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ABSTRACT

Herein three systems - electromigration in metal nanowires, electron tunneling in single-molecules, and
carbon nanotube photovoltaics - are investigated. In the first area, electromigrative failure of metal
nanowires has been shown to form single-molecule tunnel junctions, but the process has remained
unpredictable, limiting the yield of devices under current methods. Electromigration in micron diameter
and larger wires is well understood as the migration of vacancies in the bulk crystal, but both the
quantitative predictions and qualitative features of that mechanism break down at the nanometer scale.
We propose, and validate against experimental data, that as the wire diameter falls below a micron,- the
increased surface-area-to-volume ratio and the low barrier to surface atom translation shift the dominant
mechanism of electromigration from bulk transport to surface transport. We then apply the model to
design a process controller to guide gradual electromigration. We then turn to investigating the tunnel
junctions themselves. Diverse physical insights have been gained from electron tunneling measurements
of single molecules, but to date all observations have been static i.e. subject to long integration times. We
performed temporally resolved measurements, revealing underlying molecule dynamics. In particular we
find that molecules can stochastically switch between discrete inelastic transport states, suggesting
discretized molecule reconfiguration consistent with the body of literature from Scanning Tunneling
Microscopy. Finally, we investigate carbon nanotube (CNT) network solar cells. The large parametric
space associated with the nanometer-scale heterogeneous material, including the mixture of nanotube
length, chirality, orientation, etc., has prevented proof-of-concept devices from revealing a research
pathway to practical efficiencies. To address this empirical limitation, we derived a model of CNT
photovoltaic steady-state operation from the light absorption and exciton transport behaviors of single and
aggregate nanotubes. To do so, we treated single nanotube properties as random variables, describing the
nanotube network as distributions of those properties. Applying the model to different solar cell
architectures, we predict that efficiencies will be dramatically higher in high density films of vertically-
aligned nanotubes. We also show that the film thickness must be at an optimum, and that as a rule of
thumb the film thickness should be approximately the exciton diffusion length.
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INTRODUCTION

In the sections below, we survey some of the relevant concepts and literature necessary to

understand and contextualize the investigations in the subsequent Chapters. In-depth exploration is

outside the scope of this document, but where relevant references are provided at the beginning of each

section for readers that would like a deeper understanding.

Metal Electromigration

For insight into metal electromigration beyond the content in this Introduction, please refer to the

following publications:

1. Paul S. Ho and Thomas Kwok. Electromigration in Metals. Rep. Prog. Phys. 52, 301-349, 1989.

2. James R. Black. Electromigration - A Brief Survey and Some Recent Results. IEEE Transactions on

Electron Devices 16, 4 338-347, 1969.
3. Donald G. Pierce and Phillip G. Brusius. Electromigration: A Review. Microelectron. Reliab. 37,

1053-1072, 1997.

The basic mechanism

When a voltage bias is applied across a metal crystal, lattice atoms feel two forces that can inspire

translation. The first force is the direct electrostatic, or Coulomb, force driven by the attraction of the

partially-shielded nuclei to the negative electrode and repulsion from the positive electrode,

(1) Fd = qZdE

where q is the elementary charge, Zd is the effective valence of the nuclear ion,i and E is the electric field

vector. While this force is intuitive, it has yet to be unambiguously observed and its existence has

frequently been called into question.[2,3] In particular, beginning with Bosvieux and Friedel[4] the extent

of charge screening, and hence coulomb force cancellation, has been under investigation (see e.g. Lodder

et al. [1]). Regardless, outside of exotic chemistries and architectures[5] the direct force is generally

considered negligible.[2,3]

In bulk metals the direct force is substantially weaker than the second force imposed on lattice

nuclei in an electric field, the so-called 'electron wind' force.[2,3] Electron scattering via interaction with

crystal lattice phonons imparts momentum to the lattice nuclei. A net current flux therefore creates a net

force on metal atoms in the direction of electron flow,

(2) F, = qZE

Zd is the effective charge expressed by the nucleus on the length scale of the electric field, i.e. the valence

minus screening effects.[1]
11



where Z, is the effective valence associated with the wind force. Z, is therefore some function of the

current flux, and its particular form is generally the focus of theoretical investigations into

electromigration such as by Rous et al.,[3] Dekker et al.,[6] and Bly et al. [7]

+---==--=J Yke E .. _ _ _ _ _ Eva

Ev
X

0 Ax
Site A Site B

Figure 1. (a,b,c,d) Cartoon illustrations of metal atom displacement due to electromigration in bulk (a,b) and on

the surface (b,c) under a current flux J. Barriers to nuclear translation may be low enough to exhibit

electromigration at vacancies (a), grain boundaries (b), and surface sites (c,d). (e) Example potential energy
diagram for atom displacement mediated by a vacancy, as in (a). Translation requires overcoming an energy

barrier Ev.

When a voltage and resulting current are applied across a metal wire, these forces can inspire the

dislocation of atoms to adjoining sites when the energy barrier to nuclear displacement is low, such as

when the atom is adjacent to a lattice vacancy or is on the crystal surface (Figure 1). While such

individual energy-activated lattice site hopping events are stochastic, averaging over the crystal of

interest" and over minimum accessible timescales (for electrical measurements, that is microseconds at

fastest) yields a continuous flow of metal atoms called electromigration. Increasing the current flux, such

as by increasing the applied voltage bias, increases the rate of mass transport. Electromigration is most

rapid in areas where the energy barrier to atom/vacancy translation is lowest, such as grain boundaries

and lattice defects, or where the current flux is highest, such as at constrictions and sharp edges.

" In the Introduction, we will focus on applying a bias across wires of micron and larger effective diameter,

according to the state of the field up to the work presented in this thesis. In the thesis chapters, and in

discussing electromigrative tunnel junction formation in later Introduction sections, we will consider wires

down to tens of nanometers in effective diameter. In all such cases, electromigration remains a continuous

process. In Chapter I and Chapter II, we observe and discuss measurable stochastic electromigration when

wire effective diameters fall below approximately 10 nm, as similarly observed by Strachan et al. [8]

12



Figure 2. Cartoon illustration of the role of heterogeneities
in electromigrative evolution of metal crystals. J is the
current flux, of positive charge carriers by convention
(opposite polarity of the electron flux vector). Orange

SY Ycircles represent atoms in a crystal cross-section, and the
width of the hollow black arrows represent the magnitude
of the atom flux. (a) a perfect crystal; the nuclear flux is
uniform. As a result, there is no net loss of mass at any
point. (b) a grain boundary; the nuclear flux increases at the
grain boundary. As a result, more atoms will leave the grain
boundary per time than are replenished. There is thus a net
loss of mass from that point over time.

In a perfect crystal this process yields no macroscopic change in morphology because the net flux

of atoms in any cross-section is zero; the same number of atoms enter as leave. Heterogeneities such as

grain boundaries, temperature gradients, and material interfaces however create a gradient in atom flux

from the gradient in vacancy concentration, mean translocation barrier, or current density. That gradient

causes regions of the crystal to experience a net gain or loss of atoms with time (Figure 2). The process

leads to the formation of extrusions at some points on a wire and voids at others, until eventually any

finite-diameter wire will break.

The Black equation and electromigration at micron scales

At least in wires of micron diameter and larger, electromigration has been well understood since

1967 when Black first proposed that the rate of electromigration was dominated by the drift of vacancies

in the bulk crystal. [2,9,10] From the vacancy transport mechanism he derived and empirically verified the

celebrated Black equation of metal wire time-to-failure tf due to electromigration under an initial current

fluxj,[9,1 1]
EV

(3) tf = Aejfj2

where A is an empirical prefactor, Ev is the activation barrier to vacancy diffusion, k is the Boltzmann

constant, and T is temperature. In the intervening years the bulk vacancy transport model and resulting

Black equation have been verified across numerous experimental platforms, simulations, and theoretical

treatments.[1,2,10,12-15] This bulk vacancy transport mechanism of electromigration has proven

invaluable in the semiconductor industry, where Black's predicted time-to-failure limits the passage of

current in metal wires and interconnects.

In addition to the quantitative treatment of electromigration, several qualitative phenomena are

ubiquitously observed. One is void formation. As vacancy concentrations rise they aggregate to form

macroscopic voids in the crystal. This effect is discussed further in Chapter 1. Another is failure at

13



material interfaces. As explained above, the gradients in metal atom flux are what cause morphological

changes and ultimately wire failure. These gradients arise from any heterogeneity in the material,

including temperature gradients and grain boundaries, but among them interfaces between two materials,

even of the same chemistry, dominate the rate of electromigration. Across diverse architectures and

chemistries, failure occurs at the interface of materials. [16-21] The explanation for this phenomenon is

that a material interface even between two identical compounds acts as a grain boundary that spans the

entire width of the crystal. Grain boundaries produce the highest local material flux amongst

heterogeneities, but grains are smaller than the crystal diameter and as such do not span its entire

width.[21] This effect is discussed further in Chapter 111.

Breakdown of the Black equation: electromigration at the nanometer scale

Despite the broad validity and technological impact of the Black equation and the bulk vacancy

transport mechanism of electromigration, systematic deviations from the model began to be observed in

the 1980s as miniaturization brought semiconductor metal interconnects to sub-micron dimensions.

Deviations from the quadratic scaling of electromigration rate... with current flux were increasingly

observed as wires became narrower. Empirical corrections to the current exponent became necessary,

with power coefficients in the absence of Joule heating being measured between -1 and -2.[10] These

corrections were initially explained as due to material-specific properties, but eventually were attributed

to diminishing wire diameter.[10] Prior to the investigations of this thesis, there was no explanation for

this breakdown of the bulk vacancy transport mechanism of electromigration. In the work presented in

Chapter I and Chapter II, we propose that as metal wire diameters fall to tens or hundreds of nanometers

the highest-rate electromigration pathway shifts from bulk vacancy transport to surface transport. The

energy barrier to metal atom dislocation on surfaces is known to in general be significantly, by orders of

magnitude lower than bulk vacancy dislocation; as the surface area to volume ratio rises, the population

of surface sites becomes comparable to the population of bulk vacancies and the rate of electromigration

therefore becomes dominated by the faster migration of surface atoms. We validate this hypothesis both

quantitatively and qualitatively using experimental data from our own group (Chapter II) and others

(Chapter I). This surface transport model yields a linear, rather than Black's quadratic, scaling of mean

electromigration rate with current density, explaining and thereby being supported by the empirical

corrections to Black's model mentioned above.

Although it has not been explicitly recognized prior to this work, the qualitative features of

vacancy-mediated electromigration also break down as wire effective diameters enter the nanometer

regime. As we explore in Chapter I, void formation is less commonly observed in nanowires. Instead,

' The mean electromigration rate is the inverse of the time to failure.
14



under electromigration nanowires thin at the point of most rapid migration, typically a grain

boundary,[22] 'necking' gradually until the wire breaks. This change is consistent with mass transport,

and hence mass loss, from the surface rather than the bulk. In Chapter 1i1, we show that the phenomenon

of ubiquitous failure at material interfaces also breaks down at the nanometer scale, with electromigration

through a Au nanowire-carbon nanotube (CNT) interface yields necking and failure along the nanowire

rather than at the connection between the two, despite the substantial gradients in vacancy concentration

(the interface is effectively a grain boundary), atom mobility (the covalently bonded carbon atoms do not

electromigrate, so Au should be ejected from the interface but not replenished), and temperature

(substantial differences in both thermal conductivity and Joule heating between the materials).

Nanowire Electromigration for Tunnel Junction Formation

In the previous section we discussed the current knowledge of metal electromigration,

specifically the bulk-vacancy transport mechanism, its validity for micron-diameter and larger wires, and

the gradual realization that as wire dimensions shrink to the nanometer scale the model appears to break

down. In Chapters I through III, we show that both the quantitative and qualitative features of micron-

scale electromigration do indeed diverge, and we provide and validate a new dominant mechanism for

metal electromigration in nanometer-diameter wires: surface transport. The value of those findings goes

beyond the semiconductor industry however, as the electromigration of nanowires has recently been

exploited as a method for a new technology: on-chip single-molecule tunnel junctions. In this section, we

discuss that application.

In the first sub-section, we cite the discovery of electromigrative tunnel junctions (ETJs), and in

the 5th sub-section,features ofelectroniigrative frniation of tunnel functions, we explain its basic

features. In the sections progress to date in electronigrative single-molcule tunnel junctions and potential

technologies based on on-chip tunnel junctions, we survey applications of the technology to both

illustrate its potential and to contextualize our own exploitation of the platform in Chapter IV. In the

fourth sub-section comparison to alternative techniques, we compare electromigrative tunnel junctions to

alternative techniques. In the final section, progress to date in the fbrmation of on-chip tunnel junctions,

we provide the context surrounding and motivating our investigations in Chapters II and III into

understanding the mechanism of nanowire electromigration and exploiting it to control the formation of

electromigrative tunnel junctions.

Discovery

In 1999 Park et al. discovered a new technological application of electromigration.[23] They

drove electromigration by gradually increasing the bias applied across a nanowire approximately 200 nm

in width and 10 nm in thickness (Figure 3). They found that by using such a thin wire and arresting the
15



voltage as soon as the wire broke at failure, as detected by the sudden rise in resistance, the resulting

break was frequently small enough to measure an electron tunneling current across.

Electron tunneling, described in more depth in the section Electron Tunneling Spectroscopies

below, is the phenomenon of electrons traversing energy barriers, such as the vacuum between two

electrodes, due to the exponentially-decaying spatial projection of a wavefunction into a finite barrier;

when the barrier to tunneling is low enough and the separation between two electrodes is small enough,

typically a few angstroms, a measurable currentv can be conducted through a gap, called a 'tunnel gap' or

a 'tunnel junction.' Parallel plates with nanometer separation are used to study large-area tunnel

junctions, [24,25] but small area, rough electrodes such as the tip of a Scanning Tunneling Microscope or

those created here by Park et al. (Figure 3b) usually produce a current dominated by a single point of the

2-5 closest-proximity atoms; the exponential decay of the tunneling probability, and hence the tunneling

current,v mean that even if the second-narrowest constriction between electrodes is only half an angstrom

wider than the narrowest constriction, its resulting parallel tunneling current will be negligible. This

exponential decay principle is what allows STM tips to be maintained with angstrom precision above a

substrate. For example making effectively 'atomically-sharp' STM tips is almost trivial; simple wire

cutters can be used to cut a tip out of a metal wire by hand. Often the tunnel gap is not a single metal atom

at each electrode however; even in STM 'trimers' are frequent, as imaged in Field Ion Microscopy by e.g.

Kuk et al. in 1986 and again by Cross et al. in 1998.[26,27]

iv Depending on the device and apparatus, direct currents down to femtoamps can be measured. In the

research presented in this Thesis, our apparatus reliably reaches pico-amp sensitivity, as limited by leakage

of current through the insulators surrounding cabling. Periodic (AC) signals are generally more limited in

amplitude sensitivity due to parasitic capacitance.
v The relationship between the tunneling current and tunneling probability is explored in greater depth in

the section Electron Tunneling Spectroscopies below. Approximately, the derivative with voltage (electric

field) of the tunneling current is proportional to the tunneling probability.
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Figure 3. First discovery, by Hongkun Park et al., of electromigrative formation of tunnel junctions,
reproduced from reference [23] with permission. (a) Scanning Electron Micrograph (SEM) of the
'nanowire' device prior to electromigration, with approximately 10 nm thick Au in the middle and 90
nm thick Au on the two ends. R is the initial resistance of the device. (b) SEM of the device after
electromigration, showing a break has formed between the electrodes. The resistance R suggests that
transport between the two electrodes is in the electron tunneling regime. (c) the evolution of wire
conductivity observed during the electromigration process. See text for description. (d) cartoon of the
wire necking processes during electromigration.

In the section below, keatures ofe/ectromligrative formiation of tunnel junctions, we describe in

greater depth the electromigrative failure of the junction as revealed by research over the past decade.

Simple features revealed in the Park et al. work however are worth recounting here. During the

electromigration process, the status of the nanowire could be monitored indirectly by its resistance R (or

equivalently conductivity G = 1/R). As electromigration proceeds, the ultimate point (cross-section) of

failure along the length of the nanowire gradually loses mass; most later investigations, including our

own, show that this occurs by thinning, or 'necking,' of the nanowire, e.g. Strachan et al. 2006,[28]

2008,[29] or Taychatanapat et al.[22] As the neck thins, the resistance of the wire increases due to the

smaller cross-section and, as we show in Chapter 1, increased specular scattering. Measuring the current

during the voltage application as in Figure 3c, the progress of electromigration can be monitored and

when failure occurs, as indicated by a drop in the conductivity to below the conductance quantum (see

features ofelectromigrative formation oftunnel junctions below), the applied bias is quickly attenuated.vi

We find, and it is implicit in the publications of other groups, that the resulting tunnel junctions cannot

survive arbitrarily high voltages. The sharp electrode 'tips,' a cluster of a few atoms, are not equilibrium

configurations and as such relax over time and temperature, as investigated by Prins et al.,[30] and with
17
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Other methods of forming a tunnel gap, specifically Scanning Tunneling Microscopy (STM), had

existed previously. In the section below, comparison to alternative techniques, we survey them. This

electromigration method however was the first that could produce an 'on-chip' junction, one which could

survive without active feedback from an electro-mechanical apparatus. Below we discuss the advantages

of that architectural feature.

The following year, Park et al. found that by coating the wire amply in a molecule of interest

beforehand, in that case C60 (fullerene), the gap would generally form with one or two of the molecule

trapped in the interstitial.[32] These single-molecule tunnel junctions (SMTJs) opened up new

possibilities for both physical exploration and technological application. In the following two sections,

progress to date in, electromigrVytive single-molecule tunnel itnctions and potential technologies based on

on-chip tunnel junctions, we survey the research to date realizing those possibilities before returning to

the issue of nanowire electromigration in the final two sections, tealures ofelectromigralive formation of

tunnel junctions and progress to date in the formation of on-chip tunnel junctions.

Progress to date in electromigrative single-molecule tunnel junctions

Since their discovery by Park et al. in 2000,[32] single molecules trapped in on-chip tunnel

junctions (SMTJs) have produced diverse physical discoveries.[31-46] From 2003 to 2013, Park et

al.,[32,33] Kubatkin et al.,[34] Perrin et al.,[35] Liang et al.,[36] Pasupathy et al.,[37] and Calvo et

al. [38] have, among others, shown Coulomb Blockade and the Kondo effect in fullerenes, chelated metal

complexes, alkanethiols, and aromatics. Reddy et al. in 2007 published the first tunnel junction

thermoelectric measurements. [47] Ward et al., also in 2007, exploited the electrode morphology to

perform Surface-Enhanced Raman Spectroscopy (SERS).[31,41] In 2008 Grose et al. showed spin-

selective transport.[43] Song et al. [40] in 2009 performed inelastic tunneling spectroscopy, building on

1998 work by Stipe et al.[39] doing the same in Scanning Tunneling Microscopy (STM). Winkelmann et

al. in 2009 discovered superconductivity in SMTJs.[42] In 2010, Ward et al. showed optical rectification

of the junctions.[44]

applied bias. The best tunnel junctions formed in our group are stable enough to survive testing for several

hours around 100 mV of applied bias, but most relax within a few seconds or minutes above 10 mV. As a

result, it is important to attenuate the applied bias used to form the gap before the gap itself relaxes. Bias-

inspired relaxation may be due to local heating, which can reach hundreds of Kelvin (see Chapter

IV),[24,3 1] or further electromigration.
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Figure 4. (a) Observation by Park et al. of Coulomb Blockade (top) and the Kondo effect (bottom) in a chelated

Cobalt compound (cartoon inset).[33] (top) Conductivity (colormap) versus the source-drain bias and gate bias,

showing characteristic increases in conductivity when molecular orbitals are accessed between discrete charge

states of Co. (bottom) observation of the Kondo effect by observing the differential conductivity near zero bias at

varying temperature (left) and electric field (right). (b) Observation of Coulomb Blockade in a polyarmomatic

hydrocarbon by Kubatkin et al., showing the ability to access many discrete oxidation states of the molecule. Again

the conductivity is the color map plotted against the applied source-drain and gate biases.[34] (c) Surface Enhanced

Raman Spectroscopy (SERS) in a single-molecule tunnel junction from Ward et al.[41] SEM image (top) shows

geometry to interpret Raman mapping (bottom). The total area of Raman peaks of interest are plotted (colormap)

as a function of position. The characteristic Si peak show attenuation under the Au wire, while the molecule being

studied (mercaptoanline) shows a substantial raman enhancement near the tunnel junction. The total signal is also

larger in proximity to the junction. All works reproduced with permission.

To date however all investigations have treated SMTJs, in theory and measurement, as static. DC

and AC (harmonic) electronic measurements have been integrated over minutes or hours to maximize the

signal, at the cost of any temporal resolution. That is despite extensive evidence from Scanning Tunneling

Microscopy (STM) that even at liquid He temperatures the electric field in a tunnel junction can inspire

molecule dynamics.[48,49] Beginning with Stipe et al. [48] it has been commonly observed that at low

temperatures functional groups on the surface studied by STM can flip between adsorption sites, using the

energy supplied by the applied bias to overcome the reorientation barrier, [48,49] or that the thiol anchor

itself can hop between Au adsorption sites.[50] In addition to the ubiquity of molecular dynamics under

applied bias observed in STM, recent work by Ward et al. [31] and loffe et al., [24] has shown, by

measuring the stokes-anti-stokes shift in SERS, that the local temperature in the junction is substantially

elevated, reaching over 200 K under a 200 mV bias.
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In Chapter IV, we investigate this unexplored time dimension by performing the first time-

resolved electrical measurements of single-molecule tunnel junctions. We observe reversible stochastic

fluctuations between discrete inelastic transport states that suggest that molecules do indeed exhibit

dynamics even at low temperature.

Potential technologies based on on-chip tunnel junctions

In addition to the physical insights gained with them, on-chip tunnel junctions offer unique

potential to enable three categories of technology: single-molecule electronics (SMEs),[43,51-54]

optoelectronics,[44] and biomolecule assays. [46,55]

In the first category, the molecular orbitals and spin states of single molecules can in theory be

exploited as ideal transistors. Ballistic transport reduces heat production and energy requirements.

Electron state quantization means an identical readout on every cycle and no hot carriers causing

degradation of the dielectric over time. The switching speed of single molecules could be orders of

magnitude faster than current transistors. [56] Finally single molecules represent an extreme of

miniaturization, reducing the size and energy requirements of electronics; the first fullerene transistor

presented by Park et al. in 2000[32] is more than 15 times smaller than the smallest commercial transistor

today and 5 times smaller than current end of the International Technology Roadmap for Semiconductors

in 2021 ."

To this end, several groups have demonstrated transistor behavior in single molecule tunnel

junctions. The coulomb blockade effect discussed in the previous section is transistor behavior; work

including, among others, Park et al.,[32,33] Kubatkin et al.,[34] Perrin et al.,[35] Liang et al.,[36]

Pasupathy et al.,[37] and Calvo et al. [38] have in effect made transistors from fullerenes, chelated metal

complexes, alkanethiols, and aromatics. In 2012 Lortscher et al. used a molecule with an electric dipole to

create a single molecule diode i.e. current rectifier (Figure 5a).[57] In 2013 Schirm et al. created a single

atom transistor by halting junction formation, also with a mechanical break junction, just prior to failure

(Figure 5a).[52] In 2008, Grose et al. formed a transistor with a magnetic nitrogen endofullerene,

allowing magnetic-field manipulation of the spin state and hence conductivity (Figure 5c).[43]

vi" These statements are somewhat hyperbolic in that in the transistor we must include the dielectric

thickness in addition to the channel (molecule) size, and tunneling from the channel through the dielectric

to the gate is expected to ultimately limit the extent of miniaturization.
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Figure 5. Previous work applying tunnel junctions towards single-molecule electronics development. (a) Single-

molecule diode produced by Lortscher et al.[57]Top is cartoon of the molecule, bottom is I(V) traces showing the

polarity-asymmetric conductivity; at positive 1 V applied bias the channel conductivity increases to 10 times the

conductivity at negative 1 V. (b) Hypothetical cartoon of the single-atom transistor observed by Schirm et al., where

current application switches the single atom bridge between metastable states.[52] (c) Spin-transistor from Grose

et al.[43] Colormap of channel conductivity with the source-drain voltage and magnetic field. Inset cartoon of the

nitrogen endofullerene molecule in the junction. All works reproduced with permission.

The second promising area of technological application of on-chip tunnel junctions is

optoelectronics. As surveyed in the previous section, the electrodes with nanometer separation act as an

optical antenna, spatially concentrating some frequencies of the incident field through resonant surface

plasmon states.[44] This property has been exploited for surface-enhanced spectroscopy as pioneered by

Ward et al.[41,44] Technologically, optical rectification and amplification can be exploited to couple

photonics to conventional electronics.

Finally, on-chip tunnel junctions may uniquely offer spatial resolution needed for single-

biomolecule assays such as peptide, sugar, and DNA sequencing.[46,55,58] Nanometer-diameter pores

have generated excitement over the last decade with their ability to translocate single molecules at a time

in solution phase.[55,58-60] To do so, a single pore is placed between two electrolyte reservoirs, at least

one with the analyte of interest, and a current is passed through the solution between the reservoirs. The
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electric field drives the charged analyte through the pore. As it passes through the pore, the ion current

measured between the electrodes is modulated by its passage because the molecule is of comparable

dimensions to the pore itself; in occupying a substantial cross-sectional area of the pore, the molecule

kinetically limits the ion transport, called 'pore blocking.' Nanopores used to translate single-stranded

DNA have been made from Silicon oxide and nitride,[61-63] a-Hemolysin[64] and MspA[65] proteins in-

a phospholipid bilayer, single-walled carbon nanotubes,[59] and graphene.[66,67] In theory, the sequence

of a polymeric biomolecule can be identified from the changes in current; each moiety should present a

different surface charge, solvent shell, and steric size and therefore create a different ion channel

conductivity. While this effect has indeed been demonstrated,[58,59,64-67] the technology has reached an

impasse in spatial resolution.vii As Henk Postma[68] showed, even in the thinness limit of a graphene

nanopore, 1 carbon atom thick, the electric field drops perpendicularly to the pore over more than a

nanometer, encompassing for example 4 or more DNA nucleotides. That creates ambiguity in the

resulting electrical measurement. The leading proposed solution has been to combine nanopores with

tunnel junctions; the exponential decay of tunneling probability with spaces would make the tunneling

current sensitive to only a few angstroms of pore length, providing the needed spatial sensitivity to

differentiate the polymer sequence.[55,58,60,68] Differentiating between monomers, such as different

nucleotides, could be achieved most easily by functionalizing the electrodes with recognition molecules

presenting different bonding patterns to different monomers. To demonstrate this latter concept in 2006

Ohshiro et al. functionalized an STM tip with a nucleotide self-assembled monolayer, showing by

scanning over a DNA strand on the surface that complementary binding could be read out from the

tunneling current.[69] More recently Zhao et al. placed electrodes with approximately 10 nm separation

in a solution and functionalized them with a recognition molecule to yield a measurable conductivity only

when analyte binding events occurred;[46] the duration and frequency of the resulting conductivity spikes

were found to be characteristic of the analyte.

Vill There is a second major barrier to nanopore sequencing: control of the translocation rate. Even with ~1

nm diameter pores, long biomolecule chains, viscous solutions, and the minimum achievable electric field

biomolecules tend to pass through the pore too rapidly, usually by several orders of magnitude, to

temporally differentiate between the signals produced by individual monomers.
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Figure 6. (a) Cartoon of the basic proposed operation of a tunnel junction interrogation of a polymeric biomolecule
(in this case DNA) sequence as it translocates through a nanopore. The bias applied in the solution V 0, drives the

translocation of the charged DNA strand through the nanopore. As it passes through, a bias Vtunnei is applied across

a tunnel junction collaocated with the nanopore. The tunnel junction metal is coated with a monolayer of a single
nucleotide, providing a tunneling current readout that is highly sensitive to the formation of a complementary base
pair due the resulting increase in molecular orbital coupling between molecules upon hydrogen bonding.

Multiplexing four pores functionalized with each of the four nucleotides would provide a total sequence. (b)
Demonstration of the recognition principle by Ohshiro et al. in STM, where functionalizing the STM tip with
different nucleotides yielded a tunneling current sensitive to the formation of base pairs with DNA sequences on

the surface. [69] (c) An experimental attempt to realize this concept by Ivanov et al.[60] The shortcoming was co-

locating the nanopore and electrodes to sufficient accuracy that the tunnel current was sensitive to the translating
analyte.

While appealing in theory, this combination of tunnel junction with nanopore has proven

challenging. As discussed in the next section, electromigrated tunnel junctions remain the only successful

means of fabricating on-chip tunnel junctions to date. As discussed in progress to date in the fbrrmation of

on-chip tunnel junctions however, they cannot be spatially positioned with nanometer resolution. As a

result, fabrication of a tunnel junction co-located with a nanopore remains unaccomplished despite

published attempts.[60] In part towards this end, we investigate in Chapter III the point of

electromigrative failure in nanowires, specifically whether failure occurs at material interfaces as it does

in micron-diameter wires, and find that on the contrary the nanowire crystal structure controls the point of

failure.

Comparison to alternative techniques

Electromigrative failure of nanowires is not the sole means of forming single-molecule tunnel

junctions. Techniques can be separated into two categories: on-chip and off-chip. On-chip methods, such

as electromigration, create a tunnel junction that, once formed, is stand-alone i.e. can be disconnected

from the apparatus. Off-chip methods, such as Scanning Tunneling Microscopy (STM) and Mechanical

Break Junctions (MBJs) require active feedback to maintain the junction. In this section I will briefly

survey the alternative techniques in these two categories. In general, off-chip methods offer greater
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reliability and control in the formation of tunnel junctions, while sacrificing the possibility of scaling the

devices for technological application.
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Figure 7. Examples of off-chip tunnel junction devices. (a) Scanning tunneling microscopy. Cartoon illustrating
operational principle (top) and example STM images (bottom) of a Ag metal layer on top of Cu[ 111] (left), showing
atomic resolution of the metal atoms, and the same substrate with four thioether molecules shown rotating on the

surface (right). Cartoon courtesy of Michael Schmid of TU Wein. (b) Mechanical Break Junctions. Cartoon

illustration operational principle (top) with false color SEM image of the resulting device, and example conductance

traces measured with displacement (bottom). Reproduced from Lortscher el al.[57] with permission.

The most common off-chip tunnel junctions are made in Scanning Tunneling Microscopy (STM).

A sharp tip is brought within a nanometer distance of a metal surface by monitoring the current passing

between the two; with the exponential dependence of tunneling current on tip-surface separation, the

current measurement can be used to feed back to piezoelectric z-axis modulators, maintaining the tip-

surface gap at a fixed current value. The tip can then be scanned across the surface, producing an atomic-

resolution image of the surface electronic structure at the applied bias (Figure 7a). This can be used to

find features on the surface, such as isolated molecules, and park the tip over them to perform tunneling

spectroscopies such as discussed below. Because of its sensitivity to impurities such as organics coating

the surface, STM is usually performed at low temperature and ultra-high vacuum, but it can also be

performed in solution by putting a bias on the surface relative to a counter electrode to electrochemically

clean the substrate. Among electron tunneling techniques with single-molecule spatial resolution, STM

affords the greatest versatility in studying diverse molecules and the greatest reliability in forming tunnel

junctions and performing tunneling spectroscopy. For example, inelastic tunneling spectroscopy is

regularly measured in STM,[39,70-73] but in other single-molecule tunnel junction techniques only 6
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have been reported to our knowledge.[40,74-77] Nevertheless the platform has limitations in both

available interrogation techniques and application to technology development. In the former case, STM

presents only a two-electrode system; its architecture precludes the addition of a back-gate to inject

charge into the channel. As a result gating experiments such as investigation of Coulomb Blockade cannot

be performed. Technologically, in addition to being off-chip, STM devices do not scale; parallelizing the

apparatus would require independent piezoelectric feedback for each tip. The former problem is addressed

by another popular off-chip apparatus: mechanical break junctions (MBJs). Mechanical break junctions

are constructed by suspending a nanowire above a trench with a piezoelectric bulb (or 'screw') beneath

the substrate right under the wire (Figure 7b). The bulb is then gradually expanded, bending the substrate

towards the wire and thereby stretching the wire, thinning it. The conductivity of the wire can be

monitored as the bulb is expanded and the wire can be gradually stretched until it finally breaks to form a

single tunnel junction, similar to electromigrated tunnel junctions. All the experiments that can be

performed with an electromigrated tunnel junction, including gating the channel and testing in solution,

can be performed with MBJs. With the piezoelectric feedback allowing slow expansion and contraction of

the gap, the formation of tunnel junctions with MBJs tends to be more reliable than electromigrated

tunnel junctions, but at the cost of being off-chip; the device cannot be dis-engaged from the piezo-

electric screw as the substrate would then relax. The junction must be actively maintained. Additionally,

like STM, MBJs cannot be parallelized.

Electromigrated tunnel junctions, as explored in Chapter II, form less reliably and are harder to

maintain than STM and MBJ tunnel junctions, but afford the benefit of being scale-able. ETJs can be

fabricated in parallel,[78] and can be disengaged entirely from the testing apparatus and re-contacted. No

other on-chip fabrication method to date has been able to produce a tunnel junction. Any technology

seeking to exploit tunnel junctions, such as those described in the previous section, must therefore use

electromigratively-formed ones. In addition to the improved throughput in SMTJ investigations, this

technological need motivates our research in Chapters I and II into understanding the mechanism of

nanowire electromigration and developing an electromigration process control based on that mechanism

to improve the reproducibility of tunnel junction formation.

Because of the contemporary short-comings in the formation of electromigrative tunnel junctions,

explored in greater depth in the section progress to date in the tormation ofon-chip tunne/junctions

below, alternative methods of on-chip tunnel junction formation have been explored. None have produced

gaps small enough to measure a tunneling current across, but they nevertheless have generated excitement

for their potential. The first is electroplating. First two Au electrodes with a large, of order 100 nm,

separation are fabricated with electron beam lithography. Then one or both of the electrodes are used as

working electrodes in the solution-phase reduction of another metal ion, plating the electrodes and
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gradually reducing the gap size. The challenge is achieving suitable control over gap sizes; the metal

deposition must be arrested before the gap is closed, but not before a sub-nanometer gap is formed.

Deshmukh et al. in 2003 made the first attempt at this approach (Figure 8a);[79] they attempted to control

the gap size by monitoring the current between the two electrodes during the deposition process. As the

gap shrunk, the tunneling current rose. The process remained too rapid however to provide suitable time-

sensitivity in the current measurement to gap size, and they could only produce gaps of 2 nm and larger.

More recently, Serdio et al. developed a self-limiting electrodeposition process (Figure 8b).[80] They

added a molecule spacer, C,-TAB, of an alkane chain with a trimethyl ammonium head that would adsorb

to the electrode surface during the metal deposition process. As the electrodes grow close to each other,

the self-assembled monolayers on each electrode would bond to each other by van der Waals interactions

of the alkane tails, stabilizing and sterically hindering further electrode growth. In this manner the gap

size would be limited by the alkane chain length, and by varying the chain length they were able to vary

the gap size. Despite the efficacy of the approach, they gain could not achieve sub-nanometer gap sizes.

The final and most recent on-chip fabrication method has been Focused Ion Beam (FIB) milling of

nanowires. This year (2015) both Li et al.[81] and Cui et al.[82] indepdently applied FIB to metal

nanowires, etching nanometer separations between the two (Figure 8c). Unfortunately neither group

produce a gap smaller than 4 nm.
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Figure 8. Alternative methods of on-chip tunnel junction formation. (a) Electrodeposition of Co from solution onto

Au electrodes from Deshmukh et al. using feedback from the tunneling current.[79] (b) Self-limiting

electrodeposition using C-TAB spacers between electrodes, changing the length to change the gap size, by Serdio

et al.[80] (c) FIB milling to form nanometer gap electrodes. Top from Li et al.,[81] bottom from Cui et al.[82] All

figures reproduced with permission.
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Features of electromigrative formation of tunnel junctions

In this section we survey the basic features of the electromigration of nanowires towards the

formation of tunnel junctions. In the next section, progress to date in the fbrmaition ofton-chip tunnel

junctions, we survey the progress improving the method in the literature to date. In Chapters I and II, our

investigations reveal the mechanism underlying these features and exploit that understanding to improve

tunnel junction formation.

A bias V is applied across the nanowire, driving metal atom electromigration. The morphological

evolution of the wire during electromigration was investigated using in situ SEM and TEM in 2007 by

Taychatanapat et al.,[22] 2008 by Strachan et al.,[29] and 2009 by Huang et al.[83] As described in the

section Aetal Electromigration heterogeneities along the nanowire, such as grain boundaries or material

interfaces, create local gradients in the flux of metal atoms, leading to a net loss or gain of material at

different points along the nanowire length, cross-sections perpendicular to the applied electric field. In

nanowires, there is generally one point that has a dominant gradient, such that the loss of material

elsewhere is often negligible. In micron-sized wires, loss of material yields voids as vacancies aggregate

with increased concentration. In nanowires however the point of most rapid electromigration begins to

thin, or 'neck.' As the neck thins, reducing the area of the charge carrier channel, the measured resistance

rises, providing an electrical observation of the current state of the wire. [22,29] When the applied bias is

too low, the rate of electromigration can be too slow to observe on reasonable experimental timescale, but

when the applied bias is too high electromigration proceeds so rapidly that it becomes explosive. The bias

is therefore started low and gradually increased, monitoring the wire for increases in resistance. We found

in Chapter II that at low bias a reversible increase in resistance without any observable accompanying

change in nanowire morphology is observed, which we assign to Joule heating of the wire. When

electromigration proceeds slowly enough and the wire thins to a hundred atoms or so, an effective

diameter around 10 nm, electromigration is no longer continuous on measurement timescales (typically

tens or hundreds of milliseconds). The wire becomes stationary until groups or single atoms displace

suddenly, producing steps in the measured resistance (or conductivity) such as we observe in Chapter IV,

Figure 39. Eventually the wire breaks, forming a gap between the resulting electrodes. As Park et al.

showed,[23] when a nanowire is used there is often a point between the two electrodes where the gap is

small enough, approximately 1 nm or less, to produce a measurable tunneling current. As described in the

Disco verv section, the exponential decay of tunneling probability within a few angstroms leads the single

ray, 1-3 atoms on each electrode, of smallest separation to dominate the tunneling current. When the

conductivity drops below the conductance quantum as described in the next paragraph, the voltage is

attenuated to avoid relaxing the junction (see footnote vi).
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The existence of a tunnel junction after formation is generally taken to be implicit in the

conductivity. The conductance quantum, Go = 2q2/h = 7.75x1 0- S,x is the conductivity of a single (spin

degenerate) ballistic channel i.e. the conductivity of a single electron state in the absence of any

scattering. A tunnel junction necessarily has a conductivity less than Go due to the sub-unity tunneling

probability. When the wire breaks, the conductivity falls below Go, indicating that a tunnel junction has

formed. That conclusion is further supported by observations of the stochastic regime; Strachan et al. [8]

in electromigrative tunnel junctions and Schirm et al.[52] in mechanical beak junctions published

observations similar to ours of the stochastic regime, showing that the steps in conductivity are often

integers of the conductance quantum, indicating the formation of parallel single-atom bridges. In some

work, including our own, further evidence supporting the presence of a tunnel junction is collected. First,

in the absence of molecules, the tunneling current is expected to be Ohmic i.e. I(V) is linear. Second,

ballistic conductivity can be verified with temperature-variation experiments. The resistivity of bulk

metals increases substantially with temperature as electron-phonon scattering, the typical electron

scattering mechanism, increases. Ballistic conduction entails no scattering mechanism howeverx and as

such is temperature invariant. By measuring I(V), therefore G = I/V, at a range of temperatures the

junction current can be confirmed to be dominated by tunneling (e.g. see Chapter II, Figure 29c). Finally,

the nanowire can be imaged in electron microscopy after formation to confirm that the gap between

electrodes is sub-nanometer. Unless performed in situ and with high resolution TEM, this piece of

evidence is not considered compelling however for several reasons: most SEM apparatus' can only

confirm that the gap is less than several nanometers;x' when an adhesion layer such as Ti is present the

tunnel junction can form in the Ti, which usually can't clearly be imaged, rather than the Au; [30,84]

removing the sample from the low-temperature chamber can cause the sharp, non-equilibrium Au features

to relax;[28] and the electrostatic discharge or testing of the device and neighboring electrically-contacted

devices eventually causes the junction to expand.

Progress to date in the formation of on-chip Single-Molecule Tunnel Junctions

Applying electromigrated tunnel junctions to gain physical insight or develop technologies

requires not only advances in post-formation interrogation as surveyed above, but also reliable formation

of the tunnel junctions themselves. Although a valuable proof of concept, the nanowire fabrication and

electromigration process used by Park et al. in the first devices proved to be highly variable and have a

'x where q is the elementary charge, h is planck's constant, and the factor of 2 is for two degenerate spin

channels.
x Electrons in tunnel junctions do scatter by coupling to intersitital molecules, as discussed in the next

section, but these events are both approximately temperature invariant and increase the conductivity with
increased coupling, rather than decrease it.
'iSub-nanometer imaging of insulative substrates with SEM remains non-trivial.
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low yield of successful tunnel junctions. We define 'successful' junctions as those that are small enough

for a tunneling current to measured across, approximately 1 nanometer or smaller. Since the first devices,

the field has made gradual improvements to the electromigration process through empirical observation.

Based on the first method presented by Park et al.,[23] investigators initially placed a resistor in series

with the nanowire device,[33,36,37,85,86] but in 2005 Esen and Fuhrer[87] found that actually

minimizing the series resistance improved outcomes. We hypothesize that as the neck thins and its

resistance rises, its share of the total resistance increases and more of the applied bias drops across

nanowire, in effect accelerating the voltage application, hence accelerating electromigration and leading

to more catastrophic failure. In 2009, Xiang et al.[88] found that using nanowires that are too large, in

their case of order 1 pm2 cross-sectional area, led to periodic re-formation of the nanowire after gap

formation. In our own experiments (see Chapter II), we found that not only was this the case for any wire

greater than 0.1 ptm 2 cross-sectional area, but that such large wires exhibit explosive formation more

frequently. In general we have found that the smaller the nanowire diameter, the higher the yield of

successful junctions.'

Perhaps the greatest contribution to the electromigrative formation of tunnel junctions to date was

the development of a feedback control algorithm by Strachan et al. in 2005.[8] Rather than ramping the

voltage and attenuating only when the wire has broken, they monitored the nanowire resistance whenever

it rose above a preset percentage threshold, typically 0.1%, and then quickly attenuated the voltage to zero

before gradually ramping again, repeating the cycle until the wire broke. This technique, which we call

the 'Penn method,' produces a more gradual electromigration pathway and increases the yield of

successful junctions substantially. It has since been adopted in varying forms by every group performing

electromigration of nanowires for tunnel junction formation. Although influential, the Penn method had

prior to our work not been explored in depth. The formula had not been parameterized, with parameter

values that could be shared in publication, and characteristic features of the formation pathway

ubiquitously observed had not been identified or explained. In Chapter II we investigate the Penn method

in greater depth.

Despite the progress surveyed above, adoption and advancement of electromigration as a means

of tunnel junction formation has nevertheless remained hampered by poor yield and process

variability. [8,22,85,89-92] We posit that the root limitation is in the lack of knowledge of the mechanism

x The lower boundary on nanowire diameter is not merely set by fabrication techniques, but by
practicalities of testing. We have found that nanowires with less than 100 nm 2 cross-sectional area

electromigrate too easily, such that even weak static fields destroy the wires. More recently this was verified

by Cui et al.[89] who found that in such small nanowires relaxation of the morphology can occur at grain

boundaries, breaking the wire at the boundary to form smooth-ended electrodes, was fast enough to occur

within a few days a room temperature.
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of electromigration at the nanometer scale. The above questions, for example, of series resistance, cross-

sectional area, and process control could be accessed empirically but not explained theoretically. As

described in the letal Electromnigration section above and investigated in Chapters I and III, the well-

understood behaviors of electromigration in micron-diameter and larger wires break down at the

nanometer scale. As a result, it is unclear how the method can be improved to a level of reliability that is

both commercially viable and increases experimental throughput. For example, the Penn method is

neither continuous nor has any connection to electromigration kinetics. It has provided a means of

slowing down electromigration, but is not a traditional process controller in that it has no setpoint; it

ostensibly 'controls' R, but to date no group has been able to 'plug-in' a resistance pathway. The pathway

of electromigration, i.e. the evolution of wire radius and resistance, remains spasmodic and unpredictable.

A Joule heating mechanism for failure has been proposed with some indicators, but has yet to be validated

or exploited to alter the electromigration process.[91,93] This lingering ambiguity in both the appropriate

design of nanowires and electrical control of the electromigration process continue to restrict the

technology to early developmental stages (cf references [82,84]).

To address this situation in Chapter I we propose a mechanism of electromigration in nanowires

and validate it against experimental data from Karim et al.[94] in both the wire radius and time

dimensions. We posit that as wire diameters fall to tens or hundreds of nanometers, the dominant

mechanism of electromigration shifts from bulk vacancy transport to surface atom transport as the surface

area to volume ratio falls. In Chapter I and Chapter II we show that this mechanism provides physical

explanations for the observed features of the Penn method wire evolution, and we exploit it to design a

better means of controlling nanowire electromigration. We find that dR/dt (specifically dlnR/dt) reflects

the mean rate of electromigration and can be maintained at a constant setpoint to produce gradual

formation and a predictable R(t) pathway. The pathway is also sensitive to the setpoint's value, providing

further validation for our proposed mechanism and offering the potential to design the electromigration

pathway by designing the setpoint pathway rather than holding it at a single value for the duration. We

find that the setpoint can be optimized to raise device yield, and that under the right conditions it is

possible to achieve a 100% success rate.

Electron Tunneling Spectroscopies

For a more in-depth discussion of electron tunneling than that provided in this Introduction,

please refer to the following publications:

1. Supriyo Datta. Electrical Resistance: An Atomistic View. Nanotechnology 15, S433, 2004.

2. Abraham Nitzan and Mark A. Ratner. Electron Transport in Molecular Wire Junctions. Science 300,

1384, 2003.
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3. K.W. Hipps and Ursula Mazur. Inelastic Electron Tunneling: an alternative molecular spectroscopy.
J. Phys. Chem. 97, 7803, 1993.

