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Toward a closed loop from seismic imaging to  
earth-model building

Abstract
Velocity-model building is the first task of seismic inversion 

and the foundation of the subsequent data-processing workflow. 
When the earth velocity becomes multivalued with respect to 
the propagating direction of the waves, velocity-model building 
becomes severely underdetermined and nonunique. The tradi-
tional workflow separates velocity-model building from lithologic 
inversion, which hampers both processing steps. An integrated 
model-building scheme is demonstrated to simultaneously con-
sider prestack seismic data and its structural and lithologic inver-
sion results from a previous iteration. The prestack seismic inver-
sion is performed using wave-equation migration velocity analysis 
(WEMVA) for vertical transverse isotropic (VTI) models. To 
constrain the seismic inversion, the geologic information is 
integrated as spatial-model correlations, and the rock-physics 
information as lithologic-model correlations. This feedback step 
completes the loop from seismic imaging to lithologic-model 
building, where previous rock-physics estimations and geologic 
interpretations can be validated further and updated in order to 
constrain the next WEMVA iteration. Improvements from the 
integrated inversion scheme are shown on a Gulf of Mexico field 
data set.

Introduction
Anisotropic velocity-model building tries to resolve more 

than one parameter at each model location. This number could 
be three for a vertical transverse isotropic (VTI) media, increasing 
to five for a tilted transverse isotropic (TTI) media. For time-
related processing, seismic moveout in a VTI medium can be 
explained fully by two parameters: normal moveout (NMO) veloc-
ity V

NMO
 and the anellipticity parameter η (Tsvankin and Thomsen, 

1994). In more recent developments of depth-processing workflows, 
advanced imaging and inversion techniques require anisotropic 
models that also can describe the anisotropic properties accurately 
within depth intervals. Parameterization studies of anisotropic 
waveform inversion show that ambiguity among the anisotropic 
parameters cannot be fully resolved without further constraining 
the parameters, e.g., by specifying functional relationships among 
them. Studies in 3D show that it is difficult to resolve a reliable 
and unique anisotropic model even with borehole-aided localized 
tomography.

To better constrain the anisotropic model building in this 
study, we include more knowledge of the subsurface in our 
seismic inversion, some of which knowledge might come from 
previous structural and lithologic inversion results. The structural 
knowledge is included in the form of spatial covariance of the 
parameters describing how smoothly the parameters vary in 
space. The lithologic knowledge is included as crossparameter 
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covariance describing how one parameter varies with the other 
parameters at the same model location.

Here, our integrated inversion scheme inverts seismic data 
for VTI models using wave-equation migration velocity analysis 
(WEMVA) (Li and Biondi, 2011). The geologic and lithologic 
information, from a previous iteration of seismic processing, 
is feedback to the current inversion via gradient precondition-
ing. This method can be extended further for TTI and higher 
symmetries.

Wave-equation migration velocity analysis  
for VTI models

Anisotropic WEMVA aims at building an anisotropic earth 
model that minimizes the residual image from the surface seismic 
data. The image-space objective function can be written as:

S(m)  =  
1
2 2

2
D I (x, )     2 I (x, )

2

2

  + 2 cm
1
2 (m m p )

2

2

,   (1)

where the first two terms define the “data-fitting” objective, and 
the third defines the “model-regularization” objective. Model 
m = (v,ε,σ) is the VTI velocity model; I(x,θ) is the migrated image 
in the angle domain with θ the aperture angle and D

θ
 a derivative 

operator along the angle axis. The first term is intended to minimize 
the differential semblance in the angle gathers, and the second 
term is intended to maximize the stack power. In the third objec-
tive, mp and Cm define a Gaussian distribution of a prior model 
that is ideally independent of the seismic data. This regularization 
will bring more information into the optimization and stabilize 
the inversion. Parameters α and β balance the relative weights 
among different objectives.

The data-fitting objectives tend to be more sensitive to velocity 
than to anisotropic parameters, especially at near and intermediate 
angles. Therefore, the objective function is biased toward the 
velocity error despite the error in the other VTI parameters. When 
the velocity is inaccurate, the gradient directions of the data-fitting 
objectives could be overwhelmed by the velocity error, possibly 
misguiding updates for the anisotropic parameters.

Geologic and rock-physics constraints
Assuming a Gaussian distribution, Tarantola (1984) includes 

the prior information using the mean and the covariance of the 
model as a regularization term. We separate the covariance into 
two parts: (1) a spatial covariance between the same parameter 
at different locations; and (2) a crossparameter covariance between 
different parameters at the same location. The spatial covariance 
is defined mainly by the geologic structure in the neighborhood 

1Formerly Stanford University; now Massachusetts Institute of Tech-
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2Stanford University.
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of a given imaging location, and it can be estimated using a set 
of smoothing filters from the migrated image. The crossparameter 
covariance can be inferred from the lithologic information at the 
model location.

