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Abstract: 

Background:  Postmarket surveillance of the comparative safety and efficacy of orphan 

therapeutics is challenging, particularly when multiple therapeutics are licensed for the 

same orphan indication. To make best use of product-specific registry data collected to 

fulfill regulatory requirements, we propose the creation of a distributed electronic health 

data network among registries. Such a network could support sequential statistical 

analyses designed to detect early warnings of excess risks. We use a simulated example 

to explore the circumstances under which a distributed network may prove advantageous.  

Methods: We perform sample size calculations for sequential and non-sequential 

statistical studies aimed at comparing the incidence of hepatotoxicity following initiation 

of two newly licensed therapies for homozygous familial hypercholesterolemia. We 

calculate the sample size savings ratio, or the proportion of sample size saved if one 

conducted a sequential study as compared to a non-sequential study. Then, using models 

to describe the adoption and utilization of these therapies, we simulate when these sample 

sizes are attainable in calendar years. We then calculate the analytic calendar time 

savings ratio, analogous to the sample size savings ratio. We repeat these analyses for 

numerous scenarios. 

Key Results:  Sequential analyses detect effect sizes earlier or at the same time as non-

sequential analyses. The most substantial potential savings occur when the market share 

is more imbalanced (i.e., 90% for therapy A) and the effect size is closest to the null 

hypothesis. However, due to low exposure prevalence, these savings are difficult to 

realize within the 30-year time frame of this simulation for scenarios in which the 

outcome of interest occurs at or more frequently than one event/100 person-years. 
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Conclusions: We illustrate a process to assess whether sequential statistical analyses of 

registry data performed via distributed networks may prove a worthwhile infrastructure 

investment for pharmacovigilance.  
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INTRODUCTION 

Developing evidence to assess the safety and effectiveness of orphan therapeutics is 

challenging.
1,2

 Sample sizes are unusually small, and appropriate comparison populations 

are difficult to identify. Pre-licensure activities are notably limited, necessitating 

extensive postmarket pharmacovigilance programs. While pharmacovigilance tools like 

the U.S. Food and Drug Administration’s (FDA) pilot Mini-Sentinel System
3
 has data for 

over 125 million persons, that may be inadequate to study rare diseases when complete 

capture of every affected patient is desired. A product-specific registry is an alternative 

postmarket data collection mechanism that features more targeted patient capture and 

may be more appropriate in the rare-disease context.  

However, product-specific registries may still introduce data fragmentation. They can 

become information silos, delaying the ability to answer important public health 

questions on the natural history of the disease, class-wide effects, or comparative benefits 

and risks.
4,5

 One remedy is to create a distributed electronic health data network
6–8

, which 

can increase sample size without centralizing or combining patient-level data.  

Distributed networks can be used to study treatments for both rare and common diseases, 

and particularly safety and effectiveness outcomes that occur at varying frequency in the 

treated population.
3,9–11

 The Mini-Sentinel System is such a network, comprised of data 

sources that represent the US commercially insured population. Here we propose the 

same infrastructural model – a distributed electronic health data network - with registries 

as the source databases to optimize postmarket surveillance of special populations such as 

those affected by rare diseases.  

One advantage of distributed electronic health data networks is their ability to use data 
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from multiple sources without requiring those sources to share data with each other. 

Previously, pharmacoepidemiologists had to pool data via multi-site database studies
12–14

 

or perform meta-analyses
15–18

 to strengthen support for statistical inference. Another 

advantageous feature of distributed networks is their ability to support sequential 

statistical analyses.
19–24

 Traditional statistical inferences from a non-sequential study (i.e., 

those made after full enrollment and complete follow-up) require years. Implementation 

of sequential statistical analyses can generate early warnings of emerging risks and/or 

benefits.  

Development of the infrastructure to support sequential statistical analyses on a 

distributed network has substantial front-end cost. However, this investment may be 

justified if inferences via sequential analyses can be made notably sooner than those via 

non-sequential and/or meta-analyses. This time saved may translate into better patient 

care and consequent health or monetary savings, because physicians will gain knowledge 

of benefit-risk tradeoffs sooner. It is important for decision makers working with limited 

resources to understand the scenarios that would make sequential surveillance, and by 

extension, the formation of a distributed network among registries, worthwhile.  

