safe navigation. Chapter 4 presents efficient computa-
tion of the optimal trajectory within each homotopy class. An efficient formulation
of mixed-integer programming is presented by exploiting information about a speci-
fied homotopy class. The efficiency is demonstrated via comparison with a previous
approach. Chapter 5 presents user study results of the proposed framework in the

application to highway navigation. Chapter 6 closes the thesis with conclusions.
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Chapter 2

Homotopy Identification -
Divide-and-Conquer Strategy

2.1 What is a Homotopy Class?

In a field with obstacles, there are an infinite number of possible paths for a vehicle
to follow for reaching a goal without collisions. However, these paths can be classified
into several classes according to their avoidance manners of the obstacles. Each class
contains an infinite number of paths that are continuously deformable with each other
without encroaching any obstacle. This set of paths is called a homotopy class. In
an environment with a single obstacle, for example, all paths avoiding the obstacle
to the left side are contained within a homotopy class, and all the paths avoiding the
obstacle to the right side are contained within another homotopy class.

The mathematical definition of the homotopy class is the following. Two trajecto-
ries q4(7) — Ciree and qg(7) — Ciree where 0 < 7 < 1 with the same start configura-
tion (q4(0) = qg(0) = q,) and the same goal configuration (q4(1) = qg(1) = q;) are
homotopic, if and only if there exists a continuous map Q(7,7) : [0,1] X [0, 1] = Cree
such that Q(0,7) = q4(7) and Q(1,7) = qz(7) [36]. Figure 2-1 presents examples of
paths that are homotopic and paths that are not homotopic in an environment with
two obstacles.

A homotopy class is a topological notion related to path deformation with respect
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(a) Paths that are in a homotopy class (b) Two paths that are not homotopic

Figure 2-1: Examples of homotopic and non-homotopic paths

to a set of obstacles [35]. The topology relation is hard to be identified before specific
trajectories are provided. This chapter reviews how homotopy classes are identified
and represented in the literature, and presents a method for low-burden explicit rep-
resentation of approximations of homotopy classes. The approach presented in this

chapter is also presented in [52].

2.2 Related Works

There are several ways to represent homotopy classes in robot motion planning. The
representations are not straightforward due to inherent difficulty of representing a
topological notion, a group of an infinite number of continuously deformable paths.
Figure 2-2 illustrates different classes of approaches for representation of homotopy
classes in an example scenario. In this particular example, there are four possible
homotopy classes unless allowing loops around obstacles.

First of all, there were efforts to capture the exact topological relation of given
trajectories according to the definition of the homotopy class. The homotopy class is,
in most cases, identified by a sequence of predefined edges/axes traversed by the given
trajectories differentiating whether the edges are crossed to the left or right [53, 55].
For example, Jenkins [53] introduced a reference frame composed of rays emanating
from obstacles, and represented homotopy classes by canonical sequences of the rays

traversed in two-dimensional spaces. The paths illustrated in the Figure 2-2a are in
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by paths 53] gram [54] plex analysis [36]

Figure 2-2: Approaches for representing a homotopy class in a field with obstacles

the same homotopy class, and can be represented as a sequence (f;,c;) according
to Jenkins’ representation. This representation was later extended for more general
cases by Hernandez |56]. In this approach, exact classification of homotopy class can
be performed, given a certain trajectory.

Another approach is to utilize a topological property of the generalized Voronoi
diagram (GVD) [57], and represent each homotopy class as a unique route in the
GVD. The GVD consists of a set of points from which distances to the two closest
obstacles are the same. The nodes of the GVD’s skeleton-like graph represent inter-
sections that have different options to travel. The GVD constructs the topological
map for homotopy enumeration in two-dimensional cases because there is one-to-
one correspondence between homotopy classes in the space and paths on the graph
[54, 58]. Although the representation is only restricted to the set of paths on the
Voronoi diagram, i.e. the most distant paths from the obstacles, they can be thought

of as representatives of each of the homotopy classes.

The aforementioned two approaches capture the topological definition of the ho-
motopy class exactly. However, it is also convenient to approximate the homo-
topy class in many practical robotic applications. One example of the approaches
with the approximations is to utilize a notion of a homology class |36, 59|. The

mathematical definition of the homology class is the following. Two trajectories
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A4(7) = Ciree and qg(7) — Cree where 0 < 7 < 1 with the same start configuration
(a4(0) = qp(0) = q,) and goal configuration (q4(1) = qz(1) = q5) are homologous,
if and only if the closed contour consisting of q4(7) in the forward direction and
qp(7) in the reverse direction, q(y) with 0 < v < 1 defined by q4(2v) if 0 <~ <
and qpz(2 — 2v) otherwise, neither contains nor intersects any of the obstacles. It has
been shown that the homology is a coarser representation of the homotopy [36]. In
other words, if two trajectories are homotopic, they are homologous’. The converse,

however, does not always hold.

Figure 2-2c¢ shows an example of two trajectories that are homologous. This
approach considers the two-dimensional space as the complex plane with the real axis
and the imaginary axis. If we place one point (i.e., a complex number in the complex
plane) in the interiors of each of obstacles, it is possible to count the number of the
points/obstacles that are enclosed by a closed contour from complex analysis. This
way, the homologous relation can be identified given two trajectories. Besides, each
trajectory can be assigned a signature using a defined formula to identify homologous

relations with any other trajectories.

Another method to approximate the homotopy class is a simple polygon repre-
sentation [60, 61]. It is an approximation in a sense that all possible trajectories in
a homotopy class cannot be represented by a single simple polygon. This approach,
however, can represent explicitly the homotopy class without considering specific tra-
jectories. Anderson et al. [61] proposed a systematic way to represent the homotopy
class by a connected triangle using constrained Delaunay triangulation [62], a cell

decomposition, as shown in Figure 2-2d.

Cell decomposition is also a widely-used scheme in path planning problems. The
basic idea behind the approach is to break down the whole space into subspaces and
represent adjacency relations between the subspaces as a graph. Then the possible
obstacle avoidance maneuvers can be identified by searching the graph. Although An-
derson et al. [61] specifically utilized constrained Delaunay triangulation, any other
types of decomposition such as trapezoidal decomposition [63] and Morse decompo-

sition [64] can be used. Then, each avoidance manner is represented as a sequence
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of cells. In this approach, however, the representation is highly dependent on the
type of decomposition, and it is not able to guarantee inclusion of all possible paths
contained in each homotopy class.

In short, the ways of homotopy representation are categorized into two cases: exact
methods and approximate methods. In order to use the exact methods, it is compli-
cated to identify the homotopy class, before a complete trajectory from a start to a
goal is given. However, the approximate methods can represent the homotopy class
before considering specific trajectories. Especially the cell sequence representation
allows for tangible homotopy representation that can be used as spatial constraints
for trajectory planning. This chapter presents a systematic way to represent the ho-
motopy class by a convex cell sequence, and investigates its properties related to the

exact notion of the homotopy class.

2.3 Cell Sequence Representation

2.3.1 Motivation

In the motion planning problem, many different approaches such as potential fields
[65], graph search methods [66], probabilistic roadmaps [67], and many more have
been developed. They can be classified into two broad algorithm classes: combina-
torial planning methods and sampling-based planning methods. For combinatorial
algorithms, methods for exact cell decomposition have played an important role as
a key algorithm component. Cell decomposition methods partition the free config-
uration space into a finite set of regions which can be exploited for construction of
roadmaps. Cell decomposition methods should satisfy the following three basic prop-
erties to be useful for roadmap construction [68]: 1) trivial computation of a path
from one point to another inside a cell; 2) easy extraction of cell adjacency infor-
mation; 3) efficient determination of cells containing start and goal configurations.
If a cell decomposition method satisfies these properties, then the motion planning

problem is easily reduced to a graph search problem.
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Typical usage of cell decomposition corresponds to geometric path planning, which
reasons about connectivity and ignores system dynamics and feasibility. In contrast,
the work described in this thesis uses cell decomposition results as inputs to solve a set
of efficiently-defined kinodynamic motion planning problems. For example, a sequence
of decomposed cells is used to define the boundaries and provide directional guidance
for solving kinodynamic motion planning problems. The thesis further investigates
additional properties of cell decomposition for the proposed homotopy-based divide-

and-conquer approach.

In recent years, some motion planning methods have been proposed that exploit
homotopy class knowledge. Bes et al. [35] surveyed these methods and categorized
them into three groups. The first group finds the shortest path from a start to
goal region when homotopy information is known. Such methods take a path or
constrained area as an input, then find the shortest path within the current homotopy
[565, 60, 69, 70, 71]. If there is no input homotopy class or path, this group of the
problem is known to become intractable. The second group computes the shortest
path from a start to goal region, then identifies the homotopy class to which the
solution belongs [36, 54, 72, 73, 74]. The identified topology of the homotopy class that
contains the global optimal solution can be used to reduce the space of future search
calls. By repeating this approach, it is possible to obtain k-shortest paths in distinct
homotopy classes. Finally, the third group first enumerates homotopy classes in a
given environment, then searches for a path that is contained within each homotopy
class [53, 75, 76, 77]. This approach relies on specialized data structures in order to
systematically describe the topological properties of the environment. Enumerating
homotopy classes before performing path planning allows for independent treatment

of the path-planning problem within each distinct homotopy.

The approach described in this thesis is similar to the methods of the third group,
in that it aims to utilize an efficient divide-and-conquer strategy. Exact cell decompo-
sition and graph search are proposed as methods to systematically describe the topo-
logical properties of the environment, then enumerate homotopy classes as sequences

of cells. The proposed method builds on the work of |61], where constrained Delaunay
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Figure 2-3: A divide-and-conquer strategy of optimal trajectory generation

triangulation and graph search methods were used to find a desirable “safe corridor”
to achieve safe vehicle navigation. For a particular corridor, spatial bounds were iden-
tified to provide collision-avoidance assurance, and these bounds were employed as
constraints in a model predictive control framework for a resulting one-dimensional
system. In such systems with one-dimensional constraints, once the desired homo-
topy class is specified, the corresponding constraint form is convex, and thus a linear
model predictive controller can exploit a quadratic programming formulation. This
thesis generalizes this idea, and further explores the relationship between sequences
of decomposed cells and homotopy classes. Although the spatial constraints corre-
sponding to homotopy classes are non-convex in a two-dimensional environment, this
paper shows in Chapter 4 that the optimization problem can be solved efficiently
through the proposed formulation of mixed-integer programming, by exploiting cell

adjacency relationships.

2.3.2 Divide-and-Conquer Strategy

Optimal trajectory generation is typically a challenging task even for problems em-
ploying low-dimensional system models. In particular, for the collision avoidance
problem, the presence of obstacles serves to create holes in the collision-free configu-

ration space, leading to discontinuities in the set of feasible trajectories and disjunctive
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choices in the search procedure. This increases the difficulty of an optimization-based
solution. However, the complexity of the obstacle avoidance problem can be reduced
significantly if we independently consider multiple distinct continuous sets of feasible
trajectories, where no discontinuity is presented. In the simple example of a single
polygonal obstacle in a two-dimensional environment, it is a straightforward task to
find two (local) optimal trajectories among a set of trajectories that avoid the ob-
stacle in either a counter-clockwise or clockwise manner, since each respective search
space is continuous. The proposed approach in this work exploits this observation by
decomposing a general motion planning problem into multiple independent problems,
each with simple obstacle avoidance constraints, and thereby achieves computational

benefits arising from a divide-and-conquer strategy.

In addition to computational benefits, it is valuable in some applications to identify
multiple locally optimal solutions corresponding to distinct navigation decisions. For
example, in unmanned vehicle navigation problems with human operators in the loop
(i.e. where the operator provides some high-level input related to vehicle navigation
decisions), it can be desirable to identify and present multiple choices corresponding
to qualitatively distinct vehicle routes. Distinct navigation decisions often bear corre-
spondence to the topological notion of distinct homotopy classes in low-dimensional

cases.

Figure 2-3 illustrates a divide-and-conquer strategy to address the trajectory gen-
eration problem. The proposed method draws correspondence between (typically)
multiple “local” trajectory generation problems that correspond to distinct homotopy
classes. This results in an intuitive representation of homotopy classes as sequences
of spatial constraints, which in turn leads to a hierarchical framework: problem de-
composition and constraint identification based on homotopy enumeration, followed

by local trajectory generation within each constrained region.

In the homotopy enumeration step, the collision-free space is decomposed into
convex cells, and each homotopy class is represented as a sequence of convex cells.
Local trajectory optimization within each homotopy class is an independent problem

and corresponds to a distinct navigation decision. This yields a framework in which
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multiple local problems, corresponding to an operator’s preference (i.e. distinct high-
level decisions) are independently solved. For the local trajectory-generation problem,
this thesis propose a mixed-integer programming formulation in Chapter 4, where
control inputs are represented as continuous optimization variables and the time steps
associated with transitions between adjacent cells are represented as discrete variables.
The framework allows access to not only the global optimal solution, but also an

optimal solution for each identified homotopy class.

2.3.3 Cell Decomposition and Decomposed Cell Sequences

First, notations of sets and associated operations that are used in this chapter are
defined. All sets are defined as closed sets unless otherwise specified. Let P be a
set in R?, P C R2, and let 9P be the boundaries of P. P° = P\OP denotes the
open set of P, where \ is the set subtraction operation. For consistency, the the-
sis defines the closed collision-free space Cpee = R?\ (U; Cobs;) Where Cops; is a set of
configurations leading to collision with obstacle i.! A sequence of cell elements C; is
expressed as {Cp — C; — Cy — ---} in which the order of the elements implies the
sequence. Let U be the union of sets where the sequence is preserved; for example,
{Co — C1}T{Csy — C3} = {Co — C1 = C5 — C3}. A common edge between two adja-
cent cells C; and C; is denoted by E(C;,C;). In the thesis, ranges of integers are often
introduced and specified with subscripts; for example, we denote integers from 1 to
nby Z,n, e Z,, ={1,2,--- ,n}.

The thesis assumes C,),s can be approximated by polygonal shapes, and we restrict
our focus to the two dimensional Euclidean space R? where analysis of homotopy
classes are intuitive and have various practical applications. Here, Cpee C R? is
typically a polygonal space with holes which can be also thought of as a projection of a
multi-dimensional configuration space onto the two-dimensional Euclidean workspace.
An example application is a ground vehicle operating in the two-dimensional space

having three configurations: the location of a reference point (x,y) and heading angle

INote that the real collision-free space Ciee is the open set of Ciee, i.€. Ciree = Ciree , but the
notion of the closed set of collision-free space is used in the procedure of cell decomposition.
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6 where heading angle 6 does not affect the analysis of trajectories and only the
projection onto the (z,y) plane is enough to capture homotopy class membership

information |78].

Note that the primary difficulty in solving the optimization problem outlined
above arises from the collision-free constraints, since the collision-free space Ciee is
generally non-convex. Information about collisions with a obstacle is mapped into a
configuration space in the form of a set of obstacle configurations C,s, which is gener-
ally a continuous region, and collision-free configurations are expressed as a comple-
mentary set of the union of the obstacle configurations. As a result, the collision-free
configuration space is generally non-convex since it contains holes, which makes the
set of collision-free trajectory candidates discontinuous. However, also note that these
search space discontinuities give rise to distinct navigation decisions and their asso-

ciated homotopy classes.

Based on this observation, the method described in this thesis aims to represent
homotopy classes as continuous spatial constraints, then utilizes a divide-and-conquer
strategy where the original, non-convex optimization problem is divided into multi-
ple independent convex problems. Each independent problem, in addition to having
direct association with an independent navigation decision, is also theoretically rela-
tively easy to solve. In fact, for the problem of finding minimum-length paths in the
two-dimensional Euclidean space, Chazelle [60] showed that the shortest path inside
a simple polygon can be computed in O(NlogN) time and O(N) space, where N is
the number of vertices of the simple polygon whereas the shortest path in general

polygonal space with holes requires O(N%logN) time and O(N?) space.

The first step of the proposed divide-and-conquer strategy is to decompose Cpee
into convex polygons based on well-known convex decomposition algorithms. Then,
adjacency relationships between decomposed polygons can be employed to represent
adjacencies as a graph. A start node on the graph is determined by the current
location of the robot. Once a goal node is specified, it is possible to enumerate all
possible paths connecting the start and goal pair via standard graph search methods.

A path on the graph can be associated with a set of trajectories following the se-
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tional (i.e. non-minimal) ver- tence of open set of com-

tex mon edge between two differ-
ent cells

Figure 2-4: Convex decomposition and adjacency graph

quence of convex polygons. In addition, it is shown that a loopless path on the graph

corresponds to a homotopy class in the following sections.

Definition 1. (Convexr Decomposition [79]) A set of convex components {C;} is a
conver decomposition of C, D(C), if their union is C and all C; are interior disjoint,

i.e. D(C) = {Ci|uiC; = C and Viy,C° N CT = 0}

Since the system of interest is assumed to be operating in a polygonal space,
the components of a convex decomposition of the closed collision-free space, {C;} =
D(Ciee), are convex polygons. This thesis restricts its interest to decompositions
which do not create any new vertices except for vertices of the original polygons.
This is because new vertices that are not part of obstacles lead to singularities in cor-
respondence between a cell-sequence representation and a homotopy class, a problem
that is discussed in detail in the following sections. Also note that this requirement
eliminates the case where a feasible trajectory passes through a vertex of a polygon,

as shown in Figure 2-4a.

Definition 2. (Convex Decomposition with the Minimal Vertex Set) A set of convex
components {C;} is a convex decomposition of a polygonal space C with the mini-
mal vertex set, {C;} = D,,,(C), if it is a convex decomposition and all vertices of

components are vertices of the original polygon, i.e. V;vertices(C;) C vertices(C).
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Figure 2-5: Examples of different convex decomposition with the minimal vertex set
for the same environment

Many convex decomposition algorithms fall into this category such as the well-
known trapezoidal decomposition [63] or constrained Delaunay triangulation [80].
Figure 2-5 illustrates examples of different convex decomposition with the minimal
vertex set for the same environment. Based on decomposition with the minimal
vertex set, we construct the adjacency relation graph between the decomposed cells.
Since we assumed closed sets, two adjacent cells C; and C; share a common edge
E(C;,C; ). However, we rule out adjacency between two cells sharing a point since it
leads to redundancy in paths of the graph; there are no collision-free vertices in the
decomposed space according to Definition 2. In Figure 2-4c¢, for example, C, and C,4

are not connected in the graph since the common edge is only a point.

Definition 3. (Adjacency Graph) The adjacency graph G = (V, E¢;) of decomposi-
tion Dy, (C) is the graph where each node represents a decomposed convex polygon,

Ve = {C;}, and the edges are connected if two cells share a common edge which is

not a point, i.e. Eq = {e;j|Viz; E(Ci,C;)° # 0}.

We assume q, and q; do not lie on edges {V,.; E(C;,C;)}, so that the start node
containing the start configuration and the goal node containing the goal configuration
in the graph are uniquely determined and denoted by Cy and Cpy respectively, i.e.
do € Cy and g5 € Cy.

Once the adjacency graph is constructed, it is straightforward to analyze the graph
to identify sequences of cells linking desired configurations. Then, the original problem
with collision-free constraints can be decomposed into multiple local problems with

associated constraints resulting from sequences of bounded regions. The bounded
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Figure 2-6: Examples of decomposed cell sequences with different types of cell de-
compostion

regions are dependent on the types of cell decomposition as shown in Figure 2-6 with
examples. The next section presents the result of the investigation of the properties

of the resulting cell sequences according to the types of cell decomposition.

2.4 Properties of the Cell Sequences

The exact partition of a entire set of feasible trajectories associated with the global
problem into sets of feasible trajectories associated with decomposed local problems
is described in Section 2.4.1. For practical purposes, however, we suggest restricting
local problems to limited set of sequences of cells. The benefits and limitations of

this restriction are discussed in Section 2.4.2 and 2.4.3.

2.4.1 Partition of Universal Search Space into Discrete Sets

This section shows that the search spaces of local problems disjointly comprise the
original search space, the universal set of all feasible trajectories. In other words, it
is shown that all feasible trajectories can be mapped to a sequence of cells on the
adjacency graph such that the universal set of feasible trajectories can be partitioned
into an infinite number of set of sequences of cells on the graph. In Table 2.1 a
mapping Fgo is defined for the sake of clarity, although the correspondence of a

feasible trajectory to a sequence of cells is intuitive. Let {SC;} be the set of all
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Figure 2-7: Relations between trajectories, cell sequences, and homotopy classes
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Table 2.1: Definition of mapping to a cell sequence Fs¢ : q(7) = SC and transition
times Fgr : q(7) = ST

T ty, w0, ST + 0, SC «+ C,
while(w # N)
o int(r € [r,4] | a(r) ¢ Cu)
ST « STU{r'}
w <+ w' |lim_o+ (7' + €) € Cur
SC + SC U{C,}
end while

possible sequence of cells on the adjacency graph.

Lemma 4. Any feasible trajectory can be mapped through Fsc to a sequence of de-

composed cells on the adjacency graph, i.e. Fsc(q(T)) = SC € {SC;}.

Proof. Let q(7) : [to,ty] — Cree be a feasible trajectory and a continuous func-
tion. Let C, be the cell containing a point q(7,) that does not lie on common
edge {V;xE(C;,C;)}. The unique correspondence of q(7,) to cell C, is preserved
for 7 € [0, 7) until it touches the surrounding common edges {V,;F(C.,C;)} at
time 7 = 7. For the sake of unique correspondence, the mapping Fsc is defined
by assigning C,, to q(7) for 7 € [7,7'] until it leaves C,, at the time 7 = 7/, and
assigning a new cell once it leaves the cell C,. Also q(7’) lies on an open common
edge E(Cy,C;)°, since every vertex (i.e., intersection of three different cells) leads to
collision from Definition 2. Thus, the next cell C, corresponding to lim,_,q+ q(7’ + €)

is also unique and one of the cells connected on the adjacent graph. O
The following two corollaries follow directly from the above.

Corollary 5. The uncountably infinite set of all feasible trajectories, T raj, can be
partitioned into countably infinite sets {Traj;} where Traj; = {q(7)| Fsc(q(r)) =
SC;}, i.e. {Traj;} is a set of preimages of {SC;}, and thus U; Traj; = Traj and
Vigi TrajgiN Traj; = 0.

Corollary 6. A set of the optimal solutions among each partitioned trajectory sets

Traj; includes the global optimal solution.
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Therefore, the universal set of all feasible trajectories can be partitioned into
mutually exclusive and collectively exhaustive sets through the proposed cell sequence
representation, as illustrated in Figure 2-7a and 2-7b. Thus, the global optimal
trajectory can be eventually found based on the proposed divide-and-conquer strategy.
However, since the partitioned sets are still infinite despite their countableness, the
thesis proposes an approach that relies on solving restricted sets of local problems for

practical purposes. This method is described in the following sections.

2.4.2 Omne-to-One Correspondence of Loopless Cell Sequences

with Homotopy Classes

In this section, we restrict our interest to cell sequences containing no loops, and
investigate the relationship with topological homotopy classes. Figure 2-7c shows
the relationship between loopless sequences on the graph, their pre-images in the
trajectory set, and homotopy classes. In short, the loopless sequences have one-to-
one correspondence with homotopy classes. In other words, a feasible trajectory is
homotopic with any other feasible trajectories corresponding to the same loopless
sequence of cells on the graph, and are not homotopic with any feasible trajectory in
different sequences of cells in the graph. Figure 2-8 shows examples of the properties

and singularities with a non-minimum vertex set.

Theorem 7. If two feasible trajectories correspond to the same sequence of cells, they

are homotopic.

Proof. Let q4(7) and qg(7) be feasible trajectories corresponding to the same se-
quence of cells SC, i.e. Fsc(qa(7)) = Fsc(ag(r)) = SC. For any cell C,, € SC, there
always exist corresponding segments of both trajectories, i.e. q4(7) for 74; < 7 < 74;
and qg(7) for 75; < 7 < 7p; where Tx; and 7Tx; are the (w — 1)th and wth el-
ements of the set of transition times STx = Fs7(qx(7)). These two trajectory
segments can always be continuously deformed into each other due to the convexity

of the decomposed cells. Therefore it is always possible to find a continuous function

Q(v,7) : [0,1] x [0,1] = Cgee such that Q(0,7) = q,(7) and Q(1,7) = qz(7). O
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(a) All feasible trajectories (b) Two feasible trajectories (c¢) Singularity of decompo-
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correspondence  is  formed respond with different loop-
between loopless sequences less sequences
and homotopy classes

Figure 2-8: Examples of one-to-one correspondence of loopless cell sequences and
homotopy classes based on convex decomposition with the minimum vertex set

This property is not restricted to loopless sequences of cells, but rather can be ap-
plied to all sequences of cells including sequences with loops. The converse, however,
is not true for all sequences with loops. In other words, two trajectories corresponding
to different sequences of cells with loops could be homotopic. Therefore, there exists
a mapping from {7raj,;} to {H;}, but it is not bijective, as shown in Figure 2-7b.
If we restrict our focus to loopless sequences, however, the converse is true, so the

mapping from {SC;"} to {H;"“} is bijective as shown in Figure 2-7c.

Theorem 8. If two feasible trajectories correspond to two different cell sequences
which are loopless in the adjacency graph constructed through a convex decomposition

with the minimal vertex set, they are not homotopic.

Proof. Let feasible trajectories q4(7) and qg(7) correspond to SC4 = Fse(qu(7)) =
{Co =+ Cay = Caz = -+ = Cx} and SCp = Fse(ap(r)) = {Co = Cp1 = Cp2 —

- — Cn} respectively, where V;C 4; are different, and V; Cp; are different, because
both are loopless. In addition, there exists at least one cell contained only in either
one of the sequences, i.e. [{V;Ca;} U{V;Cri}] — [{ViCai} N{V;Cg;}] # 0, because
both are different sequences. Then, the closed loop q.;(7) formed by q,(7) in the
forward direction and qgz(7) in the backward direction, qq; (7) = q4(27) if 7 < t;/2,

and q4(2(t; — 7)) if 7 > t;/2, corresponds to the sequence SCcp, = Fse(de (7)) =



{Co > Ca1 > Ca2 > -+ =5 Cy = ---Cpa — Cp1 — Co} on the graph. Then,
SCcr has at least one loop consisting of at least three different cells, so qqy(7)
encircles at least one obstacle because there are no collision-free common vertices of
any three different cells according to Definition 2. Therefore, q4(7) and qg(7) are

not homologous, and thus they are not homotopic. O

2.4.3 Heuristic Strategies for Selection of Local Problems

The proposed divide-and-conquer strategy relies on solving decomposed local prob-
lems, however there generally exists an infinite number of local problems (note that
{8C,} is an infinite set). Thus, for practical purposes, the thesis aims to selectively
solve a finite number of problems, or prioritize the problems to be solved. A generic
method to achieving this is to assign heuristic costs to paths on the adjacency graph,
then cost-rank potential paths and compare to a pre-defined cost threshold.

This approach is practically useful in the following ways. 1) It allows us to explic-
itly consider geometric properties (e.g., path width, length, and curvature) of fields of
travel, as well as properties of specific trajectories. For instance, a heuristic measure
of desirableness of fields of travel is also provided in a previous work by Anderson
[61]. 2) It is possible to assign a heuristic likelihood of containing the global optimal
trajectory to each cell sequence, in order to quickly choose a sequence containing
the global optimal trajectory. However, such heuristics are often problem-specific
depending on the given objective function and dynamics. The thesis here proposes
a generic approach to utilize the existence of loops in the cell sequences to prioritize

local problems to solve.