4. Abraham Nitzan. Electron transmission through molecules and molecular interfaces. Annu. Rev.
Phys. Chem. 52, 681-750, 2001.

5. Robert Quan, Christopher S. Pitler, Mark A. Ratner, Matthew G. Reuter. Quantitative Interpretations
of Break Junction Conductance Histograms in Molecular Electron Transport. ACS Nano 2015.

Electron tunneling through an energy barrier

As illustrated in Figure 9, the stationary wavefunction of any particle faced with a finite energy

barrier, i.e. a potential greater than the particle's energy, persists into the barrier with some decay over

depth. The greater the energy barrier the more rapid the decay.x1 When the barrier is spatially narrow

enough and energetically low enough the particle can penetrate, or 'tunnel through,' the barrier, achieving

some reasonable probability of existence on the opposite side. For example, for a plane wave particle, e.g.

an electron in a flat potential, in one dimension, the probability T(E) of transmission through a square

potential barrier such as in Figure 9b with particle energy E is

16E(Vb - E ) -2d 2m(E-Vb)

(4) T(E) = y e

where m is the particle mass and h is the reduced Planck's constant, and the remaining variables are as

defined in the figure. While a truly one-dimensional plane wave particle facing a square barrier is rarely

encountered in reality, the basic features of this system are generally preserved. In particular, the

probability of tunneling through the barrier exponentially decays with the width of the barrier, the height

of the barrier, and the mass of the particle. In the absence of coupling to other particles (see section

below), the process is elastic, with no loss of particle energy.

xiii in all cases that the author can conceive of
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potential well. Attribution Anna Fitzgerald. (b) Cartoon illustrating one dimensional
tunneling of a plane wave (free-space) electron through a finite square potential. (top)
definition of variables, barrier height Vb, spatial with d, cartesian coordinate x, electron

energy E (dashed line). Black line is the semi-infinite (in x) flat potential field the
electron is exposed to, producing a plane wave in regions I and III. (bottom) cartoon
illustration of electron wavefunction Ft'el in the three regions (I, II, III) of interest,
'incident' from the left. The spatial occupation of the electron persists through the
barrier with exponentially-decaying probability, producing a plane wave on the

opposite end of the same energy (frequency) but attenuated amplitude.

In this manner metal electrons can traverse a vacuum or insulator separating two electrodes, such

as a substrate and STM tip, or the two electrodes formed from an electromigrated nanowire. It should be

noted that the specific transmission probability function for a given system is especially complicated

because the constituent electron stationary states are dictated by the local configuration of metal surface

atoms, not merely the bulk dispersion. Nevertheless the same general principles apply, with the electron

tunneling probability exponentially decaying with electrode separation, particle mass, and barrier height.

The latter depends on whether the interstitial is a vacuum, solvent, or metal oxide insulator. In tunneling

through a vacuum, separations greater than approximately 2 nm yield negligible tunneling probabilities in

our experiments of interest.
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Figure 10. Illustration of electron tunneling between two electrodes under an applied electric field. y axis is energy
but x axis is two-fold: electrode density of occupied electron states (DOS) in blue and the spatial coordinate along
the ray of minimum electrode separation in black. y is the chemical potential of the left and right electrodes, qp is
the work function of the metal (assumed the same for both electrodes), Eac is the vacuum energy, q is elementary
charge, and V is the applied bias.

When an electric field is placed across such two electrodes, such as in Figure 10, electrons in the

higher-bias electrode with energy greater than the chemical potential of the lower bias electrode will

spontaneously translate to unoccupied states in the opposite electrode. If excess charge is drained from

each electrode by completing the circuit, a non-equilibrium current is produced, analogous to placing a

bias across a resistor. As no scattering is involved, this conduction is ballistic. The cumulative tunneling

probability for all electron states therefore produces a corresponding tunneling current I under an applied

bias V. The tunneling current can be described in the Landauer-BUttiker formalism by integrating the

tunneling probability over the dispersion curve as

(5) I(V) = q f T(E)(f(E - pt) - f(E - MB))dE

wherej(E - uuR) is the density of occupied states for the left and right electrodes, typically a Fermi-Dirac

distribution around the chemical potentials of each electrode,""

1

(6) f 1+exp [

where kB is Boltzmann's constant and T is temperature. As an example of its application, in Chapter IV

we employ this formalism to simulate inelastic transport in our tunnel junctions. Expression (5) has a

fairly simple conceptual construction. The difference term between the density of occupied states between

xiv For a bulk metal, the total density of states (occupied and unoccupied) near the Fermi level is

approximately flat.
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the two electrodes is the density of occupied electron states in the high-bias electrode with a

corresponding degenerate unoccupied electronic state in the opposite electrode i.e. the density of electrons

that will produce a tunneling current via elastic transitions, illustrated in the following figure. The current

can therefore be thought of as the sum of the product of all electron states making the transition times the

transition probability for each of them.

fL (E) - fR (E)

E
L V R

Figure 11. Illustration of the integrand of equation (5).

Measurement of the current-voltage, or I(V), behavior of the tunnel junction is therefore the

predominant means of interrogating tunnel gaps. While the exact tunneling probability T(E) is

complicated and electrode-morphology-specific, in the absence of an interstitial molecule in the gap

between electrodes (discussed in the next section) and over a small applied bias (a few hundred millivolts)

it is approximately constant with energy. As a result, the 'direct tunneling' between electrodes produces

an approximately linear increase in current with applied bias, as the number of electrons making the

transition linearly rises (e.g. the integral of Figure 11). Tunnel junctions in the absence of a molecule

therefore usually behave as an approximately Ohmic resistance.

Molecular-orbital-mediated electron tunneling

When a molecule is in the interstitial space between the electrodes, its electronic states couple to

those of tunneling electrons, providing an additional pathway for tunneling electron transport through the

molecular orbitals. Upon coupling to either or both of the contacts (Figure 12b), the molecule's electron

chemical potential equalizes to the fermi level of the contact i.e. the molecule accepts or donates electron

density such that its ionization energy equilibrates with the work function of the metal. Coupling to the

bath of electrode electronic states also broadens the molecular orbitals (MOs), and combined with the

partial charging perturbs the molecular orbital energies. As discussed in the previous section, when a

steady-state electric potential gradient is maintained the higher-bias electrode Fermi level is raised above

the low-bias electrode. If a molecule is in the interstitial, its chemical potential pm may follow that of

either electrode or fall somewhere in between, depending on its coupling to each electrode. Regardless, if

the applied bias is high enough a molecular orbital will be between the Fermi levels of the two electrodes.

In such a case, elastically transmitting electrons in the high-bias electrode, moving to unoccupied orbitals

in the low-bias electrode, will be degenerate with part of the molecular orbital density of states (as it is

broadened by the perturbation of the electrodes, see above). Elastic transmission into and out of the
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molecular orbital in order to traverse the electrodes is therefore possible, called orbital-mediated tunneling

(OMT).

b Vacuum molecule Adsorbed molecule

---------- 

I 
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Figure 12. Electron tunneling through a molecule channel. (a) cartoon of a benzene dithiol molecule in a tunnel
junction. (b) Illustration of the effect of coupling between the molecular orbitals and the electrode electronic states.
The molecule and electrode density of occupied states (DOS) are plotted against electron energy. There are two
major effects. First, the electron chemical potential of the molecule shifts to equalize to the Fermi level of the
electrodes via transfer of charge until equilibrium is reached, illustrated by the dashed lines. Charge transfer also
alters the electronic structure as with any ionization. Second, the molecular orbitals broaden due to their equilibrium
superposition with the bath of electrode states. (c) Illustration of elastic electron conduction through a molecule. In
a completed circuit, the applied bias V creates a persistant energy drop between the electrodes qV that yields elastic
transport of electrons from the left electrode to unoccupied states in the right electrode, as in Figure 10. When a
molecular orbital of the interstitial molecule is energetically between the electron chemical potentials of the two
electrodes, it provides an additional pathway for electron transfer. (d) The current-voltage behavior resulting from
molecular orbital tunneling. As q V rises to encompass the DOS of the molecular orbital, the additional conduction
channel opens up, increasing the current for every additional electron that can transfer. Once qV is such that the
molecular orbital is entirely encompassed between the electrode chemical potentials, additional increases in bias
will not provide access to any further conduction channels via that molecular orbital. As a result, orbital-mediated
tunneling produces a step in current, and corresponding peak in dI/dV, at the relevant bias.

This tunneling pathway is approximatelyxv additive with the direct tunneling, thereby increasing

the tunneling probability and hence tunneling current. In developing transport simulations in Chapter IV

the Landauer-Buttiker I(V) expressions analogous to equation (5) for elastic and inelastic (next section)

transport through molecules are presented; briefly, the energy dependence of OMT is the density of states

xv Recent theory suggests that conduction channels are not entirely independent and have multiplicative

effects on current i.e. can be coupled. See Quan et al.[95]
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D(E) of the molecular orbital of interest and the full expression is attenuated by the magnitude of

coupling of the molecular orbitals to the metal electronic states. As the voltage rises to produce tunneling

electrons degenerate with the MO, the current rises commensurately; when the MO electron density is

fully contained between the chemical potentials of the two electrodes, further increases in voltage provide

no further gains in OMT, and the current again increases merely linearly with voltage via direct tunneling.

As a result, molecular orbitals appear as broadened steps in I(V) and corresponding peaks in dI/dV(V), the

differential conductance (Figure 12d). The spacing between MO peaks, symmetry between positive and

negative bias, and broadening of the peaks all depend on the particular coupling of the MO states to each

of the two electrodes. For example, if the separation between electrodes is large compared to the size of

the molecule and the molecule adsorbed onto one of the electrodes, its chemical potential is expected to

track approximately with that of the electrode it is adsorbed on, producing an asymmetric (around 0 bias)

OMT spectrum (dI/dV(V)) corresponding to the series of MOs. If instead the molecule is equidistant

between the two electrodes, its chemical potential may always be halfway between the two, yielding a

symmetric OMT spectrum as positive or negative bias would encompass the same MOs. The magnitude

of the 1(V) step is proportional to the strength of the reduced coupling to the two electrodes.

Inelastic tunneling

Tunneling electrons can couple to the vibrational modes of the molecule, yielding scattering

events where the vibration is excited in exchange for a corresponding loss of electron energy, analogous

to the mechanism by which hot electrons relax via crystal phonon excitation. This inelastic pathway offers

an additional transmission mechanism between electrodes, increasing the tunneling current. Unlike

orbital-mediated tunneling, any electron of arbitrarily high energy can inelastically scatter with

approximately equal probability; inelastic scattering therefore linearly increases with applied bias i.e. the

population of available tunneling electrons, increasing the slope of I(V). To scatter however the tunneling

electron requires an unoccupied state at the lower energy to relax to, and as such only electrons with

energy E > pLB + hco can inelastically tunnel, where uLB is the Fermi level of the lower-bias electrode (the

electron 'drain') and co is the frequency of the vibrational mode (hence hco is the quantum of vibrational

energy). As a result, the slope of the I(V) curve increases due to a given vibration only when q V> hco.

Each vibrational mode therefore appears as a step in dI/dV, the differential conductance, at V = hw/q and

a corresponding peak in the d2I/dV. The d2I/dV peaks over V is called the inelastic tunneling spectrum

(IETS), such as we perform in Chapter IV. Molecular orbital tunneling peaks are generally significantly

stronger, albeit one to two orders of magnitude broader, than IET vibrational peaks; to clarify the

spectrum, it is usually divided by the differential conductance i.e. typically d2IldV / dI/dV is plotted.
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Figure 13. (a) Illustration of the inelastic scattering process. An electron traversing electrodes relaxes during
tunneling to excite a vibrational mode on the molecule (center of figure). N.B. the figure is merely figurative; the
electron and vibrational energies are on independent axes, and the x-axis for the vibrational modes is meaningless.

(b) Cartoon illustration (left) and experimental data from Song et al.[40] (right) of the inelastic tunneling spectrum
produced as d2I/dV2. Data taken for 1,8-octane dithiol in a Au electromigrated tunnel junction.

Carbon Nanotube Electronic Structure

For insight into carbon nanotube electron states beyond the content in this Introduction, please

refer to the following publications:

1. Susan Reich, Christian Thomsen, and Janina Maultzsch. Carbon nanotubes: basic concepts and

physical properties. Wiley-VCH, Weinheim ; Cambridge, 2004.

2. Tsuneya Ando. Theory of Electronic States and Transport in Carbon Nanotubes. Journal of the

Physical Society of Japan. 74, 777-817, 2005.

Single-walled carbon nanotubes (SWNT) are hollow cylinders with walls comprised of sp 2_

bonded carbon atoms in a honeycomb lattice (Figure 14a). The lattice structure is equivalent to folding a

graphene sheet over on itself, as illustrated in Figure 14b. The particular lattice arrangement and resulting

nanotube diameter depend on the corresponding perpendicular vectors in the graphene plane, the axial

vector T (parallel to the length of the nanotube) and the radial vector Ch (wrapping the circumference of

the nanotube). Together these two vectors defining the nanotube structure are called the nanotube

'chirality.' The radial vector is generally expressed as sum of the graphene unit cell basis vectors a, and

a2 with integer coefficients, Ch = nai + ma2. The chirality is therefore generally expressed by the

coefficient set (n,m). As the name implies, many such vectors produce chiral enantiomer structures.
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Figure 14. (a) Cartoon illustration of a SWNT, (6,6) chirality. (b) Cartoon of graphene lattice (hexagons) with

arbitrary nanotube chiral vectors T and C 2, axial and radial, respectively, overlaid. Rolling the graphene sheet along

C,, head-to-tail, produces the SWNT lattice. The box formed by those vectors (shaded grey) forms the unit cell of

the associated chirality nanotube when folded. C 1 can be exressed as integer values of the graphene lattice basis

vectors al and a2, as in the inset expression. The coefficients (n,m) therefore define the nanotube unit cell, or

'chirality.' Two particular chiral families, zig-zag and arm-chair nanotubes, are indicated. (c) Graphene dispersion

surface (colormap) with dirac cone (K-point) indicated. A given nanotube chirality's dispersion curve is, under the

zone-folding approximation, a series of slices out of the graphene dispersion surface, as described in the main text.

Slices for two nanotube chiralities, (4,4) and (7,0), are produced here as an illustration, with the resulting one-

dimensional cross-sections for each slice plotted on the right. (d) Illustration of nanotube density of states. The

dispersion curve (left) produced from the zone-folding approximation (c) has parabolic bands resulting from slices

through the dirac cone. The extrema of those parabolas produce corresponding Van Hove singularities in the

Density of States (DOS) at those energies (right).

The electronic structure of the nanotube can to first order be derived directly from the graphene

dispersion surface using the 'zone-folding' approximation. In folding the graphene sheet into the

nanotube, the space of stationary electronic states becomes confined to the more limited periodicity.

Graphene electronic states with wavevectors k,, along the nanotube chirality's axial vector are, under this

approximation, preserved; the nuclear potential periodicity they are exposed to in the graphene lattice and

nanotube lattice are, again neglecting curvature effects, the same. Almost all of the electron states with

wavevectors k1 along the radial vector however no longer exist because the nanotube has been made

spatially finite in that direction; only states the a periodicity that is a harmonic of the circumference of the

nanotube can persist at equilibrium. That discretizes the allowed k1 into a small finite set. The carbon

nanotube therefore essentially has a one-dimensional dispersion curve E(k,) comprised of a band for each

discrete k1 (Figure 14d). Each band is a slice out of the graphene dispersion surface along k,, (Figure 14c).

The dispersion therefore depends exquisitely on the nanotube chirality.

As slices out of the graphene dispersion surface, these one-dimensional bands derive their

character near the Fermi level from the Dirac cone in graphene. When the chirality is such that k,, passes

through the center of the Dirac cone, the nanotube has metallic character corresponding to the behavior of

38



graphene. This occurs at chiralities where (n - m)/3 is an integer. Otherwise, the zone-folding slices

intersect the sides of the cone, yielding parabolas in E(k,) (Figure 14d). These nanotubes therefore have

semi-conducting character with the corresponding band gap.

As usual the density of electronic states can be constructed from the dispersion curve; in one

dimension it is simply proportional to the inverse derivative of the dispersion curve. The parabolas

thereby generate their usual Van Hove singularities - sharp and extreme but finite spikes in the density of

states at the extrema of the parabola (Figure 14d). Transitions between these singularities dominate the

optical excitation behavior of nanotubes as explained in the next section.

While the zone-folding approximation is strong when treating large diameter nanotubes (> 1.5

nm), improved accuracy for smaller diameter tubes requires accounting for curvature effects. First, strain

from bending the otherwise flat sp2 lattice changes the carbon-carbon bond distance, which differs from

atom to atom as there is no axial, only radial, strain. Second, the proximity of carbon atoms via the

interior of the nanotube causes repulsion of electron density internally. The electron cloud therefore

projects outward from the nanotube, particularly at diameters well below a nanometer. This effect can be

treated as rehybridization of the -and 7 orbitals, as the curvature makes them no longer orthogonal.

Including these factors as perturbations on the zeroth-order zone-folding approximation, high accuracy

has been demonstrated in theoretical prediction of nanotube electronic structure, such as Tsuneya

Ando.[96]

Carbon Nanotube Optical Absorption

For insight into the optical properties of carbon nanotubes beyond the content in this Introduction,

please refer to the following publications:

1. Susan Reich, Christian Thomsen, and Janina Maultzsch. Carbon nanotubes: basic concepts and
physical properties. Wiley-VCH, Weinheim ; Cambridge, 2004.

2. Tsuneya Ando. Theory of Electronic States and Transport in Carbon Nanotubes. Journal of the
Physical Society of Japan. 74, 777-817, 2005.
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The reduced dimensionality of SWNT (i.e. rods) combined with the low atomic number of the

constituent atoms (carbon) greatly reduces the screening of any localized charges as compared to metal

solids. As a result, there exist excited exciton states in SWNT that are more stable than the excited crystal

stationary states (i.e. an electron and hole at the band edges); the low screening increases the Coulomb

potential gain by localizing the positive and negative charge. The difference in energy, termed the binding

energy, significantly exceeds kT at room temperature. As it is due to spatial confinement and charge

HiPco
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Figure 15. Optical absorption of carbon
nanotubes, reproduced with permission
from Tu et al.[97] Black line is the
absorption spectrum of a solution-phase
mixture of nanotubes. Subsequent lines are
the absorption spectra of single-chirality
solutions, showing peaks associated with
the E1 u transitions of each isolated chirality.

screening, the magnitude of this effect is almost entirely

dependent on the nanotube diameter, with negligible

contributions from chirality. Maultzsch et al. experimentally

verified for example that binding energy falls with

diameter.[98] Optical excitations of carbon nanotubes

therefore generate excitons, rather than free carriers. As a

superposition of several similar-energy crystal states, the

dispersion relation of excitons approximately matches that of

the stationary states. Because of the above-mentioned Van

Hove singularities at the SWNT band edges, semiconducting

nanotubes exhibit strong optical absorption peaks

corresponding to the energy of the band edge-to-band edge

transitions (Figure 15). While all band edges appear to align

in k,, as plotted in Figure 14d, they have different k and

therefore inter-band optical transitions are forbidden.i

Absorption peaks therefore appear at each intra-band pair of

Van Hove singularities, with energies labelled Ej, E2u, and so

on for increasingly high-energy bands. The band gap of the

chirality therefore determines the peaks of its absorption

spectrum (Figure 15).

As the described optical absorption corresponds to

electronic transitions in k,,, the transition dipoles are parallel to the axis of the nanotube. Therefore only

light with a polarization component parallel to the nanotube axis is absorbed, giving carbon nanotubes

anisotropic optical absorption. Independent radial excitations also exist, but do not reflect a band structure

(Figure 16, below).

xvI To first order. Indirect band-gap transitions can be realized via coupling to phonon modes.
40



2.0 Sample I -Sample 3 expt'l
- 1.5 -- Sample 2-- Sample 4

E 1.0

e 05

00 Figure 16. Polarization-dependent absorption cross-section,

.5 o reproduced with permission from Islam et al.[99] The top panel is

S1.0 -the absorption cross-section measured with light polarized parallel

0.5 to (al) and perpendicular to (ai) the longitudinal axis of (6,5)

0.0 nanotubes. The middle panel is the average of the four samples in
E ll the top panel. The bottom panel is a theoretical prediction of the

theoretical absorption cross-section in the two orientations.
El23 E 2 E 33

0

0.5 1.0 1.5 2.0 2.5 3.0 3.5
Energy (eV)

Integrated over the solar spectrum, which is of interest to our work in Chapters V and VI, the total

radial absorptivity of nanotubes is roughly 1/ 5 th of the axial absorptivity.

While semi-conducting nanotubes can absorb light of any frequency greater than the band gap

energy, coupling of excitons to nanotube crystal phonon modes is very strong such that non-radiative

relaxation of hot excitons to the bandgap occurs within a few femtoseconds. Therefore in all but the most

extreme experimental circumstances, excitons are almost always at the band-gap energy regardless of the

excitation that produced them.

Carbon Nanotube Exciton Transport

For insight into exciton states in carbon nanotubes beyond the content in this Introduction, please

refer to the following publications:

1. Susan Reich, Christian Thomsen, and Janina Maultzsch. Carbon nanotubes : basic concepts and

physical properties. Wiley-VCH, Weinheim; Cambridge, 2004.
2. Tsuneya Ando. Theory of Electronic States and Transport in Carbon Nanotubes. Journal of the

Physical Society of Japan. 74, 777-817, 2005.
3. Phaedon Avouris, Marcus Freitag, and Vasili Perebeinos. Carbon-nanotube photonics and

optoelectronics. Nature Photonics 2, 341, 2008.

Once generated, excitons on single walled carbon nanotubes can undergo a variety of processes in

their lifetimes. As mentioned in the previous section, they non-radiatively relax to the band gap within a

few femtoseconds. Once generated, excitons translate along the nanotube axis. They do so diffusively via

stochastic scattering off of crystal phonon modes. Their ballistic translation length, i.e. their translation

mean free path, remains unknown because of the challenges of deconvoluting exciton size and mean free

path.[ 100,101] Measurements of exciton diffusion coefficients have varied many orders of magnitude,

from less than 1 cm2/s (Cognet et al. and Luer et al.) [102,103] and 7.5-10.7 cm2/s (Crochet et al. and
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Hertel et al.)[104,105] to 150-350 cm 2/s (Ruzicka et al. and Anderrson et al.)[106,107]. Comparison of

the environments of those measurements, combined with comparison of other environmentally sensitive

investigations,[ 104,108-111] strongly suggests to the author that this variation is due to influence of the

local environment on exciton-phonon scattering. In particular, lower diffusivity values (and associated

diffusion lengths) have been observed uniformly observed in surfactant-wrapped SWNT in solution

phase, while SWNT in air and vacuum exhibit the higher diffusivity values. Changing the surrounding

dielectric constant intuitively should impact the dispersion and binding energy of the exciton states and

perhaps also their coupling to the crystal vibrational modes.
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Figure 17. Cartoons of exciton decay processes in a semiconducting carbon nanotube. Greyscale bands are the
valence and conduction free carrier bands (electron states). The line beneath the conduction band represents the

energy of the ground state exciton, with the difference in energy between the exciton and the conduction band edge
being the binding energy. The blue filled and hollow dots represent an electron and hole, respectively, with the oval

encompassing the two representing their coupling into an exciton quasiparticle. (a) Radiative relaxation of the
exciton to produce a photon. (b) Non-radiative decay of the exciton via an interband state, such as introduced by
an impurity adsorbed on the nanotube, in the nanotube lattice, or at the nanotube ends, producing phonon mode

excitations. (c) Auger recombination of two excitons, briefly producing a single hot exciton which then rapidly

decays back to the band edge non-radiatively, producing phonon excitations. (d,e) dissociation of the exciton at a
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Type-II heterojunction, where the band edges align to stabilize either the electron (e) or the hole (d) by more energy
than the exciton binding energy.

While non-radiative pathways to decay are low probability (the exciton must simultaneously

excite several phonon modes), excitons at the band edge do not persist indefinitely. Excitons can

radiatively decay, emitting a photon with the band gap energy. Relative to most excitonic materials, a

long radiative decay lifetime is usually measured, of order 0.5 ns.

Non-radiative decay pathways also exist. Local impurities, such as adsorbed Nitrogen Oxide or

sp3 carbon lattice defects, can introduce inter-band electronic states that allow relaxation via coupled

excitation of only one or two phonon modes at a time. The nanotube ends are often terminated with

carboxyl groups or other oxidized carbon states that can introduce similar inter-band electronic states.

Two excitons can also scatter off each other in Auger recombination, relaxing one exciton to ground state

while doubly exciting the other. Because of the aforementioned rapid non-radiative decay of excited

excitons to the band edge state, the surviving exciton soon returns to its original energy and the net effect

is simply annihilating one of them.

When the nanotube is brought into contact with another semi-conducting material with bands that

appropriately align with those of the nanotube (i.e. allowing SWNT valence holes to be injected into the

material but not conduction electrons, or vice versa), the exciton can dissociate via Type-II exciton

dissociation (Figure 17d,e), breaking into its constituent electron and hole charge carriers. When the

excited electron (Figure 17e) or hole (Figure 17d), depending on the electrode, produced by dissociation

of the exciton can relax in the electrode to produce an energy savings the same or greater than the binding

energy of the exciton, there is a significant probability of exciton dissociation. The electron or hole then

resides on the electrode after relaxing, as it is energetically unable to return to the nanotube, and the

opposite charge carrier remains on the nanotube. The appropriate material depends on the nanotube

chirality's binding energy, but for the most chirality, (6,5), effective Type-II materials have been

discovered, including Fullerene (typically in the polymerized form, Phenyl-C61-butyric acid methyl ester

or PCBM), conductive polymers (especially Poly(3-hexylthiophene-2,5-diyl) or P3HT), and n-doped

Silicon.

When nanotubes are in close proximity, such as in bundles (see next section), excitons can

transfer from one nanotube to another. The first direct evidence for this effect was shown, by Tan et al.,

by mapping the emission intensity of a mixed-chirality nanotube solution as a function of emission

frequency versus the excitation frequency (by sweeping the excitation), producing a two-dimensional

excitation-emission plot such as in Figure 18.[112] This experiment shows emission peaks corresponding

to one chirality appearing at the excitation peaks of a different chirality of lower band gap energy,

indicating the excitons in the high-bandgap nanotubes were able to transfer to the lower-bandgap
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nanotube and relax (prohibiting return) before they radiatively decayed. Until recently, the transfer

mechanism was presumed to be a simple electron tunneling process. Recent evidence from Crochet et al.

however suggests that exciton states may actually delocalize across bundles of even only two

nanotubes;[ 113] they showed that bundling increased the rate of exciton non-radiative scattering at

impurities proportional to the size of the bundle. By delocalizing across multiple nanotubes, the excitons

were able to scatter off of impurities on any of the tube, not just one of them, increasing the number of

impurities they were effectively exposed to.
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Figure 18. First direct evidence of exciton energy transfer between nanotubes, from Tan et al.[l 12] (a) two-
dimensional plot of stimulated emission intensity (colormap) versus excitation and emission wavelengths. (b) peaks
extracted from (a), showing that excitations at frequencies resonant with large bandgap chiralities are yielding
emissions at frequencies resonant with lower bandgap chiralities (blue crosses), implying that excitons are

transferring prior to radiative decay.

Carbon Nanotube Photovoltaics

For insight into carbon nanotube photovoltaics beyond the content in this Introduction, please

refer to the following publications:

1. Brian A. Gregg. Excitonic Solar Cells. The Journal of Physical Chemistry B. 107, 20, 4688-4698,

2003.
2. Phaedon Avouris, Marcus Freitag, and Vasili Perebeinos. Carbon-nanotube photonics and

optoelectronics. Nature Photonics 2, 341, 2008.
3. Michael S. Arnold, Jeffrey L. Blackburn, Jared J. Crochet, Stephen K. Doorn, Juan G. Duque, Aditya

Mohite, Hagan Telg. Recent developments in the photophysics of single-walled carbon nanotubes for

their use as active and passive material elements in thin film photovoltaics. Physical Chemistry

Chemical Physics 15, 14896-14918, 2013.
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Photovoltaic energy is generated from carbon nanotubes by pairing them with one or two Type-II

exciton dissociating interfaces, as described above. When light is absorbed any generated excitons that

arrive at a dissociating electrode have an opportunity to split into an electron and a hole, creating an

electric field from the Coulomb attraction between the two and thereby providing the opportunity to

generate energy. At this interface, as with any photovoltaic, an electric potential drop is generated from

the charge separation. As more excitons are generated and dissociate, the potential grows. This electric

field, which lowers the energy of electrons (or holes) in the electrode relative to the SWNT, eventually

creates an equilibrium at the interface, where the electron stabilization from dissociation is equal to the

exciton binding energy, halting dissociation. The potential at that steady state is the open circuit voltage.

Completing the circuit by connecting the electrode to the SWNT film either as a short or through a load

creates a steady state current, relieving the charge buildup. In this manner, energy can be harvested from

the dissociation of excitons at the heterojunction and drift-diffusion of the resulting free carriers through

the materials to metal contacts. Heterojunctions can be planar, where the SWNT film and dissociating

material are parallel plates, or bulk, where the two materials are intermixed.

Networks of carbon nanotubes are an appealing material for photovoltaic energy generation.

Through continual refinement in design and manufacture, silicon p-n junction solar cells (SCs) have

achieved un-subsidized cost parity with the grid in several emerging and advanced economies.[114] The

gains of refinement are slowing down however, with the remaining returns diminished to insufficiency for

achieving global energy parity.[114] To increase the solar-sourced share of global energy production, the

next generation of photovoltaic technologies aim to reduce cost and increase the space of suitable

conditions for solar energy collection. These cost and performance requirements have made

semiconducting single-walled carbon nanotubes (SWNT) attractive as photo-absorbers for near-infrared

photovoltaic (nIR PV) applications. [115-121] Economically, their solution-process-ability,xvii earth-

abundant source materials, and recently scale-able fabrication and purification raise the potential for low

cost manufacture.[ 117,119,120,122-124] In performance properties, SWNT PVs can augment the photo-

conversion efficiencies of conventional visible-PV systems by absorbing the nIR wavelengths that

comprise approximately 22% of the solar spectrum but fall within a silicon PV bandgap. Low unit-

operations costs particularly enable such application by making stacked independent PV layers (four-

terminal SCs) feasible, versus the constraints of one-step fabrication (i.e. lattice, bandgap, and

workfunction matching constraints) that have challenged tandem multi-junction (two-terminal) SCs.[125]

"i Solution process-ability can greatly reduce manufacturing costs because the material can be printed

under ambient conditions (rather than vacuum growth or deposition), continuously (versus in batches), and

without the lattice and energy matching constraints of exotic semiconductor crystal alternatives for

supplementing Si solar cells.
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SWNT are also attractive relative to some organic and inorganic PV materials in their exceptional exciton

and free carrier diffusivity and mobility, exceptional absorption cross-sections, and resistance to oxidation

by water and oxygen.[106,117,119,120,126-128] Over the past five years these properties have motivated

the development of the first photovoltaics with SWNT active layers. To date, single-walled nanotube

(SWNT) SCs with 0.0 1-3.1% external quantum efficiency (EQE) have been developed employing single

chiralities,[ 116,118] mixed semiconducting chiralities,[ 115,117] and mixed semiconducting and metal

chiralities[ 119,120] in bulk heterojunction[ 117,121] and planar heterojunction[ 115,116,118]

configurations using polymers[129] and fullerenes[1 15-118] for exciton dissociation.

This investment in proof of concept devices has been important in establishing the technology's

feasibility, but has not provided insight into design. The parametric space of SWNT networks, due to their

awkward nanometer-scale heterogeneity, is too large to investigate empirically. For example, basic

questions such as the effect of e.g. nanotube density, chirality, orientation, film thickness, or impurity

concentration remained unanswered. The extreme non-linearity of the dependence of film performance on

such properties additionally confounds simple intuition. Even the full set of variables describing a carbon

nanotube solar cell have not been identified, let alone their optimization. This gap in knowledge has

obscured what research, especially into nanotube purification and film casting, is necessary to advance the

technology. Only one attempt has been made to define and elucidate the effect of a design variable,

specifically thickness,[115] but the observed behavior is limited to films with all other properties, such as

nanotube orientation and density, which were not measured, held constant. In Chapter V, we address this

shortcoming by taking a modelling approach. By deriving a model of steady-state SWNT network

photovoltaic efficiency directly from single- and paired-nanotube properties and physical processes, we

are able to predict the dependence of efficiency on arbitrary values of nanotube properties, including

length, orientation, film thickness, and chirality. Optimizing the model isolates the critical design

variables, and predicts the highest priority research progress necessary to raise SWNT solar cell

efficiency to technologically viable levels. In Chapter V we solve the model numerically to optimize

efficiency over the parametric space; while that produces film design rules however, it does not connect

them explicitly to the intrinsic properties of the film e.g. exciton diffusion length. In Chapter VI, we

develop an analytically solvent approximation to the model that reveals that connection.
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I. SURFACE TRANSPORT MODEL OF NANOWIRE METAL ELECTROMIGRATION

Summary of Findings

As discussed in the Introduction, the mechanism of electromigration in micron-diameter and

larger wires has been thoroughly understood since James Black developed the widely verified bulk

vacancy drift model in 1969. As miniaturization has progressed however the semiconductor industry has

had to add empirical correction factors to the model, and the recent use of electromigration of nanowires

for tunnel junction formation has been unable to exploit the mechanism to improve yield. These

observations suggest that the predominant mechanism of metal electromigration changes when wire

diameters fall to tens or hundreds of nanometers.

In this work we propose that as a wire shrinks to nanometer dimensions the kinetics of

electromigration shift from being limited by bulk vacancy transport, as in the Black model, [9] to being

limited by surface transport. The barrier to surface diffusion of metal atoms is in general substantially

lower, by as much as ten orders of magnitude, than bulk vacancy diffusion;xvll we posit that as the wire

diameter gets smaller and the surface area to volume ratio increases, the increase in relative population of

surface atoms to bulk vacancies shifts the kinetically dominant electromigration pathway

correspondingly. From this principle we derive a model of nanowire electromigration and the resulting

change in nanowire diameter with time. We validate this model against experimental measurements from

Karim et al. of the electromigrative failure of Au nanowires varying in diameter from 80 nm to 700

nm. [94,132] We find that a bulk vacancy transport model cannot fit the observed failure times and time-

dependent resistance evolutions, providing the first quantitative verification that the Black model breaks

down at sub-micron diameters. In contrast, our proposed surface transport model matches the data

entirely, with deviation negligible compared to experimental error. The time to failure predicted by a

surface transport mechanism is shown to have an analogous form to the time-to-failure predicted by

Black, but with a change in the power dependence on current density from -2 to -1; such a correction in

the power dependence is already commonly applied in the empirical literature,[10] further supporting our

surface transport theory and providing a physical explanation for those experimental findings. In

providing access to the mechanism of nanowire electromigration, this model could enable prediction and

optimization of the process for desired outcomes. We show that for these nanowires the critical failure

current at constant ramp scales with initial wire radius to the 3/2 power. Applying to the case where the

electromigration process is feedback controlled according to the process of Strachan et al.,[8] further

"a On a Au( 111) surface for example, the surface self-diffusion at room temperature has been measured of

order 10-15 cm 2 /s or higher, versus order 10-41 cm 2 /s for bulk vacancy diffusion.[130,131]
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explored in Chapter II, the surface transport model reproduces all of the observed characteristic features

e.g. the 'turnaround point' and 'shark fins.' In particular the surface transport model accounts for the

precipitous (accelerating) failure of nanowires; as the radius reduces, the surface area to volume ratio

increases such that the rate of radius reduction also increases, leading to an intrinsic positive feedback

loop. The original method of Strachan et al. does not prescribe any parameters for the control algorithm,

but we predict and then apply the parameterization that governs the process; it is the ratio of the current or

voltage attenuation to the resistance threshold. In Chapter II, we use this model to gain greater control

over the process of nanowire electromigration for tunnel junction formation by designing a new controller

based on its predictions.

Surface Transport Model

To describe the electromigration process we adopted a surface transport mechanism, anticipating

that for small diameter wires translocation barriers are lower and available sites more numerous than

vacancy drift in the bulk crystal. This hypothesis is later verified by deriving equivalent expressions for

bulk diffusion and finding that, unlike the surface transport model, they are inconsistent with

experimental results (Figure 21). For our geometry and driving force application we focused on

cylindrical metal nanowires with time-varying current forcing, but the treatment is analogous for other

geometries or under applied voltage. An electron scattering treatment where surface atoms interact with

the current flux through an empirical scattering cross-section provides a convenient representation of the

wind force atom dislocation rate Fs,

(7) F = FO (r, t) - ucs -N (r)

where Fo(r, t) is the fraction of the momentum imparted by the incident current flux in the surface region

as a function of time t in a wire of radius r, acs is the atom electron scattering cross section, N(r) is the

number of atoms in the surface region, and Fs is the resulting number of scattering events per time.

Experimentally it has been observed that well before breakage 'necking' occurs where some region of the

nanowire is thinned, often with a downstream extrusion forming from the lost material. [22,28,83] We

approximate that the specific shape of the necking region can be reduced to some equivalent symmetric

representation, cylindrical in this case, and that the length of the hypothetical region 5 is constant (Figure

19).
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Figure 19. a) Cartoon of the model geometry. b) Predicted nanowire radius versus time trace for a NW of initial

radius of 40 nm (using equation 4).

For a fixed length of the necking region 6 the number of Au atoms in the surface region is N =

T6nA (2 rA - A 2 ), where r is the radius of the neck, A is the depth of the surface region under

consideration, one atomic layer, and nAu is the number density of bulk gold. In this surface region we

have a resulting electron flux of I/qwr2 , where q is the elementary charge. If we define a new empirical

cross-section 'Pcs as the product of the electron scattering cross section ocs and the fraction of scattering

events that yield atomic loss, we have a simple expression for atomic loss in the neck region

dN [F I (2rA - A 2 )
(8) -= - 4 cs _ [wona(2rA - A 2 )] = _Sqsnau 2dt qr2] q r

Substituting in the number of atoms in the necking region N = 7r2 6 -nAu we have

dr (2rA - A 2 ) (Pcs
(9) -= -YI 3 Y -=

dt r 4Te'

For a constant current ramp at rate a A/s (I = at) we can integrate analytically,

1 2 A 2 2-83
-yaA - t2 + ko = -A 3 ln(2r - A) - 2A2 r - 2Ar2 r
2 3

(10) 8
ko -A 3 ln(2ro - A) - 2A 2 ro - 2Aro 2 -3 0

Choosing representative parameters, we can qualitatively observe a precipitously accelerating reduction in

radius with time (Figure 19b), as we expect ubiquitously from experimental results.[23,133]

Comparison to micron-scale transport

The relationship between our proposed surface transport mechanism of metal electromigration

and the Black model bears explicit consideration. As related in the Introduction, section The Black

equation and electromigration at micron scales, Black in 1969 proposed that the dominant pathway of
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metal electromigration is via vacancy drift in the bulk lattice. [9] In the intervening years that bulk

vacancy mediated transport model has been broadly verified in experiments, and his celebrated equation

for the predicted time-to-failure of wires due to electromigration has become the standard in the

semiconductor industry. As fabrication techniques have improved to allow the ready production of metal

wires tens or hundreds of nanometers in diameter however, experimental results have deviated from the

Black model, requiring empirical correction factors.[10] Later in this Chapter and in Chapter II we both

quantify that deviation and show that there is a parallel breakdown in the qualitative characteristics of

bulk-vacancy-mediated electromigration. Our surface transport mechanism seeks to explain this

divergence. We are proposing that as the wire diameter shrinks to make the surface are to volume ratio

non-negligible, the dominant electromigrative transport pathway shifts to drift of surface atoms as

described above. If true, as our validations in this Chapter and Chapter II suggest, this hypothesis implies

two electromigration regimes with different dominant kinetics. For micron and larger diameter wires, the

Black proposal of drift of bulk vacancies irrefutably holds; for nanometer diameter wires, surface

transport dominates.

In Chapter II, section 'Time-to-failure in Nanowires', we derive the surface transport mechanism

analogue of Black's time-to-failure equation. This analytic comparison bears reproduction here. Black's

time to failure tf of a wire due to electromigration under a fixed bias, which from a Kinetics perspective is

the inverse of the mean rate of electromigration over the lifetime of a wire, is[9]

(11) tf = AekT] -

where A is an empirical prefactor, Ev is the activation barrier to vacancy diffusion, k is the Boltzmann

constant, T is temperature, andj is the initial current density in the wire. The empirical corrections

described above have corrected (11) by empirically adjusting the power of] to between -1 and -2,

justifying the change as material-specific non-ideality.

The equivalent expression in our surface transport model, which we propose holds for nanometer-

diameter wires, is

Es
(12) tf = AeTj

where Es is the activation barrier to vacancy diffusion. The expression is identical in form, with the

differences being that A and E have different values (we show, for example, that A has a dependence on

the wire initial radius) and, most notably, that current density has a linear rather than quadratic influence

on the rate of electromigration.
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Our regime change hypothesis, with the

dominant electromigration mechanism changing from

bulk vacancy transport to surface transport as the wire

diameter shrinks to the nanometer scale, can therefore

explain the empirical corrections to the Black

equation.

The surface transport mechanism is also

consistent with consistently observed qualitative

differences between micro-wire and nano-wire

electromigration. In particular, electromigration in

Figure 20. Illustration of necking versus void micron-size wires characteristically yields cavity
formation in nanowires versus micron-diameter
wires. (top) nanowire produced according to ('void') formation, consistent with bulk transport and

etro igraton l at the for atishowing nec ta aggregation of vacancies.[10,18,134,135] In contrast

similarly observed by Taychatanapat et al.[22]. however, nanowires ubiquitously exhibit thinning
(bottom) Figure reproduced from Yeh et al. with
permission showing void formation during ('necking'), [22,83] as described above and in the

electromigration.[ 18] Introduction (section features ofelectromigrative

fbrmation of tunnel junctions), consistent with mass transport being in the surface rather than the bulk. In

later work, Chapter 11I, we find that another hallmark of electromigration at the micron scale, failure at

interfaces, breaks down at nanometer dimensions.

Model Limitations

We show below that despite its simplicity the model quantitatively and qualitatively predicts the

empirical observations of electromigration in nanowires. For future evaluation and extensibility however

it is useful to note a few particular limitations. First, our model is isothermal i.e. we have neglected Joule

heating. Temperature increases of 100-300K have been proposed,[22,87,93] yielding, if true, higher

mobility of Au atoms, higher resistivity of the NW, and possibly a temperature-gradient-driven net

diffusive flux. Some researchers have used this mechanism to account for the failure of their

nanowires.[87,93] A more general version of our surface transport model should include thermal effects.

Nevertheless, in the experimental system below surface transport alone reproduces the observed results,

without consideration of a change in temperature.

Second, our reduced representation of the necking region as symmetric and fixed in length is not,

and is not intended to be, precisely observed. The actual neck region could be asymmetric i.e. hold a

dependence of r on position, for example bowing in the middle providing a higher current density over a

smaller region. Additionally, the necking region length could evolve over the course of the process - in
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fact asymmetric behavior could be approximated as a reduction in the length of effective neck, 3, as the

highest current density region shows the dominant kinetics. Our simplified reduction of these effects has

proven sufficient to describe the current-voltage behavior of the formation process, but a finer

examination of 3 and p should take them into account. As is, our model does not predict actual wire

morphology. Doing so would provide a clearer physical picture, but does not impact the predictive ability

we demonstrate.

Finally, the actual failure at the end of the process we expect to be stochastic (see Chapter II), as

fewer than a hundred atoms form the final electrodes at failure. As a result conductivity behavior with

time at the end of the process cannot be well described with our deterministic model. For a cutoff of -100

atoms per nanometer of neck length, this corresponds to a maximum valid radius of -1.5 nm for Au. By

the same token, the model cannot account for the shape and size of gap formed. Nevertheless, our

deterministic model describes the necking process leading up to the final break, providing anticipation

and adjustment of the speed at which the radius reduces and the voltage applied at failure.

Experimental Data Set

To validate our proposed model we used the experimental results of Karim et al. [94] We chose

this work because they report experimental data from a well-defined and prototypicalx process -

increasing the current flux at a fixed rate through a cylindrical NW until breakage - and because they

provide a broad data set including several important vectors for extracting model parameters including

initial resistance, current and voltage with time, and failure current information all as functions of a range

of well-characterized initial radii. [94,132]

They used ion beam track-etched polycarbonate membranes as templates to form cylindrical Au

nanowires using electrochemical metal deposition. The resulting nanowires were left in the membrane

and were 30 ptm long and 40-360 nm in radius. Their radii were verified by SEM and conductometry.

Single nanowires were contacted with an upper Cu electrode at room temperature, and contact resistances

were estimated to be of order 10 Q. They then applied increasing current to the NWs at a fixed rate of 0.1

mA/s until breakage occurred, measuring the required voltage over this time.[94,132]

xix As explored in Chapter II, a similar electromigration process is used to form tunnel junctions from

nanowires.
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Predicting critical failure current

Karim et al. ramped a current applied to their NWs at a fixed rate of 0.1 mA/s until breakage

occurred, observing a trend in the critical failure current density versus initial wire radius.[94] We

evaluated our model by applying it to this data, optimizing the scattering cross-section for fit."x Solving

equation (10) for current and substituting r, (critical failure radius) for r,
1

(13) Icrit = -(-A' ln(2rc - A) - 2A2rc - 2Arc2 
- 8rc - ko)]

The result (Figure 21) shows strong agreement with the experimental data. We can benchmark

the model by comparing to a pure power law regression (Figure 21 inset), finding them to agree to well

within experimental error. In other words, the model error is negligible relative to experimental error. The

log-log slope we predict, which is the order of the r dependence of the rate of radius change, is -0.5; this

corresponds to a 3/2 power scaling between the critical current and initial radius (Equation (14)). The fit

yields a 'Pcs of 8.86x10-27 cm 2.

3/2
(14) icrit = A r 0r

Our extracted value for A in this system is 1029.17 A/m 2. We can further validate our surface transport

premise by comparing to a bulk transport model, derived and optimized in the same fashion. Plotted in

Figure 21 (inset), we can see that the resulting -1/r necking rate dependence is unsuitable for describing

the data. This finding provides quantitative evidence that the Black model, i.e. bulk vacancy dominated

electromigration, does not hold for nanowires smaller than micron diameter.

x They defined the critical failure point as when an arbitrarily high bias (20 V) was reached; we

equivalently defined it as when the radius reached 4r. The rapid reduction in radius at the end of the

formation process introduces large tolerances in either definition, and for critical radii up to 10 nm the

resulting scattering cross section is unchanged to within 3 orders of magnitude.
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Note that while the data has a clear overall trend, there remains considerable variability in the

observed failure current, as high as 10 mA, well beyond the reported measurement error bars.

