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Abstract

Semi-autonomous and autonomous vehicles have been of interest for reasons such as
safety, efficiency, and convenience. The thesis proposes a homotopy-based hierarchi-
cal motion planning and control framework for vehicle navigation. A homotopy is,
roughly speaking, a set of trajectories with the same high-level navigation decision.
The motivation of the proposed hierarchical framework based on homotopy class
is twofold: compatibility with human's decision and computational benefits. The
approach explicitly identifies and enumerates feasible homotopy classes correspond-
ing to different navigation decisions allowing for interaction with a human opera-
tor/supervisor. Also, the approach has computational benefits, specifically enabling
a divide-and-conquer strategy. In a collision-free trajectory generation problem, the
presence of obstacles serves to creating discontinuities in the set of feasible trajec-
tories. However, the complexity can be reduced significantly if we independently
consider multiple distinct continuous sets of feasible trajectories, where no disconti-
nuity is created.

The thesis first presents a method for enumeration and representation of the navi-
gation decisions by cell sequences to divide a collision-free vehicle navigation problem
using cell decomposition. Then, it proposes a sampling-based method to evaluate the
desirability of each navigation decisions in terms of control input safety margin. In
order to make a vehicle navigate safely within a chosen navigation decision, a model
predictive control framework is utilized with a corresponding navigation decision con-
straint. The constraint is non-convex, but a sequence of convex cells is prescribed
in advance. An efficient formulation of the problem into mixed integer programming
is proposed and validated in the thesis. Finally, a user study in a driving simulator
shows that users accept semi-autonomous/ autonomous vehicles based on the proposed
framework on highways as much as regular vehicles.

Thesis Supervisor: Karl Iagnemma
Title: Principal Research Scientist
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Chapter 1

Introduction

1.1 Background and Motivation

1.1.1 State of the Art of Vehicle Automation

For decades, significant efforts have been made to save human lives on roads. Accord-

ing to the World Health Organization (WHO), about 1.24 million people die each year

worldwide as a result of road traffic crashes [1]. Classical safety features had been

focused on passive safety that helps to protect occupants during crashes. Airbags,

seatbelts, and improvement of crashworthiness fall into this category. Also, indirect

and secondary tools for reducing accidents have been provided, such as alcohol de-

tection ignition locks [21 or fatigue detection systems [3]. As a more active way of

achieving safety, vehicle automation has gained a lot of attention as a direct way to

reduce accidents. Besides the safety issues, the vehicle automation promised other

attractive benefits such as labor cost reduction, reduced fuel consumption, increase

of road capacity, etc.

In the early 1990s in the United States and Europe, the research tendency was

heading toward Automated Highway Systems (AHS) [4] to achieve regulated traffic

flow and, as a result, to achieve safer highways with higher capacities [5]. The main

concern was to improve the whole traffic characteristics such as traffic flow efficiency

and safety. The goal was to adjust spaces between vehicles and simultaneously achieve
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close spaces to increase road capacity and safe distances. Such initiatives had been

implemented under different names such as Intelligent Vehicle-Highway Systems [6,

7], Intelligent Cruise Control System [8], Autonomous Intelligent Cruise Control [9],

Cooperative Adaptive Cruise Control [10].

In the late 1990s, the focus had been moved to Intelligent Vehicle Initiative (IVI)

to emphasize individual vehicle-level partial autonomy and interaction with drivers

[5]. The main focus of the initiative was to accelerate the use of integrated in-vehicle

systems that help drivers operate more safely and effectively [11]. Many car manu-

facturers started developing various types of driver assistance systems. They ranged

from informing or warning systems to deeper control engagement systems. In terms

of informing or warning systems, assistance with visual, auditory, or haptic feedback

[121 have been shown to improve safety in many cases such as blind spot detection

and warning [13], driver drowsiness detection, night vision assistance, lane departure

warning, traffic sign recognition, and so on. In forward collisions, for example, it was

claimed that 60%-90% of collisions could be avoided depending on the warning time

of the system [14].

Advanced Driver Assistance Systems (ADAS) include not only informing or warn-

ing systems but also systems taking over driving tasks as necessary to operate vehicles

in a safer way. Adaptive Cruise Control (ACC) is the earliest ADAS that has been

introduced by the automotive industry 18]. Its purpose was to control time headway

[9] or spacing [8] between vehicles with controllers (e.g., linear feedback controller

[10], model predictive control [15]). In this approach, it would be an important is-

sue to set up a desired value of time headway or space. Another form of longitudinal

control intervention system, the Collision Mitigation Brake System (CMBS), engaged

braking operation to compensate for driver's operation delays and insufficient brake

forces to avoid collisions with vehicles ahead in traffic [16, 17]. Lateral control in-

tervention systems (e.g., lane keeping system) and other automated controls in some

restrictive situations (e.g., automatic parking [18], overtaking assistance [19]) also had

been developed.

A higher level of autonomy toward full self-driving automation has recently gained
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a lot of attentions due to recent advances in technology. The DARPA Grand and

Urban Challenge contests initiated the advances in practical autonomous driving

technologies fron 2004 to 2007 120, 211. Many people expected to have driverless

cars onl the roads.

0 No-Automation Warning systems such as forward collision warning, lane departure warning, blind spot

monitoring with no automated control engagement

1 Function Specific Automation Adaptive cruise control, electronic stability control, dynamic brake support in

emergencies, lane keeping

2 Combined Function Automation Adaptive cruise control in combination with lane centering

3 Limited Self-Driving Automation Automated navigation asking driver's manual control in exceptional cases such as

oncoming construction area and providing a sufficient transition time for mode change

4 Full Self-Driving Automation Automated navigation system requiring no driver's manual control during the whole trip

but providing destination

Figure 1-1: Levels of vehicle automation defined by National Highway Traffic Safety

Administration (NHTSA)

However, it is a doinilant opinion iin the field of vehicle automation research that

fully automated and driverless vehicles require iiuch more effort to be implemented

and placed on roads 1221. Even for driver assistalce systems, there are still many issues

that need to be addressed [5, 23]. The National Highway Traffic Safety Administration

(NHTSA) has defined levels of vehicle autonomy ranging from vehicles that do not

have any of control systems automated (level 0) to fully automated vehicles (level 4)

as shown in Figure 1-1 124]. According to this classification, we are now iin the stage of

level 1 or level 2 in terms of implementation for practical uses. From 2011. for example.

NHTSA issued a standard that made Electronic Stability Control (ESC), a level-i

technology. mandatory on all new light vehicles. Also as of 2013, NHTSA engaged

extensive research on automatic braking technologies, which is a level-i technology

[241. The level-2 autonomy systems with technology that controls both of lateral and

longitudinal positioning in certaini driving conditions are expected to be inl production

shortly 1221.
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1.1.2 Need for Human in the Loop

Some of main challenges of vehicle automation technology, including driver assistance

systems, are sensor technologies, visual intelligence, and context awareness [3]. Even

though significant progress has been made in understanding of traffic scenes and ex-

traction of information on surrounding environments, these technologies come with

many challenges [23]. More robust situation-recognition systems and reliable sen-

sory systems are required before such automated systems with the high-level control

engagement are in practical use [5].

A human driver is an excellent resource for sensing, situation recognition, and

context awareness as long as the driver is focusing on the driving task. The focus

on driving can be recovered from many distraction sources through various types of

detection or warning systems developed. There are, of course, limitations on humans'

sensory ability, such as blind spot and bad visibility conditions (e.g. low-visibility

weather, strong headlights, or direct sunlight). However, a human has still superior

ability in situation awareness, judging and reasoning in most normal driving situations

[25, 26]. In addition to his ability to process and parse rich sensory information, a

human's ability to build predictive mental models for the environment have been

parts of reasons to keep the human in the control loop 127].

It has been recognized in the field that "combining the strengths of machines and

humans, and mitigating their shortcomings is the goal of intelligent-vehicle research"

and "how best to manage the on-board human resources is an intriguing question" [3].
There has been extensive research on enhancement of driver's performance by keeping

humans in the control loop. These shared control frameworks have tried to utilize

different strengths of humans and machines by allocating tasks best suited to each one

respectively. In early 1950's, Fitts [25] presented a list of tasks humans and machines

are better at respectively. For example, a human is good at inductive reasoning,

exercising judgement, improvising and using flexible procedures. Machines are better

at quick response to control signals, precise and smooth control of force, doing many

complex operations at once, and deductive reasoning [25, 281. Also, it has shown
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that overall system performance can be enhanced by combining a robot's control of

low-level functions with a human operator's maintenance of high-level control [29].

Human have also been considered as an essential element in automation systems

for detecting and reacting to cases of failure of the automation, or recovering from

unexpected operating conditions [27, 28]. The need for a responsible driver or human's

attention is argued for monitoring and intervening operations of autonomous driving

technology in the automotive community [22, 30].

There are other compelling reasons to keep humans in the loop of the driving

system: not only superior sensory and context awareness ability, but also high au-

tomation costs, significant socioeconomic pressures, legal and liability issues, and

pleasure of operation [311. Even if the human does not play central roles in the actual

control of the vehicle, it is often the case that the human is still contained in the

system.

1.1.3 Considerations for Shared Control

Issues related to incorporating humans in the automation systems have been investi-

gated for decades. The main considerations for the shared control between humans

and machines can be summarized as three questions in the literature: 1) communi-

cation of intentions between the two controllers (i.e., human and machine), 2) coor-

dination of control authorities from the human and machine, 3) user acceptance.

In a shared control framework, it is a challenge to estimate or predict what a user

wants and let the user know what the system intends to do. The two cooperating

controllers should communicate with each other about sensed information and control

plans [27]. Some works assume that the user is following one of a set of predefined

behaviors, and trains a classifier for the prediction [32]. However, in many real-world

scenarios, the system must adaptively consider possible intent of the user in dynam-

ically changing environments. It is also an important issue to design an appropriate

control interface for the shared control system in a way to allow the user to express

his/her intention and the system to provide feedback to the user about the system's

intention [27, 331.
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How to combine control authorities from human and machine is also an important

question. It is a challenging aspect to determine when and which control commands

should be respected, or to assign appropriate weights to each conimands. In this

procedure, responsibility division issues always follow and should be carefully negoti-

ated 1271. Different authority allocations depending on situation states (e.g. routine,

caution, and critical) have been considered in [281. It is also pointed out that that dif-

ferent degrees of automation are appropriate depending on the systems and problems

1341.

Finally. user acceptance is also an important issue for widespread access and adop-

tion of new technologies 1331. For example. users would like to feel more comfortable

with an automation system that respects their preferences or high-level decisions, and

works in a similar way to the users cognitive driving procedure.

1.1.4 Need for Homotopy-based Approach

FA

(a) Path-based approaches genlerat( (h) The propSe( Iios topy-based ap-
the single best trajectory in a complex proach first identifies and represciits

envi ronment possible fields of safe travels corr-
sponding to distinct navigation (eci-
sions before considering specific trajec-

tories.

Figure 1-2: Path-based approaches vs. the proposed hoiotopy-based approach

A homotopy is. roughly speaking, a set of trajectories with the same obstacle

avoidance manner. The role of honotopy classes in robotic navigation has been stud-

ied in l351. The utility of' homnotopy class analysis is clear In certain applications

such as exploration and 1apping. or multi-agent task planning 1361. Also, in semi-

autonomous robotic applications, in which a human and control system share control

of the robotic system (e.g. see 1,371), it can be important to identify and respect a
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human operator's intent, expressed through his/her navigation decision, correspond-

ing to a choice to navigate within a particular homotopy class. The distinct features

of the proposed homotopy-based approach are illustrated in Figure 1-2 as opposed to

traditional path-based approaches. This thesis argues that the need for a homotopy-

based approach is twofold: compatibility with human's decision and computational

benefits.

Compatibility with human's decision of the homotopy-based navigation enables

seamless shared control. Traditional approaches for autonomous vehicle navigation

are based on a single path planning in a complex environment. However, it is un-

comfortable or even dangerous in the human-in-the-loop systems since this single

solution does not always correspond to a human's intention or preference. Humans

usually first make decisions about a desired goal or high-level avoidance strategies

before determining a specific path of travel. Besides it is arguably overly-restrictive

to confine the vehicle to a specific path in a semi-autonomous system sharing the

control authority with human operators because human operators tend to operate

vehicles within fields of safe travel [38] rather than rigidly follow a specific path [31].

A homotopy-based approach can explicitly identify and enumerate feasible homo-

topy classes consistent with different navigation decisions. This hierarchical approach

allows for choosing a maneuver coinciding with the driver's intent. For example, the

vehicle can be guided toward a longer but wider passage which the driver prefers

rather than a shorter but narrower passage. Even within a single homotopy, the pro-

posed approach can allow control freedom of the human driver while ensuring safety.

In other words, the system is able to respect the driver's control input unless it leads

to collisions with obstacles. Also, different arbitration strategies can be designed in

two levels of a navigation framework: high-level navigation decision and low-level

control for safe navigation, respectively.

Also, the proposed homotopy-based approach has computational benefits, specif-

ically by enabling a divide-and-conquer strategy. In a collision-free trajectory gen-

eration problem, the presence of obstacles serves to create holes in the collision-free

configuration space, leading to discontinuities in the set of feasible trajectories. This
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discontinuity of the search space increases the computational burden. However, the

complexity can be reduced significantly if we independently consider multiple distinct

continuous sets of feasible trajectories, where no discontinuity is created. This thesis

presents a way to exploit this advantage of continuous search space for computational

efficiency.

1.2 Previous Works in Shared Control

One of the first instances of shared control focused on controling manipulators with

imprecise operator inputs, in 1963 [32, 39]. Since then, shared control between hu-

man and machine has been a traditional topic in many robotic applications, such as

manipulation, robotic surgery, powered wheel chairs, assistive robotic arms, upper

or lower limb prostheses, and exoskeletons [33, 40]. In the context of vehicle driv-

ing, interventions from the control system were implemented and tested based on a

time-based threat metric; for example, steering intervention based on time to line

crossing [41], and braking intervention based on time to collision [42]. Also, different

types of feedback have been investigated in terms of user acceptance. For instance,

users preferred some form of auditory feedback with a bar-length type display for

time headway information [43]. On the other hand, visual warnings were found to be

more effective than auditory warnings [44].

A traditional approach to shared control is a haptic interface to allow mutual

communication of intention and arbitration of the two controllers, human and ma-

chine. Various advantages of the haptic feedback have been shown in extensive prior

researches such as reduced learning times, improved task performance quality, in-

creased dexterity, and increased feelings of realism and presence [29]. Also in auto-

motive applications, haptic shared control has been one of the dominant approaches

[45]. In particular, motorized steering wheel [27] and gas pedal [46] have been utilized

to provide feedbacks. The haptic shared control frameworks have been demonstrated

successfully in terms of reduction of visual demands and reaction times [27] in the

automotive application.
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In haptic shared control, ultimate control authority is retained by the human oper-

ator by allowing override of the machine's intention. More explicit arbitration strate-

gies in the shared control area are mainly classified into three types in the literature:

linear blending with appropriate weighing factors [32, 471, threshold-based binary

switching, and intervention considering operator behavior models [48, 49]. However,

these arbitration strategies cannot explicitly consider discrete decisions arising from

the existence of obstacles. In the case of existence of two opposing objectives, for

instance, lane keeping and lane changing, which cannot be met at the same time, a

mismatch between the goal of the support system and the goal of the driver have not

only increased control effort, but also degraded safety [45].

A hierarchical approach employing the notion of homotopies to explicitly consider

these discrete decisions was proposed by Anderson et al. [50]. In this approach,

discrete homotopic regions consistent with a human's decision were first identified in

advance. The "goodness" of each homotopic region was then evaluated by a heuris-

tics, such as average length, width, and curvature. One of the identified homotopic

regions was chosen by the control system based on the evaluated goodness. In nav-

igation within the chosen homotopy, the human's control commands and system's

commands were combined linearly with varying weights based on aggressiveness of

the best (optimal) trajectory obtained as a solution to a model predictive control

problem.

One of the main features of this approach was that the homotopy was chosen by

the system. Hence, a human's intention was not included in this high-level decision

making step. Also, the level of assistance was determined based on a heuristic func-

tion to estimate threats posed to the vehicle under the assumption that assistance

was required in high-threat situations. Finally, the problem with the homotopy re-

gion constraints fitted into linear model predictive control (MPC) framework since it

restricted the problem to one-dimensional lateral steering control problem. In gen-

eral, more than a one-dimensional optimal control frameworks incorporating obstacle

avoidance constraints are computationally demanding, so that it requires either the

online solution of a mixed integer program, or the offline computation of a large
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lookij) table 148].

The literatures related each eomponent for the prol)osed shared control fraiework

are )reseiited in each chapter of the thesis.

1.3 Purpose of this Thesis

This thesis proposes and develo)s a )laiinning alnid coiitrol framework for autonomous

and sei-autonoinous vehicles based on the notion of "fields of safe travel" or "homo-

topy class-. In other words, planning and control are perforied in terms of groups of

distiict high-level navigation decisions rather than specific trajectories.

Iii a traditioiial l)ath-based approach. a motion plaiininlg algorithii tries to find

a feasible trajectory and the vehicle is coitrolled to follow this reference trajectory.

On the other hand. the I)roposed homotopy-based apl)roach first identifies and enu-

ierates the feasible hoimotopy classes before performiing path planning. assesses their

desirability, chooses one of the hoiotopies conisidering the himan s decisions., and

finally regulates the vehicle to remain with in the choseni homotopy.

-- Automation System - -

: Perception

Homotopy Identification
Ch. 2

- Enumeration of possible homotopies

Homotopy Evaluation
Ch.3

- Evaluation of desirability of the homotopies

Homotopy Selection

- Selection of a single homotopy among
multiple possible homotopies

Homotopy Navigation
Ch. 4

- Safe control within the selected homotopy

, Human

Perception

Decision
Making

Control
Command

...................

Vehicle i

Figure 1-3: The proposed framework of hoiotopy-based driving assistance system
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Figure 1-3 shows the proposed approach in this thesis for vehicle operation with

human in the loop. The main motivation of the thesis is extensive generalization of

the prior work for homotopy-based shared control framework 1311 in more systematic

way. An important feature of the proposed approach is to consider a human's driving

process from the perception stage to the control commands, and allow for interaction

with human at each different level of the driving process. The proposed procedure is

as follows.

1. The approach is to identify and enumerate these navigation decisions from the

beginning (homotopy identification).

2. After enumeration of these navigation decisions, the system explicitly analyzes

the desirability of corresponding navigation decisions, or spatial properties of

corresponding fields of safe travel (homotopy evaluation).

3. Then, a homotopy is selected by the automation system or the human operator

based on his or her own decision (homotopy selection).

4. Finally, safe navigation within the selected homotopy is conducted by the au-

tomation system or the human operator (homotopy navigation).

In the perception stage, the sensing data can be processed to recognize the state

of the host vehicle and other agents, and acquire road information. The environment

sensing is not the scope of this thesis, and it is assumed that the information of

the environment is given to the system based on sensor data such as radar, LIDAR,

vision systems, GPS, or vehicle-to-vehicle/infrastructure communication. Also the

future behavior of the surrounding vehicles are assumed to be predicted [511 and fed

into the decision and control system proposed in this thesis. However, the future

behaviors of target vehicles on the road is still not measured from the sensors. This

is a challenging task and a broad range of approaches from a simple regression to

sophisticated driver model is possible for this problem. The thesis also assumes

that target vehicles' motion for the close near future can be predicted based on the
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physical properties or state history of the vehicles of the close past. An example of

the estimation is presented in Appendix G.

This thesis first presents the proposed algorithms for each components from homo-

topy identification to homotopy navigation. In homotopy identification, it proposes a

systematic method to decompose a global optimal trajectory generation problem into

multiple independent optimization problems with simpler constraints. Each local op-

timization problem corresponds to optimal trajectory generation within a homotopy

class. It also proposes practical heuristics for the decomposition method to provide

desirable local problems to acquire global optimal solutions.

In homotopy evaluation, a method for sampling-based estimation of control input

margins to safely navigate through a homotopy. For this purpose, an algorithm is

developed to efficiently explore a collision-free space with input samples representing

groups of nearby input sets resulting in similar maneuvers. It provides trajectories

for obstacle avoidance with maximum control input margins.

In homotopy navigation, a formulation of the decomposed optimal trajectory gen-

eration problem into mixed-integer programming is proposed. Computational effi-

ciency of the formulation is analyzed and demonstrated through simulations. Also,

applications of the proposed formulation in the context of model predictive control is

demonstrated in the thesis.

Then, the thesis applies the proposed framework to highway navigation and presents

user study results. It proposes different arbitration strategies between the system's

control and human operator's control authorities based on the homotopy-based frame-

work, and measures the performance of the system in terms of safety and operator

response.

1.4 Outline of the Thesis

Chapter 2 describes the proposed approach to identify and represent homotopy classes

corresponding to distinct navigation decisions. Also, the chapter explains the main

motivation of the proposed homotopy-based approach, a divide-and-conquer strat-
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egy. Chapter 3 then describes a method for evaluating desirability of each homotopy

class for the vehicle to safely navigate through. The desirability is assessed through

estimated control margin for safe navigation. Chapter 4 presents efficient computa-

tion of the optimal trajectory within each homotopy class. An efficient formulation

of mixed-integer programming is presented by exploiting information about a speci-

fied homotopy class. The efficiency is demonstrated via comparison with a previous

approach. Chapter 5 presents user study results of the proposed framework in the

application to highway navigation. Chapter 6 closes the thesis with conclusions.
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Chapter 2

Homotopy Identification -

Divide-and-Conquer Strategy

2.1 What is a Homotopy Class?

In a field with obstacles, there are an infinite number of possible paths for a vehicle

to follow for reaching a goal without collisions. However, these paths can be classified

into several classes according to their avoidance manners of the obstacles. Each class

contains an infinite number of paths that are continuously deformable with each other

without encroaching any obstacle. This set of paths is called a homotopy class. In

an environment with a single obstacle, for example, all paths avoiding the obstacle

to the left side are contained within a homotopy class, and all the paths avoiding the

obstacle to the right side are contained within another homotopy class.

The mathematical definition of the homotopy class is the following. Two trajecto-

ries qA(T) 4 Cfree and qB(T) -+ Cfree where 0 < 7 < 1 with the same start configura-

tion (qA(O)= qB(0) qO) and the same goal configuration (qA ()= q (')= qG) are

homotopic, if and only if there exists a continuous map Q(Y, T) : [0, 1] X [0, 1] -+ Cfree

such that Q(0, -r) = qA(T) and Q(1, r) = qB(T) [361. Figure 2-1 presents examples of

paths that are homotopic and paths that are not homotopic in an environment with

two obstacles.

A homotopy class is a topological notion related to path deformation with respect
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gO

(a) Paths that are in a hollotopv clss (1) Two )paths that are not homotopic

Figure 2-1: Examples of hoinotopie and non-hom)otopic palths

to a set of obstacles ,351. The topology relation is hard to he identified before specific

trajectories are provided. This chapter reviews how honotopv classes are identified

and represented il the literature. aid presents a imethod for low-I burdlen explicit rep-

resentation of approximations of lholotopy classes. The approach presented in this

chapter is also presented ih 1521.

2.2 Related Works

There are several ways to represent homotopy classes inl robot motion planning. The

representations are not straightforward (lule to inherent difficulty of representing a

topological notion. a group of an infinite number of continuously deformiable paths.

Figure 2-2 illustrates different classes of approaches for representation of homliotopy

classes in ali example scenario. Il this particular example. there are four possible

homotopy classes uniiless allowing loops around obstacles.

First of all. I here were efforts to capture the exact topological relation of givell

trajectories accorling to the definition of the homotopy class. The honotopy class is,

in imiost caseS, identified by a sequence of predefined edges axes traversed by the given

trajectories differeiltiating whether the edges are crossed to the left or right 153, 551.

For example. Jenkins 153 introduced a reference frame composed of rays emanating

froi obstacles. anid represented homotoly classes by cailolical sequences of the rays

traversed in two-dimensional spaces. The paths illustrated ill the Figure 2-2a are in
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(a) A sequence of ref- (b) A route in gen- (c) A hoiology rela-

orence axes traversed eralized Voronoi dia- tion identified 1) con-

by paths [531 grain [541 plex analysis 1361

Figure 2-2: Approaches for representing a hoinotopy class in a

G.

(d) A sequence of de-
com1posed cells 150

field with obstacles

the same hmliotopy class. and can be represented as a sequence (/11.ol) according

to Jenkins' representation. This representation was later extended for more general

cases by Hernandez 1561. In this approach, exact classification of homiotopy class can

he performed, given a certain trajectory.

Another approach is to utilize a topological property of the generalized Voronoi

diagram (GVD) 1571, and represent each homnotopy class as a unique route in the

GVD. The GVD consists of a set of points fron which distances to the two closest

obstacles are the sanie. The nodes of the GVD's skeleton-like graph represent inter-

sections that have different options to travel. The GVD constructs the topological

map for honiotopy enumeration in two-dimensional cases because there is one-to-

one Corresponidence between honotopy classes in the space and paths on the graph

154. 581. Although the representation is only restricted to the set of paths on the

Voronoi diagram, i.e. the most distant paths froim the obstacles, they can be thought

of as representatives of each of the liomnotopy classes.

The aforementioned two approaches capture the topological definition of the ho-

mnotopy class exactly. However, it is also convenient to approximate the honmo-

topy class in miany practical robotic applications. One exaiiple of the approaches

with the approximations is to utilize a notion of a homology class 136, 591. The

mathematical definition of the homology class is the following. Two trajectories
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qA(T) - Cfree and qp(T) -* Cfree where 0 < T < 1 with the same start configuration

(qA(0) = qA(0) = qO) and goal configuration (qA(')-= qB(1)= qG) are homologous,

if and only if the closed contour consisting of qA(T) in the forward direction and

qB(T) in the reverse direction, q(y) with 0 < y < 1 defined by qA( 2 y) if 0 2 y 2

and qB(2 - 2-) otherwise, neither contains nor intersects any of the obstacles. It has

been shown that the homology is a coarser representation of the homotopy [361. In

other words, if two trajectories are homotopic, they are homologous. The converse,

however, does not always hold.

Figure 2-2c shows an example of two trajectories that are homologous. This

approach considers the two-dimensional space as the complex plane with the real axis

and the imaginary axis. If we place one point (i.e., a complex number in the complex

plane) in the interiors of each of obstacles, it is possible to count the number of the

points/ obstacles that are enclosed by a closed contour from complex analysis. This

way, the homologous relation can be identified given two trajectories. Besides, each

trajectory can be assigned a signature using a defined formula to identify homologous

relations with any other trajectories.

Another method to approximate the homotopy class is a simple polygon repre-

sentation [60, 611. It is an approximation in a sense that all possible trajectories in

a homotopy class cannot be represented by a single simple polygon. This approach,

however, can represent explicitly the homotopy class without considering specific tra-

jectories. Anderson et al. [61] proposed a systematic way to represent the homotopy

class by a connected triangle using constrained Delaunay triangulation 162], a cell

decomposition, as shown in Figure 2-2d.

Cell decomposition is also a widely-used scheme in path planning problems. The

basic idea behind the approach is to break down the whole space into subspaces and

represent adjacency relations between the subspaces as a graph. Then the possible

obstacle avoidance maneuvers can be identified by searching the graph. Although An-

derson et al. [611 specifically utilized constrained Delaunay triangulation, any other

types of decomposition such as trapezoidal decomposition [631 and Morse decompo-

sition [64] can be used. Then, each avoidance manner is represented as a sequence
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of cells. In this approach, however, the representation is highly dependent on the

type of decomposition, and it is not able to guarantee inclusion of all possible paths

contained in each homotopy class.

In short, the ways of homotopy representation are categorized into two cases: exact

methods and approximate methods. In order to use the exact methods, it is compli-

cated to identify the homotopy class, before a complete trajectory from a start to a

goal is given. However, the approximate methods can represent the homotopy class

before considering specific trajectories. Especially the cell sequence representation

allows for tangible homotopy representation that can be used as spatial constraints

for trajectory planning. This chapter presents a systematic way to represent the ho-

motopy class by a convex cell sequence, and investigates its properties related to the

exact notion of the homotopy class.

2.3 Cell Sequence Representation

2.3.1 Motivation

In the motion planning problem, many different approaches such as potential fields

[651, graph search methods [66], probabilistic roadmaps [671, and many more have

been developed. They can be classified into two broad algorithm classes: combina-

torial planning methods and sampling-based planning methods. For combinatorial

algorithms, methods for exact cell decomposition have played an important role as

a key algorithm component. Cell decomposition methods partition the free config-

uration space into a finite set of regions which can be exploited for construction of

roadmaps. Cell decomposition methods should satisfy the following three basic prop-

erties to be useful for roadmap construction [681: 1) trivial computation of a path

from one point to another inside a cell; 2) easy extraction of cell adjacency infor-

mation; 3) efficient determination of cells containing start and goal configurations.

If a cell decomposition method satisfies these properties, then the motion planning

problem is easily reduced to a graph search problem.

39



Typical usage of cell decomposition corresponds to geometric path planning, which

reasons about connectivity and ignores system dynamics and feasibility. In contrast,

the work described in this thesis uses cell decomposition results as inputs to solve a set

of efficiently-defined kinodynamic motion planning problems. For example, a sequence

of decomposed cells is used to define the boundaries and provide directional guidance

for solving kinodynamic motion planning problems. The thesis further investigates

additional properties of cell decomposition for the proposed homotopy-based divide-

and-conquer approach.

In recent years, some motion planning methods have been proposed that exploit

homotopy class knowledge. Bes et al. [35] surveyed these methods and categorized

them into three groups. The first group finds the shortest path from a start to

goal region when homotopy information is known. Such methods take a path or

constrained area as an input, then find the shortest path within the current homotopy

[55, 60, 69, 70, 711. If there is no input homotopy class or path, this group of the

problem is known to become intractable. The second group computes the shortest

path from a start to goal region, then identifies the homotopy class to which the

solution belongs [36, 54, 72, 73, 741. The identified topology of the homotopy class that

contains the global optimal solution can be used to reduce the space of future search

calls. By repeating this approach, it is possible to obtain k-shortest paths in distinct

homotopy classes. Finally, the third group first enumerates homotopy classes in a

given environment, then searches for a path that is contained within each homotopy

class [53, 75, 76, 77]. This approach relies on specialized data structures in order to

systematically describe the topological properties of the environment. Enumerating

homotopy classes before performing path planning allows for independent treatment

of the path-planning problem within each distinct homotopy.