Strategy of focusing on loopless cell sequences

We propose to focus on loopless sequences on the graph, as a means to eliminate
inefficiency arising from repeated visits of the same cells of candidate trajectories.
Also, loopless cell sequences have a desirable property of one-to-one correspondence

with homotopy classes, as demonstrated in the preceding section. We can partition
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(a) q4(7) and qz(7) are homotopic, but (b) Line-sweep decomposition is efficient in
ap(7) is excluded from the search space a sense that feasible trajectories that are
of loopless sequences since it corresponds monotonically increasing in sweeping direc-
to a sequence with a loop tion are preserved in the search space

Figure 2-9: Elimination of feasible trajectories and benefits of line-sweep decomposi-
tion

the entire set of all possible cell sequences {SC,} into a set of sequences having
repeated cells, {SCJ:Cy“le}, and a set of sequences without repeated cells, {SC;"}:
Note that {SC;"“} is a finite set.

The limitation of this strategy is that some feasible trajectories are unavoidably
eliminated when we restrict our scope to loopless sequences, as shown in Figure 2-7c.
The trajectories that are not considered during optimization are those having cycles
in corresponding sequences of cells, {ijj“y"t“}. Note that these trajectories have
loops in cell sequences, but do not necessarily have loops in trajectories themselves,
as shown in Figure 2-9a. Despite the small likelihood of occurrence, if an optimal
trajectory in a homotopy class happens to correspond to a cell sequence with loops,
it will not be found by restricting ourselves to loopless cell sequences; an example
class of problems where this may occur is nonholonomic robots. Clearly, it would
be desirable to ensure that the optimal trajectory is not included in {7 raj jcydc},
although it is still possible to find the optimal trajectory by considering cell sequence
with loops as well.

It is difficult to guarantee that the optimal solution corresponds to a loopless
cell sequence before trajectory planning or optimization, for problems with general
dynamics and objective functions. However, given knowledge about a potential op-

timal trajectory in a specific problem domain, we are able to utilize this knowledge
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Figure 2-10: An alternative decomposition for a case where the global optimal tra-
jectory does not have any principal axes

in the decomposition procedure. This thesis suggests a specific type of cell decom-
position based on its intuitive tendency to preserve optimal trajectories in loopless
cell sequences. The motivation is an empirical observation that for cases where de-
sirable trajectories exhibit a tendency to move monotonically in a certain direction
(i.e. toward a goal region), it is useful to perform trapezoidal decomposition (rather
than other decompositions such as triangulation) with parallel edges normal to this
direction of movement.

Trapezoidal decomposition is one of the most popular types of exact cell decom-
position [57]. In trapezoidal decomposition, an imaginary line is swept through the
space in a principal direction and decomposes the space into cells whenever it meets
critical points, as shown in Figure 2-9b. If we can find a sweeping axis onto which
the projection of the global optimal trajectory is monotonic, we can ensure that the
global optimal trajectory has no loops in the corresponding cell sequence, as restated

below.

Corollary 9. The global optimal trajectory corresponds to a loopless cell sequence,
i.e. Fse(q*(r)) € {8C;"°}, by trapezoidal decomposition with a sweeping avis p such
that “-(q*(7) - p) = 0 (or <0) for V7 € [to, tf]

In practical applications, it is often intuitive to determine the sweeping direction.

For instance, it is often possible to fit a straight line to the start and goal locations
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(a) Trajectories with unique loops in cell se- (b) Trajectories with more than one cycle for
quences could be desirable due to certain dy- each loop are less desirable than ones with
namics or objective functions unique loops

Figure 2-11: Cell sequences with unique loops vs. cell sequences with more than one
cycle for each loop

as shown in Figure 2-9b, since that may be a desirable direction to move. In some
instances, such as vehicle navigation on roads, it is better to use the longitudinal
direction of the road as the sweeping direction, since it is very unlikely that moving
in reverse in the longitudinal direction is the optimal solution.

There may, however, be the cases where the global optimal trajectory does not
have any principal axis p on which the projection is monotonic due to its dynamics
or objective functions, as shown in Figure 2-10a. Figure 2-10b illustrates an example
of another relevant decomposition to keep the optimal trajectory in a loopless cell.
However, choosing a relevant decomposition method before trajectory planning or
optimization generally requires problem-specific heuristics, or assumptions about the

nature of feasible or optimal trajectories.

Strategy allowing loops a single time for each

In the cases where it is difficult to determine a judicious decomposition method a
priori, ensuring that the global optimal trajectory corresponds to a loopless cell se-
quence, we can also take into account cell sequences with loops. The next priority
is naturally assigned to local problems corresponding to cell sequences with unique
loops only, i.e. those with multiple loops, but allowing only one of each loop. Note
that the number of cell sequences with unique loops is also finite.

It is more likely that cell sequences with unique loops contain more desirable
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(a) Lane decomposition (b) Adjacency graph

Figure 2-12: Cell decomposition utilizing lane structures

trajectories than cell sequences with multiple repeated loops. Trajectories corre-
sponding to cell sequences with multiple identical loops either contain self-crossing
in themselves, or cross the same edges multiple times back and forth, as shown in
Figure 2-11. As illustrated on the right example of Figure 2-11b, cell sequences with
more than a single cycle for the loop consisting of more than two cells contains only
trajectories that cross themselves, unless C, and C,, are not the start cell or the goal
cell. Thus such trajectories are very unlikely to represent the global optimal solution,

except for special cases of objective functions.

2.5 Example of Cell Sequence Homotopies on High-
ways

Figure 2.5 illustrates application of the proposed approach to a highway navigation
problem. The key difference of this application from the previous one is the existence
of lane structures. The divided lanes on the road can be naturally utilized in the cell
decomposition process. The basic idea is to decompose each lane according to the
locations of obstacles as shown in Figure 2-12a. Each cell is denoted by C, ;, where i
is the index of the lane and j is the index of decomposed cells in the ith lane. The
adjacency graph between decomposed cells is constructed as in Figure 2-12b, where
the cells C; ; and C;yy ;. one in the ith lane and one in the adjacent (i + 1)th lane,

are connected when they share a common edge. Note that any cells in the same lane
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£ =k prediction horizon > t=1,+T

(a) The nodes are connected in the adjacent graph if the corresponding time-varying cells are
connected at some point over the horizon

I=1, prediction horizon > t=1,+T

(b) The nodes are distinguished if the corresponding time-varying cells are distinguished at some
point over the horizon

Figure 2-13: In dynamic environment on highways, a single time-invariant adjacent
graph can be constructed in a conservative way

are not connected on the graph since they are separated by obstacles if decomposed
properly.

When obstacles are moving within a lane, the size and location of the decomposed
cells will change as a function of the motion properties of the obstacles. However,
the indices of decomposed cells will remain the same, i.e. the nodes of the graph
would be unchanged. The edges connecting the nodes on the graph can be created
or removed at each time step. However, a single time-invariant adjacency graph
can be constructed by taking a conservative approach, as follows: if two nodes are
connected at least once over the prediction horizon, an edge is created in the single
graph. An example of the conservative construction of the edges on the adjacent
graph is illustrated in Figure 2-13a. Even with obstacles changing lanes, the nodes

are distinguished and connected conservatively as shown in Figure 2-13b.

Although a unique goal point is not typically specified in the highway navigation
problem, goal regions, i.e. ranges of lateral position, can generally be specified. In
terms of the adjacency graph, each decomposed lane component C; ; can be chosen as

a goal node. Since the start node is uniquely defined based on the current location of
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the host vehicle, it is possible to enumerate possible paths on the graph for different
goal nodes. These paths correspond to different navigation decisions, even though

their relationship to homotopy classes is not well-defined.

2.6 Conclusions

This chapter developed a decomposition method of the global navigation problem
into simpler local problems by convex decomposition with the minimal vertex set. In
the process, individual navigation decisions corresponding to the local problems were
represented as decomposed cell sequences, approximations of homotopy classes. Each
decomposed local problem will be independently solved and explicitly parallelized in
their computation; a method for conquering individual problem will be presented in
Chapter 4. Also, it is still desirable to filter out some local problems or prioritize the
order of the local problems to be solved since the cell sequences can be, in principle,
enumerated infinitely by allowing loops. In this selection and prioritization process,
it is possible to reflect high-level evaluation of desirableness of cell sequences corre-
sponding to distinct navigation decisions; a method for evaluation of cell sequences
will be presented in Chapter 3.

The chapter also investigated properties of the decomposed cells. It showed one-
to-one correspondence between a loopless cell sequence and a homotopy class. It also
investigated inefficiency of trajectories corresponding to cell sequences with more than
a single cycle for loops. In terms of decomposition methods, trapezoidal decomposi-
tion was argued to be efficient to retain the desirable trajectories, including the global

optimal trajectory, in a loopless cell sequence.
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Chapter 3

Homotopy Evaluation - Safe Control

Margin Estimation

3.1 Introduction

3.1.1 Motivation

This chapter proposes a methodology to evaluate the desirability of distinct identified
homotopies to select one of them to navigate through. The “best” homotopy will be
automatically navigated through, present.ed to human operators, or referred to in
the process of estimating a human operator’s intention. The homotopy evaluation
process is one of core components in the proposed framework in the thesis shown
in Figure 1-3. The higher safety level trajectories in a homotopy class have, the
more desirable the homotopy class is. The question is related to the traditional
obstacle avoidance problem, and desirability can be measured by estimating margins
of obstacle avoidance.

In the worst case, for instance, there might not exist any collision-free trajectory
for a certain homotopy class considering the dynamics of the robots. The homotopy in
this case is obviously not desirable. So it is useful to check existence of safe/collision-
free trajectories, and measure their safety level if they exist. This thesis proposes

to use the safety margin for obstacle avoidance as a metric for desirability of each
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homotopy class. The problem of homotopy evaluation, hence, can be reduced to a

maximum margin obstacle avoidance problem.

3.1.2 Previous Works - Safety Margin

Many other approaches have been developed for explicitly modeling uncertainty in
order to plan a robust motion, while taking into account many sources of uncer-
tainty: localization, unpredictability of environments (dynamic obstacles), control
uncertainty, etc. [81, 82, 83]. In these approaches, the safety margin for obsta-
cle avoidance was represented by probabilities of collision avoidance computed from
uncertainty models. These uncertainty models are often represented by covariance
matrices, and the probability of safety of a given trajectory can then be computed.
The objective of robust motion planning is to find a trajectory that has a probability
of safety above a desired threshold. In other words, these methods aimed to ensure
deterministic bounds on the safety margin of the trajectories.

Other previous approaches for safe navigation attempt to ensure sufficient distance
from the closest obstacles without explicit modeling of uncertainties; the farther the
trajectories lie from the obstacles, the safer the trajectories are assumed to be con-
sidering various sources of uncertainties. In these approaches, safety margins were
roughly represented by the distances from the closest obstacles. The methods try
to maximize the safety margin, or guarantee a lower bound on the safety margin, in
the workspace or configuration space (e.g., d,-safe kinodynamic solution [84], Voronoi
diagram [85]). However these approaches have difficulty considering the dynamics of
robots in the definition of margins, resulting in situations where a robot is pushed
to its physical limit of control actions; such methods are not able to consider uncer-
tainties in control actions, or experience saturation at bounded control action limits.
This thesis aims to quantify margins with consideration of dynamics of the robots.

Other approaches to choosing a homotopy whenever the vehicle encounters discon-
nected regions due to obstacles are based on heuristics of the shapes of region. Gao
et al. [86] used a simple heuristic based on the vehicle position and the size of each

feasible region to determine which side of the obstacle the vehicle should pass. Ander-
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son et al. [50] estimated the available control freedom based on observed heuristics
to evaluate goodness of homotopies. The control freedom was estimated based on the
minimum width of the region of travel through and the relative orientation change
of the centerlines of the region. An estimate of the control freedom was combined
with the average distance heuristics linearly to evaluate the quality of each region of
travel.

Constantin et al. [87] more explicitly considered the vehicle dynamics in the
estimation of margins. As it measured the size of the feasible trajectory space by
discretizing the space using the lattice-based planning. The margins were represented
by unified scalar quantities in the control input space. However, the lattice-based
planning is computationally demanding and often requires off-line computation and
on-line adjustment of the lattices. The approach proposed in this thesis starts from a
similar idea to margin estimation in the input space. The thesis provides a systematic
way to estimate safe control margin with consideration of vehicle dynamics through a

sampling-based approach. The approach presented in this chapter was also presented

in [88].

3.1.3 Proposed Approach - Maximum Margin Inputs

The notion of a configuration space [89] has served as one of key components in
many motion planning algorithms, namely, cell decomposition [90], roadmap-based
approaches (e.g., visibility graph [91], Voronoi diagram [85], PRM [92]), and artificial
potential field methods [93, 94]. However, these approaches have been mainly limited
to kinematic, holonomic path planning problems and are not suitable for kinodynamic
motion planning where additional constraints on the robot’s motion arising from its
dynamics or nonholonomic constraints are imposed [95].

For kinodynamic motion planning, some kinematic motion planning techniques
are extended to dynamic cases by planning motions in the state space instead of the
configuration space (e.g., RRT [96], RRT* [97]). These approaches eventually require
solving exact or approximate boundary value problems with differential constraints.

Other principled approaches to considering kinodynamic differential constraints are
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Figure 3-1: Two possible approaches of homotopy evaluation: a workspace based
approach vs. an input-space based approach

based on optimal control theory. Traditional tools (e.g., variational calculus, dynamic
programming) for solutions to optimal control problems are in general computation-
ally intractable [95|. Alternatively, some receding horizon fashion approaches have
been developed based on model predictive control framework (e.g., see [98]).

Planning in the input space can naturally consider kinodynamic differential con-
straints in obstacle avoidance/motion planning problems. The approach proposed in
the thesis considers the feasible input space and takes the farthest input point from
the closest constraints based on a given distance metric, in order to minimize risk that
might occur due to unmodeled uncertainties. This approach provides a navigation
strategy for maximum control margins. Also, the computed maximum control mar-
gin can be utilized to quantify desirability of each corresponding possible navigation
decision.

Figure 3-1 illustrates examples of two different possible approaches to homotopy
evaluation with a safety margin in the workspace and input space, respectively, with
a bicycle vehicle model. In the workspace approach illustrated in Figure 3-1a, the
optimal solution could be found with a specified amount of safety margin (i.e. Eu-
clidean distance) in the workspace around the obstacles for each homotopy. They
are the best feasible trajectories ensuring these desired safety margins. In contrast,
the input-space based approach shown in Figure 3-1b was able to incorporate safety
margin considering the dynamics of the robots. This thesis proposes a methodology

to map all constraints onto the input space, represent subsets of the free input space,
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(a) A naive approach (b) The proposed approach

Figure 3-2: The proposed approach can efficiently explore the environment based on
few inputs representing groups of nearby inputs

and assesses each of input subsets based on the size of each subset, called the margin.

A main challenge in input space approaches is computational intractability for
long-term planning, since the number of possible resulting states grows exponentially
with the number of time steps of consideration; if the input-space is discretized into
N points, the number of possible states a robot may end up in is N after d time
steps. As a result, the look-ahead horizon is limited to a short range in previous input
space based approaches, such as dynamic window [99] and velocity obstacles [100].

This thesis proposes a method of exploring the environment with a few sample
inputs representing a group of inputs resulting in similar maneuvers. The idea is
illustrated in Figure 3-2. The representative inputs are chosen in the safe input sets
based on their depths, i.e. distances from forbidden inputs. The deepest safe input
can represent a group of nearby safe inputs, and the resulting state can be considered
as the representative state of the group of states resulting from the nearby safe input
sets. The representative inputs also can be interpreted as inputs resulting in distinct
path homotopies, so the multiple input sequence found by the algorithm can represent
multiple possible navigation decisions, a practical interpretation of path homotopies
[101] although they is not exactly same according to the definitions.

The remainder of this chapter is organized as follows. Section 3.2 provides related
works. In Section 3.3, the problem of maximum margin safe navigation is defined and
sampling-based algorithms for maximum margin input computation and an optimal

solution for multiple-step horizon are presented. The algorithm is demonstrated with
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an example robot dynamics, and its performance and computational time are analyzed

in Section 3.4. Section 3.5 concludes the chapter.

3.2 Related Works - Input Space Approaches

The proposed approach also has similarity to input-space based planning methods
such as the velocity obstacle [100] and dynamic window approach [99]. The velocity
obstacle (VO) method has been widely studied mainly for the benefit of its compu-
tationally light representation of collision information for infinite time horizons with
an assumed constant first-order motion model and circular shapes of obstacles and
robots. It has been extended to incorporate a broader range of motion models of
robots and obstacles via methods such as the nonlinear velocity obstacle [102] for
arbitrary trajectories of obstacles, and the generalized velocity obstacle [103] for car-
like robots with kinematic constraints. However, the original velocity obstacle takes
the most conservative approach to representation of collision avoidance constraints in
the velocity space with the assumptions of the constant velocities of the robot and
the obstacle and infinite time horizon. One of the main issues was instead truncation
of the velocity obstacle by an appropriate time horizon. It is also known computa-
tionally challenging to determine the optimal time horizon [104]. This problem is also
related to the notion of inevitable collision state (ICS) [105]. In principle, determin-
ing whether or not a given state is an ICS requires checking for all possible future
trajectories of infinite duration that the robotic system can follow from the particular
state. However, in practice, it is possible to make conservative approximation of the
ICS by considering only a finite subset of the whole set of possible future trajectories
[106].

The dynamic window approach (DWA) [99] differs from velocity obstacles in a
sense that it explicitly constructs an admissible velocity space without strong assump-
tions on the motion models of robots. For a given velocity candidate, it determines
its admissibility based on the existence of future collision-free stopping maneuvers,

which is a conservative approximation of ICS. DWA assumes circular trajectories of
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the robots for simplicity, and performs planning in the translational and rotational
velocity space. It examines admissibility of the velocities in a reachable velocity set
within a next time step. It finally chooses the best velocity based on a combination
of multiple objectives among the admissible velocity set.

The proposed approach in this thesis is more similar to DWA than VO in a
sense that it does not aim for an analytical representation of forbidden velocities,
and instead allows a broad range of robot dynamics. The difference of the proposed
approach is that it tries to avoid explicit construction of an admissible or forbidden
input space set, but instead pursues sampling-based estimation in the search process.
At the same time, the proposed approach identifies representative inputs in the search
process to yield a fewer set of states to explore over future time steps. This allows a
long-term plan for obstacle avoidance and mitigates potential local deadlocks.

Some of the state space sampling-based approaches with tree structures without
rewire steps, such as RRT [96], share the similar benefits in a sense that they do
not involve boundary value problems but only involve integration problems, so that
they can consider a broad range of dynamics of robots. However, the proposed input
space approach trades off rapid exploration of the global space for computing locally
desirable directions to grow the tree in earlier stages. It excludes input candidates
leading to inevitable collision states from the starting node and tries to explore the

space with representative inputs with greater margins.

3.3 Maximum Input Margin Obstacle Avoidance

3.3.1 Problem Definition

Let the motion model of a robotic system be described by a differential equation of
the form x(t) = f(x(t),u(t)) where x(t) € & is a state of the system and u(t) € U is
a feasible control input. X is the state space and U is the feasible control input space.
Given a current state x(tp), the feasible control input space U can be partitioned into

a set of safe inputs, Ug, and a set of forbidden inputs, Ur = U \Us. A safe input
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u, € Us is defined as below.

Definition 10. (Safe Input) An input us is a safe input if and only if the robot is
collision free for t € [to,to + At] under the action of the constant control input u,
and the resulting state x(to + At) is not an inevitable collision state (i.e., there exists
a collision-free trajectory for ¥t > to + At), where At is the time interval between

consecutive control input executions.

An inevitable collision state (ICS) of a robotic system is defined as a state for
which, no matter which future trajectory is followed by the system, a collision with
obstacles eventually occurs [105]. In general, computing the ICS for a given system is
a complicated problem since it requires consideration of the set of all possible future
trajectories. However, in practice, it is possible to make conservative approximations
of the ICS by considering only a finite subset of the entire set of all possible future
trajectories [106]. A sampling-based method for identifying the safe input set and
forbidden input set is presented in Section 3.3.2.

By definition, any safe input is allowed at the current time step with guarantee of
the existence of collision-free future motion. But each safe input has different degrees
of proximity to the forbidden inputs. A metric indicating the proximity of the safe
input to the closet forbidden input is a key component of the proposed navigation

algorithm in this chapter. The proposed metric, called margin, is defined below.

Definition 11. (Margin) The margin of a safe input u, is defined as the minimum

weighted Fuclidean distance to the forbidden input set U, i.e.

margin(us, Up) = min \/(us —us)T Wl(u, —uy) (3.1)

UfEUF

where W is a diagonal matriz whose ith element, w;, is a weighting factor representing
the importance of ith dimension in the input space.
For notational convenience, this thesis assumes that the safe input set is an open

set and the boundaries of the feasible input space are contained in the forbidden input
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(a) A safe input uy and its margin in the (b) The margin defined as Eu-
input space U clidean distance to the closest for-

bidden input in the scaled input
space U =T -U

Figure 3-3: Definition of the margin of a safe input u,

set, i.e. JU C Uy, so that the margin also considers the distance from the boundaries

of the feasible input set.

Figure 3-3 illustrates an example of the margin of a safe input. This metric can
also be interpreted as the Euclidean distance to the closest forbidden input in an
input space U = T -U scaled by a diagonal scaling matrix T, whose ith element is
w;"?. In other words, margin(u,,Up) = ming, ey, || G — @y || where Up = T -Up

and u, = T - u,.

Definition 12. (Mazimum margin input and Chebyshev set) The maximum margin

input v, is defined as the safe input with the mazimum margin, i.e.

u, = arg max margin(us, Up) (3.2)
usels

In other words, it is defined as the inversely scaled Chebyshev center (the center of
the largest inscribed ball [107]) of the scaled feasible input space, i.e.
—1 _
u, = T -ChebyshevCenter(T - Us) (3.3)
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input is the weighted Cheby- gin input is the weighted Cheby- input is the weighted Cheby-

shev center of all feasible safe shev center considering the first shev center considering the first

inputs Chebyshev set as forbidden in- and second Chebyshev sets as
puts forbidden inputs

Figure 3-4: Sequencial Chebyshev sets in the scaled input space

Let m,. denote the corresponding mazimum margin.

me = margin(u., Up) (3.4)

The Chebyshev set, Uepen, s defined as the Chebyshev ball in the scaled input space,

i.€.

Ueher = {u € Us Iv(u—u.)" W-(u—u,) <m.} (3.5)

and parameterized by the maximum margin input u. and the corresponding margin
me. Let < u.,m. > denote Uper determined by the two parameters, u. and m.., for

notational convenience in the following description of algorithms.

It is practically useful to take the deepest input in the safe input set, since in
the real world there are many sources of uncertainty, e.g. localization error, unpre-
dictability of dynamic obstacles, uncertainty in resulting states under given control
actions, etc. The thesis considers the maximum margin input u. as the safest input
considering uncertainties. It is also considered as a representative input to explore

and evaluate future motions.
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In addition, it is necessary to consider multiple representative inputs for further
exploration of the environment. Multiple representative inputs can be chosen by
sequentially identifying Chebyshev sets in the safe input space set. Given the previ-
ously found Chebyshev sets in the input space, the next Chebyshev set is chosen in the
remaining safe input set excluding the groups of inputs already represented by previ-
ous Chebyshev sets. Figure 3-4 illustrates an example of sequential identification of
Chebyshev sets. The jth maximum margin input is defined as the safe input with the
maximum margin considering the previous Chebyshev sets U, 2424 ... U~ 1

as forbidden inputs,

Definition 13. (jth Chebyshev set) The jth Chebyshev set is defined as U*, =<

C

W™ mith > where

u/™ = arg max margin(u,, Up U(ULZ] UA,)) (3.6)
us€Us
mi™ = margin(ul™, Up U(UIZ; UE,)) (3:7)

The computation of Chebyshev sets for the current time step can be repeated
by considering the resulting states as initial states of a multiple-step horizon. This
iterative planning procedure results in a tree structure 7, where each node has a
representative state connected from a parent node through a Chebyshev set, as illus-
trated in Figure 3-5. A path on the tree is called a Chebyshev sequence, and denoted
by < Ucheb; |t € Z, 4 > where d is the depth of the tree. Each sequence can be evalu-
ated based on the margins of each step. This chapter, as an example, takes a way of
evaluating the sequence based on the minimum margin over the sequence as defined

below.

Definition 14. (Margin of a Chebyshev sequence) The margin of a Chebyshev se-
quence s defined as the minimum value over the margins of Chebyshev sets in the

sequence, i.€.

mseq(< Z/{cheb,i IZ S Zl,d >) = 'IenZin Z/[cheb,i me (38)
1,d

2
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Figure 3-5: Space exploration for collision-free trajectories based on maximum margin
inputs

where Ugpepi .M. denotes the margin of the Chebysheuv set at the depth i.

Note that there are other possible ways we might combine multiple margins over
a sequence into a single metric, such as the sum of margins. This thesis adopts the
minimum margin so that the margin of the whole sequence is determined by the
smallest margin to navigate through the sequence. Accordingly, the problem to find
the optimal Chebyshev sequence in terms of margin, i.e. the maximum margin input

sequence, is defined as the following:

Definition 15. (Optimal Chebyshev sequence planning: mazimum margin input se-

quence planning)

mazimize Mgeq(< Uehebi |t € Zya >) (3.9)

over all possible Chebyshev sequences (3.10)

The next section describes a sampling-based algorithm for computing Chebyshev
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sets and tree search algorithm for the optimal sequences.

3.3.2 Sampling-based Algorithm for Chebyshev Sets

A key component of the proposed approach is to compute Chebyshev sets by distin-
guishing a forbidden set and safe set in the input space. However, explicit construction
of the forbidden input set and computing the exact Chebyshev sets are computation-
ally challenging. We can achieve computational savings by adopting a sampling-based
algorithm in the similar way to other configuration/state space sampling-based ap-
proaches. This allows us to efficiently find a safe input and approximate Chebyshev
sets while avoiding explicit construction of the forbidden set and safe set in the input

space.

Algorithm 1: InputSpaceSampling(x)
1 u;amples - Q);
9 usamples - @

F )

/* Pick and distinguish /N samples */

3 fori«+ 1to N do
4 u; <— Sample(U);
5 if Safety(u;) then U™ 5™ Uly,};
6 else u;amples — u;amples U {ui};

/* Compute margin for each sample */

7 for i+ 1to N do

8 | if u; € U™ then

9 L mli] «— margin(ug, U™P');
10 else m[i] «— —o0

samples samples .
11 S+ (Ug JUp ,m);
12 return S

Algorithm 1 describes a procedure to construct the sets of safe and forbidden
input samples and their margins estimated based on sampling. The first step is
to fill the input space with samples, where a safe set L[gamples and a forbidden set
UE™PIES in the input space are constructed by sampling a certain number of points

in the feasible input space U. The function Sample(H) draws a sample input from a

uniform distribution for simplicity. A smarter sampling strategy can be adopted for
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this sampling procedure. Also let the function Safety(u;) return true if it satisfies the
definition of a safe input in Definition 10, or return false otherwise. The margin for
each safe sample input u; is computed from the constructed forbidden sample input
set Up™P '*s in line 9. Note that the margin computed by a sampling-based forbidden
set is an over-estimate of the real margin, i.e. margm(uz-,l/{;amples) > margin(w;, Ur),
since UE™'* C Up. The margins of forbidden inputs are invalid and set to —oo to
ensure that they do not affect the maximization procedures of margins. The algorithm
returns the constructed sample space S with the set of safe samples, U3, the set
of forbidden samples, U}amples, and the margins of the samples, m, estimated from

the constructed sample set.