Uncontrolled experimental variables, e.g., organic impurities at the NW surface, surface charging at the

polymer interface, and variation in contact resistance, may provide this experimental scatter. This

observation is relevant later when we reproduce the time-evolution traces from single experiments.

Predicting resistance evolution during necking

In order relate our r(t) predictions to time-dependent observables, we require valid expressions

for resistivity. It has been broadly demonstrated that a bulk Au resistivity - or even a modified but radius-

independent resistivity - is insufficient to describe nanowire resistance.[132,136-141] In this size regime

two effects in addition to phonon scattering strongly influence resistivity: the change in grain boundary

scattering behavior from bulk due to smaller grain sizes, and the increased importance of specular carrier

scattering off of surface states. Mayadas and Shatkes (MS) pioneered the commonly accepted behavior in

the former case, expressed here for a cylinder:[132,136,137,139]

PAu [laG 2 _ 113 G le RG

(15) PG 3 2 a)]D 1 - RG

where pG is the resistivity due to enhanced grain boundary scattering, PAu is the bulk Au resistivity, le is

the mean free path of electrons (which we take to be 40 nm in Au at 298K), RG is the reflectivity of the

grain boundaries, and DG is the mean grain diameter.
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Figure 21. Observed critical
failure current from Karim et al.
compared to surface diffusion
model predictions (Equation
(13)). Data is linearized on a log-
log plot (inset), showing that the
model prediction is as strong as
a power law regression.
Comparison to an equivalent
bulk model validates the surface
diffusion treatment.
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Fuchs and Sondheimer (FS), with later refinements for cylinders by Dingle, described the effect

of surface scattering as dependent on the specularity of the material, p, with p=0 representing a

completely diffuse surface scattering behavior and p=1 representing a totally reflective

surface.[13 8,140,141] Two regimes are considered: when the radius is sufficiently above or below the

electron mean free path. They are expressed in Equations (16) and (17) for a cylinder.

r >> le

(16) -=1 -3 - p) + (3 p)2 V-

PS 4k 8k0 (1

r << le

PAu 1 +'P 3k 2 1 + 4p + 2k = k 2 )In + 1.059) -(1 p)2 v3pv-in v
(17) Ps 1 P 8 (1 - p) 2  k

2k3 1 + 11p2 + p3

15 (1 - p) 3

where k rile and v is the electron velocity.[138] In all cases we take the infinite series to convergence.

For radii intermediate between the extreme limits we approximated the resistivity by calculating the value

at that radius from both equations and averaging those two values weighted by the proximity to each,

choosing demarcations of 60 nm and 20 nm.

Note that while FS scattering depends continuously on the NW radius, the MS grain scattering is

only connected to the wire dimensions indirectly through the crystallization kinetics. The grain size and

specularity have been shown to vary between experimental systems for the same material due to

differences in grain, surface facets, and impurity levels resulting from fabrication methods.[132,136,137]

For Au, values from 0.4 to 0.9 for RG and 0 to 0.6 for p have been inferred from different

experiments.[ 132,136]
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To extract the crystal properties of our experimental data set, we calculated the initial resistance

for a NW of given radius using Matthiessen's rule and optimized p and aG given Karim et al.'s

measurement. As a first approximation, verified by the quality of the fit, we took the grain size to be

constant across the entire diameter range. This yields an aG of 0.22 and specularity of 0.36 with a

resulting rms error in R(r) of 8.7 Q." Figure 22 shows that with these parameter values the FS and MS

models describe the data exceptionally well over the wide diameter range. We observe that, especially

below 100 nm wire radius, the bulk resistivity of Au is insufficient to describe the observed resistances.

At radii above 110 nm one can observe a possible slight systematic deviation, which could be attributed to

a change in grain size in fabrication of these larger NWs. If desired, this effect could be accounted for by

fitting a different aG for initial radii in this range. Note again that, just as in the case of the critical failure

point, undetermined variables are providing variation in the initial resistance of the data for specific data

points.

x Note there are experimental errors in the measurement of radius, see Figure, that may account for much

of this deviation.
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Using these resistivity parameters, we modeled the time traces of individual experiments, and

used those results to determine the effective necking region length, 6, for each radius (Figure 23),. As

earlier noted, the critical failure current and the initial resistance data both showed the influence of

uncontrolled variables, leading to variation in the data that we could not simulate. In modeling the time

evolution of single NW experiments, this provides an unpredictable offset in the initial NW resistance and

the final breakage current. As we are interested in prototypical cases, we rectify this experimental

variation by proportionally shifting the current data and the resistance data from each experiment such

that the failure current and initial resistance collapse to their respective trend lines.

Despite the simplicity of the model assumptions on evolution of the necking region dimensions,

strong prediction of time-evolution behavior is achieved. With the validity of the model's prediction

established through experimental observables, it can be used it examine unmeasured quantities, the most

relevant of which is the effective neck radius, shown in Figure 19 for the 40 nm radius nanowire.

Predicting nanowire response to a control scheme

One application of the model predictions is devising optimal strategies for electromigrative tunnel

junction formation. As described in the Introduction, electromigrative failure (cleavage) of nanowires can
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be exploited to produce a gap between the resulting electrodes small enough that an electron tunneling

current can be measured.[8,23] In particular, there is ongoing debate in the literature over the source of

the efficacy of and appropriate parameterization for the predominant method of controlling nanowire

electromigration (towards tunnel junction formation) via manipulation of the applied bias.[22,133,142] In

the method, developed by Strachan et al., the resistance of the NW is monitored as the current or voltage

is linearly increased, as in Karim et al.'s system, but when the resistance rises by above a threshold

percentage, the bias is rapidly attenuated to arrest the formation, and the process is repeated.[ 133] Please

see Chapter 11 for a full discussion of this technique, which we call the 'Penn method,' including our

experimental implementation of it. The purpose of the technique is to increase the yield of tunnel

junctions i.e. electrode gaps small enough, generally less than 1 nm, to measure a tunneling current across

as opposed to forming a larger break upon failure. The reason that the Penn method improves yield

however remains ambiguous. We simulated the effect of the method by applying the feedback control as

an exogenous input to our nanowire surface-transport model. We used a finite-difference method with

time steps of 1 ms to predict for Karim et al. 's nanowires the result of using this control technique with a

variety of parameterizations (Figure 24).

a b
- no feedback -

4 x = -10;
1OAI1A, 1AR/R C10
x=-1.25;

3 10AIA. SR/R
x=-3.75;I /J A

30AI A, 8AR/R

2 40'

0(
1 ~20

0 50 100 150 200 0 50 100 150

-2 time (s) time (s)

t

-. 10'

-_ ---

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
current (mA)

d

C

200

X 03

1.5
1.9

18

0.5

0 2

0

e
0

E

4

0.5 1 1.5 2 2.5
Current (mA)

0.8

0.6

0.4
0 5 10

X

Figure 24. a) Simulated current versus time trace in a 50 nm initial radius nanowire for cases of no feedback and

feedback with different parameters. Discrete feedback control evolution with a percentage reduction in current

(AI/I) in response to a percentage reduction in resistance (AR/R) is overlayed on the equivalent continuous

feedback behavior (see text). b) Simulated evolution of radius and resistance with time. c) Evolution of the

conductivity with the applied current. Curves are included (in pink) for x = -0.25 (solid), -0.4 (dash), and -0.7 (dot)

to show trend in deviation from uncontrolled scenario. d) experimental results of a feedback loop in our own

58



electron-beam lithography defined nanowires showing qualitative agreement. e) The effect of the feedback
parameter on the turnaround radius.

The experiments of Karim et al. did not employ a feedback control mechanism during

electromigration breakdown. However, our model can be used to predict the behavior under these

conditions, despite crystal structure differences associated with electron-beam lithography-based

fabrication in those systems such as longitudinal contact with an oxide substrate; thin, rectangular NW

dimensions; and electron beam evaporation for crystal formation. [133] Under the control scheme, the

time for formation is lengthened and the reduction in radius is made more gradual. This phenomenon

provides a potential explanation for the increased yield of tunnel junctions under the Penn method,"'

versus holding at a single voltage or ramping the voltage without attenuation; instead of allowing the

system positive feedback to run away and cause sudden failure of the wire, more gradual failure may

yield a smaller break. In Chapter II, we indeed find that under the Penn method more gradual formation

correlates with higher yield, and use our surface transport model to design more efficacious process

control. On the latter point of more effective control, note from Figure 24b that while the Penn method

maintains more gradual electromigration for a period of time, towards the end of formation it eventually

is unable to prevent sudden formation; it cannot maintain a linear resistance pathway.

The surface transport model also predicts characteristic features of the resistance evolution under

the Penn method. We observe these features experimentally not only in applying the technique to our own

devices (see Chapter 11; e.g. Figure 24d) but also in the electromigration traces published by all previous

researchers.[8,88,92,143] The first feature of interest is the 'shark-fins' in R(I(t)) corresponding to each

voltage/current ramp and attenuation cycle; rather than a linear rise in resistance, we observe an

acceleration. This phenomenon is discussed in greater detail in Chapter 11, but of note here is that it is

reproduced by our surface transport model as a consequence of the intrinsic positive feedback; as the

radius falls, the surface area to volume ratio rises, causing the radius to fall faster. The second

distinguishing feature that we observe is the 'turnaround' or 'critical' voltage/current; once a critical

current is reached, successively lower and lower currents are required to provide the same resistance

increases, providing a maximal current at some 'turnaround radius.' A surface transport mechanism

reproduces this effect (Figure 24), and explains the turnaround point as the point at which the formation

pathway R(I(t)) under control diverges from the control-free pathway (Figure 24b). We can understand

this point by considering the continuous analog of the discrete feedback process

'Yield' circumscribes successful versus unsuccessful tunnel junction formation, with the former being

a gap between electrodes small enough (generally less than 1 nm) to measure a tunneling current across and

the latter being larger. These two outcomes are discussed in more detail in Chapter II.
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dI IxdR
(18) - = a + -

dt R dt
which with Equation (8) defines the smooth curves in Figure 24. x is the negative unitless control

parameter corresponding to the proportional change in I to be induced by a proportional change in R, or in

the language of discrete feedback, x = AI/I - R/AR. More negative x values therefore correspond with

more aggressive control - a longer time to failure and lower maximal current. As x increases, the

turnaround occurs at an earlier time and higher radius despite a longer process, leading to more thinning

occurring in the 'tail' portion of the current-time trace (Figure 24a,c). Furthermore, from x the radius

reduction at the turnaround radius can be extracted, providing physical intuition on observed current

traces. In defining the resistance evolution pathway, x is suggested to be the parameter defining

application of the Penn method.
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1I. MONITORING ELECTROMIGRATION KINETICS FOR CONTINUOUS CONTROL

Summary of Findings

As described in the Introduction, Electromigration of metal nanowires is the predominant method

of on-chip fabrication of a single-molecule tunnel junction,[5 1,144] which is considered a uniquely

enabling technology for molecular electronics, [145,146] biomolecule sequencing, [147,148] nanopore

interrogation,[55,60,148] and single-molecule physics.[37] Electromigration inspired by an applied bias

thins the wire until it breaks, sometimes forming a gap between the resulting electrodes small enough, less

than 1 nm, to measure a tunneling current across. Adoption and advancement of the method has been

hampered however by poor yield and process variability; [8,22,85,89-92] the mechanism of

electromigration, i.e. the migration pathway and resulting kinetics, at this scale was unknown, yielding a

dearth of voltage-control algorithms. In the previous chapter, we proposed that as wire diameter shrinks to

0(100 nm), the kinetically-dominant pathway for mass transport becomes surface transport, rather than

the bulk vacancy migration that is known to dominate at micron and larger diameters.[149] We tested this

model against experimental data from Karim et al. [94], showing that surface transport but not bulk

transport could describe the initial-radius-dependent time-evolution of resistance in nanowires from 40

nm to 360 nm radius. If our model is accurate, as suggested by that data, it can be applied to improve the

control of the electromigrative formation of tunnel junctions.

Prior to this work, the only means of controlling electromigration was the 'Penn method,'

developed by Strachan et al. [8] A voltage V is applied across the nanowire and increased while the wire

resistance R is monitored, rising as electromigration proceeds and the wire thins. When the resistance

increases by a set percentage threshold the voltage is rapidly attenuated and the process repeated until the

wire breaks, sometimes forming gaps small enough to measure a tunneling current across. Described in

more depth in the section below, the 'Penn Method' is neither continuous nor tied to electromigration

kinetics, yielding high variation.[8,22,85,90,91] On examination (in our work, below), the resistance in

the Penn method changes little as the voltage increases until an unknown threshold voltage is passed, at

which point the resistance rapidly rises. The sudden rise is then caught by the R increase threshold. The

wire therefore necks in an intermittent series of short bursts of rapid migration, rather than at a stable or

otherwise predictable rate of mass transport. Each cycle therefore risks precipitous breakage of the

nanowire i.e. thinning too rapidly for the voltage attenuation to arrest. This control behavior may explain

the process variability.

In this work we design and apply a continuous controller of electromigration in nanowires for the

formation of tunnel junctions, based on the surface transport kinetics we developed in Chapter I. By using
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a control variable, dlnR/dt,x'11 that is linear function of the rate of atom electromigration, we are able to

deliberately alter the electromigration pathway R(t) and outcome by adjusting the controller. We find that

the yield and R(t) pathway are sensitive to the dlnR/dt setpoint, further validating our proposed

mechanism and offering the potential to design the electromigration pathway -by designing a setpoint

pathway. We find that the setpoint can be optimized, and that it is possible to achieve tunnel junction

yields of 100%.

We begin by investigating the Penn method further, developing our own nanowire devices to do

so. We observe that while R, the control variable, does not have a clear relationship with V, the input

variable, with the R(V(t)) pathway seemingly unpredictable, dR/dt in contrast has a highly regular

response to V. That generates the characteristic 'shark-fin' patterns introduced in Chapter I and explored

in more depth here. In fact, while the Penn method explicitly monitors R we show that it is defacto

controlling dR/dt; each voltage-ramp cycle produces the same rate of R change as the R threshold is

approached. Performing over 100 formations with the Penn method we also found that failure, defined as

the creation of a gap too wide to measure electron tunneling, only occurs when formation is precipitous

i.e. sudden. This finding is consistent with our result from Chapter I, where we applied our surface

transport mechanism to study the Penn method and found that the primary effect of the Penn method was

to slow the overall rate of electromigration. These results suggest that slowing the rate of wire thinning is

a means of increasing the yield of electromigrative formation of tunnel junctions. As we observed in

Chapter I however, the Penn method only slows electromigration at the beginning of the process;

eventually it, like simpler strategies of ramping or holding constant voltage, produces sudden wire failure

that we attribute to intrinsic positive feedback in the nanowire.

From our surface transport model we then derived the requisite constraints on any

electromigration process to avoid such precipitous formation. We find that in our model the rate of wire

necking can be experimentally observed as dlnR/dt. To avoid runaway therefore, V must be adjusted to

maintain dlnR/dt at a constant value. The maximum setpoint is dictated by the noise-limited speed of

measurement, r. Specifically, dlnR/dt < 2/3r. We test that principal by designing a dlnR/dt controller and

applying it experimentally to our nanowires. To handle non-idealities of electromigration such as back-fill

and stochastic changes in the scattering cross-section, we employ an exponential control term in addition

to integral control. Applying the controller, we find that it successfully maintains the setpoint, providing

x dlnR/dt is a shorter expression of (1/R)dR/dt, the percentage change in R with time (dlnR = (1/R)dr). We
also frequently use dR/dt and dlnR/dt seemingly interchangeably, for two-fold reasons. First, the span of R
in an electromigration process is often too low (e.g. a typical range is 400 to 600 Q) to differentiate between
dR/dt and dlnR/dt; second, as we show below dR/dt often satisfies all the control criteria that dlnR/dt
satisfies because in inequalities dR/Idt > dinR/dt always.
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continuous control, gradual formation, and a predictable R(t) pathway. We observe that the process

changes with the setpoint, falling into three regimes. When the setpoint is too high the incidence of

precipitous formation rises and the yield of successful junctions drops appropriately. When the setpoint is

too low however, specifically when it is in the dR/dt regime where Joule heating dominates dR/dt as

indicated by dR being reversible, the character of formation (the R(t) pathway) changes and the yield also

falls. In the intermediate optimum of 'ideal' formation, which matches the defacto dR/dt value we

observe in the Penn method, formation proceeds smoothly and the yield approaches 100% despite

unpredictable and time-evolving imperfections in crystal structure. These findings have several

implications in addition to establishing the first continuous control of electromigration and raising tunnel

junction yields. First, the ability of the surface transport mechanism to predict the Penn method

observations and the operation of the dR/dt controller further validates the model and our hypothesis (see

Chapter I) that as a wire radius falls to the nanometer scale the mechanism of formation shifts from the

Black model (bulk vacancy drift) to surface atom transport. Second, by showing that the reversible dR/dt

regime does not lead to electromigrative failure, we provide further evidence that the Joule heating

mechanism of nanoscale electromigration is incorrect. Third, the sensitivity of the electromigration

pathway and outcome to the dlnR/dt setpoint, in addition to supporting the prediction that dlnR/dt

observes the rate of thinning, suggests that the electromigration pathway can be closely controlled as

desired by manipulating dlnR/dt, particularly when greater fabrication control over nanowire crystal

structure is achieved. Finally, while we do not claim that our controller will guarantee tunnel junction

formation in all devices, we do demonstrate that it is possible to achieve 100% yield under the right

circumstances even without further advances in Au crystal fabrication. xv In total, our results establish

that electromigrative formation of tunnel junctions is a commercially viable technology.

Nanowire Device Fabrication

We performed electromigration of Au using Au nanowire devices defined by Electron Beam

Lithography (EBL). We exposed Poly(Methyl Methacrylate) (PMMA, MicroChem) electron resist on a

substrate of 300 nm SiO 2 on top of a p-doped Si single crystal back-gate, defining nanowire negatives

between 100 and 200 nm long and 40 and 100 nm wide. We found that to electromigratively form viable

tunnel junctions using the 'Penn method,' discussed below, the wire cross-sectional area had to be

xxv The fabrication techniques, centered on Electron Beam Lithography and discussed below, can produce

Au nanowires of reproducible external dimensions but the crystal structure, in particular the grain

boundaries and exposed facets, cannot be controlled. Grain boundaries have been widely shown to dominate

the electromigration kinetics, leading to variation both between devices and within devices, in the latter

case due to evolution of the boundaries during electromigration.
63



suitably small, less than 0.001 pm 2 , as achieved by those dimensions and between 10 and 20 nm of

deposited Au. Otherwise, formation was either excessively explosive, yielding gaps too wide to measure a

tunneling current across, or constant back-filling would inhibit formation entirely, as also observed by

Xiang et al.[88] In EBL we also defined 10 pm wide contact wires. To minimize specular resistance at the

connection, a smooth continuous trapezoid tapered the contact wire down to the nanowire width over a 2

pm (Figure 25b).

To achieve this, 950,000 g/mol molecular weight PMMA diluted to 4 wt% in anisole was spin-

coated at 3,000 RPM for 60 seconds on to the substrate. At this speed and time the viscous polymer

solution approaches its asymptote spin-coat thickness, consistently yielding a 200 30 nm thick polymer

layer. The polymer was then baked at 170T 15*C on a hot plate, measured by IR thermometer on a Si

plate, for 5 minutes to cure. Baking drives off some of the anisole solvent to reduce diffusion of polymer

that is cross-linked when exposed, which would otherwise blur the feature exposure. We found that

under-baking therefore yielded worse resolution, while over-baking we found to inhibit liftoff. The

PMMA thickness was optimized to coincide with our electron beam acceleration voltage of 30 keV,

yielding a sufficient undercut to achieve good liftoff, discussed further below, without excessively

broadening our features. Immediately prior to PMMA deposition, the 300 nm SiO 2 / p-Si substrate chip

was ultra-sonicated for 3 minutes in isopropyl alcohol (IPA) followed by rinsing with IPA, to remove

macroscopic residue such as silicate dust, and then microscopically cleaned with an Oxygen RF plasma

etch for 3 minutes at 200 W and 1.5 sccm flow of 02 to yield a steady state pressure of 1 torr. In addition

to cleaning the substrate of organic contaminants normally adsorbed from air, we found that this plasma

etch was critical for strong adhesion of the nanowires, discussed further below.
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Figure 25. (a) cartoon illustrating the nanowire device fabrication process. See text for details. (b) The digital mask
written onto the substrate using EBL, showing the contact wire gradually tapering to the nanowire. Dots are spaced
at 500 nm (left) and 100 nm (right). (c) Scanning Electron Microscopy (SEM) image of a nanowire, showing no
residual PMMA (images as clumps), clean liftoff (indicated by sharp edges), and sufficient exposure plus good
adhesion to the substrate (indicated by the smooth metal surface). (d) Atomic Force Microscopy (AFM) image of
the contact wire verifying the desire metal deposition thickness for this device.

The PMMA was exposed in a Raith 150 Scanning Electron Microscope (SEM) in the previously

described pattern (Figure 25b). We used a 30 keV acceleration voltage to produce sufficiently sharp

features while also creating an undercut for improved liftoff (see below). A 60 ptm aperture was

ultimately used to balance write speed with spot size. For our purposes, the nanowire widths needed to be

small but precision was unimportant, i.e. whether the nanowire is 50 nm or 55 nm wide is not critical as

long as it is less than 100 nm in width to produce a sufficiently low cross-section (see above); in the

electromigration process uncontrolled heterogeneities such as grain boundaries are far more influential on

outcomes than such small changes in the absolute dimensions. [22] We exploited this criterion to design a

robust and high throughput EBL process. The mask we used wrote only two lines (20 nm nominal mask

nanowire width, Figure 25b), but we over-exposed the wire to achieve consistent 50-70 nm final mask

negatives at 320 pC/cm 2 dose (we adjusted the dose to achieve different nanowire widths). This

dramatically reduced the variability in nanowire width with dose, increasing the overall device

consistency. To increase throughput, we wrote 25 devices on each 12 x 14 mm 2 chip. To maintain a sharp

focus across the surface over this area, we applied a plane correction to the focus, using Au nanoparticles

at three points along the edges of the chip to estimate the change in focus across the surface; stigmation

and aperture alignment were held constant. It was also critically important to make the chip as flat as

possible. While the substrate was single-crystal silicon, contamination on the SEM sample plate and the

back of the substrate would prevent it from being perfectly level. In the latter case, after PMMA spin-

coating and before curing, the back of the chip was carefully cleaned with acetone-soaked cotton

applicators to scrub off PMMA residue, which due to optical interference is clearly visible by eye even in

thin layers. To minimize bowing of the substrate while maximizing chip size, the substrate was adhered to

the SEM sample chuck using copper tape. By implementing these various measures, we nearly always

achieved a surface flatness of 2-15 pm across the substrate. After exposure, the PMMA features were

developed in a 1:3 Methyl Isobutyl Ketone (MIBK):IPA solution for 70 seconds at 22-24*C and checked

in an optical microscope (Figure 26).
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Using electron beam evaporation, we sputtered I nm of Ti as

an adhesion layer followed by the desired thickness of Au into the

PMMA negatives. The vacuum pressure during deposition was better

than 10 torr. The thickness was monitored with a quartz crystal

microbalance and verified ex post with Atomic Force Microscopy

(AFM, Figure 25d). The Ti adhesion layer was important to achieve

clean liftoff, discussed below, and to achieve uniform adhesion of the

Au crystal. Without the Ti, the Au layer is continuous but roughened;

despite our cleaning method organic contaminants on the SiO 2

surface are inevitable and the oxidize-able Ti is able to bind to them

Figure 26. Optical Microscope and present the Au with a uniform crystal surface. Cleaning the
images of the device negative in
PMMA (a) and the final surface via plasma etching prior to PMMA deposition is also critical

ontact ire is 10 p( der scale to minimize the presence of organics and achieve strong adhesion. I

nm of Ti does not form a uniform layer, but that is not necessary to

present sufficient binding sites for a continuous (polycrystalline) Au crystal to form. In addition to

sometimes causing poor liftoff (discussed below), poor adhesion yields a characteristic corrugation of the

Au surface clearly visible in SEM imaging (Figure 27b). Poorly adhered devices can still be

electromigrated, but the series resistance is higher we posit due to higher specular scattering, reducing the

process reliability (discussed below). PMMA residue remaining in cases of under-exposure is also clearly

and characteristically visible as chunks in SEM imaging (Figure 27c).

Figure 27. Au nanowire and contact wire with (a) and without (b) an adhesion layer, showing the roughness of the

Au layer in the latter case. (c) Under-exposed contact wire, showing lingering PMMA residue. Inset zoom.

After metal deposition, the PMMA mask with removed in a 'lift-off step by soaking in hot n-

Methyl Pyrrolidone (NMP) solvent. Specifically, we found that holding the NMP at 95*C was ideal for

achieving clean liftoff with the above EBL process. Higher temperatures can cause some Au nanowires to

relax or dissolve in solution, while lower temperatures remove the PMMA too slowly such that the metal

foil on top of the un-exposed PMMA is able to contact and adhere to the surface via van der Waals
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attraction. Excessive baking of the polymer, driving off too much of the Anisole solvent, we found could

inhibit clean liftoff. Poor focus in the EBL process would result, in addition to feature broadening, poor

liftoff characterized by rough edges to the Au features. With process parameters appropriately optimized,

liftoff was usually achieved macroscopically within a few minutes. SEM imaging confirmed the full

removal of macroscopic PMMA (10+ nanometer sized globules). On a typical chip of 25 devices, 20

would remain intact after liftoff. The samples were rinsed in acetone followed by IPA after the hot NMP

bath to avoid leaving solvent residue (NMP has a high vapor pressure and even HPLC-grade acetone

leaves a residue).

After OM and SEM imaging to verify nanowire dimensions and integrity, the devices were rinsed

in HPLC-grade Acetone (ChromasolvC, >99.95 % purity, Sigma Aldrich) followed by HPLC-grade IPA

and then cleaned in an Oxygen RF plasma at 40 W for 30 seconds at 1.5 sccm flow of 02 yielding 1 torr

steady state pressure, and finally immediately placed in a Nitrogen glove box with a <0.5 ppm 02

atmosphere before transfer to the vacuum probe station, described below, for testing. Ag paste was added

to the contact pads to improve electrical contact, dried for at least 24 hours in the aforementioned nitrogen

environment.

Electrical Testing

Figure 28. Photograph of probe station (left) and cryostat (right) used in this

work.

To electrically interrogate the nanowires, we placed the samples in a low temperature probe

station designed by ARS Cryo. Vacuum pressure was maintained below 10-6 mbar with a turbo pump and

venting was always to dry nitrogen. The chamber was regularly leak tested and was flushed with nitrogen

whenever opened to atmosphere for prolonged periods. The metal chamber was grounded and acts as a

Faraday cage to minimize noise from ambient electric fields. The chamber is mounted on both vibrational

isolation padding and inflated air bladders to reduce the influence of building vibrations on contact

resistance. Contact was achieved with horizontal manipulators in vacuum bellows with manual XYZ
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translation and tungsten probe heads. During contact the samples were exposed to light but during testing

they were kept in the dark. Samples were placed on the sample stage either with the back gate grounded

through the stage or isolated from ground by a glass coverslip. In all cases the sample bottom was adhered

to the surface with a thin layer of Cu paste to achieve good thermal contact. Device contact resistances

were checked to be always below 10 Q. The sample stage was cooled below 9 K by cryogenically

pumping on recycled He gas. The chamber was vibrationally isolated from the cryo pump with flexible

bellows. The sample temperature was modulated up to 300 K with a resistive heater inside the sample

stage and monitored with an embedded thermocouple.

In the work in this section, electrical testing was performed with a set of Agilent E5262A Source-

Measure Units (SMUs), with which each of four probe heads independently force a voltage or current and

sense a voltage or current. Sensitivity in measurement and forcing was < 1 pA and < 1 gV respectively.

The SMUs were controlled in arbitrary algorithms via computer by programming in MatlabC and

sending/receiving signals with a GPIB interface. The SMUs were interfaced with the chamber using

triaxial cabling, where between the center pin (device) and outer grounded shield there is a guard shield

held at the same bias as the center pin to reduce leakage to the guard. Current leakage was always

measured to be less than 100 fA up to 10 V. Typical contact wire series resistance was 300 Q, and the

initial nanowire resistance varied by dimensions (width, thickness, and length) from 100 Q to 700 Q. To

minimize destruction of the nanowires on contact from electrostatic discharge, a Transient Voltage

Suppression diode with a clamping voltage of less than 1 V was placed across the source and drain

during contact and removed prior to testing.

'Penn Method' Electromigrative Formation of Tunnel Junctions

To form sub-nanometer breaks in the nanowires i.e. electron tunneling junctions, we began by

applying the 'Penn Method,' developed by Strachan et al. [8] See Chapter I and the Introduction for

discussion of the physics of electromigration. We contact each end of the nanowire and apply a gradually

increasing DC voltage bias across it. The increasing voltage increasingly drives electromigration in the

wire, which occurs most rapidly over a small length (6 in our surface transport model, Chapter I) typically

associated with a grain boundary as shown in in situ Transmission Electron Microscopy imaging of the

process.[22,83] The wire thins, or 'necks,' in that regime as a result. That thinning causes the measured

wire resistance R to rise. As we showed in Chapter I, even at fixed voltage the process undergoes positive

feedback, with an acceleration of thinning as the wire thins. To avoid runaway, explosive formation

therefore an attenuation of the voltage in response to sudden increases in resistance is necessary.

In the Penn method, when R rises above a set threshold percentage increase the voltage is rapidly

attenuated to slow or halt electromigration. The cycle is then repeated, incrementally thinning the neck
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and increasing the resistance, until a tunnel gap is formed as indicated by a drop in conductivity to below

the conductance quantum Go = 7.75xI 0-5 S. A resulting trace of such a process is produced in Figure 29a.

Through trial and error we have found that a percentage rise between 0.3% and 1% is appropriate. When

the threshold rise is too high, the nanowire breaks precipitously as the positive feedback in the

electromigration kinetics (see Chapter I) accelerates before the voltage attenuation responds. A threshold

rise too low however is also detrimental; we find that under a modest applied bias there is a reversible

resistance rise (it returns to the baseline value when the bias is removed) that we attribute to Joule

heating. At these biases no measurable electromigration occurs; holding at a bias exhibiting this reversible

rise (which eventually tapers off, which we attribute to reaching a steady-state temperature) for over 60

hours yields no discernable change in nanowire morphology in SEM imaging. When the resistance rise

threshold for voltage attenuation is set too low, it attenuates the voltage in response to these mere

reversible rises. The threshold must be high enough such that the observed resistance rise is reliably

associated with thinning of the nanowire.

We applied the Penn method to over 100 devices, with our findings described in more depth

below. In ideal cases, the resistance increase is incremental until the neck is only a few tens of atoms in

diameter (conductivity on the order of 1 OGo), at which point the resistance increases are sudden stochastic

jumps, which we attribute to the dislocation of single or few atoms, as in reference [133] (e.g. Figure

29a). Formations were performed at temperatures ranging from 9K to room temperature. Once a gap is

formed and the electromigration process halted, the existence of a tunnel junction is verified in three

ways. The first is the value of the conductance being below Go; since the nanowire cannot elongate, the

reduction in conductivity is assigned to thinning and eventually breaking, as verified by numerous in situ

studies.[22,83] The second is Scanning Electron Microscopy (SEM) imaging of the gaps after testing,

showing resolution-limited gap size (Figure 29b). The final is testing that the electron transport is

ballistic; the resistance of tunnel junctions is limited by the tunneling probability, not phonon scattering as

in bulk crystals. As a result, the conductivity of tunnel junctions is invariant with temperature, aside from

a small effect from broadening of the Fermi-Dirac distribution of occupied electronic states in the

electrodes, whereas bulk crystal transport is highly temperature dependent. We vary the temperature T

and check that the conductivity is invariant (Figure 29c).
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Figure 29. (a) Example resistance pathway trace from applying the Penn method to one of our devices. The voltage

is gradually increased with time (not shown) and the resistance R rise monitored as electromigration proceeds and

the wire neck thins. When R rises above a threshold percentage the voltage is attenuated and the cycle repeated,

gradually increasing the resistance until the wire breaks. Further details in the Results section below. (b) Scanning

Electron Microscopy (SEM) image of a nanowire after breakage, showing a resolution-limited gap formed. Within

the narrow gap strip visible, there is presumably a point where the gap size is minimal. Because of the exponential

dependence of the tunneling probability on gap size, the smallest-gap-point between the two electrodes will

dominate the tunneling current. If the gap is less than a nanometer, the tunneling current will be measurable. (c)

Test for ballistic transport. The solid curves are the I-V characteristics of a tunnel junction measured at different

temperatures (the slope is the conductivity). There is essentially no change in conductivity with temperature,

indicating ballistic conduction. For comparison, the dashed lines show the expected change in slope if the resistance

was dominated by bulk Au, with resistivity almost doubling over the observed temperature range. Clearly the

expected rise in resistance of bulk Au over the examined temperature range dwarfs the observed conductivity

increase.

In addition to the Penn method we have developed and applied a novel means of monitoring and

controlling the nanowire electromigrative failure process, dlnR/dt control. Those experimental methods

are surveyed below however, after developing the relevant control theory, rather than elaborating on them

here. Please see below.

Empirical Observation of Nanowire Electromigration using the Penn Method

We began studying electromigrative formation of tunnel junctions from nanowires by applying

the standard method in the field, what we call the 'Penn method,' developed by Strachan et al. [8] As
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described in the previous section, we contacted the nanowires and gradually increased the voltage V while

monitoring the resistance R. As the neck region of the wire thins the resistance rises accordingly. When

the resistance increases by a certain percentage, typically between 0.3% and 1%, the voltage is attenuated

and the cycle repeated to incrementally raise the wire resistance until the wire breaks as indicated by the

conductivity falling below the conductance quantum Go (Figure 30). Performing this process on over 100

devices, we observed only three different outcomes: (1) the resistance increases gradually until a junction

is formed, and that gap is suitably small (< 1 nm) for electrical interrogation (i.e. a measurable electrical

signal, conductivity over 10- S), which we will henceforth term 'viable' (Figure 30); (2) the wire breaks

suddenly, with the resistance undergoing a sudden uncontrolled increase, but the resulting gap remains

viable; (3) the resistance undergoes a sudden, uncontrolled increase, but the resulting gap is too wide to

measure a tunnel current, which we consider a 'failed' device (e.g. Figure 31). Note that every case of

failure corresponded to a sudden formation; gradual formation always produced a viable tunnel junction.

Possible causes of failure on sudden formation could include thermal runaway, i.e. faster formation

yielding a higher steady-state temperature, which at some point causes local melting; or over-voltage,

since the tunnel junction once formed can only survive a few hundred millivolts of applied bias before

relaxing to a larger gap, if it forms at a higher voltage it could immediately relax. The stability of a viable

junction under the applied bias of testing, i.e. its lifetime, varied from only a few measurements to many

hours. The perfect correlation ofjunction failure with precipitous formation implies that avoiding sudden

formation may increase the regularity and viable-junction yield of the electromigration process. To realize

that objective, we returned to our surface transport theory of nanowire electromigration (Chapter I) to

derive conditions for which gradual formation would be guaranteed.
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Figure 30. Application of the Penn method to our nanowires for tunnel junction formation. Example traces of the
process from one experiment. The voltage V is gradually increased while the resistance R is monitored. R rises as
the neck thins, and when it rises past a set threshold percentage the voltage is rapidly attenuated. The process is
then repeated until the neck breaks, as indicated by a drop in the conductivity (rise in the resistance) below the
conductance quantum. The top row is V and R versus time, with insets zoomed, and the bottom row is R versus V
at three levels of zoom to show the process features visible at different scales. The left panel shows each cycle of
the algorithm, with the characteristic 'shark-fins' discussed in the main text. The middle panel shows the overall
pathway i.e. the envelope function bounding the cycles. The red circle indicates the 'turnaround' or 'critical'
voltage. The right panel shows the end of formation, the stochastic regime where the wire is only a few atoms wide
and resistance increases are in discrete steps. While some formations are gradual and successful as shown here,
others happen suddenly as in Figure 31.
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1SO Before turning to our electromigration

a b model, we examined the Penn results further to

170 catalogue the features of the resistance-voltage

pathways it produces. Later (below), we find that

they are consistent with the predictions of our
0 200 0 600 surface transport model, providing further

IN ___0"___evidence of the theory's accuracy. While they

7 lohave not been explicitly identified by researchers

1 2 4 prior to this work, all of these features are visible
170

in the application of the Penn method not only in
165

our devices but in all previously published
160 Frt

2 3 3 4 electromigration traces.[8,88,92,143] First, from a
V(VM

Figure 31. The positive feedback in the system causes 'zoomed out' perspective i.e. examining the

the wire failure to accelerate faster than the voltage envelope function of R(V(t)) (e.g. Figure 30,
attenuation can detect it and respond, leading to
precipitous formation (a). In these cases the resulting bottom-middle panel), the most prominent feature
gap is often too large, greater than 1 nm across, to is the 'critical' or 'turnaround' voltage, first
measure a tunneling current across, as for example in the
SEM image of the device in (b). identified in Chapter I. To increase the resistance

of the nanowire irreversibly the voltage cannot be

arbitrarily low; as described in the previous section ('Penn Method' Electromigrative Formation of

Tunnel Junctions), the R rise threshold (the percent rise at which the voltage is attenuated) must be low

enough to avoid sudden formation but also high enough to reflect nanowire thinning rather than the

reversible R increase due to Joule heating. The voltage required to thin the neck initially increases until

the 'turnaround voltage' is reached, after which point lower and lower voltages are necessary to achieve

the requisite resistance rise. Our surface transport model predicted and explained this behavior without

any ex post or empirical modification, as shown in Figure 24 and Chapter I. The turn-around voltage

corresponds to the point at which the feedback algorithm pathway deviates from the no-control (voltage-

hold) pathway (Figure 24c). Without control, the intrinsic positive feedback in the surface transport model

causes necking to run away; as the wire thins the surface area to volume ratio increases and thus the

thinning rate accelerates at fixed voltage. The voltage attenuation in the Penn method endeavors to catch

that resistance rise and reduce the voltage before that occurs, leading to a more gradual formation

characterized by a lower and lower voltage being required to achieve thinning, as we observe

experimentally. The governing parameter defining the point of deviation between the no-control and

control cases we found in Chapter I to be the ratio of the percentage increase in R that triggers the voltage

response to the percentage reduction in V that responds (Figure 24).
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Figure 32. Penn method shark fins. (a) Zoomed section of resistance versus voltage trace for a
nanowire formation using the Penn method. (b) Collapse of the points of trace (a) onto (1/R)
dR/dt versus normalized time, showing the regular curvature of the positive feedback in the
system; until halted by the voltage feedback response, the resistance increase accelerates. With
each cycle therefore this method risks failure. We observe three regimes of different dR/dt
behavior. At low voltage, the resistance change is reversible, which we ascribe to Joule heating.
In the target regime, the resistance rise is due to necking of the nanowire. As the voltage applied
becomes too high, or is not attenuated for too long allowing the natural positive feedback of the
system to accelerate, the necking accelerates to where dR/dt risks failure. (c) The rate of
resistance change (1/R) dR/dt, proportional to the slope of the shark-fins in (a), with time.

The second characteristic feature of the Penn method we identify is the R(V) 'shark-fins' created

by the voltage attenuation cycle (Figure 30, bottom-left panel; and Figure 32). The resistance does not rise

linearly with applied voltage in the irreversible regime. Rather, when the bias is too low it exhibits a very

small dR/dt that is linear with V but reversible; in Figure 32a that is visible as the beginning of each

shark-fin, where one can see that the forward-moving (in time) R(V) retraces the line of the backwards-

moving R(V), the R response to the previous cycle's voltage attenuation. When the R increase begins to

deviate from this line however, it increases more and more rapidly with V; i.e. dR/dV, which is

proportional to dR/dt in the linear V(t) application, is not a constant but rather increasing. In fact dR/dV
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grows exponentially, beginning to inflect towards an asymptote when it reaches a certain voltage. At that

point the resistance rises suddenly, triggering the Penn algorithm to reduce the voltage immediately once

the R threshold is passed. For this reason setting the R threshold too low leads to no formation (purely

reversible R increases), while setting it too high risks allowing sudden formation before the voltage

attenuation responds. In this manner, while the Penn method is explicitly using R as the control variable,

it is defacto responding to dR/dt, with percent-change-in-R as a crude proxy variable; the dR/dt at the

peak of the shark fin is essentially maintained within AR/R divided by the distribution of the shark-fin

timespans. The three-regime shark-fin behavior we observe suggests that, unlike R, dR/dt is an

instantaneous (i.e. path-independent) function of the underlying electromigration kinetics. That

conclusion is supported by the consistency observed between shark-fins. While the envelope function

R(V(t)) varies unpredictably, sometimes increasing and sometimes decreasing (Figure 32a), dR/dt, and

specifically dinR/dt, has a consistent trajectory (Figure 32b). From a control standpoint, dR/dt has a

consistent relationship with our input variable V, whereas R does not. That suggests that dR/dt would be a

more effective control variable, providing greater ability to deliberately alter the process pathway and

outcome.

Surface Transport Model Implications for Electromigration Control

Empirical observation therefore suggests that dR/dt is a superior control variable for the

electromigration of nanowires, and dR/dt instantaneously reflects the underlying electromigration

kinetics. To understand why and derive a control mechanism, we return to our surface transport model of

nanowire electromigration developed in Chapter I. As a function of voltage, we predict the rate of

nanowire radius reduction to be (see Chapter I)

dr 2yA 1
(19) d ~ - )

where r is the nanowire neck region radius, initially at ro, t is time, y is the scattering cross-section <Ps

divided by the constant 4nq where q is the elementary charge, A is the hard sphere atomic diameter of the

metal, R, is the wire series resistance, and V is the applied bias which is itself a function of time (either

explicitly as in the Penn method or, in a continuous controller, implicitly via the control variable). The

approximation sign indicates this simplified expression is valid under two very strong approximations

(see Appendix L). The first is that the series resistance is substantially larger than the initial neck region

resistance, and the second is that the radius is much larger than one atomic diameter (r >> A) for the

region of the process of interest; see Appendix L for validation.

The source of the intrinsic positive feedback in the system is clear; at a fixed voltage i.e. in the

absence of control, the shrinking radius (nanowire necking) causes the I/r2 term to grow quadratically,
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leading to an acceleration in dr/dt. Physically, the 1/Ir2 term arises from the surface area to volume ratio

(Chapter I); as the radius shrinks, the number of surface atoms, which we showed dominate the

electromigration kinetics in nanowires, relative to the number of bulk atoms increases leading to a greater

portion of the momentum imparted from the current flux being allocated to the surface atoms thus

speeding atom migration. That phenomenon is visualized in the simulations of Figure 33. With a fixed

bias the rate at which radius declines accelerates to an asymptote, or in other words the time to nanowire

failure/cleavage (r = 0) shrinks exponentially with radius. The higher the bias, the faster the acceleration

and higher the radius at which the failure asymptote is approached. In fact for the typical nanowire

conditions portrayed in Figure 33, forming at a modest 200 mV can cause essentially instantaneous failure

at as high a radius as 15 nm - a wire that still contains of order 106 atoms in the typical neck. These

asymptotes are experimentally problematic because resistance cannot be measured with arbitrary speed,

due to practical limitations on the electrical noise level achievable. A given apparatus has some minimum

signal measurement and response time r corresponding to a given level of signal accuracy. The longer the

current measurement integration time, the more accurate the measurement, and the higher r.

40 350

345 ~0.2V Figure 33. Illustration of positive feedback
s .4 V i.e. asymptotic failure in the surface

transport model by simulating hypothetical
335 nanowires. Solid, dashed, and double-

253 dashed curves are for fixed voltage 0.05 V,
0.2 V, and 0.4 V respectively, with

E
20 325 nanowires of different initial radius

320 indicated with colors. Plotting radius (left)
and resistance (right) versus time evolved.
In all cases nanowires fail suddenly, with

310 higher biases approaching the asymptotes
at higher radius, providing a shorter time-
to-failure which is also the controller's

0 soo time to measure R and respond.
0 50 100 150 200 250 0 50 100 150 200 250
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Empirically, we found in our application of the Penn method (previous section) that failure

correlates with this sudden formation, making our proposed control objective avoiding it. The voltage

pathway V(t) must be constrained such that formation will be guaranteed, subject to r, to halt at any rs>0,

i.e. r will not fall below zero. In other words, at any point in the evolution of the nanowire thinning, the

time to r. > 0, t, must be r or more shorter than the time to failure, tf where r = 0. r, can in theory be

arbitrary close to r = 0 but more practically can be thought of as the radius at which formation enters the

stochastic regime, described above, where our model breaks down as resistivity becomes ballistic.'" Put

In Appendix L we estimate the effective radius at which the stochastic regime is entered to be

approximately 9 nm, from both our own resistance pathway observations and from in situ TEM.
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in simpler terms, a V(t) pathway is only valid if it provides at least r time for the controller to recognize

that it has reached or surpassed the target radius r, before rf= 0 is reached. To evaluate that condition we

integrate (19), the rate of radius reduction in our surface transport model, from ro to 0 and ro to rs, yielding

the constraint

tf

(20) 13 RS V(t) dt.
tf-T

To be viable, any voltage pathway must satisfy (20). This inequality places a further limit however on any

single step in the electromigration process i.e. any single decision the discrete electrical control makes or

instantaneously any value of Vat a given time t. Any controller cannot measure and respond faster than r;

therefore in the final r period of V(t), integrated over above, the applied bias V is necessarily constant. As

such we can perform the integration

(21) f r 2 dr = 2 V dt,

r 0

(22) ts 6AV (r - rs)3

V and r fully specify dr/dt in our model (19)

(23) 2yAr ,

yielding

1(r - r)3dr-
(24) ts = d'

3 r2  dt

Assuming r, small (< 10 nm) relative to r in the final step

1 (dr'\1
(25) ts ~ - r

In fact these same expression can be derived and applied for the time-to-failure tj with rf 0 instead of t,

1 (dr\-1
(26) tf -

For any given step, t, (or tf) must be greater than the chosen measurement-response time r, yielding

1 dr 1
(27) - - <-r dt -c

For a nanowire to form gradually, condition (27) must always be satisfied during the

electromigration process; it is the 'viable step condition.' Put in more intuitive terms (in fact the same

result can be derived from this starting point), to avoid sudden formation the time to failure t( from the

present state (the current r) must always be less than the measurement-response time r. That allows the
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electromigration process to be halted prior to failure. That is visualized in Figure 34a, where the time to

failure is plotted against the current nanowire radius and current rate of necking dr/dt. When (r, dr/dt) are

such that the time to failure is above T, formation will proceed gradually in our model. Otherwise, the wire

will break suddenly, risking failure in forming a viable tunnel junction. To avoid positive feedback

therefore, a controller manipulating V must hold - d at or below the setpoint -1/3,. A fixed-voltage
r dt

strategy always fails the viability condition, as empirically observed by Strachan et al.,[8] Karim et

al.,[94] and ourselves.[149] In an ideal nanowire such as that we have modelled, the requisite voltage

pathway to achieve that could be pre-programmed by fixing

1 dr 1
(28) -- = K = ,

rdt 3r'

as a constant. That gives us a voltage pathway from (23),

(29) V(t) = R K .r(t)3  s - (t)3
2yA 6yAT

yielding radius evolution pathways such as in Figure 34b. As r falls (the nanowire necks), V must fall

increasingly rapidly to avoid sudden failure. While this ideal V(t) is illustrative, in practice, as discussed

below, non-idealities in the formation process preclude such pre-programming. The V(r) relationship

does, however, provide an envelope function for the allowed values of V; at a given r, V(r) can never

exceed - r
6yAT
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Figure 34. (a) map (color scale) of ts, the time from the current radius r to reach rs ~ 0 given dr/dt, in seconds.