The approach described in this thesis is similar to the methods of the third group,

in that it aims to utilize an efficient divide-and-conquer strategy. Exact cell decompo-

sition and graph search are proposed as methods to systematically describe the topo-

logical properties of the environment, then enumerate homotopy classes as sequences

of cells. The proposed method builds on the work of 161], where constrained Delaunay

40



_____.........".,-.-.-.-..-.- --.-- ~ ~ -~

Non-convex
Collision-Free

Constraints -

Convex Cell
Decomp. e 0

.2 Global
c c -Optimal

C Trajectory

C Graph )
J , Search

C, C12:

- c c

Adjacency Graph Cell Sequences (human preference, Local optimizations
high-level decision) with constraints of

convex cell sequences

Figure 2-3: A divide-and-conquer strategy of optimal trajectory generation

triangulation and graph search methods were used to find a desirable "safe corridor"

to achieve safe vehicle navigation. For a particular corridor, spatial bounds were iden-

tified to provide collision-avoidance assurance, and these bounds were employed as

constraints in a model predictive control framework for a resulting one-dimensional

system. In such systems with one-dimensional constraints, once the desired homo-

topy class is specified, the corresponding constraint form is convex, and thus a linear

model predictive controller can exploit a quadratic programming formulation. This

thesis generalizes this idea, and further explores the relationship between sequences

of decomposed cells and homotopy classes. Although the spatial constraints corre-

sponding to homotopy classes are non-convex in a two-dimensional environment, this

paper shows in Chapter 4 that the optimization problem can be solved efficiently

through the proposed formulation of mixed-integer programming, by exploiting cell

adjacency relationships.

2.3.2 Divide-and-Conquer Strategy

Optimal trajectory generation is typically a challenging task even for problems em-

ploying low-dimensional system models. In particular, for the collision avoidance

problem, the presence of obstacles serves to create holes in the collision-free configu-

ration space, leading to discontinuities in the set of feasible trajectories and disjunctive
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choices in the search procedure. This increases the difficulty of an optimization-based

solution. However, the complexity of the obstacle avoidance problem can be reduced

significantly if we independently consider multiple distinct continuous sets of feasible

trajectories, where no discontinuity is presented. In the simple example of a single

polygonal obstacle in a two-dimensional environment, it is a straightforward task to

find two (local) optimal trajectories among a set of trajectories that avoid the ob-

stacle in either a counter-clockwise or clockwise manner, since each respective search

space is continuous. The proposed approach in this work exploits this observation by

decomposing a general motion planning problem into multiple independent problems,

each with simple obstacle avoidance constraints, and thereby achieves computational

benefits arising from a divide-and-conquer strategy.

In addition to computational benefits, it is valuable in some applications to identify

multiple locally optimal solutions corresponding to distinct navigation decisions. For

example, in unmanned vehicle navigation problems with human operators in the loop

(i.e. where the operator provides some high-level input related to vehicle navigation

decisions), it can be desirable to identify and present multiple choices corresponding

to qualitatively distinct vehicle routes. Distinct navigation decisions often bear corre-

spondence to the topological notion of distinct homotopy classes in low-dimensional

cases.

Figure 2-3 illustrates a divide-and-conquer strategy to address the trajectory gen-

eration problem. The proposed method draws correspondence between (typically)

multiple "local" trajectory generation problems that correspond to distinct homotopy

classes. This results in an intuitive representation of homotopy classes as sequences

of spatial constraints, which in turn leads to a hierarchical framework: problem de-

composition and constraint identification based on homotopy enumeration, followed

by local trajectory generation within each constrained region.

In the homotopy enumeration step, the collision-free space is decomposed into

convex cells, and each homotopy class is represented as a sequence of convex cells.

Local trajectory optimization within each homotopy class is an independent problem

and corresponds to a distinct navigation decision. This yields a framework in which
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multiple local problems, corresponding to an operator's preference (i.e. distinct high-

level decisions) are independently solved. For the local trajectory-generation problem,

this thesis propose a mixed-integer programming formulation in Chapter 4, where

control inputs are represented as continuous optimization variables and the time steps

associated with transitions between adjacent cells are represented as discrete variables.

The framework allows access to not only the global optimal solution, but also an

optimal solution for each identified homotopy class.

2.3.3 Cell Decomposition and Decomposed Cell Sequences

First, notations of sets and associated operations that are used in this chapter are

defined. All sets are defined as closed sets unless otherwise specified. Let P be a

set in R2, P c R2, and let OP be the boundaries of P. P = P\oP denotes the

open set of P, where \ is the set subtraction operation. For consistency, the the-

sis defines the closed collision-free space Cfree =R2 \ (Ui Cobsi') where Cobsi is a set of

configurations leading to collision with obstacle i. 1 A sequence of cell elements Ci is

expressed as {Co - C1 - C2 -+ - } in which the order of the elements implies the

sequence. Let J be the union of sets where the sequence is preserved; for example,

{Co - C}{C 2 -+ C3} - {Co -+ C 1 -+ C 2 - C3 }. A common edge between two adja-

cent cells C2 and C3 is denoted by E(Ci, Cj). In the thesis, ranges of integers are often

introduced and specified with subscripts; for example, we denote integers from 1 to

n byZ,, i.e. Z 1 n = {1, 2, - , n}.

The thesis assumes Cobs can be approximated by polygonal shapes, and we restrict

our focus to the two dimensional Euclidean space R2 where analysis of homotopy

classes are intuitive and have various practical applications. Here, Cfree C R2 is

typically a polygonal space with holes which can be also thought of as a projection of a

multi-dimensional configuration space onto the two-dimensional Euclidean workspace.

An example application is a ground vehicle operating in the two-dimensional space

having three configurations: the location of a reference point (x, y) and heading angle

'Note that the real collision-free space Cfree is the open set of Cfree, i.e. Cfree = Cfree0 , but the
notion of the closed set of collision-free space is used in the procedure of cell decomposition.
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0 where heading angle 0 does not affect the analysis of trajectories and only the

projection onto the (x, y) plane is enough to capture hiomotopy class membership

information [781.

Note that the primary difficulty in solving the optimization problem outlined

above arises from the collision-free constraints, since the collision-free space Cfree is

generally non-convex. Information about collisions with a obstacle is mapped into a

configuration space in the form of a set of obstacle configurations Cobs, which is gener-

ally a continuous region, and collision-free configurations are expressed as a comple-

mentary set of the union of the obstacle configurations. As a result, the collision-free

configuration space is generally non-convex since it contains holes, which makes the

set of collision-free trajectory candidates discontinuous. However, also note that these

search space discontinuities give rise to distinct navigation decisions and their asso-

ciated homotopy classes.

Based on this observation, the method described in this thesis aims to represent

homotopy classes as continuous spatial constraints, then utilizes a divide-and-conquer

strategy where the original, non-convex optimization problem is divided into multi-

ple independent convex problems. Each independent problem, in addition to having

direct association with an independent navigation decision, is also theoretically rela-

tively easy to solve. In fact, for the problem of finding minimum-length paths in the

two-dimensional Euclidean space, Chazelle [60] showed that the shortest path inside

a simple polygon can be computed in O(NlogN) time and O(N) space, where N is

the number of vertices of the simple polygon whereas the shortest path in general

polygonal space with holes requires O(N2 logN) time and O(N2 ) space.

The first step of the proposed divide-and-conquer strategy is to decompose Cfree

into convex polygons based on well-known convex decomposition algorithms. Then,

adjacency relationships between decomposed polygons can be employed to represent

adjacencies as a graph. A start node on the graph is determined by the current

location of the robot. Once a goal node is specified, it is possible to enumerate all

possible paths connecting the start and goal pair via standard graph search methods.

A path on the graph can be associated with a set of trajectories following the se-
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Figure 2-4: Coiivex decomposition and adjacency graph

qiiieciie of co11vex polygons. Iii addition, it is showii that a loopless path o1 the graph

corresponds to a hoiotopy class in the following sections.

Definition 1. (Convex Decomposition /79/) A set of convex n, comorenlts {Cj} is a

Conex decotposition of C. D(C). if their anion is C andi all C, are interior disjoint,

i.c. D(C) {CU;C1 c and viC; n C7 =0}.

Since the svstem of interest is assumed to be operating in a polygonal space.

the components of a convex decompositioll of the closed collision-free space, {Ci}=

D(Cfce), are coiivex polygoils. This thesis restricts its interest to decompositions

which do not create any new vertices except for vertices of the original polygons.

This is because new vertices that are not part of obstacles lead to singularities in cor-

respondence betweell a cell-sequence representation and a homotopy class. a problem

that is discussed in detail in the following sections. Also iiote that this requirement

eliminates the case where a feasible trajectory passes through a vertex of a polygon.

as shown in Figure 2-4a.

Definition 2. (Convex Decomposition 'with, the MininTA Ii Vertex Set) A set of convex

components {Ci} IS 0 COn'0vex decomrniposition of a. polygonal space C with the mini-

,ml verter set, {C }= D111r(C). ii it is a convex decomposition and all Iverties of

c(,mponenilts are ve'rtic-:s oJ the oriiinal polygonl, 1.c. Vivertices(Ci) C vcrtices(C).
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(a) (c) (d)

Figure 2-5: Examples of different convex decompositioi with the inimnual vertex set

for the same enviroinment

Manv coiivex decomposition algorithms fall into this category such as the well-

known trapezoidal decompositioil 1631 or constrailed Delauav trianigulatioi [8].

Figure 2-5 illustrates examples of different convex deconiposition witi the iiinial

vertex set for the same eivironmient. Based on decomposition with the iinimal

vertex set. we conlstruct the adjaceicy relati1 graph betweeii the decomposed cells.

Since we asslille(d closed sets, two adjacellt cells C, aiid C1 share a co11o10 edge

E(C;. C). However. we rule out adjaceicmy betweeli two cells sharing a point since it

leads to redidaicy in paths of the grapll: there are 11o collision-free vertices in the

decomposed space accordinig to Definition 2. In Figure 2-4c, for exaMIlPle. C 2 aiid Ca

are iiot connected in the graph since the common edge is only a point.

Definition 3. (Adjacency Graph) The adjacency graph G = (17. E;) of dccomposi-

tion Din'(C) is thc qr(Iph wIIhcrc each iodc rcprcscnts (1a dccormtposcd conTVex polIygon..

1 _ { {CI}. and the cdqcs arc cornn'aCctcd if two c/Als s/iarc a cormmion edge 'which is

'not a point. i.c. E(= {' g|V1#1E(C. C1 ) # /}

We assume qO an(l q do not lie on edges {V,#1E(C,. Cj) }, so that the start node

coitaining the start configuration adi(l the goal 1ode containing the goal configuration

in the graph are uini(luely (leteriniie( and d(enIote1d by CO aid CN respectively, i.e.

eO E CO and q1 E CN.

Once the adjacency graph is coiistructed. it is straightforward to analyze the graph

to idenitify sequeices of cells linking (lesired conifigurations. Then, the original problem

with collision-free constraints can be decomposed into multiple local prob )lems with

associated constraints resulting from sequences of bounded regions. The 1onded
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Figure 2-6: Exaniples of decomposed cell sequences with different types of cell de-

compostion

regions are dependent on the types of cell decomposition as shown in Figure 2-6 with

exanples. The next section presents the result of the investigation of the properties

of the resulting (eli sequences accordillg to the types of cell decomposition.

2.4 Properties of the Cell Sequences

The exact partition of a entire set of feasible trajectories associated with the global

problem into sets of feasible trajectories associated with decomposed local problems

is described in Section 2.4.1. For plractical purposes, however, we suggest restricting

local problems to limited set of sequences of cells. The benefits and limitations of

this restriction are discussed in Section 2.4.2 and 2.4.3.

2.4.1 Partition of Universal Search Space into Discrete Sets

This section shows that the search spaces of locil problells (isjoinitly comprise the

original search space. the universal set of all feasible trajectories. In other words, it

is shown that all feasible trajectories can be lmalpped to a sequence of cells on the

adjacency graph such that the universal set of feasible trajectories can be pJartitioned

into an infinite immnbei of set of sequences of cells on the graph. In Table 2.1 a

mapping Fi is defined for the sake of (larity, Athough the corresponodence of a

feasible trajectory to a sequence of' cells is intuitive. Let {SCJ } be the set of all
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Table 2.1: Definition of mapping to a cell sequence T sc : q(T) -+ SC and transition
times FST : q(T) - ST

T'+ to, w <- 0, ST +-0, SC <-- C,
while(w # N)

r' +- inf f r E [-r', tf) q(r) Cw}
ST <- STU{T'}
w +- w' | limEo+ q(r' + e) C CWI
SC ÷- SCO{CW}

end while

possible sequence of cells on the adjacency graph.

Lemma 4. Any feasible trajectory can be mapped through FSC to a sequence of de-

coMposed cells on the adjacency graph, i.e. Fsc(q(T)) = SC E {SC}.

Proof. Let q(r) : [to, tf] -+ Cfee be a feasible trajectory and a continuous func-

tion. Let Cw be the cell containing a point q(ro) that does not lie on common

edge {Vi, jE(Ci, Cj)}. The unique correspondence of q(TO) to cell Cw is preserved

for T E [ro, r:) until it touches the surrounding common edges {V,,gE(Cw, Cj)} at

time T = . For the sake of unique correspondence, the mapping Fsc is defined

by assigning Cw to q(T) for T E [i, T'] until it leaves Cw at the time T = T', and

assigning a new cell once it leaves the cell Cw. Also q(T') lies on an open common

edge E(Cw, Cj) , since every vertex (i.e., intersection of three different cells) leads to

collision from Definition 2. Thus, the next cell Cw, corresponding to lim,,O+ q(T' + e)

is also unique and one of the cells connected on the adjacent graph. E

The following two corollaries follow directly from the above.

Corollary 5. The uncountably infinite set of all feasible trajectories, Traj, can be

partitioned into countably infinite sets {Trajj} where Trajj = {q(7) | sc(q(T)) =

SC,, i.e. {Trajj} is a set of preimages of {SCj}, and thus Uj Trajj = Traj and

Vi=,Traji n Traj, = 0.

Corollary 6. A set of the optimal solutions among each partitioned trajectory sets

Trajj includes the global optimal solution.
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Therefore, the universal set of all feasible trajectories can be partitioned into

mutually exclusive and collectively exhaustive sets through the proposed cell sequence

representation, as illustrated in Figure 2-7a and 2-7b. Thus, the global optimal

trajectory can be eventually found based on the proposed divide-and-conquer strategy.

However, since the partitioned sets are still infinite despite their countableness, the

thesis proposes an approach that relies on solving restricted sets of local problems for

practical purposes. This method is described in the following sections.

2.4.2 One-to-One Correspondence of Loopless Cell Sequences

with Homotopy Classes

In this section, we restrict our interest to cell sequences containing no loops, and

investigate the relationship with topological homotopy classes. Figure 2-7c shows

the relationship between loopless sequences on the graph, their pre-images in the

trajectory set, and homotopy classes. In short, the loopless sequences have one-to-

one correspondence with homotopy classes. In other words, a feasible trajectory is

homotopic with any other feasible trajectories corresponding to the same loopless

sequence of cells on the graph, and are not homotopic with any feasible trajectory in

different sequences of cells in the graph. Figure 2-8 shows examples of the properties

and singularities with a non-minimum vertex set.

Theorem 7. If two feasible trajectories correspond to the same sequence of cells, they

are homotopic.

Proof. Let qA (T) and qB (T) be feasible trajectories corresponding to the same se-

quence of cells SC, i.e. Fsc(qA(T))- Fsc(qB r)) = SC. For any cell Cw - SC, there

always exist corresponding segments of both trajectories, i.e. qA(T) for TAi < T < TAj

and qB(r) for rBi < T < TBj where Txi and Txj are the (w - 1)th and wth el-

ements of the set of transition times STx = .FsT(qx(T)). These two trajectory

segments can always be continuously deformed into each other due to the convexity

of the decomposed cells. Therefore it is always possible to find a continuous function

Q(Y, T) : [0, 1] X [0, 1] a Cfree such that Q(0, T) = qA(T) and Q(1, T) = qB (T). D
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This property is not restricted to loopless sequences of cells. but rather can be ap-

plied to all sequences of cells including sequences with loops. The converse. however.

is not true for all sequences with loops. In other words. two trajectories corresponding

to different sequences of cells with 1o)ops could be homnotopic. Thierefore. there exists

a mnapping froum {Triaj } to {7L }. but it is not bijective. as shown in Figure 2-7b.

If we restrict our focus to loopless sequences, however. the converse is true. so the

mapping fron {SC ""I} to {H"'} is bijective as shown in Figure 2-7c.

Theorem 8. If two feasible tr'ajecto'r'ies co1rrespOni d to two diifler enit cell sequences

whyich arc loopless in th1 ad' jacency iraph co'nstructed thlrouillh a convoe: decompositiOn

wit/i the mitinimal vrtex set. they are inot h omotopic.

Proof Let feasible trajectories q1 (T) and qB(T) (orresponld to SC =-sc- (q*. (r))=

{C0 -+ C1 1 -+ C -- - CN } tIiid SC - FS((qj(T)) ={ 0 -- C,1? m C132

. i } reSPeCtivelY. where V; C-1 are differeit. and V C are different. because

both are loopless. In additioni. there exists at least one cell contained only in either

otte of the sequences. i.e. [{V C 11 } U {V1 Co1 }] [{V1 C.} U {V1 Co1 }] f 0/ because

both are different sequences. Then. the closed loop q(r,,(T) formted by q.,(r) il the

forward direction ald %e(T) in the backward direction, qg, (T) = qA(2r) if T < t./2,

and qg1A(2(t1 - T)) if T > t 1/2. corresponds to tlhe sequence SCI = Fsc (qj(T))
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{Co - CA1 - CA2 -+ --- - CN - ... CB2 - CB1 }-+ Co on the graph. Then,

SCCL has at least one loop consisting of at least three different cells, so qCL(T)

encircles at least one obstacle because there are no collision-free common vertices of

any three different cells according to Definition 2. Therefore, qA(T) and qB(T) are

not homologous, and thus they are not homotopic. EZ

2.4.3 Heuristic Strategies for Selection of Local Problems

The proposed divide-and-conquer strategy relies on solving decomposed local prob-

lems, however there generally exists an infinite number of local problems (note that

{SCJ} is an infinite set). Thus, for practical purposes, the thesis aims to selectively

solve a finite number of problems, or prioritize the problems to be solved. A generic

method to achieving this is to assign heuristic costs to paths on the adjacency graph,

then cost-rank potential paths and compare to a pre-defined cost threshold.

This approach is practically useful in the following ways. 1) It allows us to explic-

itly consider geometric properties (e.g., path width, length, and curvature) of fields of

travel, as well as properties of specific trajectories. For instance, a heuristic measure

of desirableness of fields of travel is also provided in a previous work by Anderson

[61]. 2) It is possible to assign a heuristic likelihood of containing the global optimal

trajectory to each cell sequence, in order to quickly choose a sequence containing

the global optimal trajectory. However, such heuristics are often problem-specific

depending on the given objective function and dynamics. The thesis here proposes

a generic approach to utilize the existence of loops in the cell sequences to prioritize

local problems to solve.

Strategy of focusing on loopless cell sequences

We propose to focus on loopless sequences on the graph, as a means to eliminate

inefficiency arising from repeated visits of the same cells of candidate trajectories.

Also, loopless cell sequences have a desirable property of one-to-one correspondence

with homotopy classes, as demonstrated in the preceding section. We can partition
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direction

q~j T) f qA (T) qf

o ...- 'qs~ 13Tq" qT

(a) q_,1 (T) and qg (r) are l1tiiotopic, 1)It (b) Line-sweep decomposition is efficient iII
qg 3 (r) is eXClIude( froiti tlI search spaCe a sense that feasible traj(tories that are
of loopless sequences sinice it correspotids iinoiiotoiically i1creasing- in sweepinlg direc-

to a sequence with a loop tion are preserved inl the search space

Figure 2-9: Elimination of feasible trajectories and bellefits of line-sweep dlecomiiposi-

tioln

the entire set of all possible cell sequences {SCj} into a set of sequences having

repeated cells, {SC1 "' 1} . and a set of sequences without repeated cells. {SC" }

Note that {SC "} is a finite set.

The limitation of this strategy is that some feasil)le trajectories are unavoidably

eliminated when we restrict our scope to loopless sequences. as shown in Figure 2-7e.

The trajectories that are not consildered during optimization are those having cycles

ill corresponding sequences of cells, {Trqj(!1'"l }. Note that these trajectories have

loops in cell sequences. bult do not necessarily have loops in trajectories themselves.

as shown in Figure 2-9a. Despite the small likelihood of occurrence, if an optimal

trajectory in a hoiotopy class happens to correspond to a cell sequence with loops.

it will not be found b y restricting ourselves to loopless cell sequences: an example

class of problems where this may occur is nonholononic robots. Clearly. it would

be desirable to ensure that the optimal trajectory is not included in {Trvj " ,'}

although it is still possible to find the optimal trajectory by considering cell sequence

with loops as well.

It is difficult to guarantee that the optimal solitioni corresponds to a loopless

cell sequenice before trajectory planining or opthiization. for )roblel1s with general

dynamics and objective functions. However, given knowledge about a potential op-

tinal trajectory in a specific problem domain, we are able to utilize this knowledge
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no principal
- P monotonic direction

q* (Tr)

(a) An examiple where the global opti-
iiial trajectory does not have any prinicipal

aXes oil which the projection is lmollotolli(

Figure 2-10: An alternative decomposition

jectory does not have any principal axes

(1) Au alt(1rnat( (1composition to pv-

serve the go)al optimial trajec(tory ill a
loopless cl se(uIlence

for a case where the global optimal tra-

in the decomposition procedure. This thesis suggests a specific type of cell decoi-

position based on its ilitilitive tendency to preserve optimal trajectories inl loopless

cell sequences. The motivation is an empirical observation that for cases where de-

siralle trajectories exhibit a tcndency to move monotonicaliy in a certain direction

(i.e. toward a goal region). it is usefuml to perform trapezoidal decomposition (rather

than other deconpositions such as triangnlation) with parallel edges normal to this

direction of movement.

Trapezoidal decomposition is one of the imost popular types of exact cell decomn-

position 157]. Ili trapezoidal decomposition. an imaginary line is swept through the

space inl a principal direction amd decomposes the space into cells whenever it meets

critical points. as shown in Figure 2-91. If we (al find a sweepig axis onto which

the projection of the global optimal trajectory is monotonic. we (anl enisure that the

global optimal trajectory has no loops in the corresponding cell sequence, as restated

1elow.

Corollary 9. The global optimal trajectory corresponds to a loopIess cei sequcnce,

i.e. TFsc(q*(T)) G {SCJ"'}. by trapezoidal decomlpositio'n 'w7ith a swerping axis p Such

that (q* (r) - p) > 0 (or ; 0 ) for VT G [totl ]

Ill practical aIpplicat ions. it is often intuitive to deterinille the sweeping direction.

For instance. it is often possihle to fit a straight line to the start and goal locations
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c~Iccc

ci C, -c.. + -> c c

->c .- * ) C - C ->j . -> -> - ... - C, ---> C-

(a) Trajectories with unique loops in cell so- (b) Trajectories with more than o1e cycle f01

quences could be desirable due to certain d(y- each loop are less desirable than ones with

nainics or objective functions 111i1(ue loops

Figure 2-11: Cell sequeiies with iuniutiie loops vs. (-ell sequelnces with iinore than one

cycle for eatcli loo)

as shown in Figure 2-91. since that may be a desirable directioii to imove. In soime

instances. sucli as vehicle navigation on roads. it is better to use the longitudiial

direction of the road as the swee)ing direetion. since it is very inilikelv that inoving

in reverse in the longitudinal direction is the optimal solution.

There niav. however. be the cases where the global ol)tiinal trajectory does not

have an l)rincipal axis p on whieh the l)rojectioni is monotonic iidue to its dnvamies

or obje(-tive functions. as showi in Figure 2-10a. Figure 2-10b illustrates an exailple

of another relevant lecoimp)osition to keep the oI)tinial trajeetory in a loop)less eell.

However, ehoosing a relevant deeoinposition met1od before trajectory I)laliliiig or

optimization generally requires problem-speeific heuristies, or assmiiiil)tioins about the

nature of feasible or optimal trajeetories.

Strategy allowing loops a single time for each

In the cases where it is difficult to determine a judicious decomposition imietliod a

priori. ensuring that the global optimal trajectory eorresl)ouds to a loopless cell se-

quence, xve can also take into accout cell sequenees with loops. The next p)riority

is naturally assigned to loeal probleims corresl)oildinig to cell sequeiices with unique

lool)s only. i.e. those witli nmiltiple loops. but allowiiig oly one of each loo). Note

that the niumber of cell sequenees with unique loops is also flinte.

It is more likely that (ell sequences with unique loops eontain more desirable
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(a) Lane decomposition (b) Adjacency graph

Figure 2-12: Cell decomposition utilizing lane structures

trajectories than cell sequences with inultiple repeated loops. Trajectories corre-

spoilding to cell sequences with nultiple identical loops either contain self-crossing

in themselves, or cross the same edges mnultiple tines back and forth, as shown in

Figure 2-11. As illustrated on the right example of Figure 2-11b, cell sequences with

more than a single cycle for the loop consisting of more than two cells contains only

trajectories that cross themselves. unless C, and C, are not the start cell or the goal

cell. Thus such trajectories are very unlikely to represent the global optimal solution.

except for special cases of objective functions.

I

2.5 Example of Cell Sequence Homotopies on High-

ways

Figure 2.5 illustrates application of the proposed approach to a highway navigation

problem. The key difference of this application from the previous one is the existence

of lane structures. The divided lanes on the road can be naturally utilized in the cell

decomposition process. The basic idea is to decompose each lane according to the

locations of obstacles as shown in Figure 2-12a. Each cell is denoted by C i. where "

is the index of the lane and J is the index of decomlposed cells in the ith lane. The

adjacencv graph between decoimposed cells is constructed as in Figure 2-12b, where

the cells C j and C1  y. one in the ith lane and one ili the adjacent (I+ 1)th lane.

are connected when they share a conmnon edge. Note that any cells in the same lane
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(a) The nodes are connhlected in the adjacent graph if the Correspollding time-varying cells are

coinected at some point over the horizoi

1-1 1-2
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prediction horizon I to + %

(b) The nodes are distinguished if the correspon(ling tiile-varyilig (;ells are (list ilngllislled at some

poinlt over the horizon

Figure 2-13: In dynanic environment on highways. a single time-invariant adjacent

graph can be constructed in a conservative way

are not connected on the graph since they are separated by obstacles if decomposed

properly.

When obstacles are moving within a lane, the size and location of the decomposed

cells will change as a function of the motion properties of the obstacles. However.

the indices of decomposed cells will remain the same. i.e. the nodes of the graph

would be unchanged. The edges connecting the nodes on the graph can be created

or removed at each time step. However, a single time-invariaut adjacency graph

can be constructed by taking a conservative approach, as follows: if two nodes are

connected at least once over the prediction horizon, an edge is created in the single

graph. An example of the conservative construction of the edges on the adjaceint

graph is illustrated in Figure 2-13a. Even with obstacles changing lanes, the nodes

are distinguished and connected conservatively as shown in Figure 2-131).

Although a unique goal point is not typically specified in the highway navigation

problem. goal regions, i.e. ranges of lateral position. can generally be specified. In

terms of the adjacency graph, each decomposed lane component C11 can be chosen as

a goal node. Since the start node is uniquely defined based on the current location of
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the host vehicle, it is possible to enumerate possible paths on the graph for different

goal nodes. These paths correspond to different navigation decisions, even though

their relationship to homotopy classes is not well-defined.

2.6 Conclusions I

This chapter developed a decomposition method of the global navigation problem

into simpler local problems by convex decomposition with the minimal vertex set. In

the process, individual navigation decisions corresponding to the local problems were

represented as decomposed cell sequences, approximations of homotopy classes. Each

decomposed local problem will be independently solved and explicitly parallelized in

their computation; a method for conquering individual problem will be presented in

Chapter 4. Also, it is still desirable to filter out some local problems or prioritize the

order of the local problems to be solved since the cell sequences can be, in principle,

enumerated infinitely by allowing loops. In this selection and prioritization process,

it is possible to reflect high-level evaluation of desirableness of cell sequences corre-

sponding to distinct navigation decisions; a method for evaluation of cell sequences

will be presented in Chapter 3.

The chapter also investigated properties of the decomposed cells. It showed one-

to-one correspondence between a loopless cell sequence and a homotopy class. It also

investigated inefficiency of trajectories corresponding to cell sequences with more than

a single cycle for loops. In terms of decomposition methods, trapezoidal decomposi-

tion was argued to be efficient to retain the desirable trajectories, including the global

optimal trajectory, in a loopless cell sequence.
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Chapter 3

Homotopy Evaluation - Safe Control

Margin Estimation

3.1 'Introduction

3.1.1 Motivation

This chapter proposes a methodology to evaluate the desirability of distinct identified

homotopies to select one of them to navigate through. The "best" homotopy will be

automatically navigated through, presented to human operators, or referred to in

the process of estimating a human operator's intention. The homotopy evaluation

process is one of core components in the proposed framework in the thesis shown

in Figure 1-3. The higher safety level trajectories in a homotopy class have, the

more desirable the homotopy class is. The question is related to the traditional

obstacle avoidance problem, and desirability can be measured by estimating margins

of obstacle avoidance.

In the worst case, for instance, there might not exist any collision-free trajectory

for a certain homotopy class considering the dynamics of the robots. The homotopy in

this case is obviously not desirable. So it is useful to check existence of safe/collision-

free trajectories, and measure their safety level if they exist. This thesis proposes

to use the safety margin for obstacle avoidance as a metric for desirability of each
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homotopy class. The problem of homotopy evaluation, hence, can be reduced to a

maximum margin obstacle avoidance problem.

3.1.2 Previous Works - Safety Margin

Many other approaches have been developed for explicitly modeling uncertainty in

order to plan a robust motion, while taking into account many sources of uncer-

tainty: localization, unpredictability of environments (dynamic obstacles), control

uncertainty, etc. [81, 82, 831. In these approaches, the safety margin for obsta-

cle avoidance was represented by probabilities of collision avoidance computed from

uncertainty models. These uncertainty models are often represented by covariance

matrices, and the probability of safety of a given trajectory can then be computed.

The objective of robust motion planning is to find a trajectory that has a probability

of safety above a desired threshold. In other words, these methods aimed to ensure

deterministic bounds on the safety margin of the trajectories.

Other previous approaches for safe navigation attempt to ensure sufficient distance

from the closest obstacles without explicit modeling of uncertainties; the farther the

trajectories lie from the obstacles, the safer the trajectories are assumed to be con-

sidering various sources of uncertainties. In these approaches, safety margins were

roughly represented by the distances from the closest obstacles. The methods try

to maximize the safety margin, or guarantee a lower bound on the safety margin, in

the workspace or configuration space (e.g., &c-safe kinodynamic solution 184], Voronoi

diagram [851). However these approaches have difficulty considering the dynamics of

robots in the definition of margins, resulting in situations where a robot is pushed

to its physical limit of control actions; such methods are not able to consider uncer-

tainties in control actions, or experience saturation at bounded control action limits.

This thesis aims to quantify margins with consideration of dynamics of the robots.

Other approaches to choosing a homotopy whenever the vehicle encounters discon-

nected regions due to obstacles are based on heuristics of the shapes of region. Gao

et al. 186] used a simple heuristic based on the vehicle position and the size of each

feasible region to determine which side of the obstacle the vehicle should pass. Ander-
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son et al. [50] estimated the available control freedom based on observed heuristics

to evaluate goodness of homotopies. The control freedom was estimated based on the

minimum width of the region of travel through and the relative orientation change

of the centerlines of the region. An estimate of the control freedom was combined

with the average distance heuristics linearly to evaluate the quality of each region of

travel.