Algorithm 2 and Figure 3-6 describe a procedure to sequentially find the Cheby-
shev set from the constructed input sample space S. The key point in sampling-based
estimation of the Chebyshev set is that it ensures that the center input is a safe input
point. The next priority is to find an accurate estimate of the margin of the center. Of
course, highly accurate estimation of the center and margin is beneficial, but requires
high computational burden. In order to compute the exact Chebyshev center point of
the safe input sets, it is required to construct exact forbidden sets in the input space.
By sacrificing high accuracy of the Chebyshev set, we gain computational efficiency.
However, we still guarantee that any estimated center is collision-free. The rest of the

planning algorithm aims at improving the quality of the solution in terms of margin.

Algorithm 2: NewChebyshev(S)
ic +— argmax; {S .m[i]};

=

2 if §.m[i.] > —oo then // only for L{;a‘mp]es
3 u. <— u,; (from S)

4 | me<+— S.mfic);

5 | Uehet ¢—< uc,me >; // Chebyshev set
6 for each u; € S.UF™ do // update m
7

| S .mli] < min {S .m[i], margin(u;, {u.}) — m.};

8 | update S.m; (pass-by-reference)

else Uper «— 0
10 return Ue.pep;

©
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U=T-U

(a) Sampling-based approximation of (b) The update of the margin for
the first Chebyshev set U =< computation of the next Chebyshev
u., m. > where u, = 7! i, set  excluding the currently-found

Chebyshev set

Figure 3-6: Sampling-based estimation of Chebyshev sets and maximum margins

In Algorithm 2, whenever a new Chebyshev set is created, the margins of the
samples, m, are updated to exclude the created Chebyshev set for the next Chebyshev
computation in line 7. This update makes the value of m corresponding to the samples
inside of the currently-found Chebyshev set negative, so that the priority of being
chosen as a new Chebyshev center falls below that of the samples outside of the

currently-found Chebyshev set. In extreme cases, consecutive runs of Algorithm 2

Msamples

can return the same number of Chebyshev sets as the number of elements of U :

In that case, the algorithm will visit every safe sample point constructed in Algorithm

1 as Chebyshev centers, so the algorithm converges to the naive input space approach.

3.3.3 Tree Search Algorithm for the Optimal Chebyshev Se-

quence

A naive approach to search for the optimal Chebyshev sequence is to enumerate all
possible sequences, which grows exponentially with the depth of the tree. However,
this thesis proposes a best-first search algorithm with a guarantee of optimality by
utilizing the properties of non-increasing objective values in the search tree. The

objective function we try to maximize in this problem is margin of the Chebyshev
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sequence, i.e. the minimum margin over the sequence of the Chebyshev sets. By

definition, the following two properties are satisfied.

e A new sibling Chebyshev set has always a lower value of margin than previous
(+1)th

siblings: mg < mith
e A Chebyshev sequence of depth k£ has margin less than or equal to that of
the sub-sequence up until depth & — 1 Mgeq(< Uehen,i |t € Zy i1 >) < Mgeq(<

ucheb,i |Z € Zl,k >)

Algorithm 3 returns the maximum margin Chebyshev sequence of depth d by
exploring only the nodes that are needed to be compared for optimality. It always
keeps the node that has the highest margin, mg.,, in the queue by putting the next
sibling and next child of the explored tree in the queue. Any potential node that is
neither explored nor inserted into the queue always has smaller mge, than the nodes
in the queue. The node with the required depth d removed from the queue for the
first time always corresponds to the optimal Chebyshev sequence. If the queue is
empty before finding the solution, it means that it has searched all the samples and
there is no collision-free sequence input sequence, unless we perform more sampling

in each input space.

Algorithm 3: BestFirstSearch
Vo. X — Xg ;
V. Mgeq ¢— 00 ;
Vo. S+ 0 5
InitTree(Vy) ;
V «— ExploreNewChild(Vy);
while depth(V) # d do
Vs «— ExploreNewSibling(V);
InsertQueue(Vs, V. Mgeq);
V. «— ExploreNewChild(V);
InsertQueue(V,, V. Mgeq);
V «— RemoveMaxQueue();
if IsEmpty(V) then return failure;

return V
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Each node in Algorithm 3 is represented as a tuple, V. =< Uches, X, S, Mgeq >,
where Uqpe, is the corresponding Chebyshev set, x is the resulting state from the
Chebyshev center, S is the constructed sampling input space, and mgeq is the minimum |
margin up to the corresponding node from the root node. mgq of each node V, de-
noted by V . mgeq, is the objective value the problem maximizes. InsertQueue(V, mgeq)
inserts the node V to the priority queue with the priority mg,. RemoveMaxQueue()
removes the highest priority entry from the priority queue and returns it. The proce-
dures to explore new child ExploreNewChild(V) and new sibling ExploreNewSibling(V)
are to create new corresponding Chebyshev sets and extend the tree. These proce-
dures are described in Algorithm 4 and Algorithm 5 with the primitive procedure

ExpandTree( - , - ) described in Algorithm 6.

Algorithm 4: ExploreNewChild (V)

1 if IsEmpty(V .S ) then // for the first call
2 L V.S «— InputSpaceSampling(V . x) ;

U.ner <— NewChebyshev(V.S);

if U.per # 0 then V., +— ExpandTree(V, Uppes);

else Ve < 0;
return V,.,;

(=22~ BN

Algorithm 5: ExploreNewSibling(V)

1V, «— Parent(V) ;

2 Ugper, «— NewChebyshev(V,.S) ;

38 if Ueher # 0 then V., «— ExpandTree(V,, Uehes) ;
4 else Vi, +— 0

5 return V,.,;

Algorithm 6: ExpandTree (V,, Uches)

1 Vyew. X «— NewState(V,. X, Ueheb - Ue, At);
2 Vyew. Mgeq ¢— min{Vy,. Mgeq, Uchep -Me} ;

3 AddVertex(V ew) ;

4 AddEdge(V,, Vaew, Ucheb) ;

5 return V,.,;
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3.4 Simulation Results

3.4.1 Vehicle Model

This section presents applications of the proposed algorithm to the case of a car-like
robot. The robot’s dynamics follows the bicycle model with a no-slip assumption. The
state of the robot is defined by x = (z,y,6,v) where (x,y) are the coordinates of the
rear wheel, 6 is the heading angle, and v is the longitudinal speed of the rear wheel.
The control inputs are defined by (u,,us) where u, is the rear wheel longitudinal
acceleration and u, is the steering angle of the front wheel. Let L be the wheelbase.

The motion is governed by the following differential equations:
T =wvcosf, y=wvsinb, 9:%tanus, U= Uq (3.11)

with acceleration bounds u, € [@min, @maz|, steering angle bounds u, € [6min, Omaz),
and velocity bounds v € [Vpmin, Vmaz)-*

The weight matrix W can be used according to the relative importance of the two
inputs, longitudinal acceleration u, and steering angle u,, in the application. In this
work, we adopted a metric with consistent units, longitudinal and lateral acceleration,

for weighing the importance of the two inputs based on the following approximation

assuming small steering angle us.

2
a:\/a'§2+zj2Z\/®2+v202z\/u§+(%)2u§ (3.12)

Hence the matrix W is defined as

-1

(3.13)

For conservative approximation of the ICS, a finite subset Z of the entire set

of all possible future trajectories was chosen to include braking trajectories with

Yuq, € [—5,5] m/s?, us € [-5,5] deg., v € [5,20] m/s, L = 2 m throughout the simulations

76



Yo
x i
] ‘- 1[m]
y 2
(a) An example scenario with two obstacles and the robot moving at vy = 10 m/s

E safe input set E forbidden input set O safe input sample ® forbidden input sample

acceleration (m/s2)
acceleration (m/s2)

T 5 I S ?1 s
steering angle (deg) steering angle (deg)
(b) The baseline input space classification (¢) Sampling-based computation of three

generated in a brute-force way sequential Chebyshev sets

Figure 3-7: An example of the sampling-based estimation of the first three Chebyshev
sets

a set of constant controls {(@min,Omin), (@mins 0), (Gmin, Omaz)} applied over the time
necessary for the robot to stop. In addition, we added to Z trajectories with controls

{(0, 8min); (0, dpmaz) } applied over the time necessary to align with boundaries in cases

where the boundaries exist like the example shown in Figure 3-11.

3.4.2 Input Sampling and Chebyshev Sets

Figure 3-7a illustrates an example scenario for demonstration. The vehicle is assumed
to be initially at the origin and headed in the x direction, i.e. 6y = 0. The initial

speed of the vehicle was assumed to be vy = 10 m/s. Obstacles are at (11.0 m,—5.0
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Figure 3-8: (a-c) Means and standard deviations of the ratios of sampling-based
estimation of margins to the true margins (d) Mean and standard deviation of the
computation time across the different numbers of the samples

m) with radius 1.0 m and (12.0 m, 0.2 m) with radius 1.5 m. The robot shape was
assumed to be a circle with radius 1.2 m. Figure 3-7b presents the true sets of safe

inputs and forbidden inputs computed in a brute-force way for comparison purposes.

Figure 3-7c shows results of sampling-based computation of three sequential Cheby-
shev sets. The simulation assumed that the time interval was At = 0.1 sec. 300
samples were generated in the input space. The first Chebyshev set (the best input
in terms of margin) was to decelerate while heading toward the space between the
two obstacles. The second Chebyshev have the avoidance in a similar direction but

with a positive acceleration. This maneuver had less margin than the first Chebyshev
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set, meaning that the first maneuver was safer than the second in more uncertain sit-
uations. The third maneuver moved to the right side of the obstacles. This maneuver

had the smallest control margin among the three representative maneuvers.

Figure 3-8 shows the computational analysis based on input space random sam-
pling for the same scenario shown in Figure 3-7. In the results presented in Figure
3-8, each run returned a unique solution since the sampling strategy was uniform
random sampling. The ratio of the computed margins to the true margins and their
computation time have been presented for the different numbers of samples. It shows
the means and standard deviations from 1000 runs for each of the sample numbers.
All the margins exponentially converge to the true margins. In this particular exam-
ple, 100 samples were enough to ensure less than 20% error of margins on average.
However, the actual accuracy of solutions depends on the margin of the problem. If
an extremely small forbidden input set exists in the input space, for example, the
estimated margin largely overestimates it until it happens to sample an input in the
small forbidden set, of which the chances are as small as the portion of the size of the
forbidden input set. The convergence rate to the true margins would be poor in this

extreme case.

Figure 3-8d shows computation time depending on the number of samples. The
computation was performed on a 3.60GHz personal computer. The computation time
grows faster than linearly but slower than quadratically, approximately c- N146 where
¢ = 1.57 x 1075, The computation mainly consists of three components: 1) the first
half of Algorithm 1, sampling and safety check, 2) the second half of Algorithm 1,
margin computation, 3) finally Algorithm 2, Chebyshev center computation. The
worst-case time complexity of the whole algorithm is O(N?) due to margin computa-
tion. However, a fairly large portion of computation time was dedicated to sampling
and safety check, which is O(N); On average, 59.1% of the whole computation time
was dedicated to sampling and safety check, 40.3% was spent on margin computa-
tion, and 0.6% was spent on three Chebyshev center computation. In other words, the
main computational burden was from the safety check of the sampled input, because

it involved checking whether or not the input led to an inevitable collision state.
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Figure 3-10: Statistical results for quality of solutions and computation times depend-
ing on the search types and the depth of trees obtained from 1000 random obstacle
configurations

3.4.3 Comparison Across Tree Search Types

This section demonstrates performance of the proposed best-first search algorithm
compared to alternative search methods: exhaustive search and greedy search. Figure
3-9 illustrates an intuitive comparison of the search types in terms of the visited nodes.
Exhaustive search explores a fixed number M of children for each node, so the size
of the tree grows exponentially up until depth d. The best sequence on the tree is
searched over M? nodes at the final depth of the tree. Therefore, the computation

time also grows exponentially with the required depth of the sequence as shown in
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Figure 3-11: The comparison of explored trees and resulting obstacle avoidance mo-
tions between the different search types

Figure 3-10b. The solutions were mostly close to the the true optimal solution, but
sometimes it missed the true optimal solutions as shown in Figure 3-10a due to a
limited breadth M of the tree for practical reasons.? On the other hand, the best-
first search always returned the optimal solution, and computation times were fairly
small compared to the exhaustive search because of the efficient search strategy. It
is also because of a property that the higher an input margin is, the more likely the
state resulting from the input keeps having higher margin afterward as well since
forbidden input sets are computed in a predictive way using the notion of ICS. In
terms of computation time, the greedy search was efficient since it explored only the
single best node at each depth. However, the quality of solutions got worse as the
required depth increased.

In the computation analysis presented in Figure 3-10, the obstacle configurations
were generated randomly based on a Poisson process, which was adopted as a for-

est generating process in [108]. The locations of the obstacles were generated by a

2M was 3 in the simulations.
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homogeneous Poisson process with the rate of 5 x 1073/m?2. The obstacles were as-
sumed to have the same size 1.5m, and the vehicle was required to remain within a
corridor of width 20m. The time interval was set to At = 0.5sec. Random obstacle
configurations were instantiated 1000 times, and statistical results were presented.
The sampling strategy in the analysis was uniform deterministic grid sampling for
fair comparison between search types for the same scenarios.

Figure 3-11 showed explored trees and resulting motions up to depth of 6 for an
instance of obstacle configurations. The exhaustive search and the best-first search
returned the same solution for the maximum margin input, but the best-first search
explored more than 20 times smaller number of nodes compared to the exhaustive
search. The greedy search explored a single node at each depth, but the margin was

much smaller than the true maximum margin.3

3.4.4 Computation Comparison with RRT

The computational burden of the proposed maximum margin based obstacle avoid-
ance is compared to another typical sampling-based algorithm RRT. RRT has been
extended in various ways for various situations since its first proposition [96, 97]. In
this section, the proposed approach was compared with the standard RRT with uni-
form random sampling strategy and Euclidean distance metric to evaluate the benefits
of the proposed maximum margin-based approach. The comparison was performed
in 300 different instances of random obstacle fields for each of four different obstacle
densities in the Poisson forest setup shown in Figure 3-11. In this comparison, the
vehicle model in (3.11) with one-dimensional steering input us and a constant speed
v = 10 m/s has been used.*

Figure 3-12b shows statistical distribution of the required number of samples to
find a collision-free 40 m horizon trajectory for each algorithm in the same environ-

ments. The number of samples represents a core part of computations for sampling-

3A  receding horizon application of the approach is presented in a video at
https://vimeo.com,/119145787
4N = 7 has been used in Algorithm 1
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Figure 3-12: Statistical comparison of the required number of samples to find a
collision-free trajectory for the proposed algorithm and RRT in different densities
of obstacle fields

based motion planning algorithms and provides a machine-independent metric of
computation burdens. The proposed maximum margin-based algorithm had a more
uniform computation burden, independent of obstacle densities, compared to RRT.
The main difference of the proposed algorithm compared to the standard RRT was
that it biased the direction of tree exploration to the nodes with greater margins.
This led to bias toward the space where the likelihood of existence of collision-free
trajectories was higher. Hence, it required less computation burden than RRT in
high densities of obstacles, since the standard RRT does not consider information
about desirable directions for collision avoidance. Note that RRT with smart sam-
pling strategies considering collision information of prior samples could likely achieve
better performances. In the cases with low densities of obstacles, the proposed algo-
rithm tends to require more computation time than the RRT due to overhead related
to the default number of samples to estimate margins with enough accuracy. Note
that as opposed to RRT, the proposed algorithm as it is does not have a bias of

exploration toward unexplored spaces so it cannot incorporate potential goal states.
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3.4.5 Homotopy Evaluation

In this section, an example of homotopy evaluation is presented in a highway environ-
ment with multiple lanes. On a highway, the lane structure can be used to represent
homotopy classes as described in Section 2.3. Homotopies can be evaluated by control
safety margins by the proposed algorithm in the chapter. In this case where each ho-
motopy is evaluated individually, a greedy search is appropriate since each homotopy
usually does not have branches in navigation decisions. For the purpose of homotopy
evaluation, total margins over the sequence of Chebyshev sets are computed with

discount factors as below.

N
marginieta = Z v margin; (3.14)

i=1
where ¢ represents depth of the sequence.

Figure 3-13 shows sampling-based computation of margins in the input space at
each depth of the tree, their corresponding Chebyshev sequences in blue, and escape
trajectories at the end of the Chebyshev sequences in red. For the escape trajectory
candidates for checking inevitable collision states, the algorithm considered trajecto-
ries that converge to the corresponding target lane centers under simple PD controller
feedback based on the lateral position of the vehicle. Although there were more ho-
motopies than the represented three homotopies, only five homotopies exhibited at
most a single lane change. The other homotopies were determined to be infeasible
from the algorithm due to a high number of lane changes. In this particular example,
it could be concluded that a lane change to the right lane had the highest safety

margin.

3.5 Conclusions

This chapter proposed a method for safe navigation based on representative sam-
ple inputs. The representative inputs were chosen in safe input sets based on their

distances from forbidden input sets. The inputs were not.only the safest decisions
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Figure 3-13: Margin-based evaluation of homotopies on a highway

with respect to various unmodeled sources of uncertainties, but also were representa-
tive of groups of nearby input sets, resulting in similar maneuvers “homotopy”. This
approach provided an obstacle avoidance strategy based on the maximum control
margins. For computational efficiency, a sampling-based approach was adopted, and
its performance in terms of solution quality and computation time was analyzed. The
performance of the proposed algorithm has been presented through an example of a
car-like robot in a static obstacle configurations. Note that the sampling-based al-
gorithm can be applied to dynamic environments without any difficulty as long as
future information of the dynamic environments are provided deterministically. The
best-first search algorithm for a multiple-step horizon is proposed with the guarantee
of optimality by exploiting the properties of the problem, and its computational effi-
ciency is demonstrated. The evaluation of navigation decisions based on estimation
of safe input margin has been demonstrated in a simple highway environment. Fu-
ture work includes extension of the proposed obstacle avoidance algorithm to motion

planning algorithm where a given goal state is achieved.
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Chapter 4

Homotopy Navigation - Model

Predictive Control

4.1 Motivation

This chapter addresses the planning and control problem for a vehicle to safely nav-
igate through a homotopy class without collisions. The motion planning problem
in a homotopy class should be potentially solved more efficiently than the general
motion planning problem since there is no discontinuity in the solution space. This
chapter presents a method for efficient trajectory optimization method within a ho-
motopy class represented by a cell sequence. The proposed trajectory optimization is
a variant of model predictive control considering non-convex collision-free homotopic

constraints.

4.2 Related Works

A variety of algorithms to generate a feasible or optimal trajectory have been devel-
oped, and they can be sorted into two main types: combinatorial planning methods
and sampling-based planning methods [109]. Although combinatorial approaches can
be computationally expensive, they provide elegant and practical solutions [68] for

problems with certain convenient properties, i.e. low dimensional models. One of the
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main difficulties of the motion planning problems that have led to the development of
the two different types of methods comes from the nature of obstacles avoidance con-
straints. The proposed hierarchical approach based on a divide-and-conquer strategy
makes sub-problems much simpler than an original problem by considering a single

navigation decision that contains a continuous trajectory set.

In general, however, optimal trajectory generation with non-convex obstacle avoid-
ance constraints is a challenging problem. One of the simplest problem formulations
for this problem and its analytical and numerical solutions are provided in Appendix
A. Tt is shown that analytical solutions to the optimization problem are hard to
be obtained in general, and are computationally challenging. Receding horizon con-
trol frameworks have been widely used in practice for computational feasibility and
handling dynamic environment. Receding horizon control, also called model predic-
tive control (MPC) [110], is considered an attractive method to generate and ro-
bustly track feasible trajectories because of its systematic handling of nonlinearities
and constraints, and wide operating regions [111]. Recent advances in computing
systems have enlarged the range of applications of real-time MPC [86]. However,
real-time MPC is still computationally complex when considering obstacle avoid-
ance constraints. In order to achieve computational feasibility for real-time MPC, a
two-level approach where a point mass model [112] or motion primitives [112] was
computed for obstacle avoidance at a higher level, and a higher fidelity model are
employed for vehicle control at a low-level has been adopted. Anderson et al. [31]
also provided a MPC-based navigation method with a single navigation decision with
a one-dimensional steering input with a constant speed. The one-dimensional prob-
lem with linearization of the system and quadratic cost function, the optimization
problem reduces to a quadratic programming problem, one of the convex optimiza-
tions. However, in general, even with a single navigation decision, the problem is still

a non-convex optimization.

Mixed-integer programming has been widely used to solve trajectory optimization
problems. Although mixed-integer programming is an NP-complete problem [113],

tractable anytime solution algorithms have been developed. Richards et al. [98] pro-
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posed a formulation of the optimal trajectory generation problem into a mixed-integer
programming problem to handle the non-convexity of collision-free constraints. A key
idea lies in expressing non-convex polygons containing a convex polygonal hole as a
union of half spaces, then ensuring satisfaction of these half space constraints using
binary variables. This work was extended to the problem of regulating conflict res-
olution between agents by adding constraints on binary variables [114]. A similar
idea was proposed for trajectory generation under homotopy class constraints by in-
troducing binary variables that encode homotopy class information [115]. Here, the
thesis presents an efficient novel formulation of the mixed-integer programming prob-
lem by employing binary variables for the purpose of satisfaction of spatial constraint
sequences. In this formulation, the only independent binary variables are associated
with transition times between cells, so a significant reduction of the search space of

binary variables is achieved.

4.3 Trajectory Optimization

4.3.1 Problem Definition

The objective of the optimal kinodynamic motion planning problem is to generate
an optimal input profile minimizing a desired cost function and satisfying differential

and collision-free constraints. The optimization problem is formulated as follows.

wins - [ * g (x(r),u(r)) dr (41)
subject to x(7) = £ (x(r), u(r)) (4.2)
u(r) € (13)

Q(7) € Ciree for 7 € [to, tf] (4.4)

x(to) = %o, x(t5) = x; (145)
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where u(7) is the control input, x(7) is the robot state, and xo and x; are given
start and goal states. (4.2) is a state-transition equation in which kinematic and
dynamic constraints of a robot are specified through a state vector, augmented vector

of configurations q(7) and velocities q(7), i.e. x(7) = (q(7),q(7)).

4.3.2 Mixed-Integer Programming for Collision Avoidance

This section describes previous collision avoidance approaches, which serve as back-
ground of the proposed approach described in Section 4.3.3. Due to their non-convex
nature of collision avoidance constraints, problems often cause computation burden of
the optimal trajectory generation problem. Richards et al. [98] proposed a method to
handle non-convex collision-free constraints by formulating the optimization problem
as a mixed-integer programming (MIP) problem containing binary variables. A key
idea is to represent collision-free space with a convex polygonal obstacle as the union
of half spaces, as seen in Figure 4-1a. This is possible because the convex polygonal
obstacle can be represented as the intersection of half spaces, and the complement of
a half space is still a half space. The union of half spaces can also be represented as
the intersection of linear inequalities by introducing binary variables and a sufficiently

large constant M (hence the term Big-M method), as follows.

£l < bijk + M(1 — zij) for i € Zy jmy, j € Ly k € Zs (4.6)
Nz > Lfor j € Ly, k € Zo,y 4.7)
i=1

Zijk € {0,1} for i € Zy ;. j € Ly, k € Ly (4.8)

where m; is the number of half spaces for obstacle j (i.e., the number of edges of
convex polygonal obstacle j), n is the number of obstacles, and p is the number of
sampling points over the horizon. For each time step k, the half space outside of
the jth edge for obstacle ¢ is represented as fi’jqu < bijk, and is released or imposed

depending on the value of binary variable z;;; in (4.6). Note that this half space can
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vary with time step k and thus can handle dynamic obstacles. When z;;, = 0, the
half space f/;,qr < bij; is released due to the last term which is sufficiently large,
M > fl,dr — by, and when z;;; = 1, it is imposed since the last term vanishes. The
inequality constraint (4.7) ensures that at least one half space constraint is imposed

for each obstacle j and time step k.

This representation is useful since optimization problems with non-convex con-
straints can be formulated as mixed-integer programming problems. However, since
mixed-integer programming is an NP-complete problem, efficient formulation of the
problem is important for achieving reasonable computational performance. Such
methods may include exploiting prior knowledge or properties of the problem struc-
ture. For example, Kim et al. [115]| achieved improved computation time by removing
redundancies in the set of possible combinations of binary variables. For another ex-
ample, any point q cannot be in fjq < b, and fjq < b3 at the same time in Figure
4-1a, despite the fact that (4.7) allows this possibility.

One clear limitation of this problem formulation is that it applies to problems
with convex polygonal obstacles, and not to those with non-convex polygonal obsta-
cles. Formation of convex polygonal approximations of non-convex obstacles, while a

potential solution to this issue, could lead to highly conservative obstacle descriptions.

4.3.3 Mixed-Integer Programming with Cell Sequence Con-

straints

This section describes an efficient formulation of mixed-integer programming that
exploits knowledge of given homotopy constraints, i.e. sequences of interior disjoint
convex cells, that have been decomposed from collision-free constraints. Two main
properties of homotopy constraints are used in this formulation. First, the robot can
be located only in one decomposed disjoint cell at each time step, so that only one
convex constraint can and should be satisfied. This replaces inequality constraints
in the problem formulation with equality constraints, and significantly reduces the

search space of the combination of binary variables. Second, this thesis utilizes the
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fact that the sequence of convex cells is provided a priori. The binary variables 2’s,
indicating satisfaction of each of the cells, are not truly independent from each other,
and thus the replaced equality constraints still exhibit redundancies. By identifying
more restrictive constraints in the combination of variable 2’s, this thesis can improve

efficiency of the mixed-integer programming solution.

Fiqu < bik + M(l — Z,’k) for i e ZLND’ ke Zl’p (49)
Np

Y zp=lforkez, (4.10)
i=1

Np k—1

Y icaw— Y 6j=1fork€Z, (4.11)
i=1 j=0

p—1

> G=Np-1 (4.12)
k=0

zi, € {0,1} for ¢ € Zy n,, k € Zy (4.13)
0r € {0,1} for k € Zo s (4.14)

where Np is the number of convex polygons in the cell sequence. The convex polygons
are represented by a set of linear inequalities, F;zqr < bk, and their imposition is
encoded through binary variables z;; using vector M whose dimension is the same
as b;, and elements are large enough, M > F..qr — by in (4.9). Since decomposed
convex polygons are interior disjoint with each other, only one of them can be imposed
at each time step k, yielding the equality constraints of (4.10). z; are not independent
from each other since the convex polygon imposed at time step k does not change

arbitrarily when the sequence between them is given.

The core independent decision variables are transition times between convex poly-
gons. This decision freedom is expressed in constraint form through binary variables
Ok, indicating a decision of whether or not to move to the next convex polygon in the
sequence or stay in the current convex polygon at the next time step k + 1, as shown

in Figure 4-1d. ¢ will uniquely determine z;, through (4.11). For example, suppose
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(a) The collision-free space surrounding of a  (b) Homotopy constraints can be represented
convex polygonal obstacle can be represented by a sequence of disjoint convex polygons
by a union of half spaces

Ls
\\ CQ l'

(c) MIP formulation of trajectory optimiza-  (d) Transition indicator d;: binary variables
tion within homotopy constraint with contin-  representing whether to remain in the current
uous variables for control inputs uy and bi-  eell or move to the next cell in the sequence
nary variables for transition indicators d, at  at each time step &k
each time step &
Figure 4-1: Mixed integer programming with homotopy constraints represented by a
sequence of convex polygons

the robot remains in the ith convex polygon at time step k, then i = 1+ Zj;

é d;, i.e.
one plus the number of transitions until time step k. So, two inequality constraints.
(4.10) and (4.11), yield a unique solution of z; = 1 and V, 4z = 0. (4.12) repre-
sents a constraint on the robot’s arrival at the final convex polygon where the goal
configuration exists.

