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Abstract

Under the broad context of decarbonization of the energy sector, commercial build-
ings are well-suited for providing ancillary services to the electricity grid and poised
to transform from passive consumers to active electricity market participants. A
data-driven multi-zonal thermal response model is formulated and fit to EnergyPlus
simulation data from a Department of Energy Small Office Reference Commercial
Building for the months of June, July and August. When validated and tested against
EnergyPlus simulation data, the thermal response model performs well. The thermal
response model is then used in a co-optimization of energy and ancillary provision
for a small office building with a variable air volume system from [9] using summer
wholesale electricity and ancillary services prices from ISO-NE. Under six different
price cases, the individual small office building provides maximum hourly regulation
and spinning reserve capacities of 3.2 and 4.4 kW respectively and daily total regu-
lation and spinning reserve capacities of 51 and 46 kW respectively. When scaled up
over similar building stock in New England, small office buildings can provide up to
9.5% of ISO-NE's daily regulation requirement and 8% of the daily spinning reserves
requirement. From an economic perspective, a small office building's potential sum-
mer ancillary services' revenues are not sufficient to drive investment in installation of
a building automation system, variable air volume system and associated metering.
However, buildings may invest in the necessary equipment for energy cost reductions
and to participate in other demand response programs. Increasing building participa-
tion rates in ancillary services markets requires addressing the principal-agent prob-
lem, building-specific concerns such as program controllability and convenience and
targeted policies aimed at increasing availability of clear aggregator-enabled building
participation avenues.
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Chapter 1

Introduction

1.1 Motivation

A focus on decarbonizing the energy supply has motivated policy and regulatory

decisions and voluntary behavior shifts in North America and Europe. Within the

vast energy sector, the provision of electricity and grid-related services is no exception;

decarbonization should be viewed as both a desired goal and an influencing factor

on regulation that will impact how the energy sector will evolve. These policies

have resulted in support for renewable generation sources through renewable portfolio

standards, renewable energy incentives and a spotlight on the use of demand resources

to meet peak demand and provide grid services.

In the next three decades, U.S. electricity demand is projected to increase with a

low growth rate [77]. Assuming no change in efficiency standards, the U.S. Depart-

ment of Energys Energy Information Agency (EIA) projects that 196 GW of new

generating capacity is needed to accommodate electricity demand in 2040 [77]. Of

the projected capacity additions, 58% is natural gas and 38% is renewable. Lower

demand growth is possible if such factors as energy-efficient technology are combined

with higher electricity prices and lower economic growth, though these conditions are

not necessarily desirable [77]. Domestically, industrial energy consumption is pro-

jected to increase 0.7% per year, commercial consumption 0.5% per year and overall

consumption 0.3% per year [77].
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Simultaneously, traditional coal-based baseload and peaking generation are ex-

pected to retire within the next three decades, prompted by emissions-reduction poli-

cies. By 2040, a total of 90 GW of retirements are expected of which nearly half

are baseload coal and nuclear [77]. Consideration of the EPAs proposed Clean Power

Plan results in an additional 50 GW of coal-based generation retirements and addi-

tional retirements in oil and gas units [76]. Thus, in the U.S., we expect flat to low

demand growth coincident with baseload retirements.

1.2 Distributed Energy Resources for Electricity

Services

With the confluence of three important factors: a focus on decarbonization, expected

generation retirements and constant-to-increasing future demand, the provision of en-

ergy, capacity and ancillary services will likely move into a different paradigm. Part

of this transformation is an expected increase in decentralization of sources providing

energy, capacity and other electricity services. The primary goal of the electricity

system is to deliver energy when required at a given time and location. However,

supply and demand of electricity must be in equilibrium at all times to maintain the

system frequency within a narrow band. Agents (either supply or demand-side) who

can change their generation or demand to maintain this balance provide frequency

control services at timescales ranging from second-to-second to multi-hourly. Fre-

quency control belongs to the category of ancillary services, or services that support

grid stability and function. Today, the majority of ancillary services are provided by

generation. At longer time scales, capacity guarantees installed generation or demand

response committed to production or load reduction when called upon during times

of system stress; use of the capacity service can enhance reliability in terms of both

adequacy and/or firmness.

Trends of increasing distributed energy resources have the potential to disrupt the

ways in which electricity services are currently provided. Distributed energy resources

16



(DER) encompass a variety of resources capable of modifying end user power flow

patterns. DERs include distributed wind and solar generation, energy storage devices,

electric vehicles and demand response from end users in industrial, commercial and

residential buildings. An increase in DERs presents potentially large technical and

regulatory challenges for distribution systems [28] [29] [37] [68]. DERs may generate

and consume power atypically and affect how current distribution systems interact

with the larger power system.

With policy and regulatory factors enabling growth, DER deployment is pro-

jected to increase in the U.S. and Europe. Decarbonization-motivated policies such

as the U.S. Investment Tax Credit (ITC) and 29 states' renewable portfolio standards

(RPS) have encouraged renewable generation, much of which is distributed. Addi-

tionally, higher electricity prices and decreasing costs of enabling technology have

encouraged DER adoption. DER implementation is expected to be most attractive

in regions with high electricity costs, such as Europe, California and Hawaii. Accord-

ingly, public utilities commissions are increasingly requesting DER integration plans.

The California Public Utilities Commission issued an order for utility-submitted Dis-

tribution Resource Plan Proposals addressing DER integration [33]. Hawaii's Public

Utilities Commission published its vision for a new regulatory environment that in-

cluded integration of distributed energy and reduction in older, fossil fuel generation

[36].

Though much of the existing DER growth had centered around the deployment

of solar PV with a global installed capacity of over 128 GW and U.S. installed PV

capacity of over 18 GW, there is a spotlight on demand response's potential to pro-

vide a multitude of grid services [38, 74]. Demand response is provided by entities

and structures that are largely pre-existing. For the 2014-2015 year, 48% of PJMs

demand response registrations were from the industrial sector, 9% from the commer-

cial sector and 16% from residential [44]. There is increasing interest in exploiting

the energy storage capability of commercial buildings and coordinating large numbers

of residential dwellings to provide electricity services. The use of demand response

as an energy resource allows the grid to exploit pre-existing consumption flexibility
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and energy storage capabilities found in building thermal mass and supplemental

technologies.

1.3 Commercial Buildings as a Distributed Energy

Resource

The ability to rely on commercial buildings to assist in maintaining grid stability

is predicated on the transformation of buildings from passive consumers to active

market participants. For decades, industrial and commercial buildings have been

providing demand response through peak reduction, load shifting and the capacity

markets. Given the need for electricity services beyond energy and capacity, buildings'

properties may enable them to succeed in providing ancillary services as well.

Our focus is on the commercial sector due to building qualities that render com-

mercial buildings good candidates for demand response in energy, capacity and an-

cillary services markets. Commercial buildings consume large amounts of electricity,

have large inherent thermal storage mass in the building structure, and increasingly,

contain enabling software and technological components. As end-users, buildings in

the U.S. use 32% of total electricity and almost half of building electricity con-

sumption is from commercial buildings [77]. Within that breakdown, the amount of

electricity devoted to heating, ventilation and air condition (HVAC) systems is the

largest and frequently most variable category.

In addition, commercial buildings envelopes contain thermal mass that acts as

energy storage when strategically heated or cooled. Methods such as model predictive

control (MPC) allow buildings to calculate the optimal cooling strategy for exploiting

thermal storage to minimize energy costs in addition to providing other services.

Increasing knowledge and interest in acquiring enabling technologies and software

combined with HVAC systems that can facilitate more flexibility in building operation

may result in higher participation levels of commercial buildings in electricity markets.

Advanced metering infrastructure (AMI) has been increasingly deployed across the

18



U.S. and a recent 2012 Commercial Building Energy Consumption Survey (CBECS)

survey found that 24% of small (5,000 ft2 ), 26% of medium (5,000-54,000 ft 2 ) and

63% of large commercial buildings contain variable air volume (VAV) HVAC systems

[75].

Commercial buildings are well-suited for providing ancillary services to the elec-

tricity grid. Shorter service time scales are more easily matched to a buildings eco-

nomic, operational and thermal comfort constraints. To begin, commercial build-

ings primary purpose is to provide a space for tenants to perform working functions

within thermal comfort levels. Straying beyond thermal comfort levels may add risks

of reduced productivity, tenant complaints and loss of long term revenue streams for

building owners and operators. Among the sets of constraints for commercial build-

ings that limit their ability to provide electricity services, occupant thermal comfort

is the most important.

Demonstrations and simulations have been exploring the potential that buildings

have in providing ancillary services in addition to energy and capacity services within

the context of building thermal comfort constraints. For example, while generators

that provide regulation service may incur a high opportunity cost if they can sell

the electricity to the wholesale market, buildings can experience periods where extra

cooling capacity is available at no opportunity cost. Second-to-second regulation

signals are close to energy neutral over short time periods; if signals are close to

uniform in time spent up and down-regulating, occupant thermal comfort may not

be impacted. Moreover, provided that average cooling over longer periods of time

is enough to maintain comfortable temperatures, the building thermal mass storage

capability can assist in curbing potential thermal effects of providing short time-

scale ancillary services. Optimal pre-cooling of buildings in preparation for potential

provision of ancillary services can enable buildings to minimize overall cost.

Exploring the possible resource potential from optimal control of building cool-

ing for a variety of electricity services is most important in the larger context of

decarbonization and the electricity supply. With the projected growth of DERs, it

is important to simultaneously assess current capabilities and future potential of ex-
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isting resources. From a grid-scale perspective, an increasingly decarbonized future

requires changes in the transmission and distribution systems, generation and end-

user roles. To move towards an end goal of identifying the optimal providers for each

electricity service, it is necessary to explore the potential of one of those resources,

commercial buildings, under a variety of conditions and tariffs.

Estimating ancillary services resource potential from commercial buildings re-

quires examining not only the excess capacity that commercial buildings have when

operating on an energy minimization goal, but including ancillary service provision

in an optimization alongside energy consumption for the building's primary task of

housing occupants comfortably. To do so, the preexisting building may require mod-

ifications. Practically, these may include additional equipment such variable speed

or variable frequency drives, equipment to satisfy advanced telemetry requirements

for verification and request signals, a method for determining the buildings optimal

operating strategy and knowledgeable building operators.

1.4 Thesis Objectives

In the future, 'smarter' buildings will be able to do more than operate normally and

use excess capacity for services provision. Instead, they will factor those potential

services into their initial optimal operating strategies. Buildings will become active

participants in electricity services markets as they consider provision of ancillary

services along with electricity consumption. Because HVAC operation is the most

flexible energy consumption source in buildings, and 97% of office-use commercial

buildings use electric cooling but only 42% use electric heating, this work focuses on

using building optimal cooling strategies that include provision of additional ancillary

services [24]. Though there are additional challenges associated with integrating

large numbers of commercial buildings into the electricity grid, it is necessary to first

understand the potential of an individual commercial building, using optimal cooling

strategies, to see what services might be provided.

Determining a buildings optimal cooling strategy requires being able to model the

20
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ability of the building to supply different ancillary services given the environmental

conditions, building thermal response constraints, HVAC system and expected inter-

nal loads. Generally, this requires being able to model the building's thermal response

and HVAC systems. Commercial buildings have multiple thermal zones in which the

temperatures of adjacent zones mutually affect each other. In larger commercial

buildings, more complex HVAC systems are a benefit since they are potentially more

controllable and can provide ancillary services but a challenge in system modeling

efforts.

The objective of this thesis is to determine the potential that a small office com-

mercial building has in providing ancillary services to the grid when the individual

building considers energy consumption and ancillary service provision in its optimal

cooling decision. The thesis also wishes to review regulatory and policy decisions

on both market operation and building industry sides that affect the ability of com-

mercial buildings to participate in ancillary service markets. To do so, a process for

fitting a data-driven inverse building thermal response model from EnergyPlus simu-

lations of a multi-zonal DOE Small Commercial Reference Building is developed and

validated. This thermal model is an extension of previous data-driven inverse model

development for single thermal zones [6, 7, 31, 83]. The thermal response model is

then used as an input in a co-optimization of energy and ancillary provision for a

small commercial building with a VAV HVAC system from [9] to determine opti-

mal cooling strategy and ancillary service provision. Scaling of small office buildings

in the U.S. New England Census Division through the DOE's Commercial Building

Energy Consumption Survey (CBECS) results in an estimate of resource potential.

A regulatory review of buildings ability to participate in ancillary service markets,

identification of key topics which could effect building sector participation rates are

presented.

The thesis is structured as follows: chapter 1 serves as an introduction to the

motivation and purpose of the thesis. Chapter 2 is a review of relevant literature about

electricity markets, building thermal response models and MPC. Chapter 3 describes

the development of a multi-zonal data-driven inverse building thermal response model
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fit to a small office reference building for summer months of June, July and August.

Chapter 4 summarizes the co-optimization of energy and ancillary services used from

[9] and resulting optimal cooling strategy. Chapter 5 describes scaling methodology

and results, while chapter 6 discusses market insights and policy interactions.
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Chapter 2

Background and Literature Review

2.1 Electricity Market Fundamentals

Electricity markets have historically been regulated industries where vertically inte-

grated utilities could own generation, transmission and distribution companies and

equipment. Now, there exists a range of market structures: large swaths of the U.S.

are served by competitive wholesale markets and some states still have fully verti-

cally integrated providers. In restructured electricity markets, competitive electric-

ity services became unbundled from regulated natural monopolistic electricity ser-

vices. Deregulated electricity services included generation and retail distribution,

while naturally monopolistic services include transmission and distribution systems.

Re-structuring and deregulation of some wholesale U.S. electricity markets began in

1978 when the Public Utilities Regulatory Policies Act (PURPA) allowed non-utility

companies to own generation assets [4]. The Energy Policy Act of 2005 amended

PURPA and conferred the Federal Energy Regulatory Commission (FERC) signifi-

cant new responsibilities to establish and enforce grid reliability and administer re-

structuring incentives and policy instruments.

FERC Orders 888 and 889 led to the ultimate creation of both regional transmis-

sion operators (RTOs) and Independent System Operators (ISOs). RTOs/ISOs are

operators mandated to coordinate and administer wholesale electricity markets, and

maintain network reliability and stability at multiple time scales. Though similar
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to ISOs in role, RTOs must meet additional requirements. In function, RTO/ISOs

administer wholesale electricity markets at timescales ranging from hourly to multi-

yearly. In addition, the RTO/ISOs determine market-based mechanisms used to

ensure supply reliability at multiple timescales.

Within the U.S., relevant RTO/ISO regions depicted in Figure 2-1 are Califor-

nia Independent System Operator (CAISO), the Electric Reliability council of Texas

(ERCOT), Independent System Operator of New England (ISO-NE), the Midconti-

nent Independent System Operator (MISO), New York Independent System Operator

(NYISO), the Pennsylvania-New Jersey-Maryland Interconnection (PJM) and South-

west Power Pool (SPP). Each RTO or ISO administers its own wholesale electricity

market and reliability planning systems; though many include similar market oper-

ation and planning structures, there is also variability between ISOs. For instance,

some U.S. ISOs do not use capacity markets (ERCOT, CAISO) as mechanisms to

satisfy planning margins while others do (ISO-NE, MISO, PJM). Of particular note

is the variation in ancillary services markets. ISOs are responsible for providing

sufficient ancillary services; rules and requirements for participation, compensation

methods and products vary amongst ISOs.

A variety of services related to the delivery of electricity (kWh) and maintenance

of grid stability at different time scales are used to maintain the grids overall function.

Services vary in functional nature and timescale and service definitions and format

vary between different RTOs and ISOs. We discuss commonly used electricity services

relevant to commercial buildings. First and foremost, the primary electricity service

the grid seeks to provide is that of energy, or the amount of electricity generated

or used over time (kWh). For end-users such as commercial buildings, energy has

indeed been the service of primary concern. In restructured and deregulated whole-

sale markets, electricity price is competitively determined in wholesale markets based

on the supply and demand, congestion and losses using transmission-level locational

marginal pricing (LMP). Few end-users such as buildings pay the wholesale LMP;

typically, buildings pay pre-determined flat rates outlined in utilities contracts. An-

other primary service is capacity (kW), which refers to the maximum instantaneous
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Figure 2-1: Map of U.S. RTOs and ISOs [30]

North American Regional Transmission Organizations

electricity generated or consumed. Electricity grids are interested in securing both

firm and adequate capacity, where 'firm' refers to the short-term ability of the grid

to meet existing peak demand adequately and adequate refers to the ensuring that

the long-term supply is able to meet peak demand in the future.

Outside of energy and capacity, RTOs/ISOs also typically administer an ancillary

services market. FERC defines ancillary services as those "necessary to support the

transmission of electric power from seller to purchaser given the obligations of control

areas and transmitting utilities within those control areas to maintain reliable opera-

tions of the interconnected transmission system" [2]. By FERCs definition, ancillary

services can be divided into six categories: reactive power and voltage control, loss

compensation, scheduling and dispatch, load following, system protection, and energy

imbalance [81].

Energy imbalance refers to the need to manage the difference between actual de-
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mand and generation in order to keep system frequency in a tight band around 60Hz in

the U.S. Within the ancillary services markets, the North American Electric Reliabil-

ity Corporation (NERC) defines frequency control on different response time scales as

different services. Primary frequency control or frequency response is provided in the

first few seconds following frequency excursions; primary frequency control is provided

through automatic responses to balance supply and demand on the grid. Secondary

frequency control is defined on the timescale of minutes to hours but is typically de-

ployed minutes after a frequency excursion to return frequency back to the preferred

band. Secondary frequency control includes regulation, spinning and non-spinning

reserves. Secondary frequency control does not necessarily need to be automatic but

is dispatchable. Providers may respond manually or automatically to signals from the

operator. Spinning reserves are required to respond more quickly than non-spinning

reserves. Tertiary frequency control includes resources on the timescale of minutes to

hours that respond for system readiness for future contingencies.

Demand response is not an electricity service; it refers to the change in consump-

tion behavior to a signal or incentive (financial or not). The advantages of demand

response are generally agreed upon. Managing consumption can result in avoided

costs from construction of new generation to manage peak demand, reduce peak

electricity costs, provide grid benefits and also manage the use of fossil fuel-based

generation plants. Demand response programs or tariffs are established by individ-

ual RTOs/ISOs. There are two general types of demand response programs: price-

based demand response programs where end users receive time-varying rates such as

real-time pricing and critical peak pricing or time-of-use tariffs and incentive-based

programs where end-users are paid to reduce their consumption at specific times re-

quested by the program administrator, typically due to high prices or grid stability

concerns.
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2.2 Buildings Providing Traditional Demand Re-

sponse

Demand response in various forms has been used to address grid stability issues for

decades. Industrial customers have agreed to reduce load at requested moments from

utilities in exchange for lower rates in reliability and emergency programs. Likewise,

commercial buildings have participated in traditional demand response programs.

Traditional demand response falls into two categories: the forward capacity market

and the energy market. Buildings, especially commercial buildings, have traditionally

provided demand response for peak demand (load shaving, shifting and shaping)

purposes and for demand side participation in forward capacity markets.

System operators use forward capacity markets to procure necessary amounts

of future capacity to satisfy resource adequacy requirements. After estimating the

amount of future resources needed, the operator allows resources to bid in commit-

ments to provide future resources in a competitive forward capacity market. In the

capacity market, demand-side resources take on a very similar form as supply-side re-

sources. Demand-side participants bid future reductions in capacity just as generation

bid future generation capacity. The capacity market views guaranteed future capac-

ity and guaranteed reduction in demand as equivalent entities, so demand response

participants are paid for future reductions in energy use. Frequently, participants re-

ceived both a capacity payment if their reductions are accepted as well as a payment

if dispatched in real-time.

Four of the U.S. ISOs allow demand-side resources to participate in capacity mar-

kets: MISO, ISO-NE, PJM and NYISO. Of the four, all but NYISO allow energy

efficiency to be considered in capacity markets. ISO-NE, PJM, and most recently

MISO forward capacity markets (FCA) are on annual and multi-year planning peri-

ods. Within these markets, demand response (DR) and energy efficiency (EE) bids

and cleared offers have gradually increased, though the absolute magnitude of their

involvement is still minor. Offered MW from DR and EE resources in the capacity

market in the recent decade are listed in Table 2.1. From 2007/8, when demand
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response was eligible, to 2013/14, when energy efficiency was eligible for participa-

tion in PJM capacity auctions, these resources have submitted market bids and a

portion have been cleared as shown below in Table 2.1. In the 2014/2015 FCA, de-

mand response accounted for 9.3% of cleared capacity. ISO-NEs most recent FCA

for 2017/18 cleared 2,803 MW of demand-side resources out of 34,695 MW of total

cleared resources, a value consistent with historical FCA results. In MISO, cleared

capacity for demand resources in the Planning Resource Auctions increased by nearly

500 MW from the first allowed year in 2014/2015 to the 2015/16 planning auction,

though DR still remains just 2.9% of total cleared capacity [69].