Constantin et al. [87] more explicitly considered the vehicle dynamics in the

estimation of margins. As it measured the size of the feasible trajectory space by

discretizing the space using the lattice-based planning. The margins were represented

by unified scalar quantities in the control input space. However, the lattice-based

planning is computationally demanding and often requires off-line computation and

on-line adjustment of the lattices. The approach proposed in this thesis starts from a

similar idea to margin estimation in the input space. The thesis provides a systematic

way to estimate safe control margin with consideration of vehicle dynamics through a

sampling-based approach. The approach presented in this chapter was also presented

in [88].

3.1.3 Proposed Approach - Maximum Margin Inputs

The notion of a configuration space [89] has served as one of key components in

many motion planning algorithms, namely, cell decomposition [90], roadmap-based

approaches (e.g., visibility graph [91], Voronoi diagram [85], PRM [92]), and artificial

potential field methods [93, 941. However, these approaches have been mainly limited

to kinematic, holonomic path planning problems and are not suitable for kinodynamic

motion planning where additional constraints on the robot's motion arising from its

dynamics or nonholonomic constraints are imposed [95].
For kinodynamic motion planning, some kinematic motion planning techniques

are extended to dynamic cases by planning motions in the state space instead of the

configuration space (e.g., RRT [96], RRT* [971). These approaches eventually require

solving exact or approximate boundary value problems with differential constraints.

Other principled approaches to considering kinodynamic differential constraints are
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Figure 3-1: Two possible approaches of homotopy evaluation: a workspace based

approach vs. an input-space based approach

based on optimal control theory. Traditional tools (e.g., variational calculus. dynanic

programming) for solutions to optimal control problems are in general computation-

ally intractable [951. Alt ernatively. soine receding horizon fashion approaches have

beell developed based oil model predictive control framework (e.g.. see 198]).

Planning in the input space can naturally consider kinodynamnic differential con-

straints in obstacle avoidance motion planning problems. The approach proposed in

the thesis considers the feasible input space and takes the farthest input point fron

the closest constraints based on a given distance metric, in order to minimize risk that

might occur due to unnodeled ucertainties. This approach provides a navigation

strategy for maximum control margins. Also. the computed maxinmui control mar-

gin can be utilized to quantify desirability of each corresponding possible navigation

decision.

Figure 3-1 illustrates examples of two different possible approaches to honmotopy

evaluation with a safety margin in the workspace and input space, respectively, with

a bicycle vehicle model. In the workspace approach illustrated in Figure 3-1a, the

optimal solution could be found with a specified amount of safety margin (i.e. Eu-

clidean distance) in the workspace around the obstacles for each homotopy. They

are the best feasible trajectories ensuring these desired safety margins. In contrast.

the input-space based approach shown in Figure 3-11) was able to incorporate safety

margin considering the dynamics of the robots. This thesis proposes a methodology

to umap all constraints onto the input space. represent subsets of the free input space,
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(a) A naive approach (b) The proposed approach

Figure 3-2: The proposed approach can efficiently explore the environient lased o1
few inputs representing groups of nearby inputs

and assesses each of input subsets based o the size of each subset. called the iargin.

A inain challenge in input space approaches is computational intractability for

long-term planning. silice the number of possible resiltiiig states grows exponentially

with the numiber of time steps of consideration: if the iliput-space is discretized into

N points. the imunber of possible states a robot may end up iii is NA" after d tine

steps. As a result. the look-ahead horizon is limited to a short range in previous input

space based approaches. such as dyiaiic wiindow [991 and velocity obstacles I100(.
This thesis proposes a method of exploring the enviromneit with a few sample

inputs representing a group of inputs resulting in similar maneuvers. The idea is

illustrated in Figure 3-2. The representative inputs are chosen in the safe input sets

based on their depths, i.e. distances from forbidden inputs. The deepest safe input

cai represent a group of nearby safe inputs, and the resmdting state can e colsiderel

as the representative state of the group of states resulting from the nearby safe input

sets. The representative inputs also oaii he interpreted as inputs resulting in distinct

pathli hiomotopies. so the multiple input sequence found by the algorithl call represelit

multiple possible navigation decisions. a practical interpretation of' path homotopies

11011 although they is not exactly sm' according to the definitions.

The remainder of this chapter is organized as follows. Section 3.2 provides related

works. In Section 3.3, the problem of maxinnun margin safe navigation is defiled and

samipling-based algoritins for imxinuni margin input computation m1d aii optimal

soluition for niultiple-step horizon are presented. Th'lie algorithii is deiloilstrated with
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an example robot dynamics, and its performance and computational time are analyzed

in Section 3.4. Section 3.5 concludes the chapter.

3.2 Related Works - Input Space Approaches

The proposed approach also has similarity to input-space based planning methods

such as the velocity obstacle [1001 and dynamic window approach [99]. The velocity

obstacle (VO) method has been widely studied mainly for the benefit of its compu-

tationally light representation of collision information for infinite time horizons with

an assumed constant first-order motion model and circular shapes of obstacles and

robots. It has been extended to incorporate a broader range of motion models of

robots and obstacles via methods such as the nonlinear velocity obstacle [102] for

arbitrary trajectories of obstacles, and the generalized velocity obstacle [1031 for car-

like robots with kinematic constraints. However, the original velocity obstacle takes

the most conservative approach to representation of collision avoidance constraints in

the velocity space with the assumptions of the constant velocities of the robot and

the obstacle and infinite time horizon. One of the main issues was instead truncation

of the velocity obstacle by an appropriate time horizon. It is also known computa-

tionally challenging to determine the optimal time horizon [104]. This problem is also

related to the notion of inevitable collision state (ICS) [105]. In principle, determin-

ing whether or not a given state is an ICS requires checking for all possible future

trajectories of infinite duration that the robotic system can follow from the particular

state. However, in practice, it is possible to make conservative approximation of the

ICS by considering only a finite subset of the whole set of possible future trajectories

1106].

The dynamic window approach (DWA) [99] differs from velocity obstacles in a

sense that it explicitly constructs an admissible velocity space without strong assump-

tions on the motion models of robots. For a given velocity candidate, it determines

its admissibility based on the existence of future collision-free stopping maneuvers,

which is a conservative approximation of ICS. DWA assumes circular trajectories of
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the robots for simplicity, and performs planning in the translational and rotational

velocity space. It examines admissibility of the velocities in a reachable velocity set

within a next time step. It finally chooses the best velocity based on a combination

of multiple objectives among the admissible velocity set.

The proposed approach in this thesis is more similar to DWA than VO in a

sense that it does not aim for an analytical representation of forbidden velocities,

and instead allows a broad range of robot dynamics. The difference of the proposed

approach is that it tries to avoid explicit construction of an admissible or forbidden

input space set, but instead pursues sampling-based estimation in the search process.

At the same time, the proposed approach identifies representative inputs in the search

process to yield a fewer set of states to explore over future time steps. This allows a

long-term plan for obstacle avoidance and mitigates potential local deadlocks.

Some of the state space sampling-based approaches with tree structures without

rewire steps, such as RRT [96], share the similar benefits in a sense that they do

not involve boundary value problems but only involve integration problems, so that

they can consider a broad range of dynamics of robots. However, the proposed input

space approach trades off rapid exploration of the global space for computing locally

desirable directions to grow the tree in earlier stages. It excludes input candidates

leading to inevitable collision states from the starting node and tries to explore the

space with representative inputs with greater margins.

3.3 Maximum Input Margin Obstacle Avoidance

3.3.1 Problem Definition

Let the motion model of a robotic system be described by a differential equation of

the form x(t) = f(x(t), u(t)) where x(t) E X is a state of the system and u(t) C U is

a feasible control input. X is the state space and U is the feasible control input space.

Given a current state x(to), the feasible control input space U can be partitioned into

a set of safe inputs, Us, and a set of forbidden inputs, UF U \Us. A safe input
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us C Us is defined as below.

Definition 10. (Safe Input) An input u, is a safe input if and only if the robot is

collision free for t E [to,to + At] under the action of the constant control input u,

and the resulting state x(to+ At) is not an inevitable collision state (i.e., there exists

a collision-free trajectory for Vt > to + At), where At is the time interval between

consecutive control input executions.

An inevitable collision state (ICS) of a robotic system is defined as a state for

which, no matter which future trajectory is followed by the system, a collision with

obstacles eventually occurs [105]. In general, computing the ICS for a given system is

a complicated problem since it requires consideration of the set of all possible future

trajectories. However, in practice, it is possible to make conservative approximations

of the ICS by considering only a finite subset of the entire set of all possible future

trajectories [106]. A sampling-based method for identifying the safe input set and

forbidden input set is presented in Section 3.3.2.

By definition, any safe input is allowed at the current time step with guarantee of

the existence of collision-free future motion. But each safe input has different degrees

of proximity to the forbidden inputs. A metric indicating the proximity of the safe

input to the closet forbidden input is a key component of the proposed navigation

algorithm in this chapter. The proposed metric, called margin, is defined below.

Definition 11. (Margin) The margin of a safe input u, is defined as the minimum

weighted Euclidean distance to the forbidden input set UF, i.e.

margin(u, , UF) = minT (3.1)

where W is a diagonal matrix whose ith element, wi, is a weighting factor representing

the importance of ith dimension in the input space.

For notational convenience, this thesis assumes that the safe input set is an open

set and the boundaries of the feasible input space are contained in the forbidden input
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inpllt u. and its iargi1 In the (b) The iargiii defileid as Eu-
L clidean distance to the closest for-

biddeii input ill the scaled input
space LI T - L

Figure 3-3: Definition of the inargiin of a safe input u,

set, i.e. MH c U/,. So that the margin also considers the distanlce fronm the boundaries

of the feasible illpllt set.

Figure 3-3 illustrates an example of the margin of a safe inlput. This metric can

also be interpreted as the Euclideaii distalice to the closest forbidden input iii an

ilIput space U = T -U scaled by a diagolial scaling matrix T. whose ith element is

W -1/2 In other words. margi(u,. al) =u , - xv Where Up, = I .Up

aiid u = -u.

I
Definition 12. (Ala:riimumiu mIaIrgin iniipat (nd Cich byshev set) The 'maximaUM Ma'orin

input u, is deficed as thes cf input with the ma1im1u4m mai, i.e.

(3.2)u(. = arg max margt(u, Up)
u, GU,,

I' other 'words, it is definred as the i'nmoe'rsely scaled Chebyshc center (the cemter of

/e l(JyJst imscribcd ball /107/) of Ihe scaled feasibl' 'input space, i.C.

U( = T -ClieyshevCe iter(T -ll) (3.3)

6(7

UpF

UAF
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i11 1put is the Weighted Cheby- gin i111pult is the weighted Chebv- ipuit is the weighted Ch(y-
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inputs Chelyshev' set as forbidden in- and second Clebyshev sets as

puts forIidde inputs

Figure 3-4: Sequiencial Chehvshev sets in the scaled input space

Let in, denote the corresponding 'axi:umr . rnaryin.

M,. = mR in71(U,-, U1,) (3.4)

The Chebysher set. U(.i(b. is defined as the Cihebysh ci ball in the scaled input space.

I. e.

Ul4rb = {u - US (u - U,)' W-' (u - uc) < Mc} (3.5)

and pa(r1Weteiz(( by the 'inmamini ayin ina',:inp at U(. OW,d the Co'r respondin (limfIn.aryin

In(.. Let < up,. In > denote Uc*I) dete'eIrmi/ned by the two parameters. u. and In,. for

nr/Otatio'nal Con''e'n'ie/ce I'n the. /0110fo /'wncg description Of algorlithins.

It is practically useful to take the deepest input in the safe input set. since ill

the real world there arc iany sources of uncertainty. e.g. localization error. 1inpre-

dictability of dynanmic (bstacles. uncertainty in resulting states under given control

actions. ctc. The thesis considers the mlaxilnlml margin input U(, as t he safest input

coisidering uncertainties. It is also colsidered as a representative input to explore

and evaluate future motions.
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In addition, it is necessary to consider multiple representative inputs for further

exploration of the environment. Multiple representative inputs can be chosen by

sequentially identifying Chebyshev sets in the safe input space set. Given the previ-

ously found Chebyshev sets in the input space, the next Chebyshev set is chosen in the

remaining safe input set excluding the groups of inputs already represented by previ-

ous Chebyshev sets. Figure 3-4 illustrates an example of sequential identification of

Chebyshev sets. The jth maximum margin input is defined as the safe input with the

maximum margin considering the previous Chebyshev sets Ulht, UC2n, ... ,(j-1)th

eb) eb I cheb

as forbidden inputs,

Definition 13. (jth Chebyshev set) The jth Chebyshev set is defined as / <

uCth mC > where

th arg max margin(ue, UF U(u14 1c1t) (3.6)
Us EUs

mith magi uth, HF Uj(jj 4I th ))(3.7)mCt - man , iF=1 Uceb)

The computation of Chebyshev sets for the current time step can be repeated

by considering the resulting states as initial states of a multiple-step horizon. This

iterative planning procedure results in a tree structure T, where each node has a

representative state connected from a parent node through a Chebyshev set, as illus-

trated in Figure 3-5. A path on the tree is called a Chebyshev sequence, and denoted

by < Ucheb,i 1 C Zi,d> where d is the depth of the tree. Each sequence can be evalu-

ated based on the margins of each step. This chapter, as an example, takes a way of

evaluating the sequence based on the minimum margin over the sequence as defined

below.

Definition 14. (Margin of a Chebyshev sequence) The margin of a Chebyshev se-

quence is defined as the minimum value over the margins of Chebyshev sets in the

sequence, i.e.

mseq(< Ucheb,i ji C Zi,d >) = min Ucheb,i .mc (3.8)
iE7Z1 ,d
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Figure 3-5: Space exploration for collision-free trajectories based on maximum margin
inputs

where lceei .mc denotes the margin of the Chebyshev set at the depth i.

Note that there are other possible ways we might combine multiple margins over

a sequence into a single metric, such as the sum of margins. This thesis adopts the

minimum margin so that the margin of the whole sequence is determined by the

smallest margin to navigate through the sequence. Accordingly, the problem to find

the optimal Chebyshev sequence in terms of margin, i.e. the maximum margin input

sequence, is defined as the following:

Definition 15. (Optimal Chebyshev sequence planning: maximum, margin input se-

quence planning)

maxzmize mseq(< &lcheb, 1b' C Zi,d >) (3.9)

over all possible Chebyshev sequences (3.10)

The next section describes a sampling-based algorithm for computing Chebyshev
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sets and tree search algorithm for the optimal sequences.

3.3.2 Sampling-based Algorithm for Chebyshev Sets

A key component of the proposed approach is to compute Chebyshev sets by distin-

guishing a forbidden set and safe set in the input space. However, explicit construction

of the forbidden input set and computing the exact Chebyshev sets are computation-

ally challenging. We can achieve computational savings by adopting a sampling-based

algorithm in the similar way to other configuration/ state space sampling-based ap-

proaches. This allows us to efficiently find a safe input and approximate Chebyshev

sets while avoiding explicit construction of the forbidden set and safe set in the input

space.

Algorithm 1: InputSpaceSampling(x)

1 ?samples 0;

Usamples 0;

/* Pick and distinguish N samples
3 for i <- 1 to N do
4 u <-- Sample(U);

5 if Safety(ui) then Ulsamples +_ Usamples U U}

6 I else Usamples _ UamplesUffi;

/* Compute margin for each sample
7 for i +- 1 to N do

8 if u E Usamples then

9 L m[i] +- margin(uj, Uamples)

10 L else m[i] -- o

11 S +- (Usamples Usamples, M);

12 return S

Algorithm 1 describes a procedure to construct the sets of safe and forbidden

input samples and their margins estimated based on sampling. The first step is

to fill the input space with samples, where a safe set usamples and a forbidden set

Usamples in the input space are constructed by sampling a certain number of points

in the feasible input space U. The function Sample(U) draws a sample input from a

uniform distribution for simplicity. A smarter sampling strategy can be adopted for
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this sampling procedure. Also let the function Safety(ui) return true if it satisfies the

definition of a safe input in Definition 10, or return false otherwise. The margin for

each safe sample input ui is computed from the constructed forbidden sample input

set amples in line 9. Note that the margin computed by a sampling-based forbidden

set is an over-estimate of the real margin, i.e. margin(ui, Urmpes) > margin(uj,UF),

since U7 mples C -F. The margins of forbidden inputs are invalid and set to -oc to

ensure that they do not affect the maximization procedures of margins. The algorithm

returns the constructed sample space S with the set of safe samples, Usamples, the set

of forbidden samples, samples and the margins of the samples, m, estimated from

the constructed sample set.

Algorithm 2 and Figure 3-6 describe a procedure to sequentially find the Cheby-

shev set from the constructed input sample space S. The key point in sampling-based

estimation of the Chebyshev set is that it ensures that the center input is a safe input

point. The next priority is to find an accurate estimate of the margin of the center. Of

course, highly accurate estimation of the center and margin is beneficial, but requires

high computational burden. In order to compute the exact Chebyshev center point of

the safe input sets, it is required to construct exact forbidden sets in the input space.

By sacrificing high accuracy of the Chebyshev set, we gain computational efficiency.

However, we still guarantee that any estimated center is collision-free. The rest of the

planning algorithm aims at improving the quality of the solution in terms of margin.

Algorithm 2: NewChebyshev(S)

1 ic +- arg maxi {S .m[i]};
2 if S.m[ic] > -oc then // only for Usamples

3 uc ui,; (from S)
4 mc S.m ic];
5 Ucheb -< uc, mC >; // Chebyshev set
6 for each ui E S. Ubsamples do //update m
7 LS .m[i] +- min {S .m[i], margin(uj, {uc}) - mc};
8 update S .m; (pass-by-reference)

9 else Ucheb +- 0;
lo return Ucheb;
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(a) Saiiplinig-based ;approxii i iatioin of (b) The upd(ate of the 11ar1 for

the first Chebyshev set LI, =< conliutatioll of the next Chebvshev

U. In, > where U. = T Iu set exchldinlg the currenltl-fo11nd
Chebyshev set

Figure 3-6: Sanpling-based estimation of Chebyshev sets and maximuin margins

In Algorithin 2. whenever a new Chehyshev set is created. the margins of the

samples, tit. are updated to exclude the created Chehyshev set for the next Chebyshev

computation in line 7. This update makes the value of i correspon(ing to the samples

insile of the (llrrenltly-found Chebyshev set negative, so that the priority of being

chosen as a new Chebyshev center falls below that of the samples outside of the

currently-found C'hebyshev set. In extreme cases, consecutive rms of Algoritlun 2

can return the same number of C'hebyshev sets as the number of elements of l1"1.

Ini that case. the algoritlin will visit every safe sample point constructed ill Algorithm

1 as Chebyshev centers, so Ihe algoritli converges to the naive input space approach.

3.3.3 Tree Search Algorithm for the Optimal Chebyshev Se-

quence

A naive approach to search for the optimal Chebyshev sequence is to enumerate all

possible sequemlces. which grows exponentially with the depth of the tree. However,

this thesis proposes a best-first search algorithm with i guaramitee of optimnality by

litilizing the properties of lon-incrcasing objective values ill the search tree. The

objective function we try to maximize ill this problem is milargii of the Chelbyshev
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sequence, i.e. the minimum margin over the sequence of the Chebyshev sets. By

definition, the following two properties are satisfied.

" A new sibling Chebyshev set has always a lower value of margin than previous

siblings: mcj+1)th th

* A Chebyshev sequence of depth k has margin less than or equal to that of

the sub-sequence up until depth k - 1: mseq(< lUcheb,i i E Zi,k+1 >) mseq(<

Ucheb,i Ji C 2
i,k >)

Algorithm 3 returns the maximum margin Chebyshev sequence of depth d by

exploring only the nodes that are needed to be compared for optimality. It always

keeps the node that has the highest margin, mseq, in the queue by putting the next

sibling and next child of the explored tree in the queue. Any potential node that is

neither explored nor inserted into the queue always has smaller mseq than the nodes

in the queue. The node with the required depth d removed from the queue for the

first time always corresponds to the optimal Chebyshev sequence. If the queue is

empty before finding the solution, it means that it has searched all the samples and

there is no collision-free sequence input sequence, unless we perform more sampling

in each input space.

Algorithm 3: BestFirstSearch

1 VO. x xo ;

2 Vo. mseq *- 00

3 VO. S 4-- 0

4 InitTree(Vo)
5 V -- ExploreNewChild(Vo);
6 while depth(V) 4 d do
7 V, <-- ExploreNewSibling(V);
8 InsertQueue(V,, V,. mseq);
9 V, <-- ExploreNewChild(V);

10 InsertQueue(Vc, Vc. mseq);
11 V -- RemoveMaxQueue(;
12 if IsEmpty(V) then return failure;

13 return V
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Each node in Algorithm 3 is represented as a tuple, V =< 1lcheb, X, S, mseq >,

where Ucheb is the corresponding Chebyshev set, x is the resulting state from the

Chebyshev center, S is the constructed sampling input space, and mseq is the minimum

margin up to the corresponding node from the root node. mseq of each node V, de-

noted by V . mseq, is the objective value the problem maximizes. InsertQueue(V, mseq)

inserts the node V to the priority queue with the priority mseq. RemoveMaxQueue(

removes the highest priority entry from the priority queue and returns it. The proce-

dures to explore new child ExploreNewChild(V) and new sibling ExploreNewSibling(V)

are to create new corresponding Chebyshev sets and extend the tree. These proce-

dures are described in Algorithm 4 and Algorithm 5 with the primitive procedure

ExpandTree( - , - ) described in Algorithm 6.

Algorithm 4: ExploreNewChild (V)

1 if IsEmpty(V. S) then // for the first call
2 L V . S +- InputSpaceSampling(V . x)

3 Mcheb +- NewChebyshev(V. S);
4 if Ucheb $ 0 then V,, new ExpandTree(V, Ucheb);
5 else Vnew +- 0;
6 return Vnew;

Algorithm 5: ExploreNewSibling(V)

i VP +-- Parent(V) ;
2 Ucheb -- NewChebyshev(V .S);
3 if Ucheb $ 0 then Vnew <- ExpandTree(Vp, lAcheb)

4 else Vnew +- 0;
5 return Vnew;

Algorithm 6: ExpandTree (Vp, Ucheb)

1 Vnew. x +-- NewState(V,. X, Ucheb - Uc, At);
2 Vnew. mseq +- min{Vp. mseq, Ucheb .mc}

3 AddVertex(Vnew) ;
4 AddEdge(VP, VnewUcheb)
5 return Vnew;
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3.4 Simulation Results

3.4.1 Vehicle Model

This section presents applications of the proposed algorithm to the case of a car-like

robot. The robot's dynamics follows the bicycle model with a no-slip assumption. The

state of the robot is defined by x = (x, y, 0, v) where (x, y) are the coordinates of the

rear wheel, 6 is the heading angle, and v is the longitudinal speed of the rear wheel.

The control inputs are defined by (ua, u) where ua is the rear wheel longitudinal

acceleration and u, is the steering angle of the front wheel. Let L be the wheelbase.

The motion is governed by the following differential equations:

=v cos, = v sin0, -= tan u,, , = U (3.11)
L

with acceleration bounds ua C [amin, amax], steering angle bounds u, C [6 min, 6max],

and velocity bounds v C [Vmin, Vmax -1

The weight matrix W can be used according to the relative importance of the two

inputs, longitudinal acceleration ua and steering angle u,, in the application. In this

work, we adopted a metric with consistent units, longitudinal and lateral acceleration,

for weighing the importance of the two inputs based on the following approximation

assuming small steering angle u,.

= V/22 + j2 - /-2 + V202 2 + ( 02(.2
aa L2j 2  U svO2  (3.12)

Hence the matrix W is defined as

W = (3.13)
0 v2)2

L_

For conservative approximation of the ICS, a finite subset I of the entire set

of all possible future trajectories was chosen to include braking trajectories with

IUa E [-5, 5] m/s2, 7l E [-5, 5] deg., v C [5, 20] m/s, L = 2 m throughout the simulations
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Figure 3-7: An example of the sampling-based estimation of the first three Chebyshev
sets

a set of constant controls { (a,115, -. 6S,,,1) , (a,,,,, 0), (a/ 11 S,,)} applied over the time

necessary for the robot to stop. In addition. we added to I trajectories with controls

{(0. Sm,,,,n). (0 } applied over the time necessary to align with boundaries in cases

where the boundaries exist like the example shown in Figure 3-11.

3.4.2 Input Sampling and Chebyshev Sets

Figure 3-7a illustrates an example scenario for demonstration. The vehicle is assuied

to be initially at the origin and headed in the r direction. i.e.

speed of the vehicle was assuied to be nO

-( = 0. The initial

10 in s. Obstacles are at (11.0 inl 5.0

10 nm s

9

I
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Figure 3-8: (a-c) Means and standard deviations of the ratios of sampling-ba
estimation of margins to the true margins (d) Mean and standard deviation of
computation time across the different numbers of the samples

sed
the

m) with radius 1.0 m and (12.0 m, 0.2 m) with radius 1.5 m. The robot shape was

assumed to be a circle with radius 1.2 m. Figure 3-7b presents the true sets of safe

inputs and forbidden inputs computed in a brute-force way for comparison purposes.

Figure 3-7c shows results of sampling-based computation of three sequential Cheby-

shev sets. The simulation assumed that the time interval was At = 0.1 sec. 300

samples were generated in the input space. The first Chebyshev set (the best input

in terms of margin) was to decelerate while heading toward the space between the

two obstacles. The second Chebyshev have the avoidance in a similar direction but

with a positive acceleration. This maneuver had less margin than the first Chebyshev
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set, meaning that the first maneuver was safer than the second in more uncertain sit-

uations. The third maneuver moved to the right side of the obstacles. This maneuver

had the smallest control margin among the three representative maneuvers.

Figure 3-8 shows the computational analysis based on input space random sam-

pling for the same scenario shown in Figure 3-7. In the results presented in Figure

3-8, each run returned a unique solution since the sampling strategy was uniform

random sampling. The ratio of the computed margins to the true margins and their

computation time have been presented for the different numbers of samples. It shows

the means and standard deviations from 1000 runs for each of the sample numbers.

All the margins exponentially converge to the true margins. In this particular exam-

ple, 100 samples were enough to ensure less than 20% error of margins on average.

However, the actual accuracy of solutions depends on the margin of the problem. If

an extremely small forbidden input set exists in the input space, for example, the

estimated margin largely overestimates it until it happens to sample an input in the

small forbidden set, of which the chances are as small as the portion of the size of the

forbidden input set. The convergence rate to the true margins would be poor in this

extreme case.

Figure 3-8d shows computation time depending on the number of samples. The

computation was performed on a 3.60GHz personal computer. The computation time

grows faster than linearly but slower than quadratically, approximately c -N' 4 6 where

c = 1.57 x 10-. The computation mainly consists of three components: 1) the first

half of Algorithm 1, sampling and safety check, 2) the second half of Algorithm 1,

margin computation, 3) finally Algorithm 2, Chebyshev center computation. The

worst-case time complexity of the whole algorithm is O(N 2) due to margin computa-

tion. However, a fairly large portion of computation time was dedicated to sampling

and safety check, which is O(N); On average, 59.1% of the whole computation time

was dedicated to sampling and safety check, 40.3% was spent on margin computa-

tion, and 0.6% was spent on three Chebyshev center computation. In other words, the

main computational burden was from the safety check of the sampled input, because

it involved checking whether or not the input led to an inevitable collision state.
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Figure 3-10: Statistical results for quality of solutions and computation tines depend-

ing on the search types and the depth of trees obtained from 1000 randoim obstacle

configurations

3.4.3 Comparison Across Tree Search Types

This section demonstrates perfornance of the proposed best-first search algoritlin

compared to alternative search methods: exhaustive search and greedy search. Figure

3-9 illustrates an intuitive comparison of the search types ill terms of the visited niodes.

Exhaustive search explores a fixed number AI of children for each node, so the size

of the tree grows exponentially up until depth d. The hest sequence oil the tree is

searched over II(1 nodes at the final depth of the tree. Therefore. the computation

tie also grows expollentially with the required depth of the sequence as shown in
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Figure 3-11: The comparison of explored trees and resulting obstacle avoidance nio-

tions between the different search types

Figure 3-10b. The solutions were mostly close to the the true optimal solution, but

soumetimies it missed the true optimal solutions as shown in Figure 3-10a due to a

limited breadth AI of the tree for practical reasons. 2 On the other hand, the best-

first search always returned the optimal solution, and computation times were fairly

small compared to the exhaustive search because of the efficieit search strategy. It

is also because of a property that the higher an input margin is, the more likely the

state resulting from the input keeps having higher margin afterward as well since

forbidden input sets are computed in a predictive way using the notion of ICS. III

terms of coilputation time, the greedy search was efficient since it explored only the

single best node at each depth. However, the quality of solutions got worse as the

required depth increased.

In the computation analysis presented iii Figure 3-10. the obstacle configurations

were generated randomily based on a Poisson process. which was adopted as a for-

est generating process in 11081. The locations of the obstacles were generated by a

2 A s I 3 iI the silmlations.
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homogeneous Poisson process with the rate of 5 x 10-3/M 2 . The obstacles were as-

suimed to have the same size 1.5m, and the vehicle was required to remain within a

corridor of width 20m. The time interval was set to At = 0.5sec. Random obstacle

configurations were instantiated 1000 times, and statistical results were presented.

The sampling strategy in the analysis was uniform deterministic grid sampling for

fair comparison between search types for the same scenarios.

Figure 3-11 showed explored trees and resulting motions up to depth of 6 for an

instance of obstacle configurations. The exhaustive search and the best-first search

returned the same solution for the maximum margin input, but the best-first search

explored more than 20 times smaller number of nodes compared to the exhaustive

search. The greedy search explored a single node at each depth, but the margin was

much smaller than the true maximum margin. 3

3.4.4 Computation Comparison with RRT

The computational burden of the proposed maximum margin based obstacle avoid-

ance is compared to another typical sampling-based algorithm RRT. RRT has been

extended in various ways for various situations since its first proposition [96, 971. In

this section, the proposed approach was compared with the standard RRT with uni-

form random sampling strategy and Euclidean distance metric to evaluate the benefits

of the proposed maximum margin-based approach. The comparison was performed

in 300 different instances of random obstacle fields for each of four different obstacle

densities in the Poisson forest setup shown in Figure 3-11. In this comparison, the

vehicle model in (3.11) with one-dimensional steering input u, and a constant speed

v = 10 m/s has been used.4

Figure 3-12b shows statistical distribution of the required number of samples to

find a collision-free 40 m horizon trajectory for each algorithm in the same environ-

ments. The number of samples represents a core part of computations for sampling-

3 A receding horizon application of the approach is presented in a video at
https://vimeo.com/119145787

4N = 7 has been used in Algorithm 1
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Figure 3-12: Statistical coinparison of the requiredl 1nmber of samp~jles to find a
collision-fiee trajectory for the proposed algorithm and~ RRPT in dlifterelit (deisities

of obst acle fields

lbasedl imotioll plaiining algorit liiis and~ provides a miachiine-iindepeindeit nmetrie of

(ompIUt ationi biirdeiis. The lprolposed1 miaxililili mlargin-lbased algorithuii had a more

uniform coinputatioll burden, idependeint of obstacle densities. :onmpared to RPT.

The main (diflerelice of the prolposed algorithm conmparedl to the standlard R.RT was

that it lbiasedl the dlirectioll of tree explorationi to the nodes with greater margins.