Red line indicates a given -, 0.4 seconds, with formation times higher than r acceptable and formation times lower

risking failure. As radius decreases, a slower rate of decline is necessary to stay above r. Points indicate r and dr/dt

values along the iso- r line. (b) r(t) traces for nanowires with the constraint (20) enforced i.e. a perfect controller,

meeting that constraint on (r, dr/ldt). As the radius shrinks, the rate of radius shrinking must slow to avoid sudden

formation, indicated by the declining slopes. Enforcing a longer r yields to more gradual formation.
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Because r cannot be observed directly, for the control objective (27) to be experimentally

enforceable we must change variables to the dependent observable variable resistance R' = R + Rs where

R' is the total resistance (measured current I divided by applied bias V), R is the resistance of the

nanowire neck, and R, is the series resistance, including the contact wire. In experiments, we estimate R,

from the initial total resistance R' and our known approximate Ro, then subtracting it from R' to measure

R for the remainder of the experiment. R relates to r simply via the wire resistance as

PS
(30) R = r-.

where p is the material resistivity. That yields the controller objective

1 dR 2
(31) - - <; -.

R dt - 3-r

To achieve gradual formation, any controller must maintain dlnR/dt at a constant value, at or below this

setpoint, tied to the measurement-response rate /r. Note that r captures all limitations on speed, which is

generally limited by the noise level (the speed-accuracy trade-off).

Our model therefore corroborates our empirical finding that dlnR/dt is the appropriate control

variable in nanowire electromigration. We show that is because dlnR/dt is proportional to the uncontrolled

rate of nanowire necking, including acceleration, i.e. the inverse of the time to failure. In Kinetics or mass

transport terms, dlnR/dt is a measurement of the metal migration rate.

This result of surface transport changes the understanding and approach of electromigrative

formation of tunnel junctions. The Penn method, which is the only method employed to date, explicitly

controls R rather than dR/dt, but as a result the formation process is, as shown above, discretized into

sporadic moments of sudden rapid thinning. The resistance response to a given voltage is unpredictable,

and as such the only means of using R as a control variable has been the 'shark-fin' cycle, where the

resistance is allowed to briefly run away and the voltage is rapidly brought back from the brink. Because

dlnR/dt is the rate of electromigration, the delta-R monitored in the Penn method is, as shown in the

previous section, effectively a control on dlnR/dt; in fact any control schema will in effect be controlling

dlnR/dt. The choppiness of that method however risks sudden formation of the gap at each cycle.

Continuous controllers, such as PID control, where a smooth trajectory, subject to noise and physical

perturbations,"xvi is maintained have not been possible to date because any particular R(t) pathway to

target as a setpoint has remained elusive. In contrast, our empirical and theoretical findings suggest that if

dlnR/dt were controlled, it could be held at a constant value without ambiguity in the formation pathway.

With this control variable, constant, continuous control should be possible.

XXVi 'Physical perturbations' are discussed below, and are variations in the scattering cross-section which

may be due to e.g. the reconfiguration of grain boundaries during the electromigration process.
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From our inequality (31), we can also observe that because R is positive, holding dR/dt constant,

rather than dlnR/dt, will also always satisfy the viable pathway condition so long as the setpoint is

conditional on the initial nanowire resistance, which is the lowest resistance that will be present. i.e.

1 dR ldR
(32) ~~ <_RO dt R dt

always holds.

Time-to-failure in Nanowires

Above, we derived the time-to-failure tj of nanowires due to surface-transport-limited

electromigration. Kinetically, l1/t/is the mean rate of electromigration from the current point until failure.

While we employed it to derive the conditions for controlling electromigration, it also highlights the

physical differences between the surface transport mechanism of electromigration in nanowires and the

bulk vacancy transport mechanism of electromigration in micron-diameter and larger wires (the Black

model). To illustrate that, we derive the surface transport theory analogue to the Black equation. The

Black equation for time to electromigrative failure is

EV

(33) tf = AekT -2

where A is an empirical prefactor, Ev is the activation barrier to vacancy diffusion, k is the Boltzmann

constant, T is temperature, andj is the initial current density in the wire. This time to failure has been the

standard expression describing electromigration in the semiconductor industry since 1969. As

miniaturization has reduced the size of wires to the nanoscale however, it has been corrected by changing

the -2 power to a device-specific empirical value between -1 and -2. [10]"'

In a surface transport model, for a nanowire of initial radius ro, equation (21) yields

(34) tf = 6yaV rO.

Substituting in a fixed current rather than fixed voltage, the expression becomes

1
(35) tf = 6 yAl rO.

Substituting initial current densityj for current in a cylindrical wire, and breaking y out by its definition,

_2 qr0 4
(36) tf = 2 <pa I

XXI Exponents more negative than -2, generally no further than -3 but on rare occasion as high as -10, have

been measured and assigned to Joule heating diffusion rather than current-stimulated migration.
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where again p is the electromigration scattering cross-section and q is the elementary charge. The

scattering cross-section can be described as an Arrhenius process with a mean surface transport activation

barrier of E,

Es
(37) Ae-kT

yielding a time to failure expression analogous to the Black equation,""vi

2 qrO Es

(38) tf = Ae j-1.

or folding the constants into the empirical prefactor,

Es

(39) tf = AejFT

Comparing (39) with the Black equation (33) we can see that the difference between surface

transport and bulk vacancy migration, i.e. between nanometer-diameter and micron-diameter wire

regimes, is captured in the scaling of tf (and l/tf, the mean electromigration rate) with current density.

Bulk vacancy kinetics yield a quadratic rate dependence on current flux, whereas surface transport yields

a linear dependence. This observation both explains and is supported by the aforementioned empirical

corrections to the Black model, adjusting the power between -1 and -2.[10] Previously, the change in

power had been assigned to material-specific non-idealities.

Electromigration Controller Design

An electromigration controller in nanowires should therefore use dlnR/dt or dR/dt as its control

variable, setting it, and hence the rate of electromigration, to some constant. To enforce that condition, a

control algorithm is required to maintain the setpoint. In theory, any algorithm can be employed, e.g. a

PID control, or even a pre-set voltage pathway based on our model predictions such as Expression (29)

and Figure 34b. In practice however the controller must handle the non-idealities in the system; our model

describes idealized surface atom transport, but a few secondary phenomena not included in the model are

common.

First there is measurement noise i.e. uncertainty in the measurement of R, which is compounded

in taking the derivative dR/dt (the derivative amplifies high frequency noise). The controller must allow

for the measured dR/dt (i.e. electromigration rate) to deviate from the true dR/dt without increasing the

voltage to a point where the sudden formation regime is entered. That uncertainty is reduced by using a

longer measurement integration time, and hence increasing r. r cannot be made arbitrarily long however,

both because formations taking longer than 24 hours are impractical and because, as described above (e.g.

XXvii Treating A as an empirical prefactor as in the Black equation, we can redefine A as 1/A.
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Figure 32b), reversible resistance rises due to Joule heating place a lower bound on the setpoint; if it is set

too low dR/dt will be due to Joule heating, not electromigration.

Second, there are stochastic perturbations in 'pcs, the scattering cross-section, which we

hypothesize is due to reconfiguration of the grain boundaries during electromigration as observed in in

situ TEM (cf reference [22]). When (pcs increases, those sudden changes lead to a sudden jump in dR/Idt

that must be caught and attenuated faster than the system's positive feedback accelerates, as in Figure

35b. Third, the length and position of the neck are not exactly constant, with back-fill (a temporary shift

in the atomic flux gradient refilling the neck) yielding occasional periods of declining R, as in Figure 35c.
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Figure 35. Examples of observed non-idealities in nanowire electromigration. (a) Overall R(V(t)) trace of this
device. (b) Stochastic increases in (cs. At the point indicated by the black arrow, the resistance begins to rise much
faster with V than previously. (c) Back-fill, with the resistance falling over time rather than increasing. (d)
Fluctuations in (cs, with increasing voltages required to generate resistance rises, as indicated by arrows.

With these considerations in mind, we chose to use an exponential control term to maintain the

setpoint dlnR/dt by manipulating the applied voltage,

1 dV E E
(40) Vdt e

where error

(41)
ldR ldR

E A ::
R dt iLdt ISP

82

a700
650

600

550

500

0

b 650

645

840

635

630

625

1.8 2

V (V)

. FIN...-

f

77 2A22

kiw/



is the deviation from the setpoint, constant Eo 4 log # / log K, sets the origin (no response when E = 0), 8

is the desired maximum rate of voltage increase, and K, is the sensitivity parameter. We also added

integral control to manage the noise level,

(42)

t

= f - + K f (W -1sp)dt
t-T

where Q is dinR/dt, Ti is the time period backwards to integrate over, and K is the sensitivity parameter.

When the electromigration rate exceeds the setpoint, this nonlinear control response attenuates

the voltage more rapidly the higher the rate (Figure 36a). This acceleration of the dampening voltage

response with acceleration of electromigration allows the controller to compete with the wire's positive

feedback to avoid runaway. Thus when measurement noise or a stochastic increase in 'pcs initiates run-

away at the current voltage, the controller can respond to reduce the possibility of sudden formation.

When the electromigration rate is too low however, the controller increases the voltage only gradually,

with an asymptote rate p. That prevents back-fill, where dR/dt becomes negative, from instigating an

aggressive, spurious rise in voltage that could quickly tip the system into run-away as a standard PID

control would. The choice of KE determines the severity of the response. By examining the speed of

positive feedback in the Penn method data, we estimate that KE between 1.2 and 1.8 are reasonable,

confirming that is the case in applying the controller below.
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Figure 36. (a) Controller response curve, plotting the controller response (1/V)dV/dt to a given measured dR/dt
deviation from the setpoint, for K = 2. Below the setpoint, this (negative) exponential raises the voltage, but does
so diminishingly farther from the setpoint (e.g. when dR/dt is negative, the voltage still only gradually rises). Above
the setpoint, voltage is attenuated increasingly rapidly the farther the deviation, such that an acceleration in dR/Idt
(runaway) is met by a compensating accelerating reduction in V. (b) Control algorithm applied to our idealized
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surface transport model of a nanowire, showing the voltage and resistance pathway taken in the absence of noise.
(c) Control algorithm applied to the same model but now with noise in the measured resistance, showing that while
the controller can still maintain the setpoint, the resulting resistance pathway is not as smooth as the noiseless
scenario, due to spurious increases and decreases in voltage. Several simulations were performed, but shown here
is the highest-noise, with a Signal-to-Noise Ratio less than 1. The noise level is substantially higher than that
observed experimentally, but the controller is nevertheless able to avoid sudden formation.

To simulate its effect we applied the controller to our surface transport model of electromigration

(Figure 36b,c) by solving the coupled differential equations for the nanowire electromigration rate

(Equation (19)) and the controller response (Equation (42)). In the absence of measurement noise (Figure

36b), the controller gradually finds and maintains the setpoint. That leads to an r(t) trajectory similar,

after reaching the setpoint, to the 'perfect control' case of expression (29), Figure 34b, with the radius

declining at an increasingly gradual rate to maintain the time-to-failure below r. The resulting voltage

pathway has a similar R(V(t)) profile to that of the Penn method, with a turn-around voltage reached after

which lower and lower bias is required to maintain the desired electromigration rate. The similar profile is

expected because the Penn method, as discussed above, defacto controls dR/dt within bounds. Later

(below), when we experimentally apply this controller, we verify that the two trajectories - the Penn

method and dR/dt control - have similar features.

Adding white noise to the current measurement in our simulation (Figure 36c), the voltage and

resistance pathways are overall similar to the noiseless simulation. The deviations from the setpoint

however are more substantial. Under higher noise than experienced experimentally however, Signal-to-

noise Ratios (SNR) below 1, the controller is nevertheless able to reach and maintain the setpoint, leading

to gradual formation. When the SNR exceeds 0.5 there are periods of increasing and decreasing voltage

observed (Figure 36c inset), due to mismatches between the measured and actual electromigration rate.

For example the real dR/dt can rise while the noise, at this level, can cause the measured signal to fall,

leading to an increase in V and hence an even faster acceleration of dR/dt. We observe this feature in our

experimental application of the controller below. The buffering of the exponential control prevents this

effect from causing sudden formation.

Application of Electromigration Control

We applied the new controller to our nanowire devices to form electromigrated tunnel junctions.

For initial parameterization, i.e. setting KE and the setpoint asp, we used data from the Penn method

shark-fins to estimate reasonable values. We then had to tune KE based on the response of the device

during electromigration (Figure 37). We began with values of KE and the setpoint that are tight

(conservative) and gradually loosened them. When KE is too high, the voltage attenuates rapidly in

response to noise-driven, as opposed real, increases in resistance near the setpoint such that voltage 'cut-
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backs' (sudden drops) are observed where R declines (Figure 37), indicating that V did not have to drop

so substantially to avoid precipitious formation. Such cutbacks are analogous to the shark-fins observed in

the Penn method, particularly when the voltage attenuation response is set high; for example in the

original publication of the Penn method, the voltage was reduced to zero.[8] When KE is optimal, voltage

attenuation is associated with resistance increases, such as in Figure 38, indicating that the controller is

competing with/managing the system positive feedback. When the voltage frequently undergoes

reductions of that sort i.e. sharp V reductions with increasing R, that suggests that the setpoint is too high

such that the system is regularly dangerously close to run-away given r.
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Figure 37. Example trace of tuning controller parameters with a nanowire device. In this

trace, KE is too tight (too high), leading to excessive attenuation of the voltage observable

from the sharp cut-backs in voltage despite a resulting decrease in resistance. If K is tuned

appropriately, sudden voltage drops will be in response to real (rather than noise-driven)

increases in resistance such that R still increases even when V is dropped, indicating that the

controller is competing with the system's positive feedback loop. Left plot is R- V, right plot

is dlnR/dt with time. The purple curve is the filtered signal used for control (Gaussian

lowpass filter), while the orange line is the setpoint. Despite the over-tightened K, the

controller is able to generally maintain the setpoint. Even with the premature voltage

reductions, the system resistance is consistently rising, suggesting that eventually, like the

Johnson method, formation would occur.

Once the parameters of the controller (42) were appropriately tuned, the control algorithm worked

as predicted and intended, from the very first device tested (Figure 38). To date, all electromigrative

formations of tunnel junctions in the literature have been erratic. An R(t) setpoint pathway has not been

established; as we observed in our application of the Penn method, the response of R to V is not

predictable. As a consequence, the Penn method produces discrete jumps and halts in resistance, rather

than a continuous evolution. In contrast, our application of dlnRldt control approaches and then maintains

a stable setpoint (Figure 38b). As visible in the inset of Figure 38c, where R continues to rise when V is
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attenuated," the voltage attenuation anticipates, rather than reacts to, runaway electromigration. Also

visible in the inset are the same R(V) fluctuations observed in our simulations (Figure 36c), which we can

therefore assign to noise-instigated deviations between the measured and actual dR/dt. This produces a

stable, gradual, and smooth rise in R(t), as in Figure 38a, rather than erratic jumps and plateaus. This

formation, and subsequent ones with this method (below), are the first times that a chosen, pre-

programmed resistance pathway has been achieved in electromigration. In each cycle of the Penn method,

as discussed above, the stable dR/dt regime is passed, electromigration accelerates to cause a jump in R,

which is then caught and suddenly halted. In our dR/dt control, the R- V response is continuously

monitored to produce a stable dR/dt; the sudden resistance rises at the edge of the shark-fins are pre-

empted. As predicted, dlnR/dt control produces gradual electromigration.
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Figure 38. Experimental application of the control algorithm to a nanowire for electromigrated formation of an
electron tunnel junction; the first device we tested. (a) Resistance over time, showing that the controller is able to
maintain a smooth linear rise in resistance, avoiding sudden formation. (b) Resistance-voltage trace (blue),
compared to data from a similar nanowire using the Penn method (green). As predicted by our surface transport
model, the controller yields a qualitatively similar formation pathway as the Penn method. Once the setpoint is
attained, at the 'turn-around voltage,' the resistance rises consistently. Unlike the Penn method, resistance-reducing

xxix As opposed to the Penn method sharkfins, visible in the same figure panel, where the voltage attenuation

generally yields a reduction or stagnation in resistance.
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cutbacks are not necessary and rapid increases in resistance are avoided outside of stochastic events. Inset zoom
shows that voltage reductions are associated with resistance rises, rather than falls in the Penn method, reflecting
that the dR/dt control is continuously managing the electromigration rate. (c) control variable dlnR/dt over time.
Blue curve is the raw measurement data, magenta curve is the noise-filtered measurement data (applied to
controller), and the orange line is the setpoint. The controller brings the system up to the setpoint, and then is able
to maintain a consistent dR/dt. Maintaining a setpoint in R has eluded researchers to date, vindicating our model
predictions and empirical observations suggesting dR/dt as a control variable. (d) Controller response, intended and
measured. The blue dots are measured voltage changes corresponding to measured resistance changes. The black
line is the control equation, showing that the intended relationship is generally held despite the effects of noise and
controller response delay.

Our exponential controller also handles the non-idealities as anticipated. The voltage modulation

maintains the target dR/dt setpoint despite a low signal-to-noise ratio (Figure 38b). While noise and the

finite delay in controller response lead to variation in the measured dV/dt as a function of the control

variable dR/dt, the desired control expression (42) is overall maintained (see Figure 38d, comparing the

measurements, blue dots, to the control equation (42), the black line). Qualitatively, the behavior matches

the noisy simulations, Figure 36b, with noise potentially explaining the voltage oscillations; compare the

Figure 38b inset with the Figure 36c inset. When back-fill is encountered (e.g. the beginning of trace

Figure 38a), the exponential horizontal asymptote successfully avoids an aggressive voltage response.

Vice versa, sudden leaps in resistance are caught by the exponential vertical asymptote with a

correspondingly rapid attenuation of voltage. These responses vindicate the selection of a negative

exponential control term.

As predicted by our application of the control to the surface transport model (Figure 36), the same

envelope features of formation as in the Penn method are observed. There is a turnaround voltage in the

R- V curve (Figure 38b) where expeditious formation initiates, after which lower and lower voltages are

required to continue formation at that rate, predicted to be caused by the thinning of the wire. Combined,

our observations of the Penn method, our surface transport model predictions, and the verification of

those predictions here, suggest that such a pathway is a general property of gradual formation; the voltage

must decline as the wire thins.

Eventually the nanowire necks gradually to reach the 'stochastic regime,' where only a few dozen

atoms remain leading to a conductivity only 5 to 20 times the conductance quantum Go (Figure 39).

Coincidentally, in this region the controller is still able to continue formation until a final break in the

wire occurs. The mechanism of control however is no longer valid; the Penn method or even a simple

single-voltage hold all perform similarly in forming the final tunnel junction from this point. The process

is stochastic, with a single or few atom dislocation being required to step up the resistance. As such all

that is required is a reasonable applied voltage and monitoring of the resistance to ground the leads once

the junction forms.

87



20

15

0
0D 10 -

5

0
0 0.5 1 1.5 2

V(V)

Figure 39. Controller performance in the stochastic regime. Conductivity normalized to

the conductance quantum Go versus voltage (with time) trace. When the nanowire necks

to a few conductance quantums, continued narrowing is achieved through quantized

dislocations of atoms, yielding stepwise jumps in resistance, until the wire finally breaks

by falling below Go. The continuous stretches of conductance increase are due to the

nonlinearity of the current-voltage curve at this small 'diameter.'

We applied the electromigration control to 24 nanowire devices, varying the target dlnR/dt

setpoint i.e. the rate of electromigration to examine whether that has an impact on the formation pathway

or outcome. As with the Penn method, we characterized the formation of a tunnel junction as successful

or unsuccessful depending on whether a measurable tunneling current is obtained after formation,

regardless of how robust the 'successful' junction is to elevated-voltage electrical testing. We found that

while the dlnR/dt controller always generated a smooth, continuous R(V(t)) pathway, it did not always

avoid precipitous formation (Figure 40). Again we observed a correlation between precipitous formation

and device failure. We found however that unlike the Penn method, the yield of successful tunnel

junctions was dependent on the control parameter, the dlnR/dt setpoint (Figure 40a). Three regimes were

observed. When dlnR/dt is too high, over 0.07 %R/s, the exponential control is constantly competing with

run-away, leading to precipitous formation and failure in 60% of devices. When dlnR/dt is too low

however, below 0.04 %R/s, the yield also falls. That low rate of measured resistance change convolutes

any electromigrative effect with Joule heating, with the latter phenomenon identified as reversible

increases in R. When Joule heating masks the wind-force driven electromigration, the observed dlnRldt

may be decoupled from the rate of electromigration, and the controller is no longer adequate. The low

yield suggests that is the case, and provides further evidence that the mechanism of electromigration in

nanowires is not Joule heating. When the setpoint is optimal, between 0.04 and 0.06 %R/s for our devices,

the yield approaches 100%. That high success rate is despite the current limitations of device fabrication;

with current electron beam lithography and metal deposition techniques we can produce consistent
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nanowire device dimensions, but cannot control the crystal structure. In particular, grain boundaries will

vary widely from device to device, such as observed in Taychatanapat et al.[22] and Strachan et al.[29]

As discussed in the Introduction, these heterogeneities dominate the rate of electromigration, leading to

device-to-device variation and, as the grain boundaries evolve during electromigration, variation within

the device. Nevertheless when well-tuned the dlnR/dt control is able to manage these uncertainties and

produce high yield. In demonstrating that under the right circumstances tunnel junction yield can

approach 100%, our controller establishes that electromigrative tunnel junctions have the potential to be

commercially viable.
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Figure 40. (a) Rate of successful formations as a function of (1/R)dR/dt setpoint. There is an optimum setpoint

between 0.04 and 0.06 %R/s where dR/dt is irreversible (i.e. distinguishable from Joule heating) but not too

high such that precipitous formation is avoided. At this optimum the yield of successful tunnel junctions

approaches 100%. Number of devices tested at each setpoint indicated in data labels. (b,c,d) Example successful

(b,c) and failed (d) formations with the (1/R)dRldt control, at setpoints 0.10 (b), 0.05 (c), and 0.006 (d) %R/s.

The success of our dlnR/dt control and the dependence of electromigration pathway and outcomes

on the setpoint have several implications. Continuous control of the electromigration process, where the

R(V(t)) pathway can be pre-specified and maintained, was previously impossible. In addition to its

potential to improve yields, as we've shown, continuous control could provide greater insight into the

89

a 100%

80%

U)

=30
0~j

60%

40%

20%

0%

C
29C

28C

27C

260

25C

240

) 1.2 1.4

- -

2



electromigration process. Unlike the Penn method, the factors effecting electromigration success can be

probed and understood. When fabrication methods advance to reduce the variance and heterogeneity in

the nanowire crystal structure, both the yield and physical insight provided by dlnR/dt control are

expected to increase. The ability of the surface transport mechanism to predict the features of dlnR/dt,

such as gradual formation and the turnaround voltage, provides further evidence in support of the validity

of that model of nanoscale electromigration. The sensitivity of electromigration yield and pathway to the

dlnR/dt setpoint supports the proposition that dlnR/dt is proportional to the rate of electromigration,'

providing a direct measurement of kinetics. That sensitivity also affords new opportunities for designing

the electromigration pathway by designing a varying dlnR/dt pathway, as opposed to the constant setpoint

we have employed here. Finally by showing that under the right circumstances it is possible to approach

total yield, we demonstrate the technological viability of the electromigrative tunnel junction technology.
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III. ELECTROMIGRATION VIA A CARBON NANOTUBE-AU NANOWIRE INTERFACE

Summary of Findings

In the previous Chapter, we showed that the bulk vacancy transport limited kinetics (the Black

Model) that describe micron-scale electromigration do not apply to sub-micron diameter wires, and rather

that a surface transport limited model is consistent with experimental results.[149] Specifically we found

that the time to failure of nanowires is not predicted by the Black model, but predicted without

measurable error by a surface transport model. Since its discovery the Black transport mechanism has

been the standard quantitative model of wire failure in the semiconductor industry, used to predict the

time-to-failure and allowable current flux. [2,10] With miniaturization to the nanometer scale correction

factors have been introduced, in particular changing the current scaling of electromigration rate from

quadratic to linear,[ 10] which we showed in Chapter II are explicable as a transition from the bulk

vacancy transport limited kinetics to surface transport limited kinetics. In addition to its quantitative

properties however, electromigration in micron-sized wires has a variety of characteristic qualitative

features which may also break down at the nanometer-scale. In Chapter I we identified one such feature -

void formation. In micron-scale wires, electromigration eventually yields voids in the material from the

accumulation of vacancies at the point of highest atomic flux,[ 10,16,18] consistent with a bulk vacancy

transport mechanism. In nanowires however, vacancies do not form and the wire instead thins, or

'necks,'[29,83] consistent with the surface transport mechanism we propose.

The question remains whether other characteristics of electromigration at micron scales change at

smaller scales. Of particular technological interest is the point of electromigrative failure i.e. the location

along the wire where material is lost most rapidly and the wire ultimately breaks. In micron diameter

wires it is ubiquitously observed, across nearly all materials and architectures, that electromigrative

failure occurs at material interfaces whenever they are present. [16-21] The net rate of gain or loss of

atoms in a given cross-section of the wire is dictated by the gradient in the electromigrative flux. In a

perfect crystal, the flow of atoms into and out of any given cross-section would be equal such that there is

no net loss of material or resulting change in crystal dimensions. In a real crystal however gradients in

structure, chemical composition, and/or temperature lead to a net re-allocation of atomic material and the

above-mentioned void, neck, or protusion formation. At material interfaces, even between two crystals of

the same chemical composition,[20] the barrier to atom vacancy diffusion is substantially lower than the

adjoining bulk crystal, making the flux gradient large. Under usual circumstances this electromigration

gradient is substantially larger than any other along the wire such that it dominates the rate of material

loss, becoming the point of failure. The interface can be thought of as a grain boundary that spans the full

wire diameter rather than a single grain. Whether this phenomenon holds in nanometer-diameter wires is
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of technological import. For integrated circuit design, it dictates whether interconnects must be made

wider or otherwise more robust than the isolated wire lengths, increasing the circuit footprint and

potentially complexity. In the formation of tunnel junctions, discussed in Chapter II, control over the

location of gap formation is required to interface single-molecule junctions with an electronic network or

nanopore.[54,60] In monometallic nanowires, that has yet to be achieved because failure nucleates at an

unpredictably-located grain boundary, where in the absence of other material interfaces the gradient in the

flux of metal atoms is maximal. [29] If material interfaces present the fastest rate of electromigration in

nanowires as they do in micron-diameter wires, that can be exploited to position the tunnel junctions,

which form at the point of failure, using a highly heterogenous material interface such as between a

covalently-bonded carbon nanotube (which is electrically conductive) and a metallic-bonded Au

nanowire. That behavior could be used to locate tunnel junctions with the requisite nanometer precision,

although it would also limit the feasible designs of complex multi-component structures on the 1-10 nm

scale. On the other hand, if the dominance of interfacial mass transport no longer holds then arbitrarily

complex structures may be feasible from an electromigrative failure standpoint, and the precise

positioning of tunnel junctions will remain possible albeit requiring fine control over crystal structure.

In this work, we investigated a covalent-metal interface in the formation of electron tunneling

gaps, flowing current between a single-walled carbon nanotube and Au nanowire. We found that the rule

of micron-sized wires, where failure occurs ubiquitously at interfaces even when between the same

chemical composition, breaks down at this scale; interfacial heterogeneities did not limit the gap

nucleation kinetics. Instead, electromigrative failure and tunnel junction formation frequently occurred

within the Au nanowire or the carbon nanotube, implying that crystal heterogeneities - e.g. defects and

grain boundaries - can have comparable or superior diffusion gradients. This system is the first reported

electron tunnel junction formed by flowing current between a metal and covalent material. It is of

particular interest because carbon nanotubes (CNTs) can be used as nanopores to translocate

DNA,[59,150] and potentially other biomolecules such as glycans and peptides, in which case interfacing

the pore with a tunnel junction is necessary to read out the sequence.' [151] Using the nanopore as an

electrode to form the junction at an interface with a Au nanowire (NW) is one of few possible methods of

positioning the gap appropriately. Intuition from micron-scale systems, where even single-component

metal-metal interfaces limit electromigration, is that necking would occur at the carbon nanotube (CNT)-

nanowire (NW) interface; with appropriate bias polarity, Au atoms would migrate away from the

interface along the Au NW, but not into the interface from the CNT, leading to a large net flux of atoms

x An electron tunneling measurement is necessary for single-base-pair or single Amino Acid sensitivity

because the size of those individual moieties is smaller than the Debye length of any reasonable solution,

preventing single-moiety spatial resolution using nanopore conducitivity measurements.
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out of the interface. We found surprisingly that the interface does not necessarily nucleate gap formation,

and that it is possible for crystal defects in the CNT and Au NW to present limiting formation kinetics.

Using two-terminal bias application and feedback techniques, we found that we could break either the Au

NW or the CNT along their lengths, and that the interface was not inherently the dominant failure mode.

Device Fabrication

SW NT To be able to drive significant

electromigration of Au atoms, several properties of

SiO 2  the Au-SWNT device were required. First, the Au

P MMA nanowire, as discussed in the Experimental Methods

of Chapter II, must be less than 0.001 pm2 in cross-

sectional area. Otherwise electromigrative failure is

frequently explosive or, as observed in Xiang et

al.,[88] constant back-fill inhibits formation.

Au Second, the carbon nanotube must directly interface

with the Au crystal i.e. without any immobile

Figure 41. Cartoon illustrating carbon nanotube materials interceding; that precludes the use of a Ti

growth, electron beam lithography, and metal or Cr adhesion layer such as those we employed to
deposition fabrication process described in the text.

stabilize our all-Au devices of Chapters I and II.

Third, the lengths of the Au nanowire and carbon nanotubes must also be made small enough such that

the series resistance Rs is no more than a few kiloohms. High series resistances present two impediments

to electromigration. The first impediment is that it has been shown to increase the incidence of sudden

failure and reduce the yield of successful tunnel junctions, due to an acceleration of the voltage drop

across the nanowire as wire resistance rises. [93] The second impediment is that the higher the series

resistance, the harder it is to detect the resistance increase of the nanowire due to thinning; for example if

the nanowire resistance is 10 Q and Rs is 90 Q, a 1% rise in nanowire resistance can be measured as a

-0.1% fall in the current signal, but if Rs rises to 0.9 kM, a 0.0 1% fall in the current signal must be

detected at the same noise level. In the extreme case of Rs > 1/Go, the conductance quantum, it is

impossible to even detect the formation of a tunnel junction without testing for ballistic conduction. To

achieve Rs less than a few kiloohm, the Au nanowire must be no longer than a hundred microns or so, and

for typical Single-Walled Nanotube (SWNT) resistivities of 10 MQ/cm the nanotube must be no longer

than 2 pm.
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Figure 42. (a) Scanning Electron Micrograph (SEM) of carbon nanotubes grown using chemical vapor deposition
on a SiO2 substrate (scale bar 1 mm). (b) Optical Microscope (OM) image of the Au nanowire and CNT contact
pads defined by EBL on top of the CNT (not visible) (scale bar 100 pm). (c,d) SEM images of the nanotube-
nanowire interface (scale bars 10 jim, 1 pm, 500 nm). The nanotubes are the bright white lines, appearing larger
than their actual diameters (1.1-1.8 nm, measured using Raman spectroscopy of the radial breathing mode) in SEM
because they diffuse surface charge buildup on the insulative SiO 2 top layer, thereby attracting primary incident
electrons.

We achieved the desired device properties using CVD growth of isolated carbon nanotubes on an

Si0 2 chip, followed by Electron Beam Lithography and metal evaporation for the formation of nanowires

and SWNT contact wires. This device fabrication process (Figure 41) was begun by growing centimeter-

long single-walled carbon nanotubes (SWNTs) using a 'kite growth' chemical vapor deposition (CVD)

process on top of an inert SiO 2 surface,[ 152] exactly as was done in the fabrication of SWNT nanopores

by Choi et al.[150] and Liu et al.[59] To do so, SWNT (NanoC) with resident Fe nanoparticle impurities,

those used to catalyze the growth of those tubes, was suspended in aqueous solution with a Sodium

Dodecyl Sulfate (SDS) surfactant by sonication and centrifugation. A few micro-liters of the solution was

then deposited as a thin strip on the edge of a 10 x 14 mm 2 Si0 2 chip (300 nm Si0 2 on top of a p-doped Si

single crystal). The chip was then placed in a CVD chamber, where hydrogen and methane gas were

flowed laminarly at a fixed rate over the sample at 900 C. The Fe nanoparticles catalyze the formation of

a nanotube ring structure, which it is hypothesized continues to elongate the nanotube at the Fe

nanoparticle surface, pushing the nanoparticle away such that it is carried into the gas flow stream

analogous to a kite being pushed away from the substrate by convective flow. After a period of time

chosen to allow for a sufficiently long nanotube, typically 5-20 mm, the reagent flow was replaced with

an inert nitrogen flow and the chamber was slowly cooled as the nanotube eases down onto the substrate,

adhering strongly via van der Waals interaction. The sample was then cleaned of organics prior to the Au
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nanostructure fabrication by sonicating in acetone and isopropyl alcohol followed by baking in nitrogen

(to maintain SWNT chemical stability) above 300 *C to desorb impurities.

Figure 43. (a) Example alignment of EBL
features to write (yellow) with the SEM images
of SWNT (grayscale); image 12.1 mm long,
SWNT growth catalyst visible on left (SWNT
grown left to right). The SWNT are identified
and their positions define relative to the chip
markers by stitching together contiguous SEM
frames as shown. The features to write in the
EBL process are then overlaid on the SEM
images and their positions measured relative to
the same markers (e.g. Panel b). As with this
chip, a single chip can have multiple viable
SWNT and a single long nanotube can be used
to produce multiple devices. Comparison of the
planned feature positions (b) to the actual
feature positions (OM of PMMA negative in (c)V
show that the devices are located as anticipated.
Before and after testing SEM is again performed
to verify that the SWNT and the Au nanowires
are indeed in the correct locations, structurally
intact, and to observe outcomes on morphology.

Prior to growth, markers were defined on the SiO 2 surface to allow co-location of the Au

structures and the SWNT. After growth, individually isolated nanotubes - those without another tube

within 2 mm - were identified and their locations registered with respect to the markers using Scanning

Electron Microscopy (SEM); despite their size, SWNT on insulative substrates appear clearly in SEM as

they collect charge and project an electric field.[ 153] The Au nanowire, nanowire contact pads, and

SWNT contact pads were then designed using CleWinC software, and their desired positions calculated

relative to a reference marker using the SEM images. The nanowires were designed to be < 100 nm wide,

achieved by varying the amount of electron exposure in a 60 nm wide digital mask. Prior to electron beam

lithography, we performaed Raman spectroscopy on the nanotubes of interest to identify their diameter

and whether they were single- or double-walled from the Radial Breathing vibrational mode (RBM); the

RBM is a cylinder mode characteristic of the tube diameter, allowing us to extract diameter d, from RBM

frequency a1, according to Jorio et al. [154]

(43) dt = 248 t

A 950,000 g/mol molecular weight Poly(Methyl Methacrylate) (PMMA) electron beam resist

diluted to 4 wt% in anisole was spin-coated at 3,000 RPM for 45 seconds on to the substrate, similar to
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the process described in Chapter II. The resist was then baked at 180 *C on a hot plate, measured by IR

thermometer, for 5 minutes to cure. See Chapter II for discussion of conditions and resist thickness

optimization. To perform Electron Beam Lithography (EBL) we used a Raith 150 apparatus at the MIT

Research Laboratory for Electronics (RLE) Scanning Electron Beam Lithography (SEBL) facility. We

exposed the resist using a 30 keV acceleration voltage, but varied the aperture depending on the features.

For the Au nanowire, we used a 30 jim aperture to achieve the desired feature resolution, but the write

time with a 30 pm aperture was prohibitively long for the SWNT and Au nanowire contact pads. For

those larger features where high spatial resolution was unnecessary, we wrote them separately with a 120

pm aperture to increase the current flux, and hence reduce the write time, by a factor of- 16. To align the

features written with the 30 pm and 120 pm apertures, as well as align those features to the carbon

nanotube, we referenced their positions to the markers on the substrate, achieving 4 ptm accuracy in

position. This accuracy limited the minimum length of the Au nanowires, as to sufficiently guarantee that

they would overlap with the nanotube they could be no shorter than approximately 10 pm.

Figure 44. Optical microscope images of poor liftoff examples.
Due to the lack of an adhesion layer (to have direct Au-S WNT
contact), it was necessary to use low temperature acetone for
liftoff, creating some device failures. (a) Au foil on the PMMA
surface could be pulled back to the surface, where it gets stuck, by
undissolved PMMA anchors. (b) small features, such as the 1-2
pim gap between the SWNT contact pad and the Au nanowire,
would sometimes not lift off. Approximately 50% of devices were
lost to liftoff, and many surviving devices have only the minimum
of two contacts.

After exposure, the resist was developed in 1:3 Methyl Isobutyl Ketone (MIBK):IPA as described

in Chapter II. Au was deposited into the resulting nanowire and contact pad negatives using electron

beam evaporation of Au. We deposited thicknesses ranging from 15 to 20 nm. Evaporation was

performed below 10-6 torr vacuum pressure and the thickness was monitored using an in situ Quartz

Crystal Microbalance (QCM). The Au thickness was confirmed with Atomic Force Microscopy (AFM).

Without an adhesion layer, we could not use hot n-Methyl Pyrrolidone, as we did in Chapter II, to liftoff

the PMMA mask; doing so dissolved the Au nanowires. Instead, we used a gentler acetone bath held at
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25 'C. This occasionally led to poor liftoff, with the Au foil falling back down onto the surface and

rendering the device useless (Figure 44), but in cases where careful agitation was able to prevent this from

occurring the liftoff was clean. To remove residual PMMA in this liftoff procedure it was necessary to

soak the sample in warm acetone for at least 60 minutes prior to drying. Devices were examined for in

SEM after fabrication to verify the liftoff, absence of PMMA residue, and correct positioning of the Au

features i.e. their co-location with the SWNT. The samples were stored under nitrogen atmosphere until

testing. As intended, the resulting Au nanowires were 100 10 nm wide, 120 pim long, and with less than

a 2 ptm separation from nanotube contact pads (i.e. the SWNT lengths channel lengths were less than 2

ptm). The resulting nanotube and nanowire resistances, discussed further below, were at parity with one

another. Because of the length of the nanotubes, each nanotube chip produced as many as 4 Au-S)WNT

interface devices, although in practice after liftoff only 1 or 2 typically survived. In total, 20 viable

devices were produced and tested.

Electrical Testing

Please see Chapter II for discussion of the electrical testing apparatus; the same probe station,

source-measure units, etc. were used here as in our examination of the monometallic Au nanowire

electromigration in that chapter.

For this work, each device had up to four contacts - two SWNT contact pads and two Au

nanowire contact pads. In practice however, damage during liftoff (Figure 44) constrained several devices

to the minimum of two contacts - one on the nanotube and one on the nanowire - necessary to conduct

the experiment. We labelled the four points of contact N 1, N2, S1, and S2, corresponding to nanowire (N)

and SWNT (S) contact pads (Figure 45a). For each device, we measured the resistance between each set

of contacts at 100 mV bias to extract the resistance values in the device's simplified circuit diagram

(Figure 45c). We found that there was a significant material interface resistance R, between the nanotube

and the nanowire, measured as

RSj-N2 + RS2-N1 = (Rs1 + R, + RN2) + (Rs 2 + R1 + RN1)

= 2R1 + (Rs1 + Rs 2 ) + (RN1 + RN2) = 2R1 + Rs 1-s 2 + RN1-N2

-44) = (Rs1-S 2 + RN1-N2 - RS j-N2 - RS2-N1)

where Rxy is the resistance measured between the contacts X and Y. Nanowire and nanotube resistances

e.g. RN2, Rs1 were similarly calculated. Both by bisecting the nanotube with the nanowire and by varying

the separation between the nanotube contact pads, the scaling of nanotube resistance with nanotube length

was checked, albeit between different chiralities in the latter case, and found to be linear as expected.

Across all devices, the measured nanowire conductivities ranged from 4x1 04 S/M to 1 Ox 104 S/M, SWNT
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conductivities from 0.5x1 07 S/m to 3x10 7 S/M, consistent with previous literature measurements ranging

from 105_108 S/m, and Au-SWNT interfacial resistances ranged from 2 to 3 kM.
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Figure 45. (a,b) cartoon of device numbering system for a single nanotube and device geometry. Devices with
nanotube lengths (nanowire-contact pad separations) ranging from 1 to 10 ptm were tested. (c) simplified electrical
circuit diagram of the device. The nanotube and nanowire are each bisected by the other, allowing us to identify
the resistance of each half. We also measure a significant interfacial contact resistance R, between the two however,
ranging from I to 5 kQ. We measure R, by subtracting the total nanowire resistance (the resistance measured
between NJ and N2) from the resistance measured of the individual segments via the nanotube (e.g. the resistance
between Si and NJ and Si and N2) minus the associated nanotube resistances. In principle, each of the four contact
pads can be biased independently. (d) cartoon of the material interface profile. We studied carbon nanotubes ranging
from 1.1 to 1.8 nm in diameter, and deposited Au nanowires ranging from 10 to 14 nm in diameter. (e) Example
resistance measurements for four devices on one nanotube. Each matrix cell is the resistance measurement at 100
mV between the two associated contacts. Color coding corresponds to each of the four devices, as well as brown
for contact resistance measurements (the diagonal) and red for the SWNT channel resistance measurements.
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Electromigration
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Figure 46. Electrical traces from nanowire or CNT failure. (a) Failure along the Au NW using a feedback
loop. The voltage is gradually increased with time as the resistance rises through a combination of nanowire
thinning and SWNT Joule Heating (left). When the resistance begins to rise rapidly, the algorithm attenuates
the voltage to slow failure, controlling the gap formation until the final break. I-V trace of gap after break
(right) (b) Failure along the SWNT using a 20V hold.

For each electromigration experiment, discussed below, one SWNT electrode and one nanowire

electrode were contacted. For most experiments positive current was flowed into the nanotube i.e.

electrons and Au would be migrating away from the SWNT and 'into' the nanowire, but we also treated

several devices with the opposite polarity. The bias orientation determines the direction of

electromigration (see Introduction), and this polarization was anticipated to maximize the probability of

tunnel junction formation at the interface as the Au should be vacating the interface but has no supply for

it to be replenished from.

We employed two electrical formation techniques (Figure 46): a resistance-monitoring feedback

loop and a bias hold. The first, originally developed by Strachan et al., involves increasing the voltage

steadily and monitoring the system resistance, including the resistance of the nanotube and the

nanowire.[149,155] When the resistance rises suddenly due to wire necking, the applied bias is attenuated

to prevent precipitous wire failure (Figure 46a). Please see the previous Chapter for further discussion of

this technique, which we call the 'Penn Method.' Our previous work modelling wire failure data[149]

(Chapter I) corroborates real-time Transmission Electron Miscroscopy (TEM) results[29] suggesting that

the resistance increase however is only appreciable after significant necking occurs. This process was
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complicated by Joule heating of the SWNT, leading to an equilibrium temperature increase that created a

reversible resistance increase convoluted with the irreversible increase of necking. The impact of Joule

heating on resistance is much stronger in the nanotube than in the nanowire, and as a result unlike with

electromigration in Au nanowires (Chapter II) it is difficult to distinguish from irreversible formation.

The second technique we employed was simpler: we ramped the applied bias to a high value (5-20 V) but

below the threshold for nanowire or CNT failure and held at that bias for a prolonged period (up to 10

days). Often within that period the nanowire or CNT would fail suddenly due to, we hypothesize, gradual

electromigration in the former case and stochastic defect-driven failure in the latter.

Figure 47. SEM images of (a) Au Nanowires (scale bars 100
nm) and (b) SWNT (scale bars 1 um) broken in the application
of our electromigration algorithms.