We work through a simulated example to explore these scenarios. Specifically, we 

estimate the time needed to identify a signal of excess risk for competing orphan 

therapeutics under a variety of assumptions. We compare the time needed for a sequential 

study and a non-sequential study, and search for circumstances that save time. Then we 

discuss the costs and benefits of building such a network. We offer a generalized 

framework for decision makers who are considering investing in a targeted distributed 

network infrastructure for pharmacovigilance, which may be most appropriate in a rare 
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disease context when complete coverage of the patient population is desired. 

BACKGROUND 

Distributed Networks. A distributed network is a system that allows secure remote 

analysis of discrete datasets held by separate institutions. Periodically each institution 

generates extracts of its data and stores them in a separate, dedicated, and firewalled 

location at the institution. These extract databases remain under the institution’s direct 

control, mitigating legal, proprietary, privacy, and security concerns with respect to 

dealing with privately held, protected, and identifiable patient data.
6–8,25

 The extract 

databases adhere to a common data model, including identical file structures, data fields, 

and coding systems. To use a distributed network, authorized users with appropriate 

credentials first send a standardized executable computer program to the separate 

institutions (i.e., “query” the datasets). Each institution responds to this query by 

choosing to either execute the program onsite and report institution-specific summary-

level results (i.e., not patient-level data) or to opt out. The initiator collects the institution-

specific summary-level results and aggregates them for analysis.  

In the context of multiple product-specific registries, the extract databases would be 

subsets of data from the registries, and therefore the participating institutions would 

typically be the sponsors of competing orphan products. The data fields to be collected 

and recorded would be guided by the goals of drug safety surveillance and set during the 

protocol development process, as these data form the observational database for product-

specific studies. Such a protocol could also detail policies and procedures for designing 

queries and performing analyses. 

Sequential Statistical Analyses. In this hypothetical proposal, authorized analysts would 
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perform sequential database surveillance, sometimes referred to as active surveillance. 

Sequential database surveillance is a near real-time sequential statistical approach to 

evaluate pre-specified exposure-outcome pairs using data that are frequently updated, 

often quarterly or biannually.
26,27

 The goal is to generate early warnings of some pre-

specified effect via interim tests of data as they accumulate. These methods require 

investigators to set a stopping boundary, or a way to interrupt surveillance through 

“signaling.” The shape of this boundary dictates the likelihood of signaling at various 

interim tests of the hypothesis and determines some of the tradeoffs between power (i.e., 

sample size) and the timeliness of signal detection. A statistical “signal” is detected when 

a stopping boundary is reached, adjusting for the multiple testing inherent in the frequent 

looks at the data.  

Simulated Example – Homozygous Familial Hypercholesterolemia. Recently the FDA 

licensed two therapeutics for homozygous familial hypercholesterolemia, a serious 

condition that leads to early cardiovascular morbidity and mortality.
28

 Although the 

literature describes this condition as occurring in one in one million persons
29

, 

manufacturers of these therapeutics believe that as many as 3000 Americans might 

currently be affected.
30

 Pre-licensure clinical trial data suggest various hepatotoxicity 

events could be associated with both therapeutics as a consequence of their mechanism of 

action, which increases hepatic fat.  

The FDA required both sponsors to create postmarket product-specific exposure 

registries that function as long-term prospective observational studies. Each sponsor’s 

registry will collect data only for patients using its own product. The sponsors will enroll 

patients globally and perform analysis for 10 years after the last patient enrolls. 
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Enrollment is voluntary, i.e., access to the therapy is not conditioned on participation in 

the registry. Recent experience suggests that distributed electronic health data networks 

can be used to study class effects or comparative analyses;
31,32

 the latter is the study 

question we simulate. We emphasize that we chose this simulated example to motivate a 

more general question: how to make best use of postmarket data that accumulate in 

product-specific registries, which are the preferred data sources when complete patient 

capture of the population of interest is desired? 

METHODS  

First, we perform sample size calculations for sequential and non-sequential statistical 

studies aimed at comparing the incidence of hepatotoxicity following initiation of each 

therapy. Then, using models to describe the adoption and utilization of two newly 

licensed therapeutics for homozygous familial hypercholesterolemia, we simulate when 

these sample sizes are attainable in calendar years. Using these simulations, we calculate 

the analytic calendar time savings ratio, which describes the proportion of analytic 

calendar time saved if one conducted a sequential study as compared to a non-sequential 

study. We repeat these analyses for numerous scenarios. 