This led to bias toward the space where thme likelihood of existence of collision-free

trajectories was iglher. Hence, it requliredl less (01mpuitat ion bulrdeil than P PT in

high densities of obstacles. sillce the standard R PT (loes hot consider informat ion

about desirable directions for collision avoidlali(e. Note that RRT with stmart sam-

p)1ing striategies collsidleriing collision inftormat ion of prior samnples co ld likely achieve

b et ter performnaices. In thbe cases with low deilsit ies of ob)st acles. the proposed algo-

ritlili telnds to reqluire more coimputation tune than the RRPT (Iue to overhead relatedl

to the default nuber of sampli)es to estilnate mnargills with enough acciuracy. Note

that as opposed to RRT, the prlop)osed algoritihm as it is dloes inot have a 1)ias of

explorationi toward uniexphoredl spahces s0 it (alniot incorp~orate p)otenitial goal states.
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3.4.5 Homotopy Evaluation

In this section, an example of homotopy evaluation is presented in a highway environ-

ment with multiple lanes. On a highway, the lane structure can be used to represent

homotopy classes as described in Section 2.3. Homotopies can be evaluated by control

safety margins by the proposed algorithm in the chapter. In this case where each ho-

motopy is evaluated individually, a greedy search is appropriate since each homotopy

usually does not have branches in navigation decisions. For the purpose of homotopy

evaluation, total margins over the sequence of Chebyshev sets are computed with

discount factors as below.

N

margin =total = margini (3.14)

where i represents depth of the sequence.

Figure 3-13 shows sampling-based computation of margins in the input space at

each depth of the tree, their corresponding Chebyshev sequences in blue, and escape

trajectories at the end of the Chebyshev sequences in red. For the escape trajectory

candidates for checking inevitable collision states, the algorithm considered trajecto-

ries that converge to the corresponding target lane centers under simple PD controller

feedback based on the lateral position of the vehicle. Although there were more ho-

motopies than the represented three homotopies, only five homotopies exhibited at

most a single lane change. The other homotopies were determined to be infeasible

from the algorithm due to a high number of lane changes. In this particular example,

it could be concluded that a lane change to the right lane had the highest safety

margin.

3.5 Conclusions

This chapter proposed a method for safe navigation based on representative sam-

ple inputs. The representative inputs were chosen in safe input sets based on their

distances from forbidden input sets. The inputs were not only the safest decisions
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with respect to various unlnodeled sources of uncertainties. but also were representa-

tive of groups of nearby input sets. resulting in similar maneuvers "-homotopy". This

approach provided aii obstacle avoidance strategy based on the maximum control

margins. For computational efficiency, a sampling-based approach Nwas adopted. and

its performance in terms of solution quality and computation time was analyzed. The

performance of the proposed algorithin has been presellted through an exIample of a

car-like robot in a static obstacle configurations. Note that the samipling-based al-

gorithmin call e applied to dynamnic environments without any difficulty as long as

future information of the dynanic enviroliemnts are provided deterministically. The

best-first search algorithm for a lmultiple-step horizon is proposed with the guarantee

of opti mality by exploiting the properties of the problem, and its computational effi-

ciency is demonstrated. The evaluation of navigation decisions based on estimation

of safe input miargin has been demonstrated in a simple highway environment. Fu-

ture work includes extension of the proposed obstacle avoidance algorithin to motion

planning algoritliin where a given goal state is achieved.
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Chapter 4

Homotopy Navigation - Model

Predictive Control

4.1 Motivation

This chapter addresses the planning and control problem for a vehicle to safely nav-

igate through a homotopy class without collisions. The motion planning problem

in a homotopy class should be potentially solved more efficiently than the general

motion planning problem since there is no discontinuity in the solution space. This

chapter presents a method for efficient trajectory optimization method within a ho-

motopy class represented by a cell sequence. The proposed trajectory optimization is

a variant of model predictive control considering non-convex collision-free homotopic

constraints.

4.2 Related Works

A variety of algorithms to generate a feasible or optimal trajectory have been devel-

oped, and they can be sorted into two main types: combinatorial planning methods

and sampling-based planning methods [109]. Although combinatorial approaches can

be computationally expensive, they provide elegant and practical solutions 1681 for

problems with certain convenient properties, i.e. low dimensional models. One of the
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main difficulties of the motion planning problems that have led to the development of

the two different types of methods comes from the nature of obstacles avoidance con-

straints. The proposed hierarchical approach based on a divide-and-conquer strategy

makes sub-problems much simpler than an original problem by considering a single

navigation decision that contains a continuous trajectory set.

In general, however, optimal trajectory generation with non-convex obstacle avoid-

ance constraints is a challenging problem. One of the simplest problem formulations

for this problem and its analytical and numerical solutions are provided in Appendix

A. It is shown that analytical solutions to the optimization problem are hard to

be obtained in general, and are computationally challenging. Receding horizon con-

trol frameworks have been widely used in practice for computational feasibility and

handling dynamic environment. Receding horizon control, also called model predic-

tive control (MPC) [110], is considered an attractive method to generate and ro-

bustly track feasible trajectories because of its systematic handling of nonlinearities

and constraints, and wide operating regions 1111]. Recent advances in computing

systems have enlarged the range of applications of real-time MPC [86]. However,

real-time MPC is still computationally complex when considering obstacle avoid-

ance constraints. In order to achieve computational feasibility for real-time MPC, a

two-level approach where a point mass model [112] or motion primitives [112] was

computed for obstacle avoidance at a higher level, and a higher fidelity model are

employed for vehicle control at a low-level has been adopted. Anderson et al. [31]
also provided a MPC-based navigation method with a single navigation decision with

a one-dimensional steering input with a constant speed. The one-dimensional prob-

lem with linearization of the system and quadratic cost function, the optimization

problem reduces to a quadratic programming problem, one of the convex optimiza-

tions. However, in general, even with a single navigation decision, the problem is still

a non-convex optimization.

Mixed-integer programming has been widely used to solve trajectory optimization

problems. Although mixed-integer programming is an NP-complete problem [113],
tractable anytime solution algorithms have been developed. Richards et al. 198] pro-
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posed a formulation of the optimal trajectory generation problem into a mixed-integer

programming problem to handle the non-convexity of collision-free constraints. A key

idea lies in expressing non-convex polygons containing a convex polygonal hole as a

union of half spaces, then ensuring satisfaction of these half space constraints using

binary variables. This work was extended to the problem of regulating conflict res-

olution between agents by adding constraints on binary variables [114]. A similar

idea was proposed for trajectory generation under homotopy class constraints by in-

troducing binary variables that encode homotopy class information [115]. Here, the

thesis presents an efficient novel formulation of the mixed-integer programming prob-

lem by employing binary variables for the purpose of satisfaction of spatial constraint

sequences. In this formulation, the only independent binary variables are associated

with transition times between cells, so a significant reduction of the search space of

binary variables is achieved.

4.3 Trajectory Optimization

4.3.1 Problem Definition

The objective of the optimal kinodynamic motion planning problem is to generate

an optimal input profile minimizing a desired cost function and satisfying differential

and collision-free constraints. The optimization problem is formulated as follows.

min J g (x(T), u(T)) dr (4.1)
u(r) It

subject to k(T) = f (x(T), u(T)) (4.2)

u(T) E Q (4.3)

q(T) G Cfree for T C [to, tf] (4.4)

x(to) = xo, X(tf) Xf (4.5)
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where u(r) is the control input, x(T) is the robot state, and xo and xf are given

start and goal states. (4.2) is a state-transition equation in which kinematic and

dynamic constraints of a robot are specified through a state vector, augmented vector

of configurations q(T) and velocities 4(T), i.e. x(T) = (q(T), 4(T)).

4.3.2 Mixed-Integer Programming for Collision Avoidance

This section describes previous collision avoidance approaches, which serve as back-

ground of the proposed approach described in Section 4.3.3. Due to their non-convex

nature of collision avoidance constraints, problems often cause computation burden of

the optimal trajectory generation problem. Richards et al. [98] proposed a method to

handle non-convex collision-free constraints by formulating the optimization problem

as a mixed-integer programming (MIP) problem containing binary variables. A key

idea is to represent collision-free space with a convex polygonal obstacle as the union

of half spaces, as seen in Figure 4-la. This is possible because the convex polygonal

obstacle can be represented as the intersection of half spaces, and the complement of

a half space is still a half space. The union of half spaces can also be represented as

the intersection of linear inequalities by introducing binary variables and a sufficiently

large constant M (hence the term Big-M method), as follows.

fkqk bijk + M(1 - Zijk) for i C Z,m j EZ (4.6)

zik > I for j C Z,,, k E Zi,p (4.7)

Zijk C {O, 1} for i E Z, , j C Zi,n, k c Zi,p (4.8)

where mj is the number of half spaces for obstacle j (i.e., the number of edges of

convex polygonal obstacle j), n is the number of obstacles, and p is the number of

sampling points over the horizon. For each time step k, the half space outside of

the jth edge for obstacle i is represented as fVzjqk bijk, and is released or imposed

depending on the value of binary variable Zijk in (4.6). Note that this half space can
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vary with time step k and thus can handle dynamic obstacles. When Zijk= 0, the

half space f4tqk b-ii is released due to the last term which is sufficiently large,

M f2
1Vgq - bijk, and when Zij= 1, it is imposed since the last term vanishes. The

inequality constraint (4.7) ensures that at least one half space constraint is imposed

for each obstacle j and time step k.

This representation is useful since optimization problems with non-convex con-

straints can be formulated as mixed-integer programming problems. However, since

mixed-integer programming is an NP-complete problem, efficient formulation of the

problem is important for achieving reasonable computational performance. Such

methods may include exploiting prior knowledge or properties of the problem struc-

ture. For example, Kim et al. [115] achieved improved computation time by removing

redundancies in the set of possible combinations of binary variables. For another ex-

ample, any point q cannot be in fjq < b, and fq b3 at the same time in Figure

4-la, despite the fact that (4.7) allows this possibility.

One clear limitation of this problem formulation is that it applies to problems

with convex polygonal obstacles, and not to those with non-convex polygonal obsta-

cles. Formation of convex polygonal approximations of non-convex obstacles, while a

potential solution to this issue, could lead to highly conservative obstacle descriptions.

4.3.3 Mixed-Integer Programming with Cell Sequence Con-

straints

This section describes an efficient formulation of mixed-integer programming that

exploits knowledge of given homotopy constraints, i.e. sequences of interior disjoint

convex cells, that have been decomposed from collision-free constraints. Two main

properties of homotopy constraints are used in this formulation. First, the robot can

be located only in one decomposed disjoint cell at each time step, so that only one

convex constraint can and should be satisfied. This replaces inequality constraints

in the problem formulation with equality constraints, and significantly reduces the

search space of the combination of binary variables. Second, this thesis utilizes the
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fact that the sequence of convex cells is provided a priori. The binary variables z's,

indicating satisfaction of each of the cells, are not truly independent from each other,

and thus the replaced equality constraints still exhibit redundancies. By identifying

more restrictive constraints in the combination of variable z's, this thesis can improve

efficiency of the mixed-integer programming solution.

Fikqk < bik + M(1 - Zik) for i E Zi,ND, k E ZI,p (4.9)

ND

Zik = 1 for k E Z_,p (4.10)

ND k-1

- izik-- 6, = 1 for k CZ1,p (4.11)
i=1 j=0

p-1

E 4 = ND - 1  (4.12)
k=O

Zik E {0, 1} for i C Z1,ND, k c Z1, (4.13)

6k E {0, 1} for k E ZO'pa (4.14)

where ND is the number of convex polygons in the cell sequence. The convex polygons

are represented by a set of linear inequalities, Fikqk < bik, and their imposition is

encoded through binary variables Zik using vector M whose dimension is the same

as bik and elements are large enough, M > Fikqk - bik in (4.9). Since decomposed

convex polygons are interior disjoint with each other, only one of them can be imposed

at each time step k, yielding the equality constraints of (4.10). Zik are not independent

from each other since the convex polygon imposed at time step k does not change

arbitrarily when the sequence between them is given.

The core independent decision variables are transition times between convex poly-

gons. This decision freedom is expressed in constraint form through binary variables

6 k, indicating a decision of whether or not to move to the next convex polygon in the

sequence or stay in the current convex polygon at the next time step k + 1, as shown

in Figure 4-1d. 6k will uniquely determine Zik through (4.11). For example, suppose
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Figure 4-1: Mixu d integer progranmming with homotopy constraints represented 1y a

sequence of coiivex polygons

the robot remains in the ith convex polygon at time-' step A. then i = I + 6 . i.e.

olle pls the number of transitions until time step A. So. two inequality constraints.

(4.10) and (4.11). yield a unique solution of :;A= 1 and Vg 2Zi = 0. (4.12) repre-

sents a constraint on the robot's arrival at the final coivex polygon where the goal

configuration exists.

Combining the above with a cost function and a discretized model of the system

dynamics. the trajectory optimization problem becomes ai mixed-integer programming

probicin with standard coitinuous optimization variable. ('oltrol input up at each timne

step k. and the binary optimizatioll variahles involved in the honlotopy constraints:

independent binary variables 6A. indicating transition decisions, alld dependent biniary
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variables Zik indicating imposition of corresponding convex polygon constraints. The

following problem formulation applies to a typical case with linearized system dynam-

ics and quadratic cost function, where the optimization reduces to a mixed-integer

quadratic programming (MIQP) problem.

p - p-1

min J = Exk'Qk xk + Uk' R Uk (4.15)
Uk k=1 k=O

subject to Xk+ 1 =Ak xk +Bk Uk (4.16)

Umin Uk < Umax (4.17)

homotopy constraints: (4.9)-(4.14) (4.18)

4.3.4 Analysis of Problem Complexity

This section analyzes computational benefits of the proposed divide-and-conquer ap-

proach. Since homotopy constraints for local problems do not have holes, and can

be represented as sequences of convex polygons, the resulting optimization problem

can be solved in an efficient manner compared to the global problem with general

collision-free constraints. Although problem solution times clearly depend on the

performance of the particular mixed-integer programming solver, the problem formu-

lation has a great influence on computational performance. Specifically, an increased

number of combinations of discrete variables leads to a large search space and high

computational burden. This thesis analyzes the effect of reduction of the search space

of binary variables in MIQP by comparing the number of possible combinations of bi-

nary variables satisfying constraints in the original global problem and a decomposed

problem.

The possible number of combinations of binary variables are reduced by simply

replacing inequality constraints (4.7) with equality constraints (4.10) using interior

disjoint convex cells. In the case of inequality constraints of (4.7), the number of

feasible combination is {f j (2mi - 1)}P . If this thesis assumes that all obstacles

have the same number of edges, mj = m , for the purpose of simplicity of analysis,
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it is (2' - 1)P . On the other hand, (4.10) has (ND)P as the number of possible

combinations of binary variables, where ND is the number of convex cells. ND cannot

exceed the total number of edges )'= mj since a convex cell has at least one obstacle

edge that is not shared with other cells. Similarly, for the case of mj = m , the

possible number of combinations is upper-bounded as (ND)P < (nm)P. So, the number

of possible combinations of binary variables becomes polynomial in the number of

obstacles n while it remains exponential in the number of horizons p.

In the case of the decomposed problem exploiting homotopy constraints, the vari-

ables z's are not independent from each other and are uniquely determined by 6 k

through (4.11). The number of possible combinations of binary variables 6 k is "p

choose ND - 1", i.e. p! under the assumption of enough sampling points(ND-1)!(p-ND 1)!'I

compared to the number of convex cells, i.e. p > ND. This means the number of

possible combinations does not monotonically increase as ND increases. More specif-

ically, the binomial coefficient is upper bounded as (-< P)!(D--D+))< eD.icaly,(ND-1)!(p-ND 1)! - (ND-i)!

So, the number of obstacles and edges of obstacles do not significantly affect the com-

putation time as much as in the pre-decomposed problem. Note that this reduction

of the search space comes from the fact that a cell sequence is defined ahead of time.

Note that constraint (4.9) that is imposed and released by a single binary variable

is a convex polygon, i.e. an intersection of half spaces, and thus it is more restrictive

than the single half space represented in (4.7). In terms of continuous optimization

variables, imposing more restrictive constraints could yield slow optimization perfor-

mance, however since convexity is preserved this influence on the total computation

time is here not as significant as the effect of the reduced search space of binary vari-

ables. So, the dominant cause of high computational burden is the extensive search

space of binary variables. In Section 4.4.1, actual computation times for example

problems are compared between undecomposed global problems and decomposed lo-

cal problems.

It should be noted that although ND does not affect the upper bound of the number

of possible binary variable combinations, the number of convex polygonal constraints

in (4.9) increases as ND increases. So, it is better to reduce ND as a means to improve
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Figure 4-2: Optimal trajectories for each homotopy class in scenarios with distinct

obstacle positions and with n = 2. ) = 50 (The global optimal trajectories in red and

other local optimal trajectories in bhie)
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(a) cw-cw

Figure 4-3: Four

(b) w-ccw (c) ccw-cw

homotopies represented by cell sequences

(d) ccw-ccw

in the Scenario A

computational efficiency. For example. the triangular decomposition does not have

benefits compared to trapezoidal decomposition in terms of a reduced number of

constraints involving continuous variables. However, there is a trade-off since, for

example. determining a decomposition that uses the smallest number of convex cells

is NP-hard 11161.

Finally, note that the number of local problems is equal to the number of loopless

paths on the adjacency graph. which is upper bounded by the number of loopless

liomotopy classes, 2". where u is the number of obstacles. Although the growth of

the number of local problems is exponential. since each local problciim with a loopless

sequence of cells ucniluely orresponds to a lioiiotopy class. a high-level evaluation

step can allow filtering of undesired local problcis. For exaniple. it may be possible to

96

0,

I-



heuristically evaluate the desirability (e.g. likelihood of containing a feasible solution)

of a homotopy class based on the geometric properties of connected cells as in 161], as

discussed in Section 4.4.2. When heuristic costs are assigned to the adjacency graph,

it is possible to rank paths from the shortest to K-th shortest using Yen's loopless

path ranking algorithm 1117]. The time complexity of the algorithm is known to be

O(KN(E+N log N)) where E and N are the number of edges and nodes on the graph,

respectively. It is also potentially possible to reflect a human supervisor's intention

in the selection of homotopy classes, so a single local problem that is consistent with

the human's intention can be solved.

4.4 Results

The computational benefits of the proposed approach are first demonstrated for a

motion planning problem involving a simple point mass model. Next, a problem

involving vehicle navigation on a roadway is presented to show the benefits of corre-

spondence between navigation decisions and cell sequences. Finally, the application

to linear model predictive control with non-convex collision-free constraints is demon-

strated. All implementations (i.e. convex decomposition and graph search) except for

optimization were coded in Matlab. IBM ILOG CPLEX 12.5.1 was used for solving

the MIQP. The simulations were carried out on a 2.4GHz personal computer with

2GB of RAM.

4.4.1 Point Mass Example

Here the performance of the proposed approach is compared to a baseline approach for

a simple model of a two-dimensional point mass. The dynamics can be represented by

the linear model ' Uax, Y = Uay, where zax and Uay are accelerations in orthogonal

directions. The time scale and the size of environments are normalized as q(T)

T C [0, 1] - (X, y) C [0, 1]2, and start and goal configurations are given as x(0) =

0.1, y(O) = 0.1, and x(1) = 0.9, y(l) = 0.9. The initial and final velocities of the robot

are chosen as ,i(O) = 0, Q(0) = 0, and N() = 0, Q(1) = 0. The trajectory is designed
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Table 4.1: Comparison of the results of the scenarios in Figure 4-2

Divide-and-conquer approach

Scenarios approach Cell Homotopy

decomp. cw-cw cw-ccw ccw-cw ccw-ccw

A a*ms (x 10 3 ) 13.2 13.4 16.8 18.9 13.2
comp. time (see) (598.47) (0.82) (21.39) (28.69) (36.28) (16.03)

a*ms (x 10- 3 ) 12.8 12.8 24.7 13.9 16.1
B r

comp. time (sec) (44.43) (1.12) (18.84) (36.58) (15.90) (28.12)

a*ms (x 10 3 ) 11.7 16.1 36.8 11.7 16.1
C r

comp. time (see) (20.48) (0.86) (16.40) (43.17) (15.26) (24.37)

to minimize control effort, and the problem is thus formulated as a minimum-fuel

problem with a quadratic cost function J =ff (ut ut)dr. Note that the square

root of the cost is the root-mean-squared acceleration, arms = \/
Figure 4-2 and Table 4.1 present simulation results for three scenarios involving

two obstacles at these distinct positions. The MIQP formulation of the undecom-

posed global problem and decomposed local problem are implemented in the same

manner except for the handling of collision-free constraints (4.6)-(4.7), and homotopy

constraints (4.9)-(4.12), respectively. While the undecomposed global problem for-

mulation generated the globally optimal trajectory in each environment, the proposed

divide-and-conquer approach not only found the globally optimal trajectory, but also

optimal trajectories contained within each homotopy class. As a result, explicit com-

parison of the minimum cost of each locally optimal trajectory is possible. For ease

of recognition, the four homotopy classes in the scenarios are denoted by obstacle

avoidance directions. For example, homotopy cw - ccw avoids the lower-left obstacle

in the clockwise (cw) direction and the upper-right obstacle in the counter-clockwise

(ccw) direction.

In this particular example, it can be shown that the best solution among the

locally optimal solutions corresponding to each of homotopy constraints is the global

optimal solution. The optimal solutions corresponding to all loopless cell sequences

are monotonic in the sweeping axis (x-axis) of trapezoidal decomposition in Figure
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solutions corresponding to loopless sequences is the global optimial solution.
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The computation time of the undecomposed approach varied depending on the

scenario. The computation time for scenario A for the undecomposed approach was

observed to be an order of magnitude larger than the others due to the existence of

a locally optimal solution with a similar cost to the globally optimal solution. This

can be verified by examining the costs of the two homotopies ccw - ccw and cw - cw,

which are similar since the locations of the two obstacles are nearly symmetric about

the line connecting the start and the goal. (The homotopy ccw - ccw contains the

globally optimal solution.) In scenarios B and C, the globally optimal trajectories

were found much faster than scenario A in the undecomposed approach. In summary,

this example illustrates the fact that the required computation time (particularly for

the globally optimal solution) is highly sensitive to the specific configurations of a

particular scenario.

In contrast, it can be seen that the proposed divide-and-conquer approach exhibits

a fairly uniform computation time for this particular problem. Also, since each local

problem with homotopy constraints is independent from each other, their computa-

tions are parallelizable. In scenario A, even the summed computation times of each

solution is much less than the computation time for the global problem formulation.

However, in scenario C, the global problem formulation requires less computation

time than some of local problems since the global optimal solution in this case is a

straight trajectory with the minimum acceleration and deceleration toward the goal.

The RMS acceleration of the second best homotopies, cw - cw and ccw - cew, are

approximately 1.43 times greater than that of the best homotopy, ccw - cw. However,

the computation time for the global problem formulation remains greater than the

computation time for the local problem formulation with corresponding homotopy

constraints ccw - cw.

Figure 4-4 shows box plots of the required computation time for both problem

formulations from 1200 simulations with randomized location and sizes of obstacles,

with whiskers indicating 1.5 IQR. The number of obstacles, n, was chosen randomly

between 1 and 7. The locations and sizes of rectangular obstacles were randomized,

with minimum length of both edges of 0.1. The number of sample points over the
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Figure 4-6: Comparison of computation time histogran of the results in Figure 4-4

horizon. p. was fixed at 16. While the computation time to solve the undecomposed

global problem tends to increase as the lnnum1ber of obstacles increases., the comipji-

tation time for the decomposed local probleim remains bounded as the number of

obstacles increases to 7. Note that the computation times are shown in log scales.

This is consistent with the analysis in Section 4.3.4 and results from the exponentially

increasing number of possible combinations of discrete variables with n in the global

problem formulation. compared to the upper bound being independent of i in the

decomposed local problem formulation. In addition. the decomposed local problem

formulation exhibits a fairly uniformly distributed computation timie , while the global

problem formulation has a widely distributed computation tinie, as seen in the iii-

stance of Figure 4-2 and Table 4.1. Figure 4-5 shows results for varying numbi her of

sampling points. p. when the number of obstacles is fixed at i = 3. The comlputatiomn

times for the decomposed problems grow slowly than those for the unldecomposed

problems although they both increase exponentially with the nniber of sampling

points as discussed in Section 4.3.4.

Figure 4-6 shows computation tine histograms of the results iii Figure 4-4. A

distinct feature is that the computation times for Ilie decomposed probleis have

a biiodal (listrilbutioni. In other words, it has been empirically observed that the

decomposed problems formulated in the proposed way cai be classified into mainly
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two different classes of the problems with respect to the required computation times

for mixed integer programming. It is suspected that there is a certain class in the

formulated constraints that the MIP solver is able to easily pick an initial guess to

start the optimization efficiently with. This comprises one mode in the histogram and

the rest exhibit normal distribution in computation time. The bimodal distribution

explains the sensitive medians of the computation times for the decomposed problems

in Figure 4-4b.

This thesis highlights the fact that there is no guarantee of collision-free motion

between sampling points, though each sampling point is guaranteed to be collision-

free. Both formulations exhibit this limitation, which is inherent for optimization

approaches with discretized time steps. From a practical perspective, this issue can

be mitigated by increasing the number of sampling points or via obstacle dilation by

a desired tolerance. A more rigorous approach, developed in [118], can be used by

specifying sequences of cells with a denser decomposition in a way to ensure that any

line connecting two points in adjacent cells does not cross obstacles.

4.4.2 Vehicle Navigation on Roadways

As a second example, this thesis here analyzes a scenario involving vehicle navigation

on roadways, where trajectories with the minimum effort ensuring satisfaction of

driving requirements are generated for various navigation decisions. This could be

utilized as a decision making support system by quantifying the desirability of various

navigation decisions in terms of the minimum required acceleration levels. In this

simulation, a standard bicycle model with a no-slip assumption was employed in the

following form:

z=v cos 0, y=v sin0, -tan u, V =U a (4.19)
L

where L is the wheel base, Ua is the longitudinal acceleration, and u, is the steering

angle of the front wheel.1 For simplicity, the vehicle model was linearized about a

'In the simulation, L = 2 m was assumed.
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nominal speed vo under the assumption of a small heading angle 0 and steering angle

us.

=V, y= VO, 6 = us =Ua (4.20)
L

The objective was to minimize the root-mean-squared acceleration, so the quadratic

cost function in terms of the control inputs 'ua and us was constructed and approxi-

mated as follows.

jT 
jT 2V( 

. 1

J (i 2 + (V6)2) ~~ (2 + (Vd r-- U )2U2 )dt (4.21)
0 JOL

where T is the prediction horizon. Then, arms =v/J/T is the root-mean-squared

acceleration of the trajectory, so that no tuning parameters are introduced in the

comparison of optimal trajectories between various navigation decisions, and the cost

retains a physical meaning.

Figure 4-7 shows the simulation result of the simple case where two navigation

decisions exist. In on-road navigation, the vehicle is expected to remain within the

road boundaries and a goal point is often not precisely specified. However, it is

generally desirable for the vehicle to align with the principal direction of the road, so

the final heading angle can be regulated to be aligned with the road, i.e. 0(T) = 0 in

this simulation. The feasible input range was set to -4 <U 4 m/s 2, -10 < us < 10

deg, and -15 < its 15 deg/s. The prediction time horizon T was 2.5 sec and the

number of sampling points p was 50, so that the time interval between sampling points

is 0.05 sec.

A and B in Figure 4-7 are the optimal trajectories associated with two different

navigation decisions. Since a goal point is not specified, it is impossible to determine

whether or not the two trajectories are homotopic. However, the two trajectories

correspond with different sequences of cells, so that the navigation decisions are dis-

tinguished in this case. In trajectory A, moving in a clockwise manner about the

obstacle, the vehicle was required to both steer and reduce the speed to avoid the

obstacle. Whereas in trajectory B, moving in a counterclockwise manner about the

obstacle does not require the vehicle to modify its speed. The required minimum
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Optimal trajectories for two different decisions in vehicle navigation on

- 1 */T are 4.5 in s2 and 2.1 in s2 for A and B, respectively

Table 4.2: Costs of the optimal trajectories and computation time of the simulation

of Figure 4-8

Feasible sequences (*1 Comp. time

of cells (m s2) (see)

C 1 2  0.04 0.146

C 1.2 - C3 1 0.94 0.248
C,,a C:j a C91  3.78 0.216

C 1, 2 C3,1 I C 2 ,2  2.40 0.269

RNMS accelerations for collision avoidance are explicitly compared. and it can be ob-

served that avoiding the obstacle in a counter-clockwise manner results in lower cost

trajectories.

Figure 4-8 and Table 4.2 show identified feasible trajectories for different naviga-

tion decisions oii a highway: in this example. only four navigation decisions contained

feasible trajectories aong many navigation decisions with different goal nodes. The
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Figure 4-8: Optinal trajectories for different navigation decisions

likelihood of navigation decisions to contain feasible trajectories. or the desirability

of various navigation decisions, can h) evaluated heuristically lased on the geoietric

properties corresponding to various sequence of cells. For example. if a unit cost is

asswiied to each edge of the graph. the cost of an identified path is equivalent to the

number of lane changes. and thus it is possible to restrict the maximum number of

lane changes since a high number of lane changes is generally not desirable from a

practical perspective.

In the simulation of Figure 4-8. it is assumed that other vehicles are moving at a

constant speed and imaintainimg their current lane position. The speeds of obstacles

were 18 in s, 14 in s. and 18 in s for 01. 0., and 0:, respectively. The ranges of

feasible input were -4 < u,, 4 in s2. -30 < i u, 30 (leg, and --60 < nu < 60 deg s

and the prediction time horizon was 3 sec., and the number of samples p was 20, so

that the sampling time At was 0.15 sec. 2

2 A video of the siiulation is available at https: viinco.coin 96673683
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angles

Figure 4-9: Vehicle model for control

4.4.3 Model Predictive Control with Non-convex Collision-

Free Constraints

This section shows an examnple of a MIQP formulation used in a linear model pre-

dictive control franework. MPC is a receding horizon control approach where the

optimal input sequence is solved online with a designed cost function anld required

constraints. Linear MPC is frequently used due to its computational benefits, since

optimization problems with quadratic cost function and convex polygonal constraints

reduce to quadratic programming (QP) problems, a convex optimization.

Due to the non-convexity of collision-free constraints, iost linear MPC-based

velicle navigation frameworks are decomposed into two stages. In a high-level stage, a

desirable reference trajectory is generated with motion planning algorithms that often

employ a simple vehicle model. In the low-level stage. deviation from this reference

trajectory is penalized via a cost function without imposing , 1on-convex constraints.

In this decoupled approich. it is conniumom to use a simple velicle model in the motion

planning stage to reduce computational burden for handling non-convex collision-

free constraints. However. simply penalizing deviation from the reference trajectory

computed based o1 the simple imiodel does not guarantee collision avoidance for the

controlled vehicle. Im contrast. this thesis shows an efficient way of incorporating non-
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convex constraints into the optimization problem, specifically a MIQP formulation

for running linear MPC with non-convex collision-free constraints.