- '07/08[ '08/091 '09/101 '10/11 '11/121 '12/131 '13/141 '14/15
Cleared 128 536 893 939 1365 7047 8888 13108
DR (MW) ________ __

Cleared E
(MW) - - - - - 569 676 819

Cleared
Total 129 130 132 132 132 136 142 141
(GW)
Unclear - 180 44 29 290 2800 2700 1300

UnclearedEEc(MW)d - - - - - 84 77 1BE (MW)
Uncleared
Total 1.4 2.3 1.3 0.9 4.8 9.2 5.5 6.8
(GW)
Offered EE 650 750 830(MW) I I I I
Offered DR 130 720 940 970 1700 9800 12000 130
(MW) _ _ _ _ __ __ _ _ _ _

Offered To- 131 132 134 133 137 145 148 148tal (GW) I I I

Table 2.1: PJM Base Residual Auctions

Demand response in various forms has been used prior to market restructuring

to address peak demand, manage electricity prices and increase system reliability.

Programs utilizing mostly large industrial loads use "interruptible tariffs" to manage

emergency grid situations. Peak demand management programs call on customers to
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reduce use during peak demand times to reduce prices and manage peak load through

either explicit compensation programs or implicit programs where customers reap cost

savings. Emergency or reliability programs ask customers to be dispatchable at fixed

emergency time periods for reliability management and to avoid rolling blackouts.

Program formats can vary: dynamic pricing and price responsive programs offer

customers different prices at peak periods to incentivize behavior changes; direct load

control programs allow controllers to access customer equipment such as residential

air conditioning for emergency periods and temporal pricing designates specific prices

for high load periods of time [63].

2.3 Commercial Buildings Providing Ancillary Ser-

vices

Simulation, demonstration of and increasing participation in existing ancillary ser-

vices markets from commercial buildings have generated excitement about their re-

source potential. Demand response for ancillary services occurs at time scales that

are shorter than those used for traditional demand response for energy and capacity.

Ancillary services needed all year round and throughout each day are utilized more

frequently than the emergency load relief, peak load management and capacity market

programs in which demand response has historically participated. At the same time,

technical requirements are more restrictive for ancillary services. Often, telemetry

and second-by-second signal tracking are necessary. There is low tolerance for de-

layed responses due to control or mechanical issues. Commercial buildings' thermal

mass can supplement their energy storage capacity and flexibility potential. Already,

the presence of large amounts of thermal mass can help smooth out a building's de-

mand profile with both cooling and heating peaks. Optimal control strategies can

exploit thermal mass to reduce energy consumption or costs since the inertia of ther-

mal mass can enable regulation-following variations in conditioned airflow without

substantially affecting thermal comfort.
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Ancillary services of interest for commercial buildings are primarily frequency con-

trol on different time scales: regulation, spinning reserves and non-spinning reserves.

Traditionally, frequency regulation has been provided by ramp-limited generation

resources. Buildings, especially larger buildings with a sizeable amount of thermal

mass, can provide regulation at small second-by-second time scales since variations

in demand at small time scales are considered to have little impact on indoor air

temperature. On average, regulation prices exceed spinning and non-spinning reserve

prices in many markets [55].

Studies have simulated provision of ancillary response for regulation, non-spinning

and spinning reserves with modifications in supply fan duct pressure, zonal temper-

ature setpoint amongst other pre-existing demand response strategies. Direct load

control (DLC) enabled variable speed heat pumps (VSHP) are modeled providing

frequency regulation in [49]. When linked to a room thermal response model, [49]

found little difference in DLC VSHP and non-DLC VSHP enabled room temperature

trajectories. In [35], simulated supply fan power consumption flexibility provided reg-

ulation and found that 15% of total fan power could be used for regulation without

impacting occupants thermal comfort. Two methods of control through the supply

fan setpoint and temperature setpoint with various control parameters successfully

provided frequency regulation in a 150m2 zone in [85]. Frequency regulation perfor-

mance ability in a commercial building was summarized and a MPC algorithm that

improves system performance from using buildings frequency regulation in addition

to traditional AGC was developed in [53]. In [11], a dynamic VAV systems ability

to provide regulation with four common demand response strategies under a range

of intensities and cooling load conditions was simulated. Authors used both direct

and indirect control of the HVAC system, noting the effects and constraints of either

equipment dynamics or cascading control loops on service provision, depending on the

strategy in question. In [10], the same model and set of demand response strategies

were used to simulate provision of spinning reserves.

In addition to simulations of buildings potential, demonstrations have shown the

use of HVAC to provide ancillary services, albeit with noted challenges from the com-
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plex mechanical and control systems involved. The ability of a University of Florida

buildings air handling unit and building automation system (BAS) to provide regula-

tion service that could qualify for PJMs markets was demonstrated in [51]. Motivated

by [35]'s simulation results, [53] verified that a large commercial building with a BAS

and controller software could use two 67 kW supply fans to provide 24 kW of regula-

tion. Experimental work has also been done with commercial chillers, with estimates

of +/- rated power for frequency regulation. In [48], three building types (retail

store, government office building and bakery) successfully participated in bidding

and supplying non-spinning reserves to a California participating load program using

existing DR control strategies, while [54] demonstrated use of a large retailers HVAC

system to provide spinning reserves and a VFD enabled fan to provide regulation.

The resource potential for ancillary services in demand response across larger regions

such as the entirety of the U.S. is not clearly known. In [52], a methodology of as-

sessing potential ancillary services from demand resources by applying a flexibility

weight to assumed demand profiles was developed. In multiplicative estimates from

simulation through [35] and through demonstrations from [53] estimate high levels

of potential. [53] estimated that scaling the same fan power consumption flexibility

per unit floor area over all commercial space would provide an estimated 4 GW of

regulation service. This is in comparison to the simulated 6.6 GW of regulation from

5 million commercial buildings in [35]. From chillers providing regulation through

excess capacity, [71] estimates a potential of 41% of required, noting that the most

potential in chiller provided regulation is in the south, due to the increased level and

temporal use of chillers throughout the year.

2.4 Building Thermal Response Model and Model

Predictive Control Literature Review

Much of the literature discussed thus far has focused on potential in provision of

ancillary services from commercial buildings operated under standard control and
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not in an optimal manner. This is consistent with the operation of many commercial

buildings in reality for a variety of factors. However, should operators be empowered

with increased HVAC system controllability through enabling technology, software

and building knowledge, optimal cooling and heating strategies could be calculated

and implemented. In this work we focus on optimal cooling strategies in commercial

buildings given provision of ancillary services in addition to energy consumption.

Though heating can also be electric, nearly all of cooling in commercial buildings is

electric while heating in commercial buildings where the primary building activity is

'office' is reported as 49% from gas and 42% electric [79]. Here, we focus on electric-

only cooling strategies.

In buildings, optimal cooling strategies are affected not just by the amount of

thermal mass available but also by design properties affecting its distribution inter-

nally and throughout the building. Building envelope, material building properties,

climate, cooling system operation, and internal load patterns also affect the optimal

cooling strategies [13]. In order to determine optimal cooling strategies for any build-

ing, a thermal response model is needed to characterize how loads and temperatures

will change in a building. Thermal response models can be used to predict thermal

loads on a building or the building's thermal and temperature response to different

loads and cooling on a transient basis. Buildings with similar floor area may exhibit

different thermal responses depending on these factors. The temperature trajectories

of and influencing factors are also not necessarily well monitored at small time scales.

Sensor accuracy, installation and the use of a building energy management system

and/or controllers for HVAC equipment might be necessary to accurately character-

ize a buildings thermal response. Though detailed optimal control programs are not

widely used in practice beyond optimal start-stop algorithms used at the beginning

and end of work-days, building thermal response models could be implemented to help

determine optimal building control for a variety of purposes. Using thermal response

models and predictive control based on those models is necessary for determination of

optimal building operation strategies. Thermal response models are frequently used

to plan for daily scheduling and operation. For instance, transfer function models
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have been used to enable load shifting, pre-cooling and optimal cooling strategies to

various degrees for decades [31].

The primary purpose of thermal response models is to characterize transient ther-

mal responses to changing conditions, typically for short term operation, scheduling

and optimal strategies for different objectives. When considering the short-term ob-

jectives, thermal response models can still be diverse in approach. Models can range

from detailed, physically based representations of systems in forward models to purely

data-driven models, to name the two extremes.

Forward models (or white box models) explicitly model a building's thermal re-

sponse through detailed physics equations based on the construction of the specific

building systems and equipment components. Forward models use specified building

materials and constructions, , building equipment and schedules to explicitly sim-

ulate detailed building behavior during certain environmental conditions. Popular

simulation programs such as eQUEST, EnergyPlus, TRNSYS are used to estimate

load and temperature responses and electricity consumption. Forward models can

be effective and accurate due to very detailed specification of the building. However,

such specific information is not always available, computational times of simulations

may be infeasible for use in more complex simulation and optimization programs, and

pre-made simulation programs may not provide all the initialization parameters that

users may need. Information may be expensive and time intensive to acquire if it is

even available.

On the other hand, purely data-driven models use simulation or measured data to

train a numerical model that sufficiently captures the primary dynamics of buildings'

thermal response. Both experimental data from specific buildings or simulation data

can be used to train models. Examples of data-driven models are black-box mod-

els that fit parameters that do not necessarily have physical significance or gray-box

models from parameters with physical significance. In black-box models, statistical

methods are used to fit parameters for thermal response prediction such as autoregres-

sive exogenous models (ARX). [52] uses a ARX model to predict zone temperature

and power and [82] uses an ARX time and temperature indexed model to predict hour
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ahead thermal loads and compares predictions to DOE Reference Commercial Build-

ing simulated loads. Though black-box models may be computationally efficient, they

may not ensure physically realistic behavior unless explicit constraints that mandate

such behavior are used. For instance, describing transient thermal responses in in-

verted comprehensive room transfer functions requires active enforcement of certain

constraints to ensure that solutions obey a steady state heat transfer solution [6].

Gray-box models are also data-driven, but use model parameters that are based on

some simplified representation of building physics. Gray-box modeling steps gener-

ally require development of a simplified physics building model, determining model

physical parameter bounds from building design, and estimating optimal model pa-

rameters through appropriate methods to finally simulate building responses [12]. In

the described gray-box model, [12] use a resistance and capacitance network model to

representing building cooling load, where capacitors and resistances represent thermal

capacitance and regression.

Because temperature response in buildings can be mostly described by heat trans-

fer/heat balance equations, discrete-time transfer function models can be used to

represent thermodynamically appropriate and plausible models through measured or

simulated data [60] [46]. Heat balance transfer functions for multiple surfaces in one

zone were combined into comprehensive room transfer function (CRTF) to represent

overall zonal cooling load with fewer equations in [46]. [6] presents a transient ther-

mal response model where a CRTF model describes heat flux response and proposes

inverted comprehensive room transfer functions (inverse CRTF) to describe temper-

ature response. Armstrong finds in a lab-controlled room and a Russian apartment

building that these models reliably predict thermal response, with temperature with

a five percent RMSE for temperature prediction and ten percent RMSE for cooling

rate. In the companion paper, [7] fits an inverse CRTF model for a Los Angeles

office building. Importantly, Armstrong uses constraints to ensure thermodynami-

cally appropriate behavior. CRTF and inverse CRTF models do not require major

assumptions about building properties or design since coefficients are fit from simu-

lated or measured data. The model order number can be adjusted as appropriate;
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more thermal mass and lag corresponds to a higher model order.

In [31], an inverse CRTF model was fitted to measured data from a test facility

consisting of a climate chamber and single zone room to predict thermal response.

Four modes of excitation (heat input through ceiling electric radiant heating panels,

heat input through electric radiant heating underneath concrete paver layers, heat

input through convective electrical heaters inside the test chamber, ambient tem-

perature variation in climate chamber) were used for model fitting from 20 days of

training data [31]. Inverse CRTF coefficients were then fit for zonal temperature,

mean radiant temperature and operative temperature. The model was used to pre-

dict hour-ahead temperatures, validated with test data sets and used in an MPC

optimization to find optimal cooling strategies. The inverse CRTF model performs

much better when predicting hour-ahead temperatures as opposed to 24-hour-ahead

predictions; [31] notes that selection of model order requires balancing complexity

and accuracy and computational time required for simulation.

A single zone inverse CRTF model is trained and validated on TRNSYS building

simulation data as part of a modeling environment developed for simulating building

operation under MPC in [83] and [84]. The coefficients for the inverse model of a sin-

gle zone with a VAV system and cooling from Thermally Activated Building Systems

(TABS) is fitted. The author also extends the model to account for the dynamics of

water vapor concentration within the building; inverse CRTF cofficients were fit to

TRNSYS simulation data for zonal temperature, operative temperature, floor temper-

ature and water return temperature for models of order two to eight, concluding that

for the particular use case, an order of three offered a good balance between accuracy

and computational speed. In their work with inverse models, both [31] and [83] note

that higher model order was not necessarily better for temperature prediction when

using inverse CRTF models. In [83]'s inverse models, convective and radiative loads

are separated for better model performance. The inverse model is validated against

TRNSYS simulation data and demonstrated good predictive power with significant

reductions in computation time. [83] cites the benefits of variable initialization and

significantly reduced computational time for using an inverse CRTF thermal response
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model since the model is subsequently implemented in a MPC optimization of a TABS

and VAV system minimizing daily electricity consumption.

Both [31] and [83] apply inverse CRTF models for MPC purposes to single zones

and are trained on measured data in [31] s case and TRNSYS simulation data in [83]s

case. [7] fits a single zone inverse CRTF model for a five-story apartment building

in [6] and a large municipal office building.. However, most buildings contain multi-

ple thermal zones. Within each zone, transient thermal responses change based on

exogenous factors as well as adjacent zone thermal responses. A multi-zonal thermal

model requires consideration of thermal interactions between zones as well. [32] ex-

tends the inverse CRTF thermal model from a single zone to multiple zones in order

to model a low-lift cooling system in a multi-zonal building with TABS. Authors

write that thermal response model coefficients can be fit from training data in the

building from sensors installed to measure each variable or a surrogate; coupled with

a model of power consumption in the low-lift chiller, a procedure is developed for

model predictive building control. Thermal response models in different forms can be

combined with a model predictive framework to find optimal operational strategies,

whether for heating or cooling. In [7], the use of inverse CRTF models for estimating

the benefits of different peak-shifting and night-cooling strategies for cooling load re-

duction is explored. [84] describes an MPC framework that uses a thermal response

model to optimize a variety of possible HVAC objectives, including minimization of

total electricity consumption. In [66], a gray-box resistance-capacitance thermal re-

sponse model in a MPC framework is used to determine optimal operating strategies

for minimization of total electricity cost when a building can provide regulation and

can provide peak demand response. To address the problem of optimal operation of

multiple buildings, [67] optimizes multiple buildings operational strategies as a port-

folio, noting that some synergistic savings effects which are dependent on portfolio

construction, market design and building conditions can be observed.
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Chapter 3

Small Commercial Building

Thermal Response Model

3.1 Inverse CRTF Model

As noted in the previous chapter, inverse CRTF describe building temperature re-

sponses as functions of previous temperatures and heat fluxes. Using inverse models,

we wish to capture the thermal response of the building to changes in exogenous

conditions and changes in overall sensible heating or cooling rates. Inverse CRTF

models can be formulated and trained on a dataset; model coefficients can be applied

to test data to predict 24-hour ahead temperature responses. The careful selection of

training data is important and affects model prediction errors. Here, a inverse ther-

mal response model that is the multi-zonal extension of a single zone inverse CRTF

model is fit to EnergyPlus simulation data. We review the single zone inverse CRTF

formulation and the specific multi-zonal inverse CRTF formulation used in this thesis

in this section.

3.1.1 Single Zone

The single zone inverse CRTF was successfully implemented in [6] and [7] for a test

chamber, Russian apartment building, and Los Angeles office building; in [31] for an



experimental test chamber; and in [83] for the same test chamber. In the single zone

inverse CRTF model, transient changes for zonal temperature, operative temperature

and other variable temperatures of interest are expressed as a weighted sum of past

relevant temperatures, exogenous conditions and heat fluxes. Below, the mean zonal

air temperature T, is expressed as a weighted sum of T, the outdoor dry bulb tem-

perature or ambient temperature, Qad, the radiative heat flux, Qconi, the convective

heat flux, and Qsoiar, the representation for incident solar.

k-1 k k k k

Tj = a'Tj + ] b'T + CzQ + dQ' n, + e3 solar
t=k-n-1 t=k-n-1 t=k-n-1 t=k-n-i t=k-n-1

(3.1)

In [6], zonal temperatures are expressed as a weighted sum of past zonal tempera-

tures, weather effects as described by ambient temperature, solar gains on the opaque

and window building envelope surfaces, and total heat flux from internal loads and/or

heating and cooling effects. Internal loads typically consist of lighting, plug-in loads

and people. Heating and cooling effects can be from active changes from the HVAC

system or from natural ventilation. Throughout the day, heat gain or loss occurs due

to heat flows through building boundaries from the external environment and from

solar gains on incident surfaces. At steady state conditions of constant temperatures,

the total heat flux is zero; in order to ensure that the thermal response model obeys

steady-state heat transfer equations; this yields an additional set of constraints must

be applied to the coefficients. Below, a' is the model coefficient for zonal temper-

ature in zone z at time step t and bt is the model coefficient for outdoor dry-bulb

temperature in zone z at time step t.

k-1 k

1a- = b (3.2)
t=k-n-1 t=k-n-1

As noted, the number of lag terms for each variable is the order of the model.

Buildings with higher thermal mass and thermal lag can be reflected in higher model

order. This inverse CRTF model only applies well to sensible heating and cooling

38



loads. When applying the inverse CRTF model to a test room in the above formu-

lation, [6] uses the laboratory (test chamber exterior) temperature, adjacent room

temperature, total zone heat flux. When applied to a Russian apartment building,

[6] uses solar on the horizontal, outdoor dry-bulb temperature, and the product of

wind speed and outdoor-indoor temperature difference to account for climate condi-

tions. [31] uses the same generic formulation with the removal of the exogenous solar

radiation term due to the lack of a solar excitation source in the test chamber used.

Similarly, [83] excludes an exogenous solar radiation term due to use of the same test

chamber.

3.1.2 Multi-Zonal

Inverse CRTF models fit to test chambers or buildings for MPC referenced in the

previous section explored application of the models either to single zone rooms or

multi-zonal buildings that were reduced to a single zone for analysis. Buildings typi-

cally have multiple thermal zones. Different building spaces may have dissimilar in-

ternal and external loads and experience variable climate conditions throughout the

day. Residential buildings have a conditioned zone along with unconditioned zones;

when discussing commercial, industrial, retail buildings and multi-family residences,

multiple thermal zones should be considered.

Within a multi-zonal building, each zone is a component of the larger building

thermal system and heat exchange between adjacent zones occurs throughout the

day. An east-facing zone may absorb solar radiation in the morning and slowly re-

lease heat to adjacent thermal zones throughout the day through conduction and

convection. These complex dynamic interactions vary on spatial and temporal scales

and are affected by underlying building envelope properties, climate conditions and

internal loads. At walls separating zones, there is conductive heat flow. There may

be convective heat flow as well, though the location of convection boundaries be-

tween zones is less straightforward to identify [34]. Using data-driven inverse model

simplifies the accommodation of multi-zonal interactions between adjacent zones by

allowing weights on current adjacent zonal temperatures to encompass the informa-
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tion of effects of adjacent zones on each other. Coefficients in the multi-zonal model

should reflect the relative effects of sensible heat transfer that different zones have on

each other.

The multi-zonal inverse CRTF model discussed in [32] is specifically formulated

for the Department of Energy's small office reference commercial building. The model

formulation includes dependencies on past zonal temperatures, outdoor dry-bulb tem-

peratures, radiative heat flux, convective heat flux, window-transmitted solar radia-

tion, total incident opaque surface solar radiation, and ground temperature. Known

temperature and heat rate data is used to fit an inverse multi-zonal CRTF model; an

adjacency matrix details which zone adjacency relationships. The number of non-zero

interzonal coefficients increases as the number of zones increases although specific ad-

jacency properties depend on the specific building in question; the specific interzonal

relationships in the small office building are detailed in Figure 3-1. Model coefficients

are applied to validation data to predict zonal temperatures. Predicted and origi-

nal simulated EnergyPlus zonal temperatures are compared to calculate measures of

model error.