Combining the above with a cost function and a discretized model of the system
dynamics, the trajectory optimization problem becomes a mixed-integer programming
problem with standard continuous optimization variable, control input uy, at each time

step k, and the binary optimization variables involved in the homotopy constraints:

independent binary variables d; indicating transition decisions, and dependent binary
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variables z;, indicating imposition of corresponding convex polygon constraints. The
following problem formulation applies to a typical case with linearized system dynam-
ics and quadratic cost function, where the optimization reduces to a mixed-integer

quadratic programming (MIQP) problem.

min J zzp:kk’ Qi xx + pz_iuk' Ry ug (4.15)
o k=1 k=0

subject to Xp4, = Apxi +Brug (4.16)

Wnin < Ut < Uppag (4.17)

homotopy constraints: (4.9)-(4.14) (4.18)

4.3.4 Analysis of Problem Complexity

This section analyzes computational benefits of the proposed divide-and-conquer ap-
proach. Since homotopy constraints for local problems do not have holes, and can
be represented as sequences of convex polygons, the resulting optimization problem
can be solved in an efficient manner compared to the global problem with general
collision-free constraints. Although problem solution times clearly depend on the
performance of the particular mixed-integer programming solver, the problem formu-
lation has a great influence on computational performance. Specifically, an increased
number of combinations of discrete variables leads to a large search space and high
computational burden. This thesis analyzes the effect of reduction of the search space
of binary variables in MIQP by comparing the number of possible combinations of bi-
nary variables satisfying constraints in the original global problem and a decomposed
problem.

The possible number of combinations of binary variables are reduced by simply
replacing inequality constraints (4.7) with equality constraints (4.10) using interior
disjoint convex cells. In the case of inequality constraints of (4.7), the number of
feasible combination is {[[;_ (2™ — 1)}? . If this thesis assumes that all obstacles

have the same number of edges, m; = m , for the purpose of simplicity of analysis,
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it is (2™ — 1)" . On the other hand, (4.10) has (Np)? as the number of possible
combinations of binary variables, where Np is the number of convex cells. Np cannot
exceed the total number of edges  37_, m; since a convex cell has at least one obstacle
edge that is not shared with other cells. Similarly, for the case of m; = m , the
possible number of combinations is upper-bounded as (Np)? < (nm)P. So, the number
of possible combinations of binary variables becomes polynomial in the number of

obstacles n while it remains exponential in the number of horizons p.

In the case of the decomposed problem exploiting homotopy constraints, the vari-
ables z’s are not independent from each other and are uniquely determined by dj

through (4.11). The number of possible combinations of binary variables d; is “p

p!

b>
choose Np—17, i.e. Np DNy

under the assumption of enough sampling points
compared to the number of convex cells, i.e. p > Np. This means the number of
possible combinations does not monotonically increase as Np increases. More specif-
ically, the binomial coefficient is upper bounded as ( ND—l)!(];:!— N S ’("](\,A; D_—ll))! < eP.

So, the number of obstacles and edges of obstacles do not significantly affect the com-

putation time as much as in the pre-decomposed problem. Note that this reduction

of the search space comes from the fact that a cell sequence is defined ahead of time.

Note that constraint (4.9) that is imposed and released by a single binary variable
is a convex polygon, i.e. an intersection of half spaces, and thus it is more restrictive
than the single half space represented in (4.7). In terms of continuous optimization
variables, imposing more restrictive constraints could yield slow optimization perfor-
mance, however since convexity is preserved this influence on the total computation
time is here not as significant as the effect of the reduced search space of binary vari-
ables. So, the dominant cause of high computational burden is the extensive search
space of binary variables. In Section 4.4.1, actual computation times for example
problems are compared between undecomposed global problems and decomposed lo-

cal problems.

It should be noted that although Np does not affect the upper bound of the number
of possible binary variable combinations, the number of convex polygonal constraints

in (4.9) increases as Np increases. So, it is better to reduce Np as a means to improve
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(a) Scenario A (b) Scenario B (¢) Scenario C

Figure 4-2: Optimal trajectories for each homotopy class in scenarios with distinct
obstacle positions and with n = 2, p = 50 (The global optimal trajectories in red and
other local optimal trajectories in blue)

CW-CW ) cw-cew (¢) cew-cw COW-CCW

Figure 4-3: Four homotopies represented by cell sequences in the Scenario A

computational efficiency. For example, the triangular decomposition does not have
benefits compared to trapezoidal decomposition in terms of a reduced number of
constraints involving continuous variables. However, there is a trade-off since, for
example, determining a decomposition that uses the smallest number of convex cells
is NP-hard [116].

Finally, note that the number of local problems is equal to the number of loopless
paths on the adjacency graph, which is upper bounded by the number of loopless
homotopy classes, 2", where n is the number of obstacles. Although the growth of
the number of local problems is exponential, since each local problem with a loopless
sequence of cells uniquely corresponds to a homotopy class, a high-level evaluation

step can allow filtering of undesired local problems. For example, it may be possible to
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heuristically evaluate the desirability (e.g. likelihood of containing a feasible solution)
of a homotopy class based on the geometric properties of connected cells as in [61], as
discussed in Section 4.4.2. When heuristic costs are assigned to the adjacency graph,
it is possible to rank paths from the shortest to K-th shortest using Yen’s loopless
path ranking algorithm [117]. The time complexity of the algorithm is known to be
O(KN(E+Nlog N)) where E and N are the number of edges and nodes on the graph,
respectively. It is also potentially possible to reflect a human supervisor’s intention
in the selection of homotopy classes, so a single local problem that is consistent with

the human’s intention can be solved.

4.4 Results

The computational benefits of the proposed approach are first demonstrated for a
motion planning problem involving a simple point mass model. Next, a problem
involving vehicle navigation on a roadway is presented to show the benefits of corre-
spondence between navigation decisions and cell sequences. Finally, the application
to linear model predictive control with non-convex collision-free constraints is demon-
strated. All implementations (i.e. convex decomposition and graph search) except for
optimization were coded in Matlab. IBM ILOG CPLEX 12.5.1 was used for solving
the MIQP. The simulations were carried out on a 2.4GHz personal computer with

2GB of RAM.

4.4.1 Point Mass Example

Here the performance of the proposed approach is compared to a baseline approach for
a simple model of a two-dimensional point mass. The dynamics can be represented by
the linear model & = 4z, J = Uqy, Where u,, and u,, are accelerations in orthogonal
directions. The time scale and the size of environments are normalized as q(7) :
7 € [0,1] = (z,y) € [0,1]%, and start and goal configurations are given as z(0) =
0.1, y(0) = 0.1, and (1) = 0.9, y(1) = 0.9. The initial and final velocities of the robot
are chosen as £(0) = 0, y(0) =0, and (1) =0, y(1) = 0. The trajectory is designed
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Table 4.1: Comparison of the results of the scenarios in Figure 4-2

Divide-and-conquer approach

Undecomp:

Scenarios Cell Homotopy
approach

' decomp. cw-CW CW-CCW CCW-CW  CCW-CCW

A G (X107 13.2 - 134 168 189 13.2
comp. time (sec) (598.47) (0.82) (21.39) (28.69) (36.28) (16.03)

B e (X107 12.8 : 128 247 139 16.1
comp. time (sec)  (44.43)  (1.12) (18.84) (36.58) (15.90) (28.12)

o G (x1079) 11.7 : 161 368 117 161

comp. time (sec)  (20.48) (0.86)  (16.40) (43.17) (15.26) (24.37)

to minimize control effort, and the problem is thus formulated as a minimum-fuel
problem with a quadratic cost function J = fol (ua, + u2,)dr. Note that the square
root of the cost is the root-mean-squared acceleration, a,,,, = V.

Figure 4-2 and Table 4.1 present simulation results for three scenarios involving
two obstacles at these distinct positions. The MIQP formulation of the undecom-
posed global problem and decomposed local problem are implemented in the same
manner except for the handling of collision-free constraints (4.6)-(4.7), and homotopy
constraints (4.9)-(4.12), respectively. While the undecomposed global problem for-
mulation generated the globally optimal trajectory in each environment, the proposed
divide-and-conquer approach not only found the globally optimal trajectory, but also
optimal trajectories contained within each homotopy class. As a result, explicit com-
parison of the minimum cost of each locally optimal trajectory is possible. For ease
of recognition, the four homotopy classes in the scenarios are denoted by obstacle
avoidance directions. For example, homotopy cw — ccw avoids the lower-left obstacle
in the clockwise (cw) direction and the upper-right obstacle in the counter-clockwise
(ccw) direction.

In this particular example, it can be shown that the best solution among the
locally optimal solutions corresponding to each of homotopy constraints is the global
optimal solution. The optimal solutions corresponding to all loopless cell sequences

are monotonic in the sweeping axis (z-axis) of trapezoidal decomposition in Figure
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Figure 4-4: Computation time distribution comparison with the previous approach
from 1200 simulations with randomized locations and sizes of obstacles and varying
number of obstacles n and the fixed number of sample points over the horizon, p =
16
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Figure 4-5: Computation time distribution comparison with the previous approach
from 1000 simulations with randomized locations and sizes of obstacles and varying
number of sample points p over the horizon and the fixed number of obstacles, n — 3

4-2. Besides, any possible cell sequences with loops contain trajectories that are

not monotonic in z-axis. Since the objective in the problem is to minimize fuel,
trajectories that are not monotonic in the z-axis have a higher cost than that of the
trajectories that are monotonic in the z-axis. Therefore, the best solution among the

solutions corresponding to loopless sequences is the global optimal solution.
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The computation time of the undecomposed approach varied depending on the
scenario. The computation time for scenario A for the undecomposed approach was
observed to be an order of magnitude larger than the others due to the existence of
a locally optimal solution with a similar cost to the globally optimal solution. This
can be verified by examining the costs of the two homotopies ccw — ccw and cw — cw,
which are similar since the locations of the two obstacles are nearly symmetric about
the line connecting the start and the goal. (The homotopy ccw — ccw contains the
globally optimal solution.) In scenarios B and C, the globally optimal trajectories
were found much faster than scenario A in the undecomposed approach. In summary,
this example illustrates the fact that the required computation time (particularly for
the globally optimal solution) is highly sensitive to the specific configurations of a

particular scenario.

In contrast, it can be seen that the proposed divide-and-conquer approach exhibits
a fairly uniform computation time for this particular problem. Also, since each local
problem with homotopy constraints is independent from each other, their computa-
tions are parallelizable. In scenario A, even the summed corﬁputation times of each
solution is much less than the computation time for the global problem formulation.
However, in scenario C, the global problem formulation requires less computation
time than some of local problems since the global optimal solution in this case is a
straight trajectory with the minimum acceleration and deceleration toward the goal.
The RMS acceleration of the second best homotopies, cw — cw and ccw — cew, are
approximately 1.43 times greater than that of the best homotopy, ccw — cw. However,
the computation time for the global problem formulation remains greater than the
computation time for the local problem formulation with corresponding homotopy

constraints ccw — cw.

Figure 4-4 shows box plots of the required computation time for both problem
formulations from 1200 simulations with randomized location and sizes of obstacles,
with whiskers indicating 1.5 IQR. The number of obstacles, n, was chosen randomly
between 1 and 7. The locations and sizes of rectangular obstacles were randomized,

with minimum length of both edges of 0.1. The number of sample points over the
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Figure 4-6: Comparison of computation time histogram of the results in Figure 4-4

horizon, p, was fixed at 16. While the computation time to solve the undecomposed
global problem tends to increase as the number of obstacles increases, the compu-
tation time for the decomposed local problem remains bounded as the number of
obstacles increases to 7. Note that the computation times are shown in log scales.
This is consistent with the analysis in Section 4.3.4 and results from the exponentially
increasing number of possible combinations of discrete variables with n in the global
problem formulation, compared to the upper bound being independent of n in the
decomposed local problem formulation. In addition, the decomposed local problem
formulation exhibits a fairly uniformly distributéd computation time, while the global
problem formulation has a widely distributed computation time, as seen in the in-
stance of Figure 4-2 and Table 4.1. Figure 4-5 shows results for varying number of
sampling points, p, when the number of obstacles is fixed at n = 3. The computation
times for the decomposed problems grow slowly than those for the undecomposed
problems although they both increase exponentially with the number of sampling

points as discussed in Section 4.3.4.

Figure 4-6 shows computation time histograms of the results in Figure 4-4. A
distinet feature is that the computation times for the decomposed problems have
a bimodal distribution. In other words, it has been empirically observed that the

decomposed problems formulated in the proposed way can be classified into mainly
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two different classes of the problems with respect to the required computation times
for mixed integer programming. It is suspected that there is a certain class in the
formulated constraints that the MIP solver is able to easily pick an initial guess to
start the optimization efficiently with. This comprises one mode in the histogram and
the rest exhibit normal distribution in computation time. The bimodal distribution
explains the sensitive medians of the computation times for the decomposed problems
in Figure 4-4b.

This thesis highlights the fact that there is no guarantee of collision-free motion
between sampling points, though each sampling point is guaranteed to be collision-
free. Both formulations exhibit this limitation, which is inherent for optimization
approaches with discretized time steps. From a practical perspective, this issue can
be mitigated by increasing the number of sampling points or via obstacle dilation by
a desired tolerance. A more rigorous approach, developed in [118], can be used by
specifying sequences of cells with a denser decomposition in a way to ensure that any

line connecting two points in adjacent cells does not cross obstacles.

4.4.2 Vehicle Navigation on Roadways

As a second example, this thesis here analyzes a scenario involving vehicle navigation
on roadways, where trajectories with the minimum effort ensuring satisfaction of
driving requirements are generated for various navigation decisions. This could be
utilized as a decision making support system by quantifying the desirability of various
navigation decisions in terms of the minimum required acceleration levels. In this
simulation, a standard bicycle model with a no-slip assumption was employed in the

following form:
£ =wvcosf, y=wsinb, 9=%tanus, U= U, (4.19)

where L is the wheel base, u, is the longitudinal acceleration, and ug is the steering

angle of the front wheel.! For simplicity, the vehicle model was linearized about a

In the simulation, L = 2 m was assumed.
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nominal speed vy under the assumption of a small heading angle 6 and steering angle
Us.

i=v, §=uvb, 6= U—I?u b = uq (4.20)

The objective was to minimize the root-mean-squared acceleration, so the quadratic
cost function in terms of the control inputs u, and us was constructed and approxi-

mated as follows.

J= /0 (6 + (6))dt ~ /0 (02 + ()22 (4.21)

where T is the prediction horizon. Then, a,,s = \/7/7 is the root-mean-squared
acceleration of the trajectory, so that no tuning parameters are introduced in the
comparison of optimal trajectories between various navigation decisions, and the cost
retains a physical meaning.

Figure 4-7 shows the simulation result of the simple case where two navigation
decisions exist. In on-road navigation, the vehicle is expected to remain within the
road boundaries and a goal point is often not precisely specified. However, it is
generally desirable for the vehicle to align with the principal direction of the road, so
the final heading angle can be regulated to be aligned with the road, i.e. 8(T) = 0 in
this simulation. The feasible input range was set to —4 < u, <4 m/s?, —10 < u, < 10
deg, and —15 < 4, < 15 deg/s. The prediction time horizon T' was 2.5 sec and the
number of sampling points p was 50, so that the time interval between sampling points
is 0.05 sec.

A and B in Figure 4-7 are the optimal trajectories associated with two different
navigation decisions. Since a goal point is not specified, it is impossible to determine
whether or not the two trajectories are homotopic. However, the two trajectories
correspond with different sequences of cells, so that the navigation decisions are dis-
tinguished in this case. In trajectory A, moving in a clockwise manner about the
obstacle, the vehicle was required to both steer and reduce the speed to avoid the
obstacle. Whereas in trajectory B, moving in a counterclockwise manner about the

obstacle does not require the vehicle to modify its speed. The required minimum
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Figure 4-7: Optimal trajectories for two different decisions in vehicle navigation on
roads: af,,, = \/J*/T are 4.5 m/s? and 2.1 m/s? for A and B, respectively

Table 4.2: Costs of the optimal trajectories and computation time of the simulation
of Figure 4-8

Feasible sequences  af, .  Comp. time
of cells (m/s?) (sec)
Cq2 0.04 0.146
Cio — C3, 0.94 0.248
Ci2 — C31 — Ca 3.78 0.216
Cazg = C31 = Coo 240 0.269

RMS accelerations for collision avoidance are explicitly compared, and it can be ob-
served that avoiding the obstacle in a counter-clockwise manner results in lower cost
trajectories.

Figure 4-8 and Table 4.2 show identified feasible trajectories for different naviga-
tion decisions on a highway; in this example, only four navigation decisions contained

feasible trajectories among many navigation decisions with different goal nodes. The
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Figure 4-8: Optimal trajectories for different navigation decisions

likelihood of navigation decisions to contain feasible trajectories, or the desirability
of various navigation decisions, can be evaluated heuristically based on the geometric
properties corresponding to various sequence of cells. For example, if a unit cost is
assigned to each edge of the graph, the cost of an identified path is equivalent to the
number of lane changes, and thus it is possible to restrict the maximum number of
lane changes since a high number of lane changes is generally not desirable from a

practical perspective.

In the simulation of Figure 4-8, it is assumed that other vehicles are moving at a
constant speed and maintaining their current lane position. The speeds of obstacles
were 18 m/s, 14 m/s, and 18 m/s for Oy, O, and Os, respectively. The ranges of
feasible input were —4 < u, <4 m/s?, —30 < uy < 30 deg, and —60 < u, < 60 deg/s
and the prediction time horizon was 3 sec, and the number of samples p was 20, so

that the sampling time At was 0.15 sec.?

2 A video of the simulation is available at https://vimeo.com /96673683
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Figure 4-9: Vehicle model for control

4.4.3 Model Predictive Control with Non-convex Collision-

Free Constraints

This section shows an example of a MIQP formulation used in a linear model pre-
dictive control framework. MPC is a receding horizon control approach where the
optimal input sequence is solved online with a designed cost function and required
constraints. Linear MPC is frequently used due to its computational benefits, since
optimization problems with quadratic cost function and convex polygonal constraints
reduce to quadratic programming (QP) problems, a convex optimization.

Due to the non-convexity of collision-free constraints, most linear MPC-based
vehicle navigation frameworks are decomposed into two stages. In a high-level stage, a
desirable reference trajectory is generated with motion planning algorithms that often
employ a simple vehicle model. In the low-level stage, deviation from this reference
trajectory is penalized via a cost function without imposing non-convex constraints.
In this decoupled approach, it is common to use a simple vehicle model in the motion
planning stage to reduce computational burden for handling non-convex collision-
free constraints. However, simply penalizing dcviéition from the reference trajectory
computed based on the simple model does not guarantee collision avoidance for the

controlled vehicle. In contrast, this thesis shows an efficient way of incorporating non-
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convex constraints into the optimization problem, specifically a MIQP formulation
for running linear MPC with non-convex collision-free constraints.

Fig 4-9 shows the states of the bicycle model with slip, and definition of side slip
angles. The dynamics of the vehicle model is computed as below, where the two
inputs are the longitudinal tire force for braking F, and steering §. It is assumed that

the braking force is distributed at a fixed ratio b, i.e. Fyp = bF,, Fpr = (1 — b)F.

X = wv,cost) — v, siny (4.22)
Y = wysineg + v, cost ' (4.23)
Y = w (4.24)
Uy = —%(Fxf cosd — Fypsind + Fy,) + vyw (4.25)
vy = %(Fﬁ sind + Fyrcosd + Fy,) — vpw (4.26)
w = i—;{lf(me sind + Fyfcosd) — I, Fy)} (4.27)

Normal tire forces are assumed to be constant, and lateral tire forces are assumed
to be linear with respect to the side slip angles. The side slip angles are approximated

as below.

Fyplay) = pF.sCroy (4.28)
Fy(oy) = pF,Cra, (4.29)

ap(d, v, vy, w) = 0 ” (4.30)
1,
(Vg Uy, w) R B (4.31)
Uy
L
F,p= mglf 1 (4.32)
Ly
F,. = 4.3
T (4:33)
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Figure 4-10: Single time step results of optimization with a non-convex safe region
constraint detected by a visibility sensor model with the snap shot of CarSim visual-
ization
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Figure 4-11: The resulting trajectory of the vehicle controlled in MPC framework
with a non-convex collision-free constraint shown in Figure 4-10

The nonlinear vehicle dynamics is discretized and linearized about current states
and previous inputs. The resulting dynamics is represented as a linear system in the

following form [119].

Xpp1 = AXp + Bug + g (4.34)

Figure 4-10 and Figure 4-11 illustrate a snapshot and a resulting trajectory of a
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Figure 4-12: MPC inputs (i.e., longitudinal tire force and steering), resulting side slip
angles, resulting friction utilization (i.e., normalized magnitude of each horizontal tire
force with respect to each normal tire force), and resulting accelerations in units of
gravity acceleration g

vehicle controlled in CarSim based on the proposed MPC framework for an obstacle
avoidance maneuver. The vehicle is assumed to have low-resolution visibility sensors
with a limited range of 30 m and tries to change lanes without collision as soon
as it detects the obstacle ahead. The initial speed of the vehicle was 80 km/h. A
standard passenger vehicle (i.e. sedan) model was employed in CarSim.* Collision-
free constraints were constructed as non-convex polygons dilated by the size of the
vehicle from the safe region detected by sensor models. Non-convex polygons were
decomposed into multiple convex polygonal cells by trapezoidal decomposition, and

the cell sequence constraint from the starting cell to the goal cell was imposed in the

3m = 1650 kg, I.. = 3234 kg-m?, lr=14m,, =21m,C;=10,C, =10, p=1,b=0.7
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form shown from (4.9) to (4.14).

The feasible input constraints —umg < F, < 0 N, —20 < § < 20 deg, and
—20 < 6 < 20 deg/s were expressed and imposed in polyhedral form. Terminal
constraints for alignment with the lane center were also imposed, i.e. yaw angle ¢
and position Y at the final step of the horizon. The cost function was designed to
minimize the magnitude of the front tire force and the deviation from the lane center.
The sampling time for prediction was 0.05 sec, and the number of the prediction
horizon and control horizon steps were 60 and 30, respectively. The control steps
over the entire prediction steps were equally distributed, i.e. a control move per
every 2 steps was optimized. The MPC control loop was run at 20 Hz.

Figure 4-12 shows the executed input from the model predictive controller and
the measured resulting states of the controlled vehicle in CarSim.* For obstacle
avoidance and to ensure that the vehicle remained within the road, both steering and
brake inputs were imposed minimally with respect to the resulting front tire friction
forces based on the slip bicycle model. Asymmetry between the left and right side
of the vehicle in slip angles and tire forces was not significant to cause instability or
collisions in this minimal control example. The vehicle was successfully controlled

with the friction utilization up to 0.82 and lateral acceleration up to 0.7g.

4.5 Conclusions

Here the chapter has solved the kinodynamic motion planning problem in a two-
dimensional polygonal space based on a divide-and-conquer approach. An efficient
formulation of mixed integer programming (MIP) has been presented as a method
to exploit desirable properties of local problems decomposed from the global prob-
lem. This method has been compared to the previous MIP formulation, and the
reduction in complexity that could be achieved under the proposed method has been
both analyzed and demonstrated through a number of simulations. Also, trajectory

optimization for each distinct navigation decision has been successfully shown in the

4 A video of the simulation is available at https://vimeo.com/126836637
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context of decision making support for vehicle navigation. Finally, the chapter has
shown that the proposed MIQP formulation fits into a linear model predictive control

framework with non-convex collision-free constraints, which can serve as a feedback

control law.
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Chapter 5

User Study -
Semi- Autonomous/Autonomous

Vehicle Navigation on Highways

5.1 Introduction

This chapter describes a user study of the semi-autonomous/autonomous vehicle nav-
igation on highways based on the proposed homotopy-based navigation framework.
The impact of automation on drivers is an interesting and essential question, and
requires a fundamental understanding of human factors to develop acceptable and
safe designs for the automated systems [5]. It is stated that “human factors research
about how drivers react and perform in automated vehicles is identified as one of
three key areas of research for advanced automated vehicles systems with electronic
control system safety and development of system performance requirement [24].” It is
also pointed out that “the key issues with the driver assistance systems are how such
systems work in real traffic and how drivers react when driving with such systems
such as behavioral effects in short and long term, mental workload and acceptance

[12].”

The user acceptance of and experience with ADAS and autonomous vehicles are
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inconsistent in various studies [120]. The results of user acceptance and experience,
of course, would depend on specific automation devices. This thesis investigates user
acceptance of the proposed homotopy-based framework applied to highway driving.
The chapter summarizes a way to apply the proposed homotopy-based navigation
framework to highway driving applications, and shows results of experiments with
recruited human subjects to evaluate driving performance and user acceptance of

different levels of autonomy.

5.2 Methods

5.2.1 Participants

Human subject recruitment was focused on relatively healthy and experienced drivers.
Participants were required to have been licensed for a minimum of 3 years, and self-
report driving at least once per week. Additional requirements consisted of being in
self-reported good health for one’s age, being fully comfortable speaking and reading
English, and having no major illness resulting in hospitalization in the past 6 months.
A diagnosis of Parkinson’s disease or other neurological problems along with psycho-
logical or psychiatric disorder were also exclusion criteria. 26 subjects were recruited
across four groups distinguished by gender and age: younger (20-29) male and female
group and older male and female group (55-69). The mean and standard deviation
of the ages of each group is presented in Table 5.1 along with the number of sub-
jects. Recruitment procedures and the overall experimental protocol were approved

by MIT’s institutional review board, and compensation of $60 was provided.

5.2.2 Apparatus

The experiments were carried out in the MIT AgeLab fixed-base driving simulator
shown in Figure 5-1a, a full cab 2001 Volkswagen New Beetle, which has been used
in many previous studies in the AgeLab [121|. A 2.44 m by 1.83 m projection screen

was positioned 1.93 m in front of the midpoint of the windshield and provided an
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Table 5.1: Mean age (and standard deviation) of participants grouped by the age and
gender

Gender .
Age group Female Male Combingd
M 5. M SD M SD
244 (3.65) 24.1 (3.02) 243 (3.14)

Younger (20-29)

(n :(5) ) (n —'( 7) ) (n --(12) :
,, 61.0 (4.11) 625 (3.94) 61.6 (3.95
Older (55-69) (n - 8) (n = 6) (n = 14)

(a) MIT AgeLab fixed-base simulator user in- (b) A view from the inside of the vehicle
terface

Figure 5-1: Driving simulator for the user study

approximately 40° view of the virtual world at a resolution of 1024 x 768 pixels.
Figure 5-1b shows a picture taken from a rear seat of the vehicle. Graphical updates
were generated at a frame rate of 50 Hz using CarSim Driver Simulator version 8.2
based upon a driver’s interaction with the steering wheel, brake, accelerator, and turn
signal switches. Auditory feedback consisting of engine noise and braking sounds was
provided through the vehicle’s sound system. Instructions and audio tasks were pre-
recorded and also presented through the vehicle sound system. Driving performance
data were captured at 20 Hz.

The simulation scenario consisted of a highway with four lanes. Lane width was
5.0 m and the posted speed limit was 55 mph (88.5 km/h, 24.6 m/s). Figure 5-2
illustrates a simple way to model traffic motion on the highway. A vehicle was mostly
in the “normal” driving mode where the speed and the lanes were kept. However, it

went into “transition” mode with a specific probability at each time step where the
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speeds of the vehicle increased or decreased for a certain period of time. After this
speed change, it went back into normal driving mode again. As soon as it went into
normal driving mode, random events to change the mode to the transition mode was
again activated. The aggressiveness of the highway traffic has been adjusted by the

probability p of entering the transition modes.

