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Abstract

Technical performance improvement exhibits exponential trends, but the rates of
improvement for the 28 selected technological domains vary from 3 to 65%. Why does
performance improve exponentially? Why do the improvement rates vary widely across
the domains?

This thesis presents a simple theoretical model that provides an explanatory
foundation based on two sets of well-known design fundamentals. The first set
conceptualizes inventions arising through combinatorial analogical transfer where new
operating ideas are created by combining operating ideas from an existing pool of ideas.
This inventive process proceeds on a cumulative basis over time and is perpetuated by
injection of basic operating ideas through synergistic exchange between science and
technology. The combinatorial analogical transfer coupled with exchange between science
and technology naturally leads to exponential behavior.

These operating ideas are then embedded in domain artifacts to improve technical
performance. Interactions in artifacts and scaling of design variables - two domain specific
effects from the second set of design fundamentals- modulate this process. Interactions in
artifacts influence the ability of the domains to successfully assimilate the operating ideas.
Assimilated ideas change design variables in the artifacts to improve their performance.
The relative performance improvement depends on the scaling of design variables of the
artifacts. Together these two domain parameters can potentially yield a wide variation in
performance improvement rates. According to the model, higher domain interaction
parameters retard, whereas higher scaling parameters accelerate, performance
improvement rates. The model is shown to be consistent with what is known in the
technical change literature.
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An empirical study tests the model's prediction that higher domain interactions
retard performance improvement rates of technological domains. A method for extracting
domain interactions using a keyword-based text-mining approach on patents is presented.
High normalized counts of keywords representing domain interactions are found to be
negatively correlated with low performance improvement rates, thus supporting the model
positively.

The thesis also presents an independent case study on performance improvement of
permanent magnetic materials, and tests two regression models, which predict
improvement rates using patent data. Performance of magnetic materials follows an
exponential, but halting, improvement trend, and predicted rates from the regression
models are consistent with prior result for the 28 technological domains.

Thesis Committee:
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Department of Mechanical Engineering
Institute for Data, Systems, and Society

Professor Daniel D. Frey
Department of Mechanical Engineering

Professor Stephen Graves
Institute for Data, Systems, and Society
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Dr. Daniel E. Whitney
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Professor Maria C. Yang
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Chapter 1: Introduction

1.1 Introduction

Improved understanding of technological change dynamics can help corporations, who

design and manufacture engineering products and services, private and public investors,

economists and policy makers (Solow 1956, Arrow 1962, Meyers 1969, Utterback 1974,

Dosi 1982, Rosenberg 1982, Musson 1989, Henderson and Clark 1990, Girifalco 1991,

Klevorick et al. 1995, Christensen 1996, Langrish et al. 1997, Ruttan 2001, Lipsey et al.

2005, Baldwin and Clark 2006, Koh and Magee 2006, 2008, Luo et al. 2012, Magee et al.

2014, Benson and Magee 2015b). Products are often designed using sub-systems based on

different technologies. The technological performance existing at a particular point of time

for complementary technologies strongly influences when a specific concept is actually

ready for the market. An example of such a situation has been discussed by Kurzweil

(2005) concerning the readiness of reading machines for the blind which had to await

developments of computation in the early 21st century to become realistic. This illustrates

the importance of being able to forecast rates at which performance of different

technologies improve so that engineering management can plan and strategize their

technological roadmap and private and public investors can make better judgments about

investment in specific technological ideas. A notable example of lack of understanding of

dynamics of technological improvement which resulted in heavy financial losses in clean

technology1 is summarized by Fehrenbacker (2012):

"... one of the key misplaced assumptions that VCs made in the cleantech boom times is

that the rapid progress of Moore's Law ... could be created for cleantech with a little

bit of VCfunding and Silicon Valley smarts. The notion (which is seductive but not true

in most cases) is that the traditional energy industries throughout the world just didn't

1 'Clean technology (clean tech) refers to products, processes, and services that delivers value using zero or
limited non-renewable resources and/or creates significantly less waste than conventional offerings.' Clean
technology includes products such as solar power systems, hybrid electric vehicles, and water filtration.
Pernick and Wilder (2008 pp 2)
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do the right kind of innovation and that the Valley's can-do spirit and open wallets

would be able to unleash this potential."

These examples clearly point to the practical need: 1) to have an empirical understanding

of how different technologies improve; 2) to have theoretical understanding of underlying

dynamics that drives improvement of technologies and potential factors that determine

their rates; 3) to develop better ways to judge technologies' potential for improvement,

perhaps even to discover new approaches that enables faster improvement.

1.2 Motivation of current research

Technological change has generally been studied by business scholars and economists who

have provided valuable insights regarding how technologies improve and how they diffuse

(Griliches 1957, Fisher 1971, Grubler 1991, Pistorius and Utterback 1997, Comin and

Mestieri 2013). Most of these scholars, however, have viewed technical change as occurring

inside a black box, and have treated inventive design processes, the source of (fundamental

mechanisms underlying) technological change, as exogenous or unimportant. As a

consequence, no model, to our knowledge, exists that connects the external technological

behavior with the underlying mechanisms of design and invention, including the role of

science. The work reported here is motivated by the desire to complement prior research

and enhance theoretical understanding of technological change by incorporating the

insights of design and invention processes.

1.3 Problem Statement

Within the large and complex field of technical change, the current research specifically

concerns itself with empirically observed performance trends - exponential improvement

of technological performance and wide variation of their rates across the domains (Moore

1965, Martino 1970, Girifalco 1991, Koh and Magee 2006, 2008, Nordhaus 2007, Magee et

al. 2014). To understand this observed phenomenon, several areas of research have been

identified, of which we here discuss the first. To improve consistency and reduce ambiguity
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in measurement of technology performance and its improvement, our research group

(which includes the current author) have chosen technological domains as the unit of

analysis. In our formulation, technological domains consist of a set of designed artifacts

that utilize a recognized body of knowledge to achieve a specific generic function (Magee

et. al. 2014). The artifacts considered can be products, software, or processes. The body of

knowledge is principally scientific and engineering knowledge. Nine categories of

functions, such as energy storage, energy transport, information storage, information

transport, are considered. Each functional category is decomposed into technological

domain based on the scientific knowledge utilized by artifacts considered. The available

data has been, accordingly, adapted to construct performance data for 28 domains (Magee

et al. 2014). The performance metric of a technological domain, defined from the

perspective of users of technology, is a composite indicator which includes essential

functional outputs and a resource constraint (e.g., cost, volume or mass of the artifact)

important to the users. The performance metric is formulated such that higher

performance is considered better by the users, and expressed per unit of resource

considered. The performance normalized with respect to a resource is referred in this

thesis as an intensive performance 2 whereas the non-normalized performance is referred

as an extensive performance. The analysis has demonstrated that intensive performance

for the 28 technological domains considered in this thesis improve exponentially, but the

annual improvement rates vary widely ranging from 3 to 65 percent.

Two important research questions have emerged from these observations and are

the focus of this thesis: Why does the technological performance grow exponentially? Why

do they grow at widely varying rates? In the current study, we address the two questions

theoretically. In particular, we examine performance trends - the time dependence of

performance as realized in a series of improved designs of artifacts that arise over time.

Towards this end, we have brought together three bodies of research that do not usually

interact. The first is the design research field, particularly its cognitive scientific insights on

the design process. The second is the technological change field where most researchers

2It has to be noted that some literature define intensive properties as being independent of size of the artifact.
This interpretation is not applicable to interpretation of intensive performance as formulated in this thesis.
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have been economists or business scholars. The third area is quantitative modeling of

performance of artifacts. We have constructed a simple explanatory mathematical model

(supported by simulation) founded on important features of the invention and design

process - combinatorial analogical transfer, interactions, and scaling. The model also

utilizes the synergistic exchange between science and technology. In a complementary

study, Benson and Magee (2015b) have examined prediction of the performance

improvement rates using patent meta-characteristics. They did so empirically (and

successfully), but did not address why the trends are exponential and why the rates vary.

A further research task accomplished in this thesis has been to test the

mathematical model by conducting empirical studies of domain interactions. In addition,

performance improvement of permanent magnetic materials has been studied as a case

study to test two predictive regression models based on bibliographic data and textual

content in patents.

1.4 Thesis structure

This thesis is divided into five chapters. Chapter 2 reviews related literature in four broad

areas: technological change, design science research, modeling methods, and patents and

their analysis. Section 2.1 examines salient literature on why and how technological change

occurs. In particular, it examines the literature on empirically observed performance

trends and wide variation in rates. Section 2.2 provides an overview of three areas in the

design science literature. The first area is the combinatorial analogical transfer as related to

inventive and design processes. This includes taxonomy of knowledge, and concepts

related to the relationship between science and technology. The other two topics discussed

in section 2.2 are domain interactions and scaling.

Section 2.3 reviews prior work on quantitative modeling of technological change.

Specifically, it looks at the work of Muth (1986) based on random search, of Axtell (2013)

on agent-based modeling, and that of Arthur and Polak (2006) on simulation-based studies.

The final section 2.4 reviews literature on patents and their analysis. Specifically, it focuses
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on the classification overlap method (COM) which is important to the work in this thesis on

domain interactions, the permanent magnetic materials case study, and analysis techniques

for patent content.

Chapter 3 presents three sets of results with methodology. Section 3.1 begins with a

qualitative description of the structure of the model, followed by a progressive

development of the mathematical model incorporating simulation-based results,

interaction and scaling parameters. Section 3.2 presents results from an empirical study

using patent content, which tests the interaction parameter identified by the model. Section

3.3 provides results from a case study of performance of permanent magnet materials used

for testing predictive regression models.

Chapter 4 is the discussion of the empirical results and the mathematical model. The

results from the case study of permanent magnet materials are first discussed in section

4.1. Section 4.2 enumerates the assumptions in the model and examines their testability,

while section 4.3 discusses assumptions and limitations in the empirical studies. Section

4.4 discusses the implications of the model and empirical work, and section 4.5 reflects on

the modeling work.

Chapter 5, the concluding chapter, discusses the contributions and the questions

spawned by the research effort, including extension of the model to study improvement of

technological capacities in smaller units of analysis such as organizations, and countries.

Please note that the figures, tables and equations are numbered chapter-wise.

1.5 Acronyms and nomenclature

The frequently used acronyms and mathematical symbols are summarized below.

COM = Classification Overlap Method: The method used in this thesis to select relevant and

complete sets of patents to represent a technological domain.

Qj= intensive performance of a technological domain,J
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t = time; to = time at t = 0

101 = individual operating ideas

Pioi = probability of combination of any two 101

1Oo = basic 101 - 101 that first introduce a natural phenomenon in the operations regime

IOIc= cumulative number of 101 in the operations regime

lOIs = 101 successfully integrated into a domain artifact

K= annual rate of increase in IOIc in the Operations regime

Kj = annual rate (when time is in years) of performance improvement measured by the

slope of a plot of InQjvs. t (regression coefficient)

Fu = cumulative fitness of Understanding regime

dj = interaction parameter of domain J defined as interactive out-links from a typical

component in domainj

sj= design parameter affecting the performance of an artifact in domain]

Aj = exponent of design parameter in power law for domain J, relating it to performance
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Chapter 2: Review of Prior Literature

This chapter provides an overview of existing literature in four broad areas related to

improvement of technology. The first three - technological change, design science, and

quantitative modeling - are essential for developing the mathematical model. The fourth -

patents and related analytical techniques - provides the background for the empirical

study of interaction and for the case study.

2.1 Technological change literature

Within the field of technological change, three areas of research are pertinent to our

questions concerning trends in performance improvement. The first two are concerned

with answering why technological improvements occur and what the structure of technical

improvements is. The third one focuses on quantitative measurement and analysis of

technological performance.

2.1.1 Economic effects and technological change

What descriptive models and theories help us understand why technologies improve?

Schumpeter (1934) introduced the idea that entrepreneurs, whose primary role is to

provide improved products and services through innovation, drive economic progress.

These innovations, which Schumpeter describes as industrial mutations, displace

competing products and services from the economy. However, they, too, are displaced by

higher performing innovations that follow, thus perpetuating the cycle of creative

destruction.

Building upon Schumpeter's notion, Solow (1956) recognized and incorporated

technological change as the key element in his quantitative explanatory theory of economic

growth. Approaching technological change from an economic perspective, he modeled

growth in GDP, G, as an aggregate production function: G = A(t) -f(K,L), where K, and L are

capital and labor inputs in physical units, and A(t) represents the accumulated shift in the

25



production function due to technological change over a period of time t. Applying his

model to GNP data for the US from 1901 to 1949, and assuming the value of A(t) in 1901 to

be 1, he calculated the value of A(t) in 1949 to be to 1.89. In other words, the accumulated

technological shift had altered the nature of effective production function such that GNP

was 1.89 higher for the same level of labor and capital inputs. The basic conclusion of

Solow that technological change is the foundation of sustained economic growth has stood

the test of time. Later theorists of economic growth (Arrow 1962, Romer 1990, Acemoglou

2002) have attempted to deal with the more complex problem of embedding technological

change within the economy (endogenous to different degrees).

Although this is important work, it is outside the scope of this research and will not

be covered further here. A related question of sources of innovation does have more

relevance.

2.1.2 Sources of technological change

What are the drivers of technological innovation? The technology change literature has

broadly classified the drivers of innovations into demand-pull and technology-push. Some

early explanations emphasized pure demand pull (Carter and Williams (1957, 1959), Baker

et al. 1967, Myers and Marquis 1969, Langrish et al. 1972, Utterback 1974) where the

needs of the economy at a given time dictate technological direction. Amongst these

studies, study of Myers and Marquis (1969) is frequently cited, and perhaps the most

important in emphasizing the role played by demand. Myers and Marquis conducted an

empirical study of 567 innovations (designs and sources of information for subsequent

innovations) in five industries - railroads, railroad-equipment suppliers, housing suppliers,

computer manufactures, and computers, and computer peripheral suppliers - with a goal to

develop an empirical insight about factors that spur the application of scientific and

technological findings in the civilian economy. Their finding was that recognition of a

demand was a more frequent factor in innovation than recognition of a technical potential.

Baker et al. (1967 and 1971) were, on other hand, concerned with idea generation in an

industrial setting. As silent observers and note-takers they studied corporate research lab's
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ideation activities and analyzed the ideas generated. In one analysis they classified the

ideas generated based on the type of 'stimulating events'. The 'needs event', were defined

as 'recognition of an organizational need, problem or opportunity", and 94 percent of ideas

were classified under this category. In "means events," defined as "recognition of a means

or technique by which to satisfy the need, solve the problem, or capitalize on the

opportunity", 92 percent of ideas were classified. Overall, they concluded that 75% of ideas

and 85 % of those subjectively rated as the best ideas, were classified as arising from

"need-means" sequence, alluding to the role of need in innovation but also the role of

means or technological solutions. The primacy of demand-pull was emphasized in a review

article in Science by Utterback (1974), who summarized his empirical finding as follows:

"Market factors appear to be the primary influence on innovation. From 60 to 80

percent of important innovations in a large number offields have been in response to

market demands and needs. The remainder have originated in response to new

scientific or technological advances and opportunities. There is a striking similarity

between the studies conducted in the United States and those conducted in the United

Kingdom [pp 621]".

Mowery and Rosenberg (1979) were very critical of the findings published in support of

demand-pull as the primary force for innovation. They note that these studies are

"seriously flawed and, in many cases, invalid". Out of many reasons, one they emphasize is:

The notion of need used in these studies is much looser than the concept of demand in

economics, which has a 'more restrictive and precise definition". This issue has led to an

identification problem: "Is an innovation introduced because the demand for a product has

increased (i.e. the demand curve has shifted outward) or because technological

improvement (or other sources of cost reduction) now make it possible to sell the product

at a lower price. The first case is the one required to support the "demand-pull"

hypothesis."

Mowery and Rosenberg have reanalyzed the data and methodology in these early

works and arrived at an equally strong role for science/technology push (the discoveries of

scientists and inventors primarily determine technological direction) in spurring
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innovations. Instead of saying only demand-pull or technology push is important, they have

highlighted that "both demand and supply-side influences are crucial to understanding the

innovation process". In fact, "...any careful study of the history of an innovation is likely to

reveal a characteristically iterative process, in which both demand and supply forces have

responded" (emphasis mine) and "innovations which are not highly sensitive to both sets of

forces are most unlikely to achieve the status of commercial success."

Taking a balanced view similar to that of Mowery and Rosenberg, Dosi (1982) has

also advocated that both market-pull (customer needs and potential for profitability) and

technology-push (in the form of promising new technology, and the underpinning

procedures) are equally important for being sources of innovation. He has also pointed that

there is a complex structure of feedbacks between economic environment and the

directions of technological change. Although impressionistic, in the same paper, Dosi has

furthermore shed light on the nature of technological change with his suggestion that we

can conceptually view technological change occurring as a series of technological

paradigms and technological trajectories (both concepts are highly cited). Borrowing from

the analogy to scientific paradigms as described by Kuhn (1962), Dosi defines technological

paradigms as an outlook, a set of procedures, a definition of the relevant problems, and of

the specific knowledge related to their solution". A trajectory is a directional advance

within an area circumscribed by a paradigm.

A recent finding on changes in preference structures as triggers of innovation

(Tripsas 2008) has added a new dimension to demand-pull. In previous studies of demand-

pull and technology-push, Tripsas notes, customer preferences were considered static. She

has shown, using the case study of evolution of typesetter industry, that changes in

customer preferences are a reality and they act as an economic feedback, as mentioned by

Dosi(1982), to set in motion significant innovative efforts. Some salient examples of drivers

of significant changes in preference structures are: a) shifts in government regulation

(pollution control), political change (opening of borders in Eastern Europe), and evolution

of customer needs (insurance companies requiring better computers for data processing).

However, Mowery and Rosenberg's point still stands since the preference changes covered
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by Tripsas were made possible by the technological changes she studied and she does not

show increasing demand before the technological change occurred but in most cases, the

need or demand was long-standing.

2.1.3 Theories on structure of technological change

What patterns does technological change exhibit? Several models have been developed to

answer this question from different angles, which will be discussed sequentially.

S-curve theory: This concept has been widely used by technology strategists.

Sahal (1981), Utterback (1974), and Foster (1986), have been the main supporters of this

view. According to this theory, technological performance exhibits a nature of an S-curve

(see figure 2.1). It is explained that this trend actually is a result of three stages:

introductory, growth, and maturity. During the growth stage, performance of a technology

grows slowly (early part of the S-curve) since the firms may have to spend effort to set up,

understand the problem and overcome bottlenecks. As a result, change in performance is

meager during this stage. In the growth period (the middle phase of S-curve), with

continued research effort, the technology passes a threshold value and makes rapid

progress. This period sees rise of a dominant design around which consumer preferences

coalesce (Utterback 1974). In a maturity phase (last part of S-curve), the rapid

improvement of performance transitions to a slower pace. Many reasons have been

proposed for this maturity of the technology. Foster (1986) suggests that maturation is an

innate feature of innovation, implying the notion of a limit. Utterback (1994), and Adner

and Levinthal (2002) suggest that as a market ages, the focus of innovation shifts from the

products to process, leading to reduced increase in performance.3

3 In their definition of performance of a technology, Magee et al (2014) include cost as one of the resource
constraints that determines performance of a technology. According to this definition, process improvement
leading to reduction in cost results in performance improvement.
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Christensen (1992), a scholar of technology strategy, states that "The technology S-

curve has become a centerpiece in thinking about technology strategy." He has utilized this

concept to build his theory of disruptive innovation (which will be discussed shortly).

Although the S curve theory is fairly widely accepted, it contains some large flaws. First,

there is no data in any of the papers discussing it that shows statistically acceptable

deviations from an exponential (hints of bending over are generally reversed if further data

is obtained). Second, all data on R&D indicate that product R&D continues to totally

dominate process R&D even in fairly old industries such as the electrical power production,

the automotive and appliance industries where product spending is perhaps at least an

order of magnitude greater than process R&D even today. Besides being empirically

vacuous, S curve theory has conceptual challenges including non-operational definitions of

"dominant design" and apparent confusion between diffusion (which has long been shown

to empirically-and theoretically- to follow an S curve) changes with time vs. performance

changes with time. In a recent study on theories and hypotheses and empirical data on S-

curves, Tellis and Sood (2005) failed to find 'any single, strong, and unified theory for the S

curve', and found only scattered empirical to support it. Indeed, Christensen's own work

does not show S curves despite his apparent endorsement of it. Some have hypothesized

that apparent exponentials may be a series of s-curves. Statement that they are still
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exponential overall is not a testable hypothesis but may be correct (and not inconsistent

with the model developed in this thesis).

Incremental versus discontinuous change: The notion that technological change occurs

as a series of incremental change punctuated by discontinuities (large changes) is a popular

view among scholars (Hill and Utterback 1980, Tushman and Anderson 1986, Bourgeois

and Eisenhardt 1988, Henderson and Clark 1990, Hoisl et al. 2014). Using data from the

minicomputer, cement, and airline industries from their births through 1980, Tushman and

Anderson (1986) have indicated that technology improvement evolves as a series of

incremental changes punctuated by discontinuities. Figure 2.2 shows performance (seat-

miles-per-year capacity) of most capable airplanes flown by US airlines, where instances of

large percentage change represent discontinuities. These discontinuities, they argue, have

large socio-technical effects, but are an essential element of technological change. They can

come in the form of competence-destroying initiated by new firms, or in the form of

competence-sustaining initiated by existing firms. We should note that the airplane data

below misses some points found in the more extensive work of airplane performance

reported by Martino (1971), and that Martino shows that overall the long-term

performance increases exponentially.

In another highly referenced paper, Henderson and Clark (1990) state that

modeling technological change as incremental and discontinuous change in performance is

incomplete, and cannot explain industrial cases where large incumbent firms were

overwhelmed by seemingly innocuous products from entering firms. Xerox lost half of its

share to small copier manufactures, and RCA lost its shares to Sony's portable

transistorized radio. In both of these cases, it was not a discontinuity in performance

related to some significant scientific breakthrough that caused this turbulence. Instead, it

was the importance of architectural change of artifacts - as opposed to component change -

having large effects on the firm level impact of change.
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Fig. 2.2: Discontinuities in performance of airplanes (Seat-miles-per-year capacity of
most capable airplanes flown by US airline 1930-1978). Adapted from Tushman and
Anderson 1986.

Christensen (1996), on the other hand, views technological change occurring as a

series of disruptive product innovations. As mentioned earlier, he builds his model of

disruptive innovations using the concept of S-curves. Christensen describes a disruptive

technology as starting in a niche market (see right plot in Fig. 2.3) with a different set of

functional requirements using a novel architecture, but lags behind with respect to

mainstream performance (he uses extensive rather than intensive performance) in

conventional markets (left plot in Fig. 2.3). Rapidly improving towards the requirements of

mainstream performance, the disruptive technology surpasses the mature market leaders

(by achieving the necessary performance in smaller, cheaper artifacts), and displaces them

(left plot in Fig. 2.3).
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Fig. 2.3: A S-curve model of architectural innovation. Adapted from Christensen 1992b.

2.1.4 Technological performance change

All of the concepts of technological change described in the preceding sections, at least

implicitly, depend upon relative rates of change of performance. This is the focus of our

research so we will now briefly review concepts related to trends in performance of

designed artifacts, and what patterns they have followed. We first review two established

frameworks - generalizations of Wright's early research, and Moore's Law - for describing

trends in technological performance. The difference between the two approaches lies in the

use of the independent variable: Wright's approach uses cumulative production, whereas

Moore's approach uses time.

2.1.4.1 Wright's Approach

In 1936, Theodore Paul Wright (1936) in his seminal paper "Factors affecting the Cost of

Airplanes" for the first time introduced the idea of measuring technological progress of

artifacts. From his empirical study of airplane manufacturing, he demonstrated that labor

cost or total cost of specific airplane designs decreased as a power law against their

cumulative production. Fig. 2.4a shows the reduction of cost (labor and total) decreasing as

a straight line in log-log graph. This relationship is expressed mathematically as:
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C = CoP -w(

Where Co, and C are unit cost of the first, and subsequent airplanes respectively, and where

P and w are cumulative production and its exponent that relates it to unit cost; it is now

sometimes called Wright's Law (by analogy with Moore's Law - see below). Wright explains

that labor cost reductions are realized as shop floor personnel gain experience with the

manufacturing processes and material usage, and have access to better production tools. It

should be noted that Wright did not look at improvement due to new designs (which is the

focus of our work). Rather he looked at cost reduction of specific aircraft designs due to

improvements made on the factory floor. Each curve in Fig. 2.4b plots the unit cost of

individual airplanes for different designs as a percent of the total cost of the series plane

produced as a function of total numbers of airplanes manufactured.

Since Wright's work, this approach has been used to study production of airplanes

and ships during World War II, and extended to private enterprises (Yelle, 2007).

Fig. 2.4 a: Reduction in unit cost as a power-law of cumulative production. Adapted

from Wright 1936.
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Fig. 2.4 b: Reduction in unit cost as a function of cumulative production. Each curve

represents a separate design. The cost of each machine plotted in a percent of total cost of

each series for varying quantities. Adapted from Wright 1936.

2.1.4.2 Moore's Approach

Gordon Moore (1965) presented the second approach - using time as the independent

variable - in his seminal paper that describes improvement in manufacture of integrated

circuits. He observed that the number of transistors on a die was doubling roughly every 18

months (modified to 2 years in 1975). Fig. 2.5a shows improvement in the number of

components in dies utilized for memory and processors. This exponential relationship

between the number of transistors on a die and time, famously known 4 as Moore's Law, can

be mathematically expressed as:

Qj(t) = Qj(to) exp(Kj (t-to)} (2.2)

4 This designation was given to the relationship by California Institute of Technology professor Carver Mead.
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Where Qj (to) and Qj (t) are the number of transistors per die (a measure of performance) at

time to and time t, and Kj is the rate of improvement (annual if time is in years). For

integrated circuits, the exponential relationship has held broadly true for five decades.

In a recent paper, Moore (2006) has summarized the explanatory factors that are

responsible for the rapid improvement in the density of transistors in Integrated Circuits.

Fig. 2.5b summarizes three factors - improvements in die size, reduction in feature

dimensions, and device and circuit cleverness - that have contributed towards

improvement in the number of components in the chip. One important point to note is that

all three are growing exponentially. Moore says the third factor, which includes ability of

engineers to minimize wasted space, and isolation structures, was exhausted in about

1975, leaving the other two as most important contributing factors.

V

0

CL
E
0.
U

Fig. 2.5
Adapted

1010

109

10-

107-

106_

106-

104-

103 -

102-

101
i no

<>1965 actual data 4G
o MOS arrays 512 1G. ''
L MOS logic 1975 actual data 1 "tecko

o 1975 projection A 'Pentium'
E memory 4M Ar Pentlumm
A microprocessor mu Pentiumil

86

K

4004

TI I I I 1 1
1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

Year

a: Improvement in the number of components per semiconductors die.
from Moore 2006.

36



1M-

64K -
contribution of

device and circuit
cleverness

o 4K

0

0

0k.0
C.)0

16-&es%0t fo

1960 1965 1970 1975 1980

Year

Fig. 2.5 b: Factors contributing towards improvement in number of components per
die. Adapted from Moore 2006.

Others (Martino 1971, Girifalco 1991, Nordhaus 1996, Koh and Magee (2006, 2008)

and Leinhard 2008) utilized this temporal approach to study performance of different

technologies, and have demonstrated that many technologies exhibit exponential behavior

with time. More recently, Magee et al. (2014), discussed in more detail shortly, extended

the study to 73 different performance metrics in 28 different technology domains. The

performance curves have continued to demonstrate exponential behavior, although annual

rates vary widely across domains.

We note that Moore and all others who used his framework basically compared the

performance of different designs over time differentiating the Wright and Moore

frameworks. However, it is also possible to use the Wright framework for different designs

but only if the amount produced increases exponentially with time (Sahal 1979, Nagy et al.

2013, Magee et al. 2014). We discuss the relationship between the two approaches next.
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2.1.4.3 Equivalence of Moore's and Wright's approaches

In his paper, A Theory of Progress Functions, Sahal (1979) first noted that exponential trend

in performance for a technology can be obtained from Wright's power law if the cumulative

production of that technology is also growing exponentially. This equivalence can be

viewed as a decomposition of Moore's Law (K, slope of the curve) into a product of Wright's

exponent (w, slope of power law) and the time derivative of the logarithm of production (g,

slope of log production vs. time curve). Mathematically, this is:

d in Qj/dt = d in Qj/d in Ej -d In Ej/dt (2.3a)

Where Qj and Ej are performance and volume of production (or effort) of a technology j at
time t.