Fig 4-9 shows the states of the bicycle model with slip, and definition of side slip

angles. The.dynamics of the vehicle model is computed as below, where the two

inputs are the longitudinal tire force for braking F and steering 6. It is assumed that

the braking force is distributed at a fixed ratio b, i.e. F2f = bF, F, = (1 - b)F2.

X =ecos 0 - vY sin b (4.22)

Y vx sin 0 + vY cos (4.23)

(4.24)
1

6, -(Ff cos 6 - Fyf sin 6 + Fx,) + vyw (4.25)
m
1

i y (Fxf sin 6 + Fyf cos 6 + Fy,) - vxw (4.26)
m

C {lf(FJ sin 6+ Fyf cos 6)- lFy,)} (4.27)

Normal tire forces are assumed to be constant, and lateral tire forces are assumed

to be linear with respect to the side slip angles. The side slip angles are approximated

as below.

Fyf(af) = pFfCfoaf (4.28)

Fy,(ar) = pFzCra, (4.29)

aif(6,VXVyW) 6 - V fW (4.30)
vx

ar(vX, Vy, C) - V yLr (4.31)

Fzf = ir (4.32)
if + 1,

Fzr= mg i (4.33)
If + 1r
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Figure 4-11: The resulting trajectorv of the vehicle controlled in NPC framework
with a non-convex collision-free constraint shown in Figure 4-10

The nonlinear vehicle dviiaiics is discretized and linearized about current states

and previous inputs. The resulting dynanics is represented as a linear system in the

following form |11191.

xhi = Axk + Buh + g (4.34)

Figure 4-10 and Figure 4-11 illustrate a snapshot and a resulting trajectory of a
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Figure 4-12: MPC inputs (i.e., longitudinal tire foree aiid steering), resulting side slip

angles, resultiig friction litilization (i.e.. norinalized magnitude of each hoirizontal tire

foree with respeet to each normal tire force). and resulting accelerations in units of

gravity acceleration g

vehicle coitrolled in CarSinm based on the proposed \IPC frainework for an obstacle

avoidaiice imialieuiver. The vehicle is assulined to have loxv-resolution visibility sensors

with a liiiiited range of 30 i and tries to change laies withliout collision as sool

as it detects the obstacle ahead. The initial speed of the vehicle was 80 kin 11. A

staiidard passenger vehicle (i.e. secdaii) model was employed in CarSimi. Collision-

free constrainits were constructed as iioi-coiiveX )olygonis dilated by t he size of the

vehicle froim the safe regioni detected by sei1sor 1iodels. Noii-convex polygons were

decol11posed iiito multiple convex polygonal cells by trapezoidal decoiiipositioii. and

the cell seqiuieliee coistraint froi1 the startiig cell to the goal (ell was iiposed lin the

3 = 1650 kg. Iz = 3234 kg-m2 i - 1.4 11, I = 2.1 m, Cf = 10. C = 10. p - 1. b= 0.7
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form shown from (4.9) to (4.14).

The feasible input constraints -pmg < F < 0 N, -20 < 6 < 20 deg, and

-20 < 6 < 20 deg/s were expressed and imposed in polyhedral form. Terminal

constraints for alignment with the lane center were also imposed, i.e. yaw angle 4

and position Y at the final step of the horizon. The cost function was designed to

minimize the magnitude of the front tire force and the deviation from the lane center.

The sampling time for prediction was 0.05 sec, and the number of the prediction

horizon and control horizon steps were 60 and 30, respectively. The control steps

over the entire prediction steps were equally distributed, i.e. a control move per

every 2 steps was optimized. The MPC control loop was run at 20 Hz.

Figure 4-12 shows the executed input from the model predictive controller and

the measured resulting states of the controlled vehicle in CarSim.4 For obstacle

avoidance and to ensure that the vehicle remained within the road, both steering and

brake inputs were imposed minimally with respect to the resulting front tire friction

forces based on the slip bicycle model. Asymmetry between the left and right side

of the vehicle in slip angles and tire forces was not significant to cause instability or

collisions in this minimal control example. The vehicle was successfully controlled

with the friction utilization up to 0.82 and lateral acceleration up to 0.7g.

4.5 Conclusions

Here the chapter has solved the kinodynamic motion planning problem in a two-

dimensional polygonal space based on a divide-and-conquer approach. An efficient

formulation of mixed integer programming (MIP) has been presented as a method

to exploit desirable properties of local problems decomposed from the global prob-

lem. This method has been compared to the previous MIP formulation, and the

reduction in complexity that could be achieved under the proposed method has been

both analyzed and demonstrated through a number of simulations. Also, trajectory

optimization for each distinct navigation decision has been successfully shown in the

4 A video of the simulation is available at https://vimeo.com/126836637
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context of decision making support for vehicle navigation. Finally, the chapter has

shown that the proposed MIQP formulation fits into a linear model predictive control

framework with non-convex collision-free constraints, which can serve as a feedback

control law.
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Chapter 5

User Study -

Semi-Autonomous/ Autonomous

Vehicle Navigation on Highways

5.1 Introduction

This chapter describes a user study of the semi-autonomous/ autonomous vehicle nav-

igation on highways based on the proposed homotopy-based navigation framework.

The impact of automation on drivers is an interesting and essential question, and

requires a fundamental understanding of human factors to develop acceptable and

safe designs for the automated systems [5]. It is stated that "human factors research

about how drivers react and perform in automated vehicles is identified as one of

three key areas of research for advanced automated vehicles systems with electronic

control system safety and development of system performance requirement [241." It is

also pointed out that "the key issues with the driver assistance systems are how such

systems work in real traffic and how drivers react when driving with such systems

such as behavioral effects in short and long term, mental workload and acceptance

[12]."

The user acceptance of and experience with ADAS and autonomous vehicles are

113



inconsistent in various studies [120]. The results of user acceptance and experience,

of course, would depend on specific automation devices. This thesis investigates user

acceptance of the proposed homotopy-based framework applied to highway driving.

The chapter summarizes a way to apply the proposed homotopy-based navigation

framework to highway driving applications, and shows results of experiments with

recruited human subjects to evaluate driving performance and user acceptance of

different levels of autonomy.

5.2 Methods

5.2.1 Participants

Human subject recruitment was focused on relatively healthy and experienced drivers.

Participants were required to have been licensed for a minimum of 3 years, and self-

report driving at least once per week. Additional requirements consisted of being in

self-reported good health for one's age, being fully comfortable speaking and reading

English, and having no major illness resulting in hospitalization in the past 6 months.

A diagnosis of Parkinson's disease or other neurological problems along with psycho-

logical or psychiatric disorder were also exclusion criteria. 26 subjects were recruited

across four groups distinguished by gender and age: younger (20-29) male and female

group and older male and female group (55-69). The mean and standard deviation

of the ages of each group is presented in Table 5.1 along with the number of sub-

jects. Recruitment procedures and the overall experimental protocol were approved

by MIT's institutional review board, and compensation of $60 was provided.

5.2.2 Apparatus

The experiments were carried out in the MIT AgeLab fixed-base driving simulator

shown in Figure 5-1a, a full cab 2001 Volkswagen New Beetle, which has been used

in many previous studies in the AgeLab [121]. A 2.44 m by 1.83 m projection screen

was positioned 1.93 m in front of the midpoint of the windshield and provided an
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Table 5.1: Mean age (and standard deviation) of participants grouped byV the age and

genider

Gender.

Age group Female Iale Combined

AJ SD M SD Al SD

Younger (20-29) 24.4 (3.65) 24.1 (3.02) 24.3 (3.14)
(n - 5) (n 7) (1i 12)

Older (55-69) 61.0 (4.11) 62.5 (3.94) 61.6 (3.95)
(1n 8) (n 6) (in - 14)

(a) MIT AgeLab fixed-base simulator user in-

terface

(b) A view fr)1il the inside of the vehicle

Figure 5-1: Driving simulator for the user study

approximately 40' view of the virtual world at a resolution of 1024 x 768 pixels.

Figure 5-11) shows a picture taken from a rear seat of the vehicle. Graphical updates

were generated at a frame rate of 50 Hz using CarSim Driver Simulator version 8.2

based upon a driver's interaction with the steering wheel. brake. accelerator, and turn

signal switches. Auditory feedback consisting of engine noise and braking sounds was

provided through the vehicle's sound system. Instructions and audio tasks were pjre-

recorded and also presented through the vehicle sound system. Driving performance

data were captured at 20 Hz.

The simulation scenario consisted of a highway with four lanes. Lane width was

5.0 in and the posted speed limit was 55 mph (88.5 kin 1h, 24.6 in s). Figure 5-2

illustrates a simple way to iolel traffic notion on the highway. A vehicle was mostly

ill the "normnal" driving mode where the speed and the lanes were kept. However, it

went into "transition" mode with a specific probability at each tie step where the
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speeds of the vehicle increased or decreased for a certain period of time. After this

speed change, it went back into normal driving mode again. As soon as it went into

normal driving mode, random events to change the mode to the transition mode was

again activated. The aggressiveness of the highway traffic has been adjusted by the

probability p of entering the transition modes.

For each vehicle

while transitioning At each time step while transitioning
,'~' (duringT) P (duringT)

transition mode: normal driving mode transition mode:
speed up - keep a constant speed and lane speed down

1-2p
recycling module

collision avoidance module keep a consistent number of vehicles

prevention of collisions (once a vehicle gets out of the region of interest, it is
eein oclss recycled as a new vehicle approaching to the region of
between vehicles interest around the host vehicle)

Figure 5-2: Simplified traffic modeling for the highway simulation

During this traffic speed adjustment, the speeds of the vehicles were regulated

by the upper vtrffic and lower vogic bound for realistic traffic simulation. Also,

in order to prevent collisions between vehicles, an appropriate deceleration for each

vehicle to avoid inevitable collision states with leading vehicles has been applied.

This longitudinal ICS avoidance was based on a simple analytical calculation in a

conservative way, which is shown in AppendixH. In this particular experiment, eight

vehicles were placed on a highway with four lanes. The minimum speed and maximum

speed of the target vehicles were set to 18 m/s (40.3 mph, 64.8 km/h) and 31 m/s

(69.3 mph, 111.6 km/h), respectively.

The traffic was also adjusted according to the behavior of the host vehicle con-

trolled by the operator or the automation system to have an effective density of traffic.

This was achieved by traffic recycling as shown in Figure 5-3. Once a vehicle departed

the region of interest around the host vehicle, it was recycled as a new vehicle around

the boundary of the region of interest, termed the recycling zone.1 The recycled vehi-

iXfecycling = 200 m, zlel= MIXcycling = 20 m were used in the experiment.
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cles were recreated in either the front or rear recycling zone. If it was recycled in the

frout recycling Zoile. the speed of the new vehicle was chosen randoimly with uniforimi

dist ribution lbetween v1 aind oh - 10 in s where v1, was the speed of the host vehicle at

the noment. This made the recycled vehicle slower thaii the host vehicle so it would

approach the host vehicle from ahead. Similarly, if the vehicle was recreated in the

lear recycling zone, the speed of the new vehicle was chosen randoinly with uniform

distribution between ch aiid oh 10 in s so it would approach to the host vehicle fron

behind.

region of interest

recycled host

rear
recycling

zone

--I -----
I ec vcliiig

- -. - recycled

- -- - -- - -- --+- - -

front
recycling

zone

Figure 5-3: Vehicle recycling for an effective density of traffic

5.2.3 Homotopy-based Assistance Systems

Both seii-autononious and fully-autonomous driving assistance systems based oil

the proposed hoimotopy-based algorithms were implemented in the highway driving

application. Along with manual control (i.e. a regular vehicle without assistance

systems), three driving modes with different levels of autonomy were evaluated by

the participants. In highway applications, the notion of hlomlotopy classes could be

interpreted as distinct lane change decisions as illustrated in Figure 5-4. Although the

lane chiange decisions were not exactly the same as the traditional topological iotion

of honotopy classes, it was practically useful to utilize the lane structure in hiomotopy

classification to enable a consistent decision making unit vith hiiuian operators.
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Figure 5-4: The )roj)osed lonlotoj)y-based navigation framework can be directly

ap)lie(l to the highway navigation by inter)reting laiie change (decisions as lioim to)ies

Lane change
decision

Lane keeping
& adaptive

cruise control

Semi-Autonomous
Vehicle

Human

Machine

Fully-Autonomous
Vehicle

Machine

Machine

Figure 5-5: Proposed three different driviig modes based on hierarchical task alloca-

tioni between Iunian amnd machines

Figure 5-5 I)resents the three )roI)osed drivinig modes based on the honmotopy-

based hierarchical framnework. In the -regular" vehicle llode. the vehicle was controlled

manually by the traditional interface (steeriig wheel. accelerator. and brake). Im

the -senmi-autonommous" mode, the lane ciamige decision was provided by the lunnan

op!erator using tuiri sigial indicators, and the vehicle remiained within the chosen lane

by steering itself anmd adljulsting its speed to avoid collisiolls with other vehicles ill the

lame. The "fuly-atononmos" iode controls the vehicle with full control anthority

including iakiig lane chamige decisioiis adjustiig speeds and steering.

In homotopy identification. the amitoiatioi system first l)redicted the miotioni of

the other vehicles on the road to have a coistant s)eed in the near future. The

timie stel) over the lorizon was 0.i sec and the number of steps was 30. Bascd oi

the (eli decomI)osition ammd conservative const ructioi of adjacellcy gra)h presented

'i8

I

Regular
(Manual Control)

Human
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Semi-Autonomous Driving ~1~
Perception

Human

Homotopy Identification
Perception - Enumeration of possible lane change decisions

human Homotopy Evaluation
input I

Human - Evaluation of desirability of the
eCISion lane human lane change decisions

Making (turn
switch) change

decision Homotopy Selection

- Respect or ignore human lane

visual feedback change decision

Homotopy Navigation

Safe control within the selected lane change decision

Figure 5-6: H-ighway seini-autolnomOUs navigation architecture

in Section 2.5. all possible lane change decisions could be enumerated using a graph

search algorithm. In the experiment. the automation system colnsiders distinct lane

chanige decisions with at most a single lane. The honmotopy evaluation step evaluates

each lane chanige decision based on simple heuristics (e.g. distances with adjacent

vehicles in the lane) or estimated safe control margin which was presented in Chapter

3. For a chosen hoimotopy, the vehicle was controlled by a model predictive conitrol

framework based o1 mixed integer prograning wit Ii collision avoidance constraints.

which was presenited iii Chapter 4.2

The semi-autonomous node requires miteraction with human oplerators. Figure

5-6 illustrates the framework of the honotopy-based semi-autono ious nmode for high-

way navigation. The human operator's lane chamige decisio is received from the turn

signal switch from the operator. The system identifies the possible lane change deci-

sions assming a single lane change at a time. Once the human's target lane change

decisioll is identified. the system evaluates the desirability safety of the decision. aid

2 Vidcos for cacl (f tlh systems ar dvailale at lit t)s: VimO.(omt -16553O1 for the regular vehi-

(Ie. littps: V1iLO.(om11 146726716 for the semli-autoiLom(o)us vehicle. https: viiio.Comiii 147500373

for the fully-aitoiouous vehicle.
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respects or ignores it. If a vehicle exists in the target lane within a certaili longitii-

dilial distalnce to the host vehicle or an estimated margin of the target homotopy is

smaller thaii a certain threshold, the lane change decision is determined to he unsafe

and ignored. When it is determined to be safe. the vehicle changes lanes by applying

target lane centers as a reference trajectory of a 1 (odel predictive control framework

with collision avoidance constraints presented in Chapter 4. When it is determined

to be iiiisafe to make lane changes requested by the humal operator, the systein ig-

nore the lane change request and keeps the current lane. When this happens. visual

feedback is provided to the huiiian operator through LEDs as shown in Figure 5-7.

Visual feedback
when lane change

request is canceled)

Operator inpu
Turn signal swtch

Figure 5-7: User interface for the seini-autonoinous vehicle mnode

Co mputation of hoiotopy identification. evaluation. selection. aiid navigation

have been performed ill a personal computer with 3.60 GHz i7 CPU and 8 GB of

RAM. The hoinotopy identification. evaluiatioll. aind selection have been implemented

in C . Formulation of the hiomotopy navigation problem in MIQP has been imple-

iiented in MATLAB, and the resulting MIQP has been solved by IBM ILOG CPLEX

12.5.1. The different programs running at the same time were colinuinicated with

each other using LC\I (Lightweight Conunmications and larshalling) 11221. The

computation for the entire process including homotopy evaluation aiid veh ile control

has been successfullv rn in real-time at 5 Hz.
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5.2.4 Procedure

Upon arriving at the MIT AgeLab., participants were given an overview of the exper-

iment anid the three different drivinig nodes: regular. semi-autonomous, and fully-

autonomous vehicles. Participants were then guided to the sniulator and ad]justed

the driver's seat alnd steering wheel so that they were confortable.

In the overview of the study. participants were givell explanation for the differences

of the driving modes, speed limit. and perfornance criteria. They were told that

the driving perforlnance would he measured based on two criteria: the first and

most import ant criterion was safety. and the second criterion was to mnaintaini speed

around 55 mph. The participants were paid a ininmnimi of $50 for the participatio1n

anid were told that they have the opportunity to earn a $10 incentive based upon

their perforimance. Also, they were told that would lose $2 for every crash and $2 for

every traffic ticket from the bonuts they accunmulated.

I Round 1

Randomized order of three modes

Familiarization Semi- Fully-
Drive Autonomous Autonomous

(Regular) Training Evaluation Training Evaluation Training Evaluation

5 min 5 min 5 min 5 min 5 min 5 min 5 min

Round 2
Randomized order of three modes

Semi- Fully-
Break Regular Autonomous Autonomous

Evaluation Evaluation Evaluation

10 min 10 min 10 min

Figure 5-8: The procedure

The main procedures for the driving study is illustrated in Figure 5-8. The study

primnarily coisisted of two parts with three different driving modes for each, after 5
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minutes of driving to provide participants with familiarity with the simulator. During

each part, the drivers were asked to drive each mode once in a random order. As the

training process for the operators was a critical component for successful automation

[123], drivers were provided with a 5 minute training period prior to each evaluation

period to practice each driving mode in first half of the experiment. Before each

driving mode, recorded audio instructions were provided to the drivers to explain the

features of each driving mode, as follows:

[Before "Regular Vehicle" drive (manual control)] The driving mode for this session is

standard driving without assistance systems, in other words, a regular vehicle. You are

asked to drive using the traditional driving interface i.e., steering wheel, turn signal,

accelerator, and brake pedal. Remember that your first performance priority is safety,
and the second priority is to maintain your speed near the speed limit of 55mph.

The session will begin with a short training drive to help you become familiar with

regular driving. During the training portion, you will be prompted to make several lane

changes so that you become accustomed to doing this under manual control. After the

training drive, a prompt will ask you to continue driving as you normally would. At

that point, you may continue driving in one lane, or move into other lanes as desired

so you are comfortable with the traffic flow.

[Before "Semi-Autonomous Vehicle" drive] The driving mode for this session is semi-

autonomous control. In this version, traditional driving interfaces such as the steering

wheel, accelerator, and brake pedal will not affect the control of the vehicle. You do

have the ability to indicate if you want the vehicle to change lanes. Unless you indicate

you would like to change lanes, the vehicle will automatically stay in the current lane

and adjust the speed as needed due to the traffic in front of you. To indicate you would

like to make a lane change, move the turn signal up if you would like to move into the

right lane, or down if you wish to move into the left lane. Once you move the turn

signal up or down, immediately move the turn signal back to the default position; if

you leave the turn signal in the turn position, the vehicle will think you want to move

over more than one lane, so do remember to move the turn single back to the default

position right away. As soon as you indicate your intention to change lanes, the vehicle

will automatically change lanes when it determines it is safe to do so. When deciding

if you would like to change lanes, please refer to the rearview mirror located in the

upper right-hand corner of the screen to check for oncoming traffic. Remember that

your first priority is driving safely, as if you were in a real car. The session will begin

with a short training drive to help you become familiar with semi-autonomous control.

During the training portion, you will be prompted to make several lane changes so

that you become accustomed to the system. After the training drive, a prompt will

ask you to continue driving as you normally would with this system. At that point,

you may continue driving in one lane, or move into other lanes as desired so you are

comfortable with the traffic flow.
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[Before "Fully-Autonomous Vehicle" drive] The driving mode for this session is fully-

autonomous control. In this version, traditional driving interfaces such as the steering

wheel, accelerator, brake pedal, and turn signal will not affect the control of the vehicle.

The vehicle will determine when to accelerate, brake, and change lanes. The session will

begin with a short training drive to help you become familiar with fully-autonomous

control. After the training drive, a prompt will notify you that the evaluation portion

of the study will begin.

After each driving mode, participants were asked to complete a questionnaire

related to their experiences for their most recent driving mode. The items of the

questionnaire are presented in the following section. After the first half of the study,

participants were given a short break and continued the second half of the study

where they were allowed to do activities other than driving. The instruction provided

to the participants before the second half of the study is given in the below.

In this half of the study, we would like you to imagine you are going on a long car trip.

Just as in real life, you want to get to your destination safely and on time. You may

continue driving in one lane, or move into another lane so you are comfortable with

the traffic flow. You are welcome to use your cell phone as you imagine you would

during such a drive - feel free to call or text a friend, check your email, play music,
or whatever other activity you feel comfortable doing in each driving scenario. You've

also brought along some magazines, today's paper, and some snacks that will be kept

on the passenger's seat (point to items on table). Please help yourself to any of these

items at any point while you are driving.

You are not obligated to use any of these items, and driving safely as you would in a

real car is still your first priority. However, if you imagine you would use these items

while driving in real life, please use them today.

After the second round of the three different driving modes with questionnaires

in between, the study finished with participants answering a post-experiment ques-

tionnaire and being paid compensation. 3

5.2.5 Measures

Objective metrics - Vehicle control metrics

Various metrics were used to quantify differences of driving performance between hu-

man drivers and automation systems. The number of speeding tickets was measured
3 Results of post-experiment questionnaire are presented in Appendix F
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as a driving performance metric. The number was counted as the number of times

the speed exceeded 60 mph (96.6 km/h, 26.8 m/s) even though the posted speed

limit was 55 mph (88.5 km/h, 24.6 m/s). Also, root-mean-square (RMS) value of

acceleration over the driving time was measured to quantify the longitudinal input

effort and energy efficiency, as

arms a(t)2dt (5.1)

Jerk and yaw acceleration are key metrics related to driving comfort [124, 125].

The number of peaks in jerk was used for measuring the number of high threat events

that required sudden changes in acceleration. The number was counted as the times

the jerk exceeded 5 m/s'. The number of yaw acceleration peaks was also used to

measure sudden direction changes of the vehicle. The number was counted as the

times the yaw acceleration exceeded 5 deg/s2

In terms of safety margin, distances from the front vehicle and rear vehicle in the

lane could be used as simple metrics. The root mean square value of the distances

over the driving time was used for quantifying capabilities of maintain its safe vehicle

spacing. However, safety does not simply continuously increase as the distance in-

creases. In other words, if the distance to the vehicles exceeds a certain bound dbound,

it does not affect perceived/ actual safety. Considering this bound, the RMS distance

to the front vehicle was measured using the minimum value of the distance and the

bound as the following:

d rms [ t f2
fr ] {min(11x(t) - Xfront(t)I, dbound) 2 dt (5.2)

The RMS distance to the rear vehicle was also measured in the same way. In the

experiment dbound was chosen to be 60 in.4 The distance, which is an alternative

metric to time-to-collision (TTC), is used in the thesis since it is proportional to

4 An approximation of the stopping distance v with a speed v = 25 m/s and acceleration a = 5
m/S
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2015p

Workload & Boredom Ratings

Please circle a point along each scale that best corresponds to how much workload you felt was
involved in driving. Workload is best defined by the person doing the task and may involve
mental effort, the amount of attention required, physical effort, time pressure, distraction or
frustration associated with trying to do the task while continuing to drive safely. Please also circle
a point along each scale that best corresponds to how much boredom you experienced during each
type of driving.

A. Driving the vehicle without autonomous capabilities (Manual Control):

Workload

Low 0 1 2 3 4 5 6 7 8 9 10 High

Boredom

* 0 0 0 0 6 0 00 0 0 0 0 0 0 0 0 0 0 0 a

Low 0 1 2 3 4 5 6 7 8 9 10

B. Driving the Semi-Autonomous (Assisted-Driving) vehicle

Workload

Low 0 1 2 3 4 5 6 7 8 9 10

Boredom

* @000 000000 0 0 0 0 0 0

Low 0 1 2 3 4 5 6 7 8 9 10

C. Driving the Fully-Autonomous (Self-Driving) vehicle

Workload

* O 0 0 0 0 0 0 0 0 0 *

Low 0 1 2 3 4 5 6 7 8 9 10

Boredom

* 0 0 0 0 0 0 0 0 6 7 0 0 0 0

Low 0 1 2 3 4 5 6 7 8 9 10

High

High

High

High

High

Figure 5-9: A part of the questionnaire related to workload and boredom rating

TTC and a more favorable metric to human operators.
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Subjective metrics - Questionnaires

Subjective workload and boredom ratings were obtained from questionnaires. A part

of the questionnaire is presented in Figure 5-9. The workload and boredom were

assessed using a single global rating used in [126] per driving mode, where the scale

consisted of 21 equally spaced dots oriented horizontally with the numbers 0 through

10 equally spaced below the dots and end points labelled 'Low' and 'High' on the

left and right, respectively. The rating scales for all driving modes of a single run

were presented on one sheet, which allowed participants to rate items relative to

each other. Participants were instructed to "circle a point along each scale that best

corresponds to how much workload/ boredom they felt was involved in driving." Also,

the definition of workload was defined in the sheets by "mental effort, the amount of

attention required, physical effort, time pressure, distraction or frustration associated

with trying to do the task while continuing to drive safely." This approach was chosen

also by previous work [126] based on its consistency of workload rating with relative

rankings obtained using the NASA-Task Load Index [127, 128].

Other than workload and boredom rating, various measures were selected from

well-established models of technology acceptance and usability in various fields such

as human factors, human-computer interaction (HCI), and management information

systems (MIS). Extensive studies have sought key factors that influence technology

acceptance. Various models have been developed to explain how different factors

affect user technology acceptance (129]. Table 5.2 shows factors that were selected

in this work to compare user responses for different levels of vehicle automation on

highways. The factors were selected among the list of dominant models in the field

presented in Table D.1 in Appendix D.

The model, referred to as the technology acceptance model (TAM), was developed

by Davis [130] to characterize user acceptance of computer-based information systems.

The two main factors of TAM were perceived usefulness and ease of use. Innovation

Diffusion Theory (IDT) developed by Rogers [131] has been also one of the earliest

influential frameworks to explain technology acceptance in a variety of innovations.
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Table 5.2: Selected measures

Measure Constructs
Perceived Usefulness Perceived usefulness in TAM, relative advantage in IDT,

performance expectancy in UTAUT
Perceived Ease of Use Perceived ease of use in TAM, ease of use in IDT, effort

expectancy in UTAUT, satisfaction with interface and
annoyance in Usability

Perceived Safety Perceived safety in CTAM
Anxiety Anxiety in CTAM and Usability
Sense of Control Control in Usability
Fun Fun in Usability
Likability Preference and liking in Usability

It was refined to be used in individual technology acceptance by Moore and Benbasat

[132]. In 2003, Venkatesh et al. [133] presented a unified model, called Unified Theory

of Acceptance and Use of Technology (UTAUT), integrating eight previous models

for user acceptance. Perceived usefulness and perceived ease of use had been main

factors concluded to be crucial across various models.

In the automotive context, a theoretical car technology acceptance model (CTAM)

[134] was developed to explain drivers' acceptance of in-car technology by extending

UTAUT. The perceived safety and anxiety were determined crucial factors in user

acceptance in CTAM, and were adopted in this study to evaluate user response to

the proposed autonomous/ semi-autonomous vehicle navigation.

Usability was defined by "the capability to be used by humans easily and effec-

tively" [135] and "quality in use" [136], and has been a core term in HCI [137]. The

usability was classified into three groups, effectiveness, efficiency, and satisfaction in

ISO 9241 standard [138]. The effectiveness and efficiency in usability were excluded

from the questionnaire in this study since they can be measured objectively with

driving results. So, sense of control, fun, and likability have been adopted in this

study for user satisfaction.

This study did not measure some factors in the models that were not dependent on

the types of assistance system: compatibility, results demonstrability, voluntariness

of use in IDT, social influence, facilitating conditions in UTAUT, and self-efficacy in
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CTAM, etc. The final resulting form of the questionnaire is shown in Figure 5-10.

This questionnaire was provided to the participants of the study after each different

levels of autonomous driving.

Experiment Questionnaire - Section B

System Type: Semi-Autonomous Vehicle

For the following questions, please circle the one point on the scale that most accurately reflects
your response to each question. You may indicate either whole or half numbers. Please consider
only the most recent simulated drive you completed when making your selection.

Perceived Usefulness: How useful did you find the assistance system to be while driving?

0 0 0 0 9 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 2 3 4 5 6 7 8 9 10

Not at all Very
Useful Useful

Perceived Ease of Use: How easy to use was the assistance system?

e 0 e ... e e e e0 0 e 0 @ *
0 1 2 3 4 5 6 7 8 9 10

Not at all Very
Easy to Use Easy to Use

Perceived Safety: To what extent did you feel safe while driving with the assistance system?

0 ee es 0e S * 0 @ 0 @ 0 0 0 0 @
0 1 2 3 4 5 6 7 8 9 10

Not at all Very
Safe Safe

Anxiety: How anxious were you while driving?

*ee. .e e0 0 0 0 0 0 e e 
0 1 2 3 4 5 6 7 8 9 10

Not at ali Very
Anxious Anxious

Sense of Control: To what extent did you find the assistance system reacted as you intended?

Se eeeee e e e e0e e e e e 0 0 *0
0 1 2 3 4 5 6 7 8 9 10

No Sense Felt Very Much
of Control in Control

Fun: How much fun did you have while driving?

ee eeeee e e e e .* 0 * e e e e
0 1 2 3 4 5 6 7 8 9 10

No Fun A Lot
At All of Fun

Likability: How much did you like this method of driving?

ee * * ee ee e e e e e e e e
0 1 2 3 4 5 6 7 8 9 10

Did Not Like Liked
At All Very Much

Figure 5-10: A part of the questionnaire related user acceptance
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5.3 Results

Depel(ling oii the )ur)ose of the colil)arison. one-way o two-way analysis of variiance

(ANOVA) with re)eated measures was used for statistical analysis of st(y diagnosis

wit 1h a significance level of 0.05.

5.3.1 Objective Measures - Vehicle Control Metrics

Number of lane changes per minute and average speed

1-

Semi-Autonomous

Driving mode

Fully-Autonomous

Figire 5-11: NlMean an( stai(lard (leviatioll of nimiibier of lane changes lper minute for

the three iriviNig ino(les

Tlhere were no statistically significant differences iII the iniumbher of' lane chaniges

between the regular vehicle and semili-auitonomlous vehicle iii roln(l 1 (F(1.25) 0.14,

p - 0.707). In other words. drivers changed lanes in the seii-autonomous vehicle as

11111ch as il the regular vehicle. Also. there were 11o significant main (ffleets of whether

or not the (rivers were allowed to (Io other activities o1 the nmnnber of lane changes

in the regular vehicle (F(1,25) - 0.01. p 0.995) and the fully-autonomous vehicle

(F(1.25) 0.24. 1 0.628). It is as cxpecte(d becauise (rivers Were fully de(licated to

the dlriving task in the regular vehicle. al(1 they (i(l not have (ecisionl authorities o

lane changes at all in the fully-autonomous vehicle.