We focus on shale-induced anisotropy and assume that spatial 
covariance and local crossparameter covariance components are 
mutually independent. To speed up convergence of the iterative 
inversion, we use a preconditioning scheme. Mathematically, we 
express the preconditioning variable n to the original anisotropic 
model m by:

m = ΣSn                                         (2)

where the smoothing operator S is a band-limited diagonal matrix 
with potentially different smoothing operators for velocity, ε, and 
δ, according to the geologic information in the study area. The 
standard deviation matrix Σ is the square root of the crossparameter 
covariance matrix. We illustrate the procedure to obtain this 
additional information from stochastic rock-physics modeling 
using the following field example.

Gulf of Mexico field data example
The data we use in this article were acquired in the Gulf of 

Mexico. The sedimentary basin has been filled by shaley sand-
stones. Therefore, we focus on shale anisotropy during seismic 
inversion and rock-physics-model building. We combine the 
rock-physics models proposed by Bachrach (2010) and Bandyo-
padhyay (2009) to consider the intrinsic mineral anisotropy, 
particle alignment, and clay mineral transition during compaction. 
By varying input parameters of the rock-physics model, we explore 
different shale-rock scenarios. These models are the sources of 
the prior rock-physics knowledge (Li et al., 2014).

Schlumberger MultiClient performed an initial ray-based 
tomography on this data set, producing isotropic velocity along 
with lithologic inversion results, such as shale content and porosity. 
Therefore, we use the provided shale content inversion cube (Figure 
1a) and a smoothly varying porosity trend (Figure 1b) as the input 
to the rock-physics model. To include the spatial uncertainty of 
the lithologic inversion result, the statistics of each estimated 
parameter are evaluated within a window around each model loca-
tion, allowing the lithologic estimation to include variations within 

a few seismic wavelengths.
Figure 2a shows the provided isotro-

pic velocity model from the initial tomog-
raphy. Figures 2b to 2d show the initial 
anisotropic model. The initial ε model 
(Figure 2c) and δ model (Figure 2d) are 
the mean models from the stochastic rock-
physics modeling. The salt body and the 
water column are considered isotropic. 
Figure 3 compares the images obtained 
from isotropic migration and anisotropic 
migration. The anisotropic migration 
using models in Figure 2 improves the 
focusing of the events highlighted by the 
labels. However, the overall imaging qual-
ity of both migrated images is similar. 
These images demonstrate a typical case 
where two different models, with com-
pletely different geologic implications, 
can explain the seismic kinematics equally 
well. These structural images are used 
to estimate the steering filters to pre-
condition the spatial distribution of the 
parameters.

More importantly than producing a 
single model, the stochastic rock-physics 
modeling also allows us to explore pos-
sible ranges of the anisotropic parame-
ters. At a particular model location, we 
obtain an ensemble of v0, ε, and δ values 
as shown in Figure 4. Assuming the 
three parameters v0, ε, and δ follow a 
multivariate Gaussian distribution, we 
summarize their variance using a 3 × 3 
matrix with six independent elements. 
This crosscovariance matrix is estimated 
at each subsurface location.

Figure 1. Lithologic inversion results from initial data processing in (a) inverted clay content and 
in (b) inverted porosity.

Figure 2. Isotropic tomography velocity model is shown in (a). Anisotropic parameters v0, ε, and δ 
are shown in (b), (c), and (d), respectively. Parameters ε and δ are the mean models from the 
stochastic rock-physics modeling. Vertical velocity v0 is computed from the isotropic velocity and 
the δ model to honor the seismic traveltime.
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Figures 5a to 5c show the diagonal elements in the square 
root of the covariance matrix. The strong lateral variations in 
vertical velocity variance (Figure 5a) and in ε variance (Figure 
5b) show that their uncertainties are strongly correlated with the 
lithology. The δ variance (Figure 5c) shows less lateral variation, 
indicating that parameter δ is controlled mainly by compaction 
and mineral transition. Figures 5d to 5f 
show the off-diagonal elements in the 
standard deviation matrix. The cross-
covariances between v0 and ε (Figure 
5d) as well as between v0 and δ (Figure 
5e) suggest that velocity and anisotropy 
are negatively correlated in the shallow 
region but positively correlated in the 
deep region. In the shallow region, high 
velocity correlates with low anisotropic 
sand; whereas in the deeper region, high 
velocity can be caused by mineral dia-
genesis from smectite to illite, which is 
also highly anisotropic (Hornby et al., 
1995). Covariance between ε and δ 
(Figure 5f) shows positive correlations 
for all depths.