Since each term is a constant, the equation can be rewritten as:

K =w. g; (2.3b)

w =K/g (2.3c)

Where,

K = d in Qj/dt (2.3d)

w= d in Qj/d in Ej (2.3e)

g =d in Ej/dt (2.30

In a statistical study of 62 different technologies, Nagy et al. (2013) examine

predictive capabilities of these two models, and their relationships with each other. They

show that production of many technologies grows exponentially with time, with variable

quality of the exponential fit. Fig. 2.6 on page 40, for example, shows exponential growth in

production for PVC, as well as for exponential reduction in unit cost (e. g., US$/lb). They

have tested the equality in equation 2.3c by comparing values of w, the exponent of

Wright's power law, with the ratio of K (exponent from Moore's law) and g (exponent of

38



production growth), see Fig. 2.7. The reliability of equation 2.3c, demonstrated by

proximity of all the points on the line of equality, is surprisingly good.

The annual or cumulative production is a measure of an effort variable. In a more

recent article, Magee et al. (2014) following Foster, Christenson and others note that other

potential effort variables are revenue, profit and patents in a technological domain. Using

production, revenue, and patent data for IC chips as different measures of effort, they have

shown that, in each case, the relationship in equation 2.3a holds. Table 2.1 presents the

empirical values of w and g for each effort variable, with value of R2 in parentheses. It is

clear that the calculated K values (column 3) using three different effort variables are very

close to the empirically obtained K value (inside parenthesis in column 3), supporting the

idea the patents, production, and revenue are a useful measures of effort.

Magee et al. (2014) argue that, although both approaches may be used, Moore's

approach is preferable. This is because, Wright's approach requires both performance and

production data whereas Moore's requires only performance data. Production data is hard

to reliably obtain, especially at the technological domain or industry level. Furthermore, if

cumulative production is used as an effort variable, lack of production, especially data early

on, introduces serious distortion to the trend. For this reason and one other, they

recommend using Moore's approach to study the performance improvement. The second

reason is that with patent data for 28 domains they show that Moore's Law is followed

even when patents do not increase exponentially with time but Wright's relationship is

only followed reliably when patents do increase exponentially5 . The work of Magee et al.

provides the empirical foundation for the theoretical work presented in this thesis, so it is

discussed in detail next.

s See Fig. 5 - and Fig. 4 - working paper by Magee et al. (2014).
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2.1.4.4 Performance trends in 28 technological domains

Magee et al. (2014) note that there is considerable ambiguity in many technological studies

concerning unit of analysis, choice of dependent variable or performance metric definition,

and data quality. The choice of unit of analysis is obviously dictated by the goal of the study.

Some economists, for example Solow 1956, have considered technology as a whole as a unit

of analysis. At the other extreme, single specific designs may be also studied as a unit of

analysis (Wright 1936). Others, such as Moore (2006), have used a unit of analysis, which

considers multiple generations of designs, which can be viewed as technological domains,

or industries. Being explicit about what the unit of analysis is necessary to compare results

consistently between different studies.

Considerable variation also exists in the appropriate definition of performance

metric (choice of dependent variable) for a given technology. Some have considered only a

single figure of merit for a technology, such as speed of a fighter jet (Lienhard 2008).

Others have combined two figures of merit to create a composite, such as seat-miles-per-

year capacity (Martino 1971, Tushman and Anderson 1986). A good performance metric

should utilize all essential figures of merit (Magee et al. 2014) to prevent trade-offs from

appearing as performance improvement. Another important consideration in metric
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Table 2.1: Empirical values of g and w for IC processors with the dependent
variable (Q) = transistors/die. The empirical value of K for this dependent
variable is 0.36 in good agreement with the values estimated from Sahal's
relationship (K = g -w). Adapted from Magee et al. (2014).

Independent g from equation w from equation Estimated K = w -g

effort-variable 2.3f and (R2) 2.3e and (IR2) (empirically det. K}

Production/demand 0.59 (.97) 0.6 (.99) 0.35; {0.36}

Revenue 0.095 (.91) 3.4 (.88) 0.32; {O.36}

Number of Patents 0.114 (.76) 3.0 (.86) 0.34; {0.36}



definition is whether the performance metric is intensive or extensive. Use of intensive

performance is necessary to capture whether the improvement is due to change in scale or

due to inherently a better solution. In this regard, the inclusion of resource constraints in

the metric definition is important. Some common examples of resources are cost, volume

or mass of an artifact, and time duration. The performance metrics presented in Magee et al

(2014) reflect these considerations. A composite performance metric constructed for

milling machine, for example, uses three figures of merit - speed (a proxy for measure of

production), tolerance (measure of quality), range of manufacturable part size (measure of

flexibility), and one resource constraint - cost.

Magee et al. (2014) use functions and bodies of knowledge as two criteria to identify

technology domains, the units of analysis in their work. Following the earlier works of Koh

and Magee (2006, 2008), they have utilized the operation-operand matrix to capture a

range of functions. Table 2.2 shows the 9-cell matrix, where operands - information,

energy, and materials - are on the top row, and operations - storage, transportation, and

transformation - are on left-most column. Each of the 9 cells - intersections of operands

and operations - represents a function. For example, information storage, and energy

storage are different functions. Each function can be achieved using different "effects", that

is, different bodies of knowledge, thus qualifying them as technological domains. For

example, energy can be stored using batteries, capacitors, or flywheels, but the effects they

take advantage of are different. Batteries utilize knowledge of electro-chemistry, whereas

capacitors and flywheels use knowledge of electro-statics and mechanics respectively.

Accordingly, each of these represents a domain. The table 2.2 lists 28 domains used

throughout this thesis along with the body of knowledge they utilize.

In order to clarify for readers the nature of empirical performance data,

performance data for two sample domains - electric motor and MRI - are presented (Fig.

2.8a). The data set for each domain contains only non-dominated observations for
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determining the trends 6. Non-dominated observations are those observations, whose value

has not been achieved earlier in time; in other words, they are record setters. It has to be

noted that the plots use a logarithmic scale on the vertical axis (performance) and linear

scale on the horizontal axis (time).

There are two patterns to note on this plot. First, the each data set can be

approximated by a straight line (R 2 is 0.85 or higher for both), implying that the

improvement is described well by an exponential with time. The exponential trend for each

domain can be described by equation 2.2, where Qj(t) and Qj(to) are the intensive

performance of an artifact in domain J at time t and to, and K is the annual rate of

improvement of the domain in question. Second, the rate of improvement for MRI, equal to

2 1.3%, is much higher than that for electric motor, equal to 3.1%.

Magee et al. (2014) extended the study to 73 different performance metrics in 28

different technology domains. All metrics continue to exhibit exponential trends, and the

variation is even greater, ranging from 3% for milling machines to 65 % for optical

telecommunications. Figure 2.8b provides a summary of improvement rates for 28

domains displayed with decreasing K.

These empirical patterns provide the context for the theoretical work in the current

thesis. In a related work, Benson and Magee (2015b) have empirically investigated the

variation of the improvement rates in these 28 domains. The work has important

relationships to the current work so it is described not only to note the relationships but to

also clarify the fundamental differences. Benson and Magee found strong correlations

between specific meta-characteristics of the patents in the 28 domains 7  and the

improvement rate in the domains (a key concern of this thesis as well). These authors

found that patent meta-characteristics reflecting the importance (citations per patent by

other patents), recency (age of patents in a domain) and immediacy (the average over time

of the usage of current new knowledge in the domain) are all correlated with the

6 It is the usual preferred practice because of concern that dominated points may be exceedingly high on a
missing variable introducing noise (Magee et al. 2014)

7 The patents are found by a new technique developed by Benson and Magee 2015a.
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improvement rate. They found a particularly strong correlation (r= 0.76, p =2.lx 10-6) with

a metric that combines immediacy and importance (the average number of citations that

patents in the domain receive in their first three years). The findings (and associated

multiple regressions) are robust over time and with domain selection and are of practical

importance in predicting technological progress in domains where performance data is not

available (Benson and Magee, 2015b). Nonetheless, the conceptual basis for the findings is

observed attributes of the inventive output from a technological field (importance, recency

and immediacy of a patent set) and not the process of invention nor other technical aspects

of designed artifacts in the domain. The aim of the work reported in the present thesis is to

develop a model that yields insights about the pace of change without recourse to concepts

based upon observation of the output over time. If fully successful, we would be able to

judge the potential for change based only upon the nature of the design knowledge and we

might even be able to find new approaches that might achieve technological goals at more

rapid improvement rates.
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# Information Energy Material

Semiconductor Information Electrochemical
storage batteries
(Solid-state physics, chemistry) (Electro-chemistry)

M Magnetic information Capacitors
storage
(magnetic materials) (Electrostatics)

Optical information storage Flywheel
(Optical materials) (Mechanics, materials)

Electrical Electrical power Aircraft transport
telecommunication transmission (Aerodynamics,

C (Electromagnetism) (electromagnetics) mechanics)

Optical telecommunication Superconductivity
(photonics, optics) (solid state physics)

Wireless
telecommunication
(Electromagnetism))

IC Processors Combustion engines Milling Machines
(Solid-state physics, chemistry) (Thermodynamics, (Mechanics, dynamics)

mechanics)

Electronic computation Electrical motors 3D printing
(Solid-state physics, (Electromagnetism) (Materials, computation)
computation)

Camera Sensitivity Solar PV power Photolithography
(Photonics) (Solid-state physics) (Chemistry, optics)

Wind turbines
MRI (Aerodynamics,(Nuclear physics) mechanics)

CT scan Fuel cells
(Atomic physics, computation) (Physical Chemistry)

. sIncandescentGenome sequencing Lighting
(biology, genomics) (materials)

LED lighting
_ _ __ (Solid-state physics)

Table 2.2: Functional matrix with technological domains. Each technological domain is
defined by the function and the scientific knowledge used to fulfill that function. Adapted
from Magee et al. 2014.
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2.2 Design Science Research

2.2.1 Technical Change and Design Science

What connections between technological change and design research (science) can be

inferred from the existing literature? Although early literature connecting these two fields

is scant, among later works that have begun to build a bridge between aspects of design

research and the economics of technological change is the paper by Baldwin and Clark

(2006). These authors (and Luo J. et al. 2014) point specifically to a central role for design

in achieving economic value. Baldwin and Clark summarize this connection succinctly:

"Designs are the instructions based on knowledge that turn resources into things that

people use and value. All goods and services have designs, and a new design lies behind

every innovation. Clearly then designs are an important source of economic value,

consumer welfare and competitive advantage for individuals, companies and

countries."

The authors, at the same time, lament that "despite their pervasive influence, designs as

drivers of innovation and wealth creation are not much discussed by social scientists,

senior managers, or policy- makers." Very recently, Luo et al. (2014) have analyzed design

research in economic context, and assessed four economies -Singapore, Finland, Taiwan,

and South Korea - with respect to design capability. Their finding was that the cumulative

nature of design, especially technology-based, has important strategic value for sustaining

long-term economic growth.

Another view, in addition to one adopted by economists, that somewhat ignores

design is the linear model accredited to Vannevar Bush (1945), which considers technical

change occurring through application of science (which will be discussed shortly in section

2.2.2). As a counterview, in his seminal book, The Sciences of the Artificial, Herbert Simon

(1969, 1996) was the first to highlight that design is an activity standing on its own right,

like natural sciences, and has its own set of logic, concepts, and principles. While the

primary goal of natural science is to produce predictive explanations of natural
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phenomena, the primary goal of design is to create artifacts, physical or abstract. The

design activity is central to creation and improvement of artifacts in all technological

domains and involves a cognitive element. This indisputable cognitive element has been

noted by many scholars who have studied invention and design (Simon 1969, Dasgupta

1996, Gero and Kannengiesser (2004), Hatchuel and Weil 2009).

The following sub-sections will review related design and invention literature in the

context of performance improvement, an important aspect of technical change, and the

focus of this thesis.

2.2.2 Design and invention

2.2.2.1 Design theories

In the context of realizing higher performance from subsequent generations of artifacts, the

role of invention, as one outcome of the design process, is a critical one since improvement

in performance of artifacts must strongly reflect the inventions.8 As Vincenti (1990, pg.

230) puts it, inventive activity is a source of new operational principles, and normal

configurations that underlie future normal or radical designs. The operational principle

(Polyani 1962, Vincenti 1990) of an artifact describes how its components fulfill their

special function while combining to an overall operation to achieve the function of the

artifact.

Models that have been found useful in describing the creative design process

include FBS theory (Gero and Kannengiesser 2004), CK theory (Hatchuel and Weil 2009),

axiomatic design (Suh 2001), TRIZ (Altshuller 1984), agent-based synthesis (Campbell et

al. 2000), topological structures (Braha and Reich 2003), infused design (Shai et al. 2009),

analytical product design (Frischknecht et al. 2009) and other models. FBS (Function-

behavior-structure) framework models design process as a "recursive interrelationship

between different environments" (external, internal to designer, and expected), where each

environment can evolve dynamically. CK theory, on the other hand, conceptualizes creation

8 A design is considered an invention when it is deemed to be historically original (Dasgupta 1996).
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of innovative solutions as recursive interaction between propositional knowledge space

and design concept space as the design evolves. Axiomatic design is founded on two central

axioms - independence of functional requirements and minimization of information

content of design. It uses matrix methods to analyze transformation of design parameters

into functional requirements. TRIZ contends that, although inventions are products of

cognitive insight, there is a pattern that cuts across the industries in the types of problems

being solved and the inventive solutions developed. These patterns in problems and

solution identified through empirical study of global patents can be used to solve new

inventive problems.

Topological structures (Braha and Reich 2003) provide a mathematical framework

for studying design processes. The infused design approach (Shai et al. 2009) is aimed at

aiding the designers to generate creative conceptual design by transforming solutions from

one field to new fields, and uses formal principles. The agent-based approach (Campbell et

al. 2000) provides a general methodology for searching unstructured design spaces based

on the collaboration of many goal-directed agents, and utilizes "an agent architecture, a

multi-objective design selection scheme, a functional representation of solutions, and an

iterative-based algorithm for evolving optimally directed design states".

These frameworks briefly noted in this subsection are more concerned with the

cognitive details of generating a specific design, and do not consider previous and future

generations of artifacts; hence they appear less promising for modeling performance

changes.

2.2.2.2 Invention and combinatorial analogical transfer

The modeling framework found most helpful in our modeling of performance changes

resulting from a cumulative design process is analogical transfer. Although this idea can be

traced as beginning with Polya (1945) or earlier, the framework remains an active area in

design research (Clement et al. 1994, Goel 1997, Gentner and Markman 1997, Leclerq and

Heylighen 2002, Dahl and Moreau 2002, Christensen and Schunn 2007, Linsey et al. 2008,

Tseng et al. 2008, Linsey et al. 2012, Fu et al. 2013). Weisberg (2006) explains analogical
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transfer as involving the use of conceptual knowledge from a familiar domain (base) and

applying it to create knowledge in a domain with similar structure (target): analogical

transfer exploits past knowledge in both the base and target domains. The analogies

utilized can be local, regional or remote, depending on surface and structural similarities

between objects involved in the base and target domains. Weisberg discusses the example

of the Wright brothers using several analogical transfers to recognize and solve the

problem of flight control. First, the Wright brothers viewed flying as being similar to biking

in which the rider has to be actively involved in controlling the bike, an application of

regional analogy. Interestingly, many others attempting to design artifacts for flying did not

access this regional analogy and thus did not even identify the key control problem. Second,

they studied birds to see how they controlled themselves during flight, and learned that

they adjusted their position about the rolling axis using their wing tips. From this insight,

they had the idea of using similar moving surfaces, another instance of using regional

analogy. Lastly, they developed the idea of warping the wings, demonstrated by using a

twisted cardboard box, to act like vanes of windmills to make the airplane roll. The use of

three analogical transfers in combination to see and solve the flight control problem is a

clear case of analogical transfer but there is also evidence (cited earlier in this paragraph)

of much wider applicability. Weisberg contends that analogical transfer is utilized in

generation of both scientific and technological knowledge. Existing knowledge provides the

foundational basis for analogical transfer to occur.

There are more abstract versions of combinatorial analogical transfer that have

been proposed in the wider literature. Based on an extensive historical study of mechanical

inventions and drawing insights from Gestalt psychology, Usher (1954) proposed a

cumulative synthesis approach for creation of inventions. See Fig. 2.9. Usher conceptualizes

inventions occurring through four stages: (1) perception of incomplete pattern (2) the

setting of the stage (3) the act of insight (4) critical revision and full mastery of the new

pattern. The notion of bisociation (Dasgupta 1996, Koestler 1964) develops this concept -

cumulative synthesis approach - further and says that a new inventive idea is ideated

combining disparate ideas. More recently, Fleming (2001) and Arthur (2006) have

respectively used the same combinatorial notions of invention in studying technical
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change. Other research in the technical change literature also discusses a related concept

that is usually called "spillover". Rosenberg (1982) showed that such technological

spillover greatly impacted the quantity and quality of technological change in the United

States in the 20th century - a result supported by Nelson and Winter (1982) and Ruttan

(2001). Indeed, a recent paper by Nemet and Johnson (2012) states that "one of the most

fundamental concepts in innovation theory is that important inventions involve the

transfer of knowledge from one technical area to another". These descriptions do not

always make a clear distinction regarding whether the transfer is occurring at the idea

level or at the artifact level. They are silent regarding how and from where designers or

inventors get their disparate ideas to combine.

Analogical transfer of ideas as a mechanism and expertise - scientific and

technological knowledge - as the foundation of ideas (Weisberg, 2006) provides specificity

adequate for the model in this thesis. We next consider the nature of knowledge.
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Fig. 2.9: The process of cumulative

synthesis. A full cycle of first invention

and a part of a second cycle. Large circles

I-IV represent four steps in the

development of a strategic invention. The

steps are: (1) perception of incomplete

pattern, (11) the setting of the stage, (111)

the act of insight, (IV) critical revision and

full mastery of the new pattern. Small

circles represent individual elements of

novelty. Arrows represent familiar

elements in the new synthesis. Adapted

from Usher 1956 p 69.
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2.2.2.3 Taxonomy of knowledge and operating principles

Vincenti (1990), and Mokyr (2002) take the view that both scientific and technological

knowledge can be classified into descriptive (Understanding) and prescriptive (Operations)

knowledge regimes 9. See Fig. 2.10. The understanding regime can be seen as a body of

'what' knowledge and includes scientific principles and explanations, natural regularities

and patterns, materials properties, and physical constants. A unit of Understanding is

falsifiable (Popper 1959) and enables explanation and prediction about specific

phenomena, including artifacts. However, some principles are fitter than others suggesting

explanatory reach as a metric. The operations regime, on the other hand, can be viewed as

a body of 'design knowledge', which suggests how to leverage natural 'effects' (Arthur,

2006, Vincenti, 1990) to achieve a technological advantage or purpose. It includes,

operating principles, design methods, experimental methods, and tools (Dasgupta 1996,

Vincenti 1990). An example may help clarify this distinction: the principle of total internal

reflection (Fig. 2.11) says that a beam of light, incident at an angle greater than a certain

critical angle, will get fully reflected when it tries to go from a denser medium, such as

glass, to a lighter medium, such as air. This principle accurately describes a natural effect,

but it does not prescribe how we can use it to transmit information. Total internal

reflection of a beam of light between a pair of parallel surfaces (or within a fiber)

encompassing a denser medium provides a mechanism - an operating principle - to make a

ray of light travel down the length of a medium. Based on this distinction, understanding

enables generation of operational knowledge, which ultimately contributes towards design

of some artifact. However, operations is not entirely based upon existing understanding

and in fact innovations in know-how can and often do occur before any understanding of

related natural effects is available. Development of steam engine, for example, spurred the

birth of thermodynamics (Hunt 2010).

9 We use the terms "Understanding" and "Operations", since each brings more clarity to the nature of
underlying activity. Understanding refers to conceptual insight that is generated about an object or
environment, whereas operations refer to the idea of acting on an object or environment to get some desired
effect. Bruce Hunt (2010) describes this as knowing versus doing.
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Fig. 2.10: Propositional (Understanding) and Prescriptive (Operations) knowledge. Adapted
from Mokyr, 2002, p 17.
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a) Total internal reflection

b) Embodiment of total internal reflection to
transmit energy or information using parallel
surfaces or a fiber

Fig. 2.11: Example of understanding and operating principle

Weisberg (2006) has emphasized that analogical transfer is used in a variety of

creative activities including science (close to our understanding regime) and invention
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(close to our operation regime except that operations also includes the experimental tools

of science). A similar argument has been applied to the more abstract notion of

combinations. For example, Ruttan (1959) argued that Usher's formulation, cumulative

four step process, "provides a unified theory of the social processes by which 'new things'

come into existence that is broad enough to encompass the whole range of activities

characterized by the terms science, invention, and innovation". We will utilize models of

both the understanding and operation regimes that are based upon analogical transfer of

knowledge to (probabilistically) create new knowledge.

2.2.3 Synergistic exchange between science and technology

An important aspect of design and invention is the cooperative link between understanding

(science) and operations (technology) regimes (Musson, 1972, Musson and Robinson

1989). Using a historical perspective, Mokyr (2002) has carefully observed that a

synergistic exchange between the two has been occurring, where each enables the other

(see Fig.2.12). The contribution of understanding (science) to operations (technology) is

well known: it provides principles, and regularities of natural effects, including new ones,

in the form of predictive equations, and descriptive facts, such as material properties.

Fleming and Sorenson (2004) provide evidence that understanding helps inventors by

providing a richer map to search for operating ideas, which can be combined together.

Understanding also provides insight about where new technological opportunities may be

found (Klevoric et al. 1995). Beyond these contributions, there is a more general view (for

example Arthur, 2006) that new technology (new operating ideas) can be derived from

new scientific knowledge (understanding). What is less discussed is the contribution of

operations to the understanding regime.

The linear model of innovation, often identified with Vannever's Bush report (1945),

does not include the enabling role played by technology in scientific research. The Linear

model as presented by Balconi (2010) and others (Godin 2006), consists of four stages:

basic research, applied research, development, and production, in which knowledge flows

one way only. The advocates of linear models, especially early natural scientists, argued
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that primary seeds of innovative products originated in science. Vannevar Bush (1945), as

quoted by Balconi (2010), epitomizes this sentiment:

"We will not get ahead ... unless we offer new and more attractive and cheaper

products. Where will these new products come from? How will we find ways to make

better products at lower cost? The answer is clear. There must be a stream of new

scientific knowledge to turn the wheels of private and public enterprise." (Bush, 1945,

http://www.nsfgov/ about/history/vbushl 945.htm#ch3.5)

Several works have aided in correcting this oversimplified linear view; they emphasize the

contribution made by technology to scientific research. In his paper, Sealing wax and string,

de Solla Price (1986), a physicist, and historian of science, highlighted that instruments (an

output of the operations regime) were a dominant force in enabling scientific revolutions.

He states: "... changes in paradigm that accompany great and revolutionary changes (in

science) were caused more often by application of technology to science, rather than

changes from 'putting on a new thinking cap' ". Historian of science Peter Galison (1987), as

cited by Baldwin and Clark (2006), reminds us that "scientists will go where their tools of

observation and analysis take them, but can go no further." Operations provides tools and

instruments to make measurements, and to make new discoveries. In his book, The

Scientist: A History of Science Told Through the Lives of its Greatest Inventors, Gribbin

(2002), a British astrophysicist, and science writer, has described how the ability to grind

eyeglass lenses made it possible to make better telescopes, and hence paved the way for

astronomers to make new discoveries. Operations aids also by providing news problems to

solve for understanding (Laudan 1984, Vincenti 1990, Hunt 2010). Overall, new or

improved observational techniques are still a major driver of progress in science.

Gribbin (2002) has aptly summarized the enabling exchange between the two

regimes: "new scientific ideas leading... to improved technology and new technology

providing scientists with the means to test new ideas to greater and greater accuracy".

Based upon these insights and with our focus on explaining technological changes from

continuing streams of invention, our model treats mutual exchange between understanding

and operations.
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Fig.2.12: Feedback between understanding ((I) and operations (A). Useful understanding (r) -
checkered area - informs creations of operations (A), which in turn aids in expanding
understanding (0), and the cycle continues over time. Adapted from Mokyr 2002, p 22.

2.2.4 Interactions in domains artifacts

Two important facets of domain artifacts - interactions and scaling - provide important

insight in modeling of performance variation across domains. In design of artifacts, Simon

(1962) introduced the notion of interactions in his essays on the complexity of artifacts.

When a design of an artifact is changed from one state to another (with differences

between the two states as defined by multiple attributes, say D1, D2, and D3) by taking

some actions (say, Al, A2, and A3), in many cases, any specific action taken may affect more

than one attribute, thus potentially leading to interactions of the attributes. The same

notion of interaction/conflicts is captured by the concept of coupling of functional

requirements (Suh 2001), or dependencies between characteristics (Weber 2003), which

56

)u2



can occur when two or more functional requirements are influenced by a design

parameter. Theoretically, it seems ideal to have one design parameter controlling one

functional requirement to achieve a fully decomposable (modular) design (Suh 2001,

Baldwin and Clark 2000). Using an in-depth qualitative analysis of VLSI and complex

electro-mechanical-optical (CEMO) systems, Whitney (1996, 2004), however, has strongly

argued that, in reality, how decomposable a design of an artifact can be depends on the

physics involved or additional design constraints, such as permissible mass. These

couplings or constraints manifest as component-to-component'0 , and component-to-

system interactions, or as a need to have multi-functional components. Consequently,

Whitney argues, CEMO systems, primarily designed to carry power, cannot be made as

decomposable as VLSI systems primarily designed to transmit and transform information.

For example, in energy applications, the impedance of transmitting and receiving elements

has to be matched for maximum power transfer, thus making the two elements coupled.

Further, CEMO systems typically need to have multi-functional components in order to

keep the artifact size reasonable, creating coupling of attributes at the component level.

Another highly influential interaction Whitney has identified are the adverse concomitant

side effects in artifacts, such as waste heat in computers, or corrosion of electrodes in

batteries. These side effects force engineers, working in CEMO systems, to 'often spend

more time anticipating and mitigating a wide array of side effects' than 'assembling and

satisfying the system's main functions'.

The presence, and thus the resolution, of these different interactions causes

significant delay, diverts significant engineering resources and potentially stops

applications of some concepts, thus making the level of interactions of a technological

domain a potentially strong factor influencing its rate of improvement. Based upon

Whitney's work, the effect of interactions on rates of improvement was suggested

qualitatively by Koh and Magee (2008) and a quantitative model of the effect was

developed by McNerney et al. (2011) - see section 2.3.

10 Design structure matrices (DSM) (Eppinger and Browning 2012) have been used to study and analyze such
interactions in many artifacts (e.g., a commercial airplane jet engine by Pratt & Whitney, an automotive
climate control system by Ford Motor Co., Mars Pathfinder by NASA, web browser software by Mozilla open
source). DSM for products can capture exchange of information, energy, and materials between components
and sub-systems.
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2.2.5 Economy of scale and scaling of design variables in domain

artifacts

In addition to domain interactions, scaling of design variables in domain artifacts is another

potential contributing factor to variation in domain performance. Economists have studied

this aspect within the framework of economies of scale. Many economists study economies

of scale assuming a constant technology. In chapter 12 Scale Economies in Economic

Growth, Lipsey et al. (2006), however, reminds us that 'in economic history falling unit

costs of output are often observed to accompany many technological changes'. These

improvements in economies are due to "historical increasing returns" to scaling made

possible by 'permanently embedded ... geometry and physical laws in the world we live in'.

Listing several sources of scaling, they point out that these two sources are the most

important in technological change. However, our ability to exploit these scaling effects in

these geometrical and physical scaling is '...limited by the current state of technology'. 'New

technology is, therefore, required to allow further exploitation of these effects', suggesting

inventive ideas as a source for realizing these scaling effects.

In design science and engineering literature, the influence of both geometry and

physical laws (which include influence of other physical parameters, such as temperature,

and pressure) on performance of artifacts is common knowledge. These geometric and

physical parameters are collectively referred to as the design parameters and are primary

levers for improving performance. Many technological domains have complex

mathematical equations relating some aspects of performance with design parameters.