In both methods we were able to drive the failure of either the CNT or the Au nanowire (Figure

47). Often in the case of Au and once in the case of SWNT we could measure electron tunneling in the
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gap that formed, indicating a gap size below 2 nm, with conductivities between 1 0 - and 10' conductance

quantums. In no cases did the gaps form at the interface of the nanowire and the nanotube, and bias

polarity had no noticeable effect on outcomes. That result is surprising given experimentation at the

micron-scale; previous work has established that material interfaces tend to create kinetically-limiting

gradients in the metal flux, even when the interface is between two metals of the same composition and

crystal structure.[ 11,17] Our system has chemical heterogeneity at the interface, a covalently-bonded

carbon material meeting a metallically-bonded Au material. The atomic spacing, crystal structures,

barriers to atomic displacement, resistivity, and thermal conductivities all dramatically change at the

interface. Given that the comparably minor heterogeneity of grain mismatch is enough to dominate

micron-scale electromigration kinetics, the ex ante intuition in our system is that the interface should limit

formation. By readily forming gaps at non-interface locations, our results show that nanoscale kinetics are

not analogous to micron scale kinetics. At this smaller scale, defects in the materials e.g. grain boundaries

in the Au or covalent defects in the CNT have demonstrably more rapid kinetics because their influence is

no longer averaged across a larger domain. This empirical observation is consistent with the theoretical

predictions of Knowlton et al. anticipating that reduced wire width reduces polygranular clusters, leading

to more single-grain boundaries, more rapid electromigrative failure, and a greater variance in the failure

time.[156] Our result shows that that effect is so strong as to make the electromigration gradient at defect

sites comparable or even superior to interfacial sites.

Although this discovery makes gap formation at nanoscale interfaces more challenging, it

generally makes electromigration at that scale a more adaptable tool. The implication of our result that

interfaces do not strictly limit formation kinetics is that crystal structure and defects can be deliberately

altered to control gap formation sites even when interfacing multiple nanostructures. Furthermore while

we show that a chemical interface does not necessarily limit gap formation kinetics, that does not mean it

is impossible to construct a system where it does. A larger covalent domain, such as a graphene

nanoribbon, or a multi-terminal feedback control system, such as controlling the bias of 2 CNT contacts

and 2 nanowire contacts simultaneously, could be used to shift formation to the interface. This tunability

is a boon to the emerging fields relying on electron tunneling, including molecular electronics, nanopore

sequencing, and at-scale tunneling spectroscopy. To realize that aspiration however precise control over

device chemistry, geometry, and electrical circuitry is necessary, beyond present techniques. For example,

the ability to grow, precisely place, and de-chelate single-crystal metal nanowires of the same aspect

ratios possible with EBL would be an asset to this field. Our result is additionally beneficial to the further

miniaturization of conventional electronics, where electromigrative failure of metal nanowires is

problematic and carbon nanotubes and other covalently-bound conductive wires are being explored as
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alternatives;[157] we have shown that it is possible to form such interfaces that are stable under the

application of tens of volts.
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IV. OBSERVATION OF MOLECULE DYNAMICS USING INELASTIC ELECTRON TUNNELING

Summary of Findings

As discussed in the Introduction, Single molecules trapped in on-chip tunnel junctions (SMTJs)

have produced diverse high-profile physical discoveries[3 1-46] and hold promise for single-molecule

electronics (SMEs),[43,51,52] optoelectronics,[44] and biomolecule assays.[46,55] To these ends they

have been studied to show Coulomb Blockade,[32-35] the Kondo effect,[33,36-38] inelastic tunneling

spectroscopy (IETS),[39,40] surface-enhanced Raman spectroscopy (SERS),[31,41]

superconductivity,[42] spin-selective transport,[43] optical rectification, [44] thermoelectricity, [45] and

biomolecule fingerprinting.[46] To date however all investigations have treated SMTJs, in theory and

measurement, as static. That is despite extensive evidence from Scanning Tunneling Microscopy (STM)

that even at liquid He temperatures an electric field can inspire molecule dynamics. [48,49]

In this work, we made conductance and differential conductance measurements with millisecond

time resolution, allowing interrogation of the time evolution of on-chip single-molecule tunnel junctions

(SMTJs) for the first time. Studying Cysteine and Benzene Dithiol we observed stochastic, reversible

transitions between discrete inelastic transport states. State lifetimes, measured at substrate temperatures

ranging from 8 to 50 K and applied potentials from 10 to 150 mV, ranged from tens of milliseconds to as

high as a few seconds. Lifetimes are found to depend inversely on the applied bias, indicating an activated

process with activation energies ranging from 35 to 66 meV. Comparison of our observations with theory

predictions[158,159] and results from STM[48,49] and mechanical break junctions[160] among others

suggest that these transitions reflect Au-thiol anchor shifts between adsorption sites and associated

molecule reorientation. The bias-dependent lifetimes are consistent with and hence support theory

predictions of Au-S lattice site hopping energy barriers.[161-163] In addition to our experimental

findings, we simulate stochastic switching between discrete inelastic transport states such as we observe,

confirming that all of the features we observe align with those expected. These reconfigurations, as

posited after the first tunnel junction thermal measurements showing high local heating with applied

bias,[24,3 1] may influence the operation and hence design of SMEs and tunnel junction assays, while our

dynamic measurement approach affords new opportunities for physical exploration such as those we

demonstrate.

Device Fabrication

The device fabrication was identical to that of Chapter II; please see the Experimental Methods

section of that Chapter.
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Electrical Testing

The same low temperature vacuum probe station as in Chapter II was employed. The same

Source-Measure units as in Chapter II were used for Voltage forcing and Current sensing. Please see the

Experimental Methods section of that Chapter. The noise-limited time resolution of the SMU current

measurements was between 130 and 350 ms.

In addition to the SMUs, we applied a technique new to this field, delta measurement. Using a

Keithley 6221 current source and 2182A voltmeter we forced current and measured voltage. While

sweeping the current, a small differential was overlaid and the resulting voltage differential response was

measured, providing a high bandwidth measurement of dI/dV, such as illustrated in Figure 48.
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Figure 48. Simpified circuit diagram (a) and signal source-measurement illustration (b, attribution Adam Daire,
Keysight Technologies) of the delta mode operation. A current signal I(t) is source to the Device Under Testing
(DUT) and the voltage requirement across the DUT is measured. Overall the current is swept upwards to measure
V(1), but at each current point I a small step up and down around that current is overlaid to measure the change in
voltage in response to that change in current, providing a local measurement of dI/dV. (c) comparison of the delta
mode measurement of differential conductance to taking the finite difference derivative of I(V) of the same junction
simultaneously, showing a significant improvement in noise level.

This method enabled a differential conductance measurement time resolution as low as 35 ms, a

speed several orders of magnitude faster than any reported in the tunneling spectroscopy literature to date,

limited by the device capacitance.
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Tunnel Junction Formation

To form electromigrated tunnel junctions, we used the methods described in Chapter II. Please

see that Chapter.

Molecule Deposition

We deposited the target molecule, Cysteine or Benzene Dithiol, onto the nanowires from solution

as in references [31-38,40-45]. After device fabrication we soaked the nanowire chip in a 10 mM HPLC-

grade anhydrous ethanol solution of the chosen molecule under a nitrogen atmosphere. The thiol and

amine moieties are well known to bind strongly to the Au, forming self-assembled monolayers. [164]

During the electromigration process, described in Chapters I and II, molecules are well known to migrate

into the tunnel junction, as in references [31-38,40-45]. Samples were rinsed in ethanol before drying, but

only lightly to allow for some crystallization of the molecule on the surface, ensuring an ample supply of

molecule in addition to the chemisorbed material.

In addition to the established methodology of molecule deposition,[31-38,40-45] the presence of

a molecule in the tunnel junction was verified in a few ways. First in the absence of molecule deposition

we always saw ohmic resistance i.e. a linear current-voltage curve, whereas with a molecule deposited we

nearly always saw elastic scattering (a peak in the conductivity). Second the junction dynamics we

observe in this chapter are highly suggestive of a molecule, as discussed in more depth below. For

example, the conductivity variations are only consistent with inelastic transport, which requires a

molecule's discrete vibrational modes; the addition or removal of atoms, as shown by Schirm et al.,[52]

yields orders of magnitude larger changes in conductivity than those observed. Third, we have been able

to collect Inelastic Tunneling (IET) Spectra in some gaps, shown below, which is an unambiguous signal

corresponding to the molecule.
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Figure 49. Scanning Electron Micrographs of nanowire devices before (a) and after (b) electromigrative failure,

with the break in the nanowire visible. (c) Example trace of electromigrative tunnel junction formation, following

the resistance R evolution over time t as the applied bias V is modulated to maintain a constant rate dR/dt. (d)

Inelastic tunneling spectrum of one of the Benzene Dithiol (BDT) junctions. Top panel is current I measured as a

function of voltage V for 300 consecutive sweeps of the voltage with 0.2 mV resolution. Mean in black and standard

deviation at each voltage in blue. Middle panel is the derivative dJ/dV, a.k.a. the differential conductance. Bottom

panel is the Inelastic Tunneling Spectrum taken as the derivative of dI/dV after low-pass filtering. By convention

the spectrum is divided by dI/dV to remove broad elastic contributions. The resulting peaks align as indicated with

those assigned in theory and empirical measurements of BDT on Au.[40,74,158] (e) Cartoon representations of the

molecules in this study, cysteine (top) and BDT (bottom), adsorbed in hypothetical configurations on the electrodes.

(f) Inelastic tunneling spectrum of one of the cysteine junctions. Top panel is three differential conductance dI/dV

traces as a function of voltage for three junction states (see Figure 5 1). Bottom panel is the finite-difference

derivative, i.e. points in the inelastic tunneling spectrum, of each trace (dotted lines) along with a continuous

derivative of the spline interpolation (solid curves). To show uniqueness of the interpolation, spline smoothing

parameter varied over 10 orders of magnitude (all are plotted, see inset zoom), showing no significant variation in

the resulting curve. Steps in dJ/dV and peaks in d2I/dV2 align between the three states, varying only in amplitude.

All peaks assignable to cysteine from reference [165], as follows: 1- CH2OH torsion; 2- CH2CHCO 2 bend; 3- SH

out of plane bend; 4- CH2CHSH bending; 5-- CH2CHN bending; 6- NH 3 torsion; 7- CHCO 2 stretching; 8- CS

stretching; 9- CH2 rocking.

We produced three tunnel junctions, two with BDT and one with cysteine, stable enough to test

under up to 110 mV applied bias at 8.5 K for several hours. In two junctions we were able to measure

inelastic tunneling spectra (Figure 49d,f) showing the expected vibrational peaks of each molecule. To

interrogate molecule dynamics, we performed two kinds of electron tunneling measurement: voltage

holds and delta-measurement current sweeps. In the first case, a constant voltage bias V was applied and

the resulting current I, and hence conductivity G, measured over time with a sample period of 137 ins. We

performed this measurement 12 times on two junctions, one BDT and one cysteine, at voltages ranging
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from 20 mV to 100 mV. In both cases we observed Random Telegraph Noise in G(t) (Figure 50); the

conductivity stochastically, reversibly switches between different discrete values. Discrete conductivity

values can be identified as peaks in the histogram of the conductivity distributions (Figure 50 right

column). No drift, i.e. continuous monotonic evolution, of the mean conductivity over time was observed.
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Figure 50. (left column) Conductivity G measured at fixed voltage over time In two junctions, one with BDT and
one with cysteine. Excerpts of three traces reproduced here. Telegraph noise is visible. Measurement sample
period of 137 ms at 8.5 K. (right column) Conductivity measurement frequency distributions (histograms) for

each trace. Y axis (counts) in arbitrary units. Multiple peaks corresponding to discrete conductivity measurements

are visible.

The second type of measurement we perform is delta measurements. As described in Methods,

the applied bias V is adjusted to maintain a Current setpoint I around which a small current difference, or

'delta,' is superimposed to measure the resulting change in required Voltage, i.e. dV/dI, providing a

measurement of the differential conductance dI/dV at a sampling rate of 35 ms. The Current setpoint is

swept and the mearr Voltage is simultaneously measured to produce dJ/dV(V). [166,167] Performing three

consecutive delta measurement sweeps on a cysteine device (Figure 51 a), we observe overlapping points

(black arrows) whose variance is negligible compared with the data span, indicating measurement

discretization overlaid on lower-magnitude thermal noise. Series' of consecutive overlaps (e.g. red and

blue traces from 81 to 91 mV) indicate the ability of discrete conductivity states to persist for longer than

the 35 ms sample period. That persistence also associates the discretized states with underlying dl/dV(V)

functions. Each trace overlaps multiple times with each of the other two, indicating reversible transitions

between the discrete states. All of these observations are as expected from the telegraph signal in the

Voltage-hold measurements.
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To investigate these states, we performed 30 consecutive delta-measurement sweeps (Figure

51 b). We again observe overlapping dI/dV(V) points with variance negligible compared to total span and

persistence of overlaps for consecutive measurements. As apparent from the colored order of traces in

Figure 51b, dI/dV shifts are not monotonic in time i.e. there is no net temporal evolution, again indicating

reversible transitions.
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Figure 51. (a) Differential conductance dI/dV measured as a function of applied voltage in a cysteine tunnel junction

for three representative consecutive traces. Sample period 35 ins. Arrows highlight measurements that overlap

between traces, indicating discretization. Overlaps are observed between each pair of traces. Series' of consecutive

overlapping measurements are observed. (b) Thirty consecutive traces as in (a), in the same device. Traces colored

from red to blue in the order they were taken (inset). There is no monotonic evolution of conductivity. Black box

indicates points studied in (c). (c) dI/dV measurements from (a) at one voltage, 64 mV (0.29 pA). (blue)

measurements plotted in order of increasing dI/dV i.e. the cumulative distribution (CDF) of measurements,
revealing clusters (discretization of dI/dV). For easier visualization, fitting the CDF to a spline (black line) allows

continuous differentiation to yield the probability distribution function (PDF) (d), with peaks corresponding to the

clusters in the CDF. (orange) measurements plotted in the order they were taken, from the first trace to the last.

Arrows guide the eye along the direction of time. Again there is no monotonic evolution or irreversible shift of

conductivity over time. Multi-modal dI/dV distributions are observed at all voltages. (e) Two-dimensional dI/dV

measurement distributions between consecutive voltages, 64 mV and 68 mV. The measurement from each trace at

64 mV (Y axis) is plotted against the measurement from the same trace at the next voltage, 68 mV. To visualize

overlap each point is plotted in the Z axis (linear colormap) as a Gaussian with standard deviation set to

measurement precision. Clusters of measurement pairs produce peaks, with more common pairs producing higher
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peaks. Several such clusters, i.e. correlated discrete measurements, are visible. Comparison (black overlay) with
corresponding one-dimensional distributions from (d) shows higher resolution of measurement discretization here.
(f) All peaks from the two-dimensional distributions of all consecutive voltage pairs ij plotted as their equivalent
line segments ((Vi, V), (dI/dV, dI/dV)). Colors alternated between even and odd i for visual clarity. Line segments
frequently connect. Three nearly continuous sets of connecting segments are observed; they are isolated in Figure
49f.

To identify individual states, we extracted the distribution of differential conductance

measurements at each of the 24 voltages (Figure 51 c,d). To avoid the substantial binning error of a

histogram analysis, we used the common technique of instead examining the cumulative distribution

function (CDF), which is simply the dI/dV measurements sorted in order of magnitude (Figure 51c blue

points).[ 168] All 24 CDFs show consistent behavior. Clusters of measurements in the CDFs are discrete

conductivity states. For easier visualization we also converted the CDFs to population distribution

functions (PDFs) by fitting them with splines (Figure 51c) and Normal distributions and taking the

derivative (Figure 51 d). Peaks in the distributions are discrete conductivity states at each voltage.

Comparison of the CDFs with the data in the order it was measured (Figure 51c orange) show that the

junction switches back and forth between states (conductivity values). The transitions are therefore

reversible, as was observed in the Voltage-hold telegraph signal, rather than a single irreversible change.

To further test the observation in Figure 51 a and Figure 5 1b that the discrete, persistent states are

associated with underlying dI/dV(V) functions, we plotted each measurement at each voltage against the

corresponding measurement from the same trace at the next voltage 35 ms later (Figure 51 e). Consecutive

measurements that correlate would appear as peaks. As expected, the sequential measurements cluster

into dI/dV pairs that correspond with one another i.e. are from the same state, verifying that discrete states

exist and correspond to a dI/dV(1) function. Compared to in the one-dimensional distributions, the

discrete states are even more distinct (see side-by-side comparison in Figure 51 e). Note that transitions

between stable, i.e. common, states will also appear as peaks. Low-stability states and transitions to or

from them would appear as outliers and weak peaks. Plotting all of the consecutive-measurement

correlated peaks together as line segments in dI/dV(V) (Figure 51 f), we would expect that many peaks

will correspond with adjacent peaks i.e. that line segment ends will connect. That is indeed the case

(Figure 51 f), again showing that discrete states persist for multiple sample periods and correspond with

dJ/dV(V) functions. These end-to-end connections thereby reconstruct the dI/dV(V) functions associated

with each state. While five or six states might seem apparent in Figure 51 f, only three appear frequently

enough to fully reconstruct their dI/dV(V) traces as in Figure 49f. Isolating individual states leaves only

thermal and measurement noise, which in our apparatus at 9 K are small as observed in Figure 5 1a. As a

result, clear steps in dI/dV(1) emerge, characteristic of inelastic transport due to coupling of tunneling

electrons to molecule vibrational states. Between the three states, the magnitude of each step changes

substantially but their positions do not. As we discuss in more detail below, this behavior, in addition to
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the other features we have observed, is characteristic of changes in inelastic transport between states.

Taking the derivative (Figure 49f) to provide points in the inelastic tunneling spectrum reiterates this

observation; peaks align in energy with variations in magnitude.

The stochastic, reversible switching between discrete conductivity states observed in all three

data sets, with states mapping to dI/dV(V) functions, indicate changes in the molecule's inelastic

conduction channels. Because of the exponential dependence of tunneling current on gap width and

barrier height, conductivity changes upon introduction or removal of an atom or molecule are known to

be an order of magnitude greater than those we observe.[35,40,52,158,160,169,170] Rather, the

magnitude of the conductivity difference between discrete states is only consistent with inelastic

tunneling, as per references [40,52,158,160,169,170]. Furthermore as bias increases, the states

monotonically increase in dI/dV (Figure 49f, Figure 51), with states differing in the amount of increase.

That behavior is characteristic of inelastic transport,[40,52,158,160,169,170] where coupling to

vibrational modes manifests as step increases[ 171] in dI/dV when the bias applied reaches the associated

oscillator energies. In contrast elastic transmission appears as a peak in dI/dV, not a step.[169] Finally, the

peaks we observe in d2I/dV (Figure 49d,f) have linewidths of order 1 meV and energy spacings of order

10 meV, characteristic of inelastic peaks, while elastic peaks, which correspond to molecular orbitals,

have energy spacings of order 0.1-1 eV and typically peak widths of order 100 meV.[ 169] We illustrate

the contributions of elastic and inelastic transport in simulations below.

Comparison of the observed features of these discrete inelastic states with previous literature

suggests that they reflect changes in molecule conformation i.e. the orientation and adsorption of the

molecule. In first-principles calculations Lin et al.,[1 58] Nakamura,[159] and several others have

predicted that inelastic transport is extraordinarily sensitive to the orientation of the molecule and its

bonding to the electrode, even when elastic (molecular-orbital-mediated) transport is unaffected.

Steigerwald et al. then confirmed that principle[ 160] in mechanical break junctions by showing that bi-

aromatic tunneling conductivity changes with twist angle. Kiguchi et al. similarly showed[ 172,173] that

aromatic conduction changes discretely with the molecule-electrode anchor site. Molecule reorientation

would therefore explain the discrete changes in inelastic tunneling probability that we observe. In the

Scanning Tunneling Microscopy (STM) literature, beginning with Stipe et al. [48] it has been commonly

observed that at low temperatures functional groups can flip between adsorption sites with a frequency

activated by the applied bias,[48,49] or that the thiol anchor itself can hop between Au adsorption

sites.[50]

The reversibility of the state transitions further supports a reconfiguration hypothesis. As

observed in STM by Stipe et al.,[48] Baber et al.,[49] and others, when given sufficient energy to

overcome transition-state energy barriers a net-static molecule hops between local-energy-minima
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configurations. The energy can be supplied either thermally[49] or with an applied bias.[48] In analysis of

the data below, we observe such voltage activation (Figure 52, Figure 53), where state transitions become

more likely at higher applied bias. The energy supplied by the applied bias may be converted to

translational energy either directly by the hot electrons[48,49] or thermally; as observed by Ward et

al. [31] and loffe et al., [24] a 200 mV applied bias can heat the junction molecule by more than 200 K.

Furthermore under this explanation states of different relative stability should yield, within shot noise,

different relative occupations exactly as we observe in the distributions of Figure 50 and Figure 51 d. At

least 4 states are unambiguously resolved in the 1 D distributions (Figure 50, Figure 51 d), and at least 5

are clear in the 2D distributions (Figure 51 e,f). To resolve lower-stability states both faster and more

measurements would be required due to the shorter lifetimes.

Note that if the integration time were significantly longer, the central limit theorem would cause

the signal to wash out to the mean (a Normal distribution) and discrete states would be masked. The

molecule would thereby appear static. The only indication of multi-state occupation would be, at

intermediate integration times (between 1 and 2 orders of magnitude slower than the lifetime), a noise

level greater than thermal noise. Previous presumably static observations of single-molecule tunnel

junctions, such as in references [31-38,40-45], may therefore have had underlying dynamics, or 'high-

noise' samples may have been prematurely excluded from consideration.
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Figure 52. (a) Markov chain analysis of telegraph noise in constant-voltage conductivity measurements. (left)
Deconvolution of conductance measurement distributions into constituent discrete states for three traces. (right)
Using that deconvolution, each measurement in the corresponding constant-voltage conductivity trace is assigned
to its most probable state (black line is the mean conductivity of the associated state, blue line is the raw data cf
Figure 50), yielding the underlying Markov chain. Three traces analyzed here: from top to bottom, 25 mV and 35
mV in a BDT device and 20 mV in a cysteine device. (b) Time-delay autocorrelation A(t) of the dJ/dV measurements
from Figure 51. The time-delay autocorrelation is the correlation between measurements made in the same dI/dV(V)
trace tD time apart. A(t) calculated from different starting voltages, colored from blue, 12 mV, to red 110 mV.
Circles are data, lines are fit exponential decay functions. An increase in the rate of decay is observed with
increasing bias. (c) Cartoons illustrating molecule reconfigurations consistent with the observed signals, including
changes in both molecule orientation and thiol anchor adsorption site, such as between 'atomic-top' (A-top) and
'three-fold hollow' (3-fold) sites.

To explore the molecule reconfiguration hypothesis further, we measured the state lifetimes. To

do so from the Voltage-hold data, for each trace we identified the mean conductivity of each abundant

state by deconvoluting the distributions as in Figure 52a. We then assigned each measurement at each

time to the most probable state (black lines in Figure 52a). Reversible switching between molecule

configurations can be described as a Markov Chain, with a probability at each time step (measurement) of

either remaining in the current state or overcoming an energy barrier to move to one of the other local-

energy-minima in an Arrhenius transition. The process is described by a transition matrix T where T is

the probability in a single time step of transitioning from state i to statej. We optimized transition
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matrices to maximize the log-likelihood of the state sequence associated with each trace. The mean

lifetime of each state ri is a function of the transition matrix diagonals,

(45) 1
1 - Tii

where 1/At is the sampling rate.

To measure the state lifetimes from the delta-measurement sweeps, we calculated the two-

dimensional time-delay autocorrelation A; between each voltage,

(46) A11 = (YiY) - (Yi)(Y)

Y((y2) _2) (y

(47) R d
(Yi) = Y r Y r (Ir)

where R is the total number of runs (traces), I is current and V is voltage. A qj is the Pearson correlation

between dI/dV measurements at voltage i (made at time ti) and voltagej (made at time ty), i.e. it is the

probability that the measurement at t predicts the measurement in the same trace some time t; - ti later.

Longer state persistence increases the correlation between measurements made farther apart. Perfectly

independent measurements yield (YiY) = (Yi)(Y) and A ij -- 0, a perfect correlation (i.e. state lifetimes -+

oo) yields Ai1 - 1, and a perfect anti-correlation yields A 11 -+ -1.

In Figure 52b we plot A; as a function of time delay tD = tj - t1 for each initial voltage (colored

from blue, 12 mV, to red, 110 mV). Confirming the high consecutive-measurement state persistence

observed in Figure 51 e, consecutive-measurement correlations are often over 0.8. We further observe

long range correlation, gradually decaying with time after neighboring measurements. That confirms the

qualitative observation of single-state persistence for multiple measurements in Figure 51 a. The decay of

long-range correlations is slow at low bias, but as bias increases the correlations decay more rapidly,

indicating that as expected the inter-state transitions are activated. Exponential decay functions (solid

lines) are fit to each curve, and the resulting mean state lifetimes TD are the reciprocals of the decay

constants.

The state lifetimes as a function of applied bias are plotted for our three data sets in Figure 53a.

Consistent with our hypothesis of molecule reconfiguration and the associated literature, state lifetimes

drop precipitously after a threshold voltage, suggesting an associated reconfiguration transition energy

such as shown by Sainoo et al.[73] The resulting activation energies for the three systems are between 35

and 50 meV, 40 and 50 meV, and 43 and 66 meV. The hot electron energy available under even our

modest applied biases far exceeds the available thermal -energy kT even up to 100 K; an electron with 35

meV excess energy in the drain electrode has the thermal energy equivalent of being at 400 K. As shown
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by loffe et al. [24] and Ward et al. [31] that power input to the junction even manifests as a local

temperature rise perhaps via excitation of molecule vibrational modes and electrode surface phonon

modes; at 200 mV junction temperatures measured by stokes-anti-stokes Raman peak shifts exceeded 250

K. As a result ambient heating from 8 to 50 K is not expected to effect the junction and indeed we see no

effect.

The activation energies measured are consistent with reversible hopping between thiol anchor

adsorption sites. Discrete changes in inelastic tunneling can be due to any combination of molecule

reorientation and re-adsorption.[48,49,158,159,172,173] BDT however has only one axis of rotation and

therefore only rare opportunities for discretized reorientation without changes in adsorption (Error!

Reference source not found.f). Lin et al.[158] and Nakamura et al.[159] independently developed ab

initio models of BDT tunnel junction transport, both showing that changes in thiol adsorption site (e.g.

between A-top and 3-fold-hollow) yield dramatic changes in inelastic coupling. No experimental

measurement of the energy barrier to changes in thiol adsorption site have been measured to date, but

numerous theoretical predictions exist on the Au( 11) surface for various thiol compounds.[ 161-163]

Predicted barriers typically range from 43 to 97 meV, consistent with the activation energies we have

measured. While the crystal facets of our electrodes are unknown, these values provide a reasonable

estimate of magnitude.

6 4 0.8 2

a o 0
3 0.6 \5

S0 0 0O
2 0 0 2 0

00 ink 1 8 0.2 0.5

20 40 60 20 40 60 80 100 0 50 100 0 50 100

Applied Bias (mV) Applied Bias (mV) Applied Bias (mV)

b o c bindingsites

L>h -
4 W h L > h

parallel askew

Figure 53. (a) Lifetimes TD of conductivity states as a function of applied bias for three tunnel junction devices, from
left to right: BDT constant-voltage traces, cysteine constant-voltage traces, and cysteine delta measurements (mean
state lifetimes; zoom out to the far right). In each case a sudden drop in lifetimes is observed past a voltage threshold.
(b) Graphs of relative transition rates between states in one BDT (top) and one Cysteine (bottom) junction, with arrow
widths proportional to the kinetic rate constant. Inter-state transition rates measured as the off-diagonal terms from
the Markov process transition matrices T for the constant-voltage data sets, averaged over all voltages. (c) Cartoons
illustrating geometric constraints on a molecule in the junction in two dimensions. Blue lines (locally) represent the
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electrodes, with molecule adsorption sites indicated by circles. The molecule is represented as a rigid rod of length L
which must conform to the fixed electrode geometry, constraining the number of possible orientations. In the askew
electrode case several possible positions and orientations are presented, with the number constrained by the limits of
compression or expansion of the molecule (red configurations).

Although thermal noise limits the accuracy of our Markov chains, it was possible to discern some

information on relative interstate transition kinetics in the voltage-hold data in addition to the lifetime

measurements. In each of the two data sets, the Markov Transition Matrix elements for the most stable

states are averaged across voltages. The resulting relative interstate transition probabilities (i.e. the non-

zero off-diagonal elements) construct corresponding interstate transition graphs (Figure 53b). While many

different junction structures are possible however, these graphs constrain the space of possibilities. Linear

reversible graphs emerge for both junctions; although the Cysteine junction produces a triangular graph,

one set of transitions are rare and can be neglected. This linearity in the graph is consistent with a single

molecule dominating the tunneling current, rather than two or three, as each additional molecule would

produce parallel branches. A single molecule of length L between two parallel electrodes spaced h apart

such that h < L has exactly two possible configurations to bridge the gap, forming an angle at one

arbitrary end 0 or 7 - 0 such that

(48) Lcos0 = h

This constraint produces a simple two state reversible graph if the molecule is able to break one anchoring

bond and reform it in the opposing configuration. If the center of mass of the molecule translates parallel

along the electrodes, the same two states are occupied and have tunneling currents that are

indistinguishable. However, if the electrodes are locally not parallel, a likely scenario after junction

formation, additional non-degenerate states are available as shown in Figure 53c. A molecule of length L

can span the electrodes by adjusting its orientation and center of mass position through constrained

values, producing a truncated, linear graph. The range of positions available is confined by the limited

ability of the molecule to expand or compress (e.g. red states in Figure 53c). We expect the corresponding

transition rates at the ends of the linear graph to be less favorable such that extension to an even farther

state is sterically forbidden. This picture is consistent with the observed graphs for both BDT and

cysteine. In the full three dimensional picture, the same linear graph describes a path that a single

molecule traverses.

In this work we have made the first time-resolved tunneling current measurements of a molecule

in an electromigrated tunnel junction. Studying Cysteine and Benzene Dithiol, we observed stochastic,

reversible switching between discrete inelastic transport states. The switching is activated by the applied

bias, with interstate transition energy barriers ranging from 35 to 66 meV. The observed signal and

activation energy are consistent with theory predictions and observations from other platforms of the

molecule switching between thiol adsorption sites and reorienting. Markov chain modelling of
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conductivity-over-time observations produces measurements of state lifetimes and interstate transition

rates. The non-zero elements of the latter produce a graph describing the Markov chain, constraining the

possible molecule configurations. These findings show that, consistent with observations in STM,

molecule dynamics can be observed in tunnel junctions even at low temperatures.

Simulation

To better understand discretized inelastic transport states, we simulated such a system. The

tunneling current is proportional to the electron transmission probability T(V), which excluding

interference [95] is approximately the addition of each available bias-dependent transmission

channel:[169,174] elastic TE (V), direct TD (V), and inelastic T (V)

(49) T(V) = TE (V) + TD(V) + TO (V).

Direct tunneling between electrodes agnostic of the molecule is a linear baseline

(50) I(V)= y
dV 0

For elastic and inelastic tunneling, we use the Landauer-Buttker non-equilibrium transport

formalism,[174]

2eCO
(51) I (V) = T(E) -(f (E - pt - eV) - f (E - pR))dE

where E is electron energy, T(E) is the transmission probability for the pathway of interest,f(E) is the

density of states, which we take as a fermi-dirac distribution,

1
(52) f(E) E

1 + exp

and PL/R is the chemical potential of the left and right electrodes, respectively. Because only relative

voltage dependence is relevant, for simulation purposes we take ML = MR = 0. We arbitrarily choose the

right electrode as the high-potential electrode.

Elastic transport is mediated by any molecular orbitals (chemical potential MM) with significant

density of states within the nonequilibrium potential drop eV (ML 5 MM MR + eV). The transmission

function is the density of states of the molecular orbital DM (E), which is broadened due to coupling with

the electrodes, and the coupling strength,

Y1 +Y2

where yi is the coupling energy between the MO and the electronic states of electrode i, and yM is the

sum Y1 + Y2. DM is suitably approximated by a Lorentzian
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(54) DM(EIyM, ym) = (- - YM2+
MM p)2 +( k

Inelastic transport mediated by a molecule vibration mode with frequency w shifts the relevant

right electrode density of states to f(E - MR - hw) to provide energy to excite the mode. Each mode o

has a corresponding coupling energy As and a linewidth full-width-half-max F. The tunneling probability

is a complicated function with several proposed theoretical expressions,[ 170,172,175] but empirically its

derivative is closely approximated by any bell distribution. We use a Gaussian distribution,

(55)d 1 [(E - h) 21
(55) -- T) (EJAe, F, w) = A -1 exp - 2 I-

dE rVN 2 I 2r 2 ]

Integrating, we have the transmission function's functional form

(56) Th (EIA, , w) = 1+ erf .
2 1N2I r2

To calculate differential conductance we take the derivative of the relevant I(V) terms,
o

dl dl 2e rd-=- dI + J T(EIpm,Y1,Y 2)-[f(eV)] dE

dV NO h 00 dV

2e r I ~ oJdV[k~
+ 2eT(EIA.,,r,o'l) [ f (eV )] d E

O Eicl -- 00

where {co} is the.set of all molecule vibrational modes.

Three molecule configurations with different {Amj sets and a single fixed elastic mode are chosen

(Figure 54). The magnitude range of {A} is chosen from [169]. To produce dI/dV slopes of the same

order as we observe, an elastic transmission mode dominating total tunneling probability is necessary,

demonstrating the phenomenon that elastic tunneling changes are an order of magnitude greater than the

observed variations and substantially broader than the observed steps.
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Figure 54. Simulation of stochastic switching between inelastic transport states. (a) Three different inelastic
transport states of the same molecule with different couplings to each vibrational mode (Cysteine vibrational
modes) and a shared molecular-orbital-mediated tunneling probability. Single-state I-V curves (top), dI/dV curves
(middle), and inelastic tunneling spectra (bottom). Note that to illustrate the elastic effect we have not divided the

spectrum by dI/dV as is convention (cf Figure 53c). (b-f) Monte carlo simulation of switching between the inelastic
transport states of (a). (c) Simulated state occupations over time. (b) resulting I(V) and dI/dV measurements (open
circles) including thermal noise and measurement precision. 'True' single-state traces from (a) overlaid (solid lines).
Inset zoom in from 600 to 750 nA. (d) Cumulative distribution function at point 42, 682 nA, performing the same

analysis as Figure 50a. (e) corresponding probability distribution function approximated from the spline fit
derivative. (f) total number of occupations observed of each state, a random outcome of the different relative

stabilities of each state.

To simulate our observation of transitions between these discrete inelastic transport states, we

created a Markov process transition matrix T similar to those measured. We then ran Kinetic Monte Carlo

simulations subject to that probability matrix, such as in Figure 54c. The simulations match all of the

features observed in the experimental results (Figure 54b,d,e). The differential conductance shows the

'overlap' behavior observed, and produces distributions qualitatively indistinguishable from those we

have measured (Figure 54e). No contradictory phenomena are observed. This provides a valuable sanity

check to the consistency between our physical interpretation and the observed results.
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V. DETERMINISTIC MODELLING OF CARBON NANOTUBE NEAR-INFRARED SOLAR CELLS

Summary of Findings

As discussed in the Introduction, carbon nanotube (CNT) photovoltaics are a promising material

for cost-effectively harvesting energy from the near-infrared region of the solar spectrum, complementing

visible solar cells. That appeal spurred abundant development of proof-of-concept devices,[115-121,129]

but progress quickly stagnated, with efficiencies trapped below 3%. The research pathway to achieving

commercially viable efficiencies has been empirically impenetrable because of the large parametric space

associated with nanometer-scale material heterogeneity, specifically CNT networks, and highly non-linear

relationships between those parameters and efficiency.

In the work related in this Chapter, we addressed this SWNT PV design knowledge gap by

developing a deterministic model of carbon nanotube photovoltaic steady state operation. The model is a

set of integro-differential equations derived from single- and paired-SWNT optical absorption, exciton

transport, and free carrier transport. It was derived by adopting an approximation of macroscopic,

0(100 nm), homogeneity. That allowed us to treat relevant local, i.e. single-nanotube, properties as

random variables, describing the network of nanotubes as a distribution of those properties. We focused

on planar heterojunction devices. Our treatment is general for arbitrary networks in terms of chemical and

structural properties - e.g. any distribution of nanotube chiralities, lengths, orientations, defect types and

levels, bundle fraction and size, density, dielectric environment, or electrode combination. It is rigorously

limited however to densities above the percolation threshold in the charge-collecting axis, although it is

quantitatively and qualitatively consistent with recent observations at lower densities in the literature

suggesting possible broader relevance.

We then applied the model to elucidate the optimal SWNT PV design as a function of nanotube

orientation, packing density, defect density, and nanotube length. An optimal film thickness, T*, emerges

that decreases with density, impurity concentration, and in-plane nanotube orientation to balance light

absorption with exciton diffusion length and exciton-electrode separation. We find that a given set of

parameters are characterized by a minimum optimal thickness, T5p, at close-packed density pcp. Devices

below close-packed density have a normalized optimal thicknesses T*/(T* - TC) that scales with

density.

Nanotube alignment angle (e.g. vertical, horizontal) balances much faster intra- versus inter-

nanotube exciton diffusion with higher axial versus radial absorptivity. At sufficiently high densities,

above 3% of close-packed, vertically aligned films are shown to be unambiguously favored to maximize

exciton transport, but as density is lowered to below 10% of close-packed a second optimum emerges for
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some thicknesses at an intermediate angle, 7r/3 to n/4 from the vertical axis, to compensate for the

decreasing light absorption. Of all film properties, density and alignment are most important in

determining efficiency, with 10- to 100-fold performance improvements over current devices predicted

through vertical alignment and increasing density to 10% of close-packed or higher.

Model Derivation

A summary derivation of the model is presented here. See Appendix A for a detailed derivation,

as well notation conventions e.g. for vector quantities and random variable distributions.

We consider a network of single-walled nanotubes (SWNT) sandwiched between two electrode

plates (Figure 1). We define a Cartesian z axis in the propagation direction of the incident solar photon

flux Jo (w) at z = 0. The film is semi-infinite in x and y and has thickness T. The back electrode has

reflectance 0 R 1 which can in general be frequency dependent. A variety of conduction and valence

band charge collecting electrode (type 1I exciton dissociation interface) configurations are possible,

including those where an electrode also acts as a photoabsorbing layer (e.g. fullerenes[l 15,116,121]). We

focus on the relatively general case of two dissociating electrodes, but the model for the SWNT network

applies to any other case by corresponding adjustment of the boundary conditions.

Figure 55. Cartoon of model geometry, depicting the position re, orientation = (0, p), and length I of nanotubes.

The thickness of the film is T, and we take the z axis to be the propagation direction of incident irradiance J0 >(w, E).

A point on a given tube is r'.

We define an individual nanotube in our network, which we approximate as a rigid rod, by a set

of relevant properties: position, length, orientation, and chirality. In the global coordinate system the

center of each nanotube is located at rc relative to an arbitrary origin in the xy plane at z = 0. The length

I and orientation I (0, q) of the tube form a spherical-coordinate vector 1 = (1, 6, q). The ends of a

single SWNT are therefore located, relative to the origin, at the ends of vectors rc +Ii. A point r' along
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the central axis of the SWNT is then confined to the line segment between the ends. In describing intra-

SWNT mechanics we will also consider the one-dimensional space along a nanotube axis, denoting that

coordinate r, = a,1I, a, E [0,1], which bijectively maps to r'. A nanotube also has a chirality c =

(nl, n2 ) where n, and n2 are chiral indices.[ 176] For convenience we index all chiralities present in the

network by integer i (chirality ci) in order of increasing exciton (optical) band gap Ei 11 > Ei. Each

chirality has an associated center-center diameter dcc-c, and an outer diameter dc.

The properties {rc, 1, c} completely define a given nanotube in our network. Our approach begins

with treating these parameters as random variables, defining a given film by their distributions:

p(rcIr) = p(re, cy, rcz I r

(58) P'(1) = P(1) ' (0, P)

p(ci) = vi E[0,1],i

where vi is the number fraction of chirality i in the film. In theory any of the distributions can be

dependent on the others depending on the nanotube and film fabrication processes; we focus on cases

where they are uncorrelated, but the derivation is general for correlated distributions. Our derivation is

also general for cases where all of these properties vary systematically with depth, i.e. p(rc, 1, clz), but in

most practical applications p (1) and p(ci) are spatially invariant. It is also possible to introduce additional

variables, such as the local dielectric constant, by including their distributions. That allows the inclusion

of those variables in any exciton generation, diffusion, or quenching processes they are involved in. To

introduce additional variables the model equations must be re-derived as below, but the approach and

steps remain the same.

Solving for the steady state current in the illuminated film breaks into three distinct problems:

light interaction, exciton transport, and free carrier transport. Beginning with the treatment of light, at any

given point r = (x, y, z) there is a total photon flux J,(r) that is distributed over (as J,(o, E, kir), i.e.

irradiance) frequency w, linear polarization component E = (0e, 4k), and propagation direction k =

(Ok, 0k.

To a first approximation we treat absorption as the only light-matter interaction under

consideration in the film, neglecting the weaker mechanisms of elastic scattering and photoluminescence

(PL); see detailed derivation (Appendix A) and Appendix D for discussion and justification. To treat

attenuation of the field we derive the polarization- and frequency-dependent absorption cross-section of

the film from the single-SWNT absorption behavior. The dipole approximation of light-matter interaction

yields the absorption cross-section for a single nanotube of orientation i = (0, q),

(59) -(Ci, C, , W) = 1E. 2 ai(ci, W) + (1 - IE i1) 2cr(ci, w),

121



where all and uj are the empirically- or theoretically-determined absorption cross-sections for light

polarized parallel and perpendicular, respectively, to the SWNT longitudinal axis, reflecting the two

anisotropic sets of optically active electronic transitions. [99] Integrated over all frequencies, the parallel

absorption cross-section is approximately five times larger than the perpendicular due to

depolarization.[99] For later convenience we normalize the cross-section to per-unit-length, a,, rather

than the more common reported value per-carbon. Over our length-scales of interest for SWNT material,

<1 Im, we neglect phase shifts such as refraction that introduce circular polarization components to the

light field.

From the perspective of the gradient in the light field, the diameter of the SWNT is negligible and

the film is essentially homogenous (see detailed derivation, Appendix A, below). For irradiance

J, (o, E, kIr) the photon absorption rate per volume due to SWNT of chirality i oriented in i are

(60) Ni(w, e, k, 1lr) = vi - p(l) , i, w, ci) -Jv(co, E, k~r)

where p(iy = p - (1) is the length-normalized SWNT film density (p is the number density). To get the

total film absorption rate we must sum absorption terms (60) for nanotubes at each possible orientation I

and chirality i, weighted by the relative populations of each. That is equivalent however to integrating

over the distribution p(1) and summing over chiralities, forming the crux of our methodology,

(61) N(o, E, klr) = (0) p(0) Ni(a, c, k, 1 r) d6 dP.
10 0

In this manner, we can describe the light absorption of the film by integrating the single-SWNT

behavior over the distribution of independent-single-SWNT properties. We will take an analogous

approach to exciton and free carrier transport below.

A steady-state balance on the light intensity yields

(62) V -J,(w, E, kir) = -N(w, E, kir).

Two useful reductions then emerge. First, neglecting Rayleigh scattering and photoluminescence the

k dependence drops out. Second, in the x and y dimensions where our film is infinite we take periodic

solutions as trivial, making our boundary conditions in those dimensions uniformity, i.e.

(63) dj = 0 dj 0.
dy dx

Our balance then simplifies to

(64) =j -w Iz Ni(w, c~z).
dz

The linear differential equation (64) can be solved for a transparent back electrode subject to the boundary

condition of perpendicularly incident light unpolarized in the xy plane,
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(65) Iv (w, EIZ = 0) = J (o), E) = 10 () ( s (o ) E E [0,2].

We treat reflection off the back electrode without the propagation vector k by breaking the light field into

approximately non-interfering 'forward' and 'reverse' fluxes JF (w, eIz) and JR (W, E Iz) (See detailed

derivation, Appendix A, below), where the boundary condition of the latter is the reflection of the former

at z = T.

We then turn to the exciton transport problem. In SWNT, optical electronic excitations result in

exciton generation - bound carrier states - rather than free charges, due to one dimensional confinement

resulting in a weak dielectric environment. [98,100,177,178] To collect charges in a solar cell, excitons

must be dissociated either at a Type II interface or by an electric field imparting coulomb force greater

than the binding energy. Examining the relevant physical quantities (see detailed derivation, Appendix A

below), we validate the approximation that nonradiative decay of hot excitons to the band gap is

essentially instantaneous over our length scales of interest. This simplification allows us to treat the

exciton generation rate at band gap energy E as the total photon absorption rate at all energies ha > E

for chirality i, Ni (z).

A single empirical diffusion coefficient describing exciton transport in a film would be limited to

only a particular geometry and chemistry. Instead, we start with the intra-tube 1 D exciton reaction-

diffusion behavior, then deriving the contribution of a network of such systems to three-dimensional

exciton transport, and finally coupling nanotubes via exciton hopping (EH), sometimes termed exciton

energy transfer (EET).

Along a single nanotube axis there is an exciton concentration profile n(r). We construct a

steady-state exciton population balance along r, including the generation rate N(r) = N(r'), longitudinal

diffusion, and relaxation due to localized impurities, exciton-exciton annihilation (EEA), radiative decay,

and end-quenching. This yields the steady-state differential equation (see detailed derivation, Appendix

A, below)

dn d 2 n kzEn 2 
- kimfim--= N (ri ) + D, 7- krn - kEgAn_ kmim

(66) dt dr2dt =N~r 1 + D dr1im

- kend(6(r, - 0) + 6(r - 1))n = 0,

where D, is the longitudinal diffusion coefficient, kr, kEEA, kim, and kend are, respectively, the radiative,

Auger recombination, impurity (of type im, e.g., oxidative agents, catalyst nanoparticles), and end-

quenching rate constants, and nim is the number of impurity contacts per length of SWNT.

To determine the network behavior, we construct a three dimensional population balance subject

to diffusion in one dimensional channels. Starting with a single chirality, the diffusion flux (not yet

including SWNT-SWNT interactions) due to nanotubes of orientation i is
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(67 CS ) c ac P) cC
(67) D 1(sin 9 cos _)2 - + DI(sin 0 sin -)2 -+ DI(cos 0)2 _

ax 9y C az
where c(r) is the 3D exciton density. This expression is arrived at by considering 1 D channels

penetrating the faces of a differential volume (see detailed derivation, Appendix A, below).

Note that while Equation (67) has the form of what one would empirically intuit, there is the

crucial difference that D, is exactly the single-S WNT exciton diffusion coefficient, not a net film

coefficient. That represents the primary advantage of deriving our network model from single- and

paired-SIWNT physics rather than using aggregate empirical parameters; in the latter case, we would not

be able to predict the scaling of parameters with the distributions of nanotube properties.