Below, T is the temperature in zone z at time step t, Tj and Tt are the outdoor

dry-bulb temperature and ground temperature at time t respectively, Qta, Qtco,

QtzWS and QtSS are the radative heat flux, convective heat flux, window-transmitted

solar radiation, and total solar radiation incident on surfaces for zone z at time step

t in that order. The model coefficient a' describes the effect of zone j on zone i

at time step t, and bt, ct, d', et, fz, and g' are the coefficients for outdoor dry-

bulb temperature, radiative heat flux, convective heat flux, window-transmitted solar

radiation, and total solar radiation incident on surfaces for zone z at time step t in

that order.
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Z k k

Z aj+ + Z b>= (3.4)
j=1 t=k-n t=k-n

for all zones i and j in Z total zones where i =--1 to enforce steady-state heat

transfer.

Generally, the thermal response in each zone is affected by the following factors.

Past zonal temperatures indicate the starting points and temperature trajectories

that the zone is moving forward from. The outside environment provides variable

heat flux from ambient temperature and solar radiation depending on the day and

the season. In accounting for incident solar radiation, two separate terms are used

to account for short-wave solar radiation transmitted through exterior windows and

absorbed by zone surfaces and for long-wave radiation absorbed by opaque surfaces.

Load variations occur due to changes in the building operation and schedule; internal

loads from equipment such as lighting and operation are changed to accommodate oc-

cupants. Occupants schedules change depending on the location and day of interest.

Thus, internal load variations can change greatly between weekends, weekdays and

holidays. Heat fluxes are separated into convective and radiative categories. In this
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work, an active cooling system is not used and thus only use total convective heat

flux and total radiative heat flux terms are used. We do not assume that the building

surface touching the ground is adiabatic and must account for heat flows between the

building surface and ground by including ground temperature as an additional exoge-

nous factor. Ground temperature used is the constant value given by the reference

building file that changes with different months. Weather file ground temperatures

are not used because they describe undisturbed ground temperature and the ground

temperature beneath buildings is affected by the building itself. However, the ref-

erence building approximates this temperature as a constant that varies throughout

the year.

3.1.3 EnergyPlus and DOE Reference Building

Data used to fit an inverse CRTF model can be experimentally gathered through

installed sensors, or acquired from simulation programs. Because we are ultimately

interested in the ability of commercial buildings to provide a range of electricity

services, we utilized the DOE's set of commercial reference buildings built using the

EnergyPlus building simulation program.

EnergyPlus simulates building energy use including heating, cooling, lighting and

ventilation through simultaneous simulation of the HVAC system and building heat

balance system. In EnergyPlus, inputs and outputs are easily selected and modified.

The program uses a heat balance model that accounts for building surface conduction,

air convection, short wave radiation absorption and reflectance and long wave radiant

exchange [20]. Zones are assumed to have well-mixed air, so a single temperature for

each zone is outputted.

We use EnergyPlus to run reference-building models at one hour time-steps, a

reasonable planning horizon for HVAC systems. The run period of each model is

adjusted for the time period of interest. HVAC systems are turned off in order to

observe the simulated thermal response behavior of the building envelope and system

without active heating or cooling. Zonal temperature, outdoor-dry bulb temperature,

short-wave windows-transmitted solar radiation, total surface incident solar radiation

42



and radiative and convective heat fluxes for each zone are selected as outputs. Ra-

diative and convective heat fluxes include contributions from internal loads including

people, lighting, electric equipment, hot water equipment and steam equipment.

Window-transmitted solar radiation heat gain captures the heat gain from short

wave solar radiation directly through windows, while the outside-face solar radia-

tion heat gain term represents the relative strength of heat from absorption of solar

radiation at outside surfaces.

The DOEs commercial reference buildings provide complete descriptions of differ-

ent types of commercial buildings, including detailed construction and HVAC system

information. The set contains 16 building types that cover 70% of all U.S. commercial

buildings, including small, medium and large commercial buildings with specifications

described in Table 3.1 [75].

Table 3.1: DOE Office-type Reference Commercial Building Models [79]

Ultimately, a comprehensive set of inverse CRTF models for all reference building

types could be developed and used to determine optimal control strategy and inves-

tigate electricity service provision. This work begins with the small office commercial

building model in order to demonstrate the efficacy of using inverse CRTF models

to describe thermal response models for optimal control. The small office building

contains one floor and six zones: a core zone and four perimeter zones along with an

attic above the other five zones as shown in Figure 3-1. Internal walls are ASHRAE

90.1 above-grade, wood-frame non-residential with an overall heat transfer coefficient

of 41W/m2 . This u-factor describes the overall rate of heat transfer through one

square feet given standard conditions. There are punch windows (5' by 6') in each

of the four perimeter zones, and none on the attic. As noted previously, we consider

both windows-transmitted solar and solar absorbed by surfaces through the perimeter
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Building Type [Floor Area Number of Floors

Large Office 498,588 12
Medium Office 53,628 3

Small Office 5,500 1
Warehouse 52,045 1



zones and solar absorbed in the attic. All zones on the first floor are assumed to be

adjacent to the ground.

Figure 3-1: DOE Small Office Reference Building Floor Layout

Zone Area (sq. ft) Conditio- Volume Gross Window
ned (cu. ft) Wall Area Glass Area

(sq. ft) (sq. ft)

Core 1611 Yes 16122 0 0
Perim 1 1221 Yes 12221 909 222
Perim 2 724 Yes 7250 606 120
Perim 3 1221 Yes 12221 909 222
Perim 4 724 Yes 7250 606 120
Attic 6114 No 25437 0 0
Total 5503 - 80502 5030 643

Table 3.2: DOE Small Office Reference Building Parameters
[79]

3.2 Multi-Zonal Small Office Inverse CRTF Model

The final EnergyPlus-driven multi-zonal inverse CRTF model formulated for a small

office reference building was described in Equation 3.3. Given full knownledge of

EnergyPlus simulation data from a training set, model coefficients are identified using

a constrained linear regression. Subsequently, the model performance is validated by

predicting temperatures from a training set and examining model prediction errors

and relative mean square errors.
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The selection of an appropriate training set is important; if trained on a set that

is too dissimilar from the conditions of the day that will be predicted, the thermal

response model may not perform well. The amount of training data required to fit

inverse model coefficients for a well-performing model depends on the model and

building. Other black-box models may require months of training data and gray-box

RC models may require only a week or two of training data [12]. If trained upon the

wrong set of data, the model may be unstable in predicting the thermal response for

conditions that are too dissimilar from the training data.

[6] and [7] fit an inverse model to data where there are variations in climate and

internal gains. The inverse model was first fit to a test chamber built within a larger

laboratory room. The laboratory room temperature represented an 'outdoor' tem-

perature while the test chamber temperature was the variable of interest. The inverse

model was trained on average expected internal loads and climate for both training

and test sets by allowing factors to vary within some small ranges. 'Climate' vari-

ations were produced by letting the laboratory temperature vary naturally, internal

gains variations were produced by turning lights on and off within the test chamber.

Similar temperature trajectories were observed in both training and test sets. Sim-

ilar to our EnergyPlus set-up, the test chamber HVAC system is turned off before

recording training and testing data.

On the other hand, [31] used thermal excitations to observe resulting temperature

trajectories in the training and test sets. [31] used around 20 days of training data to

fit the inverse CRTF model since the test chamber used four different and separate

methods of heat input. If all forms of heat input were used simultaneously, fewer

days could be used in a training set. [31] uses pulses of heating input from the four

methods to observe the resulting thermal response from the room.

Instead of specific pulses or a similar set of temperature variations to what is in the

test set, [83] uses various ratios of internal loads to heat gain from a thermally active

building systems (TABS). Two training sets were used, one of which had similar

magnitudes of internal loads and cooling heat flux and one which had dissimilar

ratios; when tested on data where ratios were significantly different from the first
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training set, the model did not perform well. This suggests that training on data that

experiences a range of anticipated climate conditions and internal loads is necessary

for a well-performing model. However, given that inverse CRTF models are trained

for specific periods of time, locations and conditions, there is a trade off between

a model that performs relatively well the majority of the time when conditions in

climate or scheduling senses are not extreme and the ability of a model to predict

more reasonable temperature responses when there happen to be extreme conditions.

In this work, we use a training set that assumes typical internal gain scheduling

from an office building along with pulses of cooling. The natural variations in am-

bient temperatures and solar radiation produce a range of excitations that could be

typically expected in the period of time of interest. Additionally, we are interested

in capturing the buildings thermal response to cooling inputs. In the subsequent

optimization, convective cooling is added; in this model-fitting stage, it is important

to expose the training set to pulses of cooling as well in order to best capture the

building's thermal response. In this case, the training and testing sets are similar

in terms of scheduling and climate conditions. The training data produces a model

that performs well when climate conditions and internal load conditions are similar to

training set data range. As shown in Figure 3-2a, the training set contains a typical

internal gains schedule that includes arrival of people and use of lighting and electric

equipment starting in the weekday mornings and departure and discontinuation of

those same internal gains in the evening. Reduced schedules are assumed on Satur-

days and Sundays. For each zone, a cooling pulse is added at an on-peak time period

where overall building internal gains are at a peak and at an off-peak time. Cooling

pulses are applied to each zone separately to observe effects on adjacent zones. We

would need at minimum six days of data to apply cooling pulses to all zones. In

Figure 3-2b, plots of incident solar radiation show that heat flux from solar peaks at

different time periods for different zones; the east-facing perimeter 2 zone observes

peak solar in the morning and the west-facing perimeter 4 zone experiences peak solar

in the afternoon. Other zones observe peak solar in the middle of the day. Incident

solar varies throughout the month. Similarly, there are natural variations observed
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in ambient temperature depicted in Figure 3-2c. Core and perimeter temperatures

fluctuate generally between 18-33 degrees Celsius while the attic experiences a much

larger range of temperatures. Temperature responses during each pulse of cooling

can be observed. The range of temperatures in the attic is much greater than in the

other zones; the attic temperature increases greatly during the day from absorbed

solar radiation and drops at night as it the attic loses radiative heat.

The selection of an appropriate length of time is important due to the variation

in climate conditions included in the training set. Here, the training set uses rep-

resentative typical meterological year 3 (TMY3)-formatted weather data from the

calendar month to train the model. The training set period length needed to train a

well-performing model directly varies with the amount of variation experienced dur-

ing the period. For instance, when predicting the thermal response on an average day

in June, a thermal response model trained on similar days in June performs the best.

However, a model trained on data from early June likely is trained on temperatures

that are cooler than those experienced in a test day from late June. Similarly, if

a model is trained on a time period with little solar radiation, the model may not

perform well when used to predict thermal response on a day with high levels of solar

radiation. In transition months between seasons, this effect may be especially impor-

tant since there is more climate variability. Selection of a training set purely based on

calendar month may not result in the best prediction performance. However, climate

conditions can change rapidly, so using the a rolling training set consisting of previous

weeks data does not necessarily produce a model that is more appropriate for any

given test day. Here, the calendar month training set is employed for simplicity and

ease of use.

Prediction errors decrease as model order increases. Decreases in the 1st, 25th,

50th, 75th and 99th percentiles of prediction error with increasing model order for a

model fitted to the June training set and tested on the June testing set are shown

in Figure 3-3. As model order increases from two to five, the lower percentiles of

prediction errors drop by substantial fractions. However, increase in model order

also can result in over-fitting of the inverse model to the training data. As noted by
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[31], there is a trade-off between lowering prediction error and over-fitting to training

data. Generally, we observe that at a model order of four, we gain the benefits of lower

prediction errors with less computation time and chance of over-fitting. Especially

when looking at higher percentiles of prediction error, we recognize that continual

increase in model order does not necessarily yield dramatic decreases in prediction

error. In [83], authors report that a model order of three offered a good balance

between accuracy and computation speed for the single zone inverse CRTF model.

Prediction errors are lower for the non-attic zones. Since we do not condition

the attic in the optimization described in Chapter 4, it is less important to perfectly

predict attic temperature trajectories. In addition, attic temperature fluctuations are

much greater than those in the non-attic zones as well, so the attic relative error does

not differ dramatically.

3.3 Inverse Model Validation

Fitted multi-zonal inverse CRTF model coefficients for a small office building for the

months of June, July and August are included in Appendix D. After inverse CRTF

model coefficients were fit to the training set, 24-hour ahead predictions were made

using the inverse model given past zonal temperatures and present and past ambient

temperatures, solar heat fluxes on windows and absorbed surfaces and convective

and radiant heat fluxes. We predict 24-hour ahead zonal temperatures because MPC

is used for planning purposes; typically, the optimization would be initially run for

24-hour ahead predictions for the following day with forecasted load and climate

data. The resulting schedule could be implemented, but the optimization could be

run again in real-time every consecutive hour with updated thermal response data.

Accordingly, this work considers a 24-hour ahead prediction horizon. It is useful to

note that at this step in the process, if the optimization returned a cooling strategy

that departed greatly from typical operation, the operator would likely return to a

default operation schedule.

Because 24-hour ahead predictions assume no knowledge of exogenous and build-
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ing data for the 24 hours of interest, in order to predict the zonal temperatures in

the first hour, the first n number of terms from the previous day are assumed to be

known. Subsequently, n -1 known terms and the first hour of predicted temperatures

are used to predict the thermal response in the second hour. Each successive hour

follows the same procedure, where predictions after the nth hour use only predicted

thermal response data to model future thermal responses.

We can validate the inverse CRTF model with the EnergyPlus simulation results

where there is no active cooling or heating. We calculate errors for analysis in two

methods by looking at absolute prediction errors (PE) and relative mean square error

(RMSE) as defined below. For each 24-hour set of predictions, we have 24 PE values

per zone. Then, the RMSE takes the mean of the normalized absolute PE values

over the width of the range of zonal temperatures experienced in that zone during

the day. Thus, each zone's RMSE rolls up the error distribution over the course

of the day into one average measure of error. The RMSE is affected by the zonal

temperature range experienced; for instance, in the unconditioned attic zone that

has strong direct incident solar heat gain and more exposed surfaces, the range of

temperatures experienced is greater than that of the core zone which is surrounded

on all four sides by perimeter zones.

Prediction Error (PE) =|TEnergyPlus - TnverseCRTFI (3.5)

Relative Error (RE) = TEnergyPlus - TinverseCRTF
max(TEnergyPlus) - min(TEnergyPlus)

RMSE = mean( TEnergyPlus - TinverseCRT
F (3.7)

max(T EnergyPius) ~ min(TEnergyPius )

The inverse CRTF model performs fairly well at predicting temperature trajecto-

ries and capturing the effects of different zones on each other. In this example July

day, the inverse CRTF model fit to the corresponding calendar months data predicts

temperature trajectories in the six different zones successfully. We may expect to see
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an upward trend in error throughout the day since predicted thermal responses are

used to predict future responses, leading to a potential magnification in PE values.

However, this trend is not evident in Figure 3-5. When validated against different

days test data, the inverse CRTF models performance varies. For some days, PE

and RMSE are both very low. Generally, the model performs well in predicting ther-

mal response. However, there are specific days where conditions deviate from those

that were trained for the inverse model and predictions depart from simulated zonal

temperatures.

When observing absolute prediction errors, the inverse CRTF multi-zonal model

performs well at predicting thermal response and temperature trajectories. Prediction

errors for the month of July are shown in Table 3.3 and the distribution of PE for test

days from the entire month are shown in Figure 3-6a. Results for the months of June

and August are in Appendices A and B. The PE distribution of the attic is much larger

than those for non-attic zones. To discuss the largest PE observed within a month,

we look at the distribution of the 99th percentile of PE for each day in Figure 3-6c.

This distribution describes the largest prediction errors observed for each test day; it

remains far below 1 degrees C for non-attic zones and ranges between 1-3 degrees C

for the attic. For the core and perimeter zones, the 9 9 th percentile of prediction error

remains at or below 0.15 degrees Celsius for the training set. The 9 9 th percentile of

PE is 2.35 degrees Celsius for the attic. Within the reference building, the attic is

unconditioned, experiences a far greater range of temperatures through the day and

can reach much higher temperatures. The median of PE remains below 0.06 degrees

C for the core and perimeter zones and 0.86 degrees C for the attic. Consistently, the

model performs well, especially on weekdays. Different internal loads schedules are

experienced on weekends; the cooling pulses for the training set are also not applied

to weekends. We would expect weaker model accuracy on weekend days or holidays.

Model-predicted RMSE are shown in Table 3.4 and boxplots of RMSE distribu-

tions from each day in the test month are displayed in Figure 3-6b. Median RMSEs

are 1.41% for the core zone, 1.33% for the first perimeter zone and under 1% for the

rest of the perimeter zones. When using RMSE to assess model error, much higher
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Quantile IAttic Core PerimI Perim2 I{Perim3 IjPerim4

1 0.0028 0.0016 0.0021 0.0032 0.0016 0.0007
25 0.23 0.024 0.037 0.015 0.017 0.018
50 0.86 0.054 0.061 0.022 0.027 0.046
75 1.72 0.079 0.078 0.050 0.033 0.061
99 2.35 0.10 0.11 0.07 0.07 0.15

Table 3.3: PE of July Test Set (degrees C)

Quantile IAttic Core Perimi _]Perim2 Perim3 Perim4

1 0 0 0.1 0.3 0.1 0
25 0.6 2.2 1.1 1.3 0.9 1.2
50 3.0 5.5 4.7 6.9 5.4 4.6
75 7.4 7.2 6.4 8.1 6.9 5.4
99 8.8 8.3 8.0 9.3 8.5 6.2

Table 3.4: Quantiles of July Test Set's RMSE (%)

error terms can be observed due to the tight temperature ranges experienced by dif-

ferent zones. When small PEs are divided by small max-min bands, the relative errors

are large. Thus, RMSE distributions are more similar between the different zones de-

spite the fact that absolute PEs of the attic are greater than those of non-attic zones.

The median attic RMSE is still greater than those of the non-attic zones, although

the upper tails of RMSE distributions are similar. Additionally, the RMSEs roll all 24

PE errors within one day into one error term and give all error terms equal weights.

This allows higher errors to affect the day's RMSE. In practice, should extremely

irregular temperature trajectories or control strategies be recommended using the

thermal model, it is likely that the building operator would dismiss them.

The training set-fitted inverse model performs well when validated against test

data for the months of June, July and August. Median RMSEs are at or under

1% for non-attic zones and median PE fall under 0.06 degrees C for non-attic zones

and 1 degrees C for the attic. PE and RMSEs are both acceptable; additionally, all

physically measured quantities, such as temperature, are subject to some uncertainty

in measurements. The accuracy and precision of HVAC sensors such as thermistors

and RTDs depend on sensor type and manufacturer. Thermistors are precise usually
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to +/ - 0.1 or 0.2 degrees C and RTDs to +/ - 0.15 to 0.3 degrees C [8]. Thus,

our inverse model PE fall well within those ranges and will likely not greatly affect

the operation of building HVAC systems. Inverse model validation error ranges are

acceptable for implementable building control. In practice, a building is predicting

thermal responses for internal gains schedules similar to those previously experienced

by the building. This is especially true for commercial office buildings without highly

variable industrial loads or equipment, where internal gains result primarily from

occupants, lighting, and plug loads.

Quantile Attic Core Perimi Perim2 Perim3 Perim4

50th percentile 2.0 0.07 0.10 0.10 0.10 0.12

Table 3.5: 9 9 th Percentile of Prediction Error (degrees C)

3.4 Conclusion

Single zone inverse CRTF building models have been successfully used to capture

the thermal response of a building to changes in exogenous conditions and overall

heating and cooling rates. In this work, an EnergyPlus-driven multi-zonal inverse

CRTF model from [32] formulated specifically for a small office reference building

with Boston, MA TMY3 weather data is fit to training data, validated and used

to predict temperature respomse. Prediction error and relative mean square error

are used to assess model performance. The inverse CRTF model performs well in

predicting building thermal response with median prediction errors for the month of

July of 0.9 degrees C in the attic zone and under 0.06 degrees C in non-attic zones; in

comparison, commercial HVAC sensors are precise to within 0.1-0.3 degrees Celsius.