Indeed, the engineering science literature has such equations for many aspects affecting

the design of artifacts, perhaps in all technological domains. Simpler relationships

concerning the geometrical scale of artifacts are also available and generally give

performance metrics as a function of a design variable raised to a power, in other words,

expressed as a power law. Use of such power-law relationships can be found in many

studies: 1) Following Stahl's (1962) analysis of biological systems11 , Sahal (1985) showed

11 In biology, scaling effects have been studied as allometric scaling, in which power-laws between
physiological metrics (such as heart rate and metabolic rate) and mass of the organisms are sought. In his
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through a study of three different sets of artifacts - airplanes, tractors, and computers - that

scaling (changing geometrical size) has been instrumental in both spurring and restricting

innovation. 2) In his study of blast furnaces, Bela Gold (1974) demonstrated that doubling

the size of a blast furnace reduces their cost by about 40%. This constancy of percent

change per each doubling in size results from the power law (assumed by Gold) between

performance/cost and geometrical variables such as volume.

famous book On Growth and Form, D'Arcy Wentworth Thompson (1942) has described how mechanics and
scaling influences the evolution of structure and form of animals. Similarly, in a famous paper, Body size and

metabolic rate in Physiological Reviews, Max Klieber presented his observation that metabolic rate of the
majority of animals scales as a power of the animal's mass. McMohan (1973) and Barenblatt (2003) have
studied scaling phenomena in physical systems.
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2.3 Literature on modeling technological change

What research has attempted to model the technological performance trends that were

discussed in section 2.1.4? Much of the related research effort has been focused on

modeling Wright's results, with recent works adding the concept of interactions into the

models. Agent-based and combinatorial simulation models deviate from this modeling

tradition.

Muth (1986) developed a model to explain Wright's results by introducing the

notion of search for technological possibilities. In his paper, he reviewed number of prior

models developed by March and Simon (1958), Crossman (1959), Levy (1965), Sahal

(1979), Robert (1983) and Venezia (1985) to explain Wright's results. He contends that

these 'theories in the literature either fail to agree with the main empirical phenomena or

else assume precisely what they attempt to explain.' For example, an early model

developed by March and Simon resembles search theory and relies on "performance gaps",

the difference between actual and desired performance. This implies that the greater the

performance gap, the higher the improvement activity. According to Muth, this further

implies that organizations in trouble are the most innovative. This is simply not the case

(Mansfield 1961). Levy (1965) and Sahal's (1979) models assume the change in production

rate (inverse of unit cost) is proportional to the amount that the production process can

improve. Although they lead to initial concavity and eventual plateauing, no distinct power-

law behavior - linear behavior in log-log scale - is exhibited in the intervening period, the

most important aspect of Wright's relationship (see Fig. 2.13). Most importantly, their

proportionality relationships are not based on any organizational behavior or inventive

mechanism.

60



0. - -Note the absence of

clear linear regions in

the curves.

0

Cumulative output (LOG)

Fig. 2.13 Relative cost as a function of cumulative output, according to the Levy

(1965) model. P is the plateau output rate. Adapted from Muth 1986.

The model by Muth (1986) noted above is an alternative way to explain Wright's

results introducing the notion of search for technological possibilities. He assumes that

random search for a better technique, a key element of technological problem solving, is

made within a fixed population of possibilities. Considering a case of a single

manufacturing process, Muth (1986) developed his model based on statistics of extremes

to capture the idea of substituting manufacturing sequences with better ones. He argues

that shop personnel improve the process by learning through experience and making

random search for new techniques, which enable improvement of processes leading to cost

reductions. Muth demonstrated that the notion of fixed possibilities easily leads to fewer

and fewer improvements that can be realized, which results in unit cost reducing as a

power law with respect to production (see Fig. 2.14). He argues that his model with fixed

technical possibilities can accommodate a leveling off and eventual stoppage in cost

reduction. Muth, however, does not reference Sahal (1979) and seems unaware of the

coupling of power laws and exponentials.
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Fig. 2.14 Simulated process costs drawn from uniform distributions. Number of

operations in process = 10. Adapted from Muth 1986.

Building on Muth's idea of random search within a set of fixed design possibilities,

Auerswald et al. (2000) developed a microeconomic model of a complex multi-process

manufacturing system, in which different processes can be combined to create diverse

production recipes. They introduced for the first time the notion of interactions by allowing

adjoining processes to affect each other's cost. It is important to note that since the

predominant experimental regime in the Wright framework is for a singular design, it is

appropriate that Muth and Auerswald do not consider cognitive aspects of design.

Following similar reasoning as Muth and Auerswald, McNerney et al. (2011) have

developed a stochastic model to explain how the rate of cost reduction (reciprocal of

performance improvement) of a multi-component system is influenced by component

interactions, which they refer to as connectivity between components. McNerney et al. have

operationalized the notion of interactions as out-links representing influence of a

component on other components, which they capture using design structure matrices

(DSM). When a specific component in a domain artifact is changed by introducing a new
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operating idea' 2, it affects the design of all the components it influences. If the performance

of the artifact (influencing and influenced components) as a whole improves, then the

interactions are said to be resolved and the operating idea is said to be successful. They

have shown that cost reduction (or performance improvement) proceeds at a faster rate in

multi-operation production recipe that have fewer interactions than in those that have

higher number of interactions (see Fig. 2.15). This finding can be extended to the idea that

if the domain artifacts have fewer interactions, then designers have a higher chance of

resolving interactions for each operating idea they introduce.

Using agent-based modeling, Axtell et al. (2013) have developed a competitive

micro-economic model of technological innovation utilizing the notion of technological

fitness. Although they do not discuss or cite Moore's law or his work, they have

demonstrated that all agents, utilizing combinatorial process, increase their cumulative

technological fitness exponentially overtime. This is different from other researchers who

have predominantly been focused on Wright's framework. Consistently, Axtell et al.

consider new designs and not just process optimization.

Using a simulation approach, Arthur and Polak (2006) have modeled how new

generations of artifacts arise by combining currently available artifacts. The artifacts

considered are electronic logic gates and new generations are represented by more

developed logic gates that can then also be combined to give even more complex logic

gates. In their model, Arthur and Polak specify several design goals towards to which the

logic gates evolve. They have demonstrated that designs with higher levels of complexity

cannot be attained without realizing design configurations with intermediate levels of

complexity, and new designs with higher functionality substitute for current designs with

inferior functionality. This model is much richer than other models in representing the

artifact part of the design process; however, it does not consider performance

improvement, as do the other models. It is also limited to developing pre-specified artifacts

and is thus a specific process but is not open-ended or general, which are characteristics

necessary for modeling performance trends for general technological domains.

12 Although McNerney et al. do not distinguish between operational and understanding nor between ideas and
artifacts, the text accurately represents their model.
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Although some are more explicit than others, one feature common to all these

models is that all utilize the notion of building upon the performance (in the form of cost)

or designs of the past, a key feature of cumulative processes. On the other hand, they do

not consider two aspects we believe useful in answering our research question. First, none

consider the design process as part of their model and thus do not consider analogical

transfer or operating ideas. All consider search or combination at the artifact level -

components instead of ideas. Second, none of them discusses or includes the influential

role played by exchange between science and technology. In this thesis, we treat the design

process and the exchange between science and technology as important elements for

understanding the change in performance over time that in turn is essential to

understanding technological change.
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2.4 Literature review of patents and content analysis

The mathematical model developed in this research suggests that an interaction parameter

associated with a domain plays an important role in influencing its rate of improvement.

This prediction has been tested in this research using textual content from patents. This

section provides a broad overview of the patent literature. Items of importance for this

thesis are emphasized, specifically the structure and content of patents, and identification

of relevant patents in technological domains.

2.4.1 Overview of U.S. patents

United States Patent and Trademark Office (USPTO) grants three types of patents - utility,

design, and plant. The majority of inventions issued by USPTO are of the first type and are

the subject of this research. Utility patents include processes, machines, manufactured

articles, and material compositions, including improvements to each of these categories. To

be eligible as a utility patent, a claimed invention needs to qualify as novel, non-obvious,

and useful. An invention is not considered novel, if:

"(1) the claimed invention was patented, described in a printed publication, or in

public use, on sale, or otherwise available to the public before the effective filing

date of the claimed invention" or

"(2) the claimed invention was described in a patent issued [by the U.S.] or in an

application for patent published or deemed published [by the U.S.], in which the

patent or application, as the case may be, names another inventor and was

effectively filed before the effective filing date of the claimed invention." (USPTO

2015)13.

In other words, the invention has to be historically original. Additionally, the invention

being 'patented must be sufficiently different from what has been used or described before

so that it may be said to be non-obvious to a person having ordinary skill in the area of

13 http://www.uspto.gov/patents-getting-started/generaI-information-concerning-patents#heading-5
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technology related to the invention' (USPTO 2015). For example, miniaturization of a prior

art would not be ordinarily patentable. Finally, the invention has to be useful by providing

practical benefit to the society. This is usually assessed by the invention's operative-ness; in

some cases, however, it might be based on theoretical foundations14 .

2.4.2 Structure and content of patents

A patent document can be broadly viewed as consisting of bibliographic data including

patent attributes, and content - textual and graphical data, including descriptions of the

invention. The bibliographic data is presented in the first page of the patent, and the textual

and graphical in the subsequent pages.

2.4.2.1 Patent bibliographic data (also referred to as metadata)

The bibliographic data has number of fields, denoted by reference numbers in square

brackets. A patent issued to a thin-film battery invention is presented as a sample in Fig.

2.16 to illustrate fields and sections; the ones which are of interest have been highlighted.

The patent number, indicated by field [11] shown in the top right corner of the page, is a

unique identification number assigned to a granted patent. The patent numbers grow

sequentially as new patents are issued, but there is no intelligence associated to them. The

patent issue date, field [45], is important because it is used for calculating how long the

patent owner, the assignee, can exercise property rights, after which the invention is

available for public use. The title, field [54], is self-explanatory and indicates the subject of

invention, which in this example is electro-chemical batteries. The patent is granted to

inventors, field [75], and the individuals who contributed to the conception of the

invention. Since a patent is an example of intellectual property, rights to the invention is

assigned to an assignee(s), field [73], who can be the inventors themselves. Typically, the

rights to the patents are owned by one or more corporations; in this example, by Martin

Marietta Energy Systems. The assignees can change over time as the patent can be sold as

property to new owners.

14 http://www.nolo.com/legal-encyclopedia/qualifying-patent-faq-29120-6.html
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Fig. 2.16: Sample patent, first page

Other than the inventors and assignees, the bibliographic data that has been

frequently used in prior technological research is classification codes and citations to prior

patents or non-patent literature. US patent examiners assign US patent classification codes,

field [52] and International classification codes, fields [51], both of which are used to

classify the invention into different technological areas. The difference between these two
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classification codes will be discussed shortly while reviewing the Classification Overlap

Method (Benson and Magee 2013 and 2015a).

Citation to prior literature, including patents, and non-patent literature (such as

scientific publications and trade magazines), is included under field [56]. The example

patent refers to two US patents and one foreign patent; however, this particular patent

does not refer to any non-patent literature. The references are added by the inventors as

well as by the examiners in order to show the relatedness of the current invention to prior

art. The prior patents that have been referenced are known as backward citations; in

contrast, the patents which cite the patent in question are referred to as forward citations

(see Fig. 2.17). Both of these data have been used extensively for technological change

research to study such phenomena as spillover (Nemet & Johnson 2012).

Backward citations Forward citations

cited 1 citng 1]

cfted 2 patenti cit- ng 2

Cfted XI citing y

Fig. 2.17: Schema for patent citations showing forward and backward citations to
and from patent of interest, i. Arrows indicate flows of knowledge. (Adapted from
Nemet & Johnson 2012)

Fig. 1. Schema for patent citations showing forward and backward citations to and from

patent of interest, i. Arrows indicate flows of knowledge.

The abstract, the final piece of bibliographic data, provides a short disclosure of the

invention and highlights the novelty in the invention.
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2.4.2.2 Patent contents- text and drawings

The patent content following the bibliographic data has a number of sections: background,

summary, detailed drawings, detailed description, and claims.

The background section, also often referred to as prior art, describes the current

state of the technology, and establishes a need for the invention. See Fig. 2.18. The need is

typically described in terms of the challenges and problems experienced by the current art.

The example patent describes the toxicity and low energy density, and specific energies as

some of the limitations of current batteries.

The summary section briefly describes the nature and substance of the invention

and highlights salient novel features of the invention. While doing so, however, the

summary section often describes problems and challenges the invention is solving, an

important feature that is utilized in the empirical study of this research.

The engineering design of a patented invention is described minutely in the detailed

description section, covering each aspect of novelty. This section sets the stage for the

claims section as well as for sharing the knowledge with the public. The claims section, the

final one, discloses all the elements of the invention judged to be novel, which is considered

the intellectual property of the inventors/assignee.

2.2

A battery is one of two kinds of electrochemical devices
that convert the energy released in a chemical reaction
directly into electrical energy. In a battery, the reactants are
stored close together within the battery itself, whereas in a 30
fuel cell the reactants are stored externally. The attractive-
ness of batteries as an efficient source of power is that the
conversion of chemical energy to electrical energy is poten-
tially 100% efficient although the loss due to internal resis-
tance is a major limiting factor. This potential efficiency is

Fig. 2.18: Example description of prior art in patent text.
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2.4.3 Selection of patents belonging to technological domains

Two broad classes of techniques exist for identifying patents related to a specific

technology: those based on using keywords and those based on using classification codes

(USPC or IPC). Since the unit of analysis of the current research is a technological domain, it

is necessary to identify patents related to a specific technological domain. The utilized

techniques need to provide a relevant and complete set of patents belonging to each

technological domain being studied. This section provides an overview of different

techniques, with focus on the classification overlap method (COM) used in this thesis to

obtain the patents studied.

2.4.3.1 Search techniques based on keywords

Keyword techniques use one or more words representing a technology to retrieve related

patents. The keywords are used individually or in different combination using Boolean

operators, such as 'OR', 'AND' and 'NOT', to make a query encompassing or more specific

(Larkey 1999). Although the technique is simple, the choice of relevant keywords for a

query often requires expert knowledge of the technical field being considered (Park et al

2013). Since inventors use different words to describe their inventions, keywords

representing all aspects of a technology would have to be exhaustive, in order to retrieve

complete set of patents. This is not an easy task to accomplish (Baillie 2002) and retrieves

many patents that are not relevant as well as those that are.

2.4.3.2 Search techniques based on patent classification codes

The patent query techniques based on patent classification codes do not require similar

level of domain expert knowledge to find the patents, since they utilize the expertise of the

patent examiners in classifying an invention into different technologies (Benson and Magee

2013). A patent is assigned both US patent classification (UPC) and international patent

classification (IPC) codes. The UPC codes assigned to a patent are based on the

technological fields related to claims made by that invention (Gruber et al. 2013), and it is

'a hybrid of "functional" classes (focused on an aspect an invention) and "application"
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classes (focused on an industry) US.' 5 Each example classification code has a form such as

430/270.1. The three-digit number 430 before the slash represents a class, which in this

example is the radiation imagery chemistry, which can include processes, compositions, or

products. The number after the slash 270.1 (which can be up to six digits, including three

digits after the decimal point) represents a subclass, which in this example is an optical

recording nonstructural layered product having a radiation sensitive composition layer.

International classification codes (IPC) are an international patent classification

system, which uses a hierarchical structure for classifying patents1 6. Unlike the UPC codes

which are based on the technological fields related to the claims, the IPC considers the

overall technological nature of the invention to assign the classification codes (Gruber et al.

2013). Each classification term consists of a symbol such as HO1F 1/04 (which represents

permanent magnet material). The first letter ('H' = electricity in this example) represents a

section, followed by two digit numeral denoting a class ('01' = basic electric elements). The

title associated with a class number indicates basic technological content of the patent. The

letter following the two digit number represents a sub-class ('F' = magnetic materials based

devices e.g., transformers etc.). Finally, the numeral immediately before the slash denotes a

group number ('1' = technology based magnetic property of materials) followed by

subgroup number after the slash. ('04' = magnetic alloys).

The patent searches using either the UPC or IPC codes retrieves a large of number of

patents. However, results from such searches misses many patents unless numerous codes

are used and then often include patents that are not relevant to a specific technological

domain. The classification overlap method (COM) developed by Benson and Magee (2013,

2015a), which uses both UPC and IPC together for retrieval, overcomes this shortcoming,

and provides relatively complete sets of patents that are largely relevant. For this reason,

this technique has been used in this research and therefore is reviewed in greater detail.

1s http://www.intellogist.com/wiki/US Patent Classification System
16 http: //www.wipo.int/export/sites/www/classifications/ipc/en/guide/guide ipc.pdf
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2.4.3.3 Classification overlap method (COM)

The COM technique for patent search is based on the notion that dual membership of

patents in IPC and UPC classes leads to better relevancy results. The technique involves six

steps for retrieval of a complete and relevant set of patents for a technological domain (see

Fig. 2.19). Step 1 involves retrieving a set of patents, called a seed set, using keywords

related to a technological domain. The search is carried out by querying titles and abstracts

of patents in a patent database such as PatSnap (PatSnap 2013). In those cases, where the

use of keywords does not provide a promising set of relevant patents, use of inventors or

assignee's names can be used and might generate a better set of patents.
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Fig. 2.19: Process flow of COM technique. Adapted from Benson 2013.



In step 2, the UPC and IPC codes that are most representative of a specific

technological domain are determined using the list of patents generated in step 1. This step

is started by binning all patents from step 1 into different UPC and IPC classes. MPR (mean

precision and recall) values are then calculated for each UPC and IPC class. The precision

value for a class (UPC or IPC) is defined as a ratio of the number of patents from the step 1

that belong to a particular class to the total number of patents in that class. This calculation

requires determining the count of number of patents that belong to a particular class. The

recall value is calculated as a ratio between the numbers of patents in the seed set (from

step 1) that belong to a particular class to the number of patents in the seed set. The MPR

for each class is calculated as an average of their precision and recall values. Ranking UPC

classes and IPC classes in descending order based on their MPR values completes step 2.

In step 3, new patents sets are retrieved using overlap (intersection) of UPC and IPC

classes with high MPR values. For example, overlap of UPC1 and IPC1 in Fig. 2.20 (Areas A

and B considered together) is an example of such an overlap. The set of patents obtained

from each overlap of UPC and IPC is inspected by reading of titles and abstracts to assess

how relevant the patents are, and whether extraneous patents are also included. This

inspection will give insight as to whether it is judicious to include more than one UPC or

IPC classes to get a complete set of patents for a domain. Another helpful metric in the

search is the number of patents obtained. Too high a number might indicate inclusion of

many irrelevant patents. This can, for example, happen when applications of a technology

are also included. This might signal that use of subclasses might make the search more

specific. On the other hand, if the number of patents is small, it might indicate more classes

might need to be included to make the set more complete. The best sets of patents are

tested for relevancy.

The relevancy study (step 4) is conducted by taking 300 patents chosen randomly

from each selected sets. The two or more readers need to independently read the title and

abstracts of each of the 300 patents to determine if the patents belong to the domain in

question. The two readers are required to increase the objectivity of results, since reading

and judging by a single reader might involve excessive subjectivity. If the relevancy of the

73



300 patents is low, say 50%, it is not an acceptable group of patents. If, however, the

relevancy is high, say 85%, it is acceptable.

The patent sets with the highest relevancy found in step 4 are examined for

completeness in step 5. One gets an idea of completeness by varying the search terms and

checking classes with slightly lower MPR. As a final step, the patent set with high relevancy

and completeness is chosen as representing the technological domain. Benson and Magee

(2015a) have shown that COM retrieves relevant patents consistently (Fig. 2.21) in

comparison to methods based on purely keyword or classifications alone.

The COM technique for some domains requires multiple trials to obtain the most

relevant and complete set of patents. It might also be necessary to narrow the search by
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considering the subclasses to obtain a higher percentage of relevant patents, or use

Boolean operations with multiple classes to obtain a more complete set.

Field of Interest COM yor Cjaaulflcatio Selecdon (UPC
PIOt Electricity 5101(85%) 1006 (75%) 7233 (57%)

Wind Turbine 1346 (94%) 1843 (91%) 12893 (26%)
Electric Capacitor 6173 (84%) 11026(43%) 9472 (2%)

Electrochemcal Battery 22115 (62%) 1159 (87%) 26111 (62%)
Computed ToMoraphy 3827 (91%) 1289 (98%) 10444 69%

Fig. 2.21: Comparison of size and relevancy of patent sets for 5 domains using three
different techniques. Adapted from Benson 2014.

2.4.4 Use of most-cited patents to study technological change

What sample of patents for a technological domains should be used for studying technical

change? What should be the basis for selecting the sample? Patents, as a proxy for

inventions, have been used for several decades now. Some early quantitative work relating

patents to economic variables (Schmookler 1966, Griliches 1984, Trajtenberg 1990) has

shown that simple patent count (SPC) of a firm or industry is closely related to their R&D

expenditures, an aspect associated with the input side of their innovative processes. The

attempt to relate SPC to technological or economic value had been unsuccessful (Griliches

et al. 1988). This was due to the fact that SPC assumed that all patent had the same value of

1, and yet in reality they exhibited a huge variation, following a Pareto-like distributions

(Scherer 1965). Borrowing the idea of citations being good indicators of the quality of

scientific publications (Price 1963), Trajtenberg (1990) studied Computer Tomography

(CT) scanners using citations-weighted patent count as a measure of the economic value of

patents. He found that citations-weighted patent count were highly correlated to

independently calculated economic value of CT scanners. This study established that patent

citations were a valuable data source for studying technical change, and since its
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publication, many research studies have utilized patents and their citations as a variable to

study different aspects of invention process, such as spillover (Rosenberg 1982, Nemet and

Johnson 2012). Following this understanding and that of others, Benson and Magee

(2015b) more recently used bibliographic data (metadata) to construct patent

characteristics for 28 technological domains. Among many interesting correlations they

have identified between patent metrics and improvement rates of domains, one shows that

average number of citations received by patents in a domain in a 3-year period after their

issue date are highly correlated with the domains' improvement rates, further providing

support to the idea of citations being linked to technological and economic value. Following

this tradition, this thesis also utilizes the most-cited patents for studying domain

interactions.

2.4.5 Patent content analysis

2.4.5.1 Overview of patent analysis techniques

Patent analysis for technological change research is typically an analytics problem, in

which a large amount of data is analyzed to find patterns. With respect to patents, two

broad types of patent analysis approaches have been reported in the literature: one based

on patent bibliographic data (metadata) and the other on content. Many scholars

(Schmookler 1966, Griliches 1984, Trajtenberg 1990, Benson and Magee 2015b) have

utilized the first one, patent bibliographic data, to study technological change, whose work

was referred in the previous sections. This approach examines macro and meso-level

technological trends, but cannot find specific design features in inventions (Yoon and Park

2004).

The second approach, in contrast, utilizes the textual contents of patents - abstract,

background, summary, detailed description, and claims - to study technologies. The

content-based approach has the potential to detect specific 'technologically significant

patterns, trends, and opportunities' (Tseng et al. 2007, Lee et al 2008, Park et al. 2013,).
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2.4.5.2 Content analysis techniques based on expert knowledge

Researchers have used several approaches for content analysis. One simple and common

approach is the keyword-based analysis. This method requires analysis and identification

of specific keywords. The count of the pre-defined keywords or co-occurrences of such

words in patents or groups of patents is used for analytical purposes. This has been used by

many researchers to identify new technological opportunities from patent maps (Lee et al.

2009), to forecast new technological concepts (Yoon & Park, 2005), and to develop

technology roadmaps (Lee et. al 2009; Yoon et al. 2008). The information keyword count

can be further processed to identify similarities between patents using cosine measures

and Euclidean distance and build technology maps (Salton et al. 1975, Park et al. 2013).

One significant disadvantage of this technique is that it does require expert knowledge for

identifying the keywords pertinent to the topics in question. Its greatest strength lies in its

simplicity, ease of use, and its ability to detect keywords even if their occurrence is low.

Another approach that has been explored is the subject-action-object (SAO) method,

in which grammatical structures representing subject (S), verb (representing an action)

and object are extracted from sentences from patent content (Cascini et al. 2004) using

natural language processing techniques. The resulting data provides insights about the

nature and know-how about the inventions (Bergmann et al. 2008, Moehrle et al. 2005),

and can be used to construct patent networks and maps utilizing semantic similarities.

Park et al. (2013) have proposed an architecture for this technique to construct patent

network and maps, and tested it against carbon nanotube technology as a case study. Since

this method is potentially powerful, but requires advanced natural language tools (parsers,

semantic detectors) to make it execute well, the technique should only be applied where its

benefit over use of keywords is clear. It has to be noted that both the keyword and the SAO

methods require expert knowledge and supervision.

2.4.5.3 Content analysis techniques requiring no expert knowledge

A number of analytical techniques that do not require expert knowledge have been

developed, of which two prominent techniques are Latent Semantic Analysis (LSA) and
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Latent Dirichlet Analysis (LDA). LSA is a state-of-the-art natural language processing tool,

developed for information retrieval and topic grouping (Griffiths et al. 2007, Broniatowski

and Magee 2012). It involves constructing a co-occurrence matrix X = [m x n], whose

columns (n) represent the documents (in the full set of documents or corpus D) and rows

(m) represent types of words across all the patents. See Fig. 2.22. The entries in the matrix,

which function as weights, are the frequencies of each unique word in each patent. Using

singular value decomposition, a linear algebra procedure, the matrix X, generally with large

dimensions, is reduced to the most significant vectors using the equation: X = U D VT (see

Figure 2.23). The first matrix U is a set of singular unit vectors of words, whereas V is set of

mutually orthogonal singular unit vectors of documents. D is a diagonal matrix of non-

negative singular values, with each value representing a linear combination of weights

associated with each singular vector.

Document
10 20 30 40 50 do 70 tr 90

A A

Figure 2.22 A word-document co-occurrence matrix, indicating the frequencies of 18

words across 90 documents extracted from the Touchstone Applied Science Associates

corpus. Grayscale indicates the frequency with black being the highest frequency and white

being zero. (Adapted from Griffiths et al. 2007 pp 215)

The theory behind LSA asserts that it analyzes all the text by looking at the whole

range of words in all the documents, and patterns will emerge in terms of word choice as

well as word and document meanings (Dong 2005). This ability makes it potentially
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suitable for analyzing interactions using patents. This possibility has been demonstrated by

LSA's successful use in gleaning shared understanding of design teams (Hill et al. 2001),

assessing student essays (Landauer et al. 1998) and retrieving contextual meanings from

documents (Deerwester et al. 1990, Foltz 1998). However, progeny and other factors limit

its actual usefulness in many cases.

documents dimensions dimensions documents

X U DI V
Etransformed word weights ( document space

word-document space
co-occurrence

matrix LSA

Fig. 2.23: Latent semantic analysis (LSA) performs dimensionality reduction using

the singular value decomposition. The transformed word-document co-occurrence

matrix, X, is factorized into three smaller matrices, U, D, and V. U provides an orthonormal

basis for a spatial representation of words, D weights those dimensions, and V provides an

orthonormal basis for a spatial representation of documents. (Excerpt from Griffiths et al.

2007 pp 215)

Latent Dirichlet Analysis (LDA), also known as topic modeling, is an alternative

theory and tool for text analysis. It is based on a generative probabilistic model, and uses

statistical inference techniques to retrieve latent meaning of words from a stream of topics

(Griffith, 2007, Dong et al. 2004, Dong 2005, Broniatowski and Magee 2012). The basic

concept is that documents (e. g., patents) are modeled as a random mixture of latent topics,

where each topic is characterized by a distribution over the words. The input to the LDA

analysis is a word-document co-occurrence matrix, same as the one for LSA (see Fig. 2.22).
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LDA reduces the dimensions of the co-occurrence matrix, representing a probability

distribution of documents over words, by decomposing into two smaller matrices: a)

probability distributions of topics over words, b) probability distributions of documents

over topics. Each column of the first matrix represents a topic (see Fig. 2.24) and words in

each column are listed in descending order according to their associated probability values.

For example, Fig. 2.25 shows the results from a LDA analysis, in which column 1 related to

the topic of printing, and column 2 to plays.

Both LSA and topic modeling start with the word-document co-occurrence matrix,

and utilize dimensionality reduction techniques. Both provide a gist of the documents,

represented as a point in semantic space in LSA and distribution over topics in LDA. A

major difference between the two is that the latter is based on a generative model, the

former not. As a result, LSA represents meaning of words only 'as points in an

undifferentiated Euclidean space'; while LDA provides 'a set of individually meaningful

topics and information about which words belong to those topics' (Griffiths et al. 2007).

Although both LSA and LDA can indicate the broad topics being discussed in the corpus

being analyzed, it is not clear from work reported so far whether these techniques can

identify the specific sub-themes being described sparsely in the corpus.