For each vehicle

while transitioning At each time step while transitioning
/777y (during ™) p p (during T) ~ 7~
transition mode: normal driving mode transition mode:
speed up - keep a constant speed and lane speed down
S~ ~o - v A .’ ’
1-2p

recycling module
keep a consistent number of vehicles
(once a vehicle gets out of the region of interest, it is
recycled as a new vehicle approaching to the region of
interest around the host vehicle)

collision avoidance module
prevention of collisions
between vehicles

Figure 5-2: Simplified traffic modeling for the highway simulation

During this traffic speed adjustment, the speeds of the vehicles were regulated

traffic
max

traffic
min

by the upper v and lower v bound for realistic traffic simulation. Also,
in order to prevent collisions between vehicles, an appropriate deceleration for each
vehicle to avoid inevitable collision states with leading vehicles has been applied.
This longitudinal ICS avoidance was based on a simple analytical calculation in a
conservative way, which is shown in AppendixH. In this particular experiment, eight
vehicles were placed on a highway with four lanes. The minimum speed and maximum
speed of the target vehicles were set to 18 m/s (40.3 mph, 64.8 km/h) and 31 m/s
(69.3 mph, 111.6 km/h), respectively.

The traffic was also adjusted according to the behavior of the host vehicle con-
trolled by the operator or the automation system to have an effective density of traffic.
This was achieved by traffic recycling as shown in Figure 5-3. Once a vehicle departed

the region of interest around the host vehicle, it was recycled as a new vehicle around

the boundary of the region of interest, termed the recycling zone.! The recycled vehi-

1S =200 m, =

— m B . .
recycling =110m, z = 20 m were used in the experiment.

'
recycling recycling
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cles were recreated in either the front or rear recycling zone. If it was recycled in the
front recycling zone, the speed of the new vehicle was chosen randomly with uniform
distribution between vj, and v, - 10 m/s where vy, was the speed of the host vehicle at
the moment. This made the recycled vehicle slower than the host vehicle so it would
approach the host vehicle from ahead. Similarly, if the vehicle was recreated in the
rear recycling zone, the speed of the new vehicle was chosen randomly with uniform
distribution between vy, and v, +10 m/s so it would approach to the host vehicle from

behind.

region of interest

-

Jec
T T

recycling ZT f

recycling

m '
xr :
recycling

T

m

"‘Brecycling

:I recycled
recycled D

rear front
recycling recycling
zone . zone

Figure 5-3: Vehicle recycling for an effective density of traffic

5.2.3 Homotopy-based Assistance Systems

Both semi-autonomous and fully-autonomous driving assistance systems based on
the proposed homotopy-based algorithms were implemented in the highway driving
application. Along with manual control (i.e. a regular vehicle without assistance
systems), three driving modes with different levels of autonomy were evaluated by
the participants. In highway applications, the notion of homotopy classes could be
interpreted as distinct lane change decisions as illustrated in Figure 5-4. Although the
lane change decisions were not exactly the same as the traditional topological notion
of homotopy classes, it was practically useful to utilize the lane structure in homotopy

classification to enable a consistent decision making unit with human operators.
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Figure 5-4: The proposed homotopy-based navigation framework can be directly
applied to the highway navigation by interpreting lane change decisions as homotopies

. Regular | Semi-Autonomous | | Fully-Autonomous |
(Manual Control) Vehicle Vehicle
Human
Human

Figure 5-5: Proposed three different driving modes based on hierarchical task alloca-
tion between human and machines

Figure 5-5 presents the three proposed driving modes based on the homotopy-
based hierarchical framework. In the “regular” vehicle mode, the vehicle was controlled
manually by the traditional interface (steering wheel, accelerator, and brake). In
the “semi-autonomous” mode, the lane change decision was provided by the human
operator using turn signal indicators, and the vehicle remained within the chosen lane
by steering itself and adjusting its speed to avoid collisions with other vehicles in the
lane. The “fully-autonomous” mode controls the vehicle with full control authority

including making lane change decisions adjusting speeds and steering.

In homotopy identification, the automation system first predicted the motion of
the other vehicles on the road to have a constant speed in the near future. The
time step over the horizon was 0.5 sec and the number of steps was 30. Based on

the cell decomposition and conservative construction of adjacency graph presented
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Figure 5-6: Highway semi-autonomous navigation architecture

in Section 2.5, all possible lane change decisions could be enumerated using a graph
search algorithm. In the experiment, the automation system considers distinct lane
change decisions with at most a single lane. The homotopy evaluation step evaluates
cach lane change decision based on simple heuristics (e.g. distances with adjacent
vehicles in the lane) or estimated safe control margin which was presented in Chapter
3. For a chosen homotopy, the vehicle was controlled by a model predictive control
framework based on mixed integer programming with collision avoidance constraints,
which was presented in Chapter 4.2

The semi-autonomous mode requires interaction with human operators. Figure
5-6 illustrates the framework of the homotopy-based semi-autonomous mode for high-
way navigation. The human operator’s lane change decision is received from the turn
signal switch from the operator. The system identifies the possible lane change deci-
sions assuming a single lane change at a time. Once the human’s target lane change

decision is identified, the system evaluates the desirability /safety of the decision, and

2Videos for each of the systems are available at https://vimeo.com /148655301 for the regular vehi-
cle, https://vimeo.com/146726716 for the semi-autonomous vehicle, https:/ /vimeo.com/ 147500373
for the fully-autonomous vehicle.
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respects or ignores it. If a vehicle exists in the target lane within a certain longitu-
dinal distance to the host vehicle or an estimated margin of the target homotopy is
smaller than a certain threshold, the lane change decision is determined to be unsafe
and ignored. When it is determined to be safe, the vehicle changes lanes by applying
target lane centers as a reference trajectory of a model predictive control framework
with collision avoidance constraints presented in Chapter 4. When it is determined
to be unsafe to make lane changes requested by the human operator, the system ig-
nore the lane change request and keeps the current lane. When this happens. visual

feedback is provided to the human operator through LEDs as shown in Figure 5-7.

Visual feedback
(when lane change

request is canceled)

Figure 5-7: User interface for the semi-autonomous vehicle mode

Computation of homotopy identification, evaluation, selection, and navigation
have been performed in a personal computer with 3.60 GHz i7 CPU and 8 GB of
RAM. The homotopy identification, evaluation, and selection have been implemented
in C++. Formulation of the homotopy navigation problem in MIQP has been imple-
mented in MATLAB, and the resulting MIQP has been solved by IBM ILOG CPLEX
12.5.1. The different programs running at the same time were communicated with
cach other using LCM (Lightweight Communications and Marshalling) [122]. The
computation for the entire process including homotopy evaluation and vehicle control

has been successfully run in real-time at 5 Hz.
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5.2.4 Procedure

Upon arriving at the MIT AgeLab, participants were given an overview of the exper-
iment and the three different driving modes: regular, semi-autonomous, and fully-
autonomous vehicles. Participants were then guided to the simulator and adjusted
the driver’s seat and steering wheel so that they were comfortable.

In the overview of the study, participants were given explanation for the differences
of the driving modes, speed limit, and performance criteria. They were told that
the driving performance would be measured based on two criteria: the first and
most important criterion was safety, and the second criterion was to maintain speed
around 55 mph. The participants were paid a minimum of $50 for the participation
and were told that they have the opportunity to earn a $10 incentive based upon
their performance. Also, they were told that would lose $2 for every crash and $2 for

every traffic ticket from the bonus they accumulated.

I Round 1 >

r Randomized order of three modes —l

~

» &
>

5 min Smin  5min S min 5 min Smin  Smin

3 Round 2 >
Randomized order of three modes _L

U| s ‘ ..Imm\

10 min 10 min 10 min

Figure 5-8: The procedure

The main procedures for the driving study is illustrated in Figure 5-8. The study

srimarily consisted of two parts with three different driving modes for each, after 5
I y g ;
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minutes of driving to provide participants with familiarity with the simulator. During
each part, the drivers were asked to drive each mode once in a random order. As the
training process for the operators was a critical component for successful automation
[123], drivers were provided with a 5 minute training period prior to each evaluation
period to practice each driving mode in first half of the experiment. Before each
driving mode, recorded audio instructions were provided to the drivers to explain the
features of each driving mode, as follows:

[Before “Regular Vehicle” drive (manual control)] The driving mode for this session is
standard driving without assistance systems, in other words, a regular vehicle. You are
asked to drive using the traditional driving interface i.e., steering wheel, turn signal,
accelerator, and brake pedal. Remember that your first performance priority is safety,
and the second priority is to maintain your speed near the speed limit of 55mph.
The session will begin with a short training drive to help you become familiar with
regular driving. During the training portion, you will be prompted to make several lane
changes so that you become accustomed to doing this under manual control. After the
training drive, a prompt will ask you to continue driving as you normally would. At
that point, you may continue driving in one lane, or move into other lanes as desired

so you are comfortable with the traffic flow.

[Before “Semi-Autonomous Vehicle” drive] The driving mode for this session is semi-
autonomous control. In this version, traditional driving interfaces such as the steering
wheel, accelerator, and brake pedal will not affect the control of the vehicle. You do
have the ability to indicate if you want the vehicle to change lanes. Unless you indicate
you would like to change lanes, the vehicle will automatically stay in the current lane
and adjust the speed as needed due to the traffic in front of you. To indicate you would
like to make a lane change, move the turn signal up if you would like to move into the
right lane, or down if you wish to move into the left lane. Once you move the turn
signal up or down, immediately move the turn signal back to the default position; if
you leave the turn signal in the turn position, the vehicle will think you want to move
over more than one lane, so do remember to move the turn single back to the default
position right away. As soon as you indicate your intention to change lanes, the vehicle
will automatically change lanes when it determines it is safe to do so. When deciding
if you would like to change lanes, please refer to the rearview mirror located in the
upper right-hand corner of the screen to check for oncoming traffic. Remember that
your first priority is driving safely, as if you were in a real car. The session will begin
with a short training drive to help you become familiar with semi-autonomous control.
During the training portion, you will be prompted to make several lane changes so
that you become accustomed to the system. After the training drive, a prompt will
ask you to continue driving as you normally would with this system. At that point,
you may continue driving in one lane, or move into other lanes as desired so you are

comfortable with the traffic low.
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[Before “Fully-Autonomous Vehicle” drive| The driving mode for this session is fully-
autonomous control. In this version, traditional driving interfaces such as the steering
wheel, accelerator, brake pedal, and turn signal will not affect the control of the vehicle.
The vehicle will determine when to accelerate, brake, and change lanes. The session will
begin with a short training drive to help you become familiar with fully-autonomous
control. After the training drive, a prompt will notify you that the evaluation portion
of the study will begin.

After each driving mode, participants were asked to complete a questionnaire
related to their experiences for their most recent driving mode. The items of the
questionnaire are presented in the following section. After the first half of the study,
participants were given a short break and continued the second half of the study
where they were allowed to do activities other than driving. The instruction provided
to the participants before the second half of the study is given in the below.

In this half of the study, we would like you to imagine you are going on a long car trip.
Just as in real life, you want to get to your destination safely and on time. You may
continue driving in one lane, or move into another lane so you are comfortable with
the traffic low. You are welcome to use your cell phone as you imagine you would
during such a drive - feel free to call or text a friend, check your email, play music,
or whatever other activity you feel comfortable doing in each driving scenario. You've
also brought along some magazines, today’s paper, and some snacks that will be kept
on the passenger’s seat (point to items on table). Please help yourself to any of these
items at any point while you are driving.

You are not obligated to use any of these items, and driving safely as you would in a
real car is still your first priority. However, if you imagine you would use these items
while driving in real life, please use them today.

After the second round of the three different driving modes with questionnaires
in between, the study finished with participants answering a post-experiment ques-

tionnaire and being paid compensation.?

5.2.5 Measures
Objective metrics - Vehicle control metrics

Various metrics were used to quantify differences of driving performance between hu-

man drivers and automation systems. The number of speeding tickets was measured

3Results of post-experiment questionnaire are presented in Appendix F
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as a driving performance metric. The number was counted as the number of times
the speed exceeded 60 mph (96.6 km/h, 26.8 m/s) even though the posted speed
limit was 55 mph (88.5 km/h, 24.6 m/s). Also, root-mean-square (RMS) value of
acceleration over the driving time was measured to quantify the longitudinal input

effort and energy efficiency, as

1 [
™ = [= | a(t)dt (5.1)
tf 0

Jerk and yaw acceleration are key metrics related to driving comfort [124, 125|.
The number of peaks in jerk was used for measuring the number of high threat events
that required sudden changes in acceleration. The number was counted as the times
the jerk exceeded 5 m/s3. The number of yaw acceleration peaks was also used to
measure sudden direction changes of the vehicle. The number was counted as the
times the yaw acceleration exceeded 5 deg/s?.

In terms of safety margin, distances from the front vehicle and rear vehicle in the
lane could be used as simple metrics. The root mean square value of the distances
over the driving time was used for quantifying capabilities of maintain its safe vehicle
spacing. However, safety does not simply continuously increase as the distance in-
creases. In other words, if the distance to the vehicles exceeds a certain bound dyoung,
it does not affect perceived/actual safety. Considering this bound, the RMS distance
to the front vehicle was measured using the minimum value of the distance and the

bound as the following;:

rms \/ % / " {nin([x(8) — Xtont(8)], doouna) }2 dt (5.2)

The RMS distance to the rear vehicle was also measured in the same way. In the
experiment dypou;,q Was chosen to be 60 m.* The distance, which is an alternative

metric to time-to-collision (TTC), is used in the thesis since it is proportional to

4An approximation of the stopping distance g—z with a speed v = 25 m/s and acceleration a = 5
m/s
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2015p
Workload & Boredom Ratings

Please circle a point along each scale that best corresponds to how much workload you felt was
involved in driving. Workload is best defined by the person doing the task and may involve
mental effort, the amount of attention required, physical effort, time pressure, distraction or
frustration associated with trying to do the task while continuing to drive safely. Please also circle
a point along each scale that best corresponds to how much boredom you experienced during each
type of driving.

A. Driving the vehicle without autonomous capabilities (Manual Control):

Workload

e @ O & o ¢ o &6 o & © © o O 9 O & & o o o

Low o 1 2 3 5 6 7 8 9 10 High
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B. Driving the Semi-Autonomous (Assisted-Driving) vehicle
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C. Driving the Fully-Autonomous (Self-Driving) vehicle
Workload
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Low 0 1 2 3 4 5 6 7 8 9 10  High
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Figure 5-9: A part of the questionnaire related to workload and boredom rating

TTC and a more favorable metric to human operators.
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Subjective metrics - Questionnaires

Subjective workload and boredom ratings were obtained from questionnaires. A part
of the questionnaire is presented in Figure 5-9. The workload and boredom were
assessed using a single global rating used in [126] per driving mode, where the scale
consisted of 21 equally spaced dots oriented horizontally with the numbers 0 through
10 equally spaced below the dots and end points labelled 'Low’ and ’High’ on the
left and right, respectively. The rating scales for all driving modes of a single run
were presented on one sheet, which allowed participants to rate items relative to
each other. Participants were instructed to “circle a point along each scale that best
corresponds to how much workload/boredom they felt was involved in driving.” Also,
the definition of workload was defined in the sheets by “mental effort, the amount of
attention required, physical effort, time pressure, distraction or frustration associated
with trying to do the task while continuing to drive safely.” This approach was chosen
also by previous work [126] based on its consistency of workload rating with relative

rankings obtained using the NASA-Task Load Index [127, 128].

Other than workload and boredom rating, various measures were selected from
well-established models of technology acceptance and usability in various fields such
as human factors, human-computer interaction (HCI), and management information
systems (MIS). Extensive studies have sought key factors that influence technology
acceptance. Various models have been developed to explain how different factors
affect user technology acceptance [129]. Table 5.2 shows factors that were selected
in this work to compare user responses for different levels of vehicle automation on
highways. The factors were selected among the list of dominant models in the field

presented in Table D.1 in Appendix D.

The model, referred to as the technology acceptance model (TAM), was developed
by Davis [130] to characterize user acceptance of computer-based information systems.
The two main factors of TAM were perceived usefulness and ease of use. Innovation
Diffusion Theory (IDT) developed by Rogers [131] has been also one of the earliest

influential frameworks to explain technology acceptance in a variety of innovations.
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Table 5.2: Selected measures

Measure Constructs

Perceived Usefulness  Perceived usefulness in TAM, relative advantage in IDT,
performance expectancy in UTAUT

Perceived Ease of Use Perceived ease of use in TAM, ease of use in IDT, effort
expectancy in UTAUT, satisfaction with interface and
annoyance in Usability

Perceived Safety Perceived safety in CTAM
Anxiety Anxiety in CTAM and Usability
Sense of Control Control in Usability

Fun Fun in Usability

Likability Preference and liking in Usability

It was refined to be used in individual technology acceptance by Moore and Benbasat
[132]. In 2003, Venkatesh et al. [133] presented a unified model, called Unified Theory
of Acceptance and Use of Technology (UTAUT), integrating eight previous models
for user acceptance. Perceived usefulness and perceived ease of use had been main

factors concluded to be crucial across various models.

In the automotive context, a theoretical car technology acceptance model (CTAM)
[134] was developed to explain drivers’ acceptance of in-car technology by extending
UTAUT. The perceived safety and anxiety were determined crucial factors in user
acceptance in CTAM, and were adopted in this study to evaluate user response to

the proposed autonomous/semi-autonomous vehicle navigation.

Usability was defined by “the capability to be used by humans easily and effec-
tively” [135] and “quality in use” [136], and has been a core term in HCI [137]. The
usability was classified into three groups, effectiveness, efficiency, and satisfaction in
ISO 9241 standard [138]. The effectiveness and efficiency in usability were excluded
from the questionnaire in this study since they can be measured objectively with
driving results. So, sense of control, fun, and likability have been adopted in this

study for user satisfaction.

This study did not measure some factors in the models that were not dependent on
the types of assistance system: compatibility, results demonstrability, voluntariness

of use in IDT, social influence, facilitating conditions in UTAUT, and self-efficacy in
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CTAM, etc. The final resulting form of the questionnaire is shown in Figure 5-10.
This questionnaire was provided to the participants of the study after each different

levels of autonomous driving,.

Experiment Questionnaire — Section B

System Type: Semi-Autonomous Vehicle

For the following questions, please circle the one point on the scale that most accurately reflects
your response to each question. You may indicate either whole or half numbers. Please consider
only the most recent simulated drive you completed when making your selection.

Perceived Usefulness: How useful did you find the assistance system to be while driving?

0 1 2 3 4 S 6 7 8 9 10
Not at all Very
Useful Useful

Perceived Ease of Use: How easy to use was the assistance system?

0 1 2 3 4 5 6 7 8 9 10
Not at all Very
Easy to Use Easy to Use

Perceived Safety: To what extent did you feel safe while driving with the assistance system?

0 1 2 3 4 5 6 7 8 9 10
Not at all Very
Safe Safe

Anxiety: How anxious were you while driving?

0 1 2 3 4 5 6 7 8 9 10
Not at aii Very
Anxious Anxious

0 1 2 3 4 5 6 7 8 9 10
No Sense Felt Very Much
of Controtl in Control

Fun: How much fun did you have while driving?

0 1 2 3 4 5 6 7 8 9 10
No Fun A Lot
At All of Fun

Likability: How much did you like this method of driving?
e 6 & o & o o o o o o o O o O o ©° o oo o o
0 1 2 3 4 5 6 7 8 9 10
Did Not Like Liked
At All Very Much

Figure 5-10: A part of the questionnaire related user acceptance
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5.3 Results

Depending on the purpose of the comparison, one-way or two-way analysis of variance
(ANOVA) with repeated measures was used for statistical analysis of study diagnosis

with a significance level of 0.05.

5.3.1 Objective Measures - Vehicle Control Metrics

Number of lane changes per minute and average speed

r e — e

‘ & Round 1

® Round 2

Regular Semi-Autonomous Fully-Autonomous
Driving mode

VPP PP P SO —— - e—r S —— S— |

Figure 5-11: Mean and standard deviation of number of lane changes per minute for
the three driving modes

There were no statistically significant differences in the number of lane changes
between the regular vehicle and semi-autonomous vehicle in round 1 (F'(1,25) — 0.14,
= 0.707). In other words, drivers changed lanes in the semi-autonomous vehicle as
much as in the regular vehicle. Also, there were no significant main effects of whether
or not the drivers were allowed to do other activities on the number of lane changes
in the regular vehicle (F(1,25) < 0.01, p — 0.995) and the fully-autonomous vehicle
(F(1,25) = 0.24, p = 0.628). It is as expected because drivers were fully dedicated to
the driving task in the regular vehicle, and they did not have decision authorities on
lane changes at all in the fully-autonomous vehicle.

However, in the semi-autonomous vehicle, the number of lane changes significantly
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decreased in round 2 compared to round 1 (M — 0.26, SD = 0.23 in round 1; M
= 0.13, SD = 0.17 in round 2; F(1,25) = 9.01, p = 0.006). In other words, the
drivers changed lanes less often than in round 1 when they were exposed to the semi-
autonomous system for the second time and allowed to do other activities. Figure
5-12 shows the trend of the average number of lane changes per minute over the
driving time in the semi-autonomous vehicle. Most of the number of lane changes was
concentrated in early stages, and the participants did not change lanes in later stages
as much as they did in the early stages. In other words, as they were accustomed to
the semi-autonomous system, they made lane changes less often than earlier.

The number of lane changes had a relatively large standard deviation (comparable
to the mean) across all different driving modes. Actually, there were significant differ-
ences in the number of lane changes between individual measurements (F(5,125) —
3.17, p = 0.010). This was potentially because of drivers’ preferences for lane change

frequencies, safe driving efforts counteracting random traffic instances.

060 } N - ) N o ) N - - N _—Roundl

050 ¢ : — — — =@mRound2 |

| 1st 2nd 3rd 4th Sth 6th 7th 8th 9th 10th
| 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min |

time

Figure 5-12: Average number of lane changes per minute over the driving time for
the semi-autonomous vehicle

Statistical results of the average speed of each of test instances are presented in
Figure 5-13. The average speed had more variation in the regular vehicle (SD = 1.47
mph in round 1 and SD — 1.42 mph in round 2) than the semi-autonomous (SD =
0.56 mph in round 1 and SD = 0.31 mph in round 2) and fully-autonomous vehicles
(SD — 0.42 mph in round 1 and SD — 0.30 mph in round 2). In other words, in

the manually-controlled vehicles, the average speed varied more than the both of the
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assistance system. The vehicles with the assistance systems had small variation in

the average speed since they were controlled by the same algorithm.

' H Round 1

| ™ Round 2

Regular Semi-Autonomous Fully-Autonomous
Driving mode

Figure 5-13: Mean and standard deviation of average speeds of the vehicles in the
different driving modes

Number of peaks in speed, jerk, and yaw acceleration

Table 5.3: Mean (and standard deviation) of the numbers of peaks in vehicle states

Round 1 (5 min) Round 2 (10 min)
Semi- Fully- Semi- Fully-
Regular Auto- Autz— Reaglir Auto- Auti—
# of speeding tickets 0.24 0.00  0.00 0.31 0.00 0.00
per minute (0.28) (0.00) (0.00) (0.28) (0.00) (0.00)
# of jerk peaks 1.16 0.01 0.00 1.08 0.00 0.00
per minute (1.65)  (0.04) (0.00) (1.31) (0.00) (0.00)
# of peaks of yaw 0.21 0.00 0.03 0.28 0.00 0.03

acceleration per minute (0.39) (0.00) (0.12) (0.50) (0.00) (0.07)

Table 5.3 presents number of peaks in vehicle states of interest. On average, the
drivers were issued speeding tickets (i.e., exceeded 60 mph) 0.28 times per minute in
the regular vehicle (M = 0.24 in round 1 and M = 0.31 in round 2) even though they
were asked to keep the speed limit at 55 mph, while there were no speeding tickets
issued in the semi-autonomous and the fully-autonomous vehicles. It is not a simple

task for drivers to check and adjust vehicle speeds to keep the speed limit while the
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automation systems are able to check and adjust the speeds at a short and constant
frequency. In round 2, there was slightly more speeding tickets in the regular vehicle
compared to round 1, but there were no statistically significant differences between
the two rounds (F(1,25) = 2.07, p = 0.163). On the other hand, it was observed
that there were significant differences between the subjects in the number of speeding
tickets (F'(25,125) = 1.80, p = 0.018). This represents that there exist different driving
styles between drivers. For example, the maximum number of tickets per minute for
a single driver was 0.8, while 12 subjects did not get any speeding tickets in round 1.

There were no significant differences in the number of peaks of jerk and yaw ac-
celeration between the two rounds (F(1,150) = 0.04, p = 0.841 for the number of jerk
peaks; F'(1,150) = 0.33, p = 0.568 for the number of yaw acceleration peaks). How-
ever, the numbers were significantly lower in the semi-autonomous vehicle (F(1,51)
= 29.71, p < 0.001 for the number of jerk peaks; F'(1,51) = 15.67, p < 0.001 for
the number of yaw acceleration peaks) and the fully-autonomous vehicle (F(1,51) =
30.05, p < 0.001 for the number of jerk peaks; F(1,51) = 12.50, p < 0.001 for the
number of yaw acceleration peaks) compared to the regular vehicle. It was shown
that the automation systems were better at accuracy of low-level controls such as
smooth motion than human drivers.

It was also observed that the number of peaks of jerk and yaw acceleration had
wide variance between subjects in the regular vehicle. The standard deviations were
even higher than the means. This means that there are differences in driving styles
and performance between drivers. For example, the maximum number of the peaks
of yaw acceleration for one particular subject was 0.9 while 13 subjects exhibit no

peaks.

RMS acceleration

In round 1, the regular vehicle had greater RMS acceleration (M = 0.26 m/s?, SD
= 0.10 m/s?) than the semi-autonomous vehicle (M = 0.10 m/s?, SD = 0.16 m/s?)
(F(1,25) = 19.89, p < 0.001) and the fully-autonomous vehicle (M = 0.08 m/s?, SD
= 0.15 m/s?) (F(1,25) = 43.27, p < 0.001). This also represents that automation
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Figure 5-14: Mean and standard deviation of RMS acceleration

systems were better at keeping minimum control efforts than human drivers. There
were no significant differences in the semi-autonomous and fully-autonomous vehicles
in round 1 (F(1,25) = 0.14, p = 0.707) since they were controlled at the low level
by the same algorithm. The statistical significance between the regular vehicle and
both of the assistance systems was preserved in round 2 (F(1,25) = 45.40, p < 0.001
between the regular vehicle and semi-autonomous vehicle; F'(1,25) = 14.96, p < 0.001
between the regular vehicle and fully-autonomous vehicle)

There were no significant differences between the two rounds in the regular vehicle
(F(1,25) — 1.66, p — 0.210) and the semi-autonomous vehicle (F(1,25) = 0.66, p —
0.425). However, there were significant differences between the two rounds in the fully-
autonomous vehicle (F(1,25) — 5.67, p — 0.025). It is suspected that the generated
traffic in round 2 required more frequent speed changes than round 1. On the other
hand, the RMS deviation in the semi-autonomous vehicle was significantly lower than

that of the fully-autonomous vehicle (F(1,25) — 15.89, p < 0.001).