A model order of 4 is selected to balance reduction in prediction error with increase in

computational load and over-fitting to training data. The multi-zonal inverse CRTF

will be used to describe thermal response in the subsequent optimization in Chapter

5.
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Chapter 4

Model Predictive Control Building

Optimization

4.1 Regulation and Spinning Reserves in U.S. ISO

Markets

The ability of demand-side loads such as those in a commercial building to partic-

ipate in ancillary services markets is different in each U.S. ISO. In addition, the

actual market products themselves may differ in name, function and participation

requirements in different markets. Generally, in accordance with NERC definitions,

regulation products are on the order of 4 seconds-5 minutes and spinning and non-

spinning reserves on the order of 10 to 105 minutes [62, 61]. A thorough review of

demand response's potential to enter U.S. ancillary services markets was conducted

by [55], but since 2012 ISOs have continued to publish papers and plans regarding

demand response's ability to participate in future ancillary service markets. Below,

we summarize current and future regulation and reserve products in each ISO and

corresponding participation requirements.
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4.1.1 ERCOT

ERCOT is the only ISO completely within one state and represents 85% of Texas' load

[26]. Notably, ERCOT has high levels of installed wind capacity and is a summer

peaking system due to the frequent use of air conditioning systems. Load can be

highly variable throughout the year. ERCOT has noted its concern that increasing

penetration of renewables leads to more non-synchronous resources that reduce overall

system inertia. In order to participate in ERCOT ancillary services markets, loads

need to be registered as a Resource Entity and represented by a Qualified Scheduling

Entity. The minimum amount per resource for each product offered is 0.1 MW.

Resources can offer more than one AS. Offers must be submitted by a Qualified

Scheduling Entity.

ERCOT's current ancillary services are regulation up, regulation down, responsive

reserve and non-spinning reserve [26]. Regulation Service consists of resources that

can be deployed by ERCOT in response to changes in ERCOT system frequency to

maintain the target frequency within predetermined limits according to the Operating

Guides [27] [26]. Regulation up and down are two different products and ERCOT does

not require that participants provide symmetric up and down regulation. In order

to participate in regulation up and/or down service provision, load resources must

be able to respond to ERCOT signals every 4 seconds, satisfy performance criteria

and have real-time telemetry installed [27]. If loads are qualified for regulation, they

are also qualified for responsive reserves and non-spinning reserves. In the responsive

reserve service, ERCOT requires that the load respond to frequency changes and

provide committed capacity within 10 minutes after an official notice. Unlike other

markets, providing operating reserves in ERCOT requires that resources need to be

autonomously frequency responsive and able to provide primary frequency response

as well [23].

ERCOT released a concept paper in 2014 addressing adaptation of the ancillary

services market to a system with higher penetration of renewable energy and new pay-

for-performance mechanisms [25]. The study proposed changes in products that would
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open competition opportunities to both generation and new resources for ancillary

services provision. The three existing products would be changed to:

1. Synchronous Inertial Response Service (SIR),

2. Fast Frequency Response Service (FFR),

3. Primary Frequency Response Service (PFR),

4. Up and Down Regulating Reserve Service (RR), and

5. Contingency Reserve Service (CR).

6. Supplemental Reserve Service (SR) (during transition period)

[25]

Generally, the role of regulation up and down would be acquired with up and down

regulating reserve service (RR). The new proposed framework of ancillary services

also allows for resource specific deployment signals from ERCOT to considered and

pay-for-performance metrics will be implemented.

4.1.2 ISO-NE

ISO-NE procures resources to meet reserve requirements through a competitive for-

ward reserve market and regulation and reserves markets. The regulation market is

used to balance supply levels with second to second demand variations for frequency

maintenance. In day-ahead (DA) markets, real time operating reserves are split into

three products: 10 minute spinning reserves, 10 minute non-spinning reserves and 30

minute operating reserves.

Currently, demand resources are not fully integrated into ISO-NE markets and

cannot provide regulation. ISO-NE plans to allow demand response resources to be

fully integrated into the reserves market beginning June 1, 2017 [40] [42]. In order

to participate, demand response resources must provide at least 0.1 MW of demand

reduction and will comply with testing and telemetry requirements. When integrated,
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demand response resources (DRRs) will be able to participate in regulation, spinning

and operating reserves and forward reserves markets [40].

Though demand response cannot currently provide all ancillary services, ISO-NE

has modified its regulation market beginning March 31, 2015 such that Alternative

Technology Regulation Resource (ATRR) with minimum of 1 MW of capacity can

qualify for the regulation market. The modified regulation market has two different

energy-neutral regulation signals. Aggregation is allowed for resources to reach the

minimum resource size. The resource receives a single AGC SetPoint from ISO-NE

and is required to respond accurately. Resources are required to have metering and

telemetry such that real time performance can be measured and recorded. Bids must

be submitted symmetrically such that up and down regulation are both possible.

ISO-NE has already initiated use of pay-for-performance mechanisms where both a

capacity and a service payment are used.

4.1.3 NYISO

Demand resources have been able to participate in the Demand Side Ancillary Ser-

vices Program (DSASP) and provide operating reserves and regulation since 2013 [64].

Resources enroll as DSASP resources, but participate in the DSASP through regis-

tered DSASP Providers. DSASP Providers are responsible for maintaining metering

infrastructure and communication with NYISO. For instance, Demansys Energy has

been aggregating demand-side resources for participation in DSASP in regulation and

reserves. In late 2014, Demansys reported bidding over 75 MW of aggregated load

into DSASP [45].

Demand resources can bid into the DA and real-time (RT) markets for these

two products. Demand resources must bid in symmetrically for regulation and are

eligible for participation in spinning reserves and 30 minute reserves markets. The

NYISO Ancillary Services manual describes regulation as the continuous balancing of

resources with load to maintain frequency at 60Hz to follow rapid changes with load

and maintain frequency at 60 Hz [65]. Full telemetry is required for DSASP resources

and resources must have a minimum of 1 MW in order to participate and a maximum
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of 200 MW in order to participate [65].

4.1.4 CAISO

CAISO's ancillary services markets contain regulation up, regulation down and op-

erating reserves (spinning and non-spinning reserves) products. Like ERCOT, reg-

ulation products are separate and symmetric regulation is not required. In 2010,

CAISO modified the ancillary services market requirements by reducing minimum

rated capacity from 1 MW to 0.5 MW and reducing the minimum continuous energy

requirements to 60 minutes for DA regulation, 30 minutes for RT regulation and 30

minutes for operating reserves [17]. The majority of ancillary services in CAISO are

provided by hydropower and gas resources [15]. Regulation, continuous balnacing

resources to meet deviations between actual and scheduled demand, resources must

meet a minimum performance threshold of 25%. In June 2013, CAISO added a pay-

for-performance component to the compensation of regulation markets by including

a performance payment in addition to the capacity payment [15].

Resources can participate in ancillary services markets as Participating Loads

(PL). However, PL can only provide non-spinning reserves markets in the ancillary

services markets and DRP are not yet eligible to provide ancillary service products

[16]. PL provide curtailable demand that must be curtailable from CAISO direction

in real-time; the majority of PL are pumping loads. DRPs such as the Proxy Demand

Resource (PDR) and Reliability Demand Response Resource (RDRR) allow demand

to participate in other DA markets. However, CAISO allows on-generation resources

(NGR), introduced in 2012, that operate as generation or load and can dispatch

any level within their capacity range and include energy storage devices such as

flywheels and batteries to bid into ancillary services markets [17][14]. The NGR

inclusion plan has two phases which include energy storage devices in phase 1 and

will allow dispatchable demand response to bid into ancillary services markets in

phase 2 [14]. All DR providers or resources and loads must be represented by a

Scheduling Coordinator (SC) to participate and submit bids in CAISO DA markets;

the SC may be the same as the DRP[17].
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4.1.5 MISO

MISO has an ancillary services market that includes regulating reserves and con-

tingency reserves. Payments for regulation products are divided into a capacity

component and a regulation mileage component to account for pay-for-performance

initiatives. Regulating reserves must be provided by symmetric up and down bids

[59].

MISO divides demand-related resources into two categories: one set of capacity

resources and a set of load-modifying resources. Capacity resources include Demand

Response Resources Type I and Type II [57] [58]. DRR-I are direct load control

resources and DRR-II are changes in consumption in a controlled manner. DRR-I

are capable of supplying specific quantities of energy, reserves or capacity through

a controllable load or behind-the-meter generation. DRR-II must be able to supply

a range of energy instead of a specific quantity. Capacity resources are considered

able to provide their capacity towards longer-term resource adequacy goals. Load-

modifying resources might be behind-the-meter generation or demand resources that

are interruptible. DRR-II resources are treated like generation resources and can be

qualified to provide regulating, spinning and supplemental reserves in the ancillary

services market. However, DRR-II resources also have a must-offer requirement which

means they must make their capacity available in the DA or RT markets [57]. DRR-II

resources must be at least 1 MW [57] [58].

4.1.6 PJM

As [55] noted, PJM has one of the most favorable ancillary services markets for de-

mand response participation. PJM's ancillary services markets include regulation

through two different signals, synchronized and non-synchronized reserves. Regula-

tion providers need to be able to follow the ISO's regulation signal in real time and

must score a 75% or better on three consecutive tests to participate. Synchronized

reserves providers must respond within 10 minutes and scheduling reserves providers

provide supplemental reserves within 30 minutes.Providers must also meet a mini-
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mum resource size of 0.1 MW, the lowest minimum required size of the U.S. ISOs.

Regulation can follow the RegA or RegD signal. Generally, PJM's non-synchronized

reserves market is composed of pumped hydro, combined cycle and diesel plants [70].

Demand-side resources are able to participate in providing DA scheduling reserves,

synchronized reserves and regulation. PJM has at least two demand-side resources

participating in the regulation market since December of 2012, active participation in

synchronized reserve provision from more than 120 resources and minimal demand-

side participation in DA scheduling reserves [18]. In 2015, PJM reported an average

363 MW per month of synchronized reserves from 140 unique participating locations

and 12 average MW per month of regulation were from demand-side resources [44].

4.2 Co-optimization of Energy and Ancillary Ser-

vices

4.2.1 Objective function and constraints

An unpublished MPC optimization model from [9] is used to consider optimal cooling

strategies from a small office building co-optimizing energy consumption and ancillary

services provision. The general optimization can be specified in two components: the

thermal response model (function (f) in Equation 4.1 below) and the HVAC system

(function (g) in Equation 4.1 below). The data-driven thermal response model is fit

to training data from a specific building-type with an assumed load schedule and a

geographic location. In this work, the building-type used is the DOE's small office

reference building and a multi-zonal inverse CRTF model described in Chapter 3 is

used as the thermal response model. A VAV system with a centralized chiller pro-

vides cooling to all conditioned zones. Regulation service is provided by changes in

chiller power consumption and spinning reserves are provided by changes in total sys-

tem cooling consumption. Inputs of appropriate forecasted convective and radiative

loads from people, lighting and equipment for the building type and location-specific

weather data of outdoor dry-bulb temperature, solar radiation and ground temper-
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ature are taken from the DOE's small office reference building model. To validate

optimization thermal response results, optimal cooling decisions. were simulated in

the same small office building in EnergyPlus; the difference in resulting temperature

trajectories from optimal cooling decisions was within an acceptable range. Price in-

puts of wholesale LMPs, regulation and ten-minute spinning reserves prices are taken

from ISO-NE's published DA market data. The optimization assumes the building

is a price-taker and cannot affect the regulation, spinning reserves or wholesale elec-

tricity prices. This assumption is reasonable given the optimization results and will

be discussed in the results section.

Given the inputs of prices, building data, weather conditions, multi-zonal inverse

CRTF building thermal response model and VAV system, the optimization solves

for a 24-hour set of optimal cooling strategies. For instance, a building operator

may use a similar set-up to determine an initial set of building cooling strategies

for the following day; once this day commences, the optimization could be re-run

with updated information at each hour to determine that hour's cooling strategies.

Different objective functions such as total daily energy cost or net daily operating

energy cost can be selected. In this work, the objective function depicted in Equation

4.1 describes the total net daily operating cost and does not include any investment

costs. The objective function contains the total daily electricity cost less revenues from

provision of regulation and spinning reserves. The objective function also includes

penalty terms for violation of thermal comfort constraints in all zones. Constraints fall

into the categories of the building thermal response model, HVAC system constraints

and regulation and reserve limits.
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The objective function net operating cost with the inclusion of a penalty term

for thermal comfort limit violations in the primary minimization problem and the

secondary problem solving for maximum spinning reserves capacity as described be-

low from time step i = 1 to i = n. Bz and S represent the sets of all variables

other than cooling rate that contribute to the thermal response model and system
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efficiency respectively. The variables T2 , qZ are zonal temperature and zonal cooling

power for zone z in the primary optimization problem. Similarly, T'Z and q'z are the

same variables for zone z in the secondary problem solving for maximum spinning

reserve capacity as described below. Variables I' and T"' describe lower and upper

thermal comfort temperature limits in zone z at time i respectively. The variables xi

describe the energy quantity of interest at time step i where x-E, x' and xfR, describe

hourly quantities of energy, regulation and reserves provided respectively.

The optimization determines two state variables of cooling provided and corre-

sponding zone temperature. There are two sets of state variables: one set (TZ, qZ)

for the primary problem of minimizing total net operating cost and one set (T'z, qIZ)

for the secondary problem of determining hourly spinning reserve capacities. Using

total cooling power as a decision variable allows the optimization to be set up in a

HVAC-system-agnostic framework; the relationship between cooling power for each

ancillary service and total cooling power is determined by the selected HVAC system

and described in function g in Equation 4.1. Different types of systems can be im-

plemented in the optimization framework and corresponding system limits will affect

regulation and reserve capacity.

The optimization uses MATLAB's f mincon function utilizing an interior point al-

gorithm. Minimization of the objective function is subject to system constraints. The

use of a multi-zonal inverse CRTF model is implemented to constrain zone tempera-

tures trajectories in a physically feasible manner in function (f). Minimum outdoor

air constraints are enforced in order to provide ventilation to satisfy air quality stan-

dards.

Cooling limits are due to HVAC system limits. The implemented optimization

assumes a VAV system in function (g) where constant temperature cooling air is

delivered at different airflow rates to provide cooling and control indoor air quality.

VAV systems have been popular, especially in newer commercial buildings. The

VAV system uses an EnergyPlus reference ElectricEIRChiller York YCAL0033EE

100.6kW/3.1COP and VSD Fan regressed from [731. Appropriate fan and chiller

sizes are determined through an iterative trial and error process. All conditioned
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non-attic zones in the small reference commercial building are served by the same

chiller and supply fan. In reality, a small commercial building of 5500 sq. ft will

likely not have a centralized chiller or a VAV system. However, we assume such a

system with the small office building model used in this work.

Regulation provision is treated as an approximately energy-neutral service that

does not appreciably affect zonal air temperature, fan airflow or chilled water tem-

perature [9, 71]. This problem assumes symmetric regulation is needed as is required

in MISO, PJM, NYISO and ISO-NE. In the HVAC set-up, the chiller provides regu-

lation capacity. Regulation capacity is limited by the maximum and minimum chiller

electricity consumption given cooling power limits. A secondary optimization prob-

lem is included that determines temperature trajectories assuming that the system

provides q' spinning reserves in addition to system cooling needs. The secondary

optimization results in the optimal hourly set of spinning reserve capacity that the

system can provide. All secondary problem variables are denoted by a tick after the

same variable notations as the primary problem.

4.2.2 Prices and Conditions

The optimization is run with weather and price inputs associated with Boston, Mas-

sachusetts. ISO-NE is divided into eight load zones for market settlements; Boston sits

within the Northeastern Massachusetts (NEMA) zone. Zone definitions are frequently

important when assessing future capacity requirements and the role of transmission

constraints and upgrades in allowing service. Wholesale electricity and ancillary ser-

vices prices were taken from published ISO-NE DA wholesale market prices. It is

assumed that the building pays the DA NEMA zonal LMP for electricity use. In

practice, many buildings pay a fixed rate to the utility for electricity consumption,

but the use of location-based electricity pricing is more reflective of actual costs of

serving load at that point.

ISO-NE also uses competitive market-based mechanisms to procure regulation and

operating reserves in the ancillary services markets and publishes DA clearing prices

for both products. ISO-NE zonal regulation and spinning prices are used for NEMA
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to calculate revenue from provision of those ancillary services. ISO-NE publishes two

regulation clearing prices: one for regulation capacity ($/MW committed) and one

for regulation mileage ($/change in MW). The total regulation revenue is the sum

of the regulation capacity and regulation mileage portions. However, ISO-NE does

not publish daily mileage clearing values. It is stated that the long-term mileage

component is calculated and intended to be similar in magnitude to the capacity

component; the average mileage to capacity ratio in 2014 was 88% [22], so we use

a multiplier of 1.88 on the regulation capacity clearing prices to approximate total

regulation price.

Since we are focused on investigating the effects of cooling on provision of ancillary

services, we look at optimal cooling strategies for three summer months during which

cooling load is the highest: June, July and August. Model coefficients are trained on

the calendar month training set as described in Chapter 3. We use one 24-hour set

of LMP and ancillary services prices for each month averaged over all weekdays to

represent an 'average' day. Representative average prices for each month are shown

in Figure 4-1. Note that because LMPs are published hourly, the units displayed of

$/MW for regulation and spinning reserves capacity are consistent with $/MW for

the hourly LMP. Median weather conditions are used for as an input. Additionally,

specific days with higher ancillary services prices relative to LMPs are selected in order

to highlight the effects of higher ancillary service prices on optimal cooling strategies,

service provision and building revenue. The following price cases were modeled:

1. June 2015 average price case

2. July 2015 average price case

3. August 2014 average price case

4. June 19th, 2015 example high ancillary services price case

5. July 20th, 2015 example high ancillary services price case

6. August 5th, 2014 example high ancillary services price case
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Each month's scenarios use the same weather data, which includes typical solar

radiation and outdoor dry-bulb temperature profiles in order to illustrate the effects

of prices on optimal cooling and ancillary services' provision. In all three months, a

gradual increase in LMPs is observed throughout the day. LMPs are lowest in the

early morning and peak in the late afternoon; often, the hour ending 18 is considered

to be the peak hour. Generally, regulation prices increase throughout the day as well

for all three months; an early morning peak is observed in the average June price case.

Regulation prices are higher than LMPs and generally range between $20-$80/MW for

June and July and are lower than LMPs and range between $10-$30/MW for August.

Thus, we would expect that the building will wish to provide regulation service when

able for June and July representative days. Reserve prices are consistently low in the

average month cases and present minor opportunities relative to regulation prices. A

slight peak in reserve prices is observed in the late afternoon at the same time that

daily LMPs are reaching an afternoon peak for all three months. In June and August,

an increase in reserve prices is also observed at night after hour 21. On July 20th,

LMPs, regulation and reserve prices are higher than the average price case. A large

peak in regulation prices to nearly $500/MW is observed in the late afternoon along

with a peak in reserve prices. Regulation prices remain high throughout the night

while reserve prices drop back down to low values. On June 19th, regulation and

reserve prices spike in the afternoon on-peak hours. On August 1st, a hour 14 peak

in regulation and reserve prices is observed where ancillary services prices exceed the

LMP.

4.3 Results

Optimal cooling decisions were investigated for a 24-hour decision period where the

objective function included energy costs, regulation revenue and spinning reserves

revenue calculated using hourly-varying electricity LMPs, regulation prices and re-

serve prices. Optimal energy cost, regulation capacity provided, regulation revenue,

spinning reserves provided and spinning reserves revenue for a 24-hour period un-

72



der six different sets of 24-hour price conditions for LMPs and ancillary services are

shown in 4.1 for one representative 'average' day and selected days where high ancil-

lary services prices occur. A scaled up 20-weekday version of those values are shown

in 5.1. The maximum hourly HVAC power used is the highest in the hottest month

of July. Maximum hourly regulation capacity ranges from 2.4 to 3.2 kW and total

daily regulation provided for one building ranges from 27 to 50 kW. Maximum hourly

SR provided ranges from 1 to 6.8kW, where the highest hourly SR provision occured

on June 19th where a few hours of high SR prices were observed. Less total SR was

provided overall, with daily SR provided ranging from 7.6 to 45 kW. Because each

individual building considered is able to provide at maximum 3.2 kW of regulation ca-

pacity, these small office buildings would not be eligible to individually participate in

any of the ancillary services markets. PJM has the lowest minimum resource require-

ment of 0.1 MW which still far exceeds the maximum hourly regulation capability

of a small office building as reported here. It will be necessary for small commercial

buildings to use an aggregator whether through a third party or the utility in order

to participate in ancillary services markets.

Total HVAC cooling power, and the optimal capacity used for regulation and

reserve provision are shown for the three pricing cases in Figure 4-2. Provision of both

ancillary services is fundamentally constrained by maximum HVAC cooling power.