This chapter discussed the background literature salient to answer the research

questions presented in chapter 1. The chapter provided a survey of technological change

literature, ending with a brief summary of the empirically observed performance

improvement in 28 domains. The chapter then discussed design literature (and provided a

survey of existing modeling approaches) relevant for developing a quantitative predictive

model for explaining the observed exponential performance improvement with variation in

improvement rates. The chapter finally discussed the literature relevant for empirical

study of component interactions, one of the factors predicted to be potentially responsible

for causing variation in improvement rates, using text mining of patents. Next chapter,

Chapter 3, presents a theoretical model, methodology and results from an empirical study

of component interactions using patents, and finally results from a case study of

performance improvement of permanent magnets.
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documents topics documents

P(wIg) = P(wIz) P(zlg)
probability a topic document distributions over topics

distributions distributions
over words over words

Topic model

Fig. 2.24: LDA performs dimensionality reduction using statistical inference. The

probability distribution over words for each document in the corpus conditioned on its gist,

P(wlg), is decomposed into probability distributions over words, P(wlz), where the weights

for each document are probability distributions over topics, P(z~g), determined by the gist

of the document, g. (Excerpt from Griffiths et al. 2007 pp 215)

PRINTING PLAY TEAM JUDGE HYPOTHESIS STUDY CLASS ENGINE
PAPER PLAYS GAME TRIAL EXPERIMENT TEST MARX FUEL
PRINT STAGE BASKET3ALL COURT SCIENTIFIC STUDYING ECONOMIC ENGINES

PRINTED AUDINCE PLAYERS CASE OBSERVAIONS HOMEWORK CAPITALISM STEAM
TYPE THEATER PLAYER JURY SCIENTISTS NEED CAPITALIST GASOLINE

PROCESS ACTORS PLAY ACCUSED EXPERIMENTS CLASS SOCIALIST AR

INK DRAMA PLAYING GUILTY SCIENTIST MATH SOCIETY POWER
PRESS SHAKESPEARE SOCCER DEFENDANT EXPERIMENTAL TRY SYSTEM COMBUSTION
IMAGE ACTOR PLAYED JUSTICE TEST TEACHER POWER DIESEL

PRINTER THEATRE BALL EVIDENCE METHOD WRITE RULING EXHAUST

PRINTS PLAYWRIGHT TEAMS WITNESSES HYPOTHESES PLAN SOCIALISM MIXTURE
PRINTERS PERFORMANCE BASKET CRIME? TESTED ARITHMETIC HISTORY GASES

COPY DRAMATIC FOOTBALL LAWYER EVIDENCE ASSIGNMENT POLITICAL CARBURETOR
COPIES COSTUMES SCORE WITNESS BASED PLACE SOCIAL GAS
FORM COMEDY COURT ATTORNEY OBSERVATION STUDED STRUGGLE COMPRESSION

OFFSET TRAGEDY GAMES HEARING SCIENCE CAREFULLY REVOLUTION JET
GRAPHIC CHARACTERS TRY INNOCENT FACTS DECIDE WORKING BURNING
SURFACE SCENES COACH DEFENSE DATA IMPORTANT PRODUCTION AUTOMOBILE

PRODUCED OPERA GYM CHARGE RESULTS NOTEBOOK CLASSES STROKE
CHARACTERS PERFORMED SHOT CRIMINAL EXPLANATION REVIEW BOURGEOIS INTERNAL

Figure 2.25 Example results from LDA analysis. Each column contains the 20 highest
probability words in a single topic, as indicated by P(wlz). These topics were discovered in a

completely unsupervised fashion, using just word-document co-occurrence frequencies.
(Excerpt from Griffiths et al. 2007 pp 219)
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Chapter 3: Methodology and Results

This chapter presents three sets of results. The first set describes development of an

explanatory model of technological performance change, the primary output of this thesis.

The final model developed identifies two domain parameters - interaction and scaling -

that lead to variation in performance improvement among domains. The second set of

results tests the interaction parameter empirically to investigate whether, as predicted by

the model, it is indeed a factor that can lead to variation in improvement rates. This set is

preceded by a methodology section. The final set presents results from a case study of

permanent magnet materials, which again tests two predictive empirical models and also

expands the empirical context for the modeling effort at the core of the thesis.

3.1 Results - Development of a theoretical model

3.1.1 Introduction

The model presented in this thesis starts with defining the variables, specifying the domain,

building internally consistent relationships, and ends by making specific predictions. In

section 2.1.4.4, we discussed the pertinent variables (or terms) and technological domains:

technological domains as units of analysis, performance metrics and their trends, rates of

improvement, operating ideas, interaction, and scaling. Other new terms or variables

necessary will be introduced as we present the model. First we present a conceptual model

to qualitatively describe the salient elements and how they come together to explain the

exponential trends and the variation in rates.

3.1.2 Conceptual basis of model

The model presented here utilizes two sets of mechanisms: the first set explains the genesis

of exponential trends, a common feature of all domains; the second set of mechanisms

modulate the underlying rate to produce variation in improvement rates across domains. A
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distinction between the two sets of mechanisms is created by differentiating the idea (or

conceptual) regime from the artifact regime. Building upon the understanding of analogical

transfer as being more effective in the idea regime (Weisberg 2006), new ideas are viewed

as arising from probabilistic combinations of existing ideas. Thus, we model both invention

and understanding as probabilistic combinatorial processes building on past ideas and we

allow exchanges between the two that eliminate roadblocks following the thinking of Price

and others (Price 1983, Gribbin 2002). In the artifact regime, where variation of rates arise,

we model the absorption of new inventions into artifacts utilizing the interaction model of

McNerney et al. (2011). We use the most popular description of performance changes as a

function of design variables (a power law) to model this possible difference among

domains.

The overall architecture of the model is shown in Figure 3.1. Based on the work of

Vincenti (1990) and Mokyr (2002) discussed in section 2.2.2.3, we separately consider

knowledge in the understanding and the operations regimes. We further split the

operations regime into idea and artifact sub-regimes. In the idea sub-regime, represented

as an 101 "pool" in the figure, designers/inventors work with individual operating ideas

(101), and combine them to potentially (probabilistic) create new 101 representing new

inventions. The 101 concept is a generalization of the operating principle introduced by

Polyani (1962) and includes any ideas, including operating principles, invention claims,

design structures, component integration tricks, trade secrets and other design knowledge

that lead to performance improvement of artifacts. Unlike artifacts, which belong to a

specific technological domain, we model 101 in the operations regime as being non-domain

specific and available to all technological domains. For instance, the operating principle of

total internal reflection is utilized in fiber optic telecommunications, fluorescent

microscopy, and fingerprinting, very distinct technological domains. Once new 101 are

successfully created through probabilistic combination, they become part of the 101 pool,

thus enlarging its size.
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Fig. 3.1: Model of exchange between Understanding and Operation regimes and

modulation of 101 assimilation by interaction (dj) and scaling (Aj) parameters of

domain I. Arrows between Understanding and Operations regimes indicate the mutual

exchange between the two: Understanding regime provides scientific insight to Operations

regime, and Operations regime provides operational tools for scientific enquiry. In the

Operations regime, each domain assimilates ideas from the 101 pool by resolving

interactions between components of a domain artifact. The relative impact of assimilated

ideas on performance is dependent on scaling of design parameters governed by the

physics of the artifact.
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We model growth in the explanatory reach of the Understanding regime by

simulating a similar combinatorial analogical transfer process. The Understanding regime

is conceptualized to consist of units of understanding (UOU). The units of understanding

(UOU) from different fields within the Understanding regime participate to create a new

unit of understanding (UOU) that potentially (probabilistically) has a greater level of

explanatory and predictive power. Following the treatment in Axtell et al. (2013), we

model the explanatory and predictive power of a field of Understanding as a fitness

parameter, fi. If the new UOU has a greater fitness value, it replaces the UOU with the

smallest fitness value. Since our primary focus is on performance, output of the Operations

regime, we simulate the Understanding regime only at this higher abstraction level.

Although both regimes - understanding and operations - evolve independently,

they cannot do so indefinitely. We model the de Solla Price (1983) insight by having each

regime act as a "barrier-breaker" for the other regime through mutual exchange (depicted

by the arrows between the regimes in Fig. 3.1). When each regime hits a barrier, the other

can eventually aid in breaking the barrier: infusion of understanding enables creation of

important 101 in the operations regime; and infusion of new operational

measurement/observation tools enable new discovery in the understanding regime.

The performances of the technological domains, which reside in the artifact sub-

regime, are improved by a series of designs/inventions over time. The series of inventions

are based upon each domain receiving 101 from the pool. 101 enable specific components in

the domain artifact to effect change in the component leading to an improvement.

Following McNerney et al.'s treatment, whether the component is able to absorb an 101

depends upon the average number of component interactions dj in the domain J, which is

defined as the average number of components a specific component influences, including

itself. In order to accommodate the change in the 101-assimilating component, other

components also change. The 101 in question is assimilated only if the performance of the

artifact overall improves. The McNerney et al. model (and our adaptation of it) predict that

more interactions make it harder for a component to assimilate an 101. In short, the higher

the number of problems to solve, the harder it gets to assimilate an operating idea.
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Another, and final, factor that we model is scaling, a property inherent in the physics

of the artifact17 . The successfully assimilated 101, which we refer to as IOIs, effect

improvement of the domain artifact by enabling favorable change of a relevant design

parameter. The design parameter is increased or decreased such that it leads to improved

performance. Scaling refers to how change in a design parameter relates to changes in the

performance of an artifact. One ubiquitous design parameter is geometry, which enters in

the form of length, area, or volume. Taguchi (1992) noted that some phenomena tend to

work better when carried out at a smaller scale ("smaller is better"), while other are better

at larger scale ("larger is better"). Integrated circuits, for example, perform better as

dimensions are reduced, since smaller dimensions lead to shorter delays, and higher

density of transistors, both of which contribute towards improved computation per volume

or cost. The formulation we use in the model is that relative performance change is related

to design parameters raised to some power, in other words scaled. As covered in literature

review section 2.2.5 on scaling, this is the most widely used functional relationship with

decent empirical support and theoretical justification in some cases (Barenblatt 1996).

3.1.3 Mathematical model

3.1.3.1 Summary

A performance (intensive) metric of a domain, labeled Qj, is a function of a set of design

parameters (si, s2, s3) of a domain artifact and time but for simplicity here we consider only

a single design parameter s. The design parameter s is changed by IOIsc (successfully

assimilated 101 into domain artifacts), which in turn are assimilated from IOic (number of

accumulated operating ideas in the 101 pool shown in Figure 2). IOIc is a function of time.

Considering a single design parameter s for simplicity, for a domain J, this sequential

functional dependency (Q, <- s <- I0sc <- 101c -- t) can be expressed mathematically as:

Qj=fi(s); s =f2(IOIsc); IOIsc =f3(IOIc); IOIc =f4(t) (3.3a)

17 Recall that the performance we consider in this paper is intensive, e.g., energy density, w/cm3. In relations
to artifacts such as software, physics refers to the mathematics behind the software.
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Where IOIsc, IOIc are respectively cumulative number of IOIs (in domain J), and 10I in the

Ideas pool. Note that Qj, s, IOIsc, IOIc are all functions of time.

Since d In Qj/dt (the exponential rate of improvement in performance) is what we

want to find from the model, the form of most use for our research question is the

logarithmic derivative. Consequently, we work with the logarithm of each quantity (with

necessary changes in the functional relationships), resulting in the following new

relationships.

In Qj=fi'(In s); In s =f2'(In IOlsc); in IOIsc =f3'(In IOIc); In IOIc =f4'(t) (3.4b)

The sequential dependency (In Q <- In s <- In IOIsc <- In IOIc <- t) implies that the time

derivative of in Q can be decomposed as follows using the standard chain rule from

differential calculus:

d InQj/dt = d InQj/d ins -d Ins/d InlIOsc -d InlIOsc/d InIOIc - d InIOIc/dt (3.5)

Where, the first term on the right hand side represents the scaling parameter (Aj)

assuming that Qj is a power law in s: d InQj/d Ins = A1. The second term is the 'smaller-is-

better/larger-is-better' factor, and captures the notion whether design variable has to be

increased or decreased in order to improve performance. We capture this dependence

using an abstraction and equate d Ins/d InlOIsc =+/-1. The equation now reduces to:

d InQj/dt = Aj - ( 1)- d InIOIsc/dInIOIc -d InlOIc/dt (3.6)

The next aspect of the model is to relate the domain specific successful IOIsc to the

IOIc in the pool: which we will show - following McNerney et al. - as d InIOIsc/d InOIc =

1/d, where dj is the interaction parameter introduced by McNerney et al. Finally, the

fourth term is the time dependence of the number of IOIc, represented by Ki. With this, and

representing K = d InQj/dt, equation 3.3 as a whole reduces to:

Kj = ( 1) -Aj - 1/dj -K (3.28 preview)
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In the subsequent sections, we present derivations for the second and third terms on the

right hand side of the above equation. However, we start with Ki = d INOIc/dt, which is

arrived by a simulation of combinatorial analogical transfer.

3.1.3.2 Overall 101 simulation - genesis of exponential trends

As noted in the conceptual model in section 3.1.2, we model the I01 as resulting from

combining knowledge from prior 101 by probabilistic combinatorial analogical transfer.

Fig. 3.2a schematically represents combination of 101, in which specific 101 a and b combine

to create 101 d with a probability, Pioi. If this combination attempt succeeds, the newly

created 10I d then is added to the pool of 101 (Fig 3.2b). In subsequent time steps, 101 d can

attempt to combine with another specific 101 in the pool, such as 101 c, to probabilistically

create a more advanced 101 e (Fig. 3.2a). As this process of combination proceeds, the

cumulative number of individual operating ideas, 1OIc grows. We further make the

distinction between derived 101 and basic 101, the latter we label as 1Oo. 1Oo are

fundamental 101, which first introduce a natural effect into an operational principle to

achieve some purpose. A pair of close parallel surfaces in a dense medium, like in a fiber

optic cable, which make it possible to send a beam of light using the phenomenon of total

internal reflection can be viewed as an example of an lOo. In contrast, derived 101, just as

the term suggests, are obtained through combination of two IOIo, or between an IOMa and a

derived 101 or betwee'8 n two derived 101. In this sense, 101 a, b, and c in the figure

represent 1Oo and 101 d and e, derived 101.

In one run of the simulation, we start with the initial number of basic individual

operating ideas, lOb. At each time step, we allow combinations equal to half the number of

total 101 available at given time step to be created. Fig. 3.3 shows results from a simulation

run starting with 10 basic 101 and a probability of combination, Pioi, equal to 0.25. With

time steps on the X-axis and the cumulative number of operating ideas, IOIc on the Y-axis,

Fig 3.3 a and b show that the cumulative number of operating ideas, IOIc, grows

exponentially with time at a growth rate (K) of 0.116 for this particular run.

"I The intention is to allow each operating idea to combine with another operating idea once per time step on
average.
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For this simplified case, Ki, the rate of growth of 101, can be mathematically shown to

be equal to In(1 + Pioi /2) = 0.118 which can be easily derived as follows:

At time step t, number of new 101s created = Pioi - IOIc(t)/2 (3.7)

The number of 101 at the next time step, t+1 is given by:

IOIc(t+1) = IOIc(t) + Pioi - IOIc(t)/2 = IOIc(t) - (1 + Pioi/2) (3.8)

Ratio of IOIc between consecutive time steps, r = IOIc(t+1)/IOIc(t) = (1 + Pioi /2) (3.9)

Since the ratio is a constant, we can view IOIsc at each time step as terms in a geometric

series. Thus, in general, IOIc(t) can be written in terms of an initial IOIo and ratio, r and time

step, t; the expression can be further expressed in an exponential form as follows.

IOIc(t) = IOIo -r t (3.8)

IOIc(t) = IObo exp{lnr - t}= IOIo - exp {ln(1+ Pioi/2) - t }= IOIo -exp [Ki - t} (3.9)

Where, rate of growth of IOIc(t),

Ki= In(1 + Pioi/2) (3.10)

For very small values of Pioi,

Ki~~ Pioi /2 (3.11)

This preliminary model demonstrates the simplicity of finding an exponential relationship.

However, the simulation results to this point assume that indefinitely large numbers of

operating ideas, 101, can be created out of few basic 101. This is because the model assumes

that the same operating ideas can be repeatedly used to create new 101 without limit. (For

example, recombining (a,b) with a, then with b would give new operating 101 (((a,b),a),b)

and eventually an arbitrarily large number of a, b pairs. The assumption that an indefinite

number of 101 can be created from a few basic 101 does not appear to be realistic.

In order to better reflect reality, we introduce a constraint that any derived 101 can utilize

an 1Oo only once. The constraint operationalizes the notion that counting repetitious use of

basic 101 as new designs is unrealistic. According to this constraint, derived 101 e = (d, c) =
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(a, b, c) (in Fig. 3.2a) would be allowed, but not g = (d, f) = (a, b, b, c) (in Fig. 3.4b).

Employing this constraint, the simulation results in Fig. 3.5a, a semi-log graph, show the

cumulative number of 101 initially growing exponentially with time. However, later on the

curve bends over and hits a limit, demonstrating that all combination possibilities have

been completely used up, and the pool of operating ideas stagnates which is also shown on

the linear plot (Figure 3.5b) resembling a well-known "S-curve".
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The maximum number of combination possibilities, which is a function of IOo in the

pool, defines the limit. This limit, or maximum number of combination possibilities, is given

by a simple combinatorics equation (Cameron 1995):

IOImax = 2'0'0 - 1 (3.12)

This equation entails that the limit increases rapidly as IObo increases, due to its geometric

dependence on IOIo (Fig. 3.6). For example, for IOIo equal to 5, 10, 15, and 20 the

corresponding limits are 31, 1023, 32767, and 1,048575 combination possibilities.
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Fig. 3.6 Rapid rise of combinatorial limit: (a) linear-scale (b) log-scale

A natural question that arises from this result is what might determine the IOo over

time? We postulate a role for Science or Understanding in this regard but we first briefly

look at how Understanding evolves over time.
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3.1.3.3 Combinatoric simulations for Understanding

Just like the Operations regime, we model the Understanding regime to also grow through a

probabilistic analogical transfer process, in which units of Understanding combine to

create new units of Understanding.

In this model, we envision that Understanding is composed of many fields, with each

field having an explanatory reach. Using a treatment similar to the one used by Axtell et al.

(2013), the explanatory reach of a field may be viewed as a fitness value of the theoretical

understanding of that field, which we denote with f. When units from two fields with

fitness values,fi andf2, combine19 , the fitness of the resulting unit is randomly chosen from

a triangular distribution with the base or X-axis denoting the fitness values ranging from 0

to fi + f2, and the apex representing the maximum value of the probability distribution

function, given by 2/(f +f2). See Fig 3.7a. If the resulting fitness of the new Understanding

unit is higher than the fitness of either of the two combining units, the new understanding

unit replaces the unit whose fitness is the smallest among the three. We assume the

cumulative fitness of the Understanding regime as a whole to be equal to the sum of the

individual fitness value of each field.

Our simulation assumes 10 fields with starting fitness values ranging from 0 to 1,

which are randomly assigned. Consequently, the cumulative fitness value of Understanding

regime averages to a value of 5 initially. As the simulation proceeds, fitness values of the 10

fields grow independently, and as a result, the cumulative fitness of the Understanding

regime grows. Fig. 3.7b shows results from a simulation run exhibiting roughly exponential

growth of cumulative fitness over time. Thus, the simplest model for growth of the

understanding regime is also exponential. However, as with the Operations regime,

unlimited growth by simple combination of scientific theories is not realistic.

19 Since the purpose of this work is to develop a model for the operations regime, the Understanding regime is
treated at a higher abstraction level, and specific mechanisms used for combination of UOU are not modeled.
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Fig. 3.7: a) Triangular distribution of possible fitness values that can be assumed by a

new unit of Understanding b) Growth of Fu (cumulative fitness of Understanding)

regime) over time.

The Understanding regime also cannot progress indefinitely by simple combination

of existing understanding but instead experiences a limit that we envision as depending

upon availability of operational (technological) tools available for testing scientific

hypotheses. We express this dependence through an equation which expresses the

maximum cumulative fitness at any time, maxFu(t), as simply proportional to the 101

existing at that time:

maxFu(t) = ZF* lOIC(t) (3.13)

Where 101c thus represents an approximation for the effectiveness of available

observational tools, and ZF, a constant of proportionality. This equation captures the

concept first suggested by Price that the extent (or scope) of explanatory reach of the

understanding regime is dependent upon what operational tools (experimental approaches

and tools) are available for scientists and researchers. It also recognizes in the terms of our

model that these tools are essentially operational artifacts. The capability to measure

accurately increases as the number and quality of available tools increases.
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3.1.3.4 Exchanges between science and technology and its impact on

exponential trends

The relationship of science and technology, discussed in literature review section 2.2.3, is

not well-modeled by a simple linear model, but mutually beneficial relationship,

summarized in Fig. 3.8, is consistent with prior qualitative work. In our model, we capture

this enabling exchange from the Understanding to the Operations regime using a simple

mathematical criterion:

Fu(t)/Fu(tprev) cutoff ratio (R) (3.14)

Where, Fy(t) and Fu(tprev) represent cumulative fitness values at time step t and the most

recent time step, tprev, at which a 1Oo had been introduced 20.

This criterion states that when cumulative fitness of the Understanding regime

grows by some multiple (R) from the time when the last 1Ola was invented, understanding

has improved enough to generate a new 1Ola, which becomes available for combinations

with all existing 101. The threshold ratio, R, determines the frequency at which 1Ola are

created.

20 Another possible formulation is based on difference:
Fu(t) - Fu(tprev) 2 cut-off difference
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Fig. 3.8 Synergistic exchange between understanding and operations

We now show results from a simulation including the exchange and limits on 1Ola. In

the simulation, we study how synergistic exchange from Understanding influences the rate

of growth of 101 in the Operations regime, including escape from stagnation. We focus

particularly on two variables, namely, the initial number of IObo in the Operations regime

and the threshold ratio R for creation of new 1Oo. Other pertinent variables are the

probability of combination, Pioi, and the number of combinatorial attempts occurring per

year.

For this simulation study, Table (3.1) presents the parameter values for 101o

(column 3) and R (column 4) that are used. As an example, 5B3R starts with bOo of 5 and a

new 1Ola is created when cumulative fitness grows by 3 times. Both the initial number of

IOlo and the threshold ratios of cumulative fitness, R, are set at 3 different values, giving a

total set of 9 parameter combinations. For all 9 runs, the value of probability for

combination is kept constant at 0.25, and we assume one attempt per yearly time step.
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The simulation results in Fig. 3.9 shows the temporal growth of IOIc in the

Operations regime for the nine runs shown in Table 3.1. Runs 5B3R and 5B5R clearly stand

out: they have a bumpy growth since they encounter periods of stagnation multiple times,

as they evolve. However, their effective rates of growth are meager, standing only at 0.05

and 0.02, which is much lower than 0.118, the rate given by Equation 3.10 [= In (1+ Pioi

/2)). Columns 5, 6, and 7 list the Ki, R2, and Kl cal calculated using In(1+ Pioi/2) respectively.

The small deviations from equation 3.10 found for the other 7 runs are within the 2-sigma

estimated from multiple simulation repetitions for each run.
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Table 3.1: Simulation study: Parameter values of IOM and R (threshold ratios of

cumulative fitness of Understanding) for the study. Results: Ki is the slope fitting the

simulation results to an exponential with R2 for the fit (also shown). Other

parameters, such as probability of combination, Pioi= 0.25, are kept constant.

Simulation Initial Threshold Simulation R Ki=
Run 101 ratio

Ki( 2 std dev) In(1+ Pioi /2)
R

1 5B1.5R 5 1.5 0.123 ( 0.011) 0.998 0.118

2 5B3R 5 3.0 0.055 ( 0.019) 0.959 0.118

3 5B5R 5 5.0 0.039 ( 0.007) 0.943 0.118

4 10B1.5R 10 1.5 0.122 ( 0.011) 0.997 0.118

5 10B3R 10 3.0 0.115 ( 0.007) 0.998 0.118

6 10B5R 10 5.0 0.117 ( 0.007) 0.983 0.118

7 20B1.5R 20 1.5 0.116 ( 0.007) 0.998 0.118

8 20B3R 20 3.0 0.116 ( 0.009) 0.998 0.118

9 20B5R 20 5.0 0.119 ( 0.016) 0.998 0.118
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Fig. 3.9: Growth of IOc over time. Initial IOIo and R (cumulative fitness ratio) for each

run are shown in the legend for each run; e.g., 10B5R represents 10 IObo and fitness

ratio R of 5. Each curve is a representative sample from each run.

Both 5B3R and 5B5R start with low initial IObo of 5 and have higher cumulative

fitness threshold ratios (R) for infusion of new 1Oo. Low initial IOIo implies that the

Operation regime has a low number of combinatorial possibilities of 101 to start with.
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Additionally, since new 1Oo are not coming fast enough to push the frontier of

combinatorial possibilities of 101 far enough, the Operation regime quickly exhausts the

possibilities and again stagnates. Run5B5R stagnates for longer periods compared to 5B3R

since it has a higher threshold ratio (R) for infusion of a new 1Oo and thus slower progress.

The Operation regime cannot escape the stagnation until another 1Oo is created with

infusion of new Understanding. It is clear from the curves that this pattern repeats itself

time after time.

Other simulation runs, except run 10B5R grow exponentially and smoothly and

their rates are consistent with the theoretical value 0.118 calculated using In(1+ Po /2).

These curves have either high enough bOo to start with or fast infusion of bOo, or both. Run

5B1.5R, for example, starts with a low number of IOo but has fast infusion of 1Ola, since the

threshold ratio R is only 1.5. On the other hand, run 20B5R has slow infusion of 1Oo (high

R), but starts with high initial lo.

These runs do not exhibit stagnation for two reasons. The first reason is that the

frontier of combinatorial possibilities for some runs is very far from the number of realized

101 at a given time step. For example, run 20B5R has over a million possibilities when it

starts with 20 lOlo. The second reason is that the frontier of the combinatorial possibilities

keeps on moving further away as 1I1 increases. Run 5B1.5R, for example, starts with 5

1Ola, and yet it never experiences stagnation due to fast infusion of 1Ola (low R) that push

the frontier of combinatorial possibilities. The growth of IOIc is also free of stagnation for

runs (e.g., such as Run 10B3R) with medium number of initial 1Oo and medium rate of

infusion of 1Oo (medium R). This is true because both factors in combination ensure that

frontier of combinatorial possibilities is far enough to start with, and the frontier continues

to move rapidly enough with time.

Run 10B5R exhibits somewhat unusual behavior. Although it grows smoothly at the

beginning for quite some time, it experiences stagnation later on. This is because the

frontier of combinatorial possibilities is far enough away to sustain steady growth early on.

Later, the Operation regime exhausts the combinatorial possibilities before new 1Oo arrive.

However, once a new 1Ola arrives, it jumpstarts again but it briefly halts at each new limit
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showing the value of frequent interchange between science and technology in this

simulation. 21

We have seen that a combinatorial process augmented with synergistic exchange

between Understanding and Operations leads to an exponentially growing pool of

operating ideas, IOIc. This growth is described by an exponential function, and its growth

rate is given by time derivative of its logarithm:

IOIc(t) = IOIO(to) exp{K1 (t - to)} (3.15A)

d lnIOIc (3.15 B)

dt

Where, Ki = the effective rate of growth of lOIc, IOIo(to) = the number of initial basic 101, t =

time, to = initial time.

Our overall conceptual model (Section 3.1.2, Figure 3.1) envisages that this

exponentially growing pool of operating ideas, IOIc, provides the source for the exponential

growth of performance of technological domains. How does this exponential growth of IOIc

result in performance improvement and what accounts for the variation in rates of

performance improvement across technological domains?

3.1.3.5 Modeling interaction differences among domains

As explained in literature review sections 2.2.4 and 2.2.5, two factors potentially

responsible for modulating the exponential growth of operating ideas as they are

integrated into technological domains are the domain interactions and scaling of relevant

design variables. We consider domain interactions first and demonstrate how the term

21 The simulations are based upon infusion of 1Oo depending upon a ratio (R) of growth in

cumulative understanding, but similar results are found with assuming a model of difference in Fu.
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d lnIOIsc/d lnIOIsc = 1/d

McNerney et al. (2011) have modeled how interactions in processes affect unit cost.