Conditional Sequential Sampling Procedure. We calculate sample size for sequential 

and non-sequential statistical analyses using the Conditional Sequential Sampling 

Procedure (CSSP).
33

 The CSSP is a group sequential analysis, meaning that a new 

hypothesis test is performed whenever a designated “group” of information arrives. We 

set the group size to the average number of events we would expect to observe quarterly. 

For example, if we expect 40 events over a 10-year timeframe, then the group size would 

be 1. We assume that new data are available every six months, i.e., a biannual update 
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frequency. 

We test the null hypothesis that there is no difference in event rates between the two 

products and use a two-sided overall type I error of 0.05 (i.e., we allow a false positive 

result to occur 5% of the time). Because we perform multiple hypothesis tests, we must 

divide up the potential for a false positive at any given test (i.e., we have to “spread” the 

0.05 allowance over multiple tests). We use a quadratic error spending function, and have 

a smaller allowance for false positives early in the process, when data are sparser.  

To allow for direct comparisons of sample size (i.e., events) across different effect sizes, 

we hold statistical power constant at 90%. More statistical information is required to 

achieve the desired statistical power whenever effect sizes are more modest. Given the 

calculated sample sizes, we then estimate when these sample sizes are attainable using 

stochastic agent-based models. 

Agent-Based Models. Agent-based models describe dynamic person-level activities.
34

 

We simulate a 3000-person patient pool, representing the upper estimate of the affected 

patient population. At each time step, a portion of the patient pool adopts one of the 

competing therapies. We assume 25% of this pool adopts neither therapy. We model the 

patient’s likelihood of adoption using a well-known model in the innovation diffusion 

literature.
35

 Once they adopt, they contribute exposed person-time to surveillance for the 

duration of their treatment plus a 30-day extension period. This timeframe is when we 

deem them to be at risk of experiencing the outcome of interest in relation to the drug 

exposure. We assume that 20% of patients are lost to follow-up for both therapies, and 

that the losses occur within the first six months of adoption. While on either treatment, 

these patients experience outcomes of interest at pre-determined rates and are then 
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censored. We do not model switching behavior among products. In the base model, the 

adoption parameters are calibrated to data reported by the sponsors. Specifically, 250-300 

new users adopt within the first year that products are available.
30

 Full details of the 

agent-based model are available in the electronic online appendix. 

We run the base model and vary the rates of the outcome of interest, the market share of 

the competing therapeutics, and the effect sizes in the simulation. We perform these 

simulations with the following incidence rates: 1 event/100 person-years (i.e., “common” 

per the Council for International Organizations of Medical Sciences
36

), and 1 event/1000 

person-years (i.e., “infrequent”). We vary the market share of the more widely adopted 

therapy from 0.5 to 0.9, assuming therapy A is more widely adopted. Finally, we vary the 

effect sizes to include incidence rate ratios (IRRs) that range from 10 to 0.1 when 

comparing therapy A to therapy B. In other words, we model instances when each 

therapy has elevated levels of the outcome of interest. We run each “setting” 1000 times, 

collecting information on exposed time and outcomes for both therapies for a 30-year run 

of the simulation.  

Confounding Adjustment for Heterogeneous Patient Populations. In our base analyses, 

we model adoption and outcome patterns assuming a homogeneous population for 

simplicity. We then relax this assumption, allowing the adoption and outcome patterns to 

be affected by a binary confounder, and adjust via stratification. Confounding adjustment 

in distributed networks has been discussed elsewhere.
37–39

 

RESULTS  

We show a subset of our results in Table 1. The sample size savings ratio—defined as the 

(non-sequential sample size – sequential sample size)/non-sequential sample size—



 11 

illustrates the potential sample size advantages of a sequential analysis over a non-

sequential analysis. These values depend on the scenario being examined (i.e., IRR, 

market share, rate of outcome of interest, statistical power, type I error) as well as the 

chosen group size and error spending function. The sample size savings ratios are ceilings 

that can be achieved and are illustrated in the upper panel of Figure 1. These ratios are 

calculated independent of the calendar time necessary to achieve them.  

Of more practical interest are the median lengths of surveillance in both sequential and 

non-sequential settings, and the associated analytic calendar time savings ratios, which 

are illustrated in the lower panel of Figure 1. If a sample size could not be attained in the 

30-year run of the simulation, then the ratio on the Table is listed as “not determined.”  