Next we extend film relaxation kinetics to 3D. We multiply the reaction rates per length of

SWNT by p(j) to convert to rate per volume network under an assumption of macroscopic homogeneity:

-krc

-prig- kimnimf = -kimnimc

(68) -p=1) -kEEA 2 _kEEAn ,C = - kEEAn k --kEEAC 2

P(1) P(i)

kend
- Cend (r) c,

P(1)

where cend (r) = p(rend = rc lr) is the distribution of nanotube ends in the film. Note that all of

{kim, kEEA, kend} are single-nanotube rate constants, which can be evaluated from single-SWNT

experimental measurement, theory, or simulation.

Finally we consider exciton transport between nanotubes. The mechanisms of exciton

transfer/hopping (EH) between nanotubes of the same and different chirality, as well as the mechanisms

of Type II exciton dissociation at donor-acceptor interfaces, remain under investigation and

debate.[ 113,115,117,179] Explicitly, in the model we treat EH as a tunneling process in bundles and at

interconnects, neglecting the real and significant phenomena of exciton delocalization[ 113,180] and

Schottky barriers/band bending.[181] What is important for the future use and evolution of this

framework however is that the relevant independent parameters are available, allowing a different

functional form to be introduced without contradicting the remainder of the model. This consideration

highlights the extensibility of our method beyond our explicit form. At present, neither exciton

delocalization nor SWNT band bending at interconnects are sufficiently well understood for us to posit

meaningful expressions describing them.

We divide the film into two microscopic environments: bundles and interconnects. The bundling

coefficient, be, we define as the length fraction of SWNT in bundles. Along with the mean number of
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SWNT in a bundle, Mb, we determine the diffusion coefficent in a bundle orthogonal to the longitudinal

axis (see detailed derivation, Appendix A, below),

1(69) DEH,b = X 1 kEH,b(AB + dC) 2 ,4

where X(Mb) is the mean number of nearest neighbors, AB is the inter-SWNT separation in a bundle, and

kEH,b is the elastic exciton transition rate. Beginning with a monochiral film, this yields a film exciton

flux due to bundling,

ac "2c-

bc(1 - sin 6 cos q) 2 DEH,b c + bc(l - sin 2 sin p) UEH,b
(70)axa

dc
+ bc(1 - cos 0) 2 DEH,b a

At interconnects, we consider the number of intersections per length of a nanotube in a control

volume around a nanotube,

(71) nj = (1 - bc (1 - )p -d.
MB 4 c

That yields a film exciton flux, still for a monochiral film,

Let y 1 - bc - n- = p ( - bd - ) d

(72) (1 - sinO cos () 2 - yc -DEHc 2 . . -EH ,I

ax 19y
ac

+ (1 - cos 0) 2 - yj - DEH,I ,

where the orthogonal diffusivity at interconnects is

1
(73) DEH, kEHI A2 (AI + dc),

2

where A, is the inter-S WNT separation at contacts, kEH,1 is the elastic transition rate, and A is the co-

alignment:

(74) A = A(0' o", o', ("),

for an arbitrary pair of nanotubes, with a distribution p(A) that is a function of p(i) (see detailed

derivation, Appendix A, below).

Including all three diffusion mechanisms, we then have the volume balance for exciton transport

in a monochiral network. We simplify that expression by again recognizing that periodic solutions in the

xy plane are trivial for our purposes, reducing our steady state problem to a differential equation in z,

(75) Let Dtot = (cos 0) 2 Di + (1 - cos 0) 2 (yDEH,I + bcDEH,b)
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dc d 2 c kEEA 2 kend
- = N(z) + Dtot - krc - C kimnim - - cena(z) - C.
dt dI P(i) P()im

Analogous to the light absorption problem, we have constructed a differential equation describing

exciton transport due to nanotubes with orientation 1, but to get the total balance we must sum

contributions from all possible orientations. Again, that weighted sum is equivalent to integrating (75)

over the distribution p (1). This treatment is only valid under our approximation of a homogenous film.

That is our method: treat single-SWNT chemical and geometric parameters as random variables, derive

network behavior from single-SWNT physics as a function of those parameters, and finally integrate the

solution over the distribution of those parameters. We illustrate this process when we apply the model to

specific film structures below.

Note that equation (75) has the intuitive reaction-diffusion form one might guess empirically, but

the net diffusivity Dtt and several of the kinetic rate constants depend on the film properties

(p(i), p(1), p(l)), preventing broader applicability of any single experimental diffusivity measurement.

Additionally, by considering the distributions of single-SWNT parameters and the microscopic

mechanisms of exciton transport and decay we have determined the dependence of network diffusion and

reaction constants on film properties and single-exciton physical constants.

SWNT light absorption and exciton transport mechanics, particularly in two-nanotube systems, is

an ongoing area of active research; our expressions describing those mechanics are unlikely to be final. It

is under that consideration that the extensibility of our framework, built on treating single-S WNT

properties as random variables, becomes particularly valuable. Specific terms, such as exciton hopping

diffusivities, can be modularly altered as their physics are better understood. New parameters with

associated distributions can be introduced, such as dielectric constant and local density (radial distribution

function), and variable independence assumptions can be relaxed, increasing complexity and nuance

without grossly deteriorating numerical solvency.

Multiple chiralities, including metallic SWNT (mSWNT), which quench excitons through rapid

nonradiative decay, are then introduced. We construct volume balances for each chirality i analogous to

the monochiral balance (75), but with additional quenching terms due to EH to mSWNT in bundles and at

interconnects, and pairwise coupling terms to one another due to EH to lower-bandgap chiralities. This

yields a system of ordinary differential equations,
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dci d 2ci kEEA 2
= viN(z) + Dto t  2 ci-ci kimnim- P)C

im

kend Cend(z) - ci - kEH (A 2 ). VMyIC,

2
(76) - bcDEHbVm -de - 2  C

-c kEH 2 . b' D EH by] S ~2)
i<i

+ Cj (kEHA2. Vjy, + c - DEH,bvj -d 2,

j>i

where vm is the fraction of mSWNT in the film, and again we have indexed the chiralities as

monotonically increasing in optical band gap (Ei+1 > Er).

The system of ODEs (76) can be integrated over the relevant distributions and solved at steady

state subject to boundary conditions at the electrodes (z = 0, T). A variety of electrode configurations can

be considered; here we focus on two electrodes that can drive Type II exciton dissociation - one hole

accepting and one electron accepting. For each electrode we therefore have Robin boundary conditions

from the exciton splitting rate,

dc ci(z = 0)

(77) dz Cz=O Dtot

dcii kaT,i-i = - ci(z = T),
dZ z=T Dt

where ko,i and kaTi are the dissociation rate constants that in general could depend on the chirality i.

We complete the derivation by considering the drift-diffusion transport of charge carriers

resulting from exciton dissociation. Free carrier transport in the nanotube network is in many ways more

challenging than exciton diffusion. In addition to the analogous geometric effects on film charge mobility

and diffusivity, charge transfer at the interface of nanotubes, particularly of different chiralities, can block

or trap charges.[1 81] Asymmetric electron and hole generation (at the two electrodes) can lead to an

electric field development that feeds back on the exciton dissociation problem, inhibiting dissociation

and/or driving spontaneous in-film dissociation when the field strength exceeds the binding energy.

Finally, carrier densities can significantly impact mobility. [182] In this work we do not seek to accurately

describe free carrier transport in the SWNT film. Rather, we proceed under the substantial simplification

that even under a modest electric field performance will be limited by exciton diffusion, due to

exceptioanlly high carrier mobilities.[182] This assumption reduces coupling between the free carrier and

exciton problems to the exciton dissociation rate. We also continue to neglect any charge-transfer effects
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at inter-SWNT contacts, as those effects have been neither theoretically nor experimentally quantified.

These rough assumptions allow, as we show, important results in the optimization of film performance,

but inflate quantitative predictions of external quantum efficiency (EQE).

We estimate the geometric impact on valence and conduction band carrier mobilities in the film

from the exciton behavior. We attenuate single-S WNT electron and hole mobilities, p* and pi, by the

network attenuation of single-SWNT exciton diffusivities. We then balance the non-equilibrium

populations of conduction band carriers, fe (r), and valence band carriers, fh (r), which are coupled to

one another and the electric field Ez(z). This yields population balances

(78) dfe d e ( dfe + dz
(78) = =De dx+ye Ez +xfedX -kehnfefh.dt ex -Xdx dx e

(79) dft d 2 ff df d Fz
=7dx - Ph Ez h +f - ke-hfefh,

dt "dx dx dx

where De/h and Pe/h are the conduction/valence band carrier network diffusivity and mobility,

respectively, and ke-h is the electron-hole recombination rate constant. Equations (78) and (79) are

subject to generation boundary conditions from exciton dissociation at one electrode, and a Robin

(reaction) boundary condition due to extraction at the opposite electrode (see detailed derivation below).

The electric field evolves in the z axis from the gradient in excess charge populations,

(80) dz _ (A z) - fe(z)),
dz E

where E is the mean permittivity of the film. The intrinsic bias across the film from mismatched electrode

work function forms the boundary condition to (80). The three differential equations can be solved

simultaneously at steady state.

Model Limitations

Several explicit and implicit assumptions have been made in the derivation of the model. To

encourage both application of the model and its further development, we would like to discuss some of

the most significant limitations. Most of these are failings in our application of the underlying principle

rather than the overarching method of treating single-S WNT parameters as random variables, deriving the

photon, exciton, and free carrier population balances from single- and paired-SWNT physics, and

integrating the resulting deterministic equations over the parameter distributions that define the film.

In both the exciton and free carrier transport problems, we neglect equilibrium charge transfer at

the interface of nanotubes, particularly those of different chirality; in reality, Schottky barriers/band

bending likely occur at these contacts,[ 181] which can alter inter-S WNT transport. We expect this

phenomenon to play a substantial role in free carrier transport in particular, which is one reason we
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adopted a simplified model of steady state charge distribution. Presently, experimental or theoretical

examinations are necessary to elucidate the energetic and spatial character of the effect, such as achieved

theoretically by Topinka et al. in 2009[181] and experimentally by Jakukba et al. in 2013.[183] A more

accurate model should account for these interfacial interactions and local electric fields in the inter-

SWNT coupling terms. Along the same lines, we have neglected the possibility of coherent delocalization

of excitons in bundles, which recent experiments suggest to be the case,[113] contrary to previous

assumptions of excitons in nanotube bundles; this effect could substantially raise orthogonal exciton

diffusion lengths in highly aligned filmed.

We have also neglected Rayleigh scattering and photoluminescence processes in the light-matter

interaction. These assumptions simplified our application of the model tremendously, at the potential cost

of accuracy. See the detailed derivation, Appendix A, and Appendix D, below for an evaluation of the

strength of these assumptions and the utility of the simplifications to the model.

Finally, the validity of our integration over single-SWNT properties rests on an approximation of

homogeneity. This limitation has significant implications for certain cases, particularly in-plane

('horizontally') aligned, low-density films. The conditions and implications of this error, including

estimation of the impact, are discussed in depth in Appendix B Breakdown of Macroscopic

Heterogeneity. The homogeneity approximation also implies that we can only treat cases with SWNT

densities above the percolation threshold.

Estimating Physical Constants

To both demonstrate how the framework can be practically employed and to quantitatively

examine key SWNT PV properties we have applied the model to moniochiral (6,5) films with both

isotropic and aligned orientation distributions (Figure 2).

Figure 56. Cartoon representations of film geometries under consideration, side view (top) and cross-section

(bottom). Vertically aligned films with densities ranging from sparse (a) to close-packed (b), horizontally aligned
films at densities above the percolation threshold (c), aligned films at arbitrary angles with single-layer (d) and

multi-layer (e) depositions (see text), and isotropic films (f).
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To do so, we first had to determine the relevant physical constants from experimental

measurement or through estimation.

Incident light flux We take the intensity and frequency distribution of incident light to be the

AM 1.5 solar spectrum. Even in numerical evaluation of the model, a continuous form of the spectrum is

desirable for interpolation of experimental data and fine discretization of the spectrum. The spectrum can

be fit to better than 99% rms error by subtracting a series of Gaussian profiles from a geometrically

attenuated blackbody spectrum. The blackbody spectrum attenuated by the atmosphere at an angle of

0.260 to the sun (angle of earth to sun) is[184]

2 F E 2
(81) bs(E) = h3C2 )EkTs

in units photons per area-time per energy photon, where Fs = 2.16 x 10-s ir is a geometric factor, h is

Planck's constant, c is the speed of light in a vacuum, Ts is 5960K (temperature of the surface of the sun),

kB is boltzmann's constant, and E is the energy of the light. To get the flux distributed in wavelength we

convert

1
(82) bs(A = hc/E) = - E -bs(E).

From the spectrum we subtract a series of Gaussian functions to fit the AM 1.5 spectrum, e.g. for 60

Guassians we have

E 2F E 2 60 (A-A )2

(83) E e h3C2 E2-
(ekTs_1 i=1

3- -AM 1.5Spectrum
C - geometrically attenuated

2- 5960K blackbody spectrum

1 --- gaussian subtraction
CD,

U Figure 57. photon flux and irradiance

-1 distributions in wavelength for AM1.5
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E attenuated by the earth-sun ray (red),
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Table 1. Results of multi-Guassian function fit to the AMI.5 spectrum (Figure 57), where for each curve the mean p1,
variance 2, and maximum A of the curve were adjusted.

100 205.3 298.7

20 27.144 23.678

0.43013 6.6622 0.47979

374.02

58.316
1.2682

513.62 603.05 706.77

51.216 34.191 126.1

0.52368 0.15331 0.42537

p (nm) 1131.7 1189.8 1314.3 1344.9 1436.9 1523 1627.7 1822 1915 2011.1

a (nm) 20.299 23.864 24.212 43.435 56.254 23.855 72.786 33.832 46.216 9.2091

A (W/m 2 ) 0.46103 0.09104 -0.18011 0.3014 0.23276 -0.07346-0.01938 0.1312 0.12825 0.07103

p (nm) 2061 2194.6 2299 2394.2 2505.2 2600.2 2700.3 2800.1 2898.3 2999.3

a (nm) 12.398 20.316 34.468 43.054 44.269 49.389 49.978 49.997 49.196 46.776

A (W/m 2 ) 0.03767 0.00369 0.00610 0.02119 0.04202 0.03648 0.03102 0.02726 0.02394 0.01759

p (nm) 3100.1 3215 3305.8 3399 3500.9 3594.2 3696.5 3798.4 3899.2 3998.4

a (nm) 46.272 31.193 42.886 39.739 34.614 32.971 30.404 27.578 30.045 23.088

A (W/m 2 ) 0.02027 0.01778 0.01521 0.00778 0.00415 0.00486 0.0039 0.00324 0.00409 0.00280

(6,5) Absorption Cross-Section On resonance with the S2 2 transition the parallel polarized

absorption cross-section of a single (6,5) SWNT has been measured as 3.2 x 10-17 cm 2 per carbon

atom.[185] With 8.8271 x 1010 m-1 carbon atoms per length,[185] the absorption cross-section at S22

per length of nanotube is

(84) U,meas(S22 ) = 2.92986 x 10-10 .

The wavelength dependence of 61,meas (w) in general will depend on the environmental conditions, e.g.,

surfactant type, polymer, solid film or solution phase.[116] We estimate the dependency for a surfactant-

free solid-state SWNT film by normalizing the absorbance spectrum of an isotropic film, from reference

[116]. We scale that dependency by the S22 peak, at 582 nm in our data (Figure 59). Analogously to the

incident solar flux, for a continuous expression we fit the data with a series of Lorentzian curves (Figure

59, Table 2)
20

ai,meas - A,2 
.[=)1+ y;~(85)
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p (nm)

a (nm)

A (W/m 2)

941.36

31.948
0.29952

945.56
11.867

0.27733

1052.6
31.996

0.08644
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Figure 58. absorbance of isotropic film of (6,5) SWNT,
from [116].
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Figure 59. absorption cross-section of (6,5) SWNT as a function of

wavelength, estimated from the absorbance spectrum of an isotropic

surfactant-free film. For a continuous expression, data has been fit

with a series of Lorentzian curves.

Table 2. Fit parameter values for Lorentzian series fit of the absorption cross-section spectrum.

Amplitude, Ai
Mean,& yli (x 109)

232.83 103.61 5000.00

242.77 19.452 22.27

308.35 12.665 7.31

278.12 27.524 69.72

352.19 13.986 18.31

489.88 89.528 408.84

524.62 21.783 17.31

579.12 22.764 42.15

594.89 35.838 127.10
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676.72

788.72

867.95
894.02

1005.6
1029.9

1064.2

1178.9

1216.2

1338.6

1397.7

54.687

200

24.518

58.505

32.675

43.087

60.168
34.132
57.532

117.2

22.647

130.03

3085.30

8.67
228.62

86.77

417.75

631.40

20.28
62.27

590.47

3.18

While the frequency dependence of ouI (o) and a1 (a) will be different due to different optical

transition modes, no polarization-dependent absorption data is available for (6,5) SWNT. We therefore

crudely approximate as the same frequency dependence, and introduce the depolarization effect by an

expected 1:5 net ratio of perpendicular:parallel absorbance,[1 86]

5
(86) ()= 0) 6,meas(0)

1
(87) cL (0) = O,meas(W)-

-4

E

-2

500 1000 1500 2000 2500

wavelength (nm)
3000 3500 4000

Figure 60. (6,5) isotropic absorption cross-section overlaid over solar spectrum.

Density The diameter of (6,5) SWNT is dc-, = 0.76 nm,[187] yielding an approximate d, =

1.095 nm (see Appendix A). We vary film density to investigate its influence, but benchmark values to

the maximum density of a SWNT film - the close-packed density (see section below), pC' = 9.63 x

101 m-. Current fabrication methods exhibit varying densities, but at present many are far short of
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CP
close-packed; vertical forests are <0.1% P) ,[188] and isotropic films are typically lower,[ 116] although

horizontally aligned films have been produced up to 35% of CP density by some methods.[189,190]

The unit-cell area of hexagonally-packed SWNT, including interstitial space, is that of a rhombus

with interior angle w/3 (Figure 61),

7Tir V32
(88) 2 -d6,s - d6,5  - sin -cos 3=-2 d6,5

Figure 61. Cartoon of cross-
section of SWNT bundle
demonstrating the single-SWNT
unit cell area.

This makes the length density in a bundle

2CP = = 9.63 X 1017 m 2.
(89) 1 3d s

Kinetic and Diffusion Constants Measured values for longitudinal diffusion coefficients in

SWNT span three orders of magnitude, ranging from 0.1-0.4 cm 2/s[102,103] and 7.5-10.7 cm 2/s[104,105]

to 150-350 cm2/s[106,107]. Comparison of the environments of those measurements, along with

comparison of other environmentally sensitive investigations, [104,108-111] strongly suggests that this

variation is due to influence of the local environment on exciton-phonon scattering. Under this

hypothesis, lower diffusivity values (and associated diffusion lengths) have been observed in surfactant-

wrapped SWNT in solution phase, while SWNT in air exhibit the higher diffusivity values. For a solid-

state film therefore we estimate D, ~ 100 cm2 /s.

For radiative decay we take a time constant of Tr = 0.45 ns,[104,111] yielding kr = 2.2 x

109 s- 1 . For impurity quenching, a variety of potential impurity types could be present in a film

depending on the SWNT growth, separation, purification, and deposition methods; common possibilities

would include lingering metal catalyst particles, sonication- or oxidation-induced sp3 functionalization of

nanotube sidewalls (lattice defect formation), and adsorbed oxygen. [191] We define some generic

impurity that introduces inter-bandgap electronic states with a time constant consistent with nonradiative

relaxation, 0(200 fs). From that we estimate the rate constant as
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D, 100x10- 4  rm
(90) kim 1.26 x10s

iTTim 7 - 200 X 10-1 s s

and take a representative population of two generic impurities per micron of SWNT length, nim = 2 x

106 m-1 (which we vary to examine the impact of below).

The exciton-exciton annihilation rate constant we arrive at from [192] (see Appendix A), with

EBE,(6,5) = 0.285 eV and E11,(6,s) = 1.245 eV,

10 rn EBE \3 (1.3 eV\)3  m 0

(91) kEEA(cL) = 6x 10s E 6 X10

End quenching we treat analogously to impurity quenching as the decay pathway is similar,

giving Tend~Tim kend ~ 1.26 x 10s M/s. Finally we estimate the exciton hopping rate constant from

[115,193] as kEH 0.1 ps- 1 = 1011 s-1.

For free carrier physical constants, we estimate a single-SWNT free carrier mobility from

[128,182,194] in the 104 - 10s cm2 yV-s- 1 regime, taking t* = p* = 5 x 10s cm 2 y- 1 s-1; under the

Einstein relation (see Appendix A) the resulting diffusivities at 300K are D* = D* = 1.3 m 2 /s. The

electron-hole scattering length of Leh ~ 0.5 um [128] then allows us to estimate the recombination rate

constant,

(92) Tet = = 1.9 3 X 10-13S
De

D* + D
(93) ke F d=, = 2.5 x 10-12 M3/s.

Finally we estimate the relative film permittivity as that of SWNT, -5.

Modelling Aligned Films

It has been intuited in the literature that an aligned carbon nanotube film at some intermediate

angle (between horizontal and vertical) will present maximal photovoltaic performance by balancing light

absorption with exciton transport;[120] to evaluate that hypothesis and establish the optimal angle and

thickness of an aligned film, we apply the model to that case. While current fabrication methods can

achieve neither arbitrary alignment angle nor near-close-packed densities, our predictions motivate

progress in both. The network geometry is defined by the distributions of single SWNT properties and a

few constants; in using the model to describe a particular experimental device, those distributions must be

measured or estimated. We also examined films with isotropic orientation distributions, yielding very

similar trade-offs between light absorption and exciton transport (following section).

For our hypothetical film, we take the length distribution as log-normal,[ 195]
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(In -pi?
(94) _ (2n

p(I) e 2~

We look at the effect of varying it later, but as a baseline take mean length (1) = 400 nm and second

moment 202 nm2 . The fixed angle of alignment relative to the z axis we define 0', and we focus on the

case of perfect alignment,

(95) p(O) = d(O - 0'), 0' E 0, .

In the xy plane all angles are equivalent in our semi-infinite film; we choose orientation along the x axis,

(96) P(P) = 0(# - 0).

The film thickness, T, we will vary, but it can be limited by deposition morphology: if the aligned film is

grown or stacked in a single 'forest' or 'layer' (Figure 56d), T cannot exceed the height in z of that single

layer, (1) cos 0'; additionally the distribution of cend(z) will be heterogenous (log-normal). If instead the

film is 'sliced' out of a network mixed in all dimensions, like a typical solution-processed horizontally

aligned film,[196] (Figure 56e) any thickness is hypothetically permissible, and Cend = 2p is homogenous.

These two film types and our handling of them are discussed in Appendix H.

Beginning our calculation with the irradiance, the absorption cross-section polarization

dependence is described as equation (59) for our single chirality. We are in a position now to evaluate the

dot product, E 1, by integrating the photon balance over p(i) (equation (61)). That yields the absorption

cross-section (see Appendix I)

(E, ) = L,meas( (sin 0E CoS P, sin 6' + cos 0, cos 0')2
(97)Q

+ 1(1 - Isin 0, cos q5e sin 0' - cos 0, cos O'l)).
6

Solving the photon balance (64) with no z dependence to P(1) or al, subject to the incident

unpolarized solar flux boundary condition (65), and integrating over 0e, our forward flux becomes (see

Appendix I),

1
JF(w, Pe~z) = 2wo(w)

(98) exp [-P)c,meas(O) ( (cos /b sin 0')2

1
+ (1 - Icos 4E sin O'))z .6)I

Except in the vertically-aligned case (0'= 0), there is an xy-plane linear polarization dependence to the

field absorption. With a boundary condition of reflectance R off the back electrode we solve the reverse

flux differential equation, again substituting in al(c, w) and integrating over 0, to yield
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1
JR (W,EIZ) = -- R -Jo(w)27

(99) exp .P)0'1,meas(o) 5(Cos PE sin 0')2 + (1 - Icos 5e sin '|)

-(2T - z)].

The total light field gradient would then be

(100) J-, (U, (Pc IZ) = JR >&J (AE Z) + JF (W (AE|IZ),

for example plotted in Figure 62 for horizontally and vertically aligned films.

The exciton generation rate is the light absorption rate integrated over frequency and polarity,

21r 00
(101) N(z) = f f PlJ(o,@E fJLz)-I(et'oj) dwdoP.

We then resolve the monochiral exciton balance (75) with the physical constants estimated in the

previous section. With an aligned film, our macroscopic homogeneity approximation limits the density

space we can probe; for films with an in-plane (horizontal) orientation component, our treatment of

exciton hopping is valid only at densities above the percolation threshold (p/pcp > 0.65 for a horizontally-

aligned film 0' = x/2). Otherwise, we would be erroneously assuming in our orthogonal diffusion

coefficient that percolation pathways uniformly exist. Above the threshold, we safely have a uniform

orthogonal diffusivity (y, -> 0). Integrating the balance (75) over p(l) ((95) and (96)), the net diffusion

coefficient reduces to

(102) Dtot = D(cos 01)2 + (1 - cos 6')DEH,b-

With AB << de, Equation (69) yields DEH,b = 1.8 x 10-7 m2 /s; note this diffusivity is 5 orders

of magnitude lower than DL (~ 10-2 m 2 /s). We then numerically solve (75) at steady state, subject to

electrode boundary conditions (77).

We can first compare the two extreme cases, vertically (0'= 0) and horizontally (0'= X/2)

aligned, at the same density, thickness, etc. (T = 40 nm, p(l) = 0.8pC', R = 1, (1) = 800 nm, no added

impurities; Figure 62). The vertical forest presents the incident light with only the perpendicular

absorption cross-section (axial transition dipole), while the horizontal film can be excited along both the

longitudinal and the axial transition dipoles, leading to anisotropic absorption (Figure 62b). The higher

parallel absorption cross-section makes a substantial difference in total absorptivity even at this high

density and with the aligned-film diminishing returns of more rapidly depleting parallel-polarized

irradiance (Figure 62b). For these particular vertical and horizontal films, the total absorbances are 1.51

and 2.13 respectively. In absolute intensity absorption of visible light is higher than nIR (Figure 62a) due

to greater visible irradiance in the incident solar flux, but normalized for intensity nIR absorption is
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greater (Figure 62d). As light travels through the film, the anisotropy of the horizontal network induces a

linear polarization (Figure 62b).
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Figure 62 Comparison of vertically (green, 0' = 0) and horizontally (blue, 0' = ir/2) aligned films at T = 40 nm,
P(1) = 0.8pc', R = 1. a) irradiance per wavelength as light travels through the film. Note the more rapid attenuation
in the horizontally aligned case. b) irradiance per linear polarization angle in the xy-plane as light travels through
the film, showing the isotropic absorption of the vertically aligned film and induced linear polarization in the
horizontally-aligned film. c) total irradiance with depth in the film, integrated over all wavelengths and polarization
angles. d) total film absorbance as a function of wavelength. e) total film absorbance as a function of polarization
angle. For exciton concentration gradients and the relative impact of each quenching mechanism, see supplemental
Figures in Appendices.

Despite the higher absorbance, the substantially lower diffusivity in the charge-collecting axis of

the horizontally aligned film (Dtot = 0(10-2 m2 /s) versus 0(10-7 m2 /s)) greatly limits the efficiency

- for these films EQEs are 64.6% and 2.7% respectively for vertically and horizontally aligned. In the

horizontally aligned case a diffusion length <10 nm is observed (Figure 63), consistent with experimental

findings. [115] With current experimental techniques however, horizontally aligned films can be made

with substantially higher densities than vertically aligned films, which presently are grown as

forests.[ 116,188-190] To evaluate the impact of this limitation, we explored the density-thickness space at

the two orientations.

138

a0o
E10

20
0L

030

40

b
0

S20

(U 30

40

C

0



a
E

b

TE

X10'

0 IS0 100 150 200

10 z (nm)

20~10 A

EEA rad im end
quenching mechanism

Figure 63. Comparison of exciton transport
behavior in vertically (green) and horizontally
(blue) aligned films at T = 40 nm, p(1) =
0.8p{ , R = 1. a) exciton concentration at
depth z in the film. Note the short (<10 nm)
diffusion length of excitons in the
horizontally-aligned film, leading to poor
collection even at high concentrations. b)
mean (squares) and minimum/maximum
(triangles) quenching rates for each
mechanism of interest in the film.

We began by considering an idealized case where

the nanotubes are infinitely long and there are no impurities

of any kind (Figure 6 4 )." Several features of interest

emerged. First, we observed that performance is not

monotonically increasing in the amount of light absorbed,

and that rather at a given density there is an optimal

thickness that shifts lower with higher density (that trend is

clearer when we introduce finite length, see Figure 65c).

This result reflects a previously posited trade-off with

increasing thickness between greater total exciton

generation (more light absorption) but greater mean

distance a generated exciton has to travel to reach an

electrode, what Wu et al. termed absorption and diffusion

length scales.[197] The same tradeoff is reflected in the

much lower optimal thickness of horizontal compared to

vertical films; as noted, the diffusivity in the charge-

collecting axis is several orders of magnitude lower in the

horizontal film, leading to a diffusion length of order 10

nm. As a result, above a few tens of nanometers there are diminishing returns to greater absorption due to

low exciton collection, consistent with recent experimental realization of higher performance in order-10-

nm essentially-horizontal films versus previous order- 100-nm films. [118] In contrast, vertically aligned

films, where exciton dissociation is driven in the axis parallel to longitudinal diffusion, shows optimal

thicknesses two orders of magnitude larger than horizontal films. The enormous longitudinal SWNT

diffusion coefficient further manifests as substantially higher performance of vertically aligned films

versus horizontally aligned films above I%CP density. The higher absorptivity of the horizontally aligned

film, due to depolarization, is not sufficient to compensate for the difference in diffusivity except at very

low thicknesses and densities. In both cases, as density rises the optimal thickness shifts lower: higher

density increases the light absorbed per thickness, shifting the optimum more towards favoring exciton

transport (Figure 65).

XXXI While we do extract EQE, given the estimation of many parameters and the approximate consideration

of charge transport we are not fixated on the absolute values of EQE; while they may be representative they
are not fundamental, and are primarily valuable for comparing the differential impact of geometric and

chemical parameters.
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Figure 64. External quantum efficiency (EQE) (a,c) and total fraction of incident light absorbed (b,d) versus

nanotube density (p/CPc) and device thickness (T) for horizontally and vertically aligned films with infinitely long

tubes and no impurities. For horizontal films, we look only at the density space above the percolation threshold

(see text). R = 1.

We then examined the effect of introducing finite nanotube length to the network, permitting end-

quenching of excitons (Figure 65). We observed that not only does EQE across the parametric space drop,

as we would expect, but that the lower exciton diffusion length has the effect of shifting the optimal

thickness from the absorption-diffusion tradeoff lower, compressing the density-thickness trend in the T

axis. At a fixed density, shorter tubes reduce the optimal thickness (Figure 65c). This trend is analogous

to the inverse relationship of density and optimal thickness: as exciton transport weakens (in this case due

to quenching) relative to light absorption, the balance shifts to increase exciton diffusion by reducing the

thickness.
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Figure 65. EQE versus thickness T and density for vertically- (a) and horizontally- (b) aligned films at different
mean nanotube lengths (100, 400, and 800 nm). See Addendum for single-curve visualization of these calculations
showing shift in optimal thickness. (c) Trend of optimal thickness T* with density at different fixed mean lengths
((I) = 50, 400, 800, and 1200 nm) for vertically-aligned films. Circles are numerical result, solid lines are power
law fits and dashed lines are biexponential fit (see text). Numerical results exhibit noise because of low sensitivity
(0(10 nm)) of EQE to thickness close to the optimum. Inset: zoom showing the 'cusp' where dT*/dp rapidly
lowers and the biexponential trend is least accurate.
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Figure 66. Performance versus thickness curves with increasing density for vertically aligned films.
These plots are the same data as the 2D maps presented in Figure 65, but visualized as a series of
curves to show the shift in T*. Black arrow indicates the direction of increasing density (red to blue
to purple). The shift of the optimal thickness downward is more visible, particularly the asymptote to
T* -+ oo as p -+ 0.
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Figure 68. Exciton concentration gradients in vertically
(a) and horizontally (b) aligned films with different mean
lengths and 30% CP density.
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Figure 69. Trend of optimal thickness T* with density at different mean lengths (1), showing

more lengths. Open circles are numerical optimization results, and curves are fits of equation

(106). Numerical results exhibit noise because of low sensitivity (0(10 nm)) of EQE to

thickness close to the optimum.

The trends in T* with density are captured by a power law relationship (Figure 65c, Figure 69,

Table 3):

(103) T a ( C
PCP

To illustrate the quality of the power law trend, a biexponential trend is compared (Figure 65c inset, Table

3), showing systematic error at the 'cusp' between low-density and high-density regimes where the details

of the light absorption-exciton transport balance are most influential.

Table 3. Power and biexponential fits of trends in optimal thickness with density, at different mean lengths. Note that

error in the power law trend is entirely within optimization limits, which are 0(10) nm.

Power Fit (T* =B )b + iexponential Fit
PCP2

Nanotube a (nm) b ) c (nm) R2 rms R2 rms error

Length (1) \PCP/ error (nm)
(nm)

10 nm 56 -0.172 -42.6 0.992 1.5

20 nm 68 -0.187 -50 0.996 1.5
50 nm 101 -0.189 -75 0.999 1.0 0.992 3.1

100 nm 148 -0.186 -113 0.992 4.2

400 nm 230 -0.205 -174 0.998 3.6 0.990 8.6

800 nm 254 -0.229 -176 0.997 6.5 0.987 13.2

1000 nm 248 -0.246 -166 0.995 9.0
1200 nm 245 -0.255 -155 0.997 6.8 0.989 13.7
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While it fits the results well, expression (103) is not entirely satisfying because the coefficients a,

b, and c all vary with (1), which is the inverse of the quenching site concentration. Furthermore, while the

power coefficient b follows a linear trend, the proportionality and intercept coefficients, a and c, have no

discernable relationship with (1). Insight is gained however by considering the limit of close-packed

density, where p/pcp --+ 1, and the optimal thickness is minimal (T* -+ Tjp):

(104) T5p = a + c.

T*5 itself depends on quenching site concentration, with lower (1) yielding lower optimal thickness due to

reduced diffusion length. Motivated by this observation, we examined the numerical data at p/pcp 1 and

found that T5p exhibits a strict power law trend with (1) (Figure 70 inset):

(105) T5, = 52 nm0 -6 . 10.4.

Armed with this relevant length value that is a function of impurity density, we hypothesized a new

relationship that we anticipated would collapse our (1) curves by making T* - T*/T*, dimensionless:

T* =a(p 'b+C

TCP pCP

(106) a + c = Tcp - Tcp - a

T* - TCP p

TCP )C

Plotting our numerical results as (T* - T~p)/T2, versus p/CPc (Figure 70), we find that indeed

as expected all of the curves at different (1) collapse to a single curve, and that furthermore equation (106)

captures the trend (blue line in Figure 70). The values we get for the coefficients, which again are

invariant with quenching site concentration, are a = 2.7 0.1 and b = -0.241 0.005.

Equation (106) is an analytic equation describing the optimal device thickness as a function of

density and quenching site concentration (equation (105)). This tool enables device-makers to calculate

their optimal film thickness, which is one of the more feasible design parameters to control, given their

film density and nanotube length, which can be measured. Because the model is deterministic the unitless

coefficients, a and b, have some physical interpretation, which we expect relates to the balance of exciton

diffusion length and light absorptivity, but have been unable to identify the underlying combination of

physical constants that comprise them.
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I )Next we introduced impurity scattering

8 4.5 of excitons, providing varying concentrations of

7 4 a generic local impurity that rapidly quenches

6 excitons, choosing a representative (1) =
3.5-

5 0400 nm (Figure 71). The same trend as end

4 3 quenching emerged, with higher impurity

3 - concentrations lowering the diffusion length and
3 4 5 6 7

2 log(()) - both decreasing the mean performance and

1 compressing the trend it in the T dimension.

0- With these results we were able to

0 0-2 0.4 0.6 0,8 1 consider the differences among to-date

P/PCP experimental SWNT SC observations. More

e 70. Trend of optimal thickness numerical results closely examining the density trend, we see that
density, plotted relative to optimal thickness at close-
ed density (see text). The data (black circles) includes at low densities (< 10 %CP, where all devices

ts from devices with (1) have been) the increase in performance with
0, 50,100,250,400,800, 1000, and 1200 nm
ing that on this plot they all collapse to a single trend. density is rapid (Figure 64, Figure 72);'ii

blue curve is a fit of equation (106), showing perfect .
ment (well within numerical result variation). The higher density increases absorption without
shows the trend of the optimal thickness at close- decreasing the diffusion length (neglecting

ed density (Tcp) with mean nanotube length (inverse
rity concentration) on a log-log scale, showing that coherent delocalization of excitons between
exhibt a strict power law relationship. tubes, see 'Model Limitations' section above),

g to significant performance gains at low density. Comparison to currently published SWNT

photovoltaics[ 115-118] suggests 1) that experimentally observed EQE variations may be due to relatively

low densities, and 2) that large gains can be realized in performance with higher density films. The caveat

is a need to be reasonably close (0.5 T*<T<3 T*) to the high-performance thickness regime. For example

in primarily in-plane ('horizontal') films where the z diffusion length is short, density gains are negligible

if the thickness is already limiting generated exciton collection significantly. With reasonable length and

impurity terms, this is consistent with T* below 15 nm for horizontally aligned films, explaining the

improvements in performance by reducing thickness in reference [118]. In general, the existence of a

thickness optimum has been experimentally observed in both planar[ 115] and bulk[ 121] heterojunctions,

albeit at densities below our cutoff of validity.

xxxii To observe this effect in horizontal films, we must go below the percolation threshold, which is not

shown here. To an order of magnitude our predictions in that regime match up with experimental devices,
but because our approximation does not hold in that regime, we do not claim to reproduce that device

performance.
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c 04 examining the alignment angle choice. At a

02 given density we look at the thickness-
02

01 angle space (Figure 72). Below 10 %CP
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25 o0 emerge, one at the extreme of vertical
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002 angle. As thickness increases, the optimal

p/p p/pCP pPCP alignment angle shifts gradually towards

Figure 71. Efficiency versus thickness and density for vertically more vertical, compensating for the
and horizontally aligned films with (1) = 400 nm at different increased mean exciton-electrode
local quenching impurity concentrations (1, 5, and 20 per
micron). separation with a higher z-diffusion

coefficient (larger longitudinal intra-SWNT diffusion component, lower orthogonal inter-SWNT); also as

thickness rises, the ratio of vertical performance to intermediate performance shifts towards vertical. As

density rises, the intermediate peak more rapidly converges to the vertical with increasing T, and the ratio

becomes more favorable across all T to vertical alignment. As a result, at low density (<3 %CP) the

intermediate peak is the global optimum of performance, while at high density the vertical is superior. In

absolute efficiency, we again observe the strong impact of density (note scale bars in Figure 72),

particularly at lower densities. Again we can consider experimental results, and note that as existing

SWNT SC devices have been made with primarily nanotubes in the xy plane at low concentrations (<1 %

CP density), the observed EQEs from 0.1% to 1% are to an order of magnitude consistent with our

predictions. [115-118] Our results suggest that developing vertically aligned films above 10% of the close-

packed density would yield substantial EQE improvements. Films with high in-plane components, such as

most to-date devices, are the worst configurations of nanotubes.
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Figure 72. Performance and fraction of light absorbed versus device thickness T and aligned film nanotube

orientation 0 at 1%, 5%, 10%, and 100% close-packed density. 0 = 0 is a vertical film, 0 =r/2 is a horizontal film.

(1) = 400 nm, ni, = 2e6 m-, R = 1.

The optimal orientation results can be interpreted again by understanding the balance of light

absorption and exciton diffusion constraints. Vertical alignment provides more rapid diffusion via the

longitudinal SWNT axis, but absorbance is lower due to the depolarization effect. Horizontal alignment

comes at the cost of much slower exciton-transfer-dependent diffusion, but provides more rapid light

absorption, which to some extent mitigates the diffusion constraints by generating more excitons closer to

the top electrode. Longitudinal diffusivity, 0(10-2 m2 /s), is so much greater than orthogonal diffusivity,

O(10- 7 m 2 /s), that in all but nearly-horizontal films it dominates the net diffusion coefficient. Because

of the rapid exciton transport longitudinally between electrodes, absorptivity increases from somewhat

non-vertical alignment at lower densities yield efficiency gains. Those gains are highest at low T where

absorption is weakest and diminish (shifting the intermediate peak more vertical) with increasing

thickness. At sufficiently high densities the absorption gains are unnecessary, leading to a global vertical-

growth optimum. In general, the aligned film limits light absorption off of the parallel axis (Figure 62e),

reducing the efficacy of alignment.

Modelling Isotropic Films

The second case we consider is an isotropic film, where SWNT orientation in any direction is

equally likely,

(107) 1 =E[0,w]

(108) p(0) = 1 q E [0,2w].
27r
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This system differs from current 'isotropic' experimental systems in that those systems in practice

restrict 0, making them more of a 'sandwich' architecture and more similar to off-horizontal aligned

films. Even when caste with surfactant we expect some level of bundling to be typical in an isotropic

network, and take a baseline for comparison of b, = 0.1, M= 4.

Our treatment of light absorption is analogous to the aligned case application, but the integral

over p(i) becomes less trivial,

2 7r 7r

111 CF2
(109) ai(e, ) = 61,meas() 5E2 + (1 - E1  dd(P.

7r 2-f 6ff
0 0

(164) is solvent, and yields (see Appendix J)

(110) 12 3.2 f =,meas (a)

Note that we no longer have any q, dependence to absorption, as we would intuit from an

isotropic distribution. Our light field becomes

(111) ]F(I)2 eXp - P()oT,meas(w) * Z].

(112) IR(WIZ) = R -jo(w) - exp - p()U,eas(W)- (2T - z)].
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Figure 73. Light field attenuation and steady-state exciton transport for an isotropic monochiral (6,5) film with T =

200 nm, R = 1, p(j = 0.1pg', b, = 0.1, and Mb = 4. a) irradiance gradient as a function of wavelength. Note

stronger attenuation on resonance. b) total film absorbance as a function of wavelength. c) total irradiance as a

function of depth in the field. d) mean quenching rates by each mechanism. Note log scale. e) exciton concentration

gradient. f) exciton flux through the depth of the film.
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Moving on to the exciton concentration gradient, our expressions are the same as in the aligned

film case, with the end concentration being cej = 2p. Integrating the monochiral exciton balance (240)

over orientation distribution p(0) we get the diffusion coefficient,
It

Dot = - D 1(cos 0)2 + (1 - I cos 0) 2 (yDEHJ, + bcDEH,b) dO

0

which resolves to

(114) Dtot = (nD + (3T - 8)(yDEH,I + bCDEH,b)).

Di, DEHI, DEHb, and yj follow as their definitions, with the mean squared coalignment becoming

(115) 11 9w4  9
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Figure 74. Density-thickness optimization of isotropic films, with =
1, bc = 0.1, and Mb = 4. a) performance for 'idealized' film. b)
fraction of light absorbed. c) performance for film with (1) =
400 nm, 2 impurities per micron. d) performance versus T plots at
each density sampled in (a) and (c), the arrow indicates path of T* in

(c).

Beyond examining particular

cases (Figure 73), we can proceed to

explore the parameter space,

particularly the thickness-density

relation (Figure 74). Again we see a

strong optimum T* emerge as a

function of density. As density rises,

the enhanced absorbance makes lower

thicknesses with shorter generated

exciton-electrode separations

preferable. Again we see a large

improvement in performance with

density at low density; higher density

improves absorbance, increases inter-

SWNT hopping, and reduces (at fixed

concentration) exciton-exciton

annihilation and end-quenching. In

general we note similar performance

trends compared to aligned films with

modest vertical components.

149

1E lOOC

50C

2000

1500

E 1000

500

(1 13 )



VI. SINGLE-PARAMETER DETERMINATION OF CARBON NANOTUBE PHOTOVOLTAIC

EFFICIENCY

Summary of Findings

In the previous Chapter we derived a deterministic model of CNT planar heterojunction

photovoltaic steady-state operation directly from single- and paired-nanotube photophysics. We did so

with a novel approach, treating local, i.e. tube-specific, properties as random variables to describe the

bulk film as distributions of those properties. We optimized that model to identify design principles for

increasing device efficiency by two orders of magnitude over current generation devices, such as

maximizing density and the vertical alignment component. In particular, a given film morphology has an

optimal thickness regime outside of which efficiency falls off. The resulting system of non-linear non-

homogenous integro-differential equations however obliged numerical evaluation, obscuring how

intrinsic film properties such as exciton diffusion length generated our predicted trends. While the trends

guide device design and provide some physical intuition, we could not connect them explicitly to

underlying physical constants.

In this Chapter we present an analytic solution to the model that reveals those fundamental

connections, explicitly balancing exciton generation, reaction, and diffusion. All relevant intrinsic

physical quantities are reduced to a single group, a, that dictates maximum possible efficiency; a master

curve of optimal film thickness, T*, as a function of a is produced; and we find that to within 99.5% of

the maximum possible EQE the optimal thickness is approximately the exciton diffusion length.

We find that the characteristic spatial length scale describing SWNT PV efficiency is the exciton

diffusion length, LD = VDz/kin1 , where D, is the exciton diffusivity in the charge-collecting axis and

kn1 is the first-order quenching rate constant; i.e. the balance of exciton reaction and diffusion. Non-

dimensionalizing device thickness as = TILD, the efficiency-maximizing thickness 7* depends on a

single grouping of parameters, a = P - LD, where 0 is the SWNT number density normalized to close-

packed. That generates a master 77 *(a) curve (Figure 77D) that any device can be placed on, empowering

device-makers to know their optimal thickness by measuring their material's a. We further find that close

to the optimum, external quantum efficiency (EQE) is only weakly variant with q, yielding the rule of

thumb 0.6 j* < 1.4, or equivalently T* ~ LD, the thickness equals the diffusion length, which provides

an EQE within 0.5% of the maximum. Finally, our solution is enabled by a new method of approximating

solar absorption that is applicable to any film with bell-shaped, spatially-isotropic absorption peaks (e.g.

quantum dots, polymers, dyes). The light absorption (carrier generation) gradient is typically the most

difficult component of photovoltaic performance to solve due to the convolution of incident intensity and
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absorption spectrum over frequency and polarization. Our treatment as a whole applies to any exciton-

transport-limited film with those absorption properties, with an analytic vs. numerical error of less than

1% of the resulting EQE.