We build on their mathematical treatment to analyze the effect of interactions between

components upon integrating 101 into artifacts in a domain, which in turn affects the

domain's performance improvement. Fig. 3.10 a shows a simplified schematic of an artifact

in a technological domain that has three components (1,2,3) with interaction being

depicted by out-going arrows, representing influence, from a component to other

components, including itself. The outgoing arrows are referred to as out-links. The number

of out-links, d, from a component provides a measure of its interaction level, and has value

of 1 or greater as McNerney et al. assume each component at least affects itself. For

simplicity, we show each component with two out-links, to itself and to another

component. We represent an instance of an attempt being made to improve the

performance of component 2 by an 101 being inserted. Since component 2 interacts with

itself and another component, the performance of the interacting component is also

changed by the insertion but in a fashion described probabilistically. The performance

improvement attempt is accepted, only if the performance of the artifact as a whole

improves. If that does occur, we consider the interactions being successfully resolved to

improve the performance.

For a simplified artifact with d number of out-links for each component (d=2 in Fig. 3.10a),

McNerney et. al.'s treatment (2011) for unit cost results in the following relationship:

dC/dm = - B - Cd+1 (3.16)

Where, C = unit cost normalized with respect to initial cost22, m = number of attempts, d=

number of out-links, B = constant

22 The normalized unit cost is 1 or less.
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Fig. 3.10: Interactions in an artifact; a) illustration of interactions as out-links b)
sample space of probabilities for unit cost in an artifact with two components.

This equation states that the level of interaction inherent in the domain artifact

influences the rate of unit cost reduction. We adapt this equation for our analysis in the

following manner. We interpret number of attempts as IOIc since at each attempt an 101 is

being introduced into an artifact to make a design change. Secondly, reduction in unit cost

can be interpreted as inverse of intensive performance improvement, in which the cost is

the resource constraint (such as in a typical metric kWh/$ 23). With these extensions,

equation 3.16 can be re-written as:

d(Q)/d I01 = B -Q -d-1) (3.17)

Where, Q = performance of a domain

Since as shown in Equations 3.3 and 3.4, successfully resolved operating ideas in a

domain, IOis, are the source for its performance im provement, we replace performance Q

of a domain with IOIsc. An 101 is considered a successful attempt if the interaction

23 The concept can be further generalized to include performance metrics which involve other resource
constraints such as volume, mass, and time (e.g., kwh/M 3), instead of cost.
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resolution leads to net performance improvement of the artifact, and we refer to the

successful 101 as a domain 101, denoted by 101s. The modified equation shown below states

that interaction level, d, has a retarding effect on the growth of IOIsc, cumulative number of

101s, in a domain.

d(IOIsc) -(1-d> (3.18)
d =Ic ISC

We solve the differential equation by separating the variables, and integrating both

sides using dummy variables, and express IOIsc explicitly. The integration limits are: (a) for

the right side, 0 to IOIc, (b) for the left side, 1 to IOIsc. The result is equation 3.19A. Since B

and d are closer to unity, and JOIc >> 1, we can ignore 1, and simplify the relation to

equation 3.19B.:

IOIsc = (B -d - IOIc + 1)1/d (3.19A)

IOIsc = (B -d -IOIc)l/d (3.19B)

Since our goal is to determine d INOIsc/d Inf0ic, we take the natural log of both sides and

differentiate it with respect to InI0ic, resulting in the desired expression (which will be

substituted into equation 3.4 in section 3.1.3.1):

d(InIOIsc)/ d(InIOIc) = 1/d (3.20)

Fig. 3.11a shows a plot of the equation 3.19B in a log-log scale. The curves illustrate

how the growth of operating ideas in the domain is influence by the values of interaction

parameter d. It is clear that higher values of d negatively influence the slope of the curves,

which represent the relative rate of 101 assimilation by the domains. It is also evident that

the slope of the curve reduces in a non-linear fashion - fast as the value of d increases from

1 to a higher value, but later on it slows down. This is also clear from the plot of

equation 3.20, the final relation (Fig. 3.11b).
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(a) (b)

3.11: Growth of IOsc (successfully assimilated operating ideas in domains) using

equation 3.19B: (a) influence d (interaction) on growth of IOsc, assuming B = 1 (b) how time

derivative of logarithm of IOsc varies as a function of d.

The graphs in Fig. 3.11 suggest that interaction differences among domains can give rise to

variation in improvement rates, and further they show how few interactions (d) are

required to slow the assimilation of ideas by the domains. This variation is further

expanded by scaling parameters associated with domains, which we discuss next.

3.1.3.6 Performance models - scaling of design variables

Our research question is concerned with intensive technological performance of domain

artifacts. The intensive technological performance represents an innate performance

characteristic of an artifact. We operationalize the notion of intensive performance by

dividing desirable artifact outputs with resource constraints (e.g., mass, volume, time, cost).

An intensive performance metric for batteries is energy density, kwh/M 3. We now consider

three examples of relationships between intensive performance and design variables, and
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then utilize a more general relationship to account for the scaling effect of intensive

performance.

3.1.3.6.1 Selected examples

We first consider blast furnaces used in the manufacturing of steel as representative of

reaction vessels of various kinds. Widely used performance attributes for a blast furnace

are capacity and cost, where cost can be considered the resource constraint. So, an

intensive performance metric can be defined as capacity (output per hour or day typically)

per unit cost. The capacity of a reaction vessel is determined by its volume, while its cost is

primarily proportional to surface area (Lipsey et al. 2005). The following dimensional

analysis shows that following these simplistic assumptions, intensive performance of a

reaction vessel is linearly proportional to size, s.

QRV = capacity/cost of reaction vessel a s3 /s 2 = s1  (3.21)

Gold (1974) has empirically shown that the cost of a blast furnace goes up by 60

percent when the capacity is doubled. Intensive performance QRV using this empirical

finding goes up by 1.25 (=2/1.6) when volume (s3) doubles. The doubling of volume

corresponds to s scaling up by 1.26 (=2.333), thus closely agreeing with the simply derived

relationship 3.21.

A second example we consider is specific power output from internal combustion

(and other heat) engines. Power output (kW) is proportional to volume occupied by the

combustion chamber minus the heat loss from the engine, which in turn is proportional to

the engine's surface area. The power and specific power can, then, be calculated as:

power = as3 - b s2 ; b/a < 1 (3.22)

Qic = specific power oc power/volume of engine = (a s3 - b s2)/s3 = a - b/s (3.23)

Similar to reaction vessels, specific power output of IC engines increases with size so both

are "larger is better" artifacts". For small values of (b/a s) it is approximately linear with s.

For larger values of s, it is less than linear in s.
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As a final example, we consider information technologies, whose performance

improvement ranks amongst the highest. Several modern information technologies depend

upon integrated circuit (IC) chips. Electronic computers have been improving performance

by reducing the feature sizes of transistors in IC chips for microprocessors. The number of

computations per second per unit volume, an intensive measure of performance, depends

upon frequency and number of transistors in a unit volume. Frequency is inversely

proportional to the linear dimension of a feature, s, and the number of transistors per unit

area is inversely proportional to area of the feature. Thus,

Computation per sec per cc c 1/s - 1/s2 = s - (3.24)

The dimensional analysis indicates that computations per second increases rapidly for a

decrease in a linear dimension of a feature. This is due to the cubic (or higher) 24

dependence of computations per second on feature size. The negative sign captures the

fact that the design variable needs to be reduced in order to increase performance, that is,

smaller is better for this artifact.

3.1.2.6.2 Generalization

The three examples we have presented illustrate the notion that intensive performance

improve by different degrees depending how the design variables are scaled (with A=+1 for

reaction vessel, A=+1 for engine for small sizes, and A=-3 for computation). In the first two

cases, a 10 percent increase in a design variable will improve performance by 10 percent or

less. However, in the case of computations, for the same 10 percent change in design

variable (feature size), the performance would improve by over 33 percent. This

dependence is modeled as a power-law:

Q = sA (3.25) InQ=A-Ins (3.26)

din Q/dlns=A (3.27)

24 If the vertical dimension also decreases over time as the feature size decreases, a higher power, perhaps
approaching 4, would apply.
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Where, A is the scaling factor, s is the design variable in a domain J. Equation 3.27 shows

that relative change in domain performance with respect to relative change in design

variable depends upon the scaling parameter of the design variable. This is consistent with

the pattern seen in the results of the examples in section 3.1.3.6.1.

3.1.3.7 Bringing all elements together

We now bring the results for rate of 101s growth and influence of interaction and scaling

together. For the reader's convenience, we reproduce equation 3.5 here, and substitute the

results for the three factors:

d inQ1  d inQ1  d InIOIsc d inI0Ic (3.3)
dt d ins d ( n+l l c* dt

Substituting the results from equations 3.27, 3.20, and 3.15B for the first, third and fourth

terms on the right hand side, we get:

d ln Q 1 (3.28)
Kd (T1) A -- K1dt dj

Equation 3.28 represents the overall model of the annual rate of improvement for

domain J. According to this equation, K, the annual rate of improvement of domain j

depends upon Ki, the exponential rate at which the IOIc pool increases in size. Ki is then

modulated by domain specific parameters, d1 (interaction) inversely and A1 (scaling)

proportionally to result in a domain specific rate of improvement K. The minus sign is

converted into positive one by negative sign of A1 (for those cases where smaller is better).

One observation to note is that A1 and dj are constants for a given domain, thus resulting in

a time invariant rate (or a simple exponential) for a domain.

This model identifies dj and A1 as potential variables than can test this model. We present

results from an empirical test for the first one in the next section.
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3.2 Empirical study of domain interactions using patents

The theoretical model presented in section 3.1 suggests that the interaction parameter,

which is characteristic of a domain, is one of the key factors in influencing the rates of

performance improvement. This section presents results from an attempt to empirically

test this theoretical finding.

3.2.1 Methodologies

3.2.1.1 Different approaches to study interactions: DSM and patents

Two approaches exist for studying interactions in artifacts. One method that is well

recognized is the design structure matrix (DSM) (Eppinger and Browning 2012), which

when applied to products captures interactions between components in any artifact. The

empirical method essentially utilizes interviews with a broad variety of engineers who

participate in development of an artifact and are associated with effort on various

components or systems that make up the artifact. Such interviews can capture geometrical,

energy, material and information interactions and the DSM can be defined at different

levels of abstraction of the product and the method has been well developed for some time

now.

If one can obtain reliable DSM data across a wide range of domains, this would be an

effective way to study interactions. However, it is very expensive to develop a DSM for

complex product such as a jet engines, aircrafts, and MRI machines. Perhaps for this reason,

the number of DSM publicly available in papers and at websites is meager. Leading DSM

researchers such as Prof. Steven Eppinger at Massachusetts of Technology recommend

using the website ww.dsmweb.org as a potential source for DSM. After a significant amount

of time spent searching and browsing through the available DSM for products, only few

(-10) complete DSM were found, and most were for artifacts for which we did not have

performance data. One DSM for jet engines by Pratt and Whitney, which could be

associated with internal combustion engines for which performance data was available was

found in a book by Eppinger and Browning (2012). No others were found and at least 10
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would be needed for systems that have performance data in order to test the theory. Due to

the scarcity of available data and prohibitive cost of developing them, this approach, to

study interactions was dropped.

Another approach is to use documents - design manuals and engineering books -

related to a specific domain, which could be analyzed using text mining techniques. Since

not enough texts describing interactions related to specific domain could be found, this was

not a promising approach either.

On the other hand, patents retrieved using the COM technique (Benson and Magee

2013, 2015a) for each specific domain for which performance data is available offered a

promising avenue for study of interactions. As described earlier in the literature, patents as

a data source are promising because they are generalizable, objective, qualitative and

quantitative. They provide a wealth of text that describes state-of-art prior to the invention,

and problems that were solved. Second, the data is publicly available for many generations

of technologies, and easily accessible from USPTO or other websites such as Google.com.

Unlike in DSM of products in which interactions have already been identified, interactions

are not inherently defined in patents as patents are written for the protection of

intellectual property, and patent law does not require them to be identified for

patentability. Thus, it was necessary to develop a method for identifying interactions as a

first step before any analysis could be done.

3.2.1.2 Overview of steps for text mining and analysis of patents

The patent analysis using a text mining approach was conducted in two phases. In the pilot

study using patents from 5 domains - battery, wind power, solar PV, capacitors and

computer tomography scanning (CT scan), feasibility for extracting data on domains

interactions from patent text was explored, and basic procedures developed. After the

keyword approach was shown to be feasible, an extended study using patents from 28

domains was implemented.

Both the pilot and full study consist of three broad steps shown in Fig. 3.12. In the

first step, domain patents are identified, electronically retrieved from the web, and cleaned

111



to prepare for analysis. In second step, interactions are retrieved from the domains using

textual analysis, and are then analyzed in the third step. In the subsequent sections, these

three steps are described in the context of a pilot study undertaken for the exploration of

key-word based text-mining approach for studying interactions using patent text.

Fig. 3.12 Steps for analysis of domain interactions using patents

3.2.1.3 Preparation of text from domain patents

The outcome of this step was the relevant text from 100 most-cited patents for each of the

domains being studied. The preparation followed the following procedure to retrieve the

text for analysis:

o Identified 100 most-cited patents 25 for the domains using COM method (Benson and

Magee 2013, 2015a) and eliminated any irrelevant patents by reading.

o Identified reliable source for patent text: Google patent database (html files).

o Selected useful patent sections for study of interactions.

o Retrieved patent sections using computer scripts and manually.

25 The most cited 150 patents were obtained so that 100 could be retained after eliminating non-relevant

patens.
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o Eliminated extraneous text such as stop words from the patent text using Python

scripts.

The first step in getting this text required identifying patents that belonged to each

domain. The patents for 28 domains were identified as part of the doctoral work of

Christopher Benson (2014) to study rates of performance improvement using patent-

metadata. The current author was a participant in that research in reading downloaded

patents from PatSnap, a commercial patent database, to test whether they belonged to the

domain in question. To reduce noise due to non-relevant patents, this study was limited to

100 most-cited domain specific patents identified using COM technique; but these 100

patents were obtained after reading and eliminating non-relevant patents in this set.

PatSnap was also used to identify the most-cited patents for the 28 domains. For the pilot

study, only a sub-set of 5 domains, each with 100 patents, were studied

In the second step, a reliable source for retrieving patent text was identified. Although

PatSnap allowed patent metadata including abstracts to be downloaded, it did not provide

electronic access to the rest of the text in the patents that were intended to be used for text

mining. Fortunately, Google patents provided an access to the text in patents as html files.

As part of the third step, two researchers, including the current author and an Intern

working with the author for several months, read a set of 60 patents from 5 domains to

identify sections describing technical issues that reflect interactions. Three patents from

each decade starting from the 1970's till the present were selected to make a total of 12

patents in each domain. (See the literature review section 2.4.2 for description of the

structure of patents.) It was observed that background or prior art sections, as expected,

described problems with the state-of-art artifacts. It was found that many patents while

summarizing the current invention also discussed problems that were not previously

discussed in background or prior art section. In both of these sections, descriptions of

problems, which could be interpreted as interactions, were observed. The detailed

description and claims sections focused on describing the current invention and novelties

they wanted to claim as assignee's intellectual property, and rarely included descriptions of

interactions. Based on this reading, the decision was made to include text from the title,
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abstract, background, and summary sections, and not include the detailed description and

claims sections.

Unlike in PatSnap, it was not possible to download patents in bulk, and required doing

either manually or writing a web-scraping tool to automate the process. For the pilot study,

the relevant sections were downloaded manually. (For the extended study a web-scraping

tool was developed and used for downloading close to 2400 patents. The remaining 400

patents had to be downloaded manually.)

In the final step of preparing the patents for text mining, the stop words were removed

from the patent text using Python scripts. Stop words are a set of commonly used words,

such as the, a, it, and in. Although they are critical in natural language, they do not add any

value to the data. Removing them makes it possible to focus on the important words, and

reduces computation. The completion of this step prepared the text from 500 patents for

text-mining.

3.2.1.4 Exploration of keyword-based text mining technique for

extracting data on domain interactions

In preliminary work to develop a method for extracting data on domain interactions, three

text mining approaches were explored using thelOO most-cited patents for 5 domains. The

first method was latent semantic analysis (LSA) and the second method was LDA (Latent

Dirichlet analysis). Literature review section 2.4.5.3 on content analysis provide a

description of these techniques. No promising signals regarding interactions were visible in

the results provided from both of these techniques. 26 The third approach was keyword

analysis which did yield useful results so it will now be described in more detail. First, an

analysis of interactions was developed to guide the keyword search.

Types of interactions: Based on the work of Whitney (1996, 2004) and Suh (2001),

the interactions in artifacts can be classified into four types:

26 Results from these explorations are in the appendix for reference.

114



- Between functional requirements: These interactions are consequences of the

dependencies between multiple functions and design parameters as discussed by Suh

(2001). For example, increasing size of a mechanical component can increase the

increase its stiffness, a desirable quality. But, increasing size results in increase of mass,

which can affect dynamics of the artifact adversely. When one function is improved,

such interactions can lead other coupled functions to be adversely affected.

- Between component and component: A good example of this type of interactions is the

necessity to match impedance between sub-systems in order to transfer power

efficiently (Whitney 1996, 2004).

- Between component behavior and system behavior.

- Parasitic/side effects: These represent undesirable effects exhibited by the components

and sub-systems, while they fulfill their main functions. Some examples of these are

corrosion in battery electrodes, and heat dissipation in computers.

Identification of keywords capturing interactions: A challenging aspect of the

keyword approach is that it requires the researchers to identify words that represent

interactions before the keywords can be searched in the patent text. In this study,

keywords were identified by studying the 60 patents using the insight about the nature of

interactions as guidelines.

In a preliminary study, two researchers, including the current author, re-read the same

set of 60 patents described in section 3.2.1.3. This time they noted all instances of text

representing interactions in each patent and compared the results from the two readers.

The text which both researchers agreed on as representing interactions (any type of

interaction described above) were retained for further study. From each description of

interaction in the text, a keyword was identified that most closely captured the essence of

the text describing the interactions. All the keywords were tallied in each domain. A total of

30 keywords were deemed to potentially represent interactions. However, most had low

counts, and some were too specific to a domain, making the distribution across domains a

large noise source.

115



Two criteria were used to cull the keywords: count of occurrence and general usage

of the keywords across the domains. High occurrence was necessary to get a statistically

strong signal capable of showing variation across the domains. For example, the words

'problem' and 'prevent' were common keywords to describe technical issues. Since the goal

of the study is to conduct a comparative study, it was also necessary to ensure that

keywords were not domain specific, instead were generally used. For this reason, the word

'corrosion' was not considered a good keyword, since it would be too specific to particular

domains, and may see no usage in some domains. Instead the word 'prevent' or

'undesirable' would be a better choice, since it captures the notion of bad side effect that

needs to be mitigated, but without considering the nature of the side effect.

The list was reduced to 8 keywords, which had high count and could be generally

used across all domains. They are listed in Table 3.2. It is evident that all words are general

and not domain specific. Table 3.3 presents examples of patent text with the keywords

highlighted. In each case the text can be interpreted as an example of a description of an

interaction described above. The interaction described in the first and second examples can

be interpreted as undesirable side effects, whereas the third example pertains to conflict of

functional requirements.

Table 3.2 Short-listed 8 keywords representing interactions

Parasitic . Requirement
- Problem . Fail
- Prevent . Disadvantage
- Undesirable . Overcome
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Fig. 3.13 Plot of count of 8-keywords representing interaction and improvement

rates for 5 domains. The count of 8-KW trends downwards across the domains which

are ordered with increasing performance rates.

117

Table 3.3 Examples of text from patents describing interactions

* This is probably due to penetration of the liquid electrolyte into the aluminum
oxide surface coating on the anode. Sometimes, however, such penetration is
undesirable, as it can result in a change in the dielectric characteristics and hence
in a distortion of the waveform in pulse applications.

- In such electrolytic capacitors there exists the risk that the liquid electrolyte will
leak out. Accordingly, the capacitor must be hermetically sealed to prevent any
leakage of the liquid electrolyte therefrom...

* ... has the advantage of permitting accurate superposition of graphic

representations ofsurgical objects on fluoroscopic images of a body part without
the requirementfor registration of the body part itself
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These keywords were then searched in 86 patents in each of the 5 domains. The

total count of keywords for the 5 domains are presented in Fig. 3.13. The total count of

keywords (left Y-axis) are used for estimating the component interactions in the domain

artifacts. The domains are ordered with rising improvement rates along the horizontal axis

to see potential trends. The performance improvement rates for each domain are also

plotted for reference. A general downward trend in count of keywords is clear, although the

count of keywords for capacitor deviates significantly. Further, the correlation analysis

provided that the correlation coefficient was 0.73, but with a p-value of 0.16. The general

downward trend visually observable and good correlation-coefficient were both promising.

However, p-value greater than 0.05 cautioned that this could be easily due to random

effects, and further analysis was necessary.

The pilot study successfully demonstrated that patent text could be used for study of

interactions, identified keywords potentially capturing domain interactions, and developed

the steps necessary for conducting the study. Not surprisingly, the study was inconclusive,

and suggested that it was essential to extend study to more domains.

3.2.1.5 Extended study of interactions with 28 domains

The extended study included 28 domain with 100 most-cited patents and followed the

basic steps developed in the pilot study. Since this study required retrieval of text from

2800 patents, web-scraping tools had to be specifically developed for automated

downloading of selected patents sections. Out of the 2800 patents, about 2400 hundred

were successfully downloaded using this tool, and the rest had to be downloaded

manually.27 Almost all of these manually downloaded patents either lacked proper titles

describing the sections, or background and summary were merged with detailed

descriptions. For these cases, the background information and summary had to be

manually identified by reading the patents and extracted.

27 Since 24 patents could not be downloaded, the number of patents in each domain studies ranged from 97 to
100.
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Following the techniques developed in the pilot study, the Python code was written

to eliminate stop words, and extraneous text. Similarly, scripts were written for detecting

and counting the keywords and extracting the portion of the text containing these

keywords. In addition to the keywords, this study also counted the number of words and

characters used in the patents and domains in order to normalize the count of keywords.

The following section presents the results and the analysis for the extended study.

3.2.2 Results and analysis

This section presents statistics from text-mining of 2800 patents, and results from

correlation analyses followed by results from robustness studies. The final sub-section

summarizes the results.

3.2.2.1 Count of words across domains

We first present patent statistics based on text mining of patents. Fig. 3.14 shows the total

count of words in the title, abstract, background, and summary of each of the 2800 patents

studied. The X-axis represents the serial number of the patent we assigned, which are

ordered as domains shown in Fig. 3.15. It can be observed that there is a wide variation

between patents, with some patents being very wordy. The wordiest patent has over 15

thousand words. There are also a large number of patents with total count of words

exceeding 3000 words. The ratio between the highest and the lowest counts is more than

100. Although this is the case with individual patents, when the domains are viewed

collectively as a group, the variation tightens. Fig. 3.15 shows the total count of words per

domain. The domain level word count ranges from roughly 95,000 to 191,000, a ratio of

slightly over two, which is much tighter than a ratio of 100. The domain with the five

highest word count in descending order are genome sequencing, 3D printing, optical

memory, CT scan, wireless telecommunications. The domains with lowest count in

ascending order are electric motor, electrical telecommunications, milling machine, optical

telecom, and flywheel. Although the variation has shrunk, it may be large enough to skew
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or add significant noise to total count of keywords representing interactions, and thus

pointing to the need to normalize the keyword count for analysis.

Total # of words in each patent
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Fig. 3.14 Variation of count of words in 2800 patents
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Fig. 3.15 Variation of count of words per domain
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3.2.2.2 Normalized count of keywords

The study of 28 domains was begun with 8-keywords - parasitic, problem, prevent,

undesirable, requirement, fail, disadvantage, overcome - which were identified in the pilot

study. The normalized count of 8-keywords for 28 domains are presented in Fig. 3.16.

Since the 8-keyword count for each domain is much smaller than the count of words, the

normalized 8-keyword count has very low fractional values. To make it easier for the

reader to comprehend, the normalized 8-keyword counts have been expressed for every

100,000 words. It can be observed that five domains that have the highest normalized 8-

keyword count in descending order are Aircraft domain, Electric Power Transmission,

Flywheel, Electric Telecommunication, and Milling Machine. The domains that have the

lowest count in ascending order are Genome sequencing, CT scan, Superconductors, MRI,

3DPrinting. Annual rates of improvement for 28 domains are reproduced again for reader's

convenience in Fig. 3.17.
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Fig. 3.16 Count of normalized 8-keywords per 100,000 words for 28 domains.
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3.2.2.3 Correlation analysis of normalized keyword count and annual

improvement rates

This correlation analysis treats keyword count as the independent variable and annual rate

of improvement of domains as the dependent variable. Fig. 3.18 shows a scatter plot of the

annual rates of improvement (Y-axis) and the normalized 8-keyword count (X-axis) for 28

domains to observe any form of correlation visually. We can see that data is quite noisy,

with noisiness higher for lower counts of 8-keywords. The data point for genome

sequencing appears as if it might be an outlier. Nonetheless, the downward trend is visible,

implying that increase in 8-keyword count is correlated to decrease in annual rate of

improvement. The Pearson's correlation coefficient calculated using EXCEL 2010 is -0.41

with a p-value of 0.016. The p-value indicates that there is only 1.6% probability that this

correlation is due to randomness. The correlation coefficient has a medium value; this

implies that keyword count, as an independent variable, alone is not able to explain the

variation in annual rates of improvement.
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Fig. 3.17 Annual rate of performance improvement for 28 domains. Adapted from Magee et
al. 2014.
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Fig. 3.18 Scatter plot of normalized 8-keyword count and annual improvement rates
for 28 domains (using 100 in each domain)

These results are based on 8-keywords selected through the pilot study using two criteria -

relevancy and cross-domain usage.

As part of the pilot study using 5 domains (battery, capacitor, wind, solar power and

CT scan), apart from correlation study, relevancy of the 8-keywords had been studied. Two

readers separately examined the text from 12 patents from each domain containing these

keywords and determined whether the meaning of a keyword as used in the text

represented an interaction, and calculated the relevancy results. The relevancy value for a

specific keyword for a domain was calculated as a ratio of the count of a keyword when it

represented an interaction to total count of the same keyword (whether it represented an

interaction or not). Table 3.4 presents relevancy results for the keywords in each domain.

The top row lists the domains and the left-most column, the eight keywords. The last
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columns presents the average values of relevancy of a keyword across all domains. All 8

keywords have consistently high relevancy except for the keyword problem which has only

0.58. This is because it is common among engineers to use the word 'problem' to describe

design opportunities, such as in a phrase 'design problem'. This convention is reflected in

the patent text. Since such usage does not capture interactions, low relevancy is likely to

add to the noise. For this reason, 'problem' was removed from the keyword list.

Table 3.4 Relevancy of 8-keywords obtained during pilot study

Percentages: Batteres Wind PV Capadtors a Arithmetic mean

parasitic 0.99] 0.99 0.941 0.97

problem 0.68 0.61 0.55 0.50 0.55

prevent 0.93 0.85 0.76 0.85 0.75 0.83

undesirable 0.875 0.95 0.99 0.99 0.875 0.94

reqWrement 0.85 0.69 0.79 0.81 0.63 075

fall 0.92 0.68 0.78 0.74 0.50 0.72

disadvantage 0.93 0.80 0.79 0.80 0.71 0.81

overcome 0.99 0.96 0.99 0.95 0.99 0.98

The seven remaining keywords were examined against another criteria - cross-

domain usage. Six out of seven words are used by all 28 domains. Although highly relevant

with a value of 0.99 when it was used, the "Parasitic" keyword, however, was not widely

used by many domains. In fact, in 12 domains it was not even used once, and only 4

domains - Camera Sensitivity, Capacitor, Electric Power Transmission, Fuel Cell, IC chips -

used it often. Fig. 3.19 shows the distribution of the "parasitic" keyword across 2800

patents. Note the areas that have only zero values, indicated by arrows. To provide

perspective, the distribution of the keyword "prevent" is presented in Fig. 3.20. It is clear

the keyword "prevent" is widely used across domains, apparent from the lack of regions

with zero values.
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The two keywords - problem and parasitic - do not satisfy the two criteria and

would only add to the noise, hence it was decided to eliminate them from the key word

group.

The correlation analysis was then repeated with using only six keywords, which

have both high relevancy and high cross-domain usage across domains. Results from a

correlation analysis using six-keyword count for 28 domains are shown Fig. 3.21. Visually,

it can be observed that the data points are less scattered and the downward trend is more

visible, showing a negative correlation. As expected Pearson's Correlation coefficient

(calculated using EXCEL2010) has improved from -0.41 to -0.554. Similarly, the p-values

Combo-file: 28 Domains, ~1OO patents
without the keywords" Problem "& "parasitic"

+

Correl. value:
-0.554

p-value:
0.002

0 100 200

6-keyword count/100,000

300

Fig. 3.21: Correlation analysis of normalized 6-keyword count and annual
improvement rates
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has further decreased to only 0.002, indicating that there is even less chance that this

correlation is due to random effects.