On the Table, when one therapy has a markedly higher frequency of the outcome than the 

other, both the savings ratios and the median length of surveillance are lowest. For more 

modest differences in risk, the savings ratios increase, as does the median length of 

surveillance.  

<Table 1> 

In Figure 1, we illustrate the sample size savings ratios and the analytic calendar time 

savings ratios for the two outcome rates of interest. The left panel illustrates these ratios 

for the homogeneous patient population with a common outcome of interest. For 

reference, a common outcome observed in clinical trials was elevated liver enzymes at 

>3x the upper limit of normal. The right panel reflects infrequent outcomes of interest, 

which were unobservable in the clinical trial. 

<Figure 1> 
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With common outcome rates, there were no savings of the sequential model as compared 

to the non-sequential model for the IRRs of 10 and 0.1. In these cases, it was possible to 

attain the non-sequential sample size at the very first group sequential test. For the 

remaining effect sizes, the most substantial savings were possible (i.e., the sample size 

savings ratios were largest) when the market share was more imbalanced (i.e., 90% for 

therapy A) or the effect size was closest to the null hypothesis. However, comparing the 

upper panel to the lower panel, these savings were often not practically achievable, 

because the time required to complete surveillance is longer than the 30-year run of our 

simulation model.  

Heterogeneous Patient Population with Confounding Adjustments. We performed the 

same series of analyses on a stratified patient population. The sample size savings ratios 

were not greatly affected.  

Sensitivity Analysis for Statistical Power. We relaxed statistical power from 90% to 80% 

to determine whether more scenarios could complete surveillance within the 30-year 

timeframe. We obtained smaller sample size savings ratios from easier-to-achieve power 

targets. However, many analyses were still not achievable within 30 years. 

DISCUSSION  

Our intent with this hypothetical example was not to focus on these particular therapies, 

but instead to illustrate a process to assess whether sequential statistical analyses of 

registry data performed via distributed networks may prove a worthwhile 

pharmacovigilance infrastructure investment. While sequential analyses can detect safety 

signals earlier or at the same time as non-sequential analyses, often these savings cannot 

be realized because the surveillance time required is intolerably long, underscoring the 
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difficulty in monitoring very low exposures. These difficulties are best illustrated by 

comparing the upper-right to the lower-right portion of Figure 1. With an infrequent 

outcome rate, sequential analysis reduces sample size requirements considerably, but 

IRRs of 5, 2.5, 0.4, and 0.2 cannot be detected within 30 years in either sequential or non-

sequential analyses. 

For common outcome rates, a smaller group size, enabled by more frequent data updates 

(i.e., quarterly), could notably improve the relative performance of sequential analyses. 

Although we do not show it here, we performed our analysis with various group sizes and 

error spending functions. We chose a group size and a quadratic error spending function 

that we believed would match the way data would arrive.  

Limitations. We make several simplifying assumptions in this simulated example. First, 

in the absence of historical data, we assume a specific adoption and diffusion function for 

these therapies that may not reflect real-world adoption patterns. Second, we used the 

upper estimate of the affected patient population at 3000. We would not have been able to 

detect any effect sizes at the more conservative estimate of 300 patients. Third, we 

assume that the utilization patterns and discontinuation rates observed in the clinical trial 

are generally representative of this population. Fourth, when patients discontinue one 

therapy, we do not model switching to the alternative therapy, which may have 

artificially limited our overall sample size for the two products. Fifth, we do not model 

competition from newer entrants, which would presumably reduce sample size. Finally, 

we assume no exposure or disease misclassification because of reliance on primary data.  

Disease-based Registries. To truly eliminate data fragmentation among these specialized 

populations, a disease-based registry is required.
4,5

 However, disease-based registries 
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require substantial financial resources over long periods of time, and it is unclear whether 

a sustainable funding model exists. We believe the model we propose here is a plausible 

alternative, because it takes advantage of existing requirements for postmarket registries 

and uses these data for analysis without requiring manufacturers to share them with one 

another.  

Outcomes of Interest and Prior Information. We do not specify particular hepatotoxic 

outcomes of interest in these analyses, because our aim was to build a general model. 