If no cooling is occurring, then ancillary services' provision cannot occur. Total

HVAC power consumption is lower in June than in July and August. In all average

monthly cases, pre-cooling of the building occurs before occupancy starts at 9AM.

Cooling increases throughout the day, peaking in the mid-afternoon to avoid the

highest electricity costs in the late afternoon and dropping at night when there are

no more internal loads. In the average July, June 19th, June 20th and August 1st

cases, the midday peak is likely also in anticipation of anticipating high regulation

prices in the late afternoon. Ancillary services provision hourly patterns are different

in the average June, July and August cases. In June, regulation and spinning reserves

are consistently provided at 1-2 kW levels throughout the day. in July, regulation

capacity is provided in the early morning and decreases until the late afternoon when
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-June June 19 July July 20 Aug. Aug. 1
Average Average Average

Max Hourly

HVAC Power 3.57 8.17 7.74 9.08 5.63 4.84
(kW)
Max Hourly

Reg capacity 2.36 2.44 3.21 3.22 3.09 3.10
(kW)
Max Hourly

SR capacity 3.42 6.77 3.82 4.36 1.19 1.69
(kW)
Total Daily
Reg 1 building 39.65 26.67 50.90 49.02 38.90 43.20
(kW)
Total daily
SR 1 building 40.60 26.90 29.70 45.55 7.57 13.30
(kW)
Optimal En-
ergy Cost 1.42 1.68 3.03 5.85 2.23 2.13

($) _____

Optimal Regu-
lation Revenue 1.78 2.15 2.60 7.54 0.73 1.00

($) _____

Optimal Spin-
ning Reserve 0.06 1.27 0.02 0.49 0.01 0.04
Revenue ($)
Reduction in

Energy cost 1.85 3.42 2.63 8.03 0.74 1.04

($) _____

Optimal Oper- -0.43 -1.74 0.40 ' -2.18 '1.50 i1.09
ating Cost ($) J JI.I_______ _Z. 1 1_50_1.09

Table 4.1: New England
Potential

Daily Small Office Buildings' Ancillary Services Resource

regulation prices are higher and reserves are only provided at midday when pre-

cooling leaves flexibility for reserves to be offered despite the low reserves prices and

when there is flexibility for reserves in the late evening due to cooling for regulation

provision. In August, most regulation and spinning reserves provision only occurs

until hour 19 and is in general lower compared to the other two summer months.

Total HVAC cooling power, and the optimal capacity used for regulation and
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reserve provision for three example days from June, July and August where high

ancillary services prices are experienced during the day are also shown in Figure 4-2.

Relative to the average July price case, overall HVAC power is higher in the July

20th case. Maximum HVAC power consumption exceeds 9 kW in early afternoon;

in the average July prices case, HVAC power consumption reaches 7 kW. Levels of

regulation and spinning reserves provided are generally higher in the July 20th case,

with a noticeable peak in reserves at midday in hour 13. Despite the lack of occupancy

after hour 19, it is optimal to consume power for cooling in order to provide both

regulation and spinning reserves. In contrast, there is no ancillary services provision

or HVAC cooling for that purpose observed on June 19th or August 1st price cases.

However, in the June 19th price case, cooling and spinning reserves provision increase

in hour 18 in response to a spike in spinning reserves price.

A few specific system responses of interest are described. In Figure 4-2b, a sharp

increase in total cooling capacity and spinning receives occurs in response to a sharp

peak in spinning reserves' price in hour 19 where building is cooled down to the lower

thermal comfort limit as shown in Figure 4-3b . Cooling in hour 9 of July 20th to allow

the building to move away from the upper thermal comfort limit so that regulation

can be provided in hour 10 when regulation prices spike; while cooling is occurring

in hour 9, reserves can be provided due to the movement of zone temperatures away

from the upper thermal comfort limit. Simultaneous commitment of regulation and

spinning reserves are possible such as after hour 18 of both July cases. Regulation

prices greatly exceed LMPs starting at hour 15 and after occupancy ends, the building

still provides cooling in order to provide regulation and spinning reserves after hour

18. As expected, when ancillary services prices are lower than LMPs as in the average

August case, less regulation and reserves provision is observed in Figures 4-2e and

4-2f. A spike in reserves provision in Aug 1st price case is observed in response to a

spike in spinning reserves price at hour 13.

Zonal temperature trajectories are depicted in Figure 4-3. In the average July

and August price cases, after pre-cooling before occupancy, zonal temperatures hover

at the upper thermal comfort limit in order to minimize the objective function for
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the majority of the occupied hours. Temperature trajectories climb after unoccupied

hours terminate in the August price case. In June, because average evening ancillary

services prices are higher compared to other months, cooling still occurs even after

occupancy ends in the afternoon and temperature trajectories reflect those changes.

In contrast, in the higher ancillary service prices cases (with the exception of August

1st), more cooling occurs throughout occupied hours so that ancillary services can be

provided. Temperatures drop to the lower thermal comfort limits in the June 19th

case so that ancillary service provision can occur at hour 18 and correspondingly,

lower temperatures are observed.

4.4 Conclusion

Though not currently allowed to participate in all U.S. ancillary services markets,

all U.S. ISOs not allowing demand response participation have published plans on

incorporation of demand-side resources into those markets in the near future and the

use of pay-for-performance metrics. The market participation barriers to building

entry are minimum resource sizes, telemetry and metering requirements and minimum

performance requirements. It is likely that small and medium commercial buildings

will need to participate through an aggregator, whether that is through the utility or

a third-party since they will not meet the minimum resource requirement.

An co-optimization of energy consumption and ancillary services provision for a

small office building is used where a building minimizes net operating cost subject to

the building thermal response model presented in Chapter 3, system cooling limits,

regulation provision and spinning reserves provision [9] . A VAV system and central-

ized chiller providing symmetric regulation are used. ISO-NE average monthly LMPs

and ancillary service prices for the NEMA zone are used for June 2015, July 2015

and August 2014 and specific days are also used to investigate change in building

behavior with peaks in ancillary service prices. 4.1 shows that the building chooses

to provide ancillary services in each case, reduces overall operating cost and generates

a positive net operating cost in the June average, June 19th and July 20th cases. The
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average June, July and August cases provided 40 kW, 51 kW and 39 kW of total daily

regulation respectively and 41 kW, 30 kW and 7.6 kW of total daily spinning reserves

respectively. When spikes in regulation or spinning reserves prices are observed, the

building will consume electricity to cool during unoccupied hours for the purpose of

providing ancillary services.
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Chapter 5

Scaled Small Office Building

Resource Potential in New England

5.1 Methodology

Previously, Chapter 4 described the optimal cooling strategies and resulting ancillary

services provided by an individual small commercial building assuming average envi-

ronmental conditions and different sets of wholesale electricity and ancillary services

prices. The goal of this section is to estimate the scale of ancillary services provision

and total energy costs' savings by a larger set of similarly sized commercial build-

ings within a geographic region using the Department of Energy's 2012 Commercial

Buildings Energy Consumption Survey (CBECS). The methodology uses a straight-

forward scaling approach from CBECS weighting on similarly sized commercial office

buildings.

In the previous chapter, individual buildings were able to provide daily totals of

20-50 kW of regulation, 7-45 kW of spinning reserves through average and example

June, July and August prices and average environmental conditions. The individual

buildings considered were small, commercial office reference buildings typically sized

at 5,500 square feet.

In CBECS 2012, we scale individual building results up by regional, size and

use data described in Table 5.1. CBECS is a national sample survey that seeks to
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describe the U.S. commercial building stock and includes all buildings where the

majority of floorspace is used for commercial purposes [79]. CBECS includes office

buildings in addition to schools, hospitals, stores, warehouses and other types of

commercial property. The 2012 CBECS data was preliminarily released in 2014 and

public-use microdata, which was used for the scaling, was released in June 2015. The

key factors used in realizing the final weight by which to scale up optimal ancillary

services provision on a typical day were the census division, principal building activity

(PBA) and square footage. A map of CBECS census regions is depicted in Figure 5-1.

The CBECS New England census division is well matched to the ISO-NE footprint

including the majority of Connecticut, Maine, Massachusetts, New Hampshire, Rhode

Island and Vermont shown in Figure 5-2. Thus, individual building optimization

performed using ISO-NE prices can be reasonably scaled by the New England census

division region.

The CBECS database was filtered for buildings with a footprint at or below 5,500

square feet to match for building size. Further filtering by PBA ensures that the

assumed office occupancy, lighting and overall internal gains schedule is a reasonable

assumption. At the regional, PBA and square footage filter level, the buildings re-

maining in the CBECS database do not have central air handling units with VAV

systems, like that modeled in the individual building in Chapter 4. Instead, the

buildings have a packaged air conditioning unit, central air handling units with con-

stant air volume systems or an unknown HVAC system. Furthermore, the actual

building stock does not have a centralized chiller; this is not surprising since 5,500 sq.

ft. buildings likely use packaged air conditioning units for cooling. In this case, the

assumption that such buildings have a VAV system and are able to optimally control

the cooling strategy as they would do with a building energy management system and

necessary equipment is made. Because we wish to investigate the resource potential

of the building type and stock, this is a necessary assumption. Note that the result-

ing resource potential estimates for ancillary services provision and operating cost

reduction are then upper-bound estimates of maximum resource potential given the

assumption that all buildings will have HVAC systems capable of ancillary services
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Figure 5-1: CBECS Census Divisions [24]

provision.

Nevertheless, after noting these differences, the resulting total New England small

commercial office-type stock is 28,558 buildings. We reach the total building estimate

by summing the final sampling weight for each sample building where the CBECS final

sampling weight accounts for different probabilities of selection and survey participa-

tion rates and the final weight describes the number of buildings that the observed

building represents in the actual population [78]. Individual daily or weekly/monthly

optimal cooling and ancillary services provision are scaled by 28,558 to estimate the

total provision of services by similar buildings in the New England building stock; to-

tal estimated daily ancillary services provision are in Table 5.1. The value of ancillary

services is context dependent. It is necessary to compare ancillary services provided

by buildings relative to regulation and reserve requirements in the ISO; requirements
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are not constant throughout the day and needs may differ throughout seasons as well.

Regulation requirements in capacity and service MW are calculated based on his-

torical control performance to meet ISO-NE, NERC and NPCC control standards

and posted on the ISO-NE website [43]. The regulation market is then cleared for the

required amounts. In March, 2015, ISO-NE changed the regulation market format to

meet FERC 755 and the requirements changed accordingly. Bidders now bid both a

capacity and service mileage price. Requirements are posted in capacity and service

for each hour and day combination. Capacity represents capacity committed, and ser-

vice describes MWs of regulation movement. For example, resources such as an energy

storage device might bid in 1 MW of capacity but result in a much higher mileage or

service movement of 10 MW to follow regulation signals; the fast-responding device

is then compensated for both the capacity and the mileage movement. In our case,

because hourly time steps are used, it is impossible to account for mileage movements

within each hour. However, service and capacity components were both included in

total regulation price to determine optimal cooling behavior. We provide a capacity
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estimate of building regulation provision without addressing an estimate of mileage.

The ten-minute total spinning reserve requirement (TMSR) differs daily; real-

time 5 minute and finalized hourly reserve requirements are posted by ISO-NE. The

TMSR requirement currently equals 50% of the largest first contingency or largest

possible loss in the system [41]. In terms of general magnitude, ISO-NE reserve

requirements do not vary greatly over the season or through the year since the first

and second contingencies rarely change. However, there is some daily variation in

TMSR requirements so we take the monthly average of TMSR requirements for an

24-hour profile for each month [19].

5.2 Results

Because neither the regionally-scaled estimates of regulation or TMSR provided by

small office buildings exceeds hourly requirements, the total percentage of daily re-

quirements provided by small office buildings can be calculated in Table 5.1. When

scaled up over the same size, principal building activity and regional building stock,

small commercial office buildings in the New England region are estimated to provide

7.4%, 9.5% and 7.3% of regulation required assuming average LMP and AS prices

in the months of June, July and August respectively.The amount of regulation re-

quired that can be provided by the small commercial office buildings does not change

dramatically between the summer months, but is highest in July and comparable in

June and August. The other three price cases for those months estimate provision of

between 5 to 8.1% of required regulation. In none of the individual hours does the

capability of the small office buildings to provide regulation exceed the regulation re-

quired in Figure 5-3 below, and when aggregated over the day and month, the overall

percentage of regulation that can be provided does not exceed 10%. More regulation

is able to be provided in July compared to June and August because more cooling

power is also used on an average July day. When more cooling is throughout the

day, more flexibility to provide regulation is also available. As noted in [71], warmer

climates show greater frequency regulation potential from chiller use due to the more

85



frequent and higher utilization rates of chillers in those climates. Though not insignif-

icant, we note that the ability of buildings to contribute to regulation requirements

by up to 10% likely precludes the small office buildings from being price-makers in the

regulation market. Furthermore, in this optimization, we are also assuming that the

buildings are paying LMP in order to consume extra electricity to be able to provide

it for regulation or spinning reserves; when buildings are providing ancillary services,

the buildings are assumed to be have cleared their ancillary services bids.

June June July Aug.
Ave- n Aer- July AAver- 19 Aver- 20 Aver- Aug. 1

age age age

Total daily regula-
tion all buildings 1132 762 1450 1400 1111 1230
(MW)
Total daily SR all 1160 768 849 1301 216 381
buildings (MW)
% Daily Regula- 7.4 5.0 9.5 9.2 7.3 8.1
tion Required
% Daily SR Re- 8.0 5.3 4.8 7.3 1.1 1.9
quired

Table 5.1: New England region daily ancillary services resource potential from small
office buildings by representative month

Spinning reserve requirements differ between months in ISO-NE as shown in Fig-

ure 5-4. Hourly reserves provided by small office buildings do not exceed requirements

and small office buildings can provide between 1.1 to 8% of spinning reserve daily re-

quirements. Low reserve prices in August contribute to little reserve provision by the

building under those price cases. The largest amount of reserve provision occurs in

the June average price case at 8%. In none of the cases does reserve provision ex-

ceed 8% of daily requirements and overall, buildings are satisfying less of the reserve

requirements than the regulation requirements. This result is consistent with the

appeal of higher regulation prices and less restrictive thermal interactions between

regulation provision and the building.

These estimates for regional small office building ancillary services provision pro-

vide an upper bound to what optimally cooled buildings might do when co-optimizing
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provision of ancillary services with electricity consumption. These estimates make

assumptions about average LMPs and ancillary service prices as well as exposure

to average environmental conditions. When scaling individual building cooling and

service provision, the estimates assume a surveyed stock of similar buildings. Two

assumptions dictate that these estimated ancillary services provision values are upper

bounds: one is the 100% participation rate from the building stock, and the other is

that all buildings within the stock contain necessary HVAC equipment to participate

in service provision. In reality, participation rates are expected to be vastly lower

when first starting and a variety of issues might be observed as further discussed

in Chapter 6 and not all buildings within the stock will be technically capable of

providing ancillary services.

5.3 Conclusion

Assuming 100% participation rates from all small office buildings and assuming a

day of average LMPs and ancillary services prices, the small office building stock

can contribute up to ancillary services requirements New England. Ancillary services

provision of 7.4%, 9.5% and 7.3% for daily regulation requirements and 8%, 4.8%

and 1.1% for daily spinning reserve requirements are satisfied for the months of June,

July and August respectively by the small office building stock. Despite the use of

a range of ancillary service prices through the three summer months, the percentage

of regulation requirements that can be satisfied by small office buildings in the New

England region within each month does not vary greatly. Regulation provision is

highest in July, followed by August and June, due to the increased use of HVAC

systems for cooling during the hotter weather experienced in July. Spinning reserve

is provided most frequently by small office buildings in June and least frequently in

August due to high reserves prices in June and low reserves prices in August.
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Chapter 6

Policy Implications

In this chapter, we discuss the economic implications of optimal cooling strategies

and resulting ancillary services provision and energy costs in small office buildings

and the attractiveness of participating in ancillary services markets for individual

buildings. In Chapter 5, we saw that small office buildings may be able to provide

a useful portion of regulation and spinning reserve needs in June, July and August.

Assuming average LMPs and ancillary services prices and total participation, optimal

cooling strategies result in the entire small office building stock in the New England

region providing 7.4%, 9.5%, and 7.3% of regulation and 8%, 4.8% and 1.1% of

spinning reserve requirements for the months of June, July and August respectively.

Thus, ISO-NE and the electricity grid may view commercial buildings as a useful

resource and method to satisfy ancillary services requirements without construction

of new generation. However, individual buildings owners and operators may not find

the proposition attractive under current ISO policies, ancillary service prices and

electricity costs. In those cases, should the prioritization of demand-side resources be

demanded, it is likely that policy instruments would need to be used to encourage

building participation in ancillary services markets.
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6.1 Individual Building Economic Perspective

Energy cost, revenue from provision of regulation and spinning reserves and net oper-

ating cost for an individual building for different sets of daily prices and environmental

conditions were reported in Table 4.1. Assuming 20 on-peak weekdays in a month,

an individual small office building's energy costs and ancillary services revenues are

scaled up over the New England region in Table 6.1 below. Before discussing the

economic implications of ancillary services provision on a building's energy costs, we

note that the energy costs here account only for electricity consumed at the wholesale

LMP. Unlike the retail rate, the LMP reflects the wholesale market clearing price of

electricity at a location but does not include any additional network or regulated

costs. Accordingly, though the optimal small office building energy costs in this work

and CBECS reported monthly electricity expenditures are considered in parallel, a

direct comparison cannot be made between the two sets of electricity costs.

Electricity costs under optimal operation and consideration of only the wholesale

LMP will be lower than the retail rate that buildings experience in the current ISO-

NE. Under optimized cooling conditions and actions, estimates energy costs for a

scaled 20-weekday month of average June, July and August days energy costs are

$28.40, $60.50 and $44.70 respectively as shown in Table 6.1. The maximum month-

scaled cost under any price case is $117. Note that these values do not include

weekend electricity costs; in commercial buildings, monthly weekend electricity costs

are expected to be minor compared to monthly weekday electricity costs.

In comparison, the 2003 CBECS reports that office buildings in the Northeast

region, totalling 14 billion square feet, spent $16.9 billion for electricity. This yields

an average of $1.22 per square foot which is consistent with both the New England

and Middle Atlantic sub-regions. For an assumed 5500 sq. foot building, electricity

expenditures are expected to be in the range of $6100 per year or on average $510

per month. Since New England experiences experiences annual load peaks in the

summer, the average summer month's electricity costs might be even greater than

this average monthly cost.
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The optimal monthly electricity cost estimates in Table 6.1 fall short of actual

reported monthly electricity expenditures - there exists a difference by more than a

factor of four up to over a factor of ten. This difference is largely due to the difference

between wholesale LMPs and current electricity retail rates. When assuming that the

cost of electricity is the wholesale LMP, electricity costs are 1-3 /kWh. The EIA

reports that the average retail price of electricity in New England in May 2015 was

15.06 /kWh [80]. The retail rates of electricity are five to 15 times the wholesale

cost of electricity; this difference is similar to the magnitude of differences between

optimal monthly electricity costs and CBECS-reported monthly electricity costs. In

addition, CBECS reported electricity expenditures likely do not result from a building

stock that is operating under optimal control.

June June July July Aug.
Average 19 Average 20 Average A

Optimal Energy 28.4 33.5 60.5 117.0 44.7 42.6
Cost ($)
Optimal Regula- 35.7 42.9 52.1 150.8 14.5 20.0
tion Revenue ($)
Optimal Spin-
ning Reserve 1.3 25.4 0.4 9.8 0.2 0.9
Revenue($)
Reduction in En- 36.96 68.38 52.51 160.60 14.73 20.84
ergy Cost ($)
Optimal Operat- -8.6 -34.9 8.0 -43.6 29.9 21.7ing Cost ($)

Table 6.1: New England Estimated Monthly Weekday Energy Costs and Ancillary
Services Revenue

Being able to provide ancillary services allows small office buildings to recoup the

entirety of their energy costs under certain pricing and environmental conditions and

if electricity cost does not include network costs and other regulated charges. Small

buildings would be able to erase their electricity costs entirely under advantageous

pricing conditions. In all cases, individual buildings choose to provide regulation and

reserves; assuming a summer consisting of average June, July and August days, the

building would see ancillary services revenue of $104 for the three summer months.
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Floorspace Electricity Annual costs Monthly costs
- (mil. sq. Costs $/sq. ft for a 5500 sq. for a 5500 sq.

ft) (mil. $) ft. building ft. building

Northeast 13899 16907 1.22 6082 507

New 3430 4157 1.21 6060 505
England
Middle
Atlantic 10469 12750 1.22 6089 507

Table 6.2: CBECS' New England Estimated Electricity Costs

Assuming an extreme case where monthly prices were all like those seen on July 20th,

2015, the building would earn $160 in ancillary services revenue in one month. Of

course, it is unrealistic to expect either exact scenario; rather, we focus on the magni-

tude of the ancillary services revenue for the small office building which is the range

of the low hundreds of dollars for three summer months. The summer describes the

highest ancillary services provision potential from building cooling equipment time

period. As noted, estimated revenue is lowest in August due to low regulation prices,

and then lower in June compared to July despite similar magnitudes of ancillary ser-

vices prices due to July's hotter weather and greater capacity for ancillary services

provision. Though cooling may be occasionally necessary in the building in unsea-

sonably warm months of April, May or September and October, it is reasonable to

assume that the majority of revenue would be from June to August.