RMS distances to the vehicles in the lane

Table 5.4 shows the RMS distances to the front vehicle and rear vehicle. There were
no significant differences in the RMS distance to the front vehicle in round 1 between

the regular vehicle and semi-autonomous vehicle (£(1,25) — 0.12, p — 0.734), between
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Table 5.4: Mean (and standard deviation) of RMS distances to the front and rear
- vehicles

Round 1 (5 min) Round 2 (10 min)
Semi- Fully- Semi- Fully-
Regniar Auto- Auto- Regular Auto- Auto-
RMS distance 59.82 59.87 5991 59.59 59.95 59.84
to the front vehicle (m) ~ (0.39) (0.44) (0.31) (0.64) (0.16) (0.20)
RMS distance 51.21 49.79 50.40 52.19 50.73 51.79

to the rear vehicle (m) (3.08) (3.82) (3.15) (2.91) (2.27) (2.62)

the regular vehicle and fully-autonomous vehicle (F(1,25) = 0.78, p = 0.386), and
between the semi-autonomous vehicle and fully-autonomous vehicle (F(1,25) = 0.14,
p = 0.716). However, in round 2, the semi-autonomous vehicle had significantly higher
RMS distances to the front vehicle than the regular vehicle (F(1,25) = 7.20, p = 0.013)
and the fully-autonomous vehicle (F'(1,25) = 8.90, p = 0.006). This partly explains
the significantly lower RMS acceleration of the semi-autonomous vehicle in round 2
compared to the regular vehicle and fully-autonomous vehicle. This represents that
drivers were able to achieve higher distance margin through the semi-autonomous
system and low acceleration than the regular vehicle and fully-autonomous vehicle.
There were no significant differences in front RMS distance between the regular vehicle

and fully-autonomous vehicle again (F(1,25) = 3.68, p = 0.067).

There were no significant differences in the RMS distance to the rear vehicle
between the regular vehicle and semi-autonomous vehicle (F'(1,25) = 2.05, p = 0.165
in round 1; F'(1,25) = 3.74, p = 0.065 in round 2), between the regular vehicle and
fully-autonomous vehicle (£(1,25) = 1.08, p = 0.309 in round 1; F'(1,25) = 0.37,p —
0.549 in round 2), and between the semi-autonomous vehicle and fully-autonomous
vehicle (F(1,25) = 0.330, p = 0.571 with in round 1; F'(1,25) = 2.00, p = 0.170 in
round 2).

134



®Round 1
@ Round 2
10 i :
} \
8 1 |
§" |
s 6
¥ |
g 4 |
L3 |
|
| 2 ;
| |
| |
| 0 | — =
Regular Semi-Autonomous Fully-Autonomous

‘ Driving mode

Figure 5-15: Workload

5.3.2 Subjective Measures - Questionnaires

Workload and boredom

There were significant differences between the three different driving modes in the
self-reported workload (F(2,150) — 166.04, p < 0.001) while there was no significant
main effect of the allowance of other activities (F(1,150) — 1.04, p = 0.309) and
no significant interaction between activity allowance and driving modes (F (2,150) —
0.20, p — 0.818). As expected, the workload significantly decreased as the level of
autonomy increased (F(1,51) — 143.02, p < 0.001 between the regular vehicle and
semi-autonomous vehicle; F'(1,51) = 63.51, p < 0.001 between the semi-autonomous
vehicle and fully-autonomous vehicle).

For self-reported boredom, there were significant main effects of the driving modes
(F(2,150) — 4.62, p = 0.011) and other activity allowance (F(1,150) — 48.73, p
< 0.001), and significant interaction between the two factors (F(2,150) — 11.80,
p < 0.001). In round 1, boredom significantly increased as the level of autonomy
increased (F(1,25) = 7.72, p — 0.010 between the regular vehicle and semi-autonomous
vehicle; F'(1,25) = 16.60, p < 0.001 between the semi-autonomous vehicle and fully-
autonomous vehicle). In round 2, however, where the participants were allowed to
do other activities, there were no significant differences between the three driving

modes in self-reported boredom (F(2,50) — 1.48, p — 0.237). Boredom significantly
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Figure 5-16: Boredom

decreased in round 2 compared to round 1 in both of the assistance systems (F'(1,25)
= 11.51, p — 0.002 in the semi-autonomous vehicle; F'(1,25) = 74.63, p < 0.001 in the
fully-autonomous vehicle) while there were no significant differences in the regular

vehicle (F'(1,25) = 1.35, p = 0.256).

Perceived usefulness
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Figure 5-17: Perceived usefulness: “How useful did you find the assistance system to
be while driving?”

The participants found the fully-autonomous system more useful than the semi-

autonomous system in round 1 (M = 6.85, SD = 2.41 in the semi-autonomous vehicle;
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M — 8.15, SD — 1.78 in the fully-autonomous vehicle; F(1,25) = 12.48, p = 0.002).
This significant difference was preserved in round 2 (M — 7.96, SD — 2.08 in the
semi-autonomous vehicle; M — 888, SD = 1.61 in the fully-autonomous vehicle;
F(1,25) = 9.83, p — 0.004).

The perceived usefulness of the semi-autonomous vehicle was significantly higher
in round 2 compared to round 1 (F(1,25) = 9.72, p — 0.005). Also the participants
perceived the fully-autonomous vehicle more useful in round 2 than round 1 (£'(1,25)
— 7.96, p — 0.009). The higher perceived usefulness in round 2 could be because
of the other activities that are allowed to the drivers and multiple exposure to the

systems.

Perceived ease of use
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Figure 5-18: Perceived ease of use: “How easy to use was the assistance system?”

There were significant differences between the three different driving modes in
perceived ease of use (F(2,150) = 40.98, p < 0.001). In contrast, there was no
significant main effect of rounds on the perceived ease of use (F(1,150) = 0.143, p
— (.706) and no interaction between round and system type (F'(2,150) = 0.009, p =
0.991). The perceived use of ease increased as the level of autonomy increased (M —
7.07, SD — 1.95 in the regular vehicle; M — 8.63, SD — 1.51 in the semi-autonomous
vehicle; M — 9.68, SD — 0.63 in the fully-autonomous vehicle; F'(1,51) — 23.10, p <
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0.001 between the regular and semi-autonomous vehicle; £'(1,51) = 29.09, p < 0.001

between the semi-autonomous and fully-autonomous vehicle).

Perceived safety
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Figure 5-19: Perceived safety : “To what extent did you feel safe while driving with
the assistance system?”

There was no significant main effect of the driving modes (F(2,150) — 0.29, p
— 0.750), no significant differences between the two rounds (F(1,150) = 0.10, p =
0.747), and no significant interaction between the two factors (F(2,150) = 1.34, p
= 0.265) on the perceived safety. This means that the drivers felt safe in both of
assistance systems as much as the regular vehicle, and the perception did not vary
much between the users. The total mean of the perceived safety rating was M —

7.78, and standard deviation was SD = 1.85.

Anxiety

There was no significant main effect of the driving modes on the reported anxiety
(F(2,150) = 0.98, p = 0.377). However, the two rounds exhibit significantly different
levels of anxiety (F(1,150) = 4.87, p = 0.029). The anxiety decreased significantly
in round 2 in the semi-autonomous vehicle (M = 3.19, SD = 2.27 in round 1; M —

2.30, SD = 2.04 in round 2; F(1,25) = 4.43, p = 0.045) and the fully-autonomous

138



ERound 1 |

® Round 2

[y
o
|

Rating (0-10)

Regular Semi-Autonomous Fully-Autonomous
Driving mode

Figure 5-20: Anxiety: “How anxious were you while driving?”

vehicle (M = 2.76, SD — 2.47 in round 1; M = 1.88, SD = 2.11 in round 2; F'(1,25)
= 4.81, p — 0.038) compared to round 1, while anxiety in the regular vehicle was not
significantly different in the two rounds (M = 3.15, SD — 2.26 in round 1; M — 2.63,
SD = 1.72 in round 2; F'(1,25) = 2.51, p = 0.125).

Sense of control
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Figure 5-21: Sense of control: “To what extent did you find the assistance system
reacted as you intended?”

There were significant differences in the sense of control between the three dif-

ferent driving modes (F'(2,150) = 19.68, p < 0.001) while there were no significant
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differences between the two rounds (F'(1,150) — 0.01, p = 0.918). The sense of control
significantly decreased as the level of autonomy increased (M = 7.97, SD = 1.34 in
the regular vehicle; M — 6.19, SD — 2.69 in the semi-autonomous vehicle; M =
4.38, SD = 4.02 in the fully-autonomous vehicle; F/(1,51) — 20.93, p < 0.001 between
the regular and semi-autonomous vehicle; F'(1,51) = 11.41, p — 0.002 between the
semi-autonomous and fully-autonomous vehicle). Also the variance of the sense of

control between the subjects increased as the level of autonomy increased.
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Figure 5-22: Fun: “How much fun did you have while driving?”

=2

The perceived fun decreased as the level of autonomy increased in round 1 (£(1,25)
= 9.25, p = 0.005 between the regular and the semi-autonomous vehicle; F(1,25) =
5.31, p = 0.030 between the semi-autonomous and fully-autonomous vehicle). Par-
ticipants had significantly more fun in the both of the assistance systems in round
2 compared to round 1 (F(1,25) = 8.44, p — 0.008 in the semi-autonomous vehicle;
F(1,25) = 28.80, p < 0.001 in the fully-autonomous vehicle) whereas there were no
significant differences in the regular vehicle (F(1,25) = 0.124, p = 0.728). In round 2,
there were no significant differences in fun between the three driving modes (F(1,25)
= 1.76, p = 0.182). It was also observed that there was inversely proportional relation

between fun and boredom.
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Figure 5-23: Likability: “How much did you like this method of driving?”

There were significant differences in likability between the three driving modes
(F(2,150) = 3.80, p = 0.025) and between the two rounds (F'(1,150) = 16.81, p <
0.001). In round 1, the participants liked the regular vehicle significantly more than
the semi-autonomous vehicle (F(1,25) = 8.63, p = 0.007) or the fully-autonomous
vehicle (F'(1,25) = 11.10, p = 0.003). There were no significant differences in likability
between the two assistance systems in round 1 (F(1,25) — 1.38, p — 0.251).

In round 2, however, the participants liked each assistance system significantly
more than in round 1 (F(1,25) = 7.37, p = 0.012 in the semi-autonomous vehicle;
F(1,25) = 28.81, p < 0.001 in the fully-autonomous vehicle) whereas there were no
significant differences in the regular vehicle (F(1,25) = 0.16, p = 0.693). The higher
likability in round 2 could be because of the differences of the two rounds: the other
activities that participants were allowed to do or the second exposure to the systems.
Also, the participants liked the fully-autonomous vehicle significantly more than the
semi-autonomous vehicle (F'(1,25) = 8.03, p = 0.009) whereas likability of the both
of the assistance systems did not significantly differ from that of the regular vehicle
(F(1,25) = 0.43, p — 0.517 between the regular and semi-autonomous vehicle; F'(1,25)

= 2.12, p = 0.158 between the regular and fully-autonomous vehicle).
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Table 5.5: Mean (and standard deviation) for workload and boredom scale distin-
guishing the age groups

Regular Semi-Auto- Fully-Auto-
Younger Older Younger Older Younger Older
6.24 6.64 1.66 3.11 0.23 1.14
Round 1  (2.23) (1.91) (1.54) (1.98) (0.60) (1.01)
p = 0.625 p = 0.051 p = 0.011
Workload 570 696 197 236 0.0 032
Round 2 (2.77) (L.71) (1.42) (2.14) (0.29)  (0.42)
p = 0.168 p = 0.602 p = 0.141
4.59 4.54 7.22 5.52 7.87 8.07
Round 1  (2.01) (2.10) (1.20) (2.77) (1.88) (1.54)
p = 0.953 p = 0.061 p=0.772
Boredom 413 397 338 468 327  3.20
Round 2 (2.07) (L1.72) (2.25) (3.16) (2.56) (2.61)
p = 0.830 p = 0.245 p = 0.942

The p-values were computed from F(1,24) using single-factor ANOVA

Age group differences

Table 5.5 - Table 5.7 present detailed results of age group differences in the subjective
measures; the graphical representation is in Appendix E. There were no significant
differences between the two age groups in most of the cases, except for a few measures

explained in the following.

The older group generally felt higher workload than the younger group. In par-
ticular, the older group’s self-reported workload was significantly higher in the fully-
autonomous vehicle in round 1 (M = 0.23, SD = 0.60 for the younger group; M =
1.14, SD = 1.01 for the older group; F(1,24) = 7.61, p = 0.011). It is suspected that
the older group’s mental workload was higher than the younger group even though
there was no required physical workload in the fully-autonomous vehicle. However,
the difference of workload in the fully-autonomous vehicle vanished in round 2. There

was no sighiﬁcant differences for the rest of cases (p > 0.050) either.

The younger group found the semi-autonomous system significantly easier to use
than the older group in round 1 (M = 9.33, SD = 1.23 for the younger group and M
= 8.11, SD = 1.42 for the older group; F(1,24) = 5.45, p = 0.028). The differences
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Table 5.6: Mean (and standard deviation) for perceived usefulness, ease of use, safety,
and anxiety distinguishing the age groups

Regular- Semi-Auto- Fully-Auto-
Younger Older Younger Older Younger Older
7.63 6.18 8.67 7.71
Round 1 (2.01) (2.58) (1.44) (1.98)

Perceived : p = 0.129 p = 0.179
Usefulness 8.75 7.29 8.96 8.82
Round 2 (1.82) (2.12) (1.71) (1.59)

. p = 0.073 p = 0.834
7.46 6.86 9.33 8.11 9.92 9.54
Round 1  (1.32) (2.21) (1.23) (1.42) (0.29) (0.75)

Perceived p = 0418 p = 0.028 p = 0.110
Ease of Use 7.54 6.54 8.67 8.54 9.75 9.57
Round 2 (2.25) (1.90) (1.30) (1.84) (0.62) (0.73)

p = 0.228 = 0.839 p = 0.512
8.00 7.75 8.13 8.00 7.33 7.21
Round 1  (1.91) (1.63) (2.07) (0.96) (2.42) (1.67)

Perceived p = 0.721 p = 0.841 p = 0.884
Safety 8.08 7.79 7.92 7.29 7.75 8.18
Round 2 (1.83) (1.17) (2.31) (1.63) (3.08) (1.48)

p = 0.621 p = 0.424 p = 0.647
2.79 3.46 2.96 3.39 2.46 3.02
Round 1 (2.39) (2.19) (2.44) (2.19) (2.15) (2.77)

. p = 0.461 p = 0.636 p = 0.576
Anxiety 196 321  2.08 248  2.38  1.46
Round 2 (1.45) (1.77) (1.74) (2.32) (2.50) (1.70)

p = 0.062 p = 0.629 p = 0.282

The p-values were computed from F'(1,24) using single-factor ANOVA

were not preserved in round 2 when they were exposed to the system for the second
time (M = 8.67, SD = 1.30 for the younger group; M = 8.54, SD = 1.84 for the
older group; F(1,24) = 0.04, p = 0.839).

Finally, the younger group had significantly higher self-reported fun in the semi-
autonomous vehicle than the older group when they were allowed to do other activities

(F(1,24) = 5.04, p = 0.034).
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Table 5.7: Mean (and standard deviation) for sense of control, fun, and likability

distinguishing the age groups

Regular Semi-Auto- Fully-Auto-
Younger Older Younger Older Younger Older
8.13 7.43 6.58 5.93 3.88 5.00
Round 1 (1.15) (L.79) (2.70) (2.62) (4.59)  (3.55)

Sense of p = 0.258 p = 0.537 = 0.488
Control 8.42 8.00 6.00 6.27 4.42 4.14
Round 2 (1.24) (0.98) (2.73) (2.97) (4.07)  (4.26)

p — 0.348 p = 0814 » = 0.869
4.63 5.21 3.25 3.89 2.50 2.50
Round 1 (1.15) (1.85) (1.48) (1.80) (2.81)  (1.95)

Fun p = 0.349 p = 0.335 p = 0.999
5.67 4.57 6.42 4.29 6.50 5.57
Round 2 (2.09) (1.70) (2.22) (2.56) (2.39)  (2.79)

p = 0.153 p = 0.034 p = 0.376
6.88 6.18 4.04 4.96 3.71 4.25
Round 1 (1.98) (2.11) (1.96) (2.12) (2.68) (2.31)

- p = 0.396 p = 0.263 p = 0.585
Likability 683 580 654 532 683  7.64
Round 2 (1.80) (1.62) (2.82) (2.69) (2.69) (1.99)

p = 0.174 p = 0.271 — 0.388

The p-values were computed from F(1,24) using single-factor ANOVA

5.4 Conclusions

The automation systems were generally much better at low-level control of the ve-
hicles, as expected, specifically in terms of smooth motion, energy efficiency, and
keeping vehicle speeds under the limit. When the assistance systems were compared
with each other, the semi-autonomous vehicle had better performance in keeping suf-
ficient distances from the leading vehicles and maintaining small acceleration efforts

by changing lanes appropriately, compared to the fully-autonomous vehicle.

The self-reported workload and perceived ease of use continuously decreased as the
level of autonomy increased, however the sense of control also continuously decreased.
Also, there were no statistically significant differences in anxiety and perceived safety
between the three different driving modes. In the second round, however, the partic-

ipants were less anxious than the first round in both of the assistance systems. Also,
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they found the assistance systems more useful in the second round. Users found the
similar level of easiness to use from the first round to the second round.

While the users did not like both of assistance systems as much as the regular
vehicle in the first round, they liked them as much as the regular vehicle in the
second round. Finally, users found the fully-autonomous system more useful than
the semi-autonomous system in both rounds, and liked the fully-autonomous system

more than the semi-autonomous system in the second round.
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Chapter 6

Conclusions

This thesis presents an approach to semi-autonomous and autonomous vehicle naviga-
tion based on the notion of homotopies. In this approach, decomposition of a global
navigation problem into simpler local problems is achieved by convex decomposi-
tion with a minimum vertex set. Each individual navigation decision corresponding
to local problems are represented as decomposed cell sequences, approximations of
homotopy classes. This thesis investigated relationships between exact notions of
homotopy classes, feasible trajectories, and cell sequence representations of the tra-
jectories. It has shown one-to-one correspondence between loopless cell sequences and
the exact notion of a homotopy class with no self crossings.

In addition, a sampling-based obstacle avoidance algorithm has been proposed
based on representative sample inputs with maximum control margins. These repre-
sentative inputs were chosen in safe input sets based on their distances from forbidden
input sets. The inputs were not only the safest decisions with respect to various un-
modeled sources of uncertainties, but were also representative of groups of nearby
input sets resulting in similar maneuvers (homotopies). A best-first search algorithm
for a multiple-step horizon has been proposed with the guarantee of optimality by
exploiting the properties of the problem, and its computational efficiency is demon-
strated.

The decomposed subproblems have been tackled by a formulation of mixed integer

programming (MIP). The proposed formulation exploited favorable properties of the
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represented cell sequence constraints, which results from the problem decomposition.
The computational efficiency of the formulation has been demonstrated compared
to previous MIP formulation using constraints in the original, undecomposed prob-
lem. The application of the formulation in model predictive control framework with
obstacle avoidance constraints has been demonstrated.

Finally, the thesis presented results of the user study of highway navigation with
the proposed framework. The users perceived similar safety for vehicles with three
different levels of autonomy, and found the assisting system easy to use from the first
time they were exposed to the system. When they were exposed to the system for
the second time and allowed to do other activities, they were less anxious and found
the system more useful than the first round for both of the assistance systems. Even
though automation systems were generally much better at low-level control of the
vehicles, specifically achieving smooth and energy-efficient control and adapting to
speed limits, the users did not like the assistance systems as much as the regular ve-
hicle in the first round. However, they liked the system as much as the regular vehicle
in the second round. Also, the users liked the fully-autonomous system more than
the semi-autonomous system in the second round while the performance for keep-
ing sufficient distances from the leading vehicles was better in the semi-autonomous
vehicle.

A primary future work may include extension of the proposed approach consider-
ing uncertainties of future motions of other vehicles on the roads. Also, the proposed
sampling-based obstacle avoidance algorithm with maximum margin inputs can be

extended to deal with motion planning problems incorporating desired goal states.
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Appendix A

Optimal Obstacle Avoidance

A.1 Introduction

This chapter presents an analytical solution to a simple optimal obstacle avoidance
problem, and numerical solutions to the problem with bit more complicated dynamics.
An alternative approach to this chapter’s approach is presented in Chapter 4. This
chapter focuses on optimal avoidance maneuver of a vehicle moving at a high speed
when a sudden and close obstacle is detected ahead. In this case, the vehicle should
utilize its full ability to avoid the obstacle. The optimal solution would involve full

utilization of the available friction forces between the tire and road.

Y

max
YO
.=Et> VO
- min
XO

Figure A-1: A typical scenario for obstacle avoidance without bifurcation of avoidance
decisions

In the problem formulation, it is assumed that a single obstacle avoidance decision

is provided. The bifurcation of obstacle avoidance decisions makes optimal motion
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planning challenging, but the thesis provided a method to divide and conquer the
problem according to obstacle avoidance decisions.

This chapter first develops analytical solutions for a simplified optimal obstacle
avoidance problem. For more realistic and complicated problem formulations, nu-
merical solutions are presented using nonlinear optimal control software, and are

compared with the analytical solutions.

A.2 Formulation of Optimal Control Problem with

Obstacle Avoidance Constraints

Figure A-1 shows a typical scenario for obstacle avoidance without bifurcation in
avoidance decisions. A sudden obstacle is assumed to be detected in the direction of
vehicle movement so that the vehicle has to change its direction to avoid the obstacle.
The vehicle must also remain within a road boundary, aligning its heading to the
boundary of the road.!

The initial positions and velocities of the vehicle in each of the directions are set
to the following without loss of generality, by setting the coordinate system appro-

priately.
X(to) =0, Y(to) =0, X(to) = Vo, Y(tg) =0 (A.1)

where Vj is the initial vehicle speed.

The problem also assumes that the case where the initial speed Vj is large and
X0 is small so that the vehicle cannot avoid the obstacle without movement in the
lateral direction. Otherwise, it could simply apply the maximum braking command
and stop before colliding with the obstacle, which is a perfectly safe maneuver but
not of interest in this chapter.

In order to mathematically represent the obstacle avoidance constraints, the pro-

!The particular parameters of the problem statement are the followings: Vy = 20 m/s, Xo = 10
m, Yo = 1.5m/s, Ypin =-1m, Yoy =3 m
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posed formulation divides the problem into two phases: a first phase before passing
Xo in the horizontal direction, and a second phase after passing Xo. In other words,
the two phases are split by the time t; that satisfies X(t;) = Xo where X(t) is
the horizontal position of the vehicle. The constraints of these two phases are the

following, where Y'(t) is the vertical position of the vehicle assuming point vehicles.

Phase 1: Ymin < Y(t) < Yiax for to <t<ty (A2)
Phase 2: Yo < Y(t) < Yiax for t; <t <ty (A.3)

Another important requirement for sudden obstacle avoidance is for the vehicles
to recover its normal driving state as soon as avoiding the obstacle. For example,
when the vehicle is moving on a highway, it is important for the vehicle to smoothly
merge into the traffic flow. Hence a desired terminal condition for the problem can

be defined as zero lateral speed of the vehicle, as:

Y(tf) =0 (A.4)

Then the objective of the problem is to achieve this state as soon as avoiding the

obstacle, which can be formulated as the minimum-time problem.

ts
minimize J = / 1dt (A.5)
to
subject to dynamics & input bounds of the vehicle (A.6)
obstacle avoidance constraints in (A.2)-(A.3) (A.T)
initial condition in (A.1) (A.8)
terminal condition in (A.4) (A.9)
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A.3 Analytical Solution for a Simplified Model - Point
Mass

This section presents an analytical solution of the problem stated in the preceding
section for one of the simplest models of the vehicle - a point mass with acceleration
limits. In practical scenarios, vehicle motion is generally limited by the available
friction force between the tires and road. In the simplified point mass model, these
constraints can be captured by the maximum acceleration magnitude limit a,.. = ug
where p is the friction coefficient. The state dynamics of the two-dimensional point
mass at (z,y) is expressed via the state vector x = [z y = y]7 and input vector

u = [u; up]? as below.

T T
d .
X =— vl = Y = f(x, u) (A.10)
dt T U] COS Ug
] Uy Sin ug

acceleration direction.

The obstacle avoidance constraints represented in (A.2) - (A.3) can be rephrased
as a point constraint over time, as below, since the lower and upper limit of the lateral
position y will be automatically satisfied for all time if a solution trajectory exists for

the formulated minimum-time problem.

Xo —z(t;) =0 (equality) (A.11)

Yo — y(t1) <0 (inequality) (A.12)

The constraints can be additionally reduced to equality constraints as below, since

it can be shown that the trajectories that are inactive to the second inequality con-
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dition (A.12) (i.e. Yo — y(t1) < 0) always have greater completion time ¢; to achieve

the terminal condition.

N(x(t)) = - (A.13)

Then the minimum-time avoidance problem for the point mass model is formulated

as below.
tf
minimize J = /to 1dt (A.14)
subject to dynamics in (A.10) (A.15)
0 < ur < amax (A.16)
obstacle avoidance constraints in (A.13) (A.17)
z(to) =0, y(to) =0, z(to) =Vo, y(to) =0 (A.18)
ylty) =0 (A.19)

The augmented cost functional using Lagrange multipliers of the state dynamics

constraint and obstacle avoidance constraints is:
by
Jo = / {14+ p" - (F—x%)}dt + I - N(x(t,)) (A.20)
to
with costate function p = [p; py ps p4)”, and constant Lagrangian multipliers IT =
[II; I15])7 of the point equality constraints.
A Hamiltonian of the system is expressed as follows:

H =1+ p1& + pay + P3uy COS Uz + pauy Sin Uy (A.21)
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The costate dynamics are found by applying p = _%_ET;

D1 0

d 0

- P21 (A.22)
ps3 -
y 2! —P2

Cq.

pi(t) c1
t
nB) | _ “ (A.23)
pg(t) —C1 t+ C3
p4(t) —Cy t+ Cq

The boundary condition of the costates can be found from the terminal condition

(A.4):

pi{ts) = pa(iy) = ps(ty) =0 (A.24)

For the free final time ¢;, the additional necessary condition is below, which is

often called the transversality condition:

H(t;) =0 (A.25)

The point constraints N(¢;) in (A.13) induces discontinuity in p and H as follows:

H(t) = Hit) + 17 X (x(1) (A.26)
T
o) = pity) - {117 T (x(10) } (227)
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These two equations reduce to

H(t7) = H(t) (A.28)
~1 0
0 ~1

p(tf) = p(ty) — I, —1II, (A.29)
0 0
0 0

The optimal control law u* can be found by applying Pontryagin’s Minimum

principle:

u* = argmin H (A.30)

For the unbounded input us, the minimum of the Hamiltonian occurs in the

condition below:

OH
E u1(—p3sinug + pycosug) =0 (A.31)
2
O*H
5z = u(—p3cosug — pgsinug) > 0 (A.32)
2

For a nonzero acceleration (i.e., u; > 0), the above condition is satisfied when:

—Pa

tanuy = (A.33)
—P3
where u} is defined as the value satisfying:
cosuy = P sinugy = - (A.34)

Vi +p?
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For the bounded input u; < Gmax,

uy = arg quilln Hluyp—uy (A.35)
= arg H}Liln{ul(m cosuy + pysinuy)} (A.36)
= arg qutlll'l {—u1 \/P3+ pi} (A.37)
= Qmax (A.38)

The costate function can be first solved for phase 2 (t; < t < t;). The boundary
conditions of the costate at the terminal time in (A.24) identifies the three unknown

constants as:

pi(ty) =c1 =0 (A.39)
pa(ty) =c2 =0 (A.40)
p3(ty) = —aty +ez=c3 =0 (A.41)

The transversality condition in (A.25) is applied as:

H{(tr) =1+ pa(ty) - ui(ty) - sinus(ty) (A.42)

=1 — Gmax - [pa(ts)] =0 (A.43)

and the following is achieved:

Ipa(ts)| = leal = (A.44)

max

We know that the lateral direction of the final acceleration should be negative,
(i.e. sinul(ts) < 0), in order to restore the lateral velocity 3 to zero after it has been

increased to avoid the obstacle. Then, p4(t;) should be positive from (A.42),

1

pa(ty) = c1 = >0 (A.45)

amax
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Hence, the costate function for phase 2 is

pi(t) 0
¢ 0
p(t) = Palt) | _ for ¢, <t<t;
ps(t) 0
p4(t) an}ax

and the input for the optimal solution for phase 2 is

W) = Gmas u;(t):——g for ¢, <t <t

(A.46)

(A.47)

From the optimal input, the dynamic equations for the optimal state function for

the phase 2 (t; <t < ty) are expressed as:

Z(t) = uj(t) - cosuz(t) =0 for t; <t <ty

§(t) = ui(t) - sinuj(t) = —amax for t; <t <ty

By integrating with the terminal condition ¢(t;) = 0 in (A.4):

Y(t) = —amax - (t —t5) for ¢, <t <ty

(A.48)
(A.49)

(A.50)
(A51)

By integrating one more time with the boundary condition at the time ¢; in (A.13),

x(t)=x1(t1)(t—t1)—|—Xo for 31 <t§tf

1

y(t) = = Sama{(t = tr)? — (t1 —tp)’} + Yo for t; <t <ty

(A.52)

(A.53)

Now, the solution for phase 1 (0 < t < ¢;) can be found starting from the boundary
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condition at time ¢; in (A.29):

pi(th) =pm(t) +IL = pu(ty) =Tk
pa(ty) = po(t7) + Ty = po(ty) = —1ly
p3(ty) =ps(ty) — pa(ty) =0

pa(t7) =palty) — palty) =

The costate function for phase 1 is

pi(t) = ~1II for to<t<t
pa(t) = —1I, for to <t<ty
p3(t) = H1 . (t - tl) for t() S t S tl
pa(t) =Tl - (t —t1) + for to <t <ty

(A58
(A.59

~— S N

(A.60

(A.61)

By applying the continuity condition for the Hamiltonian at time ¢ = ¢, in (A.28),

Iy - &(t) + Iy - 9(t1) =0

The optimal inputs for phase 1 are:

’Uf{(t) = Qmax for t() S t S tl

—I(t —t) — L
amax ) for to <t <t
o) ) Prhstst

uj(t) = tan " (

where tan~!(-) is the four-quadrant inverse tangent.