However, in the seiiii-autoiiomioiis vehicle, the number of lane changes significantly
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decreased in round 2 compared to round 1 (Al 0.26. SD 0.23 in round 1: M

-0.13. SD 0. 1 in round 2: F(1,25) 9.01. p 0.006). In other words, the

drivers changed lanes less often than in round 1 when they were exposed to the semi-

autonomous system for the second time and allowed to do other activities. Figure

5-12 shows the trend of the average number of lane changes per innute over the

driving tune in the seini-autonoinous vehicle. Most of the number of lane changes was

concentrated iin early stages, and the participants did not cliange lanes il later stages

as m1uch as they did in the early stages. In other words. as they were acculstoIlled to

the semi-autonomous system. they iade lane changes less often than earlier.

The number of lane changes had a relatively large standard deviation (comparable

to the mean) across all different driving modes. Actually. there were significant differ-

ences ill the number of lane changes between individual measurements (F(5.125)

3.17. ) 0.010). This was potentially because of drivers' preferences for lane change

frequmencies. safe driving efforts counteracting random traffic instances.

0.60 -0-Round 1

0.50 _ _O-Round 2

0.40

0 .3 0 ----- - ------

0.20

0.10 --

0.00
1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min

time

Figure 5-12: Average number of lane changes per miute over the driving tiime for

the semii-aut oiinmlolis vellicle

Statistical results of the average speed of each of test instances are presented in

Figure 5-1.3. The average speedl had more variation in the regular vehicle (SD 1.47

11p in round t and SD 1.42 mph in round 2) than the semi-autononmous (SD -

0.56 m11ph in round 1 and SD 0.31 mph iii round 2) and fully-autonomous vehicles

(SD 0.42 mph in round t and SD 0.30 imiph in round 2). In other words. in

the manually-eontrolled vehicles. the average speed varied more than the both of the
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assistance system.

the average speed

The

since

vehicles with the assistance systems had small variation in

they were controlled by the same algorithm.

- Round 1

- Round 2

-r

Semi-Autonomous
Driving mode

Fully-Autonomous

Figure 5-13: Mean and
different driving modes

standard deviation of average speeds of the vehicles in the

Number of peaks in speed, jerk, and yaw acceleration

Table 5.3: Mean (and standard deviation) of the numbers of peaks in vehicle states

Round 1 (5 min) Round 2 (10 min)

Regular Semi- Fully- R Semi- Fully-
Auto- Auto- egular Auto- Auto-

# of speeding tickets 0.24 0.00 0.00 0.31 0.00 0.00
per minute (0.28) (0.00) (0.00) (0.28) (0.00) (0.00)
of jerk peaks 1.16 0.01 0.00 1.08 0.00 0.00

per minute (1.65) (0.04) (0.00) (1.31) (0.00) (0.00)
# of peaks of yaw 0.21 0.00 0.03 0.28 0.00 0.03

acceleration per minute (0.39) (0.00) (0.12) (0.50) (0.00) (0.07)

Table 5.3 presents number of peaks in vehicle states of interest. On average, the

drivers were issued speeding tickets (i.e., exceeded 60 mph) 0.28 times per minute in

the regular vehicle (Al = 0.24 in round 1 and MAI = 0.31 in round 2) even though they

were asked to keep the speed limit at 55 mph, while there were no speeding tickets

issued in the semi-autonomous and the fully-autonomous vehicles. It is not a simple

task for drivers to check and adjust vehicle speeds to keep the speed limit while the
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automation systems are able to check and adjust the speeds at a short and constant

frequency. In round 2, there was slightly more speeding tickets in the regular vehicle

compared to round 1, but there were no statistically significant differences between

the two rounds (F(1,25) = 2.07, p = 0.163). On the other hand, it was observed

that there were significant differences between the subjects in the number of speeding

tickets (F(25,125) = 1.80, p = 0.018). This represents that there exist different driving

styles between drivers. For example, the maximum number of tickets per minute for

a single driver was 0.8, while 12 subjects did not get any speeding tickets in round 1.

There were no significant differences in the number of peaks of jerk and yaw ac-

celeration between the two rounds (F(1,150) = 0.04, p = 0.841 for the number of jerk

peaks; F(1,150) = 0.33, p = 0.568 for the number of yaw acceleration peaks). How-

ever, the numbers were significantly lower in the semi-autonomous vehicle (F(1,51)

= 29.71, p < 0.001 for the number of jerk peaks; F(1,51) = 15.67, p < 0.001 for

the number of yaw acceleration peaks) and the fully-autonomous vehicle (F(1,51) =

30.05, p < 0.001 for the number of jerk peaks; F(1,51) = 12.50, p < 0.001 for the

number of yaw acceleration peaks) compared to the regular vehicle. It was shown

that the automation systems were better at accuracy of low-level controls such as

smooth motion than human drivers.

It was also observed that the number of peaks of jerk and yaw acceleration had

wide variance between subjects in the regular vehicle. The standard deviations were

even higher than the means. This means that there are differences in driving styles

and performance between drivers. For example, the maximum number of the peaks

of yaw acceleration for one particular subject was 0.9 while 13 subjects exhibit no

peaks.

RMS acceleration

In round 1, the regular vehicle had greater RMS acceleration (M = 0.26 m/s 2, SD

= 0.10 m/s 2) than the semi-autonomous vehicle (M = 0.10 m/s2, SD = 0.16 m/s2)

(F(1,25) = 19.89, p < 0.001) and the fully-autonomous vehicle (M = 0.08 m/s2, SD

= 0.15 m/s2) (F(1,25) = 43.27, p < 0.001). This also represents that automation
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Round 1

Round 2
0.5

0.4

0.3

0.2

0.10

Regular Semi-Autonomous Fully-Autonomous

Driving mode

Figure 5-14: Mean an( stan(lar(l (leviation of RMS ac(.eleratioll

systems were better at keeping 1minin conitrol efforts than human (irivers. There

were no significant (lifferelces ini the senmi-antonomnous an(l fully-autonomous -ehicles

in round 1 (F(1.25) 0.14. p 0.707) since they were colntrolle(l at the low level

by the same algoritinn. The statistical significance betweenl the regular velicle and

both of the assistance systems was preserved in ro (1 2 (F(1.25) - 45.40. p 0.001

between the regular vehicle amid seimi-autooinmos vehicle; F(1,25) - 14.96. v 0.001

betweein the regular vehicle and fully-autonomons vehicle)

There were no significant differences between the two rounds in the regular vehicle

(F(i125) 1.66, p 0.210) and the semi-autonomous vehicle (F(1.25) - 0.66. p

0.425). However. there were significant differenices between the two rounds in the fully-

autonomous vehicle (F(1.25) 5.67. p 0.025). It is suspecte( that the generated

traffic iu round 2 requirel more frequent speed (hainges than round 1. On the other

hand. the RMS (leviationl iin the seimi-autonomous vehicle was significantly lower than

that of the fully-autonomous vehicle (F(1,25) 15.89. p 0.001).

RMS distances to the vehicles in the lane

Table 5.4 shows tIe RIS distances to tHie front vehicle and rear vehicle. There were

11o significant differences in the RMS (istalce to the front vehicle in roun(l I betweeni

the regular vehicle aid seui-autonomous vehicle (F(1 ,25) 0.12. ) 0.734), between
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Table 5.4: Mean (and standard deviation) of RMS distances to the front and rear
vehicles

Round 1 (5 min) Round 2 (10 min)

Regular Semi- Fully- Regular Semi- Fully-
Auto- Auto- Auto- Auto-

RMS distance 59.82 59.87 59.91 59.59 59.95 59.84
to the front vehicle (m) (0.39) (0.44) (0.31) (0.64) (0.16) (0.20)

RMS distance 51.21 49.79 50.40 52.19 50.73 51.79
to the rear vehicle (m) (3.08) (3.82) (3.15) (2.91) (2.27) (2.62)

the regular vehicle and fully-autonomous vehicle (F(1,25) = 0.78, p 0.386), and

between the semi-autonomous vehicle and fully-autonomous vehicle (F(1,25) - 0.14,

p = 0.716). However, in round 2, the semi-autonomous vehicle had significantly higher

RMS distances to the front vehicle than the regular vehicle (F(1,25) = 7.20, p - 0.013)

and the fully-autonomous vehicle (F(1,25) - 8.90, p = 0.006). This partly explains

the significantly lower RMS acceleration of the semi-autonomous vehicle in round 2

compared to the regular vehicle and fully-autonomous vehicle. This represents that

drivers were able to achieve higher distance margin through the semi-autonomous

system and low acceleration than the regular vehicle and fully-autonomous vehicle.

There were no significant differences in front RMS distance between the regular vehicle

and fully-autonomous vehicle again (F(1,25) - 3.68, p - 0.067).

There were no significant differences in the RMS distance to the rear vehicle

between the regular vehicle and semi-autonomous vehicle (F(1,25) = 2.05, p - 0.165

in round 1; F(1,25) = 3.74, p = 0.065 in round 2), between the regular vehicle and

fully-autonomous vehicle (F(1,25) = 1.08, p = 0.309 in round 1; F(1,25) = 0.37, p -

0.549 in round 2), and between the semi-autonomnous vehicle and fully-autonomous

vehicle (F(1,25) = 0.330, p - 0.571 with in round 1; F(1,25) = 2.00, p = 0.170 in

round 2).
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Round 1

Round 2
10

8

6

MI I
2

0
Regular Semi-Autonomous Fully-Autonomous

Driving mode

Figure 5-15: W\'orklo(ad

5.3.2 Subjective Measures - Questionnaires

Workload and boredom

There were significant (ifferenices between the three (lifferelt (Irivilng modes in the

self-reported workload (F(2,150) 166.04. p 0.001) while there was no significant

main effect of the allowance of other activities (F(1.150) 1.04. p -- 0.309) and

no significant interaction between activity allowance and dIvi, moles (F(2.150)

0.20. p 0.818). As expecte(l. the workload significantly (lecrease(d as the level of

autonomy increased (F(1.51) 143.02. p 0.001 between the regular vehicle and

semi-autonomous vehicle: F(1,51) 63.51, p 0.001 between the semi-autonomous

vehicle and fully-autonomous vehicle).

For self-reported 1 )oredolom. there were significaiit main effects of the (rivilig mo(les

(F(2.150) 4.62, p 0.011) and othei activity allowance (F(1,150) 48.73. p

0.001), and significant interaction betweeii the two factors (F(2.150) - 11.80.

p 0.001). In ronnd 1. boredom significantly increase(d as the level of autonomy

increase(d (F(1.25) - 7.72, p 0.010 between the regular vehicle ali(d semi-autonoious

vehicle: F(1.25) 16.60. J) 0.001 between the seii-autonomous vehicle and fully-

auitoomonioits vehicle). Ill round 2. however, where the p1articilanlts were allowe(l to

(1o other activities. there were 11o significant (lifferelcles between the three (rivilig

modes ill self-reported boredom (F(2,50) 1.48. .) 0.237). Boredom significantly
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Round 1

Round 2

I II
I

Semi-Autonomous

Driving mode
Fully-Autonomous

Figure 5-16: Boredom

decreased in 1o1nd 2 (minpared to 1o11(1 1 iin both of the assistance systeiiis (F(1.25)

11.51, 1) 0.002 in the semfli-auto iso)s vehicle: F(1.25) 74.63. 1) 0.001 ill the

fnlly-antoiomois vehicle) while there were Ho significant differeles in the regular

veliiole (F(1.25) 1.35. p 0.256).

Perceived usefulness

I
Semi-Autonomous

Driving mode

Round 1

Round 2I

Fully-Autonomous

Figure 5-17: Perceivel usefulness: "How useful did yoii find the assistance system to
1)e while driving?

The partiipanits found the fully-antonomious system more useful than the semi-

atuto)noiiouis system in romid 1 (M 6.85. SD 2.41 ini the semiii-uitoiomois vehicle;

136

10

8

C
'r,

6

4

2

I

I
0

Regular

10

-:

8

6

4

2

0
Regular

almor-



M - 8.15, SD 1.78 iii the fully-autonoimous velile; F(1.25) 12.48, p 0.002).

This significant difference was preserve(l in ronnd 2 (M 7.96. SD 2.08 in the

senii-antonomios VehiMie; l 8.88. SD .1.1 in the fully-autonomous vehicle:

F(1,25) - 9.83, p 0.004).

The p)er eive( usefulness of tle seni-altonomioUs velhi(le was significantly higher

in roind 2 compared to round 1 (F(1.25) 9.72, 1 0.005). Also the participants

)erceive( the fully-autonoious vehicle iore useful in round 2 than rounid 1 (F(1.25)

7.96. p - 0.009). The higher perceived usefulness in round 2 could be because

of the other activities that are allowe(l to the drivers an(l multiple exposlre to the

systems.

Perceived ease of use

-Round 1

Round 2
10

8

6

M4

2

0
Regular Semi-Autonomous Fully-Autonomous

Driving mode

Figure 5-18: Perceived ease of use: --How easy to use was the assistance system?

There were significant difereces 1etween the three (ifferellt (riving lo(les in

plerceive(l ease of use (F(2.150) 40.98. ) 0.001). In contrast there was no

significant main effect of rouin(ds on the lperceive(l ease of uisc (F(1,150) - 0.143. p

0.706) ian(l no interaction 1)etweeni roun(l ali(I systeil type (F(2,150) 0.009. 11

0.991). The perceive(l use of ease iincreased1 as the level of autonoioy illcrease1 (Al

7.07. SD 1.95 in the regular vehicle; 1l 8.63. SD 1.51 inl the semi-autonomous

vehicle: M 9.68, SD 0.63 in the filly-auitononmoms vehicle: F(1,51) 23.10. p
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0.00I I)etween the regulai and semii-autonomous vehicle: F(1,51)

betwetl the semi-autoiinmous and fully-autonomous vehicle).

29.09. p 0.001

Perceived safety

6
CS

10

8

6

4

I I II T
I

Round 1

Round 2

I
Semi-Autonomous

Driving mode

Fully-Autonomous

Figuire 5-19: Perceive(l
tlie assistanice system?"

safety : "To what extent did you feel safe while diriviNtg with

There was 11o signifi(ati main effect of the dirivitig imtodes (F(2.150) 0.29. p

- 0.750). no siginificant differenlces between the two ioids (F(1.150) 0.10. p

0.747). and 1o significant interaction between the two factors (F(2,150) 1.34. p

0.265) o1 the perceived safety. This means that the drivers felt safe in both of

assistaice systcnms as mich as the regOw ar vehicle. anl the lerception did not vairy

much 1)etweetn the users. The total timean of the perceived safety rating was M

7.78. and standard deviatiotN was SD - 1.85.

Anxiety

There was 110 significatt maiti effect of the diriviig modes on the relported anxiety

(F(2. 150) 0.98. p 0.377). However. the two r1o11(nds exhibit sigtificatitly different

levels of anixietv (F(1.150) 4.87. p 0.029). The anxiety decreased significantly

in roind 2 in the sei-autonomous vehicle (A 3.19. SD 2.27 iti rontmd 1: M

2.30. SD 2.04 in round 2: F(1.25) 4.43. p 0.045) and the fully-autonomus
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Round 2
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Semi-Autonomous

Driving mode

T
I T

Fully-Autonomous

Figure 5-20: Anxiety: -How aixious were vyou while (Iriviig?"

velile (A 2.76. SD - 2.47 in round 1: 1l 1.88, SD 2.11 iM round 2: F(L,25)

4.81. p 0.038) (ompared to rounld 1, while anxiety in the regular vehicle was not

siti ficantly differenit iii the two rounids (M

SD 1.72 in round 2: F(1.25)

3.15, SD 2.26 iii round 1: Al

2.51, p 0.125).

Sense of control

- Round 1

Round 2

II
Semi-Autonomous

Driving mode

I
I

Fully-Autonomous

Figure

reacte(d

5-21: Sense of (oitrol: "To what extent (lid you find the assistance system
as you inten(ied?"

Tlhere were significant differeiices in the sense of control between the three dif-

19.68, v 0.001) while there were 11o significant
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differences between the two rounds (F(1.150) 0.01. p 0.918). The sense of control

significantly decreased as the level of antonomy in creased (l - 7.97. SD 1.34 in

the regular vehicle: Al (.19, SD 2.69 inl the seiiii-auitolomlos vehicle; Al

4.38, SD 4.02 il the fidly-autonoimous vehicle: F(1.51) 20.93. ) 0.001 between

the regular and sei-autonomios vehicle: F(1.51) 11.41. p 0.002 between the

seini-antonomons and fully-autonomous vehicle). Also the variance of the sense of

coiitrol betweell the subjects icreased as the level of auitoioiy hicreased.

Fun

Round 1

Round 2
10

8

6toT
M~,4

0
Regular Semi-Autonomous Fully-Autonomous

Driving mode

Figure 5-22: Fui: -How much fun did von have while (riviNlg?"

The perceived fun (deoreased as the level of aitoiinmy increased in round I (F(1.25)

9.25. p 0.005 between the regular an(d the semi-antonomous vehicle: F(1.25)

5.31. p 0.030 between the semi-autononmous and fudly-antonomions vehicle). Par-

ticipanlts had significantly iore fun in the both of the assistance systems in roun11d

2 coipared to rond I (F(1.25) 8.44, p 0.008 in the semi-autonomous vehicle:

F(1.25) 28.80. ) 0.001 in the fuilly-antonoimoums vehicle) whereas there were 110

significant differenices in the regular vehicle (F(1.25) 0.124. p 0.728). In round 2.

there vere 11o sigiiificanit differemces in fli between the three driviig modes (F(1.25)

1.76. p 0.182). It was also observed that there was iuiversely proportional relation

between funi alnd boredoiml.
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Likability

Round 1

Round 2
10

8

6

40

2

0
Regular Semi-Autonomous Fully-Autonomous

Driving mode

Figure 5-23: Likability: "How niich did you like this method of driving?"

There were significant differenees in likability betweenl the three driving inodes

(F(2, 150) 3.80, p 0.025) and between the two rounds (F(1.150) 16.81. p

0.001). In rolind 1, the p-articipants liked the regular vehicle significantly more than

the seri-autonomous vehicle (F(1.25) - 8.63. p - 0.007) or the fully-autonoinous

vehicle (F(1,25) - 11.10, p 0.003). There were no significant differences in likability

between the two assistamice systemis 11 round 1 (F(1,25) = 1.38. p 0.251).

In round 2. however. the participants liked each assistance svstenm significantlY

more than inl round 1 (F(1,25) 7.37. p 0.012 in the seini-autoinomus vehicle:

F(1,25) 28.81. p 0.001 ill the fully-autonomous vehicle) whereas there were no

significant differences in the regular vehicle (F(1.25) 0.16. - 0.693). The higher

likability in round 2 could l)e becalse of the differencmes of the two rounds: the other

activities that participalts were allowed to do or the second exposure to the systems.

Also. the participants liked the fully-autonomous vehicle significantly more than the

semni-autonomons vehicle (F(1,25) - 8.03, p - 0.009) whereas likability of the 1)oth

of the assistance systemsl did not significantly differ from that of the regular vehicle

(F(1,25) 0.43, p 0.517 1)etweel the regular anl semi-autoomous vehicle: F(1.25)

2.12. p) 0.158 betweeNi the regular and fully-autonomous vehicle).
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Table 5.5: Mean (and standard deviation) for workload and boredom scale distin-
guishing the age groups

Regular Semi-Auto- Fully-Auto-
Younger Older Younger Older Younger Older

6.24 6.64 1.66 3.11 0.23 1.14
Round 1 (2.23) (1.91) (1.54) (1.98) (0.60) (1.01)

Workload p = 0.625 p 0.051 p 0.011
5.70 6.96 1.97 2.36 0.10 0.32

Round 2 (2.77) (1.71) (1.42) (2.14) (0.29) (0.42)
p = 0.168 p = 0.602 p = 0.141

4.59 4.54 7.22 5.52 7.87 8.07
Round 1 (2.01) (2.10) (1.20) (2.77) (1.88) (1.54)

Boredom p = 0.953 p = 0.061 p = 0.772
4.13 3.97 3.38 4.68 3.27 3.20

Round 2 (2.07) (1.72) (2.25) (3.16) (2.56) (2.61)
p = 0.830 p = 0.245 p = 0.942

The p-values were computed from F(1,24) using single-factor ANOVA

Age group differences

Table 5.5 - Table 5.7 present detailed results of age group differences in the subjective

measures; the graphical representation is in Appendix E. There were no significant

differences between the two age groups in most of the cases, except for a few measures

explained in the following.

The older group generally felt higher workload than the younger group. In par-

ticular, the older group's self-reported workload was significantly higher in the fully-

autonomous vehicle in round 1 (M = 0.23, SD = 0.60 for the younger group; M =

1.14, SD = 1.01 for the older group; F(1,24) = 7.61, p = 0.011). It is suspected that

the older group's mental workload was higher than the younger group even though

there was no required physical workload in the fully-autonomous vehicle. However,

the difference of workload in the fully-autonomous vehicle vanished in round 2. There

was no significant differences for the rest of cases (p > 0.050) either.

The younger group found the semi-autonomous system significantly easier to use

than the older group in round 1 (M = 9.33, SD 1.23 for the younger group and M

= 8.11, SD = 1.42 for the older group; F(1,24) 5.45, p = 0.028). The differences
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Table 5.6: Mean (and standard deviation) for perceived usefulness, ease of use, safety,
and anxiety distinguishing the age groups

Regular Semi-Auto- Fully-Auto-
Younger Older Younger Older Younger Older

7.63 6.18 8.67 7.71
Round 1 (2.01) (2.58) (1.44) (1.98)

Perceived p = 0.129 p = 0.179
Usefulness 8.75 7.29 8.96 8.82

Round 2 (1.82) (2.12) (1.71) (1.59)
p = 0.073 p = 0.834

7.46 6.86 9.33 8.11 9.92 9.54
Round 1 (1.32) (2.21) (1.23) (1.42) (0.29) (0.75)

Perceived p = 0.418 p = 0.028 p = 0.110
Ease of Use 7.54 6.54 8.67 8.54 9.75 9.57

Round 2 (2.25) (1.90) (1.30) (1.84) (0.62) (0.73)
p = 0.228 p = 0.839 p = 0.512

8.00 7.75 8.13 8.00 7.33 7.21
Round 1 (1.91) (1.63) (2.07) (0.96) (2.42) (1.67)

Perceived p = 0.721 p = 0.841 p = 0.884
Safety 8.08 7.79 7.92 7.29 7.75 8.18

Round 2 (1.83) (1.17) (2.31) (1.63) (3.08) (1.48)
p = 0.621 p = 0.424 p = 0.647

2.79 3.46 2.96 3.39 2.46 3.02
Round 1 (2.39) (2.19) (2.44) (2.19) (2.15) (2.77)

Anxiety p = 0.461 p = 0.636 p = 0.576
1.96 3.21 2.08 2.48 2.38 1.46

Round 2 (1.45) (1.77) (1.74) (2.32) (2.50) (1.70)
p = 0.062 p = 0.629 p = 0.282

The p-values were computed from F(1,24) using single-factor ANOVA

were not preserved in round 2 when they were exposed to the system for the second

time (M = 8.67, SD = 1.30 for the younger group; M

older group; F(1,24)

8.54, SD = 1.84 for the

0.04, p = 0.839).

Finally, the younger group had significantly higher self-reported fun in the semi-

autonomous vehicle than the older group when they were allowed to do other activities

(F(1,24) = 5.04, p = 0.034).
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Table 5.7: Mean (and standard deviation) for sense of control
distinguishing the age groups

fun, and likability

Regular Semi-Auto- Fully-Auto-
Younger Older Younger Older Younger Older

8.13 7.43 6.58 5.93 3.88 5.00
Round 1 (1.15) (1.79) (2.70) (2.62) (4.59) (3.55)

Sense of p = 0.258 p = 0.537 p = 0.488
Control 8.42 8.00 6.00 6.27 4.42 4.14

Round 2 (1.24) (0.98) (2.73) (2.97) (4.07) (4.26)
p = 0.348 p = 0.814 p = 0.869

4.63 5.21 3.25 3.89 2.50 2.50
Round 1 (1.15) (1.85) (1.48) (1.80) (2.81) (1.95)

Fun p = 0.349 p = 0.335 p = 0.999
5.67 4.57 6.42 4.29 6.50 5.57

Round 2 (2.09) (1.70) (2.22) (2.56) (2.39) (2.79)
p = 0.153 p = 0.034 p = 0.376

6.88 6.18 4.04 4.96 3.71 4.25
Round 1 (1.98) (2.11) (1.96) (2.12) (2.68) (2.31)

Likability p = 0.396 p = 0.263 p = 0.585
6.83 5.89 6.54 5.32 6.83 7.64

Round 2 (1.80) (1.62) (2.82) (2.69) (2.69) (1.99)
p = 0.174 p = 0.271 p = 0.388

The p-values were computed from F(1,24) using single-factor ANOVA

5.4 Conclusions

The automation systems were generally much better at low-level control of the ve-

hicles, as expected, specifically in terms of smooth motion, energy efficiency, and

keeping vehicle speeds under the limit. When the assistance systems were compared

with each other, the semi-autonomous vehicle had better performance in keeping suf-

ficient distances from the leading vehicles and maintaining small acceleration efforts

by changing lanes appropriately, compared to the fully-autonomous vehicle.

The self-reported workload and perceived ease of use continuously decreased as the

level of autonomy increased, however the sense of control also continuously decreased.

Also, there were no statistically significant differences in anxiety and perceived safety

between the three different driving modes. In the second round, however, the partic-

ipants were less anxious than the first round in both of the assistance systems. Also,
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they found the assistance systems more useful in the second round. Users found the

similar level of easiness to use from the first round to the second round.

While the users did not like both of assistance systems as much as the regular

vehicle in the first round, they liked them as much as the regular vehicle in the

second round. Finally, users found the fully-autonomous system more useful than

the semi-autonomous system in both rounds, and liked the fully-autonomous system

more than the semi-autonomous system in the second round.
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Chapter 6

Conclusions

This thesis presents an approach to semi-autonomous and autonomous vehicle naviga-

tion based on the notion of homotopies. In this approach, decomposition of a global

navigation problem into simpler local problems is achieved by convex decomposi-

tion with a minimum vertex set. Each individual navigation decision corresponding

to local problems are represented as decomposed cell sequences, approximations of

homotopy classes. This thesis investigated relationships between exact notions of

homotopy classes, feasible trajectories, and cell sequence representations of the tra-

jectories. It has shown one-to-one correspondence between loopless cell sequences and

the exact notion of a homotopy class with no self crossings.

In addition, a sampling-based obstacle avoidance algorithm has been proposed

based on representative sample inputs with maximum control margins. These repre-

sentative inputs were chosen in safe input sets based on their distances from forbidden

input sets. The inputs were not only the safest decisions with respect to various un-

modeled sources of uncertainties, but were also representative of groups of nearby

input sets resulting in similar maneuvers (homotopies). A best-first search algorithm

for a multiple-step horizon has been proposed with the guarantee of optimality by

exploiting the properties of the problem, and its computational efficiency is demon-

strated.

The decomposed subproblems have been tackled by a formulation of mixed integer

programming (MIP). The proposed formulation exploited favorable properties of the
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represented cell sequence constraints, which results from the problem decomposition.

The computational efficiency of the formulation has been demonstrated compared

to previous MIP formulation using constraints in the original, undecomposed prob-

lem. The application of the formulation in model predictive control framework with

obstacle avoidance constraints has been demonstrated.

Finally, the thesis presented results of the user study of highway navigation with

the proposed framework. The users perceived similar safety for vehicles with three

different levels of autonomy, and found the assisting system easy to use from the first

time they were exposed to the system. When they were exposed to the system for

the second time and allowed to do other activities, they were less anxious and found

the system more useful than the first round for both of the assistance systems. Even

though automation systems were generally much better at low-level control of the

vehicles, specifically achieving smooth and energy-efficient control and adapting to

speed limits, the users did not like the assistance systems as much as the regular ve-

hicle in the first round. However, they liked the system as much as the regular vehicle

in the second round. Also, the users liked the fully-autonomous system more than

the semi-autonomous system in the second round while the performance for keep-

ing sufficient distances from the leading vehicles was better in the semi-autonomous

vehicle.

A primary future work may include extension of the proposed approach consider-

ing uncertainties of future motions of other vehicles on the roads. Also, the proposed

sampling-based obstacle avoidance algorithm with maximum margin inputs can be

extended to deal with motion planning problems incorporating desired goal states.
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Appendix A

Optimal Obstacle Avoidance

A.1 Introduction

This chapter preseits an analytical solution to a simple optimnal obstacle avoidance

problemn. and iuinerical solutions to the problell with hit nore complicated dynamics.

An alternative approach to this chapterls approach .s presented ii Chapter 4. This

chapter focuses on optiial avoidance mlhanielver of a vemile ming at a high speed

when a sudden and close obstacle is detected ahiead. III this case. the vehicle should

utilize its full ability to avoid the obstacle. The optimal solution would involve full

utilization of the available friction forces between the tire and road.

Ymax

YO

V"

---------------------------------

Xo

Figure A-1: A typical scenario for obstacle avoidance without bifurcation of avoidance

decisiolis

III the problem formulation. it is assuminid that a single obstacle avoidance decision

is provided. The bifurcation of obstacle avoidance decisions nakes optimal motion
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planning challenging, but the thesis provided a method to divide and conquer the

problem according to obstacle avoidance decisions.

This chapter first develops analytical solutions for a simplified optimal obstacle

avoidance problem. For more realistic and complicated problem formulations, nu-

merical solutions are presented using nonlinear optimal control software, and are

compared with the analytical solutions.

A.2 Formulation of Optimal Control Problem with

Obstacle Avoidance Constraints

Figure A-1 shows a typical scenario for obstacle avoidance without bifurcation in

avoidance decisions. A sudden obstacle is assumed to be detected in the direction of

vehicle movement so that the vehicle has to change its direction to avoid the obstacle.

The vehicle must also remain within a road boundary, aligning its heading to the

boundary of the road.1

The initial positions and velocities of the vehicle in each of the directions are set

to the following without loss of generality, by setting the coordinate system appro-

priately.

X(to) = 0, Y(to) = 0, X(to) = Vo; (to) = 0 (A.1)

where Vo is the initial vehicle speed.

The problem also assumes that the case where the initial speed Vo is large and

X0 is small so that the vehicle cannot avoid the obstacle without movement in the

lateral direction. Otherwise, it could simply apply the maximum braking command

and stop before colliding with the obstacle, which is a perfectly safe maneuver but

not of interest in this chapter.

In order to mathematically represent the obstacle avoidance constraints, the pro-

'The particular parameters of the problem statement are the followings: Vo = 20 m/s, Xo = 10
m, Yo = 1.5 m/s, Ymin = -1 m, Ymax = 3 m
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posed formulation divides the problem into two phases: a first phase before passing

Xo in the horizontal direction, and a second phase after passing Xo. In other words,

the two phases are split by the time t1 that satisfies X(t1 ) = Xo where X(t) is

the horizontal position of the vehicle. The constraints of these two phases are the

following, where Y(t) is the vertical position of the vehicle assuming point vehicles.