In general, the building will provide ancillary services when excess capacity is

available or when the value of ancillary services exceeds the cost of electricity. Average

revenue from ancillary services provision may be low, but there exists the potential

for higher revenue when ancillary services prices peak. However, it is necessary to

note that as electricity costs climb, the attractiveness of providing ancillary services

wanes. Once again, this work assumes that the building pays the wholesale LMP

instead of the retail rate for electricity consumption. In practice, retail rates can

be in the range of five to 15 times the average LMP. Therefore, unlike the results

depicted in Figures 5-3 and 5-4 where buildings provide ancillary services throughout

much of the day, a building paying retail rates for electricity may find that provision
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of ancillary services is not attractive for the majority of the day, but only price spikes

occur.

In order to provide ancillary services such as regulation and spinning reserves,

buildings will necessarily incur costs. These may include installation of a VAV system

and building automation system (BAS). In this optimization, we assume that the

office building has a VAV HVAC system where the chiller or fan can be used to

provide regulation service. Should the building not have a VAV system to begin with,

the full installation of a VAV system is estimated to cost 4.25-5.25 $/square feet for

an estimated upfront cost of $23 - 29, 000 for a 5, 500 square foot building [21]. In

contrast, a 10 ton commercial packaged rooftop heat pump costs costs $5,000-$6,000

and a CAV system is estimated to cost 3.50 $/square feet for an estimated $19,000

upfront cost[3, 21]. Frequently, a BAS is used to implement and control cooling

strategy. At the minimum, a system needs a variable frequency drive for the chiller

and controller software in order to be able to provide regulation through a chiller

as demonstrated in [71]. Just the BAS is estimated to commonly cost between $50-

$300 [1] and [71] cites a similar range of $500 for the chiller controller. Additionally,

installation of power meter and engineering work could cost approximately $2,000

and $2,500 respectively for chiller use in regulation provision [71].

Assuming installation of a BAS, VAV system, power meter and any additional

engineering work, the total upfront installation costs for a small office building to-

tal $28,000 - 34, 000. Assuming that the building already has a VAV system which

accounts for the majority of the previously mentioned cost, the upfront cost for ac-

quiring and installing telemetry and metering equipment and a BAS still totals $4, 800

or greater. Summer ancillary services revenues in the range of the low hundreds of

dollars would suggest a very unrealistic payback period of multiple decades. In New

England, the revenue from ancillary ervices provision is not enough by itself to make

a strong economic case for small office buildings to invest in HVAC system and as-

sociated technology and control systems solely for the purpose of providing ancillary

services.

Though we conclude that there is not an economic argument for small office build-
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ings in New England to invest in metering, a BAS, or a VAV system solely purpose of

providing ancillary services, there are other persuasive reasons to invest in the afore-

mentioned systems. After all, VAV systems are already commonly used in commercial

buildings due to energy cost savings from higher system energy-efficiency. CBECS

2012 reports that 24% of small (5,000 ft2 ), 26% of medium (5,000-54,000 ft2 ) and 63%

of large commercial buildings contain VAV HVAC systems [75]. New buildings would

likely already seriously consider the advantages of a VAV system in HVAC system

selection even if they were not considering ancillary services provision. Metering and

BAS installation costs are necessary to incur in order to participate in other demand

response programs as well. Building operators may be interested in using a BAS to

minimize total electricity costs even if ancillary services are not initially provided.

Furthermore, even when specifically discussing the provision of ancillary services,

there can be great variance in potential revenue depending on the building type,

size and location. Just as the equipment needed and system costs for each building

are somewhat unique; ancillary services potential changes with building size, type

and market location. In [71], a jump from $1,850 to $11,470 in potential frequency

regulation annual revenue using chillers' extra capacity occurs when considering a

large office building in PJM compared to a small office building in PJM assuming

a constant estimated regulation price of $77/MWh. Our projected annual regula-

tion revenue in the low hundreds of dollars for a small commercial is not shocking

in this context. Furthermore, [71] reports estimated potential frequency regulation

annual revenue of $770 and $4,540 for a medium and large ERCOT office building

respectively. Market potential can also vary greatly with geographic location. Future

work should fit a thermal response model and run a similar optimization for different

geographic locations and ISO market prices.

6.2 Encouraging Individual Building Participation

The economic perspective of a small office building considering co-optimizing energy

consumption and ancillary services provision is presented in the section above. When
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prices are favorable, buildings are incentivized to consume additional electricity at

strategic times in order to be able to provide ancillary services at later periods. In

this work, when paying wholesale electricity costs and not including network or other

regulated charges, buildings would be able to reduce their energy costs and even gen-

erate a net positive daily total operating cost in certain summer price scenarios and

environmental conditions. The presence of a positive economic argument is neces-

sary and a minimum qualification for buildings to consider participating in ancillary

services markets.

Other policies and initiatives can increase the appeal of participation in ancillary

services markets. The decrease in cost of enabling technologies facilitates greater

building participation. A variety of financial instruments aimed at reducing the up-

front costs of entering ancillary services markets such as subsidies or credits on en-

abling equipment or upon participation can be used. Utility programs, ISO-programs

and federal or state-level incentives to lower the upfront costs of telemetry and me-

tering installation costs increase program attractiveness. Increased ease of use, cost-

effectiveness and popularity of BAS systems and a trend towards increased control-

lability of HVAC systems enables buildings to operate their systems with more flexi-

bility.

There remains a tension associated with where the burden of service provision

lies. More controllability on the building-end allows customization of building opti-

mal behavior; however, decreased controllability often occurs with increased ease of

use. When the burden of determining when and how much to participate is left on the

end-user, it adds an additional barrier to participation. Greater participation rates

may occur if the program appears as a less user-involved and more automated process;

as long as no thermal comfort constraints are violated, the building operator and ten-

ants will likely have little opposition to participation in providing electricity services.

However, building operators may value the option to revert to a well-understood

method of system operation if uncertain environmental or building system conditions

are encountered. The trade-off between controllability and accessibility is not entirely

clear but may evolve into the the divide between more user-driven demand response
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programs and more automatic demand response programs [47].

6.3 The Principal-Agent Problem

As noted before, the estimates discussed thus far are optimistic given the assumption

of 100% participation rate from buildings within the stock. In reality, lower partici-

pation rates are expected due to a variety of factors. One can note a possible parallel

in the winding road that adoption of energy efficiency measures has taken since the

1970s. Despite the strong economic case for energy efficiency investments, there have

been slower rates of energy efficiency adoption than initially anticipated. Economists

have attributed the energy efficiency gap, or under-utilization of energy efficiency, to

both energy-related externalities and imperfect information [56, 50].

Another large contributing factor responsible for a lower than ideal participation

rate in energy efficiency and also in the potential future participation of buildings

in provision of ancillary services is the principal-agent problem. The principal-agent

problem (also known as the landlord-tenant problem) describes a situation where

the principal (or tenant) pays the agent (or landlord) for a service, such as use of

a property. However, the principal and agent have divergent goals and asymmetric

information, resulting in a suboptimal situation. In the case of optimal HVAC oper-

ation of the building, we can note that if the HVAC operator has incentives in line

with the entity paying energy costs, then there is no principal-agent problem. This

is the case assumed in the optimization. However, if the tenant is not responsible for

the energy costs, the tenant is not encouraged to provide ancillary services when ben-

eficial; rather, the tenant may favor a consistent, reliable and less profitable cooling

schedule such as the use of cooling power during occupied hours without pre-cooling.

From CBECS 2012, 47% of small office buildings are tenant-occupied, 41% are owner

occupied and the remaining 12% are mixed occupancy. Thus, a significant portion

of small commercial buildings may experience the principal-agent problem in which

tenants have little interest in allowing participation in ancillary services markets. One

would argue that in theory, enforcing comfort constraints would alleviate tenants' and
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owners' concerns, but this is not always the case. When rental revenue accounts for

the majority of the building's income stream, owners may not always be so amenable

to risking discomfort or loss of tenancy. This concern increases the importance of a

flexible contract; should owners feel that tenants are uncomfortable with operating

conditions or that specific days' operating conditions are too uncertain, they can opt

out of service provision for a reliable control strategy.

6.4 Ancillary Services Market Barriers to Partici-

pation

As noted in Chapter 5, individual small office buildings are able to provide at max-

imum 3.2 kW of regulation capacity in an hour. These office buildings are far too

small to be eligible for participation in ancillary services markets in all the ISOs

where the lowest minimum resource requirement of 0.1 MW is currently in PJM. It

would be necessary for small commercial buildings to use an aggregator through a

third party or the utility in order to participate in ancillary services markets. Larger

commercial buildings may meet the minimum resource requirements and be able to

bid as an individual participant. Should other ISOs adopt smaller minimum resource

sizes, it may encourage more commercial buildings, small or large, to participate in

markets as individual participants or through aggregators. Additional ISO rules that

impinge building operator flexibility (e.g. MISO's "must-offer" rules for DRR-Type

II resources) are likely to discourage participation from buildings. Building operators

and owners may prioritize consistency and ease of operation over optimal cooling

routines; some buildings, especially smaller commercial buildings, may not have an

operator to adjust and monitor different cooling strategies. There may be emergency

cases where operators or the owner wishes to 'opt-out' of participation in any ancillary

services markets; if operators are locked in, the appeal of participation is likely very

low. Telemetry and revenue metering requirements are present in all ISOs for par-

ticipation in ancillary services markets. As noted, there are upfront costs associated
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with installation of highly accurate meters that are able to communicate quickly with

the ISO. Overall, when considering the magnitudes of costs and revenues associated

with small office buildings, it is necessary to consider the integration of clear avenues

for aggregator-enabled building participation.

6.5 Building Industry

Potential policy options that can be used to encourage participation from the build-

ing industry are the use of customer outreach and engagement programs, educational

programs, development of labeling and certification programs, and standard setting.

The building industry places an emphasis on the ability of individual owners to make

independent decisions. Industry organizations such as the Building Owners and Man-

agers Association (BOMA), a federation of 91 BOMA U.S. associations and other

international affiliates promote the development of international building codes but

place strong emphasis on the use of voluntary codes instead of mandatory standards.

Thus, the integration of ancillary services' market participation into voluntary stan-

dards or certification programs can encourage greater participation from the building

sector. BOMA consistently takes positions supporting voluntary actions; voluntary

benchmarking using consistent energy management software is recommended and vol-

untary, incentive-based programs for carbon reduction are encouraged. This attitude

is consistent with the fact that in the building industry, individual owners and opera-

tors may choose to act independently and without much oversight, leading to a wide

range of potential interest.

However, the ownership of commercial buildings can be be quite concentrated.

In [72], authors note that the top 50 retail property owners own 28% of enclosed

retail spaces and the top 50 retail property managers manage 32% of enclosed retail

spaces. If key players in optimal cooling decisions for a large swathe of commercial

properties can be persuaded to participate in ancillary services markets, an increasing

trend in building participation may be non-linear. Finally, information sharing and

clear promotion of utility or ISO-level ancillary services demand response programs
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through building industry stakeholders such as BOMA, the US Green Building Coun-

cil, ASHRAE, utility companies and local and state-level government contribute to

an encouraging environment in which buildings can participate in providing a range

of electricity services.

6.6 Conclusion

From the perspective of a small office building in New England, potential revenue in

June to August from provision of ancillary services is not sufficiently large to moti-

vate the building to invest in necessary control, metering, VAV systems and other

necessary equipment. Potential ancillary services' revenues by themselves are not a

sufficiently strong driver for small office building participation in ancillary services

markets. However, minimization of energy costs, long-term efficiency investments

and interest in participation in other demand response programs may drive deploy-

ment of the same enabling technology that would allow the building to also provide

ancillary services. Additionally, individual buildings can be encouraged to participate

in provision of electricity services with continuing decrease in costs of enabling tech-

nologies. The principal-agent problem in which non-owner building occupants and

building owners face different incentives to participate must be addressed.

Finally, increasing rates of participation in ancillary services demand response pro-

grams from individual building owners and the building industry could be achieved if

demand response programs address commercial buildings as a specific end-user. An-

cillary services participation programs need to address building-specific concerns such

as program controllability and convenience. An appropriate balance between control-

lability and accessibility in ancillary services' program design will suitably match the

interests of a building owner who wishes to retain control over building operations

but be able to conveniently participate in services provision. With the case of energy

efficiency, analysts have noted that the gap is heterogeneous and targeted policies for

energy efficiency adoption are more effective than general subsidies [5]. Similarly, tar-

geted policies for demand response participants such as different types of commercial
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building owners may be useful in increasing participation rates. Compounded with

the fact that in this work, individual small office buildings cannot reach the mini-

mum resource sizes needed to participate in ISO-NE and other ISO ancillary services

markets, targeted policies aimed at increasing availability of clear aggregator-enabled

building participation avenues are essential.
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Appendix A

Additional Tables

Quantile IAttic Core _[Perimi IjPerim2 [Perim3 1Perim

1 0.01 0 0 0.01 0 0.02
25 0.25 0.03 0.02 0.02 0.05 0.11
50 0.79 0.04 0.03 0.05 0.07 0.18
75 1.52 0.05 0.05 0.08 0.10 0.20
99 3.23 0.07 0.09 0.16 0.12 0.25

Table A.1: June Prediction Errors (degrees C)
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Quantile Attic Core Perimi I Perim2 Perim3 Perim4

1 0.0 0.7 0.2 0.4 0 0.7
25 0.8 4.7 1.8 0.6 6.7 3.9
50 2.6 6.9 3.5 1.8 9.8 6.6
75 5.0 9.2 5.2 2.7 13.4 7.5
99 10.7 11.8 10.0 5.6 15.6 9.4

Table A.2: June RMSE Quantiles (%)

Quantile Attic Core IPeriml Perim2 IPerim3 Peri4

1 0.07 0 0 0 0 0
25 0.57 0.08 0.07 0.08 0.03 0.10
50 1.19 0.14 0.23 0.21 0.11 0.29
75 2.45 0.26 0.41 0.31 0.28 0.34
99 3.85 0.33 0.47 0.37 0.35 0.50

Table A.3: August Prediction Errors (degrees C)

Quantile Attic Core PerimI Perim2 Perim3 Perim4

1 0.3 0.1 0.0 0 0.1 0
25 2.3 1.8 1.2 1.5 0.7 1.5
50 4.7 3.3 4.1 4.1 2.4 4.4
75 9.8 6.0 7.2 6.1 6.1 5.1
99 15.4 7.7 8.2 7.3 7.5 7.6

Table A.4: August RMSE Quantiles (%)
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Appendix B

Additional Figures
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Appendix C

Multi-zonal Inverse CRTF Model

MATLAB Code

C.1 runiCRTFprocess.m

% Main file to run coefficient-fitting function 'findCoefficients.m' and

% prediction of temperatures function'predictTemps.m'

% Initialize variables

Tpredict= [];

Torig-predict=[];

Tx=[];

Qrad=[];

Qconv=[];

QWindowSolar=[];

QSurfaceSolar=[];

QGroundTemp=[];

all..PE= [];

for n=4 % n is the model order

train-start= 744 % hour of most recent training set value

train-length= 744-(n+l) % number of hours in training set

% Fit inverse CRTF model coefficients for July

[coefficients, coefficients-format, optimizationTime] =

findCoefficients('8_12JulyP7',train-start,

train-length,n,6, '6-16output.mat');
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first=0; % for formatting of multi-day sets of data

for b = 10 % validation day in test month. e.g. b = 10 is July 10th

test-start= b*24; % hour of most recent test set value

test-length=24;

% Validate inverse CRTF model by predicting temperatures

[Tpredict-s, Torig-predict-s, Tx-s, Qrad-s, Qconv-s, ...

QWindowSolar-s, QSurfaceSolar-s, QGroundTemp-s,relRMSE, PE,...

quant-PE, quant-RMSE] = predictTemps('8_l2JulyNP',...

coefficients, test-start,test-length,n, 6);

% Save output

first=first+1;

if first>l

Tx=vertcat(Tx,Tx-s (n+1:end,:));

Tpredict=vertcat(Tpredict,Tpredict-s);

Torig-predict=vertcat(Torig-predict,Torig-predict-s (n+1:end,:));

Qrad=vertcat (Qrad, Qrad-s (n+1:end, :));

Qconv=vertcat (Qconv,Qconvs (n+1:end,:));

QWindowSolar=vertcat (QWindowSolar, QWindowSolar-s (n+1:end,:));

QSurfaceSolar=vertcat (QSurfaceSolar, QSurfaceSolar-s (n+1: end,:));

QGroundTemp=vert cat (QGroundTemp, QGroundTemps (n+1 :end,:));

all-PE=vertcat(allPE,PE(n+1:end,:));

end

if first==1

Tx=vertcat(Tx,Tx-s);

Tpredict=vertcat(Tpredict,Tpredict-s);

Torig-predict=vertcat (Torig-predict, Torig-predict-s);

Qrad=vertcat (Qrad, Qrad-s);

Qconv=vertcat(Qconv,Qconv-s);

QWindowSolar=vertcat (QWindowSolar, QWindowSolar-s);

QSurfaceSolar=vertcat (QSurfaceSolar, QSurfaceSolar-s);

QGroundTemp=vertcat (QGroundTemp, QGroundTemp-s);

all-PE=vertcat (all-PE,PE);

end

% Save error output

allrel-RMSE (b, :) =relRMSE;

PE99 (b, :)=quant-PE (5,:);

PE-75 (b, :)=quant-PE (4,:);

PE-50 (b, )=quant-PE (3,:);

PE-25 (b, :)=quant-PE (2,:);

PE1 (b, :) =quantPE (1, :);

RMSE-99(b, :)=quant.RMSE(5,:);

RMSE_75 (b, :)=quantRMSE (4,:);

RMSE-50(b, :)=quantRMSE(3, :);
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RMSE_25 (b,: ) =quant-RMSE (2,:);

RMSE-J(b, :)=quant-RMSE(1,:);

end

end

C.2 findCoefficients.m

function [coefficients, coefficients-format, opttime] =

findCoefficients(inputData, k, d, n, m, outputData

% Calculate multi-zonal inverse CRTF coefficients

% INPUTS

% inputData: EnergyPlus output file that has been imported into MATLAB and

% saved as a .mat file. Do not change original zone names.

% k: hour index of the most recent (last) hour we want. e.g. k=150 uses

% hour 150 as the most recent observation

% d: number of observations to include: e.g. d = 10 and k = 150 results in

% a data set of hours [140,150]

% n: model order, or number of lag terms

% m: number of non-zonal variables. e.g. m=6 includes Qconv, Qrad,

% Qwindow-solar, Qsurface-solar, Tground and Tx

% outputData: name to save output .mat file under

% OUTPUTS

% coefficients: coefficients in one vector

% coefficients-format: coefficients formatted for optimization code

% opttime: the time it takes to run the constrained linear regression

%% Load data

S=load(inputData);

%% Subset out variables of interest

ZoneTemps=subsetStructure(S, 'MeanAirTemperature');

AmbientTemps=subsetStructure (S, 'OutdoorDryBulb');

ConvHeatGain=subsetStructure (S, 'TotalInternalConvectiveHeatGainRate');

TotHeatGain=subsetStructure (S, 'TotalInternalTotalHeatGainRate');

RadHeatGain=subsetStructure (S, 'TotalInternalRadiantHeatGainRate');

WindowSolar=subsetStructure(S, 'TransmittedSolar');

SurfaceSolar=subsetStructure (S, 'OutsideFaceSolar');

GroundTemp=subsetStructure (S, 'GroundTemperature');

%% Define any parameters needed
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numZones=length (fieldnames (ZoneTemps)); % number of zones

namesRad= fieldnames(RadHeatGain);

namesTemp=fieldnames(ZoneTemps);

namesAmb=fieldnames (AmbientTemps);

namesConv=fieldnames(ConvHeatGain);

namesTot=fieldnames(TotHeatGain);

namesWindSolar=fieldnames(WindowSolar);

namesSurfSolar=fieldnames(SurfaceSolar);

%% Format 'b' vector

% Dimensions: numZones*d by 1

% The format is multiple sets of d temperature values for each zone

% stacked up in a column

tempTime=zeros(numZones*d,1);

for i=l:numZones %for each zone

tempTime((i-1)*d+l:i*d) = ...