Exciton Transport Model
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Figure 75. (A) Cartoon of a SWNT solar cell of thickness
T, with diameters exaggerated. (B) Numerical solution to

In Chapter V, we considered a

monochiral network of single-walled nanotubes

(SWNT) sandwiched between two Type-II

exciton dissociation electrode semi-infinite

plates separated by a distance T (Figure

75).[198] The Cartesian z axis is normal to the

plates, with the incident solar photon flux

Jo(w) normally incident at z = 0. A given

nanotube in the film has orientation = (0, p),
where 0 is the angle with the z axis. When the

network density is high enough (above the

percolation threshold), the film can then be

meaningfully described by the distribution

p(0, (P), with p(0, 0) = 6(0 - 0')S(4) for

example representing an aligned film at angle

0'.[198]

the steady-state behavior of the vertically-aligned film, Exciton diffusion occurs via three
with the External Quantum Efficiency (EQE) plotted
(colormap) versus the film thickness T and the density <p channels. Longitudinal transport is along the
as a fraction of the close-packed density, at two different nanotube length, with diffusion coefficient D1.
mean nanotube lengths (1). Longer tubes exhibit less end-
quenching, increasing EQE and allowing the film to be Exciton energy transfer occurs between
thicker to capture more light while still collecting excitons neighboring tubes either in bundles or at
at the electrodes.

misaligned interconnects, in both cases being

orthogonal to the longitudinal axis of the originating nanotube. Those effective diffusion coefficients are

DEET,b, dependent on the mean bundle size, and DEET,1, respectively. DI is approximately 5 orders of

magnitude larger than the latter two. The net exciton diffusivity in the z axis is then achieved by

integrating these effects over the film orientation distribution[ 198]
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Dz if = p(0, 0)[(cos 6)2D,

(116) i

+ (1 - cos 0)2(yDEET,I + bcDEET,b)]dOd =

where bc is the bundle fraction in the film (typically near unity) and y, is a sparsity coefficient capturing

the density of interconnects. The exciton population balance can then be constructed by accounting for

fluorescent emission, non-radiative decay, Auger recombination, and tube-end quenching,

dc d 2 c kEEA 2 kend 2(117)= N(z) + Dz 2 - krc - kc c.
dt dz2 P() )

where c(z) is the exciton concentration, N(z) is the exciton generation rate from light absorption, kEEA is

the auger recombination rate constant, kr is the radiative decay rate constant, k' is the impurity

quenching rate constant proportional to the concentration of impurities, kend is the end-quenching rate

constant, and (1) is the mean nanotube length. This expression holds only for films of densities above the

percolation threshold and with a uniform distribution of nanotube end-sites. For a more detailed

derivation from single-SWNT behavior, including broader case analysis, see reference [198].

At steady state the exciton transport expression (75) is therefore described by a nonlinear,

nonhomogenous ordinary differential equation (ODE) of simplified form,[198]

d 2 c
(118) D 2 kc - k c 2 = -N(z)

Note that all parameters are extracted from individual/aggregate SWNT photophysics and the distribution

of nanotube orientations in the film. The ODE is subject to Robin boundary conditions describing Type II

exciton dissociation at each interface, z= 0,T for a film of thickness T,

dc
(119) +Dzdc = kaclz=o,Tz z=O,T

where kd, the dissociation rate constant, we take to infinity in the rapid-dissociation limit, checking that

the flux converges.

Analytic Solution to Photoadsorption of the Solar Spectrum in SWNT films

The first obstacle to analytic evaluation of (118) is N(z), the exciton generation rate, which is the

photon absorption rate. A valid form of N(z) that enables facile solution to the exciton transport ODE is a

common inhibitor to analytic or even deterministic solutions to exciton-transport-limited nanomaterial

photovoltaic models. Herein we report an analytic expression with material-specific constants that

captures that light absorption behavior.

N(z) is the convolution over frequency and linear polarization space of the absorption cross-

section per nanotube o,(e 1, w), the number density p(l), and the solar flux at depth z J,(w, EIz),
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(2)N( , EIz) = p(j) -a(E, , 1) -J, (w, EIz).

N(w, EIz) carries a frequency co and polarization c dependence, the latter of which demands a SWNT

orientation I dependence. N(z) is then a quadruple integral over the nanotube orientation distribution

p(0, P), linear in-plane polarization E (we assume normally-incident light), and light frequency ov,

(121) 27r

N(z) = p(f f J(a), E IZ)
0 0

2 7r 7r*f f a, (E, [0, (P], v)p (0, 0) dO dqb dE dcv
0 0

where p(1) is the nanotube density (length of nanotube per volume of film), J, is the photon flux, and ur is

the single-SWNT absorption cross-section per length of nanotube.

To proceed we focus on devices with isotropic in-plane light absorption and no reflection of light

off the back electrode. This parametric space is the most relevant to technological interests; in the former

case it includes isotropic and vertically-aligned films, which we previously showed present dominant

efficiency relative to films with anisotropic in-plane alignment; in the latter case a transparent back

electrode takes advantage of SWNTs near-infrared (nIR) absorption by allowing the solar cell to

complement existing visible PVs or coat building materials. Those approximations make the polarization

and nanotube orientation integrals trivial. We then solve the differential equation describing the light field

attenuation as it passes through the film,

(122) dJ=(Iz) -N(& lz) = J, (o Iz) = Jo (w) -exp[-p() - a, (0) -z]
dz

where Jo (&v) is the incident solar flux. That produces the final integral over frequency space

(123) N(z) = p(L) f JO() 1(o) exp[-p(j) -ul( ) -z] dcv.
0

To solve that integral, we recognize several simplifications. First we can closely approximate the

nanotube absorption spectrum as a series of Gaussian functions for each absorption peak, with magnitude

Sa,

(124) UIMcv) Sa exp ~ PWa) 2]

where pa is the energy of the transition and ca is the peak width (FWHM = 2v2 cn2 Ua). Next, we find

that because the SWNT absorption peaks lie on only the red side of the solar spectrum peak, the spectrum

can be sufficiently approximated as a Gaussian as well,
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2-

(125) io(a) ~J0 -exp - 2 ]
Those simplifications make N(z) an insolvent convolution of a Gaussian and an exponential decay of a

Gaussian (see Appendix K). We can observe however that while the Exponential-Gaussian term is in

general not well captured by the first-order Taylor expansion, its product with the Gaussian term is

because either the function extrema are close or the Gaussian-Exponential reduces to unity (See Appendix

K). That observation simplifies the integral, allowing us to solve it as

2

(126) N(z) = p(jojo Yj SaYa\r e-P(saz

a=1

where Ya can be understood as the area of overlap of the solar flux and absorption peak a,

2
1(-Aa) 22

(127) Ya =J ae 2(aG, Oja a2
Fa 2 + rJ2

The sum must include two peaks for each SWNT chirality, corresponding to the En and E2, transitions.

For a solid film of (6,5) SWNT,[1 16] the empirical constants are S1 = 1.64 x 10-10 m2 /m, yV =

293 nm, S2 = 0.13 x 10-10 m2 /m, and Y2 = 74 nm.
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Figure 76. Comparison of analytic and numerical solutions. (A) Solution to the photon absorption rate, comparing

the numerical result (black) to the analytic solutions with one or two absorption peaks and first or third order

Gaussian-exponential Taylor expansion. Solutions for 20% and 80% close-packed density are shown, with insets

zoomed for clarity. While it is necessary to include absorption from both SWNT electronic transitions, we can see

that a third-order Taylor expansion of the frequency integrand is unnecessary. (B) Nondimensional exciton
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concentration profiles comparing the numerical and analytic solutions at different densities for a film of thickness
2 = 4. (C) Film EQE as a function of film thickness at different densities.

This biexponential analytic expression matches the numerical solution (Figure 76A). The curve

can be conceptually understood as light absorption on two length-scales, one for each portion of the

frequency spectrum absorbed. Because there are two absorption peaks with different absorption cross-

sections, with the near-IR absorption being stronger than visible absorption, light at nIR frequencies is,

relative to initial intensity, attenuated rapidly while visible light is absorbed more gradually, providing a

long tail to our generation rate. That effect is emphasized by the greater incident solar intensity at the

visible vs. nIR frequencies. We can also see validation that our first-order Taylor expansion of the

Gaussian-exponential is sufficient, with essentially no benefit to a third-order expansion.

Solution to the Exciton Transport Model

With an analytic expression for N(z) we are able to non-dimensionalize the ODE (118). The

problem symmetry yields the characteristic exciton concentration and Cartesian length,

J 'o P(i)S1 -Y1
(128) C 0 = k 1n,

(129) zo =LDk 1n1

where the near-IR peak (Si, yi) is the dominant absorption mode and k1n1 is the product of the single-

nanotube first-order quenching rate constant and the concentration of impurities including nanotube ends.

Multiple impurities with different rate constants can be treated with a weighted sum. The characteristic

variables co and zo reflect the physical trade-offs of the system. The nondimensional concentration is a

ratio of the exciton generation rate to the dominant exciton quenching rate, which compete to increase and

decrease, respectively, the exciton concentration. The nondimensional Cartesian coordinate normalizes

the film thickness as n =_ TILD, which balances the film thickness against the exciton diffusion length. A

thicker film or lower diffusion length reduces the number of excitons that reach the electrodes.

Substituting nondimensional concentration e = c/co and Cartesian dimension i = z/zo into the

exciton balance, we are left with
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dz2 kr + k2 (P()1 sy11) e2

d72 klnl (klnl)2
2

(130) = - .r .a. e P(1)Sa k 1nz

a=1

= - p(j)s1L2 + S2 Y2 eP(1)S2LDZ

Sy1 /

We then compare the magnitude of terms, finding that those much less than unity are negligible to yield

the far simplified exciton balance

(131) d 2 = - T~ t" + S2Y2 -er2a

di2  Sdy 1IT -v (- S

(132) = K(0), = -Ke(n)
d2 =0 d2 =17

P()T kd C
(133) a1- LD, CP , ; p , K = Dkln1  Ta SaP M PMD

Solving with the method of undetermined coefficients and taking the rapid-dissociation limit, we find the

concentration profile is a balance of four competing exponentials,

(134 ) ( = fle2 + f2-2_ 1 exla2 - i-S 2Y 2  1 ex2az
(rca) - 1 S1y1 (T 2 a) 2 - 1

1 (e-n - e -rian S2 Y 2 e-7 - eT-2a7

(135)-- 1 S1y1 (r2 a)2 _ 1

136)1 e - e + S2 Y 2  e6 - e 2ai1

(136) e - e - (ra)2 - 1 S1Y 1 (T 2 a)2 1)

The result we again check against the numerical solution (Figure 76B), finding strong agreement to

validate our approximations. The bi-exponential light field decay due to a weak and strong absorption

peak manifests in a pronounced tail in exciton concentration towards the back electrode; nIR light (the

stronger peak, -1 ) is rapidly collected, while visible light (the weaker peak, r2 ) is more weakly absorbed

to generate excitons deeper in the -film.

In the exciton-transport-limited approximation, we can estimate the EQE from the boundary

solutions

~d dc \td~ dz
(137) EQE(1) oc Dz dc =J0 ylrla - iIdz=o - dz z=T) d2= d2

We can optimize (137), setting its derivative equal to zero to find the maximum as (Figure 76C),
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dEQE 0 = F1 ((1 - pj)e-,*(Tia) + (2p1)e- *(xia-1) + (2mp1
di?

+ (-2m1 )e -n*(rja-3) + (1 + mj)e-n*(xa-4)

+ F2 ((1 - P2 )e 7*(r2a) + (2P2 )e 1*(r2a-1)

+ (2m 2 P2 - 2)e-7* (12a-2) + (-2m 2 )e7 *(r2a-3)

+ (1 + m 2 )e -- *(r2a-4))

+ (2mjp1 F1 + 2m 2 P2 F2 )(2e2 77* - e* - e377*)

(138)

- 2)e -7*(c~a-2)

ma = -,
Taa - 1'

a 1 ,
Pa = Taa + 1'

Fa =2 T SaYa
SFyi

The most surprising result is that there is only one film parameter in this expression, a, the product of

film density and exciton diffusion length. The optimal thickness therefore depends on only this single

variable, and all possible films collapse to a single q-a space, as in Figure 77A.
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Figure 77. (A) Photovoltaic external quantum efficiency (EQE) as a function of film thickness '1 and parameter
grouping a. Note that a nonlinear color bar was used for visual clarity. At a given a there is an optimal thickness
-q* that maximizes the EQE, indicated by the black line overlay. (B) the EQE-maximizing thickness T* = ,1*LD
versus density q and exciton diffusion length LD. (C) Maximum achievable EQE versus density 0 and exciton
diffusion length LD, showing the monotonic increase in both. In both (B) and (C), a is the product of the axes. (D)
Master curve (black) of optimal device thickness, non-dimensionalized with the exciton diffusion length 1* =
T*/LD, versus a, the product of diffusion length and normalized density and the sole system parameter. Measuring
a SWNT film's a dictates the optimal device thickness for that material. Blue dashed curves indicate the bounds of
higher and lower thickness that yield an EQE above 99.5% of the maximum. The broad EQE tolerance suggests
that in lieu of measuring a, choosing 17 between 0.6 and 1.4 i.e. T* ~ LD will provide essentially optimal
performance.
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Discussion

Examining the efficiency variation with thickness and a (Figure 77A), we can observe that EQE

monotonically increases with a; higher a materials, which have higher densities and exciton diffusion

lengths, are unambiguously better (Figure 77C). In particular there is a sharp drop in efficiency for a

below 10 nm, indicating that a mean exciton diffusion length of over 100 nm for a 10% close-packed film

or 10 nm for a 100% close-packed film is a crucial material property that must be achieved to advance

SWNT Solar Cell technology. Additionally, at a given a there is an optimal 7*, indicated by the black line

in Figure 77A. The optimum represents a balance between a thicker film collecting more light but

increasing the distance that excitons must travel to reach the electrodes. At higher densities (4) more light

is collected per unit thickness, increasing the maximum EQE and reducing the optimal thickness required

to achieve it. At longer diffusion lengths (LD) excitons are collected more efficiently, allowing the film to

be thicker to achieve the same efficiency or to increase the EQE at the same thickness. These cooperative

effects are captured in the product a, with the only difference being that LD's thickness-increasing

attribute is balanced by 7's normalization to LD, which is clear in Figure 77B; as LD increases and the

density decreases, the optimal thickness rises. From this examination we can finally address the

practically-achievable morphology trade-off between increasing density and increasing diffusion length,

such as encountered when choosing between isotropic and vertically-aligned films using current

techniques: because the product of P and LD is the driver of EQE, they should match. That is

demonstrated in the symmetry of Figure 77C. Roughly, EQE is maximal when (P is about 1/1 0 0 0 th of LD

in nm.

In hindsight the reduction of the system to a is intuitive: the rate of light absorption (exciton

generation) is dictated by the film density, while the rate of exciton collection is dictated by the diffusion

length (and film thickness). Higher density and higher LD increase the rate of charge collection

cooperatively. Having reduced the system to this single parameter, we can construct the master curve

Figure 77D. To employ this curve, an experimentalist only needs to measure her SWNT film's a, ideally

having increased it as much as possible (Figure 77C). Above very low a (10 nm), The EQE has a plateau-

like cross-section (Figure 76C) that makes it drop off suddenly far from if*, but fairly invariant close to

77*. As a result, there is a high degree of EQE-tolerance in the region around i*, exemplified by the blue

bounds in Figure 77D within which the EQE is 99.5% of the maximum possible EQE. That tolerance

means that even if experimenters do not measure their a, they can comfortably approximate 0.6 if* <

1.4 or, equivalently, T* = LD. In other words, near-maximal performance can be achieved by setting the

device thickness equal to the exciton diffusion length in the charge-collecting axis.
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Under the simplifications we have made, that result is applicable to any excitonic photovoltaic

material with bell-shaped absorption modes. The rule of thumb breaks down at two extremes: very high

and very low a. The latter case is physically realistic; it is sparse films, or materials with very low optical

absorptivity. In those cases, the optimal thickness becomes many times the diffusion length due to the

poor light collection (see the low a end of Figure 77D). The other limit of very high a can be imagined as

extremely high light absorption, where the exciton diffusivity becomes irrelevant and the film should be

as thin as possible. i.e. 77* « 1, T* « LD. This case is not physically realistic with existent materials

however; SWNT already have very high optical absorptivity compared to most photovoltaic materials,

and density is constrained to a maximum of close-packed density. As a result, our maximum a considered

in Figure 77D is unlikely to be exceeded by any other material.
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APPENDICES

Appendix A. Detailed Carbon Nanotube Solar Cell Model Derivation

Outline of approach and homogeneity approximation

To aid application of our methodology to other systems, we can summarize our approach in three

steps:

1. Treat single-nanotube properties that are relevant to the network performance as random
variables. The priority properties are position, length, orientation, and chirality. The network
is defined by the distribution of those parameters.

2. Derive the network behavior from single-nanotube physics as a function of those parameters

by performing photon, exciton, and free carrier volume balances. That produces sets of

differential equations dependent on the single-SWNT properties.
3. Integrate those differential equations over the distributions of those properties (e.g. integrate

over the orientation distribution). That integration is equivalent to summing up the

contributions to the balances from each independent population of nanotubes with each
possible value of the random variables.

This treatment is only valid under an approximation of macroscopic homogeneity; for the

distributions to be valid, any slice of the film that is large enough to observe the film's steady state

behavior must contain the same distribution of properties regardless of where you take the slice. In other

words, the film must be homogenous on the length scale that the film's photovoltaic efficiency is

reproducible. Experimentally, the invalid case has been observed with conductivity measurements.[ 199]

This approximation not only constrains our application of the model to films with densities above the

percolation threshold in the charge-collecting axis, but also excludes cases where the film is highly porous

or otherwise exhibits clusters of density, length, chirality, or orientation. It is possible to relax this

approximation and treat such cases - see the Appendix Breakdown of Macroscopic Homogeneity - but in

this work we focus on taking the approximation. The approximation is ultimately (see Results section

above) quite useful, in that it allows us to treat a space of cases that are of top priority technologically -

higher density films where device performance is ideal. We point out that the depletion zone

approximation in p-n junction Si solar cells has proven extraordinarily useful, despite also being an

approximation. We furthermore find quantitative agreement between our predicted efficiencies and those

reported in the literature at densities below what we can rigorously treat, indicating that our

approximation may be generally quite good. To truly evaluate our model, experimental devices must have

the key structural properties - nanotube density, chirality, length distribution, impurity content, and film

thickness - measured. By pointing out the quantities of relevance in this work, and highlighting the

positive impact they can, when controlled, have on device efficiency, we hope to encourage experimental

groups to produce such measurements.
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Extensibility

This model has been deliberately derived from single- and aggregate-nanotube photophysics in

order to provide it with a sufficient extensibility for practical utility. For example, we derive an

expression for the film diffusion coefficient dependent on the film's distribution of nanotube orientations,

chiralities, impurity concentration, density, etc. An empirically-measured diffusion coefficient for a

particular film would not be extensible outside of films with matching distributions of those network-

defining variables. In contrast by expressing the diffusion coefficient as a function of the measurable

intrinsic qualities of the network, our model can be applied to disparate films without adjustment. If our

model is ultimately proven valid, empirical measurements of one film can use our comparative statics to

predict the properties of other films, translating via the intrinsic properties.

Notation

Bold (v) denotes a vector quantity, which may be represented in Cartesian

(140) V = (vxv 3Y, v) = V + VyY + VzZ

or spherical

(141) v = (r,0, P), v = r sin 0 cos p, vy = r sin 6 sin 0, vz = r

coordinates. We will switch between spherical and Cartesian coordinates for convenience without

comment for brevity - which is used should be clear from the context. The space on which a vector is

defined varies by context, for example c = (nl, n2 ) is the chirality of a nanotube with chiral indices n,

and n2 . Hats (2) denote unite vectors. Subscripts x, y, z will be used to denote the scalar components of a

vector in the corresponding Cartesian axis. Unbolded variables (v) corresponding to vectors are the

magnitudes of those vectors.

Probability density functions of a random variable are denoted p(-). Mean values are bracketed as

..

Network Geometry

We consider a network of single-walled nanotubes (SWNT) sandwiched between two electrode

plates (Figure 78a). We define a cartesian z axis as perpendicular to the incident solar photon flux JO at

z = 0 (the 'top' of the film), with z E R+ being the depth of the film up to thickness T and the film being

infinite in cartesian dimensions x and y. In practice the solar flux may be incident at an angle, which

would be further altered by the top electrode index of refraction. These considerations merely change the

boundary conditions of the light field problem below. The back electrode has reflectance'x 1 ' 0 R 1

which can in general be frequency dependent. A variety of conduction and valence band charge collecting

'' Specular reflectance; we neglect diffuse reflection as a simplification in our treatment.
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electrode (type 1I exciton dissociation interface) configurations are possible (Figure 78c), including those

where an electrode also acts as a photoabsorbing layer (e.g., fullerenes, references [115,116]). We focus

on the relatively general case of two dissociating electrodes (first cartoon in Figure 78c), but the model

for the SWNT network applies to any other case by corresponding adjustment of the boundary conditions

(next sections). Particular material selection and band alignment issues associated with exciton

dissociation are well outside the scope of this work, and instead we take the electrode properties as

given.[ 117]

b Global Local
frame frame rh~Ia.d

r~+

r _1D coordinate
rY along axis

r~1 (010,0) 0 0
2 x

Figure 78. Cartoon of model geometry. See text for description.

Throughout this work we adopt several spatial coordinate references (Figure 78b). An individual

nanotube, which we approximate as a rigid rod, has a length and orientation described by the vector in

spherical coordinates as 1 = (1, 0, P), or equivalently in Cartesian coordinates

1 = (I,, ly, 1z)

1, = I sin 0 cos q
(142) = I sin sinP

Iz = 1 cos 0.

In relation to our global coordinate system the center of each nanotube is located at r, relative to

an arbitrary origin in the xy plane at z = 0. The ends of a single SWNT are therefore located, relative to

the origin, at the ends of vectors r, + i. The set of points along the central axis of the SWNT is then

constrained as

162



(143) tr' Irc + (a, - 1, a- E [O,1]}.

In describing intra-SWNT mechanics we will also consider the one-dimensional space along a

nanotube axis, the coordinate along which we will denote r, E [0, 1]. Each r, corresponds with an r' via

r, = a,1 and Equation (143); there is a bijective map between {r'} and {r}. A nanotube also has a

chirality c = (nj, n2 ) where n1 and n2 are chiral indices.[ 176] For convenience we index all chiralities

present in the network by integer i (chirality ci) in order of increasing exciton (optical) band gap Ejgj >

Ei. The center-center diameter of chirality c is approximately

(144) dfcl-c + fl + nln2

where ao = 2.461 x 10-10 m is the graphene lattice constant.[176] The effective outer diameter

d is estimated as the diameter within which the bulk of the electron shell resides, -0.335 nm greater than

dc,- for tubes with dc,- > 0.7 nm, based on the thickness of graphene.[200]

The properties frc, 1, c} completely define a given nanotube in our network. Our approach begins

with treating these parameters as random variables, defining a given film by their distributions:

p(rcIr) = p(r, rcyrcz 1 )

p(1) = p(I) - p(6, <p)
(145)

p(ci) = vi 1E[0,1], Vi = 1

where vi is the number fraction of chirality i in the film. In theory any of the distributions can be

dependent on the others depending on the nanotube and film fabrication processes; we focus on cases

where they are uncorrelated, but the derivation is general for correlated distributions. We will generate

forms of these distributions for different relevant cases - e.g. isotropic, vertically aligned, horizontally

aligned, monochiral, mSWNT impurities, short SWNT, long SWNT, etc. when we apply the model to

relevant cases (see main paper). Our derivation is also general for cases where all of these properties vary

systematically with depth, i.e. p(rc, 1, clz), but in most practical applications p(1) and p(ci) are spatially

invariant. Note we are also implicitly assuming that SWNT locations are independent, even though in

some film casting processes they can be correlated; this phenomenon represents an important shortcoming

of our model, and is discussed further along in the derivation and in the section Breakdown of

Macroscopic Homogeneity.
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Light Field

At any given point r = (x, y, z) E ((-oo, oo), (-oo, oo), [0, T]) there is a total photon flux J,(r)

that is distributed over (as J, (w, E, kIr), i.e. irradiance) frequency w, linear polarization component E =

( 0 E, 'Pe), and propagation direction k = ( 6 k, Pk),xxi .e.
co 7r i 2 i

(146) J, (r) = ff (, E , klr)dqE d6E d k daw.
0 0 0 0

We do not consider magnetic field effects in this model, although it could be introduced

analogously to the electric field if desired subject to b = E X k. Over our length-scales of interest (< 1

pm) for SWNT material, we neglect electric-field phase shifts such as circular dichroism that introduce

and/or manipulate circular polarization components to the light field.

Distributions in polarization and propagation direction of electromagnetic radiation are not

independent, they are orthogonal,

(147) E - k = 0,

reducing our degrees of freedom by one, leaving only 3 independent dimensions. In practice all four

coordinates can be effectively taken as independent if proper 'accounting' is done in all the mechanics that

follow - i.e. manipulations of the distributions of k are accompanied by appropriate transformation of the

distributions of E and vice versa. Alternatively, that implicit dependency can be made explicit. For

example, I take (Ok, 0, q5,) as the independent set, and trigonometrically extract (Pk as a function of

them:

Ek = 0

= eXkX + eyky + ezkz
(148) = sin 0. cos q5 sin 6 k COS (k + sin 0, sin (P, sin 0 k sin 'k

+ cos 6 cos 8 k = 0,

yielding

(149) Pk (Ok, e, (Pe) = 7r + (P- acos(cot 0, cot Ok).

As an example of how this basis practically manifests itself, consider a function F(k) =

F(Ok, Pk). We can evaluate its first moment at r

XXXIV Usual convention is to bundle the direction of propagation and the frequency of the electric field, i.e.

k=2n/o, to be consistent with the plane wave representation of light. Since we will not exploit the plane

wave character of light here however it becomes, for reasons clear later, more convenient to separate the

frequency of light from the orientation of it, thus k is an orientation vector only, it does not connect with

the spatial variation of the electric field.
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(F(6k, (Pk))r = fk F(k)I,(kIr) dk

(150) = F(k, OPk)V(ek, PkIr)d4pk d~k

=f7 F(6k, P Ok( 6ko PE)J(AMOk, 6, P) 1Ir) dpE dOd k

where

(151) Iv(&k,, Pes Ir) = f Jv(wckIr)do.

The SWNT network can interact with the field through three predominant mechanisms:

1. Absorption, generating excitons of energy ha.

2. Rayleigh scattering, shifting the distribution of propagation vectors J, (kIr).

3. Photoluminescence (PL), radiative decay of excitons to contribute to the photon flux at the energy

of the band gap how, position of the relaxation, and polarization of the transition dipole.

All three phenomena could be included in the derivation that follows, but to first order we neglect the

latter two; omitting reflection allows us to remove k from our calculations, and omitting PL greatly

simplifies coupling to the exciton transport equations. The former case we will show below, and the latter

in the next section. See Appendix D below for consideration of the consequences of this choice.

To treat attenuation of the field we must derive the linear-polarization- and frequency-dependent

absorption cross-section of the film from the single-SWNT absorption behavior. The absorption cross-

section of SWNT of chirality c can be broken down as

w(c, E, w)
(152) a (c,E,) = (JV (c, C, W)

where w is the photon absorption rate at that polarity and frequency, and a and w are normalized per

atom C or mole C (with no length dependence, see references [127,201]). Theoretical evaluation of

absorbance is possible,[202] but given sources of variation, such as dependence on the electric and

dielectric environment, [100, 101,116,126] empirical measurement, Umeas(C, E, a),[1 08,126,185,203] is

most immediately appealing. Of relevance theoretically is the polarization dependence. A time-dependent

perturbation theory treatment of the light-matter interaction yields, to first order under the dipole

approximation,[204]

(153) a(E, a) C E Pif p(E 0 + ha)

where Itif is the transition dipole between initial and final electronic states, (i Ilf), E0 is the energy of

ground state Ii), and p(E) is the density of states at energy E. Electronic transitions in SWNT exist with

dipoles parallel and perpendicular to the longitudinal axis (the latter could be called axial as well). The
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latter set contribute only ~1/5t of the total absorbance (integrated across all w), largely due to the

depolarization effect.[ 176,205]

These transitions provide us with two orthogonal sets of polarization dependence:

(154) a(c, C, j, a) OC If.M p(c, )1 2 +1C -pL (C, W)1 2 ,

where it and pt1 are sums of all the dipole moments for transitions of energy hw oriented parallel and

perpendicular, respectively, to the longitudinal SWNT axis. We therefore effectively have two

experimentally- or theoretically-determined absorption cross-section functiona o and o_, giving us a total

absorption cross-section for a single SWNT of orientation 1 = (0, )) as

(155) a(c, e,W,) = C. i 2c-i(c,W) + (1- IE - 1) 2ca(c, o),

where the second coefficient has a simple form because both polarization and orientation are unit vectors,

and any component of linear polarization not parallel to the SWNT axis is necessarily in the plane

perpendicular to it. We will define our coefficients for convenience as

(156) El (OE, e, , )) E

(157) El(6, 6, , () H 1- Ell (O, (e, 0, P).

In the derivation that follows we will find that normalizing a per length, a,, rather than carbon

units is more convenient. For a per mole of C, as is more usually reported, we can convert readily. The

SWNT circumference is

(158) 27 de,c-c = 7 - de,c-c,

which gives us

1
(159) -Pgraph - wde,-

moles of carbon per length of SWNT of chirality c, where NA is avogadro's constant and Pgraph is the

density of graphene. This relation gives us

1
(160) a,(E, i, a, C) = - Pgraph , 7 dc,c-c . a(E, 1, W, C).

This conversion is approximate as it neglects bond stress relaxation from curvature, and so

measured constants can be used when available; for (6,5) SWNT this estimates 9.1558 x 1010 carbon

atoms per length versus 8.8271 x 1010 measured in reference [185].

We can now consider the network. In the remainder of the derivation, two spatial magnifications

will be traversed, and the transition between the two will define much of the approach. At the

'macroscopic' scale, 0(100 nm), where the diameter of the nanotubes is negligible, we approximate

that the film is essentially homogenous. At the 'microscopic' scale, on the order of de, heterogeneity in

the local environment is highly relevant. There are realistic situations where the homogeneity
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presumption in a strict sense breaks down; the circumstances and impact of that error, as well the means

of relaxing the assumption (accounting for macroscopic heterogeneity), are laid out in the Appendix

Breakdown of Macroscopic Heterogeneity below.

From the perspective of the gradient in the light field, the diameter of the SWNT is negligible and

the film is essentially homogenous. The length-density of SWNT we will define as the length of SWNT

per volume of the film,

(161) ) p' I' p(I)dl = p -(1),

where p is the number density of SWNT and (1) is the average length of SWNT. Without any depth-

variation in density, the absorption cross-section per volume of film due to SWNT of chirality i and

orientation i is

(162) Vip o1(E' i, a, ci).

where vip(l) can be understood as the density of chirality i in the film. Note that we are omitting explicit

dependence on the dielectric environment of each SWNT; that is justifiable under homogeneity if o and

a1 are measured in or corrected for the appropriate state, but alternatively ai can be conditioned on local

dielectric constant and integrated over the distribution of it.

A reader familiar with SWNT literature will be more accustomed to seeing quantities liked

density expressed in atom or mole Carbon units, rather than by length. That treatment is entirely

equivalent to using the length of SWNT, mediated by the carbon atoms per length SWNT, so long as

chirality is appropriately accounted for. The per-length quantities however are more useful, as we will

see, in translating between one-dimensional and three-dimensional diffusion, where we care about the

length of the SWNT present independent of the number of carbon atoms.

For irradiance J, (w, E, kIr) the photon absorption rate per volume due to SWNT of chirality i

oriented in I are

(163) Ni(w, e, k, i r) = vi - pq) - oy (, i, w, Ci) Jv (w, E, kIr).

To get the total film absorption rate we must sum absorption terms (163) for nanotubes at each

possible orientation i and chirality i, weighted by the relative populations of each. That is equivalent

however to integrating over the distribution p(i) (and summing over chiralities), forming the crux of our

methodology,
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N(w, c, kfr) P(O) fp() Ni(o, e, k, 1Ir) dO d
0 0

27r 7r

Svf p(O) f p(0) p(l) oI(E , W, Ci)J,(w, E, kIr) d0 do

(164) 0 0

- P(l)JV(w, E, k Ir) vi f p( P) f p(0) Ur1 (E, 1, w, ci) dO do
0 0

-P(I)IV (w, e, k Ir) vja-1(E, (, C 1).

In this manner, we can describe the light interaction behavior of the film by integrating the single-

SWNT behavior over the distribution of independent single-SWNT properties. We will take the same

approach to exciton and free carrier transport below, where will also consider its utility in more depth. In

the last two equalities of (164) we are showing that a- (E, w, ci) can be safely evaluated from the film

properties before any consideration of absorption, which we exploit in the Results section of the main

paper.

Consider a balance on the hypothetical number of photons in a differential volume of the solar

cell, Np (r). With absorption as the only light-matter interaction we treat, the change in photons with time

is due to absorption events N(r) and any gradient in the flux,

dNp(w, E, kIr)
(165) dt = -Jv(,(E, kr) - Ni(w, c, kIr).

At steady state we conveniently lose our Np (r) dependence,

(166) V -J,(w, e, kr) = - Ni,(we, kIr).

We are now in a position to make two useful reductions. First, in the x and y axes where our film

is infinite we will treat periodic solutions as trivial, making our boundary conditions in those dimensions

-J0
ay

(167) 
Jv .-- = 0.
ax

This simplifies our balance to

dJ(w, c, kz) - (w,E,kIz).
(168) dz .N~,e ~)
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Second, neglecting Rayleigh scattering and photoluminescence the k dependence drops out. We

can see this by considering the source of incident light, which below we will treat as a boundary

condition. Being perpendicularly incident into the film, we have

(169) IJv(k z = 0) = J(z = 0)- '(" O - w).

Without fluorescence or Rayleigh scattering, our balance (Equation (62)) contains no transformations of

k, and so the initial distribution J-, (k Iz) = J, (z) ' ((Ok - 7r) is maintained. Ok then trivially integrates out

of the balance; for the left hand side we have

27r 27r

(170) 
kr)6(Ok - -) d k = VJ,(w, Er)f (Ok - 7r) dOk

= VJ(o, EIr),

and for the right hand side

27r

-f N(w,E,kjr)dOk
0 1

27r

(171) = - 1vp1 r( (, O, Ci)J,(Oc,Ekr) f r(Ok

00

- i) dOk = - vj P(lCUl(E, i o, cI(&, E Ir)

= - N (w, cI r).

This simplifies our balance to

(172) V -J(w, Ejr) = - Ni(to, EIr).

Combining the two simplifications, our balance reduces to

dJ (to, c Iz) N~) ~)
(173) dz= (welz).

With a transparent back electrode (at z = T), the boundary condition can be defined as an

incident unpolarized AMI.5 solar flux,

(174) I,(6, Eiz = 0) = J0 (w, E).

Note that 'unpolarized' is still constrained to be in the incident plane, giving us distributions
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iW' 1
(175) Jo(0, E, E) = Jo() - 6( 2E - ) pe E [0, 27]

where Jo (w) is the AM 1.5 solar spectrum. We cannot treat reflection off the back electrode as an

alternative boundary condition (J'(T) = 0), as omitting k prevents us from describing the incident flux

with a generation term in the balance (64), such as

(176) +J0 (w, c, k) -6(z - 0)

(177) JO(k) = Jo(Pk) = 6(k - 7).

Instead, we recognize that absorption events are independent, allowing us to treat the total light field as

the sum of two other fields - one representing the 'forward' flux, JF(z), and one representing the

'reverse' flux, JR (z). Interference of incident and reflected light is constrained to a small band of

frequencies around harmonics of the film thickness and we therefore neglect it. The fluxes have identical

ODEs with opposite generation sign,

dJF (CO, E I Z)= ialz
(178) dz= - (wElZ)

dJR ((A, C IZ)= ()cIz,
(179) dz = N1(wEz),

but with different boundary conditions. In the forward direction we have the incident solar flux BC, and

in the reverse we reflect the forward flux at z = T,

(180) JR(W, EIZ = -T) = R -JF(a), Ecz = T),

where R E [0,1] is the reflectivity of the back electrode. Solving the forward and reverse ODEs in

sequence, we get the total light field

(181) I (W, EIZ) = JF(O, EIZ) + JR (, EZ).

Integrating over (&, E) yields the flux gradient J, (z) and the photon absorption rate N(z).

We should also note that by neglecting k we also complicate treatment of cases where light is not

incident along z, i.e. light incident at an angle. In that case we would need to treat not only the longer path

length of light both on incidence and reflection, but also we would need to distinguish between the

direction that the light gradient is formed along and the direction that excitons diffuse in in the next

problem. The situation can be rectified by performing the entire light derivation above not along the

dimension z, but along some propagation direction K with a z component of cos 0 K. The entire derivation

would be the same, except that the gradient in x and y must still be zero, so a 3D balance must be solved

to enforce that and extract the gradient in z.
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Exciton Transport

In SWNT, optical electronic excitations result in exciton generation - bound carrier states - rather

than free charges, due to one dimensional confinement.[98,100,177,178] To collect charges in a solar cell,

excitons must be dissociated either at a type II interface or by an electric field imparting coulomb force

greater than the binding energy. Nonradiative decay of hot excitons to the band gap occurs on a timescale

of 0 (10 fs);[206,207] with a longitudinal diffusion coefficient D, of 0 (100 cm2 /s) (see Chapter V), the

hot exciton diffusion length is < 10 nm and the exponential decay of excited-state energy brings it close

to ground state within angstroms. Given that, additionally, the inter-S WNT transport occurs on a

timescale of 0(10 ps),[19 3 ] we make the key assumption that for T > 10 nm, excitons nonradiatively

relax to the band gap E of the relevant SWNT chirality instantly relative to any other processes we

consider. This approximation allows us to neglect hot exciton behavior entirely, and treat the exciton

generation rate at band gap energy E as the photon absorption rate for chirality i, Ni (z). We further

assume that excitons do not interact with free charges, allowing us to couple the two systems only

through exciton dissociation. While local dielectric environment - which impacts the exciton diffusion

coefficient[ 106,110,111] - can be inserted in our model as another random variable without changing the

derivation that follows (see Including Dielectric Environment section below), we have chosen for

simplicity to omit it; for a fairly homogenous dielectric environment, it could be rolled into D, without

much loss of accuracy.

As we will show, a single empirical diffusion coefficient describing exciton transport in a film is

limited to only one particular geometry and chemistry. Thus, an empirical approach alone would be

misguided. Instead, we start with the single-SWNT 1 D exciton reaction-diffusion behavior. We then

derive the contribution of a network of such systems to three-dimensional exciton transport, and couple

them via exciton hopping (EH). The goal is to extract the rate at which excitons arrive and dissociate at

the electrodes at z = {0, T}.The transport is thereby treated in a highly general manner, accommodating

for arbitrary network density, co-alignment, net orientation, impurity types and concentrations, length

distribution, bundle fraction and size, chirality mixture, and any other properties dependent on the random

variables that we used to define the film. There are several ways to approach the coupling problem; the

one adopted here was chosen for tractability and generality, but elegant alternatives are mentioned in the

section Appendix G. Alternative methods ofcoupling the infinite number of line segments.

Beginning with a single nanotube of length 1, there is a one dimensional coordinate

(182) e, e [0, 1] or a, = T E [0,1],

with an exciton concentration n(r) excitons per length. Excitons are generated at a constant rate N (r)

that corresponds with an associated N(r') in 3D space from the light absorption problem. In general the
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exciton concentration is also a function of time, n(r, t), but we will be concerned only with steady state

operation of the system. We take the excitons to be point particles, i.e. neglecting the finite electron-hole

correlation length. Intra-SWNT exciton transport is diffusive via elastic exciton-phonon

scattering.[102,106,191,208] This allows us to construct a ID differential volume balance

dn d 2 n
(183) d = N(rj) + D, d2n

where D, is the theoretically- or empirically-evaluated longitudinal exciton diffusion coefficient in the

dielectric environment of interest (and at the temperature of interest - we focus isothermal operation, see

Relaxing Isothermal Approximation for how to introduce temperature dependency). [106]

We can then introduce relevant relaxation mechanisms. Radiative (photoluminescent, PL) decay

is first order with rate constant kr = 1/1r, where Tr is the PL time constant. Exciton quenching from

impurities can either be localized via inter-band states allowing nonradiative relaxation (e.g. covalent sp3-

bonded[208,209] or ionically bonded[191,210] moieties) or delocalized due to doping.[208] Terms

should be included for each species of interest (e.g., oxidative agents, catalyst nanoparticles), with

delocalized quenching exhibiting first-order kinetics and localized quenching for an impurity of type im

with uniformly distributed concentration distribution nim providing quenching rate

(184) -kimnimn(r)

where kim (in length2 time-') is the associated 'bimolecular' rate constant. Note that nim can be

understood as the mean number of impurity contacts per length of SWNT; for example if each catalyst

nanoparticle on average contacts 3 SWNT, then n im would be three times the film's particle density

(number density) divided by the SWNT length density p(L). Exciton-exciton annhiliation (EEA) via auger

recombination is also possible at high fluences,[108,192,211,212] yielding the bimolecular reaction term

(185) -kEEA' n2

where kEEA is the rate constant. Following [192] the EEA rate constant can be calculated as

(186) kEEA = 1' (IL) (El)

where Ell is the direct band gap energy, y = memh/(me + mf) is the exciton reduced mass where those

masses are the effective masses, me-mh-~O.mo, EBE is the exciton binding energy, mo is the free

electron mass, wVc is the interband transition strength, and

( (Eg - 2EBE)

h(187) keo h

kEEA is approximately 6 x 10s m/s for chiralities in the regime of EBE, 0.3 eV.[192] Neglecting

changes in the exciton coupling potential, we can scale this for different chiralities as

172



6 0M EBi 3 e 3

(188) kEEA (Ci) = (6 X s E 0.3 eV

For examinations of single SWNT PL intensities, end quenching is typically taken as a boundary

condition.[ 104,213] Anticipating expansion to three dimensions however, instead we treat end quenching

with another reaction term,

(189) -kend , n ri - 0) + (r, - ))

where kend is the end quenching rate constant (length 2 time-'). Our ID volume balance at steady state

then becomes

dn d 2 n
= N(ri) + Dr2 - krn - kEEAn2 _ kimnimfdt rI

(190) im
- kenan(16(ri - 0) + S(ri - )) = 0.

To determine the network behavior, we construct a three dimensional volume balance subject to

diffusion in one dimensional channels. For clarity we will start with a single chirality in the film and omit

index i, bringing in multichiral transport afterwards. We start, as we did in the light absorption case, by

focusing on a nanotube population oriented in some direction 1, which will yield a set of differential

equations describing exciton transport; to include terms in those exciton balances for each possible

orientation, we will find that we simply need to integrate the ODEs over the orientation distribution p().

For a hypothetical network where all nanotubes lie along the x axis, we have a one dimensional

Fick's law exciton flux in a given SWNT, from above, of

dn
(191) liD = -D .-.

The resulting three-dimensional flux through the x-face (area dy - dz) of a differential volume is the

product of the one dimensional flux and the number of channels per area. The number of channels per

area however is equivalent to the length of SWNT per volume, p(l), providing a three dimensional flux of

dn dc
(192) 1 3D,x = P(1)J1D = -P()DI- = -Di

where c(r, t) is the exciton concentration per volume and we have exploited homogeneity in the frame of

macroscopic diffusion for the relation

(193) p(l)n = c.

Note that while Equation (192) has the form of what one would empirically intuit, there is the

crucial difference that D, is exactly the single SWNT exciton diffusion coefficient, not a net film

diffusivity; if we had only isolated (uncoupled) SWNT all lying in the x axis then the network diffusivity

would be exactly D1, as one would expect. For a network with orientation distribution p(i), the diffusion

173



coefficient for each dimension can be broken down by deconvoluting the contributions to the longitudinal

diffusivity,

1
(194) D = 2- vex -lmfP

where vex is the mean exciton velocity, Imfp is the mean free path between elastic exciton-phonon

interactions, and the 1/2 geometric factor reflects the single translation dimension. This relation allows us

to infer orientation factors for the longitudinal diffusion coefficient in each dimension,

1
(195) D,x = 1(sin 6 cos )vx (sin 0 cos 4)lmfp = (sin 6 cos () 2 D,2

1
(196) Diy= (sin 6 sin 4) ex -(sin 6 sin cf)lmfp = (sin 6 sin 4)) 2D1

1
(197) Di~z = (C0s 0)Vex -(Cos 0)Imfp = (cos08)2 D1 .

Note that (0, )) are random variables, not Cartesian coordinates, i.e. V, -f(0, #) 0, Vf. This

yields a diffusion flux in three dimensions of

dc dc dc
(198) D, (sin 0 COS b)2 - + D1(sin 6 sin 4))2 - + D1(cos 0)2 _

dx dy dz

Note that diffusion in Equation (198) is only due to longitudinal intra-SWNT transport, we have not yet

accounted for exciton hopping (EH) between nanotubes.

Next we extract film quenching kinetics. Radiative decay, being monoexcitonic, remains simply

linear in concentration and independent of geometry,

(199) ~krc.

Impurity/defect scattering is similar; multiplying by p(l) to convert the reaction rate per length of SWNT

to rate per volume network

(200) -p(1)- kimnimn = -kimnimc.

Treating EEA in the same manner we are left with a lingering n factor remedied by an identity:

2 P~)kEEA 2
(201) p(l)' kEEA -kEEAn C = - kEEAf , = - C .

Note that we therefore predict an inverse scaling of EEA rate with carbon density, an observation that can

be experimentally evaluated. Again note that kim and kEEA are the single SWNT 1 D rate constants, not

empirical film constants, rewarding our microscopic derivation.

Note that in general the quenching rates can be made chirality dependent if desired, just sum and

attenuate by chiral fraction, as we did with the absorption cross-section c-(ci) in the light absorption

problem, e.g.,
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(202) -krc - vikr,ic.