3.2.2.4 Correlation analysis of reciprocal of normalized count of

keyword and annual improvement rates

The correlation analysis presented in the previous section assumed a simple linear

relationship between annual improvement rates and their 6-keyword counts. The model

that was developed in section 3.1, however, states that annual rates of improvement should

be inversely proportional to the interaction parameter d. The equation has been

reproduced and the relationship plotted using a proportionality constant of 0.35 (See

Fig. 3.22), where the interaction parameter d takes values 1 or larger.
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K = Oc 1 (3.29)

Implication: Domain with higher number of interactions improves at a slower
pace in a non-linear fashion.

0.4- Kj
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d, interaction parameter

Fig. 3.22 Plot showing how d (interaction parameter) influences non-linearly.



The interaction parameter d as explained in section 3.1.3.5 represents an average

number of out-links from components in a domain artifact. The keyword count provides a

measure of interactions engineers encountered in generating inventions. Although both are

different approaches to quantify interactions in a domain, the exact of nature of the

relationship between these two measures of interactions is not known. The analysis is

carried out by assuming a linear relationship between the two. With this assumption, the

above relationship then becomes

d nQ 1 1 (3.30)
Kj = Oc - Oc

dt dj 6keyword count,

This relationship was then tested empirically using the 6-keyword results. The

results from a correlation analysis between reciprocal of 6-keyword count and K for 28

domains are shown in Fig. 3.23. Although there is significant noise in the data especially

due to data point for genome sequencing, it can be observed visually that there is a clear

upward trend showing that higher annual rates of improvement correlate with higher

values of the reciprocal of 6-keyword count. Correlation value calculated using EXCEL2010

is +0.43 with a p-value of 0.034. Although p-value is less than what was observed with

previously presented correlations, it is still less than 0.05, a threshold value typically

employed by many researchers.
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Fig. 3.23 Scatter plot of K and reciprocal of normalized count of 6 keyword for 28
domains

The genome sequencing data point appears to be an outlier, being very far away

from the rest of the data points. It was noted earlier that Genome Sequencing data point

might be outlier when results for 8-keyword correlations were presented. This reciprocal

of 6-keyword has heightened and clearly shows its distance from most of the data. Recall

from section 3.2.2.1 that genome sequencing had the highest number of total word count,

thus making the normalized keyword count small. Genome sequencing patents tend to

have many chemical formulae included in the background and summary sections. This may

have contributed by inflating the word count for genome sequencing, and thus distorting

the value of normalized 6-keyword count. If this is so, it makes sense to categorize it as an

experimental error and exclude genome sequencing from the correlation study. Fig. 3.24

shows the scatter plot with the Genome sequencing removed. And, correlations coefficient

without Genome Sequencing jumps to +0.56 with a p-value of 0.002.
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Fig. 3.24 Scatter plot of K and reciprocal of normalized count of 6

keyword for 27 domains (without Genome Sequencing)

The analysis showed that count of 6-keywords were negatively correlated with

medium correlation coefficient, but a low p value indicating that the finding (even with

genome sequencing) is reliable. To further examine the reliability of this finding, a

robustness study was conducted.

3.2.2.4 Robustness test results

The robustness study was conducted to examine the stability of the correlation coefficient

and the p-value. The study was conducted by creating 20 groups of 14 domains, where each

group was generated by randomly selecting a combination of 14 domains from the 27

domains. For each group, the correlation coefficient between improvement rates and

1/6KW values were calculated.
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The results of those 14 groups are presented in Fig. 3.25 with the index number of

each group plotted along X-axis, and Pearson's correlation coefficient along the Y axis. The

statistics are summarized in Table 3.5. It is clear from the figure that correlation values are

quite closely scattered and there are no outliers. The correlation values range from +0.81

to +0.41, with a mean of +0.59 demonstrating that the correlation value is relatively stable.

This analysis also demonstrates that the correlation value (+0.56) obtained in the initial

study with 27 domains was not due to random effects associated with particular domains.
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Fig. 3.25 Scatter plot of correlation coefficients for the 20 groups
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Table 3.5 Summary of correlation results from robustness study

# of Keywords used in Range of Average Correlation p-value for
robustness test Correlation coefficient (r) for 14 average r

coefficients groups

(Max, min)

6 +0.81, +0.41 +0.59 0.001

3.2.3 Summary of empirical test results

The empirical study developed a keyword-based approach for extracting interaction

information from patent sets for specific domains. It identified 6 keywords that captured

the idea of domain interactions, and were non-domain specific, and relevant, thus making

them general. According to the method developed in this thesis, the normalized total count

of these 6-keywords provides a measure of domain interactions. Using this method, the

study extracted interaction data for 28 domains. Equipped with this data, correlational

analyses with normalized 6-keyword count and performance was conducted to test the

following hypothesis:

Hypothesis: Keyword count representing interactions in a set of patents in

technological domains is negatively correlated to rates of performance improvement

in the domains.

This hypothesis was tested using two approaches. First, the correlational analysis tested it

assuming a linear relationship between normalized count of 6-keywords (independent) and

performance improvement rates (dependent). The test showed that these variables were

correlated with coefficient of -0.55 with a p-value of 0.002. The p-value 0.002 shows that

probability of this correlation occurring due to random chance is only 0.2 % (a low value).

Most researchers reject null hypothesis if the p-value is equal or lower than 0.05; this study
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has adopted this threshold p-value. Accordingly, the p-value of 0.002 is clearly much lower

than 0.05 and hence the null hypothesis is rejected.

The second correlational study tests the mathematical relationship suggested by the

model. This model suggests that domains with higher count of keywords (reciprocal of

which will be a lower value) will improve at a slower pace than the domains with lower

count of keywords; however, they will so in a non-linear fashion. The correlation study was

made using a reciprocal of normalized count of keywords, transforming non-linear

relationship into a linear one. For the 27 domains (with the outlier domain removed from

analysis), the results showed that performance improvement rates were positively

correlated with the coefficient of +0.56 with a p-value of 0.002. With this p-value, the null

hypothesis can be easily rejected.

It has to be noted the both of these approaches (linear and non-linear) have

established that high count of normalized keywords for domains are negatively correlated

with performance improvement rates of respective domains. With similar values of

correlation coefficients, the correlation studies, however, have been unable to discern the

form of the relationship - linear or non-linear. It will be argued in the discussion section 4.3

that the linear relationship leads to inconsistent predictions, and should be discarded and

the other one kept.
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3.3 Permanent Magnetic materials: A Case Study

3.3.1 Introduction

Permanent magnets have pervaded a large number of modern artifacts including toys,

power tools, medical devices, computers, MRI machines, hybrid vehicles and wind turbines.

With significant improvement in performance, engineers are now able to design more

compact and lighter devices, such as motors, thus allowing the technology to continue to

diffuse into more applications. Reduction in size of motors has been so dramatic that a

single car nowadays has over 30 motors installed in it (see Fig. 3.26). Their ubiquity across

diverse applications (see Fig. 3.27) across many technological domains makes it an

attractive choice to examine how the domain encompassing permanent magnetic materials

has improved over time and how its improvement compares with other technologies.

Fig. 3.26 Pervasive applications of

permanent magnets in car. From

Livingstone 1990.

Fig. 3.27 Typical application of

permanent magnets depending on the

energy density (BHmax). From Rashidi

1989.
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Improved permanent magnets clearly must result from discovery or creation of new

materials and thus it differs somewhat from the other domains studied thus far. Some

scholars (van Wyk et. al. 1991) have described this particular domain as experiencing a

series of S-curves, which provides another conceptual reason to study carefully. We also

add this domain to our rates database to test findings in C. L. Benson's thesis and in this

thesis that were based upon the 28 domains. Key questions include: 1) whether the rate

predicted by the Benson and Magee regression equation based upon patent meta-

characteristics is consistent with the actual rate of performance improvement found in this

case study and 2) whether the interaction word metric found in this case study is

consistent with the results found in this thesis. Thus, the case study will consist of:

* Performance improvement with time

" Patent search and the set of relevant patents

* Tests of prior work

o Benson/Magee regression

o Interaction parameter and fit with this thesis

3.3.2 Performance improvement with time

3.3.2.1 History of the technological domain

Permanent magnetic material has been known to humans since the time of ancient Greek

civilization. Modern magnetic materials, however, have been around for only slightly more

than two centuries (Livingstone 1990). At the turn of 19t century, magnets made from

carbon steels, which were mechanically harder and had high coercivity were still in use.

This correlation between mechanical hardness and coercivity led to the term "hard

permanent magnetic material". Alnico as a permanent magnetic material was introduced in

the 1930s. This had significantly higher energy product. Ferrite, also introduced during the

same decade, had lower performance, but was much cheaper, for this reason it is still used

extensively. Around the mid-1960s, Sm-Co based permanent magnets were introduced,

which quickly surpassed the performance of Alnicos. Sm-Co magnet gave way to Nd-Fe-B
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(rare earth magnetic materials) based permanent magnets in early 1980s. Sm-Co based

magnetic materials are now more often used for high temperature applications.

3.3.2.2 Function, physics and performance metric

The primary function of a permanent magnet in energy storage and transformation

artifacts is to provide magnetic flux. They are also used for other purposes such as sensing

and information storage. Several properties of permanent magnets are considered

desirable for their applications. Coercivity, remanence and maximum energy product,

however, are the most technologically important properties (Livingstone 1990). Fig. 3.28

illustrates these magnetic properties using a stylized magnetization curve, also known as a

B-H curve. The X-axis is the magnetizing field H and Y-axis the magnetized strength B, a

response of the magnetic material being measured. Remanence is a measure of the residual

magnetization B after the magnetizing field H has been reduced to zero, and reflects its

ability to retain magnetic strength. In contrast, coercivity is a measure of the reversed

magnetizing field H required to reduce the magnetization in the permanent magnetic

material to null. This property measures the strength of a permanent magnet to resist from

being demagnetized from opposing magnetic fields. The energy product, BHmax, is a

measure of the maximum energy density of a magnetic material, and is defined as a

rectangle with the maximum area (shown as a shaded rectangle in Fig. 3.28) which can be

inscribed inside the second quadrant of a magnetization hysteresis curve. This property, as

the name suggests, reflects how much energy a magnetic material with a given volume can

store. Other desirable properties are Curie temperature, mechanical strength and hardness,

and corrosion resistance. These, however, are considered secondary (van Wyk 1991).

BHmax, represented by the area of the shaded rectangle, is indirectly influenced by both

coercivity and remanence, and further it is intensive by definition. Consequently, BHmax

alone is enough to capture performance. Additionally, it is also the metric of choice among

engineers for rating permanent magnets. The SI unit of energy density for magnets is Joules

per cubic meter (Jmr 3). Another unit popular among the scientific community is the

MegaGauss-Oersted (MGOe), where Gauss is used for measuring B, and Oersted for H.
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Fig. 3.28 Magnetization curve of permanent magnets.
Adapted from Livingstone 1990.

3.3.2.3 Performance results

The data for energy product was compiled from articles published in peer-reviewed

journals, and conference proceedings. Although some data can be found in commercial

companies manufacturing or distributing magnets, the articles from peer-reviewed

journals was preferred for reliability.

Improvement in energy product of permanent magnetic material is plotted in

Fig. 3.29 a, b. The first graph shows improvement against a linear scale with time on the X-

axis, and performance on the Y-axis. Fig. 3.29 b exhibits the same data on a semi-log graph.

It has to be noted that the plot shows only non-dominated values of performance; each

non-dominated data point represents the best performance that has been achieved up to

that point in time. Alternatively, they can be seen as record-setters.
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Fig. 3.29: Improvement in performance of permanent magnet materials in (a) linear

(b) logarithmic scales on Y-axis.

It is evident from the first plot that there is substantial deviation in the latter part of the

data (see Fig 3.29b), and there are apparent slowdowns. The domain appears to have
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experienced reduced improvements during the 1970s and 2000s, apparently encountering

some barriers. The first slowdown was overcome by neodymium-based magnetic materials

replacing samarium-based magnetic materials, while the second one still holds as no

successor to neodymium-based magnetic materials is (yet) apparent. In spite of the

deviations and slowdowns, the exponential fit of the data is still very good with an R2 of

0.96 (Fig. 3.29 b). Based on this exponential fit, the annual rate of improvement in the

energy product of permanent magnet material is calculated to be 4.86 percent from 1917

to 2006. Comparison of this improvement rate with technological domains demonstrates

that permanent magnet materials falls among the more slowly improving domains, such as

milling machines, incandescent lighting, and combustion engines. See Fig. 3.30.
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Fig. 3.30: Comparison of annual improvement rate (KI %) of permanent magnet with

those of other domains. Data adapted from Magee et al. 2014.
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3.3.3 Patent search and set of relevant patents

The domain patents were identified using the classification overlap method (COM)

(Benson and Magee 2013, 2015), which was discussed in the literature review. Using this

technique, one sub-class from international patent classification, HO1F (basic electric

material) and two UPC classes 420 (alloys and metallic compositions) and 335/302

(electricity: magnetically operated switches, magnets, and electromagnets) were identified

to include patents related to permanent magnetic materials. The following query in

PATSNAP was used to search for the final set of patents:

(CCL:(420 OR 335/302)) AND ICL:(H01F) AND (APD:[1976-7-1 TO 2013-7-1)

Intersection of HO1F with 420 produced 709 patents, while the intersection of H01F with

335/302 produced 622 patents for period starting in July 1976 to July 2013. However, the

query when executed as a single command produces 1321 patents, showing that only 10

patents were in both of the individual overlaps.

To examine how relevant the patents were to this domain, 300 patents were read by two

readers independently to reduce subjectivity. Among these, the first 100 included most-

cited patents, and the other 200 were randomly selected from the remaining patents after

removing the 100 most-cited patents. Only those patents deemed relevant to the domain by

both readers were considered. Based on the reading, the patents were 74% relevant, which

is better than an acceptable rate. It has to be noted that patents based on new applications

of magnetic materials were not considered as relevant as they do not reflect improvements

in the magnetic material itself. If one were to include those patents as well then the

relevancy would have been above 95%. For studying interactions, "clean" 100 most-cited

patents were utilized. The term "clean" refers to the idea that patents that were not

deemed relevant to the domain were removed, keeping only those patents considered

relevant.
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3.3.4 Testing prior findings with the permanent magnet case results

3.3.4.1 Performance improvement rate estimated from patent metadata

Christopher Benson, a former colleague in our research laboratory, had studied the same

28 domains using the patent's metadata. (In contrast, the interaction study keywords uses

the text from the patents.) He had found that the average number of citation received by

the patents in first three years after publication and their average publication year were

strong indicators of that domain's annual rate of improvement. To examine how the

permanent magnetic material domain fares from this perspective, the two patent

characteristics were determined using 1321 patents and are shown below in table 3.6.

Table 3.6: Patent meta-characteristics of permanent magnetic materials
domain

Meta-characteristics Value

Average citations received by a patent in first 3 years 1.75

Average publication year 1999.59

The regression model based on average citations in first 3-years and average publication

year of domain patents is presented below from (Benson and Magee, 2015b):

K, = -31.1968 + 0.1406 * cite3 + 0.0155 * averag epub-year (3.31)

Where cite3 and averagepubyear are respectively average number of citations received

by, and average publication year of, each domain patent. Using the values presented in

table, the predicted annual rate of improvement is 4.3 %, which is very close to the

observed value of 4.86 %.
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--3.3.4.2 Influence of interactions on performance improvement rate

In section 3.2, the domain interactions were explored empirically to assess whether

interactions are involved in creating the variation in rates of improvement as suggested by

the model. The 6-keywords prevent, undesirable, fail, requirement, overcome, and

disadvantage were finalized for examining domain interaction. The normalized 6-keyword

count for each of the 28 domains using 100 patents were determined using text mining

techniques. Following a similar method, the 100 most-cited patents from permanent

magnet domain were also studied as part of this case study to determine interactions in

this domain. The results for the 28 domains and for the permanent magnetic material are

reproduced in Fig. 3.31 as a scatter plot of 6-keyword count and annual rates of

improvement. It is clear that interactions reflected as 6-keyword count and rate of annual

improvement is within the scatter band for the other 28 domains. However, the rate is

lower than expected based upon the regression equation.

The linear regression model relating 6-keyword count and annual rates of

improvement is as follows:

K1 = -0. 1897 -countkeyword + 50.575 (3.32)

Where Kj is the annual rate of improvement of domain j and count keyword is the normalized

keyword count. The normalized count of 6-keyword for permanent magnetic material was

140. Using this equation, the predicted value of K for permanent magnet is 24 percent. This

can be visually approximated using the trend line in Fig. 3.31. This predicted value is far

from the observed value of 5 percent (annual rate of improvement). It can be seen that

there is a lot of scatter associated with domains that have low 6-keyword count, making the

predictability less reliable.
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Fig. 3.31 Scatter plot of normalized count of 6-keywords and performance
improvement rates for 28 domains (blue diamonds), and permanent magnetic
material (red square)

In conclusion, the permanent magnetic material domain provides an example of a

domain that has experienced slowdowns. In spite of the slowdowns, when viewed on a long

time scale, it is still growing exponentially, albeit at a slower pace. It was evident that this

domain is amongst those that are growing at the slowest pace. The 6-keyword count for

this domain follows the general trend shown by other 28 domains, thus providing support

to those results. Although the correlation between 6-keyword count and annual rates

provides good support to the notion of interaction leading to variation in rates, it is

necessary to develop it further to improve its predictive capability. The predicted result

using patent characteristics (Benson and Magee 2015b) is close to empirically observed

rate in this case study, and thus strengthens support for its predictive capability. However,

more case studies need to be conducted to develop further support since this is a single

case study.
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Chapter 4: Discussion

This chapter presents discussion of three sets of results (from modeling, empirical test, and

performance trends for permanent magnet materials) in the context of the technical change

literature. The final section assesses the model with respect to the salient features of a

theories in general and theories of technical change. We start with a discussion of results

from the study of permanent magnetic materials.

4.1 Discussion of performance trends of permanent magnetic

materials (PMM)

The review of the technical change literature in section 2.1 presented the performance

trends for 28 technological domains. These results are the empirical foundation for the

work in this thesis as the modeling and related empirical work on interactions is entirely

aimed at understanding these results and moving towards a predictive theory. Thus,

adding to this body of work, even if in a modest way, was undertaken as part of the thesis

to experience more directly the context for the empirical foundations for the thesis. In this

research effort, permanent magnetic materials (PMM), which has pervasive applications

across diverse domains, was studied as an additional domain in order to study the nature

of its improvement and to test out the findings in C. L. Benson's thesis (2014) and in this

thesis.

The performance metrics for the 28 domains (Magee et al. 2014) followed

exponential trends and their annual rates of improvement varied from 3 to 65%, whereas

the performance of PMM was 4.9 %. Compared with the performance of other 28 domains,

the performance of PMM with annual rate of only 4.9% falls among the domains which are

slowest to improve. Only three domains - incandescent lighting, electric motors, and

milling machines - have performance lower than this domain. Interestingly, two of them -

milling machines, and electric motors - incorporate magnetic materials: milling machines
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utilize electric motors as a fundamentally important component, and electric motors

similarly utilize magnetic materials.

Another interesting aspect of this domain is that it has indeed experienced

slowdowns in performance, as noted by van Wyk (1991), during two periods - in the '70s

and the '90s. The arrival of Neodymium magnets helped to break past the first slowdown in

the early '80s. The second slowdown period associated with Neodymium that initiated in

early '90s has yet to be broken. It is noteworthy that the domain studied here shows one of

the clearest cases of "halting" behavior which our overall model does not try to predict (but

the small 1Ola simulations do show such behavior). Thus, it reinforces the fact that the

empirical base is still contested by practitioners who are convinced that limits are the most

important phenomenon.

Aside from studying the performance trends, the case study also tested two

regression models utilizing the PMM's performance data in conjunction with domain

patent data. Using the COM (classification overlap method) technique (Benson and Magee

2013, 2015a), a patent set of 1321 patents with 74% relevancy were retrieved, which

provided two sets of patent data. Patent meta-characteristics from the first set were

utilized to test the first regression model (Benson and Magee 2015b), which utilizes

average citations in the first 3 years after the publication date and average age of the

patents set to predict K, the annual rate of performance improvement for the domain. The

average 3-year citations for this domain was 1.75 years and the average publication year

was 1999.6, calculated using all the patents in the domain. With these data as the input, the

regression model predicted 4.3% annual rate of improvement. This is quite close to the

measured value of 4.8% showing it is one of the domains where the Benson/Magee

regression equation fits closely (overall the regression has a R 2 of 0.64 so not all domains

are expected to be this closely in agreement).

To understand the significance of this result, it has to be noted that Benson and

Magee (2015b) had developed the regression model using the performance data and

corresponding patent meta-characteristics for the 28-domains. The performance data and

patent meta-characteristics for the permanent magnetic materials domain was developed

146



as a separate case study, and was not included among the 28 domains. Although this is a

first and singular case, the fact that this was done separately and yet the predicted and

observed values are so close provides support for the soundness of the model. This also

emphasizes the significance of the 3-year citation and average publication year as

predictors of improvement rates. The average 3-year citation captures the idea of

importance (how influential the patents in average have been), and immediacy (how well

the current technical knowledge on average has been used in the domain) whereas average

publication year captures the newness of patents in the domain (or recency of utilized

information).

For testing the second regression model, the study used textual data, instead of

meta-characteristics, from the 100 most-cited patents from the PMM patents28 . The second

regression model correlates the domain performance with a normalized count of 6-

keywords representing interactions. Text mining and analysis of data showed the

normalized count of keywords for PMM was 140. The plot of performance and the count of

normalized keywords showed that the normalized count of keywords falls within the

scatter band of other 28 domains, although it is towards the edge of the scatter, showing

that the finding for PMM is consistent with data for 28 domains. With a normalized

keyword count of 140, the regression model predicts the expected rate to be about 24%.

This is significantly higher than the observed rate. However, this is not surprising since the

correlation coefficient was -0.55 and there was a wide scatter in the low keyword count

region. We discuss next the results from the modeling effort.

4.2 Discussion of model development

The primary goal of this thesis is to develop a mathematical model that utilizes

mechanisms in the design/invention process to examine the nature of technological

performance improvement trends. The exploration has utilized two sets of well-known

mechanisms in the literature to build an analytical mathematical model. The first set of

28 Since the relevancy is about 74%, the two researchers read patents to identify those not related to PMM.
Only relevant 100 most-cited patents in PMM domain were used for getting the data for the second regression
model.
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mechanisms include combinatorial process based on analogical transfer, and mutual

exchange between Understanding (largely science) and Operations (largely technology)

regimes. The exploration has utilized simulation to gain insight into dynamics of the

synergy that emerges from these two mechanisms. The second set of mechanisms includes

two well-known fundamental features of artifacts - interactions (some refer to it as

complexity) and scaling. The subsequent sub-sections examine: (1) the consistencies of the

model with empirical results (and what is known about technical change) (2) assumptions

made in the model and how they constrain the conclusions one can assert from the model

(3) implications of the model.

4.2.1 Consistencies of the model with known findings in the literature

According to the model, the operational regime may be decomposed into idea and artifact

realms. The exponential nature of performance improvement for all technological domains

arises in the idea realm of the operational knowledge regime, where new inventive ideas

are created using combinatorial analogical transfer of existing ideas, which, in turn, become

the building blocks for future inventive ideas. The model demonstrates this incessant

cumulative combinatorial aspect of knowledge in both the understanding and the

operation regimes which manifests as exponential trends. 29 The combinatorial model is

simple but it leads naturally to the exponential behavior with time that has only been

obtained previously by Axtell et al. (2013) in a model that went beyond performance to

diffusion over a set of agents. Such exponential behavior with time is consistent with one of

the most widely noted behaviors of technical performance (Moore 1965, Koh and Magee

2006, 2008, Nagy et al. 2013, Magee et. a. 2014). The modeling work presented here

provides some quantitative empirical support to the basic combinatorial concept of

technological progress previously supported qualitatively (for example, Usher 1954).

29 In technological domains, a combinatorial aspect has been observed at the artifact level, such as
combination of a motor to a manual drill to obtain a power drill, but such combinations are limited in terms of
what might be possible to combine. Instead, combination at the idea level through analogical transfer is far
more expansive, depending upon the level of abstraction utilized in the ideas. Thus, operating ideas typically
associated with some specific technological domains, which are considered distant, can also combine.
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The Operation (technology) and the Understanding regimes (science) can improve

independently in the model but not indefinitely. How long the Operation regime can

improve depends in the model upon the size of the technological possibility space, which

according to the model is dependent on the number of existing basic 101 (fundamental

operation principles). The understanding regime can also experience stagnation, but this

happens when the tools and instruments that scientists and researchers use for discovery

and testing hypotheses are not adequate. The operational regime comes to its rescue by

providing these tools and instruments (increased numbers of individual operating ideas),

which greatly enhances the scientists' ability to discover and test, and thus further push the

limits of understanding in the manner suggested by Price (1983), Gribbin(2002) and in the

following quote from Toynbee (1962).

Physical Science and Industrialism may be conceived as a pair of dancers both of whom

know their steps and have an ear for the rhythm of the music. If the partner who has been

leading chooses to change parts and to follow instead there is perhaps no reason to

expect that he will dance less correctly than before.

In this sense, the operations regime and the understanding regime are like two

independent neighbors who interact for mutual benefit. In the model, their frequency of

exchange, however, influences their effective rate of growth. Our model is a specific

realization that achieves this mutual interaction that has previously been widely noted in

deep qualitative research.

The results in Table 3.1 (in chapter 3, section 1) are summarized as a surface plot in

Fig. 4.1. Ki, the effective rate of growth of IOIc was determined by the initial IObo, and the

frequency of exchange (a 1/n R). The former determined the envelope of technological

possibility space. When IOo are high, the effective rate of growth Ki is close to the

theoretical combinatorial rate determined by Equation 3.10 {= In(1+ Pioi/2) }, irrespective

of whether there was frequent exchange. However, when the 1Oo are low, the limit is hit

repeatedly, translating into halting and reduced effective rate of growth. The value of Ki in

this case was determined by the frequency of enabling exchange from the understanding

regime, with higher frequency (low R) leading to higher effective rate. With sufficiently
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high frequency, even with low initial IOIo, the effective rate Ki eventually approaches the

theoretical rate.

Fig. 4.1 Variation of Ki as a function of initial IOIo and R. Lower R refers to higher

frequency of interaction with the understanding regime.

Detailed historical studies of technological change (Mokyr 2002) note centuries of

slow, halting progress that eventually becomes much more rapid and sustained starting in

the late 18th century in the UK. An interesting consistency of these observations with our

model is seen since our model attributes the transition to sustained higher improvement

rates to the combinatorial growth of individual ideas that are able to reinforce one another

by the analogical transfer mechanism. That our model partially accomplishes this through

the synergistic interaction of science and technology is also consistent with the detailed
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historical studies as interpreted by many observers (Schofield 1963, Musson 1972,

Rosenberg and Birdzell 1986, Musson and Robinson 1989, Mokyr 2002, Lipsey et al. 2006).

The model is also consistent with the empirical findings of Benson and Magee

(2015b). In particular, they found no correlation of rates in domains with effort in a domain

(measured by number of patents or patenting rate) or with the amount of outside

knowledge used by a domain (this is very large for all domains). They interpreted their

findings by a "rising sea metaphor" that represents all inventions and scientific output

being equally available to all domains but that fundamentals in the domains determine the

rate of performance improvement. Overall effort in science and invention increase the rates

in all domains but the differences among rates of improvement are due to differences in

fundamental characteristics among the domains. The model in this paper identifies

interactions and scaling as two such fundamentals and equation 3.28 is specific about the

variation expected due to these two fundamental characteristics.

Thus, our model is consistent with much that is known in empirical literature; but to

what extent does it achieve the ideal level of understanding mentioned in section 2 when

discussing the related Benson and Magee research? It is - as desired - based upon what is

known about the design/inventive process and does not rely upon characteristics only

determined by observation of output in a domain; but does it make any reliable predictions

based upon only "design knowledge"? We next consider this issue, along with the

assumptions and limitations of the model.

4.2.2 Assumptions and limitations of the model

The model aspires to be predictive for technological performance. However, it is not fully

reliable yet as there are assumptions in the model that have not been tested empirically

and some of the mechanisms are conceptual and not testable. However, some of the

findings do relate to design knowledge and are potentially possible to test with further

research. We now consider the assumptions, their impact on the conclusions and what

further research they suggest. Table 4.1 lists the assumptions that will now be discussed

further.
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A fundamental aspect of the overall model is that it differentiates between the

idea/knowledge and artifact aspects of design and invention. Such decomposition is an

essential step in arriving at our key result (equation 3.28 from equation 3.5). It is not clear

that this assumption is testable so it must remain an unverified assumption or definition

but we do note that it appears to accord with reality and that others have noted the higher

leverage of analogical transfer between ideas as opposed to designed artifacts (Weisberg

2006).