ZoneTemps. (namesTemp{i}) (k-d+l:k); % Get historical temperatures

end

b=tempTime;

%% Format 'A' matrix

% For every matrix "row" of A, we iterate through a zone. Each row

% in Atotal = [ ZerosBef All A12 Zeros-Aft A13]

% c = current zone

% Atotal dimensions: z*d by ((z*n) + (m*(n+l))*z + (z-l)*z

% # columns in A = (#All cols + #A12 cols)*z + #A13 cols

Atotal= zeros (numZones*d, ((numZones*n) + (m*(n+l) ))*numZones + (numZones-1)*numZones);

for c = 1:numZones

% Matrix of zeros for number of zones before current zone

Zeros-Bef=zeros (d, ((numZones*n) + (m* (n+l)) ) * (c-1));

% Matrix of zeros for number of zones after current zone

Zeros-Aft=zeros (d, ((numZones*n) + (m* (n+l)) )*(numZones-c)); %0 colums for c=z

% Submatrix All

% Contents: past zonal temperatures for all zones

% Dimensions: d by n*z

listNames=fieldnames(ZoneTemps);

All=zeros(d,numZones*n);

tempAll=zeros(d,n); % Placeholder for each zone

for i=l:numZones % For each zone's column within submatrix

for j=l:n % each of 'n' lag terms
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tempAll(1:d, j) = ZoneTemps.(listNames{i}) (k-d-(j-1):k-l-(j-1));

end

All(l:d, (i-l)*n+l:i*n)=tempAll;

end

% Submatrix A12

% Contents: ambient temperatures, heat fluxes, solar fluxes, ground

% temperatures

% Dimensions: d by (n+l)*m

tempNonZonal=zeros(d,m*(n+l));

tempAl2=zeros(d,n+l); % Placeholder for each variable

nonZonal=struct('nonzonal',{AmbientTemps,RadHeatGain, ConvHeatGain, ...

WindowSolar,SurfaceSolar,GroundTemp});

for i=l:m % For each of 'm' factors

for j=l:n+l

tempstruct=nonZonal(i).nonzonal;

% relevant structure fieldnames

listNames=fieldnames(tempstruct);

tempA12(1:d, j) = tempstruct. (listNames{c}) (k-d-(j-2) :k-(j-1));

end

tempNonZonal(l:d, (i-l)*(n+l)+1:i*(n+l))=tempAl2;

end

A12=tempNonZonal;

% Submatrix A13

% Contents: current zonal temperatures at t=k

% Dimensions: d by (z-1) * z

% Note: for each zone, you need a coefficient for all other (z-1) zones

A13=zeros(d, (numZones-l)*numZones);

tempCurrent=zeros(d,numZones-1);

tempAl3=zeros(d,1);

listNames=fieldnames(ZoneTemps);

counter=l;

for j=l:numZones % each of the other zones

if j-=c % if not the current zone

tempA13 = ZoneTemps.(listNames{j}) (k-d+l:k);

tempCurrent(1:d,counter)= tempA13;

counter=counter+l;

end

end

A13(1:d,l+(c-l)*(numZones-1):c*(numZones-1) ) =tempCurrent;

A13=-l*A13;

AtotalTemp=[Zeros-Bef All A12 Zeros-Aft A13];
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Atotal (d* (c-1) +1:c*d, :) =AtotalTemp;

end

%% Set up constraint matrices

% Adjacency matrix describes relationships between adjacent zones.

% -1 'self' zone

% 1 = adjacent

% 0 not adjacent

adjacencyMatrix=[-l 1 1 1 1 1;

1 -1 1 1 1 1;

1 1 -1 1 0 1;

1 1 1 -1 1 0;

1 1 0 1 -1 1;

1 1 1 0 1 -1 ];

widthZonal=n*numZones+(n+)*m; % for easier notation later

dim=(widthZonal)*numZones+(numZones-1) *numZones; % number of columns

% Enforces the steady state temperature constraint

constraintMatrix=zeros (numZones, (widthZonal) *numZones+ (numZones-1) *numZones);

for i=1:numZones % for each zone/row

tempConstraint=ones(1,widthZonal); % needs to be inside loop to reset

tempConstraint(n*numZones+n+2:n*numZones+(n+l)*m)=0; %Qrad, Qconv

% Don't include non-adjacent zones

for j=1:numZones

if adjacencyMatrix(i, j)==0

tempConstraint((j-1)*n+1:j*n)=0;

end

end

constraintMatrix(i, (i-1)*widthZonal+1:i*widthZonal)=tempConstraint;

tempConstraintCurr=ones (1, (numZones-1));

for 1=1:numZones

if adjacencyMatrix(i,1)==0

if i>1

tempConstraintCurr(1)=0;

end

if i<1

tempConstraintCurr(1-1)=0;

end

end

end

constraintMatrix(i, widthZonal*numZones + (i-i)*(numZones-1)+1

widthZonal*numZones + i*(numZones-1) )=tempConstraintCurr;
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end

constraintMatrix( (widthZonal)*numZones+l: (widthZonal)*numZones+..

(numZones-l)*numZones)=1;

% Enforces adjacency relationships

% adjacencyMatrix row order: 1 = attic, 2= core, 3=perim 1, 4= perim 2,

% 5=perim 3, 6=perim 4

% Each row is 1 zone, columns are corresponding zones

% e.g. row 1 (zone 1) is adjacent to all other zones (since the attic is

% above and touching all zones) . Row 3 (zone 3) is adjacent to zone 1, 2,

% 4, and 6, etc.

% Note: the numbered order here matches up with the listNames order of

% zones

[E-add g-add] =nonAdjacencyConstraints(adjacencyMatrix,widthZonal,n, dim ,m);

[E-curr-add, g-curr-add] = nonAdjacencyConstraintsCurr (adjacencyMatrix,

widthZonal,n,dim ,m, numZones);

%[ErmZI-add, grmZI-add) = rmZonaInteraction(widthZonal,n,dim,m,numZones);

% Set up final constraint matrices

E=vertcat (constraintMatrix, Eadd, E-curr-add);

Ecm=ones(numZones,1);

g=vertcat(E-cm, g-add, g-curr-add);

%% Solve for coefficients

tic

coefficients=lsqlin(Atotal,b, [], [],E,g);

opttime=toc;

%% Formatting/post-processing

% Formatting coefficients

all=length(coefficients); % All 'coefficients

%time=k coefficients

current=coefficients(all-( (numZones-1) *numZones)+l : all);

% coefficients for time = k-d-l to k-l

nonCurrent=coefficients(1:all-( (numZones-1) *numZones));

widthZonal=(numZones*n)+m*(n+l);

for i=l:numZones

coefficients-format(l:widthZonal,i)=nonCurrent( widthZonal*(i-l)+l: ...

widthZonal*i ); %chunks of 21

coefficients-format(widthZonal+l: widthZonal+(numZones-1),i)= ...
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-1*current( (i-i)*(numZones-l)+1:(i)*(numZones-1));

%negative bc sign switching for time t=k

end

% Re-ordering zonal coefficients

for i= 1:numZones

coefficients-format((i-l)*n+l: i*n,:) = flipud(...

coefficients-format((i-1)*n+1: i*n,:));

end

% re-ordering non-zonal coefficients (Tx, Qrad, Qconv, Qws, Qss, Tground)

for i= 1:m

coefficients-format((i-l)*(n+l)+(numZones*n+l): ...

i*(n+l)+(numZones*n),:) = flipud( ...

coefficients-format((i-l)*(n+l)+(numZones*n+l): ...

i* (n+l)+(numZones*n),:) );

end

clear m n k d

save(outputData)

end

C.3 predictTemps.m

function [Tpredict, Torig-predict, Tx, QRad, QConv, QWindowSolar, ...

QSurfaceSolar,TGround, rel-RMSE, error, quant.PE, quant-RMSE]...

= predictTemps(inputData,coefficients, k, d, n, m)

% Predict 24 hour ahead temperatures (1 day)

% INPUTS

% inputData: EnergyPlus output file that has been imported into MATLAB and

% saved as a .mat file. Do not change original zone names.

% k: hour index of the most recent (last) hour we want. e.g. k=150 uses

% hour 150 as the most recent observation

% d: number of observations to include: e.g. d = 10 and k = 150 results in

% a data set of hours [140,150]

% n: model order, or number of lag terms

% m: number of non-zonal variables. e.g. m=6 includes Qconv, Qrad,

% Note: same model order must be used for training and testing sets

%

% OUTPUTS

% Tpredict: temperatures predicted using inverse coefficients

% Torig-predict: EnergyPlus simulation temperature values (deg C)

% Tx: Outdoor dry-bulb temperature (deg C)

% QRad: Radiative heat flux (W)

% QConv: Convective heat flux (W)

116



% QWindowSolar: Solar flux absorbed through the window (W)

% QSurfaceSolar: Solar radiation incident on opaque surfaces (W)

% Tground: Ground temperature (deg C)

% rel-RMSE: the averaged relative RMSE by zone for all hours

% error: Prediction error (deg C)

% quantPE: Prediction error quantiles

% quant-RMSE: RMSE quantiles

%% Load in data

S=load(inputData);

ZoneTemps=subsetStructure (S, 'MeanAirTemperature');

AmbientTemps=subsetStructure (S, 'OutdoorDryBulb');

ConvHeatGain=subsetStructure(S, 'TotalinternalConvectiveHeatGainRate');

ConvHeatGainOrig=ConvHeatGain;

TotHeatGain=subsetStructure (S, 'TotalInternalTotalHeatGainRate');

RadHeatGain=subsetStructure(S,'TotalInternaiRadiantHeatGainRate');

InfilVol= subsetStructure(S, 'InfiltrationVolumeFlowRateStandardDensity');

ACH=subsetStructure(S,'AirChange'); %added on for single zone

WindowSolar=subsetStructure (S, 'TransmittedSolar');

SurfaceSolar=subsetStructure(S, 'OutsideFaceSolar');

GroundTemp=subsetStructure(S,'GroundTemperature');

namesRad= fieldnames(RadHeatGain);

namesTemp=fieldnames(ZoneTemps); %get fieldnames of temperatures

namesAmb=fieldnames (AmbientTemps);

namesConv=fieldnames(ConvHeatGain);

namesTot=fieldnames(TotHeatGain);

namesInfil=fieldnames(InfilVol);

namesACH=fieldnames(ACH);

namesWindSolar=fieldnames(WindowSolar);

namesSurfSolar=fieldnames(SurfaceSolar);

namesGround=fieldnames(GroundTemp);

str=date;

%% Define any parameters needed

numZones=length(fieldnames(ZoneTemps)); % total number of zones

all=length(coefficients); %total number of coefficients

V-room = [720.19 456.46 346.02 205.26 346.02 205.26]; % m3

rho-air = 1.2; %kg/m3

cp-air = 1005; % J/kgK

for i=l:numZones

initializeTemps(:,i) = ZoneTemps.(namesTemp{i}) (k-d-n+1:k-d);
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end

% Formatting coefficients

current=coefficients(all-( (numZones-1)*numZones)+l : all); %time =k coefficients

nonCurrent=coefficients (1:all-( (numZones-1) *numZones));

%% For the first case, where you need at least 1 value from known previous

% data instead of using all predicted values in the lagged terms

% Predicted temp is deteremined from all E+ or a combo of E+ and previously

% predicted values

zonalTemps=zeros(n,numZones);

p=l;

%the number of previous temps we have, equal to 'n' model order

numInitialObs=length (initializeTemps (:, 1));

storedPred=[];

for t = k-d +1 : k-d+n % first 'n' terms

t;

prevInd= t-(k-d); %previous index , so n or n+l or etc.

numPrevNeeded= n+l-prevInd; %number of previous observations you need

numPredNeeded = n- numPrevNeeded; %number of predicted observations needed

for i=l:numZones

Qconvective-orig(i)= ConvHeatGain. (namesConv{i}) (t);

end

% Call iterative function to predict temperature, has option to include

% infiltration calculations

if t==k-d+l

yO=initializeTemps(end,:);

end

if t>k-d+l

yO=zonalTemps(p-i,:);

end

y=findTempsl(yO)'; % final predicted temperatures for each zone

% Format predicted temperatures and data

zonalTemps (p, :) =y;

storedPred=zonalTemps;

p=ptl;

end

%% For the second case, where previously predicted zonal temperatures are

% used for all 'lagged' terms
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for t= k-d +n+ : k

t ;

for i=l:numZones

Qconvective-orig (i) = ConvHeatGain. (namesConv{i}) (t);

end

yO=zonalTemps(p-l,:); %lagged terms needed

y=findTemps2(yO)'; %iterative function call

%format output data

zonalTemps(p,:)=y;

p=p+l;

end

%% Format output data

Tpredict = zonalTemps; % Dimensions are d x numZones

for i=l:numZones

% Dimensions are d + lag terms x numZones

Torig-predict(:,i)=ZoneTemps. (namesTemp{i}) ((k-(d+n)+1) :k);

% Dimensions: d + n x numZones

Tx(:,i)=AmbientTemps.(namesAmb{i}) ((k-(d+n)+l):k);

QConv(:,i)=ConvHeatGain.(namesConv{i}) ((k-(d+n)+l):k);

QRad(:,i)=RadHeatGain.(namesRad{i}) ((k-(d+n)+l):k);

QWindowSolar(:,i)=WindowSolar. (namesWindSolar{i}) ((k-(d+n)+1) :k);

QSurfaceSolar(:,i)=SurfaceSolar. (namesSurfSolar{i}) ((k-(d+n)+1) :k);

TGround(:,i)=GroundTemp.(namesGround{i}) ((k-(d+n)+l):k);

end

% Format coefficients

widthZonal=(numZones*n)+m*(n+l);

for i=l:numZones

coefficients-format(l:widthZonal,i)=nonCurrent( widthZonal*(i-l)+l:

widthZonal*i ); %chunks of 21

coefficients-format(widthZonal+1: widthZonal+(numZones-1),i)= ...

-1*current( (i-l)*(numZones-l)+l:(i)*(numZones-1));

end

for i= 1:numZones

coefficients-format((i-l)*n+l: i*n,:) = flipud(...

coefficients-format((i-l)*n+l: i*n,:));

end

for i= 1:m

coefficients-format((i-1)*(n+l)+(numZones*n+l)

i*(n+l)+(numZones*n),:) = flipud( coefficients-format((i-l)*...

(n+l)+(numZones*n+l): i*(n+l)+(numZones*n),:) );

end

%% Error calculation

%E+ simulated values

simul-orig=zeros(d,numZones);
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for i=l:numZones

simul-orig(:,i)=ZoneTemps. (namesTemp{i}) (k-d+1:k);

end

% ymax-ymin, for each zone

diff=repmat (max(simul-orig)-min(simul-orig), d,1);

% errors

orig-error=simul-orig-zonalTemps;

error=abs(simul-orig-zonalTemps);

rel-e= sqrt((error./diff).^2);

relRMSE=sqrt (mean( (error./diff) .2));

quantPE=quantile (error, [0.01 0.25 0.5 0.75 0.99]);

quantRMSE=quantile(rel-e, [0.01 0.25 0.5 0.75 0.99]);

%% Plots

figure

for i=1:6 %each zone

subplot (3,2,i)

plot (ZoneTemps. (namesTemp{i}) (k-d+l:k))

hold on

plot(zonalTemps(:,i),'--')

title(strcat('actual and predicted train and n=',num2str(n), 'zone: ',num2str(i)))

set (gca, 'FontSize', 14, 'FontWeight', 'bold')

title(strcat('Zone: ',num2str(i)))

end

legend('Actual', 'Predicted', 'Location', 'SouthEast');

legend boxoff

str=date;

set(gcf, 'Units', 'Inches', 'Position', [0, 0, 8, 6.125], 'PaperUnits', .

'Inches', 'PaperSize', [8, 6.125])

saveas(gcf,strcat('zone',num2str(i), 'lag',num2str(n),str, '.png'))

%% Iterative functions that can include infiltration (commented out)

% First function for first case of using at least some E+ historical values

% in lagged terms

function result = findTempsl(y)

zonalTempAs=y;

for i=l:numZones

oneZoneTemp = y(i) ; % initializing data (lagged terms)

ConvHeatGainCalc(i) = ConvHeatGainOrig.(namesConv{i}) (t);%+

% InfilVol.(namesInfil{i}) (t)*rho-air*cp-air*...

% (AmbientTemps.(namesAmb{i}) (t)-oneZoneTemp);

% ConvHeatGain.(namesConv{i}) (t) = CcnvHeatGainCalc(i);

end
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Format C

% C dimensions: z by z

tempZoneCurrent=zeros (numZones, numZones);

for i=l:numZones % for each row

for j=l:numZones %each column

tempZoneCurrent(i,j)=1; %current zone position gets a 1

if j<i % before current zone

tempZoneCurrent(i,j)=current( (i-l)*(numZones-l)+l+(j-1));

end

if j>i % after current zone

tempZoneCurrent(i, j)=current( (i-l)*(numZones-l)+l+j-2

end

end

end

C=tempZoneCurrent;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 9%%%%%%%%%%%%%%%%%%%%%%

% Format D for current time step

% second dimension matches up with noncurrent

D=zeros(numZones, (numZones*n+(n+l)*m)*numZones);

for c=l:numZones %each row is a zone

ZerosBef=zeros(1, ((numZones*n) + (m*(n+l)))*(c-1));

ZerosAft=zeros(1, ((numZones*n) + (m*(n+l)))*(numZones-c));

%submatrix All

% dimensions: 1 by n*z

listNames=fieldnames(ZoneTemps); %names

All=zeros(1,numZones*n)-;

for b=l:numZones %each n column chunk per zone

nonPredObs=initializeTemps( numInitialObs -

numPrevNeeded +1 :numInitialObs,b);

if length(storedPred) > 0

predObs= storedPred(1:1+(numPredNeeded-1), b);

end

if length(storedPred)==0

predObs=[];

end

tempAll=vertcat( nonPredObs, predObs);

All(l, (b-l)*n+l:b*n)= fliplr( tempAll' );

end

% Submatrix A12, non zonal temperatures

% Dimensions: 1 by (n+l)*m
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A12=zeros(l,m*(n+l));

nonZonal=struct('nonzonal',{AmbientTemps,RadHeatGain,

ConvHeatGain, WindowSolar, SurfaceSolar, GroundTemp});

for i=l:m %submatrix for each non-zonal variable

tempstruct=nonZonal(i).nonzonal;

listNames=fieldnames(tempstruct);%relevant structure

A12(1, (i-1)*(n+1)+1:i*(n+l)) = flipud(tempstruct. (listNames{c}) (t-n :t)

end

D(c,:) =[Zeros-Bef All A12 Zeros-Aft];

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Predict Temperatures

predictInitialTemps=C\(D*nonCurrent); %l value per zone calculated here

result=predictInitialTemps;

end

% Second function for second case of using all previously predicted

% temperatures in lagged terms

function result = findTemps2(y)

zonalTempAs=y;

for i=l:numZones

oneZoneTemp = y(i)

ConvHeatGainCalc(i) = ConvHeatGainOrig.(namesConv{i}) (t); %+

% InfilVol. (namesInfil{i}) (t)*rhoair*cp-air*...

% (AmbientTemps.(namesAmb{i}) (t)-oneZoneTemp);

% ConvHeatGain.(namesConv{i}) (t) = ConvHeatGainCalc(i);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Format C

% C dimensions: z by z

tempZoneCurrent=zeros(numZones,numZones);

for i=l:numZones % for each row

for j=l:numZones %each column

tempZoneCurrent(i,j)=l; %current zone position gets a 1

if j<i % before current zone

tempZoneCurrent(i, j)=current( (i-l)*(numZones-l)+l+(j-1))

end

if j>i % after current zone

tempZoneCurrent(i, j)=current( (i-l)*(numZones-l)+l+j-2 )

end

end

end

C=tempZoneCurrent;
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Format D for current time step

D=zeros(numZones, (numZones*n+(n+l)*m) *numZones);

for c=l:numZones

Zeros-Bef=zeros (1, ((numZones*n) + (m* (n+l)) )*(c-1));

ZerosAft=zeros(1, ((numZones*n) + (m*(n+l)))*(numZones-c));

%submatrix All

% dimensions: 1 by n*z

listNames=fieldnames(ZoneTemps); %names

All=zeros(1,numZones*n);

for i=l:numZones

All(l, (i-i)*n+l:i*n)= fliplr( zonalTemps( t -(k-d+n): ...

t -(k-d+n) + n-l,i)' );

end

% Submatrix A12, non zonal temperatures

% Dimensions: 1 by (n+1)*m

A12=zeros(l,m*(n+l));

nonZonal=struct (' nonzonal', {AmbientTemps, RadHeatGain,...