Finally we can consider quenching due to the ends of nanotubes. In three dimensions in our

homogenous picture an exciton at position r could be on any SWNT of length 1, and, constrained by the

distribution p(rc Ir), could be at any relative distance to the end. As a result, we can treat the SWNT ends

as impurities with some concentration, cend (r), that is in general non-uniform. For example in a

vertically aligned film with one layer of SWNT, there will be more SWNT ends near the two electrodes

than in the center of the film (Figure 79b). This can be thought of as the ability to, constrained by

p(rc Ir), slide SWNT around any point r, bringing the end of the SWNT closer or farther away. This

observation gives us a rate of end quenching

kend
(203) - Cena(r)

where again kend is the one dimensional rate constant. The distribution of end locations rend, Cend (r) =

p(rend I r) can either be constructed independently from the film geometry or calculated from the

dependency on p(rc Ir) and p(l) via their relation,

1
rend = rc -+

2

(204) = p(rendrc, 1) = (rend - rc + 2 + 6 (rend - rc - 2

Cend(r) = p(rendlr) = f,, fpo),p(rendjrc, 1) p(rcIr)p(1)d1drc.
( ),n),
(0,27r)
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ab Celd(Z)

p(rc.)

dz
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C3 d

Figure 79. (a) cartoon of nanotubes penetrating the x-face of a
differential volume balance. (b) an example cartoon of a vertical
SWNT forest demonstrating construction of the SWNT end
distribution. (c) illustration of diffusivity perpendicular to
longitudinal axis at SWNT intersections and bundles. (d)
illustration of tunneling process parameters.

Finally, we consider exciton transport between nanotubes. The mechanisms of exciton

transfer/hopping (EH) between nanotubes of the same and different chirality, as well as the mechanisms

of type II exciton dissociation at donor-acceptor interfaces, remain under investigation and

debate.[ 113,115,117,179] Explicitly, in the model we treat EH as a tunneling process in bundles and at

interconnects, neglecting admittedly vital phenomena such as exciton delocalization[ 113,180] and

Schottky barriers/band bending.[ 181] What is important for the future use and evolution of this

framework however is that the relevant independent parameters are available, allowing a different

functional form to be introduced without contradicting the remainder of the model. This consideration

highlights the extensibility of our method beyond our explicit form.

We assume that on our timescale of interest (0(1 ps)) after a transition to a neighboring SWNT

an exciton does not maintain momentum in the direction of the transition, yielding random walk

character. The result of EH events is therefore a diffusive flux of excitons at inter-SWNT contacts

perpendicular to the longitudinal axes (the normal between tubes), a crucial phenomenon for aligned

films.[1 15] For a pair of points (r',r) on two SWNT of orientations 1, 1j with separation (Figure 79d)

(205) A=r - rj - d
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Fermi's golden rule provides a quadratic dependence of the single exciton elastic transition rate

WEH on the interaction potential between excitons at the two points, Vij (A' , ij):

(206) WEH OC I V i (A'I' -

For a tunneling process we anticipate exponential decay of rate with separation [113]

2. -2RA
(207) 1V ij A, Ii, j;) I

where fl (length-') is the spatial decay constant for the equivalent monoexponential decay of the exciton

wave function radially away from the SWNT, e.g., II oc e-2flr. The relative alignment of the two

SWNT should linearly attenuate the interaction potential by momentum conservation,

2
(208) WEH OCi . j1

Given the exponential decay of the transition rate and the strong van der Waals attraction between

SWNT, we approximate that EH occurs only at intimate SWNT contacts with some fixed A = A. This

approximation allows us to define a fixed proportionality constant kEH such that

(209) lii liI

(210) WEH = kEH A 2 .

kEH can be determined experimentally or from theoretical evaluation.

From the transition rate at contacts we can derive the resulting diffusion coefficients. In the ID

axis along the transition direction (perpendicular to both SWNT longitudinal axes 1j, ij, i.e. ii x ij) the

diffusivity can be expressed as a product of the velocity and mean free path as in Equation (194). Since

each transition covers the effective distance A + de and are independent events, the effective velocity is

WEH (A + dc) and mean free path is A + dc, giving us

1 1 2
DEH - . WEH(A + dc) - (A + dc) kEHA2 (A + dc -(211)

The network diffusion resulting from this transport at contacts is intimately dependent on the microscopic

heterogeneity of the film; both the co-alignment and contact density (correlated position) distributions,

rather than mean values, determine the resulting film EH diffusivity. For example, a film comprised

entirely of bundles - which have large contact areas and near-perfect alignment - will exhibit enhanced

EH diffusion relative to an isotropic film. As another example, a network with larger voids (at the same

' For a square tunneling barrier between SWNT this is rigorous, but in practice even with no interstitial

contaminants the image potential in each SWNT gives curvature to the tunneling barrier. The wavefunction

decay therefore won't be exactly monoexponential, but will always be rapid.
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total density) will exhibit more efficient EH transport due to higher correlation of positions (and therefore

a higher density of contacts).

We divide the film into two distinct microscopic environments: bundles and interconnects. The

bundling coefficient, be, we define as the length fraction of SWNT in bundles. Along with the mean

number of SWNT in a bundle, Mb, we can determine the diffusivity due to bundling (again, neglecting

exciton delocalization[ 113]). In a close-packed bundle, a single SWNT can be surrounded by anywhere

from 1 to 6 neighbors, and each neighbor of the same chirality provides the pairwise diffusion pathway

described in (211). For X nearest neighbors around each SWNT, and A = 1 in bundles, the diffusivity in

the plane perpendicular to the bundle would be

1
(212) DEH,b = X kEHb(AB + dc) 2 .

If we define Xi as the probability of a member of the bundle having i neighbors, then we can determine X

as

6

(213) X -Xi-
i=1

We can calculate the mean value of X from only the average bundle size. As MB 00, X 6, giving us a

functional form (with constants n and Q)
6- Mn - Q

(214) X(MB) M

At a minimum bundle size of 2 we must have X = 1, giving us

(215) X(2)=1-*Q=5-2 .

From the series of maximal X(MB) we can evaluate n as ~0.5 1,

6 -M 51 - 5 - 20.s1
(216) X(MB) = MB s1

With diffusivity DEH,b (Equation (69)) in the plane perpendicular to a bundle, we have the

resulting exciton flux in Cartesian coordinates

dc dc
bc(1 - sin 0 cos () 2 DEH,b dc + bc~l - sin 2 sin (p)2DEH,b

(217) dc

+ bc(1 - cos 6) 2 DEH,b -
dz

Outside of bundles, exciton transport between nanotubes is still expected at interconnects

between SWNT. The resulting flux will in general be lower than bundled SWNT EH due to 1) imperfect

alignment (A < 1) and 2) lower overlap lengths (in bundles the entire length of the SWNT overlap,
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giving bcp(j) length of SWNT in bundles per volume, whereas at interconnects only a small region of

length ~-d is contacted between SWNT.

An ideal treatment of the number of SWNT contacts per volume would include the correlation of

nanotube locations, for example by deriving it from the nanotube radial distribution function (See

Appendix Breakdown of Macroscopic Homogeneity below). As discussed in that section however, a good

first approximation is to assume an independent dispersion (i.e. uniform distribution). We can determine

the density of interconnects by considering a control volume surrounding a nanotube of length 1 (Figure

80).

Figure 80. Cartoon of a control volume around an unbundled nanotube.

The number of other SWNT with central axes in the volume up to dc away is the number of

interponnects in the control volume (whether the locations are correlated or not, see Appendix). In other

words, the number of contacts is the number of other nanotubes within one diameter of the control

nanotube. To roughly approximate the bending ability of the nanotubes (deviation from rigid rods) the

contact distance can be extended to twice the mean displacement rbend

(218) dc + 2 rbend,

for example an additional -d. The volume excluding the central nanotube is then

(219) 1 ((2d) - 2  = 1 d .

In that volume there are, based on the number of SWNT per volume p,

1 )) 15
(220) 1 -bc - M 4-1d

other SWNT present, accounting for SWNT pulled into bundles.av This yields the number of

intersections per length of the control nanotube,

XXXVi i.e. each bundle itself can behave as a nanotube, providing the (1 - coefficient.
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(221)= - =-1-b(p-l-)n d .
(221) 1 15

=1-bc 1- p-7nd .
M 4 c

Multiplying by the length of SWNT not in bundles per volume we have

1 -bc 1 - 1)p(t - 1 -bc 1 - 1)p n~d 2

(222) P() c1-1)2 1S5~

intersections per volume of solar cell. If each intersection to provides -dc of contact length along the

SWNT, the length of intersections per volume is

(223) P(1)P 1 - bc (1 - -))2 1,d'.

For each intersection, we have the diffusivity expression (211),

12
(224) DEH, -EH A2 c 2

providing a flux in the dimension along the intersection 1i x lj

dn
(225) JEH,1,iX = DEHI -

Multiplying by the number of intersections in a cross-sectional area we arrive at the film fluxes arising

from interconnects,

COS(p2 p1 )2 1 3 dc
(226) JEH,I,x = (1 - sin Cos )2 (1 - bc -)) d EHd

1 )2 1 3 dc
(227) JEH,I,y= (1 - sin 2 sin _ -)( c B1 - -5)) dc DEH, I

/B) 4 d
(228) JEH,I,z = (1 -bC (i - _))B 4 rd -DEH, dc

where the leading trigonometric terms are again projections onto the plane perpendicular to the control

nanotube longitudinal axis, and we employed relation (193). To account for significant reductions in

inter-SWNT contacts arising from nanotube coatings (e.g., polymer, surfactant), an interstitial modifier A,

can be included to attenuate the number of interconnects with the proportional factor 1 - AI,

) (s)2 . ( p b1 ) 2 3 d c
(229) JEHJ,X =( , - (1 - sin 0 C1 -) .c _ - B ndc ' DEH, I
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(p)2. p1 )2 315 dc
JEHIy = (1 - A,) - (1 - sin 0 sin #)2 p I - b (I - EH

1 2 15dc

JEH,I,z = (1 - A,) - (1 - cos 0)2 .p (1bc(1 -)) 34  ddDEH c.

This adjustment is not necessary in bundles, as the definition of the bundle coefficient explicitly rejects

lengths of SWNT that are not in intimate contact.

The final consideration in exciton diffusion at contacts is the co-alignment (A) dependence. Since

no other term in our balance will depend on the relative orientation,

(230) A = LI' . I = l(O',",', #"),

integrating over p (A) yields

(231) DEHI EH c 2

(A2) is readily calculable given the distribution of p(i). For example two methods would be:

1) Integrate A2 over the distribution of angles directly

(232) ( 2 ) = fff f A2 p(6')p(O ")p(0')p(c")dO'dO"dP'dP"

2) Evaluate the product distribution

(233) p(Al6', 0", o', P") = S(A - II' . Z"|)
" = '- il + ll + 1' - l"

(234) = Isin 6' cos 4' sin 0" Cos P"

+ sin6'sin4'sin0"sin 0" + cos6'cos6"1

p(A)
27r 27r 7r 7r

(235) = f1 P(1O',6"1,',")p(')p(6")p(#P')p(#P")dO'd6"dP'dP".

The expected value is then

(236) (A 2) = fA2p(A)dA.

Including all three diffusion mechanisms, the volume balance for exciton transport in a monochiral

network is

(237) Let y1 p (1 - bc 1 - , =)) " d 1 - b (1 - d) -) n
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dc/2
-c= N(r) + D(sin 6 cos )2

dt

COS 0)2d 2C
+ (1 - sin 6 cos ') 2 ((1 - AI)yDEH,I+ bCDEH,b dX2

+ (D(sin 0 sin p)2

(238) (p2d2C
+ (1 - sin 6 sin #)2 ((1 - A 1)yIDEH,, + bcDEH,b d y2

9)2 (1 COS0)2d 2C
+ (D(cso)2 + (1 - cos 9)2 ((1 - AI)yDEH,I + bcDEH,b dZ2

krcC kimnim-kEEA C2 kencend r)-C.
P (l ) p ( )

We can recognize y, as representing the 'sparsity' influence on orthogonal diffusivity, with y, -- 0 for a

fully-bundled film (independent of density). Analogously to the light field balance, we can recognize that

periodic results in x and y are trivial, simplifying the balance to the z coordinate,

dc dc
(239) - = - = 0(239)dx dy

dc
- = N(z) +( COS 0)'D,

(240) + (1 - cos 6)2 ((1 - A 1)yIDEH,I+ bcDEHb d 2 - krc

C kimnim - kEEA C 2 _ kend ) - C.
I P(l) P(l)

The balance is subject to steady state conditions and electrode boundary conditions, treated below. For

simplicity we can now define a total network diffusion coefficient,

(241) Dtot = (cos 6) 2 D, + (1 - cos 6)2 ((1 - AI)yDEH,I+ bcDEH,b

Analogous to the light absorption problem, we have constructed a differential equation describing

exciton transport due to nanotubes with orientation 1, but to get the total balance we must sum

contributions from all possible orientations. Again, that weighted sum is equivalent to integrating (241)

over the distribution p (1). This treatment is only valid under our approximation of a homogenous film.

That is our method: treat single-SWNT chemical and geometric parameters as random variables, derive

network behavior from single-SWNT physics as a function of those parameters, and finally integrate the

solution over the distribution of those parameters. In the Results section we illustrate this process when

we apply it to specific cases.
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This is an important result; equation (240) has the intuitive reaction-diffusion form one might

guess for an empirical fit of a given experimental solar cell, but

A) the net diffusivity Dtt and several of the kinetic rate constants depend exquisitely on the film

properties (p(i), p(j), p(1)), preventing broader applicability of any single diffusivity measurement,
and

B) by considering the distributions of single-SWNT parameters and the microscopic mechanisms of

exciton transport and decay, we have been able to derive the dependence of network diffusion and

reaction constants on film properties and fundamental single-exciton physical constants.
Furthermore, this framework built on treating single-SWNT parameters as random variables and defining

the network through their distributions is flexible and adaptive; particular terms - such as exciton hopping

diffusivities - can be changed as SWNT exciton physics is better understood. New parameters with

associated distributions can be introduced, such as dielectric constant and local density (radial distribution

function), and variable independence assumptions can be relaxed, increasing complexity and nuance

without grossly deteriorating numerical solvency.

Multiple chiralities can now be introduced. Separate balances can be constructed for excitons

residing on each chirality, ci (z), coupled by inter-SWNT interactions (exciton hopping, limited by band

gap alignment rules). In applying the model we make the simplifying assumptions of homogenous

chirality distributions (vi independent of z), and chirality-independent length and orientation

distributions; all of those assumptions can be relaxed without invalidating the remaining derivation. The

total concentration of excitons is thus

(242) ci = Vic

(243) c(r) = ci(r) = c(r) vi = c(r).
iE{cij iE{Cj}

Beginning with quenching due to metallic nanotubes (mSWNT), we denote vm as the mSWNT

fraction. Since nonradiative quenching on mSWNT is rapid compared to residence times, we do not need

to construct a concentration balance for them, and the impact of EH to mSWNT is an exciton loss term

for all other chiralities. Along the length of an unbundled SWNT every contact with mSWNT quenches

excitons at rate

(244) kEH (A2) . n.

The length of intersection per length SWNT is the intersections per length times the length of each

intersection,

(245) nJ,m - de,

where nI,m is the number of intersections with a metal SWNT per length SWNT, which is related to our

earlier quantity n1 number of intersections total per length SWNT (Equation (71)) via
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(246) nl,m = vmni = Vm - bc 1 -1

Multiplying the rate per intersection times the length of intersection per length SWNT gives the total

quenching rate for a single-nanotube 1 D system

(247) -kEH (A2).- vmn, -dc -n.

We extend to the film quenching rate by multiplying by the length of unbundled mSWNT per cell

volume,

-1 -bc (1 - 1 p(j) - kEH (A2) . mnI - dc - n

(248) = 1-bC 1 - -)kEH)(P2) . mn - d - C

= -kEH (A2 ) V.myC

where in the final equality we substitute in definition (237).

Note that dc varies by chirality, making the relevant control volume chirality-dependent;

properly, the coupling term for EH to/from chirality j at interconnects in the balance of excitons on

chirality i should have in Equation (219) dc -> (dej + de,j) in the first term dcj in the second term, i.e.

(249) 1 (w(dci + de,j + 2rbend)2 _ IT ( j)2)

For practical purposes however when diameters are similar the effect is small compared to rbend-

To treat mSWNT quenching in bundles, consider the number of mSWNT per cross-sectional area

of a bundle,

(250) vm - 2de

By definition of the diffusion coefficient, excitons in a cross-section cover DEHb area per time, yielding

an exciton quenching rate (mean rate of arrival to a mSWNT) of

2
(251) DEH,b ' vm " dc n2 .

per length of SWNT. Multiplying by the length of SWNT in bundles per volume yields the film

quenching rate due to mSWNT in bundles

22 * E~v 2
(252) ~bcp(l)- DEH,bm dc 2 - .= -bc - DEH,bum d 2 . C

We can now construct exciton concentration balances for each chirality, ci (z). In addition to all

of the monochiral balance (240) and mSWNT quenching terms ((248) and (252)), the balances for each

chirality are coupled to one another through EH interactions in bundles and interconnects. Recall that we
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have chosen indices such that band gap (Ei = E1j, 1 ) and index are monotonically increasing (Ej+j > E1 ).

Because transitions are elastic, exciton transitions from higher bandgaps to lower bandgaps occur at rates

analogous to mSWNT quenching; transitions 'up' bandgaps may be thermally activated for small band

gaps, in which case they are attenuated by an Aarhenius factor,

Ej-Ei
(253) j > i, kEH -> kEHe kBT

In the balance for chirality i, we have exciton loss due to unbundled coupling,

-c 1 - bc (1 - kEH(A. v2 n c
j<i

(254)
=C - . kEH(A'2 .jI

j<i

exciton gain due to unbundled coupling,

+ 1-bc(1- 1))kEH (2) vnj d d'Cj
j>i

(255)
=+2) VykEH j ,

j>i

exciton loss due to bundled coupling,

(256) C bc - DEH,bVj c 2
j<i

and exciton gain due to bundled coupling,

(257) + bc DEH,b i d-2 C.
i<i

Note again that we are neglecting band bending and Schottky barriers at the interfaces of SWNT, which

may play a significant role in transition rates; [117,181] as understanding of such phenomena is reached,

the coupling expressions (254)-(257) can be changed appropriately.

The final expression for multichiral network exciton transport is then the system of ordinary

differential equations
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dci d 2ci kEEA 2-- = viN(z) + Dtot k-k - Ci kimnim -(C.

im

kend Cend(z) -ci kEH (A2). VmJfC
P(i)

2 -

(258) - bcDEH,bVm dc 2- C,

- c> (kE H 2 . vp'1 + bc - DEH,bvI 7; d c2
j<i

+ cv - +kEH 2 . V bc -DEH,bvj 2 d2)
j>i

for each chirality i.

The system of ODEs (258) can be solved at steady state subject to boundary conditions at the

electrodes (z = 0, T). A variety of electrode configurations can be considered (Figure 78c); in proceeding

we focus on two electrodes that can drive type II exciton dissociation - one hole accepting and one

electron accepting. For each electrode we therefore have Robin boundary conditions from the exciton

splitting rate,

dcikOi
(259) ~- = ci(z = 0)

dz 1z=O Det

(260) - - kL ci (z = T).
dz z=7 Dtot

where kdo,J and kdT, are the dissociation rate constants that in general could depend on the chirality i. In

applying the model in this work we approximate perfect collection efficiency, i.e. kdo, kdT - ,

ci(z = 0, T) -4 0, and check convergence to a finite value of kdo,dTc(z = 0, T).

Charge Transport

Free carrier transport in the nanotube network is in many ways more challenging than exciton

diffusion. In addition to the analogous geometric effects on film charge mobility and diffusivity, charge

transfer at the interface of nanotubes, particularly of different chiralities, can block or trap charges. [181]

Asymmetric electron and hole generation (at the two electrodes) and slow mobilities can lead to an

electric field development that feeds back on the exciton dissociation problem, inhibiting dissociation

and/or driving spontaneous in-film dissociation when the field strength exceeds the binding energy.

Finally carrier densities can significantly impact mobility.[182]

In this work we do not attempt to accurately describe free carrier transport in the SWNT film. Rather,

we proceed under the large simplification that performance will be limited by exciton diffusion, due to

high longitudinal mobilities in any intrinsic electric field.[182] This assumption reduces coupling between
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the free carrier and exciton problems to the exciton dissociation rate. We also continue to neglect any

charge-transfer effects at inter-SWNT contacts, as those effects have been neither theoretically nor

experimentally defined. These rough assumptions allow, as we show, important results in the

optimization of film performance, but prohibit accurate quantitative prediction of external quantum

efficiency (EQE). In future work, we will develop a more complete consideration of free carrier transport.

A variety of electrode materials and configurations are possible (Figure 78c), the choice of which

impacts charge carrier transport profoundly, just as in any excitonic photovoltaic system. In this work we

focus on an illustrative case of one electron-collecting and one hole-collecting electrode, arbitrarily

choosing z = 0 to be electron-collecting (Figure 81).

E --- ------- -------- f_-AM

E Or4)

V8 Va

Z

Figure 81. cartoon of the free carrier generation and translation process
at the electron-collecting electrode, where band alignment is chosen
such that holes are blocked and electron relaxation in the electrode
conduction band compensates for the binding energy of the nanotube.
Intrinsic work function differences between the two electrodes inspire a
potential drop of T - (O.

We estimate the geometric impact on valence and conduction band carrier mobilities in the film

from the exciton behavior. We attenuate single-SWNT electron and hole mobilities, y* and y*, by the

network attenuation of single-SWNT exciton diffusivities,

D D D kBT Dtot
(261) De = D kT q Di

D * kBT Dtot
(262) = D q D

where we have applied the Einstein relation at low bias, q is the elementary charge, kB is Boltzmann's

constant, and (here only) T is the isothermal film temperature. Reversing the Einstein relation we extract

the film mobilities,

q
(263) Me kBT De

q-
(264) - kBT r
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We now balance the non-equilibrium populations of conduction band carriers, fe (r), and valence

band carriers, fft(r), which are coupled to one another and the electric field E.(z). We again identify that

in any practical case

dfe = dfe = dff = dff=
dx dy dx dy

and our problem is confined to the z axis. For each carrier there are drift and diffusion fluxes,

(266) Jef = -De dz

drif t
(267) Je - eEz fe

(268) Jiff -D z
d d

(269) if Ph-z'fh-

The fluxes contribute to a population balance on a differential volume as

dfe _ de djer d fe dfe dEz
(270 -- - =De +MeEz +fe(270) dt dz dz dz dz dz 

(271) dfft _ dif d rif t d 2 f 1  dh E
d fh ]1 ] d hf d f dEz

(271) - - _ - -D 1- Ez + A z.
dt dz dz dz dz dz

Interacting excess charges also threaten recombination, coupling the differential equations,

(272) -ke_ fefh.

Equations (78) and (79) have boundary conditions defined at the electrodes. At the hole collecting

electrode z = T electrons are generated in the film with no possibility of collection, coupling to the

exciton dissociation rate,

(273) zf ) = kdT,i ci(z = T).

At z = 0 the equivalent process occurs for holes,

(274) f Jrift z-1  = - ci(z = 0).

At the opposite boundary, carrier collection can be represented by a Robin boundary condition,

(275) (_i jdrif = kabs ' fe (Z = 0)

(276) (-diff ~jdrift) = kabs - fhtz = T).

For perfect collection efficiency we have kabs --+ oo, which we can take as arbitrarily high and check that

kabsfe(z = 0, T) converges.

The electric field evolves in the z axis from the gradient in excess charge populations,
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(277) dEz = q (ff(z) - fe (z)),

where E is the permittivity of the film. The intrinsic bias across the film from mismatched electrode work

functions,

(278) Ez(z = 0) = T - Vbi

(279) Vbi (O - (DT,

forms the boundary condition to (80), where (Do and (D are the work functions of materails at z = 0 and

T respectively.

Coupled to (80), the balances (78) and (79) can be solved numerically at steady state, subject to

boundary conditions (273)-(276) and (278). From the resulting carrier fluxes at z = 0 and z = T we have

the short circuit current and EQE.

Appendix B. Breakdown of Macroscopic Homogeneity

In our evaluation of the absorption cross-section in the light absorption problem and exciton

hopping at nanotube contacts in the exciton transport problem we adopted an assumption of homogeneity

at a macroscopic scale (on the order of the exciton longitudinal diffusion length). In certain reasonable

film morphologies, however, there are significant variations in film density at the micron scale, even for

unbundled SWNT. For example, in vacuum filtration or spin-coat deposition (Figure 82a), large voids are

present. Essentially, the distribution p(rc) is not uniform even at the macroscopic scale. The result of

deviations from uniformity is that a mean film density, p(l), is lower than the local density around a given

nanotube, phf)c. Viewed another way, the position of a given nanotube is not independent of the position

of other nanotubes, but rather is correlated - a nanotube is more likely to be in some proximity to another

nanotube than would be the case if their locations were independent (Figure 82b). Ideally, we would

consider a radial distribution function in the plane perpendicular to the SWNT longitudinal axis,

describing the probability density of another tube being at a given separation.

Above the percolation threshold density (65% close-packed density for an aligned film), the

morphology of the film does not matter as conduction paths are relatively constant. This has been

experimentally verified by Maillaud et al.[199] Below the percolation threshold, morphology plays a

substantial role in film conductivity.[199]
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Figure 82. a) SEM image of spin-coated film of SWNT deposited from a sodium-dodecyl-sulfate solution. b)
cartoon illustrating the impact of heterogeneity; a given/control nanotube (green) is not equally likely to be
anywhere, but rather more likely to be close to other nanotubes.

In the light absorption problem, the effect of the error is to overestimate absorption when using a

uniform p(L); the correlation between SWNT reduces the light available at higher z in regions where

SWNT is present, and no absorption occurs in voids. In the exciton transport problem, the effect of the

error is to underestimate interconnect diffusivity, as the number of SWNT contacts is in reality higher.

One solution to that problem is to use a SWNT-SWNT radial distribution function, p(r), instead of a

mean value of the number density, p, where r is the distance away from a SWNT central axis and p(r) is

the probability density that another SWNT is present at that separation. The number of contacts would

then be integrated over the desired distance, rather than a fixed value,

de

( 1 /) / 1 1 15
(280) 42 p(rC ) -1 - bc t1 M B 4-d dr

dc12 (d

Fortunately, even qualitative consideration suggests that situations where this effect becomes substantial

are also situations of least interest for investigation. First, high density films, within an order of

magnitude of p (l, where this effect is minimal or nonexistent, are the films of interest for performance

maximization; as we show, and has been experimentally indicated,[ 115] and is easy to intuit, higher

density films yield higher EQE. Second, as we move towards aligned films where bundling is endemic,

the exciton hopping impact of heterogeneity is mitigated.

We can also quantitatively consider the magnitude and conditions of this error. In terms of

scaling, the number of interconnects increases linearly with density, and p(j) < p p(I. Unless the

void fraction is greater than 99%, in which case the film performance will be weak anyway, the number

interconnects will be less than two orders of magnitude smaller than reality. While that seems like a large

change, comparison of the diffusivities estimated puts that into perspective

(281) DEHJ, -- O(1013 m2 /s)
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DEH,b _ 0(10-8 m2 /s)

D, -* O(10- 4m 2 /s).

Unless the density itself is high - in which case the void fraction is reduced - the diffusivity at

interconnects plays a small role compared to any other available exciton diffusion pathway, even if

bundling fractions are below 1%. In other words, the higher the void fraction, the less important SWNT

interconnects become to exciton diffusion.

To relax our uniformity assumption, either simple approximations or rigorous measurement could

be employed. In the former case, SEM and AFM images could be used to estimate the excess void

volume in the film, and the density could be corrected where appropriate. For example, for a 30% void

volume,

pb"c ~ bc

(282) 10C 1
1 - 0.3

More rigorously, X-Ray Diffraction (XRD) could be performed on the film to get the carbon-carbon

radial distribution function. To extract the SWNT-SWNT radial distribution function from this, the intra-

SWNT XRD spectrum must be either simulated or measured, and then subtracted from the film spectrum.

This process is challenging and complicated.

Appendix C. Anisotropy of Number Density

p, the mean number of SWNT per volume, we employ as a defining parameter for the film. In

experimental application of the present work, it is only necessary in determining p(i), and other empirical

quantities could be measured and used. In adjustments to this derivation, however, care should be taken if

using p in any microscopic and some macroscopic scenarios for non-isotropic films. The quantity is

calculated based on the total number of SWNT in the total volume. As the volume is reduced it may not

scale appropriately. In a truly isotropic film, p can accurately describe the number of SWNT in a given

volume all the way down to the point where microscopic heterogeneity arises (0 (10 nm) scale). In an

aligned film however, the situation depends on how the volume is shaped. Imagine a sandwiched forest of

vertical SWNT. p is the number of SWNT divided by the total volume. If we bisect the forest vertically

and consider half the volume, reducing the number of SWNT by half and the volume by half, our number

density holds (Figure below). If we instead bisect it horizontally however, we cut the volume in half, but

the total number of SWNT in each half hasn't changed, and our number density is grossly inaccurate. In

treatino SWNT interconnects wxCe are saved because by definition the SWNT are not aligned in this case -
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they are essentially isotropic - and the bundled SWNT scenario relies not on p but rather p(j), which

always scales appropriately with volume. Note that p(i) always scales appropriately with volume.

Appendix D. Consideration of Rayleigh Scattering and Photoluminescence

In the derivation above we opted to treat absorption as the only light-matter interaction

mechanism of concern, neglecting Rayleigh scattering of light within the film and reemission from

radiative decay of excitons (photoluminescence, PL). Making those assumptions has clear benefits for

tractability and computation. Omitting reflection allowed us to remove k from our calculations, and

omitting PL greatly simplified coupling to the exciton transport equations. The error introduced by

neglecting these phenomena bears consideration however.

Fluorescence requires that an exciton radiatively decay before being quenched or diffusing to the

electrodes. To achieve the latter in substantial quantities case the film must be thick, with T on the order

of the radiative diffusion length, (see Results section for parameter estimates)

(283) Lr = DiTr ~ V10-2m2S-1 -0.45 x 10-9 s = 2 um.

As we see in the Results section, thicknesses on the order of a micron are rarely interesting. Furthermore,

in the scenario when thickness is high, readsorption of the emitted light would be likely, making the net

effect a dislocation of the exciton; a valid phenomenon to be sure, but a secondary one compared to

primary absorption. To achieve a case where radiative decay could lead to a net loss of excitons, i.e.

emitted light escaping, the film would have to be thin, in which case radiative decay would be slower than

separation at the electrodes. Arguments for neglecting Rayleigh scattering are similar, the losses and gains

of light are, by virtue of the scattering cross-section, a higher-order consideration.

To increase the nuance and complexity of the model, fluorescence and internal reflection could

still be included. In Rayleigh scattering, the photon balance (Equation (62)) should include a term

transforming k appropriately. To treat the fluorescent case we would include the term

+krc(r) - S(hw - Eju,) - 6(e - )

where c(r) is excitons/volume solar cell and kr = 1/Tr is the radiative decay rate of excitons, and E1j, 1

is the band gap energy of chirality i. This term would couple the light absorption problem to the exciton
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concentration problem; given the small relative impact of fluorescence, a self-consistent method may be

most efficient:

1. Solve the light absorption and exciton diffusion problems without including PL contributions to
the light field.

2. Take the resulting c(z), use it as an input (a c(0) (z)) into solving the light field problem with the
fixed term

+kr - c(o)(z) -'s(ho - E,2,J)(E - 2),
then solve the exciton concentration problem again.

3. Take that output, call it c() (z), and again plug it into the problem in the same manner.

4. Repeat the process until convergence (c W (z) ~ c(n-1 (z).

Appendix E. Relaxing Isothermal Approximation

To relax the isothermal approximation and introduce temperature dependency to desired

properties, a parallel set of ODEs solving the heat transfer problem must be coupled to our light

absorption problem by the heat generated through nonradiaitve decay at the point of exciton generation,

e.g.,

(284) N(r') - N(r', a) - Q (r') f N(r', a) - (ha - EO) dw
0

where Q is the rate of heat generation.

Appendix F. Including dielectric environment

The local dielectric environment has been shown to influence the size and diffusion coefficient of

excitons. [100,101] That behavior is intuitive, as it is the poor dielectric screening in two of three

dimensions in a nanorod like SWNT that gives rise to the strong exciton binding

energies.[98,100,177,178] The impact on efficiency would be the same as adding impurities and end

quenching (see Results) - it would perturb the balance between light absorption and diffusion, shifting the

optimal thickness proportionally to the diffusion coefficient. Changing the dielectric would also change

the absorption cross-section.[214] The present model can be made to explicitly include the local dielectric

constant K. The distribution, p(K), would be an additional defining property of the network, just like p(l)

or {vi}. p (K) would include for example surfactant coverage, interstitial polymer coverage, and bundling

(be, Mb). Relevant physical constants should then be made dependent on K, for example D, - D, (K).
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Appendix G. Alternative methods of coupling the infinite number of line segments

The method we adopted for coupling the single-SWNT systems has no cost associated with it

outside the breakdown of local (correlated) density considerations. Nevertheless it is worth mentioning

two alternative approaches to treating the infinite system of line segments that might provide additional

opportunities if explored.

One approach is to treat the time-evolution of a single exciton's probability distribution function,

first along a single nanotube and then with multiple SWNT and exciton hopping, yielding an expression

for p(r, t, c(r) Iro) where ro is the position where the exciton is created, with excitons generated there at

rate N(ro). The dependence on concentration comes from the exciton-exciton annihilation (EEA),

coupling the problem to other excitons at other positions. Whether coupling to other excitons or not

(neglecting EEA), one can use that time-evolving PDF to calculate a diffusion length for the exciton

depending on the ro it originates at, LD (r). Using LD (r) and the generation rate, N (r), one can calculate

the rate at which excitons will reach the electrodes and the exciton concentration profile. I do not adopt

this approach because we are interested in the system at steady state, making the laborious evaluation of

the time evolution superfluous.

A second approach is to treat each SWNT as a 1 D reaction-diffusion system, as we began with,

but rather than using them in an exciton balance, instead leave them as an infinite set of differential

equations, each corresponding to a different nanotube line segment, and couple them in 3 dimensions via

exciton transfer. Each SWNT in the infinite series is indexed by the location of its center at rc, and each

has pairwise coupling terms to each other SWNT, dependent on their rc and 1. Because nanotubes are not

infinitely long, there is a finite number of neighbors to each nanotube (e.g. in a bundle there can be only 6

neighbors per length of nanotube), i.e. the infinite sum of pairwise coupling terms drops off as the SWNT

centers and orientations differ from one another. As a result, the infinite series of ID ODEs can be taken

over the entire crystal,'somewhat like the treatment of crystals in solid-state physics (e.g. the construction

of Bloch states from symmetry breaking). This approach can be elegant, but doesn't offer any practical

gains over the more tractable one taken in this derivation.

Appendix H. Single-layer and multi-layer aligned films

As mentioned in the Results section above, two deposition paradigms are possible for fabrication

of an aligned film. The aligned film can be grown or stacked in a single 'forest' or 'layer', which we call

a single-layer (SL) film (Figure 83a). A SL film limits the possible thickness of the film, as

(285) T < (1) cos 6'.
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It is also possible to contact a film without end-alignment, such as in a horizontally aligned film.

This is the multi-layer (ML) case (Figure 83b).

b

0
toa

E

100-

Figure 83. SL and ML film comparison, a)

cartoon of a SL film, with both ends
immersed in electrodes. b) cartoon of a ML
film, with electrodes adhered onto a larger
cake. c) allowed thickess of SL and ML
films. d) comparison of quenching rates for
horizontally aligned (red, T = 200 nm ,
80% close-packed density) and vertically
aligned (blue, T= 1 um, 0.3% close-packed
density). End quenching is not zero in the
vertically aligned (SL) case because the
thickness is on the order of (1). Squares are

spatially-averaged means, triangles are
minima and maxima values.

A SL film will always outperform a ML film all else being equal, due to lower end quenching. In

practice, SL film electrodes are likely to encompass the ends of the SWNT in the SL film, leading to

(286) end = p 3 p(l) cos'~ 0

where the approximation is unless the film thickness is within a standard deviation of the average SWNT

length (I) (we find, however, that in optimization such thicknesses are rarely desirable). In contrast, in a

ML film the end distribution is homogenous,

(287) Cend = 2n.

In the cases we examine, rather than choose between the two morphologies we often allow for

both - i.e. if the film thickness is low enough for a SL film to be permissible, we use a SL film, while if it
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falls above that we use a ML film. In practice however the optimal film thicknesses never, except in the

case of very low density or very low angle (e.g., horizontally aligned film), approach the limit (285).

Appendix I. Aligned Film Light Absorption

A more gradual application of the light absorption problem to aligned films is presented here,

building on the Results section above.

Beginning our calculation with the irradiance, the absorption cross-section polarization

dependence is described as equation (59) for our single chirality. We are in a position now to consider the

dot product,

E I = exi, + e 1Y + ez z

(288) = sin 0E Cos #E sin 0 cos q + sin 0, sin #b sin 0 sin #

+ cos 0, cos 0.

Integrating the light field balance over p (1), we have from Equation (164)

(289) o1 (e, 6) = f f .(, 2, a) p(0)p(P)d~do.

0 0

Subject to our distributions,

(290) p(0) = 8(0 - 0'), 0' E 10, 21,

(291) P(P) = 4( - 0),

equation (289) becomes a sifting integral yielding = 6' and P = 0. Our absorption cross-section

becomes,

(292) EXli = sin 0, Cos E sin 6'

(293) Eyly = 0

(294) Ez1z = COs 0e CoS 0'

T5(E, s) = c,meas sin 0 E CoS q# sin 0' + COS 0 E COS 0')2

(295) \

+ (1 - Isin 0e cos #e sin 0' - COS 0C C0 ')).
6

Solving the photon balance (64) with no z dependence to p(i) or a,, subject to the incident

unpolarized solar flux boundary condition (65), our forward flux becomes
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JF(a), 'E|IZ) = JO (a))' 6 E0 - 7

(296) . exp -P1) l,meas(a) ( (sin 0, COS E sin 0' + COS 0 E cos 91)2

+ (1 -Isin 0, cos pb sin 0' -cos , cos 0')2 -z.

Integrating over 0, is trivial with the sifting property of 8(-), yielding

1
JF ((,PEIz) = 2Jw

(297) exp -PL)0,meas(O) ( (cos PE sin 9')2

1
+ 1(1 - Is 1C Pe sin '1)2)z].

Note that except in the vertically-aligned case (0' = 0), there is a polarization dependence to the field

absorption. We can integrate over all frequencies to get the flux gradient at each polarization, or integrate

over all polarization angles to get the flux gradient at each frequency.

With a boundary condition of reflectance R off the back electrode we solve the reverse flux

differential equation, again substituting in -1 (E, w) and integrating over 0, to yield

1
JR (O, (P 1z) = -R -J0 (o )271

(298) exp [-P()01 ,meas(w) ( (cos ' sin 0')2 + (1 - Icos q5 sin 0'j)2)

- (2T - z)].

The total light field gradient would then be

(299) J,(O, P EIZ) = JR(&J, OeIZ) + JF (&, IZ),

for example plotted in Figure 62 for horizontally and vertically aligned films.

Appendix J. Isotropic absorption cross-section

For brevity, resolution of the integral

2 7r 7r

(300) Y(E )=- 1,meas(w) J E 2 + (1 - IE )dddP,
0 0

El = E = sin 9 , CoS q5 sin 9 cOS 'P + sin 0, sin q5, sin 0 sin 'P
(301) +COS6"COS9,

197



is omitted from the section above; we pursue it here. First, we recognize that when we integrate over 0,

the incident light 6(-) function will sift to 6, = _, simplifying

(302) El -> COS 0, Sin 0 CoS P + Sin e sin 0 sin q5.

Next, we note the identity

(303) (1 - IXI)2 = X12 +1-21xl =x2 + 1 - 21xl.

Applying this our integral simplifies to

(304) 6f El 2dd + Jfd~dp - 2 fiEl d dp

0 0 0 0 0 0

which further simplifies with

2 7r ir

(305) Ell 2 dd'p=7w2

0 0

giving us

(306) o 1(Eo)) - 7  07 i,meas()) 3 2 2 - 2 El dOd).

0 0

We then approach the absolute value integral. cos 6 is always positive over the domain, allowing

us to easily evaluate the inner integral,

2 ir 7r 27r

f fJ eIIl d~dp = 21 Isin('P) sin(P5) + cos(o) cos(q5)Id4)
000

(307) 27r

= 2 Icos(o - )Id&P.
f0

Fortuitously, the remaining integral splits over four domains with definite sign regardless of the value of

OPC,
27r

(308) 21 Icos(p - (PE)Id4) = 8.
0

Our expression is then resolved,

(5 4
(309) a1(E, ) = 3 UI,meas (0)

Appendix K. Simplifying the Gaussian-Exponential Photon Population Decay Integrand

Equation (125) simplifies the N(z) integrand, especially as the product of Gaussians is a Gaussian,
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Jo(M) - a, (0) = O Sa -exP (W a) 2 exp [ W 2 ]

(310) a 2 2  2______
(310) Jo Sa -exp (P - pa) 2- e p ( ( - tja) 2

a 2(2 +a) *exp 2 ja

(311) PjOa2 + Pa J
It ja - 2 +

(312) U2 2

aja ej+ Us

Note the first exponential is constant in co; it simply represents the normalized overlap area over the two

Gaussians. This allows us to split our integral into a sum of integrals convoluting the Gaussian and our

exponential decay, with a term for each ui (() peak

(313 N~~p~lIoYSe p j [ (Mja) r -______
33) N(z) = p(JOI Sa exp -2( + ) /exp -2a exp[ p(L)zal(w)] dc

Unfortunately taking the integral of an exponential of a single Gaussian on its own is not solvent,

let alone the exponential of a series of Gaussians or the convolution of a Gaussian with that exponential of

a series of Gaussians, which I will call a 'Exponential-Gaussian' for brevity from here,

(314) exp[-p()zul(w)] = exp -p(j)z -Sj -exp (W 2

N(z) = p(1)Jo Sa exp ( + a) 2Pa exp [(W - Iia 7 exp -p()z * S
a 2~ ( uj2+cqJ2)02 oj~a j

(3 1 5 ) e - ( W 2 ] ]

exp[ 2u2 dcv

As is therefore, N(z) an insolvent convolution of a Gaussian and an exponential decay of a Gaussian

(313). Furthermore, an Exponential-Gaussian on its own is not well approximated by a Taylor Expansion

(Figure 84).
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Figure 84. Taylor Expansion of a Gaussian-Exponential.
green is sixth-order, and purple is eigth-order.
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We make two relevant observations of the function however; far from the symmetry center of the

Exponential-Gaussian the function is unity, while at the symmetry center the first-order solution captures

its value.

On its own, the Exponential-Gaussian integral is insolvent. We observe however that while the

Exponential-Gaussian term is in general not well captured by the first-order Taylor expansion, its product

with a Gaussian term is because either the function extrema are close or the Gaussian-Exponential term

reduces to unity.
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Figure 85. Comparison of Exponential-Gaussian to
different mean values (legend).

the product of a Gaussian with the Exponential-Gaussian of

These observations suggest a number of simplifications that make the frequency integral solvent

and are revealed to be sufficient approximations in Figure 76. First, when the Exponential-Gaussian and

Gaussian peaks are far from one another, the Exponential-Gaussian reduces to unity, which allows us to

collapse the product series in (315) to j = a,

N(z) = pJO Sa exp - Pa)2 ] exp (W 2ia) exp -P) Z-Sa
1 2( 2 + qJ) f 2 2a

(316)

exp - do.

Then, we can recognize that when Pia and pIa are close, the Exponential-Gaussian can be

approximated by low-order Taylor expansions (Figure 84). In our system, where {pt, aj} correspond to

the solar flux and {Pa, Ua} correspond to the absorption peaks, that is ubiquitously the case because aj >>

aa i.e. the variance of the solar spectrum, which spans visible and nIR frequencies, is much larger than

that of the SWNT absorption modes which are resonant excitation peaks; that shifts the weighted sum

(311) to shift towards Ipa. We therefore approximate the Exponential-Gaussian as its first- and third-order
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expansions, ultimately finding by comparison to the numerical solution that the first-order expansion

turns out to be sufficient (Figure 76). The integral solution under the first-order expansion is,

(317) 2

N(z) = p(1)IO Y SaYa\'1 epsaz
a=1

(318) _(Y-a)2

Ya =jae

where Ya can be conceptually understood as the area of overlap of the solar flux and absorption peak a.

The sum must include two peaks for each SWNT chirality, corresponding to the Eu and E2u transitions.

Appendix L. Simplification of Surface Transport Model Expression

To reach equation (19) to approximations were required. We began with the exact model from

Chapter I, expressed in terms of a forced voltage,

dr V 2rA - A 2

(319) = -Y-i 3dt R' r

In (319) R' is the total resistance, including both the neck region resistance R which evolves over time

and the series resistance Rs of the remainder of the wire which is constant. The neck resistance is simply

PS
(320) R = -r -

Substituting in we have

dr 1 2rA - A2

(321) dt r Rsr2 + PS/'

In the denominator we can compare the magnitude of terms. Experimentally we measure a typical Rs

from the contact wires of 200 Q, before reaching the stochastic regime a reasonable minimum r is 10 nm,

the resistivity of bulk Au is 2.3 x 10-8 f - m, and a typical 3 is 10 nm. To an order of magnitude, this

yields

Rsr 2 ~ 2 x 10 3 fl. m 2  > P5/7~ 7.3 x 10-1 70 m 2.

The several orders of magnitude difference easily makes the second term in the denominator negligible,

dr y 2rA - A2
(322) - = - - v rdt Rs 'r

Put in other terms, this approximation is the same as recognizing that the series resistance is much greater

than the nanowire resistance, i.e. Rs >> R, which we empirically observe to be true.

The second approximation that we make is that the radius is much larger than one atomic

diameter (r >> A) up until the stochastic regime is reached. We observe that the stochastic regime is

typically entered when R rises from approximately 50 Q to 250 Q, which for an effective initial nanowire
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diameter of 20 nm (our devices) corresponds to an effective radius of 8.9 nm. This number is also

consistent with in situ observation of nanowire electromigration in TEM. [22] For Au, A is approximately

0.288 nm, much less than this radius. We can therefore approximate that for the entire trace region of

interest r >> A and hence

dr _2yA 2
(323) - y V 2

dt R
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