A non-obvious assumption made in the model is that inventive effort increases as

the cumulative number of individual operating ideas - 1OIc - increases. This assumption is

introduced when we assume that every existing 101 undergoes a combination attempt in

each time step. As 1Ic increases, this means that more combinations are attempted in each

successive time step. This assumption is critical to obtaining the exponential time

dependence for 1Oic and thus for Q because the growth of 1OIc would be choked off if

inventive attempts did not increase over time. Although a rigorous test of this assumption

is suggested for further work, we do note support for the assumption in the exponential

growth of patents over time (Youn et al. 2014, Packalen and Bhattachayra, 2015)30.

Approximate support is also given by the roughly exponential growth of R&D spending

over time (NSF, 2014) and by the roughly exponential growth of graduate engineers

globally31 over time (NSF, 2014)

30 Both of these papers show more rapid exponential increases before 1870 and slower but still exponential
increases over time from 1870 to the present in the number of US patents.
31 Other supporting evidence is also possible to see in the NSF material at
http://www.nsf.gov/statistics/seindl4/index.cfm/overview/cOsl.htm#s2
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Table 4.1: Assumptions in models and implications of assumptions

Assumption Support and testability Implications to output
1. Differentiation of the idea Reflects reality, is not Critical to causal reasoning
realm from the artifact testable but instead a about different rates in
realm definition different domains
2. That inventive effort Testable by number of Critical to exponential form
increases as 1OIc increases inventors and inventions of performance vs. time from

over time and well the combinatorial approach
supported for patent
numbers for 200 years.

3. Specific science - The mechanism is not Not critical to conclusions
technology exchange testable but much deep since other mechanisms also
mechanism prior qualitative work is work

consistent with a mutual
assistance idea

4. Pioi independent of Testable by study of Critical to causal reasoning
domains stochastic noise in rates in about different rates in

different domains different domains
5. McNerney et al. model of Testable with independent Critical to quantitative
the influence of interactions estimates of d for various prediction of variation in
on performance domains rate due to interactions
improvement
6. Influence of scaling laws Possibly testable with Critical to quantitative

enough independent prediction of variation in
estimates of A1 for various rate due to scaling laws
domains

7. lOo initial value Not testable, but initiation Critical to interpretation of
must involve small numbers halting start for

technological progress
8. Quantitative values of Not testable Not critical to major
various parameters (Pioi, conclusions since
time step, attempts per time combinations of value
step and R) and other choices are indistinguishable
simplifying assumptions and variation among

locations and inventors is a
source of noise

A related question important to address is whether the exponential outcome was

forced to occur in the model? As explained above, the exponential growth occurs in the

model due to the assumption that at time step t every 101 in the pool can combine with

another one, making number of newly created 101 at a given time step to be proportional to

the number of 101 (IOIc) in the pool (equation 3.5 in section 3.1.3.2). Is this assumption
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reasonable? If the model were to account for obstacles to accessing other 101, such that

reduced number of 1Ic were available for combination, say 1/m fraction of 1OIc, the newly

created 101 would be given by Pioi - IOIc/2 - 1/m. This would reduce the rate of growth, but

the proportionality with IOIc still stays, and leads to exponential behavior. A hypothetical

condition that could preempt exponential growth occurs if we assume that the number of

101 considered for combination at each time step always remains fixed. This would lead to a

fixed number of ideas attempting combination resulting in a linear, rather than an

exponential, growth. What mechanisms could enforce this limit? One possible mechanism

that could enforce this is if the number of engineers working on inventions (effort) globally

remained constant over time. But such restrictions are very unrealistic and the literature

cited in the previous paragraph contradict such an assumption. This hypothetical example

demonstrates assuming non-proportionality necessitates introduction of restrictive

mechanisms whereas proportionality naturally occurs in their absence.

The model assumes a simple exchange between understanding (largely science) and

operations (largely technology) as described by Equations 3.13 and 3.14. The details of this

mechanism are not testable but in our opinion not critical because other formalisms (based

upon differences rather than ratios and based upon units of understanding rather than our

choice of reach) lead to results closely similar to ours. Therefore, this assumption also

remains unverified but not critical to our conclusions. Moreover, the idea of some sort of

mutual exchange between science and technology is widely believed including by those

who have closely observed the processes historically.

The next three assumptions in Table 4.1 (#4 through #6) are linked because they all

underpin the form of Equation 3.28 - the aspect of the model with the strongest potential

for prediction. Assumption 4 is that Pioi is the same in all domains (and for all possible 101)

and we consider this both an important and non-obvious assumption. It is important

because if Pioi does vary systematically among domains, this could provide an additional

mechanism beyond interactions and scaling for explaining the variation in K - higher Poi

resulting in higher K. Moreover, variation in Pioi among different domains is not intuitively

unrealistic. A possible test of the form of equation 3.28 can be made to probe this issue. In
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particular, equation 3.28 suggests that all of the stochastic variation in K should be

contained in the Kiterm since djandAjare constants. Indeed, any noise in Kiis magnified by

the same constants that multiply Ki to give K. Thus a careful study of the statistical noise in

Kj should find that such noise is proportional to K if our assumptions are valid, whereas

such noise would be roughly constant (independent of K) if all of the changes in K were

due to changes in Piol.3 2

Assumptions #5 and 6 are re-statements of the importance our model ascribes to

interactions and scaling. Assumption #5 can be tested by study of the rates of performance

improvement over a variety of domains where an independent assessment of d is made.

This research has performed such a test using patent data and the results offer support for

the analysis of McNerney et al. that we use in our model (the results from that test were

presented in section 3.2 and will be discussed shortly). If scaling laws were found (or

derived) for a variety of domains whose rate of progress is known, assumption #6 can also

be tested. In this paper, we showed that the factor A is at least 3 times larger for Integrated

circuits than for combustion engines. While this is directionally correct since Integrated

circuits improve about 7 times faster than combustion engines (Magee et al, 2014), two

points do not achieve a rigorous test. One would need to have reliable scaling factors for at

least 10 domains with varying Kjto determine whether the model is empirically supported.

The initial value of ION chosen in the simulation (and the exchange frequency with

understanding (a 1/in R)) is essential to our finding of halting slow growth that can

transition to sustained, more rapid growth. Although this finding is consistent with detailed

observation as noted above, the result cannot be considered predictive because there is no

independent means of assessing 1Oo.

Moreover, lack of a means for independent assessment is true for the simulation

results generally (assumption 8). To construct a simple and operational simulation, we

have made a number of assumptions, introducing some limitations to the model as well as

to the simulation results. First, the model assumes that two pre-existing ideas are sufficient

32 Recent work by Farmer and Lafond (2015) indeed find that the variation in K is proportional to K offering
strong support to the form of Equation 3.28.
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(probabilistically) to create another idea whereas inventions also result from bringing

more than two pre-existing ideas together. However, adding such complications to the

model and simulation does not change the fundamental findings since the creation of new

ideas would still increase as the number of pre-existing ideas increase as long as we still

assume an increasing invention effort. Even in those inventions where more than two ideas

are required, the steps probably occurs sequentially where two are combined first, and

then third one added to make the new idea workable. Second, the parameters in the

simulation (assumption 8) are not testable independently so these results in general are

not predictive.

It is important to note what is outside the explanatory scope of this model in its

current form. Since the goal of modeling effort is to explain the patterns at the domain level

(study's unit of analysis), the inventions in a domain have been lumped together and

considered as one entity. As the model is not agent-based, it does not distinguish between

organizations nor between inventors. For this reason, variations among organizations or

among inventors within a domain are not taken into account, and hence the model is not

useful to understand organization or individual inventor effectiveness in its current form,

and any systematic differences among inventor capability across domains is ignored.

Additionally, once 101 are created by any inventor, the model assumes they are instantly

available for combinatorial analogical transfer across the pool underlying all domains.

Thus, the model does not take into account time delay that can result due to, for example,

geography, secrecy and governmental regulations, and hence is not useful for studying such

factors' influence in technological change.

This analysis of the assumptions point out that some key assumptions embedded in

equation 3.28 have the potential to be empirically tested and thus equation 3.28 could

become (depending upon the outcome) potentially reliably predictive. Towards this end,

the domain interactions were studied, the results from which are discussed next.
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4.3 Discussion of empirical study of domain interactions

4.3.1 Discussion of empirical results

The goal of this empirical study was to test the theoretical finding that interactions gives

rise to variation in performance improvement rates of technological domains, and those

technological domains associated with higher levels of interactions improve at slower rate

than those with lower levels. The normalized count of selected keywords reflecting the

notions of interaction as described in literature review (Simon 1969, Suh2001, and

Whitney, 1996) was used as a proxy for measure of domain interactions. The analyses of

keyword data utilized correlation study to examine whether any regularity could be

observed between performance improvement rates and keyword counts.

The first finding of the empirical study is that patents can be useful resources for

studying domain interactions, and to our knowledge, this is the first time patents have been

used to study interactions. Although techniques such as design structure matrix (DSM)

have given some results, available data on domain artifacts is very limited; it is very

expensive to develop those matrices; and the reliability of the results is highly dependent

on the researcher doing interviews and the knowledge of the people interviewed. Further,

it will be very hard, perhaps even impossible, to develop DSM of artifacts that were

designed say in 1980. In contrast, patents afford a large objective data set that is both

publicly available, and spans long periods (electronic patents available from 1976 to the

present). The selected keywords reflect the different types of interactions: component-to-

component, component-to-system, side effects, and conflict between functional

requirements. Each occurrence of keywords can be seen as a marker of each text section in

the patents that discusses an interaction issue. The study was conducted in two stages. The

pilot study using 5 domains - battery, capacitors, wind turbines, solar PV power, and

computer tomography - was used to assess the feasibility of the technique. Specifically, the

study was used for identifying keywords representing interactions, and to determine if any

signal for interactions at the domain level could be observed.
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In the second study, the study of interactions was extended to all 28 domains. Two

correlation analysis approaches were used: first approach assumes a linear relationship

between K and dj; the second one assumes a linear relationship between K and reciprocal

of dj, as suggested by the model. The finding from these analyses are compared and

contrasted here. First, both analyses agree in suggesting that high keyword count of a

domain is correlated with a low rate of improvement, an important finding. The analyses,

however, are at odds concerning the nature of relationship between normalized count of

keywords and performance improvement rates: the first one suggests that it can be

described as K1= - Bi - CKW (please note the minus sign), the second one suggests K =

B2/CCKw. In these equations, Bi and B2 are constants, and CKW is the normalized count of

keywords. Which one is a better description of the relationship? The empirical results do

not suggest which one is better. The results from the two are practically equal. Theoretical

argument might be helpful here in distinguishing which one might be better.

If the first description (Kj = - Bi - CKw) is the correct one, then there has to be another

variable that needs to be negatively correlated with K to keep K positive (which is how it

has been defined). In the equation provided by the model, K = (+/- Aj) - 1/dj -K, the (+/- A)

is positive. Once the interaction term - middle one - becomes negative, the K becomes

negative, which is not consistent with the definition of K. Another possibility is that rate of

improvement equation might take this form: K = (+/- Aj) - (Ki - dj). In this form, if Ki is

higher than dj, then Kj remains positive. However, if dj is sufficiently high it will lead to

negative K, suggesting that the domain's performance will get lower and lower with time,

which is not consistent with empirical observations and the definition utilized in this

research. The second description does not suffer from these inconsistencies. Following

Wacker (1998),'power of deduction rules" here, and suggests that the second correlation is

a better description of the relationship between rates of improvement and count of

keywords reflecting domain interactions.
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4.3.2 Limitations of the empirical study of domain interactions

Being the first of its kind in using patents to study domain interactions, this approach has

some limitations. First, it was observed that the scatter was quite significant. Although,

much of this could be due to missing data on scaling, one other very likely source is due to

limited resolution of keywords as a measure of interactions. For example, the same

interaction issue may be discussed in two or more places in a patent, yet the current

method counts each occurrence as separate interaction issue, which may add to the scatter.

Ideally, each interaction should be counted only once.33 However, this is not so bad as to

invalidate the method, since all domains are treated similarly and any discrepancy

introduced will be common to all domains. Second, another additional source that possibly

aggravates scatter might be use of limited number of patents (100 most-cited patents) for

the study. This might be an issue with domains which have low count of keywords, which

might be the reason why there is a higher spread of data points at lower count of keywords

in the graphs (See Fig. 3.21, 3.23, 3.24 in chapter 3). This study has used only 100 patents

in each domain due to the limited resolution of COM technique in its current state. Even

after identifying domain patents, the patents need to be read by multiple readers - a time

consuming manual process - to ensure that the patents actually belong to the domain.

Further, some patents cannot be downloaded electronically due to mistakes in how they

were uploaded in the web, and thus need to be manually downloaded, further making it

time consuming. Therefore, it is effort intensive to extend the number of patents to higher

numbers.

The regression model from this empirical study strongly supports domain

interaction parameter as a factor that can lead to variation in improvement rates, where

higher interaction parameter leads to lower improvement rates. Further, it also supports

the relational form the model predicts.

33 The fact that same interactions is discussed in multiple places can also be viewed as being an indication of
its importance.
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4.4 Implications of the model and empirical work

The final mathematical model, equation 3.28 in chapter 3 section 3.1, states that annual

improvement rate Kj for a domain is determined by the product of KI, times the scaling

parameter A1 and the reciprocal of the interaction parameter, d. According to this result,

the last two parameters produce the variation of improvement rates across domains.

Domain artifacts embody novel operating ideas that are equally available for such

"spillover" by all domains. It is important to note that, according to the model, some 101 are

absorbed by multiple domains. During the embodiment process, interactions prevalent in

the domain artifacts influence how many inventive ideas can be absorbed. The percent

increase in successfully absorbed ideas by a domain artifact is inversely proportional to the

average interaction parameter of the domain, dj. Therefore, domain artifacts with lower

values of the interaction parameter will be able to absorb more ideas successfully.

The other factor that is predicted to differentiate domains is performance scaling.

Inventive ideas affect artifact performance by modifying the design parameters in domain

artifacts. The model indicates that the relative improvement of performance for a given

amount of absorbed new operating ideas is governed by the scaling parameter A. The

examples presented in chapter 3, section 3.1.2.5 illustrated the notion that intensive

performance can grow with increase in size for domains where larger is better holds,

exemplifying the notion of economy of scale. Additionally, the examples showed that the

value of Aj can vary across domains. In particular, for the IC domain (where smaller is

better), A1 is apparently at least 3 times larger than for typical larger-is-better domains

such as combustion engines.

Consequently, the domains with high A1 and low d will be improve the fastest, and

domains with low A1 and high d will improve the slowest. One pertinent question that can

be asked at this point: Is it possible, using first order analysis, to explain the variation in Kj,

known to vary from about 0.03 to 0.65 (Magee et al. 2014). This is potentially explainable.

We can see that the domain rates vary by a factor of about 20. The reciprocal of count of

keywords (1/di) varies by a factor of about 3 (from about 0.003 to 0.012) whereas the

scaling (Aj) varies by a factor of about 6 (-0.5 for IC engine to 3 for Integrated circuits). The
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product of A1 and 1/dj then varies by a factor of about 18 or higher, which is very close to

the variation in empirical K. Although the numbers used might not be very precise, they do

give a sense of the range of possible performance outcomes as predicted in the model.

A note of caution is necessary here: we have seen that while variation in K is

potentially explainable by changes in dj and Aj, much more empirical work is needed to fully

support these quantitative implications of equation 3.28.

Another useful implication of equation 3.28 is that if Ki, Al, di are known for, say

domaini, then rates for another domain2 with A2 and d2, may be found in reference to

domaini. The equation

K2= Ki - (A2/d2) - (di/Ai)

(obtained by taking a ratio of equation 3.28 written for two domains) makes it possible to

calculate the improvement rate for another domain. This eliminates from equation Ki or

Pioi, which are challenging, if not impossible, to determine.

Overall, the model qualitatively indicates that the differences in rates of

improvement among domains is more "technically based" (Aj and dj are fundamental

parameters for the domain) than usually anticipated. This implies that a domain like

batteries (with high d) perhaps cannot be made to improve as fast as optical

telecommunications (with low d) by investing the same amount of capital as in the optical

telecommunications. We may understand this notion intuitively by thinking of inventions

as those that directly lead to improvement of performance (or main functions) and those

that are used for mitigating untoward issues, such as side effects, in a domain artifact.

Given the same set of resources, the domains with more of those untoward issues will have

to create more inventions to deal with those untoward issues, thus draining the resources

that could be utilized for generating the performance improving inventions. In contrast, the

domains with less untoward issues will be able to generate more of the performance

improving inventions. Similarly, domains whose artifacts follow stronger scaling laws (due

to the embedded physics) are provided greater leverage towards improving performance
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for the same inventive effort. Together these two fundamental levers can produce a range

of performance outcomes.

If it is instead assumed that non-fundamental variables are the only source of all variation

in rate of improvement, missteps will occur. This brings us back to the quote by Katie

Fehrenbacker (2012) in chapter 1. She draws attention to the misguided assumption that

enough capital and talent can make any technology grow as fast as computers do. She

implies that domains might be fundamentally different; our model indicates that those

fundamentals include domain interactions and scaling in the specific relationship given by

equation 3.28.

4.5 Reflecting on the model: types of theories and "good theory"

This section closes this chapter after reflecting what type of theory has been developed in

this research and how the model fares as a "good theory".

The primary goal of this thesis is to develop a theoretical model that examines the

nature of technological performance improvement trends. Following the taxonomy of

Gregor (2006), theories may be classified into five categories (shown in Table 4.2).

Accordingly to this framework, Moore's Law, and even its generalized version, is predictive

(Type III) but not explanatory. On the other hand, Dosi's theory of technological paradigm-

trajectory, Christensen's theory of disruptive innovation, and other theories of technical

change, are type I and II as they describe the structure of innovation and explain why it

occurs, but they are not predictive. The goal of this research effort is to advance to type IV

theory, that is, to develop a model that is both explanatory and predictive. Towards this

end, the exploration utilizes two sets of well-known mechanisms in the design science to

provide an explanation conceptually, and takes an analytical mathematical approach to

build a predictive model (Wacker 1998).
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Table 4.2 A taxonomy of theory types in Information Systems Research. Adapted

from Gregor 2006.

Theory Type Distinguishing Attributes
1. Analysis Says what is.

The theory does not extend beyond analysis and description. No causal relationships among
phenomena are specified and no predictions are made.

II. Explanation Says what is, how, why, when, and where.
The theory provides explanations but does not aim to predict with any precision. There are no
testable propositions.

Ill. Prediction Says what is and what will be.
The theory provides predictions and has testable propositions but does not have well-developed
justificatory causal explanations.

IV. Explanation and Says what is, how, why, when, where, and what will be.
prediction (EP) Provides predictions and has both testable propositions and causal explanations.

V. Design and action Says how to do something.
The theory gives explicit prescriptions (e.g., methods, techniques, principles of form and function)

I I for constructing an artifact.

Table 4.3 General Procedure for theory-building and the empirical support for theory.

Adapted from Wacker 1998.

Purpose of this step Common question 'Good' theory virtues
emphasized

Definitions of variables Defines who and what are included and Who? What? Uniqueness. conserva-
what is specifically excluded in the tion
definition.

Limiting the domain Observes and limits the conditions by When? Where? Generalizability
when (antecedent event) and where the
subsequent event are expected to occur.

Relationship (model) Logically assembles the reasoning for Why? How? Parsimony. fecundity,
building each relationship for internal consis- internal consistency,

tency. abstractness
Theory predictions and Gives specific predictions. Important for Could the event occur? Should the event Empirical tests
empirical support setting conditions where a theory pre- occur? Would the event occur? refutability

dicts. Tests model by criteria to give
empirical verification for the theory.
The riskiness of the test is an important
consideration.
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The thesis has utilized four steps described by Wacker (1998) (see Table 4.3) for

building a "good theoretical" model. Specifically, the literature review discussed the

pertinent variables and unit of analysis, while chapter 3 developed the qualitative and

mathematical relationships among the underlying mechanisms, followed by development

of empirical support with study of interaction parameter using patents. Here we will reflect

on the current model with respect to salient virtues of a "good theory", specifically

abstraction, internal consistency, empirical riskiness (testability), generalizability and

parsimony. How does the current model fare with respect to these criteria?

According to Wacker (1998), a "good" theory has a higher abstraction level because

it integrates many relationships and variable into a larger theory. In other words, it has a

higher explanatory power. The analytical model presented in this thesis integrates multiple

well-known mechanisms - invention based on combinatorial analogical transfer, mutual

exchange between understanding (science) and operations (technology), interactions and

scaling - in design research to develop a predictive and explanatory model for technological

performance trends. It specifically brings together principles from three different fields -

technical change, cognitive aspects of design research, and modeling. It is clear that the

model satisfies this criterion well.

Internal logical consistency of the mechanisms integrated together and the variables

utilized to build a theory is perhaps the most important virtue. Wacker (1998) mentions

that one way to ensure this consistency is by developing mathematical relationships among

the variables involved. The current model is an analytical mathematical model. Equation

3.3 in section 3.1 mathematically relates K, rate of performance improvement, to

sequentially related mechanisms and variables - scaling of design variables, integration of

inventive ideas into artifacts and creation of inventive ideas (through cognition), all of

which are well explored concepts in the literature. The model determines each derivative

in equation 3.3 to obtain the final equation 3.28 in section 3.1 (chapter 3). This equation

aspires to be predictive and provides a basis for empirical riskiness (testability).

A "good theory" has to be easily testable, and the more bold it is in terms of

predicting, the better. The current model provides at least three variables for testing: A1
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(influence of scaling on variation in domain performance), dj (influence of interactions on

variation in domain performance), and Ki (exponential rate which is a function of Pioi,

probability of combination, and exchange between understanding and operations). The

second parameter, dj, was positively tested in this research effort, and for the second, a

short exploration was presented. Perhaps, the most challenging one will prove to be testing

of Ki. Farmer and Lafond's work on variability of Kj is already paving the way for its test.

Finally, a "good theory" has to be generalizable to more areas. In this respect, the

current model has to be applicable to larger number of domains. The current model was

initially motivated by the desire to explain the variation in improvement rates seen 28

domains. However, the modeling effort has not utilized any specific domain attributes to

build the model; instead, it is based on general design principles and mechanisms that cut

across the domains, thus ensuring the generalizability of the model.

The final criterion for "good theory" is parsimony, which relates to minimizing the

number of assumptions made in the theory. The previous section 4.2.2 thoroughly

discussed the assumptions made and the limitations it introduced in the current version of

the model. Although there are not a small number of assumptions, the model may approach

the minimum number needed at this point in time.

This discussion has shown that the current model fares well with respect to these

crucial elements of a "good theory" with the arguable exception of parsimony. It was also

clear that number of assumptions need further research, before the model can be

considered fully predictive. Despite this, it is believed that the model and simulation in

current form still provide useful, novel findings that support some existing ideas about

design cognition and the nature of technological change.

The thesis concludes in the next chapter with the discussion of contributions made

by this research effort towards deepening the understanding of technical change, and new

research questions it has spawned for future investigations.
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Chapter 5: Contributions and Future Research

This chapter presents contributions made by this research effort towards deepening the

understanding of technical change, particularly within the sub-field of technical

performance change. This will be followed by an enumeration of several questions

spawned by this research. Concluding remarks close the chapter.

5.1 Contributions of the research effort

This research effort contributed towards developing a greater understanding of technical

performance change in three broad areas: developing a framework and methods for

analyzing quantitative technical performance trends, developing an analytical model based

on design fundamentals, and conducting an empirical study of interactions, a fundamental

feature of technical artifacts.

5.1.1 Contributions in analyzing quantitative technical performance

trends

My research group, particularly Chris Benson and I, worked in the area of analyzing the

quantitative technical performance as part of our doctoral work. This thesis has described

the findings in this research area as part of the literature review. This section describes the

contributions made in this area, particularly that of the current author, that has helped 4o

advance the understanding of the technical performance change.

Prior studies of technical change had often used 'off-the-shelf terminology to

describe different technologies. Such terminology often lacked precision in the definition of

the unit of analysis and thus introduced significant ambiguity of varying degree. The

approach used by Koh and Magee (2006, 2008) utilized functional categories as the unit of

analysis; this approach was superior to ad hoc approaches used earlier, since function as a

dimension provided a logical framework to categorize and lump different technologies. But

this functional approach cast too wide a net, and joined together seemingly unrelated
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technologies, such as combustion engine, electrical motor, solar PV power, wind power,

fuel cells, and incandescent lighting, into a single functional category, energy

transformation, although all were used for energy conversion. In order to overcome this

issue with low resolution, aside from function, a new dimension - body of scientific and

engineering knowledge underpinning the technology - was introduced; this allowed

decomposition of functional categories into technological domains, defined as a set of

designed artifacts that utilize a body of scientific and engineering knowledge to achieve a

generic function (Magee et al. 2014). This decomposition using function and knowledge

base provides greater specificity to the unit of analysis, and most importantly, it provides a

framework to reduce ambiguity for further research. (If required, it allows further sub-

division based on a narrower definition of the relevant knowledge base.) Using these new

approaches for definitions of unit of analysis, over 50 technological domains were

identified. Several functional categories, such as information storage, were decomposed

into multiple domains - magnetic storage (tape and hard drive), optical storage and

semiconductor memory.

A second aspect important in this area is use of a suitable performance metrics. This

research has adopted the framework of combining multiple desired performance

attributes, and resource constraints. Accordingly, a suitable metric for passenger airplanes

will include both number of passengers transported and speed of airplane, and time

duration as the resource. This approach ensures that improvement in performance along

one performance attribute is not achieved through trading-off other performance

attributes. This framework aided in culling reported performance metrics that only

included one performance attribute or did not include some type of resource constraint (e.

g., lowest temperature achieved for cryogenics), and ensured that comparison of

performance improvement rates across domains was meaningful. Implementation of these

criteria resulted in elimination of many domains, leaving a total of 28 domains with 70 plus

metrics.

The third important contribution in this area is the broader consideration of effort

variables - production as well as revenue and patents. The study of IC chips demonstrated
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that each of these effort variables followed an exponential growth and satisfied the Sahal

relationship (Sahal 1979, Nagy et al. 2013, Magee et al. 2014). Further, the study of the 28

domains using patents as an effort variable demonstrated that patents do not always follow

exponential growth, and the power-law was upheld in only about half of the cases; and yet,

the exponential improvement with respect to time was followed in all cases. This suggested

that time as an independent variable might be a superior choice for study of performance

improvement over generations of designs, although both effort and time as independent

variables are adequate for singular designs. The performance trends for the 28 domains

against time follow exponential trends, but with rates varying from about 3 to 65%

percent. These reliable results formed the basis for further research.

Benson (Benson and Magee, 2015b) empirically investigated the variation of the

improvement rates in these 28 domains using meta-characteristics of patents, which are

outputs of design and inventive effort. The research work presented in this thesis instead

examined the internal dynamics of design and inventive processes underpinning technical

change, and developed a predictive and explanatory theoretical model for variation in

exponential trends exhibited by the technological domains. The contributions made in the

modeling area are discussed next.

5.1.2 Contributions towards deepening the theoretical understanding of

technical performance trends

Technical change has often been viewed as occurring inside a black box by researchers in

business and economics, and have usually avoided examining design activities as the

source of technical change. Recent publications of Baldwin and Clark (2006) and Luo et al.

(2014) have begun to build a connection between economics of technical change and

design. The research work presented in this thesis has contributed towards expanding this

effort by developing a predictive and explanatory theoretical model that utilizes the known

mechanisms of design and inventive processes to explain the trends seen in technical

performance change, thus making design endogenous to technical change. The model has
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demonstrated that the design and inventive process is the engine that powers technical

performance change.