ConvHeatGain, WindowSolar, SurfaceSolar,GroundTemp});

for i=l:m

tempstruct=nonZonal(i).nonzonal;

listNames=fieldnames(tempstruct) ;%relevant structure

A12(1,(i-l)*(n+l)+l:i*(n+l)) = flipud(...

tempstruct.(listNames{c}) (t-n : t));

end

D(c,:) =[Zeros-Bef All A12 Zeros-Aft];

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%predict Temperatures

predictInitialTemps=C\(D*nonCurrent);

result=predictInitialTemps;

end

end

C.4 Other Functions

C.4.1 subsetStructure.m

function [outputStruct] = subsetStructure (inputStruct, inputString)

% Function takes out the desired sections of a structure that contain the
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% 'inputString' phrase. To subset out all Zonal Temperatures for instance

inputStringSet=strcat ('\w+' , inputString, '\w+');

inputStringSetFinal = char (inputStringSet);

%the fieldnames that match the inputString we received

matchStr=regexp(strjoin (fieldnames (inputStruct),', '),inputStringSetFinal, 'match');

f= fieldnames(inputStruct);

%list of fieldnames to remove and not include

toRemove=f(ismember(f,matchStr));

%remove the fieldnames

outputStruct=rmfield(inputStruct, [toRemove]);

end

C.4.2 nonAdjacencyConstraints.m

function [constraint-add, value-add] = nonAdjacencyConstraints (adjacencyMatrix,widthZonal,

n, dim,m)

% Generates constraint matrices (E,G) in E x =g accounting for adjacency

% relationships in previous (t=k-d-1 to k-1) time steps

% Inputs: adjacency matrix

% Outputs: matrix to add vertically onto constraints matrix, matrix to add

% vertically onto constraints equal matrix (E, g) addends

totalNumNonAdj= sum(sum(adjacencyMatrix(:,:)==O));

sizeAdj=size(adjacencyMatrix);

length=sizeAdj(1);

width=sizeAdj(2);

constraint-add=zeros(totalNumNonAdjdim);

counter=1;

for i=1:length %focused zone

numNonAdjacent=sum(adjacencyMatrix(i,:)==O); %number of non adjacent zones

for j=l:width

if adjacencyMatrix(i,j)==O %if not adjacent

for m=l:n

constraint-add(counter, (i-1)*widthZonal + n*(j-1) + m)=l;

counter=counter+1;

end

end

end

end

value-add=zeros(totalNumNonAdj*n,1);

end

C.4.3 nonAdjacencyConstraintsCurr.m
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function [constraint-add, value-add] = nonAdjacencyConstraintsCurr (adjacencyMatrix,

widthZonal,n, dim,-, numZones)

% Generates constraint matrices (E,G) in E x =g accounting for adjacency

% relationships for t=k current time step

% Inputs: adjacency matrix

% Outputs: matrix to add vertically onto constraints matrix, matrix to add

% vertically onto constraints equal matrix (E, g) addends

totalNumNonAdj= sum(sum(adjacencyMatrix(:,:)==O));

sizeAdj=size(adjacencyMatrix);

length=sizeAdj(1);

width=sizeAdj(2);

constraint-add=zeros (totalNumNonAdj, dim);

counter=l;

for i=l:length

numNonAdjacent=sum(adjacencyMatrix(i,:)==O); % number of non adjacent zones

nonAdjZoneCounter=O; % counts which of the nonadjacent zones you are in

adjZoneCounter=O;

for j=l:width %adjacent zones

if j<i

if adjacencyMatrix(i, j)-=O

nonAdjZoneCounter=nonAdjZoneCounter+l;

end

if adjacencyMatrix(i,j)==O %if not adjacent

adjZoneCounter=adjZoneCounter+l;

constraint-add(counter, (widthZonal)*numZones + ((i-l)*(numZones-1) ) +

adjZoneCounter+nonAdjZoneCounter)=1;

counter=counter+l;

end

end

if j>i

if adjacencyMatrix(i, j)-=O

nonAdjZoneCounter=nonAdjZoneCounter+l;

end

if adjacencyMatrix(i,j)==O % not adjacent

adjZoneCounter=adjZoneCounter+l;

constraint-add(counter, (widthZonal)*numZones + ((i-l)* (numZones-1) ) +

adjZoneCounter+nonAdjZoneCounter)=1;

counter=counter+l;

end

end

end

end

value-add=zeros(totalNumNonAdj,1);

end
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Appendix D

Small Office Multi-Zonal Inverse

CRTF Model Coefficients

D.1 June Monthly Coefficients

- Attic Core Perim 1 Perim 2 Perim 3 Perim 4

T - -0.00054 0.00246 0.0103 0.00886 0.01025 0.01176

T -2 0.15734 -0.00051 -0.00714 -0.01215 -0.00863 -0.01078

Tk- 3  -0.67456 -0.00257 -0.00164 0.0118 0.00273 0.00301

T -4 1.41345 0.0042 -0.01038 -0.01182 -0.00856 -0.00418

T -I 0.01443 -0.25492 -0.00834 -0.00766 -0.01148 -0.00562

T -2 -0.00414 0.44254 -0.01377 -0.01114 -0.00978 -0.01037

T-3 0.0005 0.57942 -0.00419 -0.00187 -0.00398 -0.00613

T-4 -0.0277 0.1232 0.02388 0.01891 0.02328 0.01973

Tk- -0.18185 -0.0159 -0.22015 -0.0043 0 -0.00065

T- 2  0.22272 -0.00956 0.24837 -0.00532 0 -0.00546
Tk3 

-0.01007___

T- 3  0.02946 -0.0021 0.41203 -0.00512 0 -0.01007

Tk- 4  -0.12439 0.05328 0.48507 0.00829 0 0.01133

T- 1  0.00874 -0.00373 -0.00003 -0.21147 0.00022 0

T-2 -0.02517 -0.00764 -0.00765 0.26367 -0.00892 0

T- 3 0.00295 -0.00197 -0.00242 0.40656 -0.0025 0
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T~k- 4  0.0003 0.02665 0.01064 0.46012 0.01161 0

-1 0.00188 -0.01111 0 -0.00505 -0.20809 -0.00178

T -2 -0.02563 -0.01436 0 -0.0099 0.25868 -0.01257

T-3 -0.02489 -0.0016 0 0.00119 0.40981 -0.00218

k-4T 0.05668 0.05338 0 0.01903 0.4609 0.01913

T-1 -0.0056 -0.0066 -0.00361 0 -0.00379 -0.22248

T-2 0.01601 -0.00785 -0.00636 0 -0.00603 0.25917

T-3 -0.03188 -0.00118 -0.00289 0 -0.00307 0.4056

T 0.03806 0.02548 0.01082 0 0.01015 0.47726

T -0.01056 0.00324 0.00646 0.01097 0.00704 0.0079

T- 0.08002 -0.0099 -0.01776 -0.02148 -0.01963 -0.02501

Tk- 2  -0.18621 0.00692 -0.01401 -0.00944 -0.0046 0.00651

Tk-3 -0.20204 -0.00184 0.01263 0.00734 0.00857 -0.00059

T ~4  0.41335 0.00637 0.02199 0.02156 0.01688 0.01955

Qrad 0 0 0.00004 0.00003 0.00002 0.00004

Qk-l 0.00001 -0.0003 -0.00024 -0.00049 -0.00029 -0.00049

Qk- 0 -0.00005 -0.00014 -0.00023 -0.00018 -0.00015

Qraddk-3  0 0.00001 -0.00007 -0.00005 0.00005 -0.00023

Qk-- -0.00005 0.00053 0.00057 0.00095 0.00054 0.00104

Qon 0.00001 0.00009 0.00013 0.00017 0.00012 0.00019

QkrIz -000004 -0.00043 -0.00034 -0.00051 -0.00034 -0.00051

Qk-- 0.00017 -0.00038 -0.00042 -0.00058 -0.0004 -0.00059

Qk-- -0.00045 0.00015 -0.00017 -0.00021 -0.00015 -0.00023

Qon- 0.00044 0.00078 0.00096 0.00142 0.00096 0.00142

Qi 0 0 -0.00014 0.00008 0.00015 0.00016

Qi 0 0 -0.00029 -0.00046 -0.00004 -0.00043

Q-0.00001 0 -0.00007 -0.00031 -0.00026 -0.00012

Qi 0.00003 0 0.00003 -0.00004 0.00011 0.00046

Q- 0 0 0.0007 0.00105 0.0003 0.00107

ss 0 0 0.00001 0 -0.00001 -0.00001
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Qk;1 0.00001 0 0.00002 0.00001 -0.00001 0.00001

Qk;2 -0.00001 0 0 0 0.00001 -0.00002

Qk;3 -0.00001 0 0.00001 0.00002 0.00001 -0.00002

S; 0.00003 0 -0.00004 -0.00003 0 -0.00004

Takd 0 0.01075 0.00596 0.0061 0.00627 0.0057

Tkl 0 0.01075 0.00596 0.0061 0.00627 0.0057gnd _____7___59_._61_002 _.0057

Tk-2  0 0.01075 0.00596 0.0061 0.00627 0.0057
gnd _____ __________

Tk 3  0 0.01075 0.00596 0.0061 0.00627 0.0057
gnd _____ __________

Tk-4  0 0.01075 0.00596 0.0061 0.00627 0.0057
gnd__ _ _ _ __ _ _ _ __ _ _ _

TZ 0.03107 -0.00365 0.01369 0.00841 0.00839 0.00609

T2 0.06214 -0.01428 0.01776 0.01173 0.01837 0.01199

TZ 0.00137 0.00031 0.00819 0.01854 0 0.01625

T2 -0.00699 -0.00797 0 0.00968 0.01063 0

TZ -0.03008 -0.00057 0.00899 0 0.01043 0.01551

Table D.1: June Monthly Inverse Multi-zonal CRTF Model Fitted Coefficients

D.2 July Monthly Coefficients
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Attic Core Perim 1 Perim 2 Perim 3 Perim 4

Tk- 1 0.03202 -0.00002 0.00684 0.00541 0.00765 0.00514

Tk -2 0.10857 0.00434 -0.00721 -0.00941 -0.0016 -0.01094

Tk~3 -0.77303 -0.00711 0.00604 0.014 -0.00109 0.01452

Tk~4 1.5395 0.0037 -0.02209 -0.01274 -0.01353 -0.01635

2k-1 -0.04816 -0.23051 -0.00554 -0.00649 -0.00951 -0.0036

0.03385 0.42506 -0.01537 -0.00997 -0.01441 -0.01411

T -0.00359 0.5475 -0.00329 -0.00169 -0.00061 -0.00172

T 0.01656 0.14402 0.02326 0.01873 0.02185 0.02077

3 -0.04916 -0.01146 -0.19512 -0.00106 0 0.00359

Tk- 2  0.01428 -0.01155 0.26343 -0.01097 0 -0.01397

Tk- 3 -0.01724 -0.0018 0.397 0.00089 0 -0.00337



T ~4 0.05085 0.05775 0.44886 0.00295 0 0.01037

T ~1 -0.00515 -0.00623 -0.00471 -0.20552 -0.00501 0

Tk- 2  -0.04105 -0.00685 -0.00543 0.2681 -0.00618 0

T-3 0.03749 -0.00075 -0.00179 0.39745 -0.00146 0

T-4 -0.00408 0.02412 0.01053 0.45106 0.01024 0

T-1 -0.01037 -0.0107 0 -0.00158 -0.19266 0.00117

Tk- 2  -0.01837 -0.01396 0 -0.01083 0.26446 -0.01535

T 0.03128 0.00206 0 0.00208 0.3955 -0.00464

T-4 -0.03301 0.04783 0 0.0086 0.44204 0.02018

T- 0.03297 -0.00801 -0.00449 0 -0.00415 -0.20988

T-2 -0.0681 -0.00767 -0.00842 0 -0.0079 0.27326

T 0.0162 0.00123 0.00073 0 -0.00146 0.39741

T64 0.01262 0.02375 0.01349 0 0.01243 0.44462

Tk -0.14009 0.00728 0.01242 0.0002 0.0082 0.0205

Tk- 1  0.34837 -0.00916 -0.02024 -0.00033 -0.0167 -0.03059

Tk- 2  -0.42258 0.00115 -0.00928 -0.01583 -0.00831 -0.00097

T -3  0.01224 0.00188 0.0038 0.00563 0.01263 0.00484

T -4  0.26936 0.00579 0.02511 0.0242 0.01607 0.02134

Qkad -0.00061 -0.00001 0 0 0.00002 -0.00003

k -0.00006 -0.00027 -0.00021 -0.00044 -0.00024 -0.00034

Qk- -000002 -0.00005 -0.00015 -0.00017 -0.00015 -0.00011

Qraddk-3  -0.00007 0.00002 0 -0.00007 0.00002 -0.00018

Qk- -0.00011 0.00051 0.00053 0.00092 0.00052 0.00092

Qk -0.00001 0.00008 0.00011 0.00016 0.0001 0.00017

Qov -0.00002 -0.00041 -0.00035 -0.00051 -0.00035 -0.00052

Qov 0.00019 -0.00036 -0.0004 -0.00057 -0.00039 -0.00056

ov -0.00052 0.00014 -0.00013 -0.0002 -0.00012 -0.00018

Q k-4 0.00041 0.00078 0.00097 0.00143 0.00097 0.00142

Q c2nQi 0 0 -0.0002 0.00003 -0.00016 -0.00004

Qk-l 0 0 -0.0002 -0.0005 -0.00011 -0.00053
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WS 0.00001 0 -0.00014 -0.00034 -0.00011 -0.00024

QS- 0 0 0.00017 -0.0001 0.0002 0.00038

Qk4 -0.00001 0 0.00061 0.00101 0.00027 0.00114

QS 0 0 0.00001 0 0 0.00001

Qk-1 0.00001 0 0.00001 0.00001 0 0.00002

S- -0.00001 0 0 0 0 -0.00001

Q--3 -0.00002 0 0 0.00002 0 -0.00001

Q 0.00003 0 -0.00004 -0.00003 0 -0.00004

Tk 0 0.01174 0.00793 0.00601 0.00877 0.00652gnd

T 0 0.01174 0.00793 0.00601 0.00877 0.00652gnd

T 0 0.01174 0.00793 0.00601 0.00877 0.00652gnd

T .3  0 0.01174 0.00793 0.00601 0.00877 0.00652gnd

Tk4 0 0.01174 0.00793 0.00601 0.00877 0.00652

TZ-0.01056 -0.00134 0.02061 0.00442 0.01143 0.00884

TZ 0.02568 -0.0181 0.01819 0.0146 0.01996 -0.0133

T2 -0.00765 -0.00118 0.00786 0.02432 0 0.02085

TZ 0.03668 -0.00669 0 0.01448 0.00952 0

TZ 0.02297 -0.001 0.00682 0 0.01051 0.01413

Table D.2: July Monthly Inverse Multi-zonal CRTF Model Fitted Coefficients

D.3 August Monthly Coefficients
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- Attic Core Perim 1 Perim 2 Perim 3 Perim 4

T -1 -0.00363 -0.00081 0.00438 0.00455 0.00574 0.00794

T -2 0.17708 0.00273 0.00689 -0.00702 -0.00182 -0.008

T - 3  -0.79941 -0.00551 -0.02812 0.00637 0.00434 -0.00445

Tk - 4  1.55614 0.00862 0.00715 -0.00514 -0.00619 0.00613

Tk- 0.01653 -0.25092 -0.00928 -0.00753 -0.00995 -0.00223

T -2 -0.06859 0.45904 -0.01487 -0.01263 -0.01287 -0.01034

T 0.07104 0.59201 -0.00901 -0.00081 -0.00808 -0.01088



T -4 -0.03019 0.08337 0.04109 0.02135 0.03297 0.02566

T - -0.01063 -0.01083 -0.20436 -0.00457 0 0.00047

T - 2  -0.03151 -0.01278 0.26538 -0.00946 0 -0.01125

T- 3  0.03894 0.00192 0.40785 -0.00188 0 -0.00681

T-4 -0.01316 0.04975 0.45856 0.02047 0 0.02223

T-1 0.00483 -0.00556 -0.00315 -0.21574 -0.00352 0

T- 2  0.00589 -0.00763 -0.00558 0.27124 -0.00758 0

T-3 -0.04405 -0.00107 -0.00652 0.40444 -0.00481 0

4 0.0216 0.0258 0.01815 0.45694 0.01575 0

T- 0.00207 -0.01161 0 -0.0045 -0.21497 0.00006

T 0.00838 -0.01388 0 -0.01258 0.26281 -0.01305

T-3 -0.0578 0.00265 0 0.00281 0.40718 -0.00409

T 0.03531 0.05043 0 0.01749 0.46701 0.02186

Tk- -0.02647 -0.00706 -0.00288 0 -0.00347 -0.14669

T-2 0.03849 -0.00813 -0.00685 0 -0.00823 0.11594

T-3 -0.00683 0.00098 -0.00636 0 -0.00444 0.37116

Tk- 4  -0.00305 0.02412 0.01662 0 0.01713 0.57495

Tk -0.08804 0.00963 0.01067 0.01233 0.0137 0.01115

Tk~ 1  0.22688 -0.00903 -0.01395 -0.01132 -0.01926 -0.00782

Tk-2 -0.32519 0.00495 -0.01665 -0.01462 -0.02241 -0.01601

T-3 -0.04919 -0.01303 -0.00013 -0.00071 0.009 -0.0023

T 0.30817 0.01292 0.03023 0.0276 0.02991 0.0254

Qkad -0.00004 -0.00005 0.00003 -0.00007 -0.00001 -0.00001

Qk-l -0.00006 -0.00028 -0.00028 -0.00041 -0.00025 -0.00029

Qk- -0.00004 -0.00004 -0.00016 -0.00011 -0.00009 -0.00014

Qraddk-3  0.00003 0.00004 -0.00009 -0.00017 -0.00004 -0.00036

Q -0.00009 0.00052 0.00065 0.00101 0.00053 0.00101

Qon 0 0.00009 0.00011 0.00018 0.00012 0.00013

Qo~v -0.00007 -0.00045 -0.00035 -0.00052 -0.00035 -0.00031

Qo, 0.00021 -0.00038 -0.00041 -0.00058 -0.00041 -0.00059
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Qk ;-0.00056 0.00018 -0.00014 -0.00021 -0.00015 -0.00037

Q 0.00045 0.00078 0.00097 0.00143 0.00097 0.00143

W 0 0 0.00012 0.00005 0.00043 -0.00003

Q 1 -0.00002 0 -0.00048 -0.00049 -0.00067 -0.00046

Q 0 0 -0.00021 -0.0004 -0.0001 -0.00014

W 0 0 0.00018 0.00003 0.00007 0.00029

Q 0 0 0.00069 0.00108 0.00056 0.00123

Q 0 0 -0.00002 0 -0.00004 0.00001

Q0.00001 0 0.00004 0.00001 0.00003 0.00001

2 -0.00001 0 0.00002 0.00001 0 -0.00001

S -0.00002 0 -0.00002 0.00002 0.00001 -0.00002

Q 0.00003 0 -0.00004 -0.00003 -0.00002 -0.00005

Tk 0 0.01194 0.00684 0.00781 0.00743 0.00716

T 0 0.01194 0.00684 0.00781 0.00743 0.00716

T k 0 0.01194 0.00684 0.00781 0.00743 0.00716

gnd__________ _

T 0 0.01194 0.00684 0.00781 0.00743 0.00716Tk-2 0 0.01194 0.00684 0.00781 0.00743 0.00716
gnd__________ _

TZ 0.01054 -0.00489 0.01465 0.00368 0.00189 0.00246

TZ -0.00476 -0.01176 0.00481 0.00913 0.01101 0.0088

TZ 0.01086 -0.00137 0.00259 0.00687 0 0.00803

TZ 0.01181 -0.00945 0 0.00577 0.0073 0

Tz 0.01355 -0.00147 0.00563 0 0.00613 0.00815

Table D.3: August Monthly Inverse Multi-zonal CRTF Model Fitted Coefficients
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