Phase 1:

Phase 2:

Ymin < Y(t) < Ymax for to < t < ti

Yo < Y(t) < Ymax for ti < t < t

(A.2)

(A.3)

Another important requirement for sudden obstacle avoidance is for the vehicles

to recover its normal driving state as soon as avoiding the obstacle. For example,

when the vehicle is moving on a highway, it is important for the vehicle to smoothly

merge into the traffic flow. Hence a desired terminal condition for the problem can

be defined as zero lateral speed of the vehicle, as:

Y(tf) = 0 (A.4)

Then the objective of the problem is to achieve this state as soon as avoiding the

obstacle, which can be formulated as the minimum-time problem.

f = I dtf
l/t

dynamics & input bounds of the vehicle

obstacle avoidance constraints in (A.2)-(A.3)

initial condition in (A.1)

terminal condition in (A.4)
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A.3 Analytical Solution for a Simplified Model - Point

Mass

This section presents an analytical solution of the problem stated in the preceding

section for one of the simplest models of the vehicle - a point mass with acceleration

limits. In practical scenarios, vehicle motion is generally limited by the available

friction force between the tires and road. In the simplified point mass model, these

constraints can be captured by the maximum acceleration magnitude limit amax = 11

where p is the friction coefficient. The state dynamics of the two-dimensional point

mass at (x, y) is expressed via the state vector x [x y y]T and input vector

u = [Ui u 2]T as below.

d y P
S-- d (f(x, u) (A.10)

dt cosu2

Y ulsinU2/

where u1 is the acceleration magnitude with constraints 0 < ui < a-.- and u'2 is

acceleration direction.

The obstacle avoidance constraints represented in (A.2) - (A.3) can be rephrased

as a point constraint over time, as below, since the lower and upper limit of the lateral

position y will be automatically satisfied for all time if a solution trajectory exists for

the formulated minimum-time problem.

Xo - x(ti) = 0 (equality) (A.11)

Yo - y(ti) < 0 (inequality) (A.12)

The constraints can be additionally reduced to equality constraints as below, since

it can be shown that the trajectories that are inactive to the second inequality con-
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dition (A.12) (i.e. Yo - y(ti) < 0) always have greater completion time tf to achieve

the terminal condition.

N(x(ti)) = ( Xo - X(ti)

Yo - y(ti) ) 0
0)

(A.13)

Then the minimum-time avoidance problem for the point mass model is formulated

as below.

minimize 1 dt (A.14)
jJf

J = It
subject to dynamics in (A.10) (A.15)

0 < u1 < amax (A.16)

obstacle avoidance constraints in (A.13) (A.17)

x(to) = 0, y(to) = 0, (to) = Vo, y(to) = 0 (A.18)

y(tf) = 0 (A.19)

The augmented cost functional using Lagrange multipliers of the state dynamics

constraint and obstacle avoidance constraints is:

Ja = {1 + PT . (f - k)}dt +
to

HT - N(x(ti)) (A.20)

with costate function p = [P1 P2 P3 4 ]T, and constant Lagrangian multipliers H

[rI1 1I 2]T of the point equality constraints.

A Hamiltonian of the system is expressed as follows:

H = 1 + piz + P2 + p3ui cos U2 + p 4ui sinU 2 (A.21)
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The costate dynamics are found by applying p - -O:

Pi

d P21

dt 3

\P4

0

0

-PI

-P2)

(A.22)

The costate dynamics are solved below with unknown constraints ci, c 2, c3, and

C4 .

Pi(t)

P2(t)

P3 (t)

\p4 (t)

ci

C2

-CI t + C3

-C 2 t + C4

(A.23)

The boundary condition of the costates can be found from the terminal condition

(A.4):

P1(tf) = P2(tf = P3 (tf 0 (A.24)

For the free final time tf, the additional necessary condition is below, which is

often called the transversality condition:

H(tf) = 0 (A.25)

The point constraints N(ti) in (A.13) induces discontinuity in p and H as follows:

ON
H(t+) = H(t--) + IT .-O (x(t1))

p(t) = p(t-) - fT
-N (x(ti)) T
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These two equations reduce to

(A.28)

p(t) = p(t7) -

-1

0
IiH - H 2

0

0

The optimal control law u* can be found by applying Pontryagin's Minimum

principle:

U = arg min H
U

(A.30)

For the unbounded input u 2 , the minimum of the Hamiltonian occurs in the

condition below:

OH
Ou2 = ui(-P3 sinu 2 +p 4

cos U 2 ) = 0 (A.31)

(A.32)= ui(-p 3 cos U2 - P4 sin u 2 ) > 019U2

For a nonzero acceleration (i.e., ni > 0), the above condition is satisfied when:

(A.33)tan u* =P4
-P3

where u* is defined as the value satisfying:

-P3COS u2 72
Vp3 + P4

sinu* = 4 (A.34)
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0

-1

0

0

(A.29)

H(t+) = H(t-)



For the bounded input u1 < amax,

U = argminHu2=;

= arg min{uI(p3 cos u* + p4 sin u*)}
U1

arg min -Ui

=amax

(A.35)

(A.36)

(A.37)

(A.38)

p3 + p+

The costate function can be first solved for phase 2 (t 1 < t < tf). The boundary

conditions of the costate at the terminal time in (A.24) identifies the three unknown

constants as:

p1(tf) = -= 0

p2(tf) = c 2 = 0

p3(tf) = -Cltf + c3 = c 3 = 0

(A.39)

(A.40)

(A.41)

The transversality condition in (A.25) is applied as:

H(tf) = 1 + p4(tf) -u*(tf) sin u*(tf) (A.42)

(A.43)= 1 - amax - Ip4(tf)| = 0

and the following is achieved:

1
Ip4(tf)l = Ic4 1 = amax

(A.44)

We know that the lateral direction of the final acceleration should be negative,

(i.e. sin u*(tf) < 0), in order to restore the lateral velocity y to zero after it has been

increased to avoid the obstacle. Then, p4(tf) should be positive from (A.42),

p4(tf) = C4 = > 0
amax

(A.45)
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Hence, the costate function for phase 2 is

(iPt)

p(t) (t)
p3 (t)

0

0

0

amax

for t1 < t < tf

and the input for the optimal solution for phase 2 is

U*(t) = amax,
7F

U* M) - for t1 < t < tf
2

From the optimal input, the dynamic equations for the optimal state function for

the phase 2 (ti < t < tf) are expressed as:

= u*(t) - cos u* (t) =0 for t1 < t < tf

(t) = u*(t) - sin u*(t) = -amax for t1 < t < tf

By integrating with the terminal condition y(tf) = 0 in (A.4):

(t) = :(ti) for t1 < t < tf

(A.48)

(A.49)

(A.50)

(A.51)p(t) = -amax - (t - tf) for t1 < t < tf

By integrating one more time with the boundary condition at the time t1 in (A.13),

X(t) = zi(ti) - (t - ti) + X0 for ti < t < tf

1
y(t) -- amax{(t -- t) 2 -- (t - tf)} + Yo for t1 < t < tf

2

(A.52)

(A.53)

Now, the solution for phase 1 (0 < t < ti) can be found starting from the boundary
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condition at time t1 in (A.29):

pi(t) = p1(t-) + H1i

p2 (t) = p2(t-) + H 2

p3 (t) = p3(t-) -

p4 (t) = p4 (t-) -+

+ pi(tT) = -11

+ p2 (t--) = -H 2

p 3(ti) 0

p4 (ti) = 1
amax

The costate function for phase 1 is

p1 (t) =--H 1

p 2 (t) -r 2

p3(t) H2l - (t - ti)

P4(t) = 12 - (t - t1) +
1

amax

for to < t < ti

for to < t < tl

for to < t < tl

for to < t < ti

By applying the continuity condition for the Hamiltonian at time t = ti in (A.28),

H 1 -.(ti) + R2 -9(ti) = 0

The optimal inputs for phase 1 are:

u*(t) = amax for to < t < ti

-H2 (t - ti ) 1
U*(t) = tan 1 ( ""at ) for to

2 ~ -fl,(t - ti)

where tan--1 () is the four-quadrant inverse tangent.

Then, the equations for the state function for phase 1 is
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(A.54)

(A.55)

(A.56)

(A.57)

(A.58)

(A.59)

(A.60)

(A.61)

(A.62)

< t < ti

(A.63)

(A.64)



A
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>
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ti

-H,
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1I",

t I

t = t0

1 1

slope

H. 20

(a) The solution Of costate function p

(-P3(t),-p 4(t))

I ma

(b) The optimnal acceleration direction

u. as a fhunction of time t

Figure A-2: Analvtical solution (of the (ostate and input of the optinal contr(A piob-
leni for the point inass flio(el

-H1 (t - ti)

t2 + { H.2(t - t) + 1}2

-- H>(t - 11) -

for to < t < t

for to < t < t1

The state function X(t), y(t) can he foun(d by integrating the above equatiols

twice using the initial conditiois in (A.1).

Then the three iuinknowns 1I1 , 112 and tj can be ideitified by the obstacle avoi(alle

constraints and Hamiltonian continuity codition in (A.13) and (A.62), i.e..

x(t1) Xo, y(ti) = Yo., H1 . '.(t) + fl - y(ti) 0 )

The final tine call he computed from (A.51) as:

+ (1i)
ty = t" + '

(A.67)

(A.68)

(1 a I

H(t

ij(t) a,,,a.
H2 (t

(A.65)

(A.66)

t = ti

t 1)2 + {H(t - t I ) + t }2



We know physically that (ti) > 0, y(ti) > 0, and H 2 > 0 due to the inequality

constraints (A.12), and finally H 1 < 0 due to the Hamiltonian continuity condition in

(A.28). Hence, it turns out that the costate function is bilinear as shown in Figure A-

2a. Also, the optimal control direction of acceleration starts from the second quadrant,

and moves to the third quadrant, and remains fixed at - from time t, as shown in

Figure A-2b.

The unknowns H1 and H 2 have been computed with curve-fitting techniques

by comparing with the numerial solution computed with optimal control software

GPOPS-II [139], which is based on Gaussian Quadrature Collocation Methods and

Sparse Nonlinear Programming.

H 1 = -0.0428, H 2 = 0.3334 (A.69)

The minimum completion time tf for the point mass model has been computed as

0.6447 sec. The optimal trajectory of the point mass model is shown in Figure A-13

with the numerical solutions of a more realistic and complicated vehicle model.

A.4 Numerical Solutions for Nonlinear Vehicle Mod-

els

In the preceding section, the analytic solution for the point mass model has been

developed for the formulated optimal avoidance problem. For nonlinear vehicle mod-

els, it is hard to find analytical solutions for the formulated problem. However, the

formulated optimal avoidance problem can be solved numerically using the optimal

control software GPOPS-II [139] and is presented here for nonlinear vehicle models.

The definition and nomenclature of the vehicle model are presented in Figure

A-3 and Table A.1. The six-dimensional state vector is x = [X Y 0 v2 vY w]T.

The inputs to the system are the steering angle 6 and longitudinal traction force

at each tire ij, T 3, where i = f(front) or r(rear), j = l(left) or r(right), i.e., u =
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Figure A-3: Definition of symbols for foni-wheel vehicle muodel

Table A.1: Vehicle model nomenclature

Symbol Description

X horizontal position of C.G. w.r.t. inertial reference frame

Y vertical position of C.G. w.r.t. inertial reference frame

yaw angle of the vehicle

v, longitudinal speed of C.G. of the vehicle

I 7Y lateral speed of C.G. of the vehicle

. yaw rate

steering angle

To longitudinal force of each tire*

Y" lateral force of each tire*

normal load of each tire*

a, side slip angle of each tire*

* i =f(front) or r(rear) i /(left) or r(right)

Tro T,,]. The steering angle 6 is typically less than ~5-8'

it is possible to approximate (os 6) 1 and sin '~

11401, hence

S. The dynamaic equations of
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motion of the vehicle under the assumption of small steering angles of the front axle

6 is shown below.

X V, cos f - vY sin b (A.70)

Y =v, sin + + vy cos ' (A.71)

=w (A.72)

1
Vx =-{TI + Tfr + Tri + Trr -6(Yfl +Yfr)} + VyW (A.73)

1
y = -{(Y1 + Yfr) + (Yr 1 + Yrr)} - V5J (A.74)

m

W = {lf(Yf1 + Yfr) - lr(Yr + Yrr) + lt(Tf, + Trr) - lt(TfI + Tri}} (A.75)

The lateral tire forces are governed by the vehicle state vx, vy, w and the steering

angle 6. The front and rear side slip angles are defined with the symmetric assumption,

similar to the bicycle model presented in Figure 4-9b in Section 4.4.3. The lateral tire

forces Yij are assumed to be in the linear range with respect to the side slip angles

with constant stiffness Kij, as follows.

Yi = Kij eij (A.76)

&f=, = = o V -Y fW (A.77)

_ v -w (A.78
orl = arr ar = - 1,W (A.78)

The problem defined in this chapter is the minimum-time problem, which pushes

the control inputs to their limits. Hence the fact the total friction force magnitude

for each tire is bounded is not a negligible constraint. The constraint associated with

the tire's maximum ability to utilize the friction with the road is often referred to as

the friction circle constraint. The magnitude of each tire force limit is simplified as

follows with a proportional distribution of the total normal force to each tire without

consideration of dynamic effects.
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Table A.2: Vehicle model parameters

Description S

mass of the vehicle

yaw moment of inertia

distance from C.G. to front axle

distance from C.G. to rear axle

half length of the axles

cornering stiffness of each tire*

surface friction coefficient

* i = f(front) or r(rear), j = l(left)

ymbol

m

IZZ 30
if

l r

it

Kij 40

or r(right)

Value

1500 kg

00 kg _ M2

1.25 m

1.25 m

0.80 m

000 N/rad

1.6

T fY/ < AtNfj 1tif +1
i + y+=

T 22+Yg < p~N,4 = ir 1g

(A.79)

(A.80)

This section compares numerical solutions for two cases: a two-wheeled bicycle

model with a symmetric assumption of the vehicle, and a four-wheel model with an

assumption of independent individual traction force control. The parameters of the

vehicle model for the simulation are in Table A.2.

A.4.1 Two-Wheel Bicycle Model

A bicycle model assuming that the left and right sides of the vehicle are symmetrical.

The dynamic equations shown from (A.70) to (A.75) are simplified with this symmet-

ric assumption: Tfl = Tf, f, ri =, Yf= Yf = Yf, Y,1 = Yr = Yr

The state and input profiles of the optimal solution are presented in Figure A-4

and A-5. The minimum time tf to achieve the terminal condition has been computed

as 1.1883 sec.

Each longitudinal force tries to utilize the full friction limit to achieve the minimum

arrival time while satisfying obstacle avoidance constraints. Whenever the lateral
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the 1)iVle lod(el for the forllullated obstacle

force gets far from its linit. the longitudinal force acts to accelerate or decelerate the

vehicle in the desired (lirection.

Note that the longitudiial forces are direct control inputs. The lateral forces are

indirect results of the steering connnand. The front lateral forces are nore directly

affected blv the steering conllniallld. while rear lateral forces are less directly affected.

So the steering comlnand utilizes the lateral force of the front tire inuch more than

the rear one. Therefore the rear longitudinal fore plays a proportionally greater role

than its front counterpart. During the time period when the direction of' the lateral

tire force is being reversed (approxiniatelv 0.4.sc < t < 0.5scc). the longitudinal force

input utilizes this short period to provide a braking contribution to the vehicle.

Figure A-6 ilhist rates the contribution of the longitudinal forces of each tire. The

rear tiles plays a sufficient role except during the short period of time when the

steering coiliillaind chamiges its direction. This result could not be achieved with a
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2, steering angle

[deg] 0

0.2 0.4 0.6 0.8 1.0
time [sec]

(a) Steering input

X 104 7T, front longitudinal tire force x 104 front lateral tire force
r 2

0*

[N] [N] 0i

-2 -2
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

time Lsec] time Lsec]

2T rear longitudinal tire force 2 V, rear lateral tire force

[N] [N] 0

-1L -2

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
time Lsec] time isec]

(b) Lotigituditial aiid lateral forees for froint aid rear tires

Figure A-5: Profile of optimal steering angle and tire forces of the bicycle model

fixed distribution ratio of the braking forces between the front and rear axle. The

presented result is iundtler the assminption that the braking distribution can be varied

in real time according to the steerinlgr eollnnadll shown in the figure.

A friction utilization diagram of each tire is shown in Figure A-7. The force of

each tire stays on the boundary of the friction limiiit during the entire ianeuver. This

is as expected in the context of +amg-bang control" considering that the objective of

the problem is to ininimize the task completion tine. The snapshots of the avoidance

maneuver are shown ini Figure A-8.2

2The enitire video is at littps: viinLo.coin 142702734
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Figure A-7: Tire frictioii utilizatiol) of the optimlal sollltion for the Iicycle model

A.4.2 Four-Wheel Model with Differential Driving Forces

In oldel to nivestigate a case with inore degrees of coitrol freedom, the sectioni as-

su111es that tile illdiVidual Iolgitudllial forces of the tires call be con1trolled idepen-
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time: 0.42 [sec]

3 4

[m]

time: 0.54 [sec]

1

-2- 6 7 9 10 11 12 13

[m]

Figure A-8: Sample time steps of the optinal avoidance maneuver of the bicycle
model with maximum friction force magnitude constraints. The red arrows represent
total forces acting on each tire within the friction circle limit and bold magenta lines
represent longitudinal and lateral components acting on each of tires. The force
vectors are normalized by the friction circle limit

dently. Differential driving braking force for the left and right wheels is often utilized

in automotive industries for the purpose of vehicle yaw stability control [.141, 142, 1431.

Fron a driver's perspective, there are no connands to directly control the differen-

tial forces. They are controlled by estimating the driver's intention from the steering

commands in comnmercial technologies.

In emergency situations to avoid nearby obstacles, it is useful to employ this

differential driving ability in a way to achieve fast and stable obstacle avoidance

and nominal driving state recover rather than by estimating driver's intention. The

numerical solution has been found by allowing different longitudinal forces of the four

tires in the four-wheel vehicle niodel, (A.70) - (A.75).

The state and input profile of the optimal solution computed numerically using
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GPOPS-II are shown in Figure A-9 and Figure A-10. The ininimun time computed

nuimerically for the problem is 0.9994 see. Note that the left and right longitudinal

forces are acting in the opposite directions ill order to restore the yaw angle to the

original state as quickly as possible. especially around the time 0.3 ~ 0.6 see. The

force utilization of each tire and the distribution of the longitudinal force contribution

are presented iin Figure A-11 and Figure A-12. respectively.
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Figure A-9: The optiial state profile of the four-wheel drive model for the formulated
obstacle avoidance problem

II

A.5 Conclusions

The minjniuni obstacle avoidlance tinies coiplitedl numerically for the point iass

model. two-wheel hicycle model. anid the four-wheel model have been found to be

0.6447 sec. 1.1883 see. and 0.9994 see. The point mass clearly achieved better capa-

bilities to avoid the eiergenit obstacle than the steered vehicles since it has the ability
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Figure A-10: The optimal in11put profile of the four-wheel (Iriver model

to ehange (irections o011i-(irectionally. Figure A-13 compares the acceleration di-

rections of two of the results. the point mass an( bicycle m1odel, (iring the entire

maneuver. As shown in tie figure for locations around 6 ~ 8 in in the horizontal di-

rection. the (irection of acceleration of tHie hivele model is imuich more limited than

the point mass model. This has resulted in a Worse completion tilne for tie avoidance

maneuver. On the other hand. the ability to control foir wheels independently has
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friction utilization of the optimal solution for the four-wheel drive

been shown to allow 15.9%c improveument in the completion time.

The attempt to find the analytical solution for the optimal avoidance problem

has led to the closed-fori expressioins for accelerations for the point mass model.

However. there have been significant gaps between the results of the poilit mass

model anld the steere(l vehicle models. Also. it vas computatiomally demandIing to find

numerical solutions for the steered vehicle models. Therefore, this thesis approaches

the optimal ooiitrol problem with the receding horizon framework with linearization

about the current operating poimit. as presented ill Chapter 4.
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Figure A-12: The optimal (listribution of longitudinal force contribution for the four-

wheel drive model
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Figure A-13: Comparison of the acteleratioii vectors of the poilit iuass mHodel

vs. bicycle model (blue); The acceleration vectors are represellted with star tails

normalized magnitudes.
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Appendix B

Shortest Paths for Homotopy Classes

using Visibility Graph

B. 1 Homotopic Decisions for Obstacle Avoidance

Homotopy representation methods in the literature have been reviewed in Chapter

2. This chapter investigates another simple way to represent homotopy classes in

an abstract way in terms of the directions to avoid obstacles. In particular, there

are two primitive directions to avoid a single obstacle, clockwise(cw) and counter-

clockwise(ccw). Figure B-la shows several paths that avoids 01 in a clockwise di-

rection, 02 in a counter-clockwise direction, and 03 in a clockwise direction again.

These paths fall into the same homotopy class, and can be represented as cw-ccw-cw

as an example. Extending the idea presented in this example, a homotopy class can

be represented as a sequence of directions to avoid obstacles. An approach to identify

the shortest paths for each homotopy class represented in this way is presented in

this chapter. This approach does not rely on geometrical space or points for homo-

topy representation. It instead focuses on the direction of the obstacle avoidance for

representing each homotopy class.

This chapter describes the proposed algorithm to find the shortest path for any

homotopy class given a sequence of obstacles to avoid. For the purpose of presenting

the algorithm in a simple form, the shapes of the obstacles are assumed to be circles.
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S0 G

(a) Example of lOinlotopic paths coresponlding to the decision Cw ccw - cw

cw

cwc c w .......... w...

ccw

ow~

Cow

ccw

0, 0, 0,

(b) A decision cw - ccw - cw amnong all possible avoidance deci-
sions for the three sequential obstacles

Figure B-1: Example of lio)iotopic paths

This representation is especially useful when the order of obstacles is deternined a

priori, although this representation is also available in other cases. When the goal

is determnined in the environment. the order of obstacles to avoid can be assigned

along the line between the start and the goal from the closest obstacle to the farthest.

Under the assumption of prohibition of moving backward to avoid the closer obstacles

after avoiding the farther ones, all possible homnotopic paths can be represented by

the sequence of avoidance decisions. In the case where i obstacles 0, I - Zi,, are

given in order. the number of possible homotopy classes is 2" . Ii this chapter, this

type of representation is used for homotopy class identification.

B.2 Visibility Graph on a Circular Obstacle Field

Visibility graphs 1911 are used widely dime to their guarantee that the Euclidean short-

est path in a polygonal space is the shortest path oi a visibility graph. In a polygonal
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environment, 1odes of the visibility graph are vertices of the polygons and the edges

are straight lines connecting nodes without crossing any obstacles. The visible edges

on the visibility graph are candidates for being parts of the Euclidean shortest path.

Therefore. the shortest path can be found on the visibility graph using graph search

algorithms such as Dijkstra algorithin 11441. and the result is guaranteed to be the

shortest path in the polygonal space.

E S (cw )

S O E,1 (cw,cw) E, (ccw,cw)

E,ccw)

G
Ei(G (ccw) E,(ccwiccw) E (cw,ccw)

(a) Straight edges connecting a (1)) Straight eges coiliectilig two obstacles

point and a obstacle

Figure B-2: Straight edge componenits of the visibility graph in a circular obstacle

field

In a space with circular obstacles, the concept of a visibility graph can also be

used to find the shortest path. with simple modification. The line segments tangent

to a circle from another circle or a point can be used as edges of the visibility graph as

illustrated in Figure B-2. There are two edges between the start S and the circle O,

denoted by Esa (cw) and Es (ccw). which are distinguished by the direction of the

end of the edge oil the surface of the circle. Similarly. two edges between the circle Oi

and the goal G are denoted by Eic;(cw) and Eci(c(ccxw). There are four edges between

the two circles and they are similarly distinguislied by the direction of the two ends of

the edges with respect to the circles. The colges from Oi to Oj (1 < j) are denoted by

Ej w (cw, )). E, (cEw. ccw). Ejj (ccw. cx). E (ccxv. ((w) according to their directions.

The edge directly connecting the start S and the goal G with a straight 11e caim

also be constructed as o1(n of edges of the visibility graph and denoted by Es'.c; if

it is visible. Beside the straight edges, the visibility graph requires additional edges
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01,

S 03 G

Figure B-3: The visibility graph and the global shortest path in a field with eireular

obstacles

connect ing the tangent points residing on the same obstacle. They are constructed

as arcs following the surface of the corresponding circles in order to ensure that they

are part of the shortest path. Figure B-3 illustrates an example of the constructed

visibility graph in an obstacle field. The shortest path should be a combination of

straight edges and arcs of the constructed visibility graph.

B.3 Dynamic Programming for the Shortest Paths

for Each Homotopy Class

The algorithn presented here ains to find the shortest path for any homnotopy class.

By the same principle as in the case of the single global shortest path. they are also

paths oi the visibility graph because regardless of whatever avoidance decisions are

made. only straight edges or arcs of the visibility graph consist of the shortest path.

Therefore searching on the visibility graph guarantees one to find the shortest path

of each honiotopy class. In [361. for example. a visibility graph has been also used

for finding the shortest homnotopic paths based on its own homnotopy identification

method. However naive exhaustive efforts to extract the shortest path satisfying

homnotopy constraints. i.e.. a specific avoidance decision, is coipuitatioi1ally inefficient.

This chapter proposes an efficient algorithm for finding the shortest paths for each

honiotopy class by utilizing principle of optinmality.

The procedmure to find the shortest patih is sumnniarized as finding a sequence of

obstacles to comtact to reach the goal. Ii this procedure. certain obstacles might not
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0 0,

00s G G

(a) P1 : The shortest paths from O:j to G. (b) '2: The shortest paths from 0. to G.

{RP ((W) , (ccw)} {p. _(cW (W) P- (w., ew) P2 (cxW, cW). P2 (ccw. ccw)}

0,0

0, .7... 0, .
0S G.0. G

(c) P1  The shortest paiths from 01 to G (d) P, The shortest paths from S to G

Figure B-4: Sets of the shortest paths from intermediate obstacles to the goal. The

final set of the shortest paiths from the start to the goal is computed backward by the

sub-problells

be included in this sequence. For example. O; may niot be touched by the shortest

path when the direct straight path from 0, to O- are collision-free. 0.) shown in

Figure B-3 is an example of an obstacle that is not touched by the shortest path.

Ill the procedure of fiding the sequence of contacting obstacles corresponding to

the shortest path. Bellnan's principle of optimality 11451 states that whatever the

initial decision o1 choosing a contacting obstacle is. the remaining path to the goal

imist constitute the shortest path fron the chosen obstacle. The implication of the

principle of optiniality is that any path that touches the obstacle 0, must take the

optimal solution from the obstacle 0, to the goal in order to be optimal. Therefore

the problem of finding the shortest path fron start to goal can be decomposed into

sub-problells to finid the shortest path from the obstacle 0 to the goal. The sub-

problems can be solved backward from i =n to 1. Figure B-4 illustrates an example of

decomposition of global problem into sub-problems. and their backward propagative

solutions.

Let P,' be a set of the shortest paths corresponding to all possible avoidance

decisions from the start to the goal. In other words. the elements of 2P are the shortest

paths for each homIotopy class. A primitive choice for avoidance of each obstacle can

be represented as an element of a set,. D = {cw. ccw}. If JI - D represents a choice
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for avoiding obstacle Oi, the overall sequence of avoidance decisions for n obstacles

can be represented as (d, - - - , di, ... , dn). Then the set of shortest paths from the

start to the goal can be represented as

Ps = {ps(di, d2 , , dn) I Vdk c D for k Zi,n1 } (B.1)

where the element ps(di, d2 , ... , dn) of the set is the specific shortest path from

the start to the goal corresponding to the decision (di, d2,--- , dn). The number of

elements of the set P is 2 .

On the other hand, the solutions for each sub-problem Pi can be defined as the

following;

Pi = {pi(di, dil+, I ... , dn) VdkE D for k for iE7 ,, (B.2)

where the element pi(di, di+1, - -, dn) of the set is the specific shortest path from

obstacle O to the goal corresponding to the decision (di, dj i,- , dn The number

of elements of the set Pi is 2n-i+1.

The detailed algorithm is presented in Algorithm 7. The algorithm is decomposed

into three steps. The first step is to find the shortest paths Pn from the last obstacle

On to the goal. It is expected that the shortest path from the last obstacle is the

line tangent to the obstacle and heading toward the goal, so the straight edges on the

visibility graph are simply used. There are two shortest paths with different escape

directions from the obstacle On, clockwise and counter-clockwise. The paths for the

both cases are kept for the next steps.

The second step is to find the shortest path from the i-th obstacle Oi to G for

each of avoidance decisions. The procedure is performed backward using dynamic

programming. The shortest path from O to G can be found by comparing n - i + 1

path candidates including the direct straight line from O to G and combination of the

straight lines to Ol and the shortest paths from Oj to G (Vj > i). This key procedure
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Algorithm 7: Find a set of the shortest patlis for each of avoidance decisions

/* To find P,
1 for d E {cw, ccw} do
2 pa (d,) =E'uc;(dn)

3 for i <- - 1 to 1 (backwards) do
/* To find 7P;/

4 for all possible sequences (di, .di+* d) where dA. {cw.cew} for k

do
5 pi (d;. d;+ 1 -d,)

shiortest { E.5( , d ) ).gd, dj~ d") I Vj E Zi+n. {i/(d)

/* To find Ps */
6 for all possible sequences (j. J). --- d , where d. {C w, cw} for k- E Z,, do

7 Ps((I ,d2. d ) <-

shortest { {E-.(d 1) 4 pj ( . - - , d) Vj E zs,}. {Es }

E12(ccw,ccw ) -,p 3 CW

, Ep .(ccwcw)

S E, (ccw) G 
(invalid)

Figure B-5: Examiple of candidates for the shortest path p(cew. ecw.cw). the one

fromn 01 to G in cV . cXV, and Cw diretion of 0I - 02 and O8 : 1) the straight

line to the goal. El;(cw). wh1iChI is invisible in this examlple; 2) the straight line

to O followed by Hie s1ort st path froni O: to G via the conlnecting' ar oi O

iii cw directioln, Ejj(ccw, (w) E" p(cw). wXhiChI is valid because E.j(cew. cw) is

a visible edge and passes 0. in (Cx direction: 3) the straight line to 0. followed

bv the shortest pathl from 09 to G via the connecting are oi 09 in (CX.w direectiont.