The model utilizes two sets of known mechanisms in design to explain exponential

performance trends with variation in rates among domains. The combinatorial analogical

transfer mechanism give rise to exponentially growing pool of operating ideas (over time)

in the ideas realm, which can be accessed by all technology domains. The model

incorporates mutual exchange between understanding (largely science) and operations

(largely technology), each helping to break barriers in the other. To the best of our

knowledge, this is the first attempt to include influence of understanding in modeling of

technical performance change. The second set of mechanisms - domain interactions and

scaling of performance - give rise to variations in performance improvement rates across

domains. We adapt and extend the treatment of McNerny et al. (2011) to model the ability

of domain artifacts to assimilate operating ideas from the 101 pool, where associated

interactions of the artifact determine its ability to exploit the operating ideas in the 101

pool. The assimilated operating ideas change the design variables favorably to increase the

performance. The relative performance change for a given change in a design variable is

determined by scaling parameters (or scaling of performance). Together, the scaling and

interaction parameters (quantifying these two mechanisms) modulate the rate at which

operating ideas (knowledge) lead to variation in performance of the artifacts in domains.

The model thus integrates these known five mechanisms (and the theories behind

them) of design with technical performance change to develop a theoretical model of a

higher abstraction level. Thus, the model has unified the technical change with design

research, and deepened the understanding of technical performance, perhaps its most

significant contribution.

An important practical implication of this model from a policy and investment

perspective is that all sources of variation is not external variables such as R&D investment

or expertise, but rather internal domain fundamentals also play a significant role as

determinants. Once these internal factors get more empirical support, this insight will
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expand the toolkits used by policy makers, investors and technology planners and

strategists. Opening of this possibility is another contribution of this model.

5.1.3 Contributions from empirical study of interaction using patent data

The design structure matrix (DSM) for artifacts, as discussed in the literature and in the

methodology section 3.2, provide detailed descriptions of interactions between

components and sub-systems in an artifact, thus making it a desirable method to study

interactions. DSMS available in the literature, however, are very limited, especially for

those technological domains for which performance data is available. Additionally, DSM for

artifacts are very expensive to develop, and may even be extremely challenging to do so for

artifacts developed decades ago. To circumvent this challenge, an alternate method of

studying interactions using text in patents as the data has been developed. The method

utilizes 6 keywords representing interactions, and the normalized cumulative count of

these 6 keywords provides a measure of the level of interactions in the domains. Because

the method is based on patents, a textual data is objective and is available over a long

period of time, with electronic data available for almost 4 decades. Additionally, accessing

and analyzing textual data is relatively inexpensive and doable. To our knowledge, this

method using patent data to study interactions is the first of its kind, and thus contributes

(1) by opening a whole new data source, and (2) by developing a specific method, for

studying domain interactions.

The method has enabled comparative empirical study of interactions across

domains and how it correlates with performance. Whitney (1996, 2004) had shown why

interactions might have fundamental characteristics, and Koh and Magee (2008) had

qualitatively argued, and McNerney et al (2011) had modeled that domain interactions

impact the performance improvement rates. The model presented in this thesis

incorporates McNerney's treatment as an essential component for explaining the variation

in rates. However, to our knowledge, no prior independent empirical research exists that

supports Whitney's qualitative argument or McNerney's quantitative findings. Utilizing the

performance data and textual data from patents for the 28 domains, the study in this
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research has contributed by providing, for the first time, empirical support for the

argument that interactions give rise to variation in performance improvement rates, with

higher levels of interactions leading to lower improvement rates. The empirical findings

also provide support to the model's prediction that performance improvement rates vary

with the reciprocal of the level of interactions.

5.2.4 Empirical study of permanent magnets

The empirical case study of permanent magnetic materials has contributed by developing

performance data and identifying set of relevant patents for an additional domain. Using

this data, the study independently tested and provided empirical support for two

regression models, the first of which predicts performance improvement using patent

meta-characteristics, and the second of which correlates performance improvement rates

with normalized count of 6 keywords representing interactions.

The discussion above has shown that the contributions have been in three distinct

areas, spanning both theoretical and empirical areas. These contributions have deepened

the understanding technical performance change and demonstrated that design is the

engine that powers technical change. As another contribution, both the model and

empirical studies have also spawned many new questions for future research, which are

discussed next.

5.2 Future research questions

The predictions and assumptions made by the modeling effort have raised many salient

research questions for the future:

* The model has suggested that interaction and scaling give rise to variations in rates of

improvement of performance across technological domains. The empirical study in this

research has developed support for the interaction parameter as a contributor to such a
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variation. Does the scaling parameter also contribute to variation in performance

improvement rates as suggested by the model? This needs to be assessed empirically

independently. Usage of relevant design texts, handbooks, and manuals for each

domain, including inventor interviews, might be a potentially good starting point for

such an empirical study.

* Another question that naturally arises is whether interaction and scaling parameters

together can account for all the variations? If not, what other possible mechanisms

could help to explain all the variations? Do non-fundamental variables such as

investments in the domains, and inventor effectiveness influence differences in

performance improvement rates among domains? If so, how do they come into the

dynamics? Are there systematic differences in investment and inventor-effectiveness

across domains when considered over a long period? And most importantly, how can

objective, empirical studies of these important questions be performed?

" Investigating whether the probability of combination, Pioi, is constant (assumed to be a

constant in the model) or varies with domains is an important future question. A

potential approach is to study stochastic noise in performance improvement rates along

with relevant values of interaction and scaling parameters. The determination of the

constancy of Pioi will either support the model or suggest modification.

* An interesting question this modeling work raises is how could this modeling work be

extended to understand the growth of design capacity of firms, and nations? Any

additional insight on how effective nations develop their design capacity could be

helpful for the emerging markets.

The empirical study of interactions using patents, being a first of kind, has much room to be

improved, and here we list some suggestions.

* The results from the current empirical study of interactions has significant scatter in

the region where domains have low normalized count of keywords. This may be

because the current study utilized textual data from only 100 patents for each domain.
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Increasing the number of patents used to, say 200 to 300, could give more stable values

and thus help to reduce the scatter. To do this without doubling or tripling the reading

effort, the effectiveness of the COM technique has to be improved. It would be desirable

to eliminate human reading and still get only relevant patents which might be doable by

use of natural language processing approaches used in addition to COM.

* The correlation coefficient with a value of -0.56 in the correlation study of performance

improvement rates and normalized keywords was modest. One obvious reason as

suggested by the model is the absence of the scaling parameter. If the research

suggested above makes scaling parameters available, then future research should carry

out a multiple regression of performance improvement rates using interactions and

scaling parameter values. This should potentially increase correlation coefficient as well

as the predictive power of the regression model. The current keyword-based method

requires the researcher to determine what words represent interactions in the patents.

Whether the same words are used to denote those interactions in new domains, and

whether a majority of interactions have been accounted for are legitimate questions.

The natural language processing methods such as subject-verb-action (SAO) utilizing

contextual meaning might be equipped to handle these concerns once they become

more capable. They are also likely to have a better resolution, and may increase the

relevancy of the text representing interactions.

5.3 Concluding Remarks

The mathematical model presented in this thesis integrates two sets of known mechanisms

in design and inventive processes to explain and predict the exponential trends exhibited

by technological performance change. The exponential trends are shown to arise from a

simple version of analogical transfer as a combinatorial process among pre-existing

operating/inventive ideas. The model is consistent with certain known behaviors of

technical change including:
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1. The transition from slow, hesitant technological change to more sustained technological

progress as technological ideas accumulate;

2. A role for the emergence of the scientific process in stimulating the transition described

in point 1;

3. The exponential increase of performance with time (generalized Moore's Law) seen

quite widely empirically.

Based on a second set of mechanisms, domain interactions and scaling of performance, the

model also indicates that:

4. The rate of performance increase in a technical domain is at least partly (and possibly

largely) due to fundamental technical reasons (component interactions and scaling of

design variables) rather than contextual reasons (such as investment in R&D, scientific

and engineering talent, or organizational aspects).

Numerous modeling assumptions have been made in developing the model but only some

of these are critical to the conclusions just listed. Further specific research is suggested to

move some critical assumptions into the testable category. The assumptions underlying

point 4 have been discussed extensively in chapter 4 and in the previous section.

Interactions in domain artifacts, one of the mechanism identified as giving rise to

variations, was empirically tested using patents, and the results support the quantitative

form of this mechanism in the model. The detailed study of noise in performance

improvement rates, and study of scaling parameters need to be carried out in the future,

and findings from such research could support or lead to modification of the model.
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Appendix A: Supplementary data and results from case study of
permanent magnet materials

A.1 Performance data

The Table A.1 summarizes performance data for permanent magnetic materials. Columns

2, 3, 4, 5 provide the raw data, while columns 7 and 8 show data for non-dominated

performance, which are 'record-setting' data points.

Table A.1 Permanent magnetic materials: Performance data
Non-dominated

# Year KJ/mA3 Material Source Year KJ/mA3
1 1917 11.82 Steel Gutfleisch, 0. (2000) 1917 11.82
2 1930 11.82 Ferrite Gutfleisch, 0 . (2000) 1931 17.67

3 1931 17.67 Steel Gutfleisch, 0 . (2000) 1933 17.83
4 1933 17.83 Steel Gutfleisch, 0. (2000) 1941 41.25

5 1941 41.25 Alnico Gutfleisch, 0 . (2000) 1952 53.28

6 1951 35.45 Ferrite Gutfleisch, 0 . (2000) 1962 87.45

7 1952 53.28 Alnico Gutfleisch, 0 . (2000) 1970 163.46

8 1962 87.45 Alnico Gutfleisch, 0 . (2000) 1971 211.31

9 1965 6.0146 Sm-Co Gutfleisch, 0 . (2000) 1974 230.42

10 1966 42.156 Sm-Co Gutfleisch, 0 . (2000) 1976 245.53

11 1970 163.46 Sm-Co Gutfleisch, 0 . (2000) 1978 254.26

12 1971 211.31 Sm-Co Gutfleisch, 0 . (2000) 1983 289.66

13 1974 230.42 Sm-Co Gutfleisch, 0 . (2000) 1984 333.52

14 1976 245.54 Sm-Co Gutfleisch, 0 . (2000) 1985 367.85

15 1978 254.26 Sm-Co Gutfleisch, 0 . (2000) 1986 395.16

16 1983 289.66 Nd-Fe-B Gutfleisch, 0. (2000) 1993 427.15

17 1984 333.52 Nd-Fe-B Gutfleisch, 0. (2000) 1998 444.44

18 1985 367.85 Nd-Fe-B Gutfleisch, 0 . (2000) 2006 467.2

19 1986 395.16 Nd-Fe-B Gutfleisch, 0 . (2000)

20 1993 427.15 Nd-Fe-B Gutfleisch, 0 . (2000)

21 1998 444.44 Nd-Fe-B Gutfleisch, 0 . (2000)

22 2006 467.2 Nd-Fe-B Walmar, 2008

Location of data:

Folder:

File: permanent magnetsKJperm3 v1_12.22.2013.xlsx

Sheet: performance data with sources for sharing
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A.2 Patent search for permanent magnetic material using COM

A.2.1 Keywords for patent search

The following keywords were used for searching patents in the seed set using the COM

(Classification overlap method):

Magnetic material, permanent magnetic material, hard magnetic material, soft magnetic

material.
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Fig. A.1 Source for performance of magnetic material over time. Adapted from Gutfleisch

(2000).



Using only 'permanent magnet' gave a lot of patents related to applications of permanent

magnetic materials, thus severely diluting the patents that were

improvement in intrinsic properties of magnetic materials.

A.2.2 MPR calculations

related only to

Table A.2 MPR calculations for IPC classes

from KW search from KW search A In pat class MPR
only, pat count within class

HO2K 3896 1528 52719 0.21059
H01F 3896 829 37161 0.117545
C22C 3896 97 29057 0.014118
G01R 3896 91 113931 0.012078

For UPC classes:

Table A.3 MPR calculations for UPC classes

# pat (KW
Type of UPC # pat (KW search n Pat #
classes search only) UPC class) (in UPC class) MPR

310 3896 831 67060 0.112844

335 3896 452 16503 0.071703
148 3896 200 33665 0.028638
29 3896 139 277205 0.01809

324 3896 94 97936 0.012544

210 3896 88 81980 0.01183
420 3896 78 14527 0.012695
251 3896 41 35098 0.005846

204 3896 35 58988 0.004788
428 3896 32 221007 0.004179

It has be noted that use of only MPR values to decide on the combinations of UPC and IPC

was hard to accomplish and was taking longer than anticipated. For example, combination
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and 310 and HO2K was giving a lot irrelevant patents. Aside from the MPR values, the

examination of the description of IPC and UPC classes expedited the process in terms of

pinpointing the appropriate sub-class for UPC.

A.2.3 Summary of IPC and UPC classes used in COM for obtaining patents

The overlap of IPC class H01F and two UPC classes 420 and 302/335 were used for

obtaining the patents for the permanent magnetic materials domain. Tables A.4 describes

what these classes include.

The classes shown in the Table A.4 were used in following search criteria in PatSnap for

retrieving patents this domain:

(CCL:(420 OR 335/302)) AND ICL:(H01F) AND (APD:[1 976-7-1 TO 2013-7-1D

It has to be noted that patents were obtained from January of 1976 till July of 2013.

This resulted in 1321 patents, with a relevancy of 74%. The patents considered irrelevant

were mostly related to applications of magnetic materials, rather than reflecting innovation

34 Description of HO1F available at
http://www.wipo.int/ipc/itos4ipc/ITSupport and download area/20140101 /pdf/scheme/full ipc/en/ipc e
n h full ipc 20140101.pdf
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Table A.4 Description of UPC and IPC classes used for permanent magnetic materials

Classes Type Description

1 420 UPC Alloys or metallic compositions

2 335 UPC Electricity: magnetically operated switches, magnets, and
electromagnets

3 302 UPC .. Permanent magnets: (this is a sub-class within 335)

4 H01F IPC Includes magnets; inductances; transformers; selection of
materials for their magnetic properties [2]34



in magnetic material properties. Two researchers, including the current author, read the

patents.

List of 100-most cited patents retrieved from PatSnap:

The patents are listed in descending order with respect to number of citations they have

received.

US4770723,US5631093,US6927657,US4402770,US4792368,US4802931,US4056411,US46

68310,US4881989,US5049208,US4496395,US5345207,US4374665,US5022939,US468440

6,US4126494,US4851058,US4231816,US4689163,US4994777,US4935080,US4981532,US

4985089,US4110718,US5252148,US4836868,US4770702,US4150981,US4152144,US4614

930,US4378258,US4620872,US4438066,US4664724,US4225339,US4323629,US5034146,

US4038073,US5334267,US6048601,US4409043,US4773950,US4623387,US5976715,USSS

22948,US4767474,US4888512,US4004167,US5069731,US6525634,US4547758,US476584

8,US4318738,US4075042,US5522946,US4053331,US6747537,US5992006,US4093453,US

4185262,US3899762,US7148777,US4983232,US4814053,US4284440,US4588439,US4081

298,US6172589,US6648990,US4600555,US4998976,US5858123,US4840684,US7175718,

US4192696,US3982971,US7498914,US5817191,US4935074,US5230751,US6296720,USS5

49766,US6302972,US5350628,US4289549,US6563411,US4116727,US5019796,US378494

5,US5367278,US5888416,US6280536,US4952239,US5645651,US4849035,US4969963,US

4678634,US7286034,US4591817,US5750044

A.3 Regression models

A.3.1 Based on patent meta-characteristics

The regression model from C.L. Benson's thesis:

K= -31.1968 + 0.1406*cit3 + 0.0155 *AvgPubYear
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Where cit3= number of citations in first 3 years, and AvgPubYear = average publication

year

The table A.5 shows meta-characteristics for the permanent magnet materials along with

predicted and observed improvement rates. Fig. A.2 and A.3 show the meta-characteristics

overlayed with those of 28 other domains. Both suggest that the predicted rate will be low.

Table A.5 Patent meta-characteristics

Citation in
first 3 years Avg. pub year relevancy Predicted K Observed K

1.75 1999.59 ~74% 4.3% 4.86 %

Location: Dropbox\Patent Set Downloads 8.4.13\103 - 4th set of domains\62 - Permanent
magnets; File: 420_OR_335-302_AND_HO1F.xlsx; Sheet: searchsummary
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A.3.2 Regression model II: Based on keywords representing interactions

The regression model is based on the empirical study of interactions presented in section

3.2

K1 = -0. 1897 -countkeyword + 50. 575

Where countkeyword is the normalized count of 6-keywords for every 100 thousand words in

the text. The tables A.6 and A.7 tabulate the count of each keywords and the normalized

count of 6-keywords. With a normalized count of 6-keywords, the predicted value is 24%.
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Table A.6: Count of 6-keywords

Keywords Count Total words Normalized
without stop 6KW/100000
words words

Prevent 16
Undesir 4
Requirement 13
Fail 7
Disadvantag 28
Overcom 10
Total count of 75 53571 140
KW

Table A.7 Predicted and observed values

Normalized
count of 6KW Predicted K Observed K

140 24% 4.86%
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Appendix B: Supplementary results from empirical
study of domain interactions

Appendix B documents two sets of results from two text mining approaches used in the

pilot study. The first set presents exploratory results from LSA and LDA, which were not

fruitful. The second set presents supplemental data and results, not presented in section

3.2.

B.1 LSA and LDA text mining results from pilot study

Latent Semantic Analysis (LSA) and Latent Dirichlet Analysis (LDA) were explored initially

as text mining for obtaining domain interactions, since they do not require expert

knowledge. See section 2.4.5.3 for further description of these techniques. If successful,

they would have been potentially more objective. Some exploratory results as samples are

presented below. Both of these techniques as well as the keyword based technique used

patent text from 5 domains - battery, capacitor, wind turbines, solar PV, and CT scan.

B.1.1 Results from LSA analysis

LSA decomposes the word-document matrix (where each entry in the matrix is the

frequency of a specific word (row) in a specific document (column)) using singular value

decomposition. The diagonal matrix provides the distribution of eigenvalues over the

documents. These eigenvalues are plotted over the dimensions, set equal to 100

documents, which in this case are the patents of each domain. The model presented in

thesis has suggested that higher level of domain interactions is associated with lower

performance improvement rates. Thus, the conjecture was that slowly improving domains

would exhibit broader distribution of eigenvalues, indicative of potentially higher

interactions.

The 5 domains in increasing order of performance improvement rate (K) are

battery, wind power, solar PV, capacitor and CT scan with the rates ranging from 7 to 37%.
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According to the conjecture, domains such as bettery should show broader distribution

whereas the domain such as CT scan should show a narrower distribution. Fig. B1 shows

no clear trends distinguishing the domains. Infact, four domains, excluding wind power,

practically superimpose each other across the 100 patents. Conversation with other

researchers who had used LSA in their suggested that LSA might not be sensitive enough to

glean information on interactions as they were very specific. Another competing technique,

LDA, was explored next, results from which are presented next.

700

Eigenvalues

600

500

400

300

200

100

- Batteries
-Capacitors

- pv
- Wind Turbines

- T

# of patents

0 20 40 60 so 100 120

Fig. B.1: Distribution of eigenvalues over the 100 patents for 5 domains.

B.1.2 Results from LDA analysis

LDA, as explained in section 2.4.5.3 decomposes word-document matrix two matrices in

order to determine the topics latent in the word-document matrix. First matrix provides
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the topics (column) distributed over the words (rows). The conjecture in the study was

that the topics might provide signal for the interactions latent in the word-patent matrix

for each domain. The table B.1 shows the results from such a decomposition for batteries

domain with the assumption of 10 latent topics. Consider topic 3(column 3). The

occurrence of words such as cathode, anode, electro-chemical, and electrolyte suggest that

the topic is related to batteries. The fact that patents belong to battery domain and one of

the topic suggested by LDA is related to batteries indicates that the technique is able to

extract underlying latent topics successfully. Although this is the case, none of the topic

columns provide any hint of interactions as discussed in section 3.2.1.4, specifically side

effects, functional requirement conflicts, or component-to-component or component-to-

system interactions.

The signal from both LSA and LDA as shown were non-existent, hence both of these

approaches were dropped from further research. Keyword-based approach was explored,

and found to be fruitful. The specific data and results not presented in section 3.2 will now

be presented.

186



Table B.1: Topic word matrix from LDA analysis Batteries domain using 100 patents. Assumed to have 10 topics, period: sentence, N =

10000 (nb of words: 6267, nb of sentences: 6530, alpha = 10, beta = 0.1)
Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8 Topic 9 Topic 10

'laminated' 'formulated' 'invention' 'materials' 'laminated' 'metal' 'fitting' 'laminated' 'preform' completion'

'formulated' 'completion' 'cathode' 'charge' 'activatable' 'active' 'parallel' 'formulated' 'parallel' 'machine'

'activatable' 'welded' 'anode' 'discharge' 'completion' 'liquid' 'shorting' 'activatable' 'shorting' 'welded'

completion' 'seal' 'present' 'hydrogen' 'machine' 'sulfur' 'resists' 'completion' 'resists' 'seal'

'machine' 'feedthrough' 'solid' reaction' 'welded' 'preferably' 'stray' 'machine' 'stray' 'feedthrough'

'welded' 'preform' 'provide' 'pat' 'seal' 'alkali' 'projects' 'welded' 'projects' 'insulate'

'feedthrough' 'fitting' 'electrochemical' 'conductivity' 'feedthrough' 'compound' 'opening' 'feedthrough' 'opening' 'preform'

'insulate' 'parallel' 'state' 'temperature' 'insulate' 'conducting' 'pouch' 'insulate' 'pouch' 'fitting'

'preform' 'shorting' 'current' 'storage' 'preform' 'preferred' 'faces' 'preform' 'faces' 'projects'

'fitting' 'resists' 'method' 'ionic' 'fitting' 'group' 'medical' 'fitting' 'medical' 'opening'

'parallel' 'stray' 'object' 'type' 'parallel' 'salt' 'promote' 'parallel' 'promote' 'pouch'

'resists' 'projects' 'electrolytes' 'capacity' 'shorting' 'composition' 'circuits' 'shorting' 'facilitates' 'medical'

'stray' 'opening' 'collector' 'electrical' 'resists' 'form' 'avoids' 'resists' 'largely' 'avoids'

'opening' 'faces' 'electrolyte' 'art' 'stray' 'comprises' 'largely' 'stray' 'chosen' 'facilitates'

'pouch' 'promote' 'elements' 'polymers' 'opening' 'radiation' 'chosen' 'projects' 'outer' 'chosen'

'faces' 'avoids' 'improved' 'temperatures' 'pouch' 'oxide' 'outer' 'opening' 'outermost' 'unidirectionally'

promote' 'outer' 'composite' 'prior' 'faces' 'include' 'outermost' 'pouch' 'unidirectionally' 'length'

'circuits' 'outermost' 'assembly' 'reduction' 'medical' 'organic' 'unidirectionally' 'faces' 'length' 'establish'

'avoids' 'unidirectionally' 'relates' 'oxidation' 'promote' 'element' 'length' 'medical' 'establish' 'fold'

'facilitates' 'establish' 'generally' 'range' 'circuits' 'polymeric' 'establish' 'promote' 'fold' 'superimposing'

'largely' 'fold' 'background' 'greater' 'avoids' 'mixture' 'fold' 'circuits' 'superimposing' 'shorter'

187



B.2 Keyword-based text-mining for domain interactions

B.2.1 Patents used for the empirical study

The patents used in the empirical study presented in this thesis were prepared as part of

C.L. Benson's doctoral work, in which the current author had been involved in reading the

patents. C. L. Benson's thesis (2014) presents the IPC and UPC classes (identified with the

COM technique) used for retrieving the patents for each specific domain from the PatSnap

database. See pages 312 - 355 in for further details. These retrieved patents were granted

during the period from Jan 1, 1976 to July 1, 2013.

B.2.2 Retrieval of patent text from Google's website

The PatSnap database provided the meta-data for each patent but did not provide text in

searchable form. The text for each patent, therefore, was downloaded from Google's

website using the web-scraping tool developed for this purpose.

The terms used for identifying the headers for the four different sections in the Google

patents are listed in Table B.2. Since sections heading for background and summary do not

follow any standard, the search terms had to accommodate for many variants, making the

development of the tool time consuming, and challenging. The summary section was more

challenging mainly because there is another section called the 'detailed description'. Using

the custom-built web-scrapping tool, 2421 patents were successfully downloaded, while

371 had to be downloaded manually.
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Table B.2: Search terms used for identifying the sections in the Google patent database

Section name terms used for searching section headers

1 Title 'Patent-title'

'Invention-title'

2 Abstract 'Abstract'

3 Background 'description of the prior art',

(for exact match in heading) 'background of the invention',
'background',

'background information',
'prior art',

'introduction to the invention'

Background '.*background.*',

(for partial match in heading) '.*prior art.*',.
'*related technology.*',

'*related art.*'

Background .*background.*',

(for partial match in '.*prior art.*',

paragraph) .*related art.*'

4 Summary 'summary of the invention',

(for exact match in heading) 'statement of the invention',
'general description of the invention',

'brief description of the invention',
'short description of the invention',

'brief description of the present invention'

Summary '.*summary.*'

(for partial match in heading)

(for partial match in .*summary.*',

paragraph) '.*statement of the invention.',

'.*general description of the invention.*',

'.*brief description of the invention.*'
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B.2.3 Results

The total of 2776 patents were included in the study, with 97-100 patents in each of the 28

domains. Python code parsed and counted the number of words in the text for each patent

and for the domain as a whole. This data was necessary for normalizing the count of

keywords. Similarly, the 8 keywords deemed to reflect domain interactions were counted

in each patent and domain as a whole. Table B.3 summarizes the extracted count and

normalized count of 8 and 6 keywords.
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Table B.3: Summary from data from empirical study of interactions in 28 domains.
Columns 1 and 2 identify the domains; column 3 lists number of patents used in domains; columns 4-11 list
count of 8 keywords, followed by cumulative count of 8 and 6 keyword for each domain; columns 14 lists
words in each domains, then followed by normalized count of 6 keywords, and performance improvement
rate (K). The 6 keyword count excludes the count of keywords 'parasitic' and 'problem'.

Count of each keyword

CL W U

0 C0 W- MU 0

Domain # Domain name W U- a 0 0 0- * CL 00 -0 --

Domain_1 3DPrinting 100 47 14 31 11 45 14 0 153 315 162 172952 94 38

Domain_2 Aircraft 100 88 14 81 99 48 24 5 108 467 354 131060 270 12

Domain_3 Batteries 100 75 8 48 28 18 15 4 113 309 192 111825 172 7

Domain_4 Camera Sensitivity 99 58 3 34 3 25 19 10 135 287 142 129106 110 16

Domain_5 Capacitor 100 54 23 30 25 32 16 13 121 314 180 117888 153 15

Domain_6 Combustion 99 69 12 23 41 22 22 0 101 290 189 112038 169 6

Domain_7 CT scan 100 31 16 21 14 32 23 0 119 256 137 151289 91 37
Electric Power

Domain_8 Transmission 100 42 15 48 28 32 13 88 122 388 178 115704 154 15

Domain_9 Electric motor 99 66 20 29 13 42 21 0 71 262 191 95661 200 3

Domain_10 Electric Telcom 100 88 9 36 25 26 16 0 102 302 200 102817 195 10

Domain_11 Electronic Computation 99 33 0 58 62 19 9 0 219 400 181 146260 124 33

Domain_12 Flywheel 100 48 11 39 80 54 23 3 94 352 255 107438 237 9

Domain_13 FuelCell 99 108 14 73 11 28 17 20 134 405 251 146123 172 14

Domain_14 Genome sequencing 99 42 2 16 7 21 13 1 81 183 101 191484 53 29

Domain_15 Incandescent Lighting 100 63 15 21 62 42 14 0 65 282 217 109610 198 5

Domain_16 LED 100 53 7 12 16 29 17 2 121 257 134 119257 112 36

Domain_17 Magnetic storage 99 64 7 43 17 26 29 0 129 315 186 139223 134 32

Domain 18 Milling Machine 97 89 16 28 22 37 28 0 83 303 220 103482 213 3

Domain_19 MRI 98 21 14 24 17 58 20 6 88 248 154 138033 112 48

Domain_20 Optical Storage 99 72 3 19 34 31 9 0 131 299 168 152731 110 27

Domain_21 Optical Telcom 99 40 7 31 6 23 22 2 120 251 129 106801 121 65

Domain_22 Photolithography 98 33 27 31 11 13 14 1 175 305 129 139494 92 24

Domain_23 Semiconductor storage 97 41 7 28 30 47 21 3 126 303 174 132235 132 43

Domain_24 SolarPV 98 59 11 42 25 22 13 1 89 262 172 128842 133 10

Domain_25 Superconductors 100 41 14 20 11 15 19 3 73 196 120 109385 110 10

Domain_26 Wind 99 39 8 31 29 34 29 0 104 274 170 129593 131 9

Domain_27 irelessTelcom 99 52 8 60 19 33 29 0 141 342 201 147087 137 50

Domain_28 zICs 99 44 11 54 13 37 14 10 128 311 173 110844 156 36
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