Then, the equations for the state function for phase 1 is
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Figure A-2: Analytical solution of the costate and input of the optimal control prob-
lem for the point mass model

l,(t) = Amax _Hl(f _ tl) for tO S t S tl (A65)
\/nm —11)2 + {IIo(t — 1) + 1=}
*HQ(t - tl) T :
§(t) = amax——= e for to <t <t (A.66)
\/Hf(t —iti)% + {Ha(t—t1)+ ==}

The state function z(t), y(t) can be found by integrating the above equations

twice using the initial conditions in (A.1).

Then the three unknowns I1;, Ils, and ¢; can be identified by the obstacle avoidance

constraints and Hamiltonian continuity condition in (A.13) and (A.62), i.e.,

z(t)) = Xo, y(t1) =Yo, ILi-&(t1)+1a-y(t1) =0 (A.67)

The final time can be computed from (A.51) as:

’.Q(tl)

amax

ty =t + (A.68)
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We know physically that z(¢;) > 0, 9(t1) > 0, and IIy > 0 due to the inequality
constraints (A.12), and finally IT; < 0 due to the Hamiltonian continuity condition in
(A.28). Hence, it turns out that the costate function is bilinear as shown in Figure A-
2a. Also, the optimal control direction of acceleration starts from the second quadrant,
and moves to the third quadrant, and remains fixed at —% from time ¢; as shown in
Figure A-2b.

The unknowns II; and II; have been computed with curve-fitting techniques
by comparing with the numerial solution computed with optimal control software
GPOPS-II [139], which is based on Gaussian Quadrature Collocation Methods and

Sparse Nonlinear Programming.

T, = —0.0428, II, = 0.3334 (A.69)

The minimum completion time ¢; for the point mass model has been computed as
0.6447 sec. The optimal trajectory of the point mass model is shown in Figure A-13

with the numerical solutions of a more realistic and complicated vehicle model.

A.4 Numerical Solutions for Nonlinear Vehicle Mod-

els

In the preceding section, the analytic solution for the point mass model has been
developed for the formulated optimal avoidance problem. For nonlinear vehicle mod-
els, it is hard to find analytical solutions for the formulated problem. However, the
formulated optimal avoidance problem can be solved numerically using the optimal
control software GPOPS-II [139] and is presented here for nonlinear vehicle models.

The definition and nomenclature of the vehicle model are presented in Figure
A-3 and Table A.1. The six-dimensional state vector is x = (X Y ¢ v, v, w]’.
The inputs to the system are the steering angle 0 and longitudinal traction force

at each tire ij, T;;, where i = f(front) or r(rear), j = [(left) or r(right), i.e., u =
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Figure A-3: Definition of symbols for four-wheel vehicle model

Table A.1: Vehicle model nomenclature

Symbol Description
X horizontal position of C.G. w.r.t. inertial reference frame
Y vertical position of C.G. w.r.t. inertial reference frame
) yaw angle of the vehicle
Vg longitudinal speed of C.G. of the vehicle
Uy lateral speed of C.G. of the vehicle
w vaw rate
) steering angle
T longitudinal force of each tire*
Y lateral force of each tire*
Niz normal load of ‘each tire*
3 side slip angle of each tire*

* i = f(front) or r(rear), j = [(left) or r(right)

8 Ty Ty T T..]'. The steering angle § is typically less than ~5-8° [140]|, hence
f I

it is possible to approximate cosd ~ 1 and sind ~ ¢. The dynamic equations of
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motion of the vehicle under the assumption of small steering angles of the front axle

0 is shown below.

X =vgcost — v, siny (A.70)
Y =uv, sint + v, cos b (A.71)
Y =w (A.72)
Ug =%{sz +Tp + T+ Tor — (Y5 + Yir) } + vyw (A.73)
by = (V4 Y + (Yot + Yor)) = v (A.74)

. 1
b = (Y + V) = LYot + Yoo+ WlTpe + To) =T+ Tw)} (A7)

The lateral tire forces are governed by the vehicle state v,, v,, w and the steering
angle 6. The front and rear side slip angles are defined with the symmetric assumption,
similar to the bicycle model presented in Figure 4-9b in Section 4.4.3. The lateral tire
forces Y;; are assumed to be in the linear range with respect to the side slip angles

with constant stiffness Kj;, as follows.

l
g =g =ap =5 2 J; = (A.77)
1,
Oyl = Opp = Qp = Yy (A.78)
/Uw

The problem defined in this chapter is the minimum-time problem, which pushes
the control inputs to their limits. Hence the fact the total friction force magnitude
for each tire is bounded is not a negligible constraint. The constraint associated with
the tire’s maximum ability to utilize the friction with the road is often referred to as
the friction circle constraint. The magnitude of each tire force limit is simplified as
follows with a proportional distribution of the total normal force to each tire without

consideration of dynamic effects.
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Table A.2: Vehicle model parameters

Description Symbol Value
mass of the vehicle m 1500 kg
yaw moment of inertia I, 3000 kg - m?
distance from C.G. to front axle ly 1.25 m
distance from C.G. to rear axle l, 1.25 m
half length of the axles ly 0.80 m
cornering stiffness of each tire* K;; 40000 N/rad
surface friction coefficient I 1.6

* § = f(front) or r(rear), j = l(left) or r(right)

1
T2 Y2 < yNys: = f_Z A.79
I, 1
T2 +Y?2 < uN,; = — A.80
1"_7+ 7'_7-—-/‘1’ J /J/lf“l‘lerg ( )

This section compares numerical solutions for two cases: a two-wheeled bicycle
model with a symmetric assumption of the vehicle, and a four-wheel model with an
assumption of independent individual traction force control. The parameters of the

vehicle model for the simulation are in Table A.2.

A.4.1 Two-Wheel Bicycle Model

A bicycle model assuming that the left and right sides of the vehicle are symmetrical.
The dynamic equations shown from (A.70) to (A.75) are simplified with this symmet-
ric assumption: Ty = Ty, = %Tf, T,=1T., = %T,., Y=Y = %Yf, Yu=Y.,= %Yr.
The state and input profiles of the optimal solution are presented in Figure A-4
and A-5. The minimum time ¢ to achieve the terminal condition has been computed
as 1.1883 sec.
Each longitudin‘al force tries to utilize the full friction limit to achieve the minimum

~arrival time while satisfying obstacle avoidance constraints. Whenever the lateral
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Figure A-4: The optimal state profile of the bicycle model for the formulated obstacle
avoidance problem

force gets far from its limit, the longitudinal force acts to accelerate or decelerate the

vehicle in the desired direction.

Note that the longitudinal forces are direct control inputs. The lateral forces are
indirect results of the steering command. The front lateral forces are more directly
affected by the steering command, while rear lateral forces are less directly affected.
So the steering command utilizes the lateral force of the front tire much more than
the rear one. Therefore the rear longitudinal force plays a proportionally greater role
than its front counterpart. During the time period when the direction of the lateral
tire force is being reversed (approximately 0.4sec < t < 0.5sec), the longitudinal force

input utilizes this short period to provide a braking contribution to the vehicle.

Figure A-6 illustrates the contribution of the longitudinal forces of each tire. The
rear tires plays a sufficient role except during the short period of time when the

steering command changes its direction. This result could not be achieved with a
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Figure A-5: Profile of optimal steering angle and tire forces of the bicycle model

fixed distribution ratio of the braking forces between the front and rear axle. The
presented result is under the assumption that the braking distribution can be varied

in real time according to the steering command shown in the figure.

A friction utilization diagram of each tire is shown in Figure A-7. The force of
each tire stays on the boundary of the friction limit during the entire maneuver. This
is as expected in the context of “bang-bang control” considering that the objective of
the problem is to minimize the task completion time. The snapshots of the avoidance

maneuver are shown in Figure A-8.

“The entire video is at https://vimeo.com /142702734
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Figure A-6: The optimal distribution of longitudinal tire force contribution for the
bicycle model
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Figure A-7: Tire friction utilization of the optimal solution for the bicycle model
A.4.2 Four-Wheel Model with Differential Driving Forces

In order to investigate a case with more degrees of control freedom, the section as-

sumes that the individual longitudinal forces of the tires can be controlled indepen-
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Figure A-8: Sample time steps of the optimal avoidance maneuver of the bicycle
model with maximum friction force magnitude constraints. The red arrows represent
total forces acting on each tire within the friction circle limit and bold magenta lines
represent longitudinal and lateral components acting on each of tires. The force
vectors are normalized by the friction circle limit

dently. Differential driving braking force for the left and right wheels is often utilized
in automotive industries for the purpose of vehicle yaw stability control [141, 142, 143|.
From a driver’s perspective, there are no commands to directly control the differen-
tial forces. They are controlled by estimating the driver’s intention from the steering

commands in commercial technologies.

In emergency situations to avoid nearby obstacles, it is useful to employ this
differential driving ability in a way to achieve fast and stable obstacle avoidance
and nominal driving state recover rather than by estimating driver’s intention. The
numerical solution has been found by allowing different longitudinal forces of the four

tires in the four-wheel vehicle model, (A.70) - (A.75).

The state and input profile of the optimal solution computed numerically using
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GPOPS-II are shown in Figure A-9 and Figure A-10. The minimum time computed
numerically for the problem is 0.9994 sec. Note that the left and right longitudinal
forces are acting in the opposite directions in order to restore the yaw angle to the
original state as quickly as possible, especially around the time 0.3 ~ 0.6 sec. The
force utilization of each tire and the distribution of the longitudinal force contribution

are presented in Figure A-11 and Figure A-12, respectively.

X Y P
20 2.5 25
15 20 20
I |1 — 15
E 10 E %ﬂ
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Figure A-9: The optimal state profile of the four-wheel drive model for the formulated
obstacle avoidance problem

A.5 Conclusions

The minimum obstacle avoidance times computed numerically for the point mass
model, two-wheel bicycle model, and the four-wheel model have been found to be
0.6447 sec, 1.1883 sec, and 0.9994 sec. The point mass clearly achieved better capa-

bilities to avoid the emergent obstacle than the steered vehicles since it has the ability
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Figure A-10: The optimal input profile of the four-wheel driver model

to change directions omni-directionally. Figure A-13 compares the acceleration di-
rections of two of the results, the point mass and bicycle model, during the entire
maneuver. As shown in the figure for locations around 6 ~ 8 m in the horizontal di-
rection, the direction of acceleration of the bicycle model is much more limited than
the point mass model. This has resulted in a worse completion time for the avoidance

maneuver. On the other hand, the ability to control four wheels independently has
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been shown to allow 15.9% improvement in the completion time.

The attempt to find the analytical solution for the optimal avoidance problem
has led to the closed-form expressions for accelerations for the point mass model.
However, there have been significant gaps between the results of the point mass
model and the steered vehicle models. Also, it was computationally demanding to find
numerical solutions for the steered vehicle models. Therefore, this thesis approaches

the optimal control problem with the receding horizon framework with linearization

about the current operating point, as presented in Chapter 4.
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Figure A-12: The optimal distribution of longitudinal force contribution for the four-
wheel drive model
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Figure A-13: Comparison of the acceleration vectors of the point mass model (red)
vs. bicycle model (blue); The acceleration vectors are represented with star tails with
normalized magnitudes.
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Appendix B

Shortest Paths for Homotopy Classes
using Visibility Graph

B.1 Homotopic Decisions for Obstacle Avoidance

Homotopy representation methods in the literature have been reviewed in Chapter
2. This chapter investigates another simple way to represent homotopy classes in
an abstract way in terms of the directions to avoid obstacles. In particular, there
are two primitive directions to avoid a single obstacle, clockwise(cw) and counter-
clockwise(ccw). Figure B-1la shows several paths that avoids O; in a clockwise di-
rection, Oy in a counter-clockwise direction, and O3 in a clockwise direction again.
These paths fall into the same homotopy class, and can be represented as cw-ccw-cw
as an example. Extending the idea presented in this example, a homotopy class can
be represented as a sequence of directions to avoid obstacles. An approach to identify
the shortest paths for each homotopy class represented in this way is presented in
this chapter. This approach does not rely on geometrical space or points for homo-
topy representation. It instead focuses on the direction of the obstacle avoidance for
representing each homotopy class.

This chapter describes the proposed algorithm to find the shortest path for any
homotopy class given a sequence of obstacles to avoid. For the purpose of presenting

the algorithm in a simple form, the shapes of the obstacles are assumed to be circles.
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(b) A decision cw — cew —ew among all possible avoidance deci-
sions for the three sequential obstacles

Figure B-1: Example of homotopic paths

This representation is especially useful when the order of obstacles is determined a
priori, although this representation is also available in other cases. When the goal
is determined in the environment, the order of obstacles to avoid can be assigned
along the line between the start and the goal from the closest obstacle to the farthest.
Under the assumption of prohibition of moving backward to avoid the closer obstacles
after avoiding the farther ones, all possible homotopic paths can be represented by
the sequence of avoidance decisions. In the case where n obstacles O;, i € Z, , are
given in order, the number of possible homotopy classes is 2" . In this chapter, this

type of representation is used for homotopy class identification.

B.2 Visibility Graph on a Circular Obstacle Field

Visibility graphs [91] are used widely due to their guarantee that the Euclidean short-

est path in a polygonal space is the shortest path on a visibility graph. In a polygonal

174



environment, nodes of the visibility graph are vertices of the polygons and the edges
are straight lines connecting nodes without crossing any obstacles. The visible edges
on the visibility graph are candidates for being parts of the Euclidean shortest path.
Therefore, the shortest path can be found on the visibility graph using graph search
algorithms such as Dijkstra algorithm [144], and the result is guaranteed to be the

shortest path in the polygonal space.

E; (cw)
s <° Ej‘j(cw,cl:w) E, ;(ccw,cw)
\ .

E . (ccw)

E, ;(cw)
G E. .(ccw,écw) ‘
E, . (ccw) i E, (cw,ccw)
(a) Straight edges connecting a (b) Straight edges connecting two obstacles

point and a obstacle

Figure B-2: Straight edge components of the visibility graph in a circular obstacle
field

In a space with circular obstacles, the concept of a visibility graph can also be
used to find the shortest path, with simple modification. The line segments tangent
to a circle from another circle or a point can be used as edges of the visibility graph as
illustrated in Figure B-2. There are two edges between the start S and the circle O;,
denoted by Eg;(cw) and Eg;(ccw), which are distinguished by the direction of the
end of the edge on the surface of the circle. Similarly, two edges between the circle O;
and the goal G are denoted by F; ¢(cw) and E; ¢(cew). There are four edges between
the two circles and they are similarly distinguished by the direction of the two ends of
the edges with respect to the circles. The edges from O; to O; (i < j) are denoted by
E; j(ew,ew), E; j(ew, cew), B j(cew, ew), Ej j(cew, cew) according to their directions.
The edge directly connecting the start S and the goal G with a straight line can
also be constructed as one of edges of the visibility graph and denoted by Egg¢ if

it is visible. Beside the straight edges, the visibility graph requires additional edges
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Figure B-3: The visibility graph and the global shortest path in a field with circular
obstacles

connecting the tangent points residing on the same obstacle. They are constructed
as arcs following the surface of the corresponding circles in order to ensure that they
are part of the shortest path. Figure B-3 illustrates an example of the constructed
visibility graph in an obstacle field. The shortest path should be a combination of

straight edges and arcs of the constructed visibility graph.

B.3 Dynamic Programming for the Shortest Paths
for Each Homotopy Class

The algorithm presented here aims to find the shortest path for any homotopy class.
By the same principle as in the case of the single global shortest path, they are also
paths on the visibility graph because regardless of whatever avoidance decisions are
made, only straight edges or arcs of the visibility graph consist of the shortest path.
Therefore searching on the visibility graph guarantees one to find the shortest path
of each homotopy class. In [36], for example, a visibility graph has been also used
for finding the shortest homotopic paths based on its own homotopy identification
method. However naive exhaustive efforts to extract the shortest path satisfying
homotopy constraints, i.e., a specific avoidance decision, is computationally inefficient.
This chapter proposes an efficient algorithm for finding the shortest paths for each
homotopy class by utilizing principle of optimality.

The procedure to find the shortest path is summarized as finding a sequence of

obstacles to contact to reach the goal. In this procedure, certain obstacles might not
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(a) P3 : The shortest paths from Oz to G, (b) P2 : The shortest paths from O; to G,
[P (cw), py(cew)} {Da(cw, cw), py(cw, cew), py(cew, ew), py(cew, cew)

(¢) Py : The shortest paths from O; to G (d) Pg : The shortest paths from S to G

Figure B-4: Sets of the shortest paths from intermediate obstacles to the goal. The
final set of the shortest paths from the start to the goal is computed backward by the
sub-problems

be included in this sequence. For example, O; may not be touched by the shortest
path when the direct straight path from O;_; to Oy, are collision-free. O, shown in
Figure B-3 is an example of an obstacle that is not touched by the shortest path.

In the procedure of finding the sequence of contacting obstacles corresponding to
the shortest path, Bellman’s principle of optimality [145| states that whatever the
initial decision on choosing a contacting obstacle is, the remaining path to the goal
must constitute the shortest path from the chosen obstacle. The implication of the
principle of optimality is that any path that touches the obstacle O; must take the
optimal solution from the obstacle O; to the goal in order to be optimal. Therefore
the problem of finding the shortest path from start to goal can be decomposed into
sub-problems to find the shortest path from the obstacle O; to the goal. The sub-
problems can be solved backward from ¢ = n to 1. Figure B-4 illustrates an example of
decomposition of global problem into sub-problems, and their backward propagative

solutions.

Let Ps be a set of the shortest paths corresponding to all possible avoidance
decisions from the start to the goal. In other words, the elements of Pg are the shortest
paths for each homotopy class. A primitive choice for avoidance of each obstacle can

be represented as an element of a set, D = {cw,cew}. If d; € D represents a choice
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for avoiding obstacle O;, the overall sequence of avoidance decisions for n obstacles
can be represented as (dy,--- ,d;, - ,d,). Then the set of shortest paths from the

start to the goal can be represented as

Ps = {ps(dl,dg, <o ,dn) ‘ Vd, € D for k€ Zl,nl} (B.l)

where the element pg(d;,ds, -+ ,d,) of the set is the specific shortest path from
the start to the goal corresponding to the decision (di,ds,--- ,d,). The number of
elements of the set P is 2.

On the other hand, the solutions for each sub-problem P; can be defined as the

following;

P; = {p;(di,diyr, -+ ,dyn) | Vd € D for k€ Z;,} for i € Z,p (B.2)
where the element p,;(d;,d;11,- - ,d,) of the set is the specific shortest path from
obstacle O; to the goal corresponding to the decision (d;,d; 41, - ,d,). The number

of elements of the set P; is 2" #+1,

The detailed algorithm is presented in Algorithm 7. The algorithm is decomposed
into three steps. The first step is to find the shortest paths P,, from the last obstacle
O,, to the goal. It is expected that the shortest path from the last obstacle is the
line tangent to the obstacle and heading toward the goal, so the straight edges on the
visibility graph are simply used. There are two shortest paths with different escape
directions from the obstacle O,,, clockwise and counter-clockwise. The paths for the
both cases are kept for the next steps.

The second step is to find the shortest path from the ¢-th obstacle O; to G for
each of avoidance decisions. The procedure is performed backward using dynamic
programming. The shortest path from O; to G can be found by comparing n — i+ 1
path candidates including the direct straight line from O; to G and combination of the

straight lines to O; and the shortest paths from O; to G (Vj > i). This key procedure
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Algorithm 7: Find a set of the shortest paths for each of avoidance decisions
/* To find P, */
1 for d, € {cw,cew} do

I_ pn(dn) == E?z.,(r'(dn)
3 for i < n—1to 1 (backwards) do

[ &

/* To find P; */
4 for all possible sequences (d;,di,y,- -+ d,) where d € {cw,ccw} for k € Z;,
do
5 pi(didipy; - dy) ¢
shortest {{Ei.j(d-i~dj) i p;(dj,djy1,- -+ ,dy) | ¥5 € Zigiam)s {Ei,G(di)}}

/* To find Pg */
for all possible sequences (dy,dsy,- - -d,) where dy, € {cw,cew} for k € Z,,, do
pg(di,da, - - dy)

(Ij &
shortest {{Egj(dj) = pyldy, dyaasovs dy) | Vj € Z,,}, {Ec,c}}

@ pl{:cw LW)
E ,(ccw ,ccwl [

w4 o

o7 TTs=al ¥ P
,a" E, ,(ccw,cw) ::"-p"-..____
® @ i s pp——— )
s E, ;(ccw) o, G
(invalid)

Figure B-5: Example of candidates for the shortest path p,(ccw,cew, cw), the one
from O, to G in cew , cew, and cw direction of O; , O, , and O3 : 1) the straight
line to the goal, E) (cw), which is invisible in this example; 2) the straight line
to Oy followed by the shortest path from O3 to G via the connecting arc on Oj
in cw direction, E)s(cew,ew) =5 p,(cw), which is valid because Ej3(cew,cw) is
a visible edge and passes O, in ccw direction; 3) the straight line to O, followed
by the shortest path from O, to G via the connecting arc on O in cew direction,
E) 5(cew, cew) — py(cew, ew), which is also valid in this example, but not the final
shortest path.

is illustrated in Figure B-5. The shortest path from O; to G does not necessarily
contact the next obstacles O; (Vj > i) because a straight line without contact is
shorter if collision-free. But once it is decided to touch O;, the rest of the shortest
path to G should be the shortest path from the O; to G based on the principle of

optimality.
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The procedure in this step to find the shortest paths corresponding to each avoid-
ance decision from O; to G among the candidates is presented in line 5 of Algorithm
7. E;;(d;,d;) &, p;(dj,djy1,--- ,dn) represents a shortest path candidate from O;
to G with the avoidance decision (d;,d;y1,- - ,d,), combination of the straight tan-
gent line E, ;(d;,d;) from O; to O; and the shortest path from O; to O; computed
in earlier steps through the surface of O; in direction d;. In this procedure, the new
added segments E; ;(d;, d;) should satisfy two conditions: visibility and the sequence
of avoidance directions from O, to O;_;. If the procedure of checking these condi-
tions are performed backward from j = n to j = i + 1, the first case satisfying the
two conditions can be determined to be the solution without the need for considering
a comparison between distances of candidate paths. For the same reason, the direct
straight line from O; to G, E; ¢(d;), is the candidate that has to be considered first
in this procedure. The last step presented in line 7 is to find the shortest paths Pg
from the start to the goal using the intermediate result of the previous steps through

a similar procedure with the second step.?

2A video for demonstration of the implemented algorithm is at https://vimeo.com /142168490
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Appendix C

Fundamental Limit of Obstacle

Avoidance for a Vehicle Model

This chapter presents an analysis of the fundamental limits of obstacle avoidance for a
no-slip bicycle model. The limits for the performance of collision-free navigation of the
vehicle are approximately identified via Monte-Carlo simulations. The fundamental
limits are not dependent on specific planning algorithms. However, for the purpose
of identification of the fundamental limit, RRT has been utilized to identify the
existence of collision-free trajectories in computational experiments. RRT is known
as a probabilistically complete algorithm, so it can estimate the fundamental limits

when used with a sufficient number of samples.!
The no-slip bicycle model with a constant speed has been used as follows;

T =wvcosf, y=wvsind, éz%tand (C.1)

where § is the bounded steering input to the vehicle (—dpax < 0 < dmax), v is the
given speed of the vehicle, and L is the wheel base of the vehicle.? In this analysis,

obstacle configurations were generated randomly based on a Poisson process. The

1By exploiting probabilistic completeness of RRT, it has been considered that collision-free tra-
jectory does not exist within the horizon when the tree with 100,000 random samples could not find
a solution.

2L =2 m, 6max = 5 deg.
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Figure C-1: A portion of a particular realization of the Poisson forest instances with
different densities of obstacles

locations of the obstacles were generated by a homogeneous Poisson process with the
rate of p. The obstacles were assumed to be the same size with radius of 1.5 m, and
the vehicle was required to remain inside the corridor of width 20 m.

The vehicle was driven using RRT in a receding horizon fashion. Note that the
horizon for planning is finite, so that the vehicle proceeded with the control input
of the first step of the computed result as long as a collision-free trajectory existed.
The farthest distance that the car traveled was been measured in random instances
of Poisson forests. Cases where there did not exist any collision-free trajectory at the
initial time step were excluded from the studies.

In each experiment the trees/obstacles were generated according to a Poisson

process with intensity p. To obtain a statistical distribution of maximum traveled
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distances, the experiments have been repeated with random instances/realizations
for each obstacle density. A portion of the four realizations of the Poisson forest with
its own distinct obstacle density is shown in Figure C-1. Note that this is a particular
realization, and the obstacle configurations have been randomly realized in each of

the trials.

The fundamental limits of the performance, i.e. the maximum traveled distances,
depend on a couple of factors. In this thesis, the dependance of fundamental limits
on three factors are analyzed: speed of the vehicle, the obstacle densities, and the

horizon of the controller.