E,2(('(W ((Xw) "A pT(Cw. Cw). XIich is also valid in this exaniple. but not the final

shortest pathI.

is illustrated in Figure B-5. The shortest path from 0, to G does not necessarily

contact the next obstacles Oj (Vj > I) because a straight line without contact is

shorter if collision-free. But once it is decided to toliuch O. the rest of the shortest

patli to G should be the shortest path from the 0j to G based on the p)rinciple of

opt imality.
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The procedure in this step to find the shortest paths corresponding to each avoid-

ance decision from Oi to G among the candidates is presented in line 5 of Algorithm
d -

7. Ej (di, dj) -4 pj (dj, dj+ 1,*- , d,) represents a shortest path candidate from O

to G with the avoidance decision (di, di+ 1, - . . , d,), combination of the straight tan-

gent line Ej (di, dj) from O to Oj and the shortest path from Oi to Oi computed

in earlier steps through the surface of Oj in direction dj. In this procedure, the new

added segments Ejj (di, dj) should satisfy two conditions: visibility and the sequence

of avoidance directions from Oi+1 to Oy_1. If the procedure of checking these condi-

tions are performed backward from j = n to j = i + 1, the first case satisfying the

two conditions can be determined to be the solution without the need for considering

a comparison between distances of candidate paths. For the same reason, the direct

straight line from O to G, Ei,G(di), is the candidate that has to be considered first

in this procedure. The last step presented in line 7 is to find the shortest paths Ps

from the start to the goal using the intermediate result of the previous steps through

a similar procedure with the second step.2

2 A video for demonstration of the implemented algorithm is at https://vimeo.com/142168490
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Appendix C

Fundamental Limit of Obstacle

Avoidance for a Vehicle Model

This chapter presents an analysis of the fundamental limits of obstacle avoidance for a

no-slip bicycle model. The limits for the performance of collision-free navigation of the

vehicle are approximately identified via Monte-Carlo simulations. The fundamental

limits are not dependent on specific planning algorithms. However, for the purpose

of identification of the fundamental limit, RRT has been utilized to identify the

existence of collision-free trajectories in computational experiments. RRT is known

as a probabilistically complete algorithm, so it can estimate the fundamental limits

when used with a sufficient number of samples. 1

The no-slip bicycle model with a constant speed has been used as follows;

x=vcoso, Q~vsinO, v =-tan6 (C.1)
L

where 6 is the bounded steering input to the vehicle (-6max < 6 o6max), v is the

given speed of the vehicle, and L is the wheel base of the vehicle.2 In this analysis,

obstacle configurations were generated randomly based on a Poisson process. The

'By exploiting probabilistic completeness of RRT, it has been considered that collision-free tra-
jectory does not exist within the horizon when the tree with 100,000 random samples could not find
a sol =tion.

2L=2 ml 6max = 5 deg.
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Figure C-i: A portion of a particular realization of the Poisson forest instances with

different densities of obstacles

locations of the obstacles were generated by a hoiogeneous Poisson process vith the

rate of p. The obstacles were asslumed to be the same size with radius of 1.5 in. and

the vehicle was required to remain inside the corridor of width 20 in.

The vehicle was driven using RRT in a receding horizon fashion. Note that the

horizon for planning is fiunite. so that the vehicle proceeded with the control inplt

of the first step of the computed result as long as a collision-free trajectory existed.

The farthest distance that the car traveled was been leasured iin randoin instances

of Poisson forests. Cases where there did not exist aniv collision-free trajeetorv at the

initial tille step were exclded fro1 the studis.

In each experiment the trees obstacles were gellerated according to a Poisson

process with intensity p. To obtaili a statistical (istrilbultioll of iaxinun traveled
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distances, the experiments have been repeated with random instances/ realizations

for each obstacle density. A portion of the four realizations of the Poisson forest with

its own distinct obstacle density is shown in Figure C-1. Note that this is a particular

realization, and the obstacle configurations have been randomly realized in each of

the trials.

The fundamental limits of the performance, i.e. the maximum traveled distances,

depend on a couple of factors. In this thesis, the dependance of fundamental limits

on three factors are analyzed: speed of the vehicle, the obstacle densities, and the

horizon of the controller.

Figure C-2 shows the statistical distribution and averages of the maximum traveled

distances provided by computational experiments with 100 trials for each of the cases. 3

The maximum traveled distances decreased as the speed of the vehicle increased. The

graph shows that the rate of decrease is distinctly greater over the intermediate speeds

than the rest of the speed range.

In order to assess the statistical significance of the differences of the maximum

traveled distances depending on the speeds, p-values of the Wilcoxon rank sum test

[1461 has been performed for each pair of the neighboring speeds. The Wilcoxon

rank sum test (also called the Mann-Whitney test) is a nonparametric method for

comparing samples from two groups and determining if they are statistically different.

The test provides p-values for the null hypothesis that the two groups have the same

means. The null hypothesis is rejected between the 15 m/s group and 20 m/s group

at the .01 significance level. Hence it can be concluded that there is statistically

significant difference in the maximum traveled distances between speed 15 m/s and

20 m/s. The 20 m/s group and 25 m/s group are also determined to be statistically

different at a 0.05 significance level. For this range from 15 m/s to 25 m/s, the speed

of the vehicle has significant effects on the limits of the maximum traveled distances

in the provided Poisson forest setup. For the rest of ranges, the null hypothesis can

not be rejected with sufficient significance levels. In other words, the speed does not

3 1n the experiments, the horizon of the planner has been fixed to 20 m and density of the obstacles
fixed to 2.5 x 10-3/m 2

183



mean

104
median/

IQR

C:
0

E
103
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p-values

(0.1990) (0.1019) (0.0025) (0.0103) (0.5662)

5m/s 1 0m/s 15m/s 20m/s 25m/s 30m/s

speed of the vehicle

Figure C-2: Fundamental limits of maximlum traveled distaie dependig on the

speed of the vehicle: Quartiles an(d means of inaxilmun traveled distances in Poisson

forests and p-values of Wilcoxon rank sum test of the neighborinig speeds

affect the limits of traveled distances statistically siginficantlv for speeds below 15

im s anid above 25 i s iii the provided setup. This result coincides with the phase

transition for existence of a collisioli-free trajectory discovered in 1081.

Figure C-3 shows statistical distributioil of the inaxinluni traveled distances with

differeilt densities of obstacles aiid horizons of the controller. For each case, 100

ran(loml trials were performed. The speed of the vehicle was fixed to 20 11, s.4 As the

density of the obstacles licreased. the mnaxiniunn traveled dist ances decreased. Also. as

the horizon of the planner decreased, the iaxinnun traveled distances decreased. The

differences of the IQRs are distilct in the figure. The results of statistical significance

tests for the differences. the Wilcoxon rank sum test. are shown iii Table C.1 and

Table C.2. The statistical difference of the fundauental innits (lepen(lding on the

horizons of the planner is significant for all cases. The 1)-values )etweeli nmighborilg

4An example of the run is shlowii in 8 video in hltt)s: vineo.com 142169565
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Table C.1: p-values betweeni results from two different horizons in the result of Figure

C-3

p-values between Density of obstacles

different horizons 0.0025,m 0.0050 2 0.1171 mA 0.0090 m
20 im and 40 in 0.0010 < 0.0001 < 0.0001I < 0.0001
10 in and 20 nm < 0.0001 < 0.0001 < 0001 < 0.0001

horizons are less than 0.01. On the other hand. the statistical differences betweenl the

deilsities of the obstacles are significant for most of the cases with some exceptions.

The p-values betweeii two neighboring deisities are less than 0.05 except for the two

cases.

Finally. humnan performance has been measured and eomlared with the f(uIa-

miental limits. A humaii operator was asked to coiitrol the vehicle in the Poisson

forest with different delisities of the obstacles. The vehicle speed was fixed to 20

7000

0

V

E

E

E

6000-

5000-

4000-

3000-

2000-

1000-

. horizon: 40m
horizon: 20m
horizon: 1Om

I
0.00

5-

50/rn2 0.0070/rn 2 0.0090/rn 2

I

0.0025/M 2

density of obstacles

Figure C-3: Fuidamiental limits of maxinnn traveld distaiice dependiig on the

deInsitv of the obstacles and horizon of the planner: Quartiles of maximum traveled

distances in Poissoii forests
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Table C.2: p-values between different density of obstacles in the results of Figure C-3

p-values between 0.0025 inm2 0.0050 m 2 0.0070 11m
2

different and and and
obstacle densities 0.0050, m2 0.0070 ,'n2 ().()09( 2

40 m 0.0021 0.0004 0.0676
Horizon 20 in < 0.0001 0.0283 0.0034

10 m11 < 0.0001 0.0994 0.0007

185

180

1 70

16

1,55

145

w

0
.0
0

K--
K

4
-10 -5 0

[m]

G-9.

5 10

Figure C-4: Average of maximnum traveled distances of a human before colliding
obstacles are compared with fundanental limits with different horizons

in s. The 40 mn horizon aleadl has been shown to the operator. Figure C-4 shows

a operator's view oil the screen. The vehicle has been controlled by the two arrow

keys on the keyboard. The steering input was chosen among three discrete values.

The steering input was zero without any keyboard input. the left maxinnun steering
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* horizon: 40m

horizon: 20m

5000- horizon: 1 Om
e human

.E

co 4000-
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a)

> 3000-

E

R 2000-
E

1000

0 / .
0.0025/m2  0.0050/r 2  0.0070/m 2  0.0090/m 2

density of obstacles

Figure C-5: Average of iaximiuin traveled distanees of a liinnan l)efore Colliding

obstacles are comllpared with fllndamlheltal iits with differenit horizoiis

ipuit was given by the left arrow key. aid the right iaxilnuin steering input by the

right arrovw key. The hiumiaii operator has diriven the vehicle 20 times for each dell-

sity of the obstacles. anld the maxinmun traveled distance before colliding with any of

obstacles has been ieasureid.

Figure C-5 ireselits the average results of' a hinnan idriver obstacle avoidance. The

equivalent horizon for the human operator varied dependillg on the denlsity of the

obstacles. When the denlsity of the obstacles was small. the average of the human's

perfolmlallce was similar to the average of fundamental liits with the horizon 20

in. However. as the density of the obstacles increased, the equivalent horizon of the

human opierator decreased to be near the average of the fundamental limits with a

horizoi of 10 In.

5Ali exapile of the vehi(le inaniual control ill the PoissonI forest is shiowni ill a Video at
https: vinicoxoin 142169673
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Appendix D

Technology Adoption Models and

Usability

This chapter presents factors in a list of technology adoption i1odels and usability.

Some of the factors were selected as ineasures in Chapter 5 among the list.

Table D.1 Technology adoption models and usability

Technology Acceptance Model (TAM) 11301

Perceived Usefulness The degree to which a person believes that using a

particular systeni would enlhance Is or her jOb perfor-

inance

Perceived Ease of Use -The degree to which a person believes that using a par-

ticular system would be free of effort"

Innovation Diffusion Theory (IDT) 11321

Relative Advantage -The degree to which an innovation is perceived as being

better than its precursor"

Ease of Use "The degree to which using an innovation is )erceive(id

as being difficult to use"

Compatibility "The degree to which an innovation is perceived as being

consistent with existing values, needs, and experiences

of potential adopters"
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Results Denonstrability "The tangibility of the results of using the innovation.

including their observability andI coIIinuiiicabilitv'

Voluntariness of Use dThe degree to which use of the innovation is perceived

as bein'g voluiiitairv. or of free will'

Unified Theory of Acceptance and Use of Technology (UTAUT) [1331

Perforniance Expectancy Tlie degree to which an individual believes that using

the systein will help hiin or her to attain gains in job

perfornance:" it includes perceived usefulness in TAM.

relative advantage in IDT. etc.

Effort Expectancy "The degree of ease associated with the use of a systemi:

it iichides perceived ease of use in TANI. ease of use in

IDT, etc.

Social Influence The dlegree to which an individiial perceives that iin-

portalt others believes he or she should use the new

systeii:~ it includes subjective norin in TAM2, iniage in

IDT. etc.

Facilitating Conditions -The d(egree to which an individual believes that an orga-

nizational and technical infrastructune exists to support

use of the systein"

Car Technology Acceptance Model (CTAM) [1341

(Every constructs in UTAUT are inhlerited)

Attitude "An individual's overall affective reaction upon using a

svstein

Self-Efficacy -A personis belief in his her ability and comipetence to

use a technology to accomplish a particular task"

Perceived Safety 'The (legree to which an individual believes that using

a system will affect his or her well-being"

Anxiety dTe degree to which a person responids to situations

vithI appreienisioi and11( uneasiness"
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- Fun

- Liking

User's attitude

perception

anhd

Usability [1371

Efffect iveness

Efficiency

Sat isfactiO 

- Preference

* Satisfaction with in-

telface

- Attitudes towards ill-

terface

- Annoyance

- Anxiety

- Control

The constructs on each model is not exhaustive. but selected according to its rele-

vance to our study and portion of adoption in previous studies. For examhlple. social

factors such as subjective 1101111 iln TAM2 and image in IDT are excluded.

191

-Accuiracy and comipleteness with which users achieve

specified goals-" it includes binary task comnpletion. ac-

curacy. (plality of outcome, experts assessinent. etc.

"Resources expended in relation to the accuracy and

coimpleteness with which users achieve goals;" it inclndes

timle. niental effort. usage patter1s, learning. etc.

-Freedon from discoinfort. and positive attitudes to-

wards the user of the product-

-Measuires satisfaction as the interlface isers prefer us-

ing"

"User satisfaction with or attitudes towards the inter-

face"

*Quiestions given to aim to to uncover specific attitudes

towards the interface-

-Measure of annoyance, frustration. (istraction and irri-

tatioll

U~sers' anxiety when using the interface"

-Users' sense of control and attitude towards the level of

interactivity"

"Users" feeling of fun. entertainment. and enjoyment"

*Users* liking of the interfaces"

Users' attitude towards and perceptions of plienomena

other than the interface"
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Appendix E

Age Differences in the Results of User

Acceptance

This chapter graphically presents the differences between two age groups in iiean and

standard deviation of the sub]jective ineasures presented in Table 5.5 and Table 5.6.

Workload (Round 1)
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-I6

4

0
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Older

I
I I I _1
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Workload (Round 2)
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0
Regular Semi-Autonomous Fully-Autonomous

Driving mode

Yodnger

Older

1~
I

I-t

I
I TJ-I
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Driving mode

(a) Round I

Figure E-1: Age group differences in workload
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Boredom (Round 1)
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Figure E-2: Age group differences in boredoin
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Figure E-3: Age group differences in perceived usefulness
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Figure E-4: Age group differenles in perceived ease of use
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Perceived Safety (Round 1)
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Figure E-5: Age group differences in perceived safety
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Figure E-6: Age group differences in anxiety
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Figure E-7: Age group differences in sense of control
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Figure E-8: Age group differences in fun
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Figure E-9: Age group differences in likability
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Appendix F

Evaluation of Vehicle Types in the

Post-Experiment Questionnaire of the

User Study

This chapter presents results from post-experiment questionnaire of the user study.

The main questions consisted of two parts: 1) preferences among the three types of

driving modes and reasons 2) pricing the two assistance systems.
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Table F.1: Answers to the question "Please describe the reason

selection" for the participants who chose the "Regular Vehicle"
behind your vehicle

Reasons for the choice of the "Regular Vehicle" Age group

"I prefer the activity of driving" Younger

"I want to be sure I am fully able to control all driving Younger

aspects of a vehicle, given its size, weight, etc."

"More control over vehicle" Younger

"I felt safer in the regular vehicle." Younger

"As much as it's a convenience to not need to pay atten- Younger

tion, driving is an art and I would rather paint the canvas

myself."
"While having the option for full autonomy definitely has Younger

benefits, I enjoy driving too much to give that up com-

pletely. If there was an option to switch it on and off

I'd get that. Semi-autonomous was frustrating because

knowing you want to change lanes but not being able to

adjust your speed is contradictory."
"more control less boredom" Older

Table F.2: Answers to the question "Please describe the reason behind your vehicle

selection" for the participants who chose the "Semi-Autonomous Vehicle (Assisted-

Driving)"

Reasons for the choice of the "Semi-Autonomous Vehicle" Age group Gender

"want to be in control at least partially" Younger Male

"full control over lane preference" Younger Female

"I have not experienced the systems operating in real Older Male

world driving conditions. For example how the system

responds to driving surprises."
"would not want vehicle in control at all times, trust is- Older Male

sue"

"i like being in control or being able to control vehicle" Older Female
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Table F.3: Answers to the question "Please describe the reason behind your vehicle se-
lection" for the participants who chose the "Fully-Autonomous Vehicle (Self-Driving)"

Reasons for the choice of the "Fully-Autonomous Vehicle" Age group Gender
"I enjoyed being able to read the paper while driving. I Younger Male
would mainly use the function for longer trips however
as opposed to shorter drives in cities or through neigh-
borhoods where I feel like I would want to pay more at-
tention."
"It was extremely helpful in that I was able to check email Younger Male
while driving."
"don't have to focus on driving; can do other things" Younger Female
"Less effort. Ability to relax or multi-task." Older Male
"less work, safer"' Older Male
"i would be able to do other tasks while getting to where Older Male
I wnted to be"
"So I could read or sleep." Older Male
"Because I could read a magazine and eat caramels" Older Female
"I think it would be safer and more accurate than I Older Female
thought prior to the experiment."
"I initially I thought I'd prefer some degree of control Older Female
in semi-autonomous but in fact, it didn't offer any par-
ticular benefit and had drawback of being distracted by
choice."

Table F.4: Answers to the question "Please describe the reason behind your vehicle
selection" for the participants who chose "I don't know"

Reasons for the choice of "I don't know" Age group Gender
"I would want one with the capabilities of full-autonomy, Younger Male
but that allowed me to drive regularly if I wanted to"
"I LIKED FREEDOM OF AUTONOMOUS SYSTEM, Older Female
BUT NOT SURE HOW IT WOULD PERFOIRM ON
ROAD"
"I would prefer to have more practice experience with the Older Female
semi or fully autonomous vehicles prior to deciding."
"they all have advantages. The simulator drove below the Older Female
posted speed limit in autonomous and semi-autonomous
so I'd want to change that. Semi-autonomous doesn't
allow for doing other activities while in the car."
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Appendix G

Classification of Driver Behavior on

Highways

G.1 Problem Statement

G.1.1 Motivation

This chapter presents a method for estimation of driver behavior intention on high-

ways. On roads where human-driven vehicles and autonomous vehicles coexist, au-

tonomous vehicles will be required to predict the behavior of human-driven vehicles

for safe and efficient navigation. Although movements of human-driven vehicles are

controlled fully by the drivers, it is reasonable to assume the existence of trends on

drivers' behavior depending on their target lanes on the highways. As soon as the

driver decides to change lanes, the decision would reflect on the vehicle states. For

example, we can predict the driver's target lane based on the lateral deviation from

the lane centers. The behaviors depending on their target lanes may be different

depending on the their own driving styles, e.g. aggressive or cautious. From the

short-term recent history of the vehicle state on the road, it is possible to estimate

the driver's navigation decisions, namely, their lane change decision on highway. The

chapter could be used in real world implementations of the various control methods,

which currently assume perfect knowledge of target vehicle future actions.
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(a) A motivational example scenario (b) Schematic diagran of problem

Figure G-1: Classification problem of driver s target lane

This chapter utilizes machine learning techiiiques to classify a driver's lane change

decisions by selecting explaiatory variables from the vehicle states as shown in Figure

G-1. The potential possible predictor variables would be state histories of the vehicle

iu) to a certain number of steps in the past. x(t). x(t - 1). - - - , x(t - p). These

raw variables as they are would not he a)propriate predictors for the problem. The

variables can hbe processed and a few key features selected as predictors. The output

response are discrete values indicating target lanes. namely 1.2. or 3, or probability of

each class membership. Hence the problem is categorized as a classification problem.

and four algorithns - decision tree. k-nearest neighbors(kNN). neural network. and

support vector machine(SVM) - are compared in this chapter.

9

G.1.2 Data Acquisition

Figure G-2 shows settings for data acquisition from a lunman Idriver. The diriver

was asked to drive a vehicle in the simulator CarSim on a highway driving course

designed with moderate curves with three lanes. The state history of the vehicle has

been collected at the rate of 20 Hz for 5 mimiutes of driving. Ai important issue for

data acquisition is to measure the driver's true intention in his her mind in terms of

target lanes. which are used as the true output y of the supervised learning algorithm.

The intention has been recorded in the following way while driving. Whenever the

driver decided to change lane, lie or she pulled buttons behind the wheel to indicate

his or her intemition. For example, if the driver wants to change lane to the left, Ile

or she pulls the left button aid starts to change lane. Im this way. it was possible to

keep track of the driver's target lamie for all times during the driving.



(a) Driver view in the simulator (CarSim)(b) Driving interface (Log- (c) Driving course
itech G27)

Figure G-2: Settings for (riving (lata acquisition

Figure G-3 shows the acquired (hiving for he driver. The true lane is the actual

lane where the vehicle was at each time st ep. The target lanes are extracted based

on the left and right turn signal provi(led by the driver. Finally, the whole (lata set

is divided into roughly 70% training set and 30%A test set. The exact partition was

J)erfornmedl at a time point where the target lane changes. The training data size

and test data size was 4183 and 1817 time steps. respe(tively. The training set is

l)artitionedl into 10 1ins for cross valilation as well. The sizes of the bins are not

equal. but instead each bin has 3 instadules of changes of target lanes.

G.1.3 Performance Metrics

The performances of classifiers are generally assessel by niselassification error rates.

However. this chapter )r)l)Oss two more metrics. false )ositive rate an(l plredict ion

lelay, to qjuantify the perforimance of (iriver target lane classifiers. The definitions of

the proposed )erformance metrics are illustrated in Figure G-4.

The first metric, fa/sc positi'v rate of the lpredictioll is dlefinied as following:

of true change of target lanes
false positive late =1 - .

of predicted change of target lanes

It measures how 111mh11 the J)re(icted target lane vahie changes more that it has to be.

It is undesirable if it oscillates more often than the actual frequency of the tine chanlge

of the target lanes. It is assumed that the specific target lanes of predicted changes

are always correct if detections of the changes were true positive. This assumption
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has been confirmed from the actual classification results afterwards. Note that the

true target lanes were obtained during data acquisition by the driver's turn signal.

The other proposed metric is the prediction delay of the lane changes. As the

vehicle moves close enough to a target lane, the classifiers should be able to predict

the target lane correctly. A more interesting question is how early the classifiers

estimate the target lane. It is defined as the time elapsed after the true change of the

target lanes.

Note that these performance metrics are used only to quantify and compare the

classification results, but not used for training portions. Although test misclassifica-

tion error also can show classification performances well, the proposed metrics provide

more physical intuition about the target lane classification performance.

G.2 Classification

G.2.1 Two predictors - lateral positions and heading angles

relative to road centerlines

The most intuitively appropriate predictors for classifying target lanes are the lateral

position of the vehicle relative to the road center and the heading angle of the vehicle

relative to the road heading. For the training set, the scatter plot of the two predictors

with the class labels is presented in Figure G-5.

Figure G-6 shows decision boundaries of an overfitted decision tree. This should

be regularized for generalization. The tree has been learned and tested with different

number of splits through a cross-validation framework. The results of the cross valida-

tion are shown in Figure G-7. Even though the minimum average error has occurred

with 43 splits, the best number of splits can be selected as the smallest number of

splits whose average error is within one standard deviation above the minimum. So,

the best number of splits for regularization has been found to be 3. Figure G-8 shows

the decision boundary of the best pruned tree. For the rest of the classifiers, the best

tuning parameters have been also found using cross validation.
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Figure G-8 - G-12 show the decision boundaries of the trained classifiers and

their performances for the test set. As expected. the overfitted decision tree gives

the worst test error rate andi a poor false positive rate. Roughly 95%X of positive

detections of lane changes are not true positives. This can also be seen from the

high rate of fluctuation ill the prediction result graph. Because of this high frequency

of fluctuation, the average prediction delay is shorter than any of the rest of the

classifiers. However it is not practically useful given its extreimelyv high false positive

rate.

The best pruned decision tree gives reasonable performance. It shows a much

better result compared to the overfitted tree. but it is slightly worse than the rest

of regularized classifiers. Both the false positive rate and predict ion delay are the

highest allong the regularized classifiers. Especially the average prediction delay is

roughly twice that of the rest of the regularized classifiers. The reason is that the

primary decision boundary for better classificat ion seem to be rather oblique than

vertical or horizontal as shown in Figure G-8.
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Figure G-9: Decision 1)oundaries for the kNN with best k
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Figure G-12: Results for different classifiers with the two predictors. The classifiers

have been regularized through validation cross validation except the overfitted tree.

On the other hand. kNN gives the best results in terms of both of the false positive

rate and the average prediction delay. The nature of kNN provided more flexible
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boundaries of decisions as shown in Figure G-9. The standardized Euclidean distance

has been used for the distance measure, and the best k has been found to be 900 from

cross validation framework. A drawback was that it was computationally expensive

for the predictions.

A nonlinear statistical model, neural network, has also been applied to the prob-

lem. A neural network with a single hidden layer with 10 hidden units has been

adopted. The validation set has been selected as the 10th bin of the partition of

the training set. The network has been trained by the scaled conjugate gradient

back-propagation method, and fitness has been measured based on cross entropy. 38

iterations have been performed before stopping the training. For the support vector

machine, a Gaussian radial basis function has been applied with the best box con-

straints chosen by cross validation. The neural network and support vector machine

performed much better than the best pruned tree, but not better than kNN.

G.2.2 Additional Predictor - rate of relative heading angles

Two additional potential predictors were considered. The rate of change of the lateral

positions and the rate of change of relative heading angle could be candidates for the

predictors. Considering the high noise sensitivity of differentiation, the rates have

been calculated by averaging the 10 prior points of the differentiation of the states.

The processed variables are shown in Figure G-13. In order to check the relations

between the potential predictors, a scatter plot and correlation between predictors

can be analyzed. Figure G-14 shows the scatter plot of relative heading angle and

rate of lateral position. They are highly correlated, as the correlation coefficient has

been computed as 0.92. Therefore one more predictor, rate of relative heading angle,

has been added to the previous predictors so that there are three predictors in total.

The three-dimensional scatter plot of the three predictors is shown in Figure G-15.

The classifiers with the three predictors are also regularized in the same way as

before. The results of all classifiers with the three predictors are shown in Figure G-

16. The best classifier this time was the neural network, but there is a slight difference

with kNN in terms of test performance. An overfitted tree, of course, has the worst
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Table G.1: Results

Two predictors overfitted tree best tree kNN NN SVM

Test nisclassifieation rate 0.222 0.201 0.113 0.137 0.140

False positive rate 0.945 0.294 0.077 0.294 0.200

Average pre(lietionl delay Iseel 0.454 1.396 0.642 0.754 0.792
Three predictors overfitted tree best tree kNN NN SVM

Test miselassifi(ation rate 0.211 0.155 0.140 0.129 0.174

False positive rate 0.927 0.294 0.368 0.368 0.692

Average pre(lietion (elay jsec 0.358 1.046 0.704 0.650 0.900

pierforlnaiee on the test (lata.

Table G.1 shows the results with two pre(li(tors an(l three )redietors together.

Interestingly. most of the elassifiers have worse performame eonmpared to the elassifiers

with the two predietors. except for the best prne(l tree. However, the hest pirie(l

tree with the three pre(litors happens to be better siece it has the best niunber of

splits, 4. They (1o not have the new pre(litor. the rate of relative hea(ing angles. in
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Figure G-14: Strong correlation between relative heading angles and rate of lateral
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Figure G-16: Results for different classifiers with the three predictors. The classifiers
have been regularized through validation cross validation except the overfitted tree.
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the rule of the tree. So in general, including this new predictor did not improve the

classification performance.

It might be possible to add other useful predictors if we have more information

about situations on the road or driver's actions such as gaze points. For example,

the potential predictors that might improve the classification performance are some

measure of safety of the vehicle's lane change in terms of potential collisions with

other vehicles, under the assumption that drivers pursue safe navigation.

G.3 Summary

Four types of classifiers - decision tree, kNN, neural network, and support vector ma-

chine - have been applied to the proposed problem of classification of driver behavior

on highways. Each classifier is regularized through validation set or cross validation.

In general, the best tuning parameters have been found as the ones minimizing the

complexity of the model whose average validation errors are below one standard de-

viation of the minimum average validation error. The kNN classifier showes the best

performance on the test data, but it was computationally expensive. Considering the

computation burden, the neural network gives reasonable performance on the test

data with reasonable computation burden. In terms of predictors, the new predictor

- the rate of relative heading angles - turned out to be not helpful to increase the

classification performance in general.
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Appendix H

Longitudinal Conservative ICS

Avoidance with an Unpredictable

Predecessor

The chapter provides a simple analytic solution to longitudinal dynamic obstacle

avoidance, which is used in traffic simulation presented in Section 5.2.2. Suppose

there are two consecutive vehicles moving in the same direction on a one-dimensional

track as shown in Figure H-1. The purpose is to find the upper bound of acceleration

of the rear vehicle to apply during the current time step in a way to ensure collision

avoidance with the front vehicle, regardless of the behavior of the front vehicle.

VO

do stopping distance df

Figure H-1: Problem description for a rear vehicle to avoid collisions with front vehicle
in a conservative way

The vehicles are assumed to be point masses with bounded acceleration input.

For convenience, the vehicles are also assumed to be moving in positive directions for

all times. Let the initial speed of the rear vehicle and the front vehicle be vo and
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Vf, respectively. Let time interval be AT, which is the time duration before the next

input command can be applied.

maximum brake

V VO

AT AT

(a) Case 1: IvOAT > d (b) Case 2: IvOAT < d

Figure H-2: Two distinctive cases for stopping distances of the rear vehicle

The worst case for the rear vehicle for collision avoidance is the case when the

front vehicle decelerates with the maximum braking effort. In this case, the stopping

distance of the front vehicle is df = 2ambf where ambf is the magnitude of the maximum

brake acceleration of the front vehicle. Let the sum of the current distance between

the two vehicles, do, and the worst-case stopping distance of the front vehicle, df, be

d = do + df. If the rear vehicle can stop before it travels d, it is always safe.

Theorem 16. The upper bound of the acceleration of the rear vehicle for the current

2 if 1 voAT > d
aupper = (H.1)

S - lam + 2a-2 ( - o T)) otherwise
IAT 2 4 mb 2k

Proof. Let the smallest possible stopping distance of the rear vehicle according to the

acceleration a for the current time step be denoted by d(a). If d(a) is less than or

equal to d, the rear vehicle can avoid collisions with the front vehicle. There are two

distinctive cases for computing d(a) as shown in Figure H-2 depending on whether or

not it is necessary for the rear vehicle to stop before the next time step.

The first is the case where it is necessary for the rear vehicle to stop before the

next time step, i.e., vo0AT > d. In this case, d(a) = 0. Hence the maximum possible

acceleration for the rear vehicle is aupp., =2
0
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The other case is where it is not necessary for the rear vehicle to stop before the

next time step. In this case, the smallest stopping distance with acceleration a for the

current time step, d(a), can be achieved by decelerating with maximum brake after

the next time step.

1 1v d)
d(a) = voAT + -a\T2 + (vo + aZT)2  when -voAT < d (H.2)

2 2 amb 2

Then, the problem reduces to finding the upper bound of acceleration, a'pper, such

that f(a) = d(a) - d < 0. It can be shown that the discriminant D of the quadratic

function f(a) is positive in this case.

AT 4 a2  2 amb voAT 1D ( mb + (d- 0 when -voAT < d (H.3)
amb 4 zT2  2 2

Hence, the upper bound of the acceleration such that d(a) - d < 0 is as follows.

-v 0  1 a2b 2 amb - voA (H.4)
auper = T amb + ( + TAT 2 4z T 2  2T)

El
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