However, to use this simulation study to weigh the advantages of building a distributed 

network, one must first consider the likelihood that outcomes of interest occur at these 

rates (e.g., as or more frequently than 1 event per 100 person-years). If so, one must 

consider the prior evidence to suggest what comparative effect sizes are possible. That is, 

is it possible that therapy A creates ten times as many events as therapy B?  Finally, and 

most importantly, are the potential findings important enough to alter the risk-benefit 

balance of the therapy, and are therefore worth pursuing?  

Once decision makers answer these questions, they may then assess the benefits and costs 

of detecting these effect sizes early in a novel infrastructure model. If these data have 

already been collected in compliance with postmarket regulatory requirements, then the 

true costs are software development (the extracting software and the web-based portals 

for secure communication) and labor costs associated with assessing the results of 

biannual hypothesis tests. How such costs compare to the benefits of early warnings will 

determine the value of a targeted distributed network infrastructure for 

pharmacovigilance. 
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Legends for Figures 

 

Figure 1. Sample Size Savings Ratios and Analytic Calendar Time Savings Ratios for 

Common and Infrequent Outcomes of Interest. The bar to the right represents the scale 

for savings ratios. 
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Comparison of Analytic Calendar Time Savings Ratio for Multiple Scenarios.  

Outcome 

Rate of 

Interest 

(Events/ 

Person-

Years) 

IRR* of 

Therapy 

A to 

Therapy 

B 

Market 

Share 

for 

Therapy 

A 

Sample 

Size 

Savings 

Ratio† 

Median Length 

of Sequential 

Surveillance 

(Calendar Years) 

Median Length 

of Non-

sequential 

Surveillance 

(Calendar 

Years) 

Analytic 

Calendar 

Time 

Savings 

Ratio‡ 

1/100 10 0.9 0.00 6.5 6.5 0.00 

0.8 0.00 4.5 4.5 0.00 

0.7 0.00 4.0 4.0 0.00 

0.6 0.00 3.5 3.5 0.00 

0.5 0.00 3.5 3.5 0.00 

5 0.9 0.23 12.5 16.0 0.22 

0.8 0.06 9.0 9.5 0.05 

0.7 0.00 7.5 7.5 0.00 

0.6 0.20 5.5 6.5 0.15 

0.5 0.14 6.0 6.5 0.08 

2.5 0.9 0.31 >30.0 >30.0 N/D 

0.8 0.33 24.5 >30.0 N/D 

0.7 0.25 20.0 26.0 0.23 

0.6 0.31 16.5 23.0 0.28 

0.5 0.28 16.0 21.5 0.26 

0.4 0.9 0.41 >30.0 >30.0 N/D 

0.8 0.36 21.5 >30.0 N/D 

0.7 0.34 17.5 25.5 0.31 

0.6 0.33 16.0 23.0 0.30 

0.5 0.33 16.0 23.0 0.30 

0.2 0.9 0.36 10.0 14.5 0.31 

0.8 0.05 8.5 9.0 0.06 

0.7 0.26 6.0 7.5 0.20 

0.6 0.23 5.5 7.0 0.21 

0.5 0.17 5.5 6.5 0.15 

0.1 0.9 0.00 6.0 6.0 0.00 

0.8 0.00 4.5 4.5 0.00 

0.7 0.00 4.0 4.0 0.00 

0.6 0.00 3.5 3.5 0.00 

0.5 0.00 3.5 3.5 0.00 

1/1000 10 0.9 0.27 >30.0 >30.0 N/D 

0.8 0.26 20.5 27.5 0.25 

0.7 0.13 19.0 21.5 0.12 

0.6 0.19 15.0 17.5 0.14 

0.5 0.08 16.0 17.0 0.06 

0.1 0.9 0.38 >30.0 >30.0 N/D 

0.8 0.30 18.5 25.0 0.26 

0.7 0.10 18.0 19.5 0.08 
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0.6 0.18 15.0 17.5 0.14 

0.5 0.08 16.25 17.5 0.07 

*IRR, incidence rate ratio. 

†Sample Size Savings Ratio is calculated as (Non-sequential Sample Size – Sequential Sample Size)/Non-

sequential Sample Size. The units for sample size are the median number of events to end surveillance. 

‡ Analytic Calendar Time Savings Ratio is calculated as (Median Length of Non-sequential Surveillance – 

Median Length of Sequential Surveillance)/ Median Length of Non-sequential Surveillance.  
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