Figure C-2 shows the statistical distribution and averages of the maximum traveled
distances provided by computational experiments with 100 trials for each of the cases.3
The maximum traveled distances decreased as the speed of the vehicle increased. The
graph shows that the rate of decrease is distinctly greater over the intermediate speeds

than the rest of the speed range.

In order to assess the statistical significance of the differences of the maximum
traveled distances depending on the speeds, p-values of the Wilcoxon rank sum test
[146] has been performed for each pair of the neighboring speeds. The Wilcoxon
rank sum test (also called the Mann-Whitney test) is a nonparametric method for
comparing samples from two groups and determining if they are statistically different.
The test provides p-values for the null hypothesis that the two groups have the same
means. The null hypothesis is rejected between the 15 m/s group and 20 m/s group
at the .01 significance level. Hence it can be concluded that there is statistically
significant difference in the maximum traveled distances between speed 15 m/s and
20 m/s. The 20 m/s group and 25 m/s group are also determined to be statistically
different at a 0.05 significance level. For this range from 15 m/s to 25 m/s, the speed
of the vehicle has significant effects on the limits of the maximum traveled distances
in the provided Poisson forest setup. For the rest of ranges, the null hypothesis can

not be rejected with sufficient significance levels. In other words, the speed does not

3In the experiments, the horizon of the planner has been fixed to 20 m and density of the obstacles
fixed to 2.5 x 1073 /m?
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Figure C-2: Fundamental limits of maximum traveled distance depending on the
speed of the vehicle: Quartiles and means of maximum traveled distances in Poisson
forests and p-values of Wilcoxon rank sum test of the neighboring speeds

affect the limits of traveled distances statistically significantly for speeds below 15
m/s and above 25 m/s in the provided setup. This result coincides with the phase
transition for existence of a collision-free trajectory discovered in [108].

Figure C-3 shows statistical distribution of the maximum traveled distances with
different densities of obstacles and horizons of the controller. For each case, 100
random trials were performed. The speed of the vehicle was fixed to 20 m/s.* As the
density of the obstacles increased, the maximum traveled distances decreased. Also, as
the horizon of the planner decreased, the maximum traveled distances decreased. The
differences of the IQRs are distinct in the figure. The results of statistical significance
tests for the differences, the Wilcoxon rank sum test, are shown in Table C.1 and
Table C.2. The statistical difference of the fundamental limits depending on the

horizons of the planner is significant for all cases. The p-values between neighboring

4An example of the run is shown in a video in https://vimeo.com/142169565
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Table C.1: p-values between results from two different horizons in the result of Figure
C-3

p-values between Density of obstacles

different horizons 0.0025/m> 0.0050/m? 0.0070/m? 0.0090/m?
20 m and 40 m 0.0010 < 0.0001 < 0.0001 <« 0.0001
10 mand 20 m <« 0.0001 < 0.0001 < 0.0001 << 0.0001

horizons are less than 0.01. On the other hand, the statistical differences between the
densities of the obstacles are significant for most of the cases with some exceptions.
The p-values between two neighboring densities are less than 0.05 except for the two
cases.

Finally, human performance has been measured and compared with the funda-
mental limits. A human operator was asked to control the vehicle in the Poisson

forest with different densities of the obstacles. The vehicle speed was fixed to 20

7000 —horizon: 40m
horizon: 20m
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— 6000 ™ -
E
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0.0025/m? 0.0050/m?2 0.0070/m? 0.0090/m?2

density of obstacles

Figure C-3: Fundamental limits of maximum traveled distance depending on the
density of the obstacles and horizon of the planner: Quartiles of maximum traveled
distances in Poisson forests
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Table C.2:

p-values between different density of obstacles in the results of Figure C-3

p-values between  0.0025/m? 0.0050/m? 0.0070/m?

different and and and
obstacle densities  0.0050/m* 0.0070/m? 0.0090/m?
40 m 0.0021 0.0004 0.0676
Horizon 20 m < 0.0001 0.0283 0.0034
10 m < 0.0001 0.0994 0.0007
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Figure C-4: Average of maximum traveled distances of a human before colliding
obstacles are compared with fundamental limits with different horizons

m/s. The 40 m horizon ahead has been shown to the operator. Figure C-4 shows

a operator’'s view on the screen. The vehicle has been controlled by the two arrow

keys on the keyboard. The steering input was chosen among three discrete values.

The steering input was zero without any keyboard input, the left maximum steering
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Figure C-5: Average of maximum traveled distances of a human before colliding
obstacles are compared with fundamental limits with different horizons

input was given by the left arrow key, and the right maximum steering input by the
right arrow key.> The human operator has driven the vehicle 20 times for each den-
sity of the obstacles, and the maximum traveled distance before colliding with any of
obstacles has been measured.

Figure C-5 presents the average results of a human driver obstacle avoidance. The
equivalent horizon for the human operator varied depending on the density of the
obstacles. When the density of the obstacles was small, the average of the human’s
performance was similar to the average of fundamental limits with the horizon 20
m. However, as the density of the obstacles increased, the equivalent horizon of the
human operator decreased to be near the average of the fundamental limits with a

horizon of 10 m.

SAn example of the vehicle manual control in the Poisson forest is shown in a video at
https://vimeo.com /142169673
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Appendix D

Technology Adoption Models and
Usability

This chapter presents factors in a list of technology adoption models and usability.

Some of the factors were selected as measures in Chapter 5 among the list.

Table D.1 Technology adoption models and usability

Technology Acceptance Model (TAM) [130]

Perceived Usefulness “The degree to which a person believes that using a
particular system would enhance his or her job perfor-
mance’

Perceived Ease of Use “The degree to which a person believes that using a par-

ticular system would be free of effort”

Innovation Diffusion Theory (IDT) [132]

Relative Advantage “The degree to which an innovation is perceived as being
better than its precursor”

Ease of Use “The degree to which using an innovation is perceived
as being difficult to use”

Compatibility “The degree to which an innovation is perceived as being
consistent with existing values, needs, and experiences

of potential adopters”
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Results Demonstrability  “The tangibility of the results of using the innovation,
including their observability and communicability”
Voluntariness of Use “The degree to which use of the innovation is perceived

as being voluntary, or of free will”

Unified Theory of Acceptance and Use of Technology (UT&UT) [133]

Performance Expectancy “The degree to which an individual believes that using
the system will help him or her to attain gains in job

performance;”

it includes perceived usefulness in TAM,
relative advantage in IDT, etc.

Effort Expectancy “The degree of ease associated with the use of a system:”
it includes perceived ease of use in TAM, ease of use in
IDT, etc.

Social Influence “The degree to which an individual perceives that im-
portant others believes he or she should use the new
system;” it includes subjective norm in TAM2, image in
IDT, etc.

Facilitating Conditions “The degree to which an individual believes that an orga-
nizational and technical infrastructure exists to support

use of the system”

Car Technology Acceptance Model (CTAM) [134]

(Every constructs in UTAUT are inherited)

Attitude “An individual’s overall affective reaction upon using a
system”

Self-Efficacy “A person’s belief in his/her ability and competence to
use a technology to accomplish a particular task”

Perceived Safety “The degree to which an individual believes that using
a system will affect his or her well-being”

Anxiety “The degree to which a person responds to situations

with apprehension and uneasiness”
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Usability [137]

Effectiveness

Efficiency

Satisfaction

- Preference

- Satisfaction with in-
terface
- Attitudes towards in-
terface

- Annoyance

- Anxiety

- Control

- Fun
- Liking
User’s attitude and

perception

“Accuracy and completeness with which users achieve
specified goals;” it includes binary task completion, ac-
curacy, quality of outcome, expert’s assessment, etc.
“Resources expended in relation to the accuracy and
completeness with which users achieve goals:” it includes
time, mental effort, usage patterns, learning, etc.
“Freedom from discomfort, and positive attitudes to-
wards the user of the product”

“Measures satisfaction as the interface users prefer us-
ing”

“User satisfaction with or attitudes towards the inter-
face”

“Questions given to aiming to uncover specific attitudes
towards the interface”

“Measure of annoyance, frustration, distraction and irri-
tation”

“Users” anxiety when using the interface”

“Users’ sense of control and attitude towards the level of
interactivity”

“Users’ feeling of fun, entertainment, and enjoyment”
“Users’ liking of the interfaces”

“Users’ attitude towards and perceptions of phenomena

other than the interface”

The constructs on each model is not exhaustive, but selected according to its rele-

vance to our study and portion of adoption in previous studies. For example, social

factors such as subjective norm in TAM2 and image in IDT are excluded.
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Appendix E

Age Differences in the Results of User

Acceptance

This chapter graphically presents the differences between two age groups in mean and

standard deviation of the subjective measures presented in Table 5.5 and Table 5.6.
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Figure E-1: Age group differences in workload
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Figure E-2: Age group differences in boredom
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Figure E-4: Age group differences in perceived ease of use
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Figure E-7: Age group differences in sense of control
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Appendix F

Evaluation of Vehicle Types in the
Post-Experiment Questionnaire of the

User Study

This chapter presents results from post-experiment questionnaire of the user study.
The main questions consisted of two parts: 1) preferences among the three types of

driving modes and reasons 2) pricing the two assistance systems.
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Selection of a Vehicle Type
(Total)

(a) From all participants

Selection of a Vehicle Type Selection of a Vehicle Type
I don't (Younger Group) (Older Group)
know
| 8%
Regular -
7%
(b) From the younger age group (¢) From the older age group

Figure F-1: Ratio of vehicle types selected by the participants in the post-
experimental questionnaire: answers to the question “If a Fully-Autonomous (Self-
Driving) vehicle, a Semi-Autonomous (Assisted-Driving) vehicle and a vehicle with-
out autonomous capabilities (regular vehicle) were priced the same, which would you
prefer to purchase?”
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Table F.1: Answers to the question “Please describe the reason behind your vehicle
selection” for the participants who chose the “Regular Vehicle”

Reasons for the choice of the “Regular Vehicle” Age group Gender
“I prefer the activity of driving” Younger Male
“I want to be sure I am fully able to control all driving  Younger Male
aspects of a vehicle, given its size, weight, etc.”

“More control over vehicle” Younger Male
“I felt safer in the regular vehicle.” Younger Female
“As much as it’s a convenience to not need to pay atten-  Younger  Female
tion, driving is an art and I would rather paint the canvas

myself.”

“While having the option for full autonomy definitely has ~ Younger  Female
benefits, I enjoy driving too much to give that up com-

pletely. If there was an option to switch it on and off

I'd get that. Semi-autonomous was frustrating because

knowing you want to change lanes but not being able to

adjust your speed is contradictory.” :

“more control less boredom” Older Female

Table F.2: Answers to the question “Please describe the reason behind your vehicle
selection” for the participants who chose the “Semi-Autonomous Vehicle (Assisted-
Driving)”

Reasons for the choice of the “Semi-Autonomous Vehicle” Age group Gender

“want to be in control at least partially” Younger Male
“full control over lane preference’ Younger Female
“T have not experienced the systems operating in real Older Male

world driving conditions. For example how the system
responds to driving surprises.”

“would not want vehicle in control at all times, trust is- Older Male
sue”
“{ like being in control or being able to control vehicle” Older Female
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Table F.3: Answers to the question “Please describe the reason behind your vehicle se-
lection” for the participants who chose the “Fully-Autonomous Vehicle (Self-Driving)”

Reasons for the choice of the “Fully-Autonomous Vehicle” Age group Gender
“I enjoyed being able to read the paper while driving. I ~ Younger Male
would mainly use the function for longer trips however

as opposed to shorter drives in cities or through neigh-

borhoods where I feel like I would want to pay more at-

tention.”

“It was extremely helpful in that I was able to check email = Younger Male
while driving.”

“don’t have to focus on driving; can do other things” Younger Female
“Less effort. Ability to relax or multi-task.” Older Male
“less work, safer” Older Male

“i would be able to do other tasks while getting to where Older Male
I wnted to be”

“So I could read or sleep.” Older Male
“Because I could read a magazine and eat caramels” Older Female
“I think it would be safer and more accurate than I Older Female

thought prior to the experiment.”

“I initially I thought I'd prefer some degree of control Older Female
in semi-autonomous but in fact, it didn’t offer any par-

ticular benefit and had drawback of being distracted by

choice.”

Table F.4: Answers to the question “Please describe the reason behind your vehicle
selection” for the participants who chose “I don’t know”

Reasons for the choice of “I don’t know” Age group Gender
“I would want one with the capabilities of full-autonomy,  Younger Male
but that allowed me to drive regularly if I wanted to”

“l LIKED FREEDOM OF AUTONOMOUS SYSTEM, Older Female
BUT NOT SURE HOW IT WOULD PERFORM ON

ROAD”

“I would prefer to have more practice experience with the Older Female
semi or fully autonomous vehicles prior to deciding.”

“they all have advantages. The simulator drove below the Older Female

posted speed limit in autonomous and semi-autonomous
so I'd want to change that. Semi-autonomous doesn’t
allow for doing other activities while in the car.”
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( Prices for the Semi-Autonomous Feature
_____________________________________________________________ w Oider
-Younger
.............. Sev
| B I B
Less than $500 $1,000 $1,500 52,000 $2,500 $3,000 54,000 $4,500 $5,000 More than
$500 $5,000

(a) Answers to the question “If you were purchasing a new vehicle, how much extra would you
be willing to pay in order to have it be Semi-Autonomous (Assisted-Driving)?”

Less than $500 $1,000 $1,500 $2,000 $2,500 $3,000 $4,000 $4,500 $5,000 More than
5500 $5,000

R

(b) Answers to the question “If you were purchasing a new vehicle, how much extra would you
be willing to pay in order to have it be Fully-Autonomous (Self-Driving)?”

Figure F-2: Histogram of price choices from the participants in the post-experimental
questionnaire
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Appendix G

Classification of Driver Behavior on

Highways

G.1 Problem Statement

G.1.1 Motivation

This chapter presents a method for estimation of driver behavior intention on high-
ways. On roads where human-driven vehicles and autonomous vehicles coexist, au-
tonomous vehicles will be required to predict the behavior of human-driven vehicles
for safe and efficient navigation. Although movements of human-driven vehicles are
controlled fully by the drivers, it is reasonable to assume the existence of trends on
dr.ivers’ behavior depending on their target lanes on the highways. As soon as the
driver decides to change lanes, the decision would reflect on the vehicle states. For
example, we can predict the driver’s target lane based on the lateral deviation from
the lane centers. The behaviors depending on their target lanes may be different
depending on the their own driving styles, e.g. aggressive or cautious. From the
short-term recent history of the vehicle state on the road, it is possible to estimate
the driver’s navigation decisions, namely, their lane change decision on highway. The
chapter could be used in real world implementations of the various control methods,

which currently assume perfect knowledge of target vehicle future actions.
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Figure G-1: Classification problem of driver’s target lane

This chapter utilizes machine learning techniques to classify a driver’s lane change
decisions by selecting explanatory variables from the vehicle states as shown in Figure
G-1. The potential possible predictor variables would be state histories of the vehicle
up to a certain number of steps in the past, x(t),x(t — 1),--- ,x(t — p). These
raw variables as they are would not be appropriate predictors for the problem. The
variables can be processed and a few key features selected as predictors. The output
response are discrete values indicating target lanes, namely 1.2, or 3, or probability of
each class membership. Hence the problem is categorized as a classification problem,
and four algorithms - decision tree, k-nearest neighbors(kNN), neural network, and

support vector machine(SVM) - are compared in this chapter.

G.1.2 Data Acquisition

Figure G-2 shows settings for data acquisition from a human driver. The driver
was asked to drive a vehicle in the simulator CarSim on a highway driving course
designed with moderate curves with three lanes. The state history of the vehicle has
been collected at the rate of 20 Hz for 5 minutes of driving. An important issue for
data acquisition is to measure the driver’s true intention in his/her mind in terms of
target lanes, which are used as the true output y of the supervised learning algorithm.
The intention has been recorded in the following way while driving. Whenever the
driver decided to change lane, he or she pulled buttons behind the wheel to indicate
his or her intention. For example, if the driver wants to change lane to the left, he
or she pulls the left button and starts to change lane. In this way, it was possible to

keep track of the driver’s target lane for all times during the driving.
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Figure G-2: Settings for driving data acquisition

Figure G-3 shows the acquired driving for he driver. The true lane is the actual
lane where the vehicle was at each time step. The target lanes are extracted based
on the left and right turn signal provided by the driver. Finally, the whole data set
is divided into roughly 70% training set and 30% test set. The exact partition was
performed at a time point where the target lane changes. The training data size
and test data size was 4183 and 1817 time steps, respectively. The training set is
partitioned into 10 bins for cross validation as well. The sizes of the bins are not

equal, but instead each bin has 3 instacnes of changes of target lanes.

G.1.3 Performance Metrics

The performances of classifiers are generally assessed by misclassification error rates.
However, this chapter proposes two more metrics, false positive rate and prediction
delay, to quantify the performance of driver target lane classifiers. The definitions of
the proposed performance metrics are illustrated in Figure G-4.

The first metric, false positive rate of the prediction is defined as following;

# of true change of target lanes

false positive rate = 1 — — -
: # of predicted change of target lanes

[t measures how much the predicted target lane value changes more that it has to be.
It is undesirable if it oscillates more often than the actual frequency of the true change
of the target lanes. It is assumed that the specific target lanes of predicted changes

are always correct if detections of the changes were true positive. This assumption
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has been confirmed from the actual classification results afterwards. Note that the
true target lanes were obtained during data acquisition by the driver’s turn signal.

The other proposed metric is the prediction delay of the lane changes. As the
vehicle moves close enough to a target lane, the classifiers should be able to predict
the target lane correctly. A more interesting question is how early the classifiers
estimate the target lane. It is defined as the time elapsed after the true change of the
target lanes.

Note that these performance metrics are used only to quantify and compare the
classification results, but not used for training portions. Although test misclassifica-
tion error also can show classification performances well, the proposed metrics provide

more physical intuition about the target lane classification performance.

G.2 Classification

G.2.1 Two predictors - lateral positions and heading angles

relative to road centerlines

The most intuitively appropriate predictors for classifying target lanes are the lateral
position of the vehicle relative to the road center and the heading angle of the vehicle
relative to the road heading. For the training set, the scatter plot of the two predictors
with the class labels is presented in Figure G-5.

Figure G-6 shows decision boundaries of an overfitted decision tree. This should
be regularized for generalization. The tree has been learned and tested with different
number of splits through a cross-validation framework. The results of the cross valida-
tion are shown in Figure G-7. Even though the minimum average error has occurred
with 43 splits, the best number of splits can be selected as the smallest number of
splits whose average error is within one standard deviation above the minimum. So,
the best number of splits for regularization has been found to be 3. Figure G-8 shows
the decision boundary of the best pruned tree. For the rest of the classifiers, the best

tuning parameters have been also found using cross validation.
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Figure G-5: Scatter plot of two predictors with the class labels for the training set
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Figure G-8: Decision boundaries for the best pruned tree
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Figure G-8 - G-12 show the decision boundaries of the trained classifiers and
their performances for the test set. As expected, the overfitted decision tree gives
the worst test error rate and a poor false positive rate. Roughly 95% of positive
detections of lane changes are not true positives. This can also be seen from the
high rate of fluctuation in the prediction result graph. Because of this high frequency
of fluctuation, the average prediction delay is shorter than any of the rest of the
classifiers. However it is not practically useful given its extremely high false positive

rate.

The best pruned decision tree gives reasonable performance. It shows a much
better result compared to the overfitted tree, but it is slightly worse than the rest
of regularized classifiers. Both the false positive rate and prediction delay are the
highest among the regularized classifiers. Especially the average prediction delay is
roughly twice that of the rest of the regularized classifiers. The reason is that the
primary decision boundary for better classification seem to be rather oblique than

vertical or horizontal as shown in Figure G-8.
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Figure G-9: Decision boundaries for the kNN with best k
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Figure G-10: Decision boundaries for the neural network
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Figure G-11: Decision boundaries for the support vector machine (SVM)
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Figure G-12: Results for different classifiers with the two predictors. The classifiers
have been regularized through validation/cross validation except the overfitted tree.

On the other hand, kNN gives the best results in terms of both of the false positive

rate and the average prediction delay.

The nature of kNN provided more flexible
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boundaries of decisions as shown in Figure G-9. The standardized Euclidean distance
has been used for the distance measure, and the best k has been found to be 900 from
cross validation framework. A drawback was that it was computationally expensive
for the predictions.

A nonlinear statistical model, neural network, has also been applied to the prob-
lem. A neural network with a single hidden layer with 10 hidden units has been
adopted. The validation set has been selected as the 10th bin of the partition of
the training set. The network has been trained by the scaled conjugate gradient
back-propagation method, and fitness has been measured based on cross entropy. 38
iterations have been performed before stopping the training. For the support vector
machine, a Gaussian radial basis function has been applied with the best box con-
straints chosen by cross validation. The neural network and support vector machine

performed much better than the best pruned tree, but not better than kNN.

G.2.2 Additional Predictor - rate of relative heading angles

Two additional potential predictors were considered. The rate of change of the lateral
positions and the rate of change of relative heading angle could be candidates for the
predictors. Considering the high noise sensitivity of differentiation, the rates have
been calculated by averaging the 10 prior points of the differentiation of the states.
The processed variables are shown in Figure G-13. In order to check the relations
between the potential predictors, a scatter plot and correlation between predictors
can be analyzed. Figure G-14 shows the scatter plot of relative heading angle and
rate of lateral position. They are highly correlated, as the correlation coefficient has
been computed as 0.92. Therefore one more predictor, rate of relative heading angle,
has been added to the previous predictors so that there are three predictors in total.
The three-dimensional scatter plot of the three predictors is shown in Figure G-15.
The classifiers with the three predictors are also regularized in the same way as
before. The results of all classifiers with the three predictors are shown in Figure G-
16. The best classifier this time was the neural network, but there is a slight difference

with kNN in terms of test performance. An overfitted tree, of course, has the worst

213



lateral position

10
E
0 50 100 150 200 250 300
[sec]
10 rate of lateral position

[m/s]
o

.10 1 1 1 1 1 J
0 50 100 150 200 250 300
[sec]
20 - relative heading

[deg]
o

-20 1 1 1 1 1 1
0 50 100 150 200 250 300
[sec]
e rate of relative heading

[deg/s]
o

Figure G-13: The collected state history and filtered rates using a simple moving
average with 10 previous data points

Table G.1: Results

Two predictors overfitted tree best tree kNN NN SVM
Test misclassification rate 0.222 0.201 0.113 0.137 0.140
False positive rate 0.945 0.294 0.077 0.294 0.200
Average prediction delay [sec| 0.454 1.396  0.642 0.754 0.792
Three predictors overfitted tree best tree kNN NN SVM
Test misclassification rate 0.211 0.155 0.140 0.129 0.174
False positive rate 0.927 0.294 0.368 0.368 0.692
Average prediction delay [sec| 0.358 1.046  0.704 0.650 0.900

performance on the test data.

Table G.1 shows the results with two predictors and three predictors together.
Interestingly, most of the classifiers have worse performance compared to the classifiers
with the two predictors, except for the best pruned tree. However, the best pruned
tree with the three predictors happens to be better since it has the best number of

splits, 4. They do not have the new predictor, the rate of relative heading angles, in
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Figure G-15: Scatter plot of three selected predictors with class labels
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Figure G-16: Results for different classifiers with the three predictors. The classifiers
have been regularized through validation/cross validation except the overfitted tree.
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the rule of the tree. So in general, including this new predictor did not improve the
classification performance.

It might be possible to add other useful predictors if we have more information
about situations on the road or driver’s actions such as gaze points. For example,
the potential predictors that might improve the classification performance are some
measure of safety of the vehicle’s lane change in terms of potential collisions with

other vehicles, under the assumption that drivers pursue safe navigation.

G.3 Summary

Four types of classifiers - decision tree, kNN, neural network, and support vector ma-
chine - have been applied to the proposed problem of classification of driver behavior
on highways. Each classifier is regularized through validation set or cross validation.
In general, the best tuning parameters have been found as the ones minimizing the
complexity of the model whose average validation errors are below one standard de-
viation of the minimum average validation error. The kNN classifier showes the best
performance on the test data, but it was computationally expensive. Considering the
computation burden, the neural network gives reasonable performance on the test
data with reasonable computation burden. In terms of predictors, the new predictor
- the rate of relative heading angles - turned out to be not helpful to increase the

classification performance in general.
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Appendix H

Longitudinal Conservative ICS
Avoidance with an Unpredictable

Predecessor

The chapter provides a simple analytic solution to longitudinal dynamic obstacle
avoidance, which is used in traffic simulation presented in Section 5.2.2. Suppose
there are two consecutive vehicles moving in the same direction on a one-dimensional
track as shown in Figure H-1. The purpose is to find the upper bound of acceleration
of the rear vehicle to apply during the current time step in a way to ensure collision

avoidance with the front vehicle, regardless of the behavior of the front vehicle.

Vo vf
—t —
) C ): :( DINO) :
e >ie >
do stopping distance d s

Figure H-1: Problem description for a rear vehicle to avoid collisions with front vehicle
in a conservative way

The vehicles are assumed to be point masses with bounded acceleration input.
For convenience, the vehicles are also assumed to be moving in positive directions for

all times. Let the initial speed of the rear vehicle and the front vehicle be vy and
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vy, respectively. Let time interval be AT, which is the time duration before the next

input command can be applied.

[ maximum brake
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(a) Case 1: 2voAT >d (b) Case 2: 2voAT < d

Figure H-2: Two distinctive cases for stopping distances of the rear vehicle

The worst case for the rear vehicle for collision avoidance is the case when the

front vehicle decelerates with the maximum braking effort. In this case, the stopping

2
distance of the front vehicle is df = 2avf v where apn;y is the magnitude of the maximum
brake acceleration of the front vehicle. Let the sum of the current distance between
the two vehicles, dy, and the worst-case stopping distance of the front vehicle‘, dy, be

d=do+d s. If the rear vehicle can stop before it travels d, it is always safe.

Theorem 16. The upper bound of the acceleration of the rear vehicle for the current

time step s

%Og if 2uAT > d (H1)
Qupper = > — :
o lg o+ \/(iiaﬁ + Hmp (g — waly) otherwise

Proof. Let the smallest possible stopping distance of the rear vehicle according to the

acceleration a for the current time step be denoted by d(a). If d(a) is less than or

3
et
3
V]

"
(o8

equal to d, the rea collisions with the front vehicle. There are two

distinctive cases for computing d(a) as shown in Figure H-2 depending on whether or
not it is necessary for the rear vehicle to stop before the next time step.
The first is the case where it is necessary for the rear vehicle to stop before the
vh

next time step, i.e., %’UoAT > d. In this case, d(a) = 5-. Hence the maximum possible

acceleration for the rear vehicle is aupper = 2.
0
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The other case is where it is not necessary for the rear vehicle to stop before the
next time step. In this case, the smallest stopping distance with acceleration a for the
current time step, d(a), can be achieved by decelerating with maximum brake after

the next time step.

(vo + aAT)?

1
d(a) = v AT + 5aAT2 L

1 B
when §UOAT <d (H.2)

Then, the problem reduces to finding the upper bound of acceleration, a,yper, such
that f(a) = d(a) — d < 0. It can be shown that the discriminant D of the quadratic

function f(a) is positive in this case.

AT* a2,  2amp,; VAT 1 -
D= afnb( o rg(d = =) >0 when SwAT <d (H.3)

Hence, the upper bound of the acceleration such that d(a) — d < 0 is as follows.

v 1 \/ aly | 2amb, - VAT
Qupper = AT 2amb+ ( 4 + AT? (d 2 )) (H4)

O
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