The gradients of the WEMVA 
objective function in the first iteration 
with respect to model parameters are 
shown in Figure 6. Compared with the 
gradient in v0 (Figure 6a), the gradients 
in ε (Figure 6b) and δ (Figure 6c) show 
similar structure and point to the same 
update directions. These updates are 
determined by the WEMVA tomo-
graphic operator in order to increase 
the stack power. However, the negative 

correlations between velocity and anisotropy in the shallow 
region suggest that velocity and anisotropy should vary in 
opposite directions. As a result, the gradient directions in ε 
(Figure 6e) and δ (Figure 6f) in the shallow region have been 
reversed after the rock-physics preconditioning. These precon-
ditioned gradients (Figure 6) are used in a Polak-Ribiére 

Figure 3. Images obtained from (a) isotropic migration and from (b) anisotropic migration with 
the models in Figure 2. The fault (label 1) on the depth slice appears to be better focused on the 
anisotropic migration image. The steeply dipping reflectors (circled on the in-line section) and the 
top of a salt segment (label 2) are more continuous on the anisotropic migration image. Nonethe-
less, the overall quality of both images is quite similar. These images illustrate a typical situation 
where different models can explain the seismic data equally well.

Figure 4. Histogram and its Gaussian approximation at a single location of (a) v0, (b) ε, and (c) δ. 
The histograms are obtained from stochastic rock-physics modeling. Their multivariate Gaussian 
approximations are used in the preconditioned WEMVA inversion.

Figure 5. Six independent components of the crossparameter covariance maxtrix with (a) Cvv, (b) Cee, (c) Cdd, (d) Cve, (e) Cvd, and (f) Ced. This matrix 
is obtained from stochastic rock-physics modeling. It captures the crosscorrelations between the anisotropic parameters based on a sandy shale model.
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nonlinear conjugate gradient scheme to calculate the update 
directions for each parameter.

Figure 7 shows the total updates in the VTI model after 10 
nonlinear iterations. The inversion identifies a positive velocity 
anomaly on the hanging wall of the normal fault. To consistently 
produce a high-velocity rock in the shallow region, the regulariza-
tion scheme reduces the anisotropy in the corresponding region, 
consistent with a stronger sand-dominated sedimentary environ-
ment. In the deeper region, both velocity and anisotropy are 
positively updated, consistent with the strong diagenesis process 
in shale. Significant updates also are shown around the salt body 
where the initial ray-based tomography failed to update. On aver-
age there are 5% positive updates in vertical velocity and more 
than 10% updates in both ε and δ.

Figure 8 compares migrated images using the initial model 
with the migrated images using the updated model at a crossline 
location near the salt flank. Reflectors in both inline and crossline 
directions are strongly dipping. Highlighted by circles labeled 2 
and 3, these reflectors are broken in the initial image, making the 
interpretation of the sediments around the salt body a challenging 

task. The updated model reveals a much clearer image around the 
salt. Reflectors in both areas are better imaged with more continu-
ity and better resolution. On the depth slice, label 1 points to a 
fault that is blurred in the initial image but is distinctly imaged 
with the updated model.

In the upper-right corners of Figures 8a and 8b, we compare 
the angle-domain common image gathers (ADCIGs) before and 
after inversion. The initial ADCIGs are reasonably flat, with only 
minor residual moveout. Nevertheless, the flatness of the ADCIGs 
has been improved with the updated VTI model. Without chang-
ing depth dramatically, the ADCIGs show increased angle cover-
age in the shallow region, mostly due to the improved definition 
in the Thomsen parameters ε and δ.

Discussion
Earth-model building is a highly underdetermined problem, 

and uncertainties propagate from each step of the model-building 
process. In this study, we include the uncertainties of the shale-
anisotropy modeling by sampling the distribution of the input 
parameters. However, there are more uncertainties with different 

Figure 6. Gradients for the VTI parameters of the first WEMVA iteration before (a, b, c) and after (d, e, f) rock-physics preconditioning. From 
left to right, columns display gradients of (a and d) v0, (b and e) ε, and (c and f) δ, respectively.

Figure 7. Total updates (a) in v0, (b) in ε, and (c) in δ after 10 nonlinear WEMVA iterations. The inversion picks up a high-velocity anomaly on 
the hanging fault.

D
ow

nl
oa

de
d 

07
/1

1/
16

 to
 1

8.
51

.1
.8

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



Februar y 2 0 1 6      T H E  L E A D I N G E D G E      139Special Section:  I m a g i n g / i nve r s i o n :  E s t i m at i n g  t h e  e a r t h  m o d e l

geologic scenarios that have been neglected, such as stress-in-
duced or fracture-induced anisotropy. Moreover, the seismic-data 
inversion for velocity and rock properties is also nonunique. The 
current inversion practice of producing a single solution lacks 
uncertainty quantification, which can be highly valuable for 
decision making and risk management.

Using previous seismic inversion results to constrain the 
seismic model building for the next model-building iteration 
helps us close the loop linking seismic data with reservoir 
modeling. Traditional processing from seismic data to a res-
ervoir model does not include feedback; because of this, the 
seismic data modeled from the inverted reservoir model usually 
do not match the field data. This study provides a step toward 
building a closed loop from exploration to production. With 
more iterations, earth models that are consistent with all the 
available data can be more reliably estimated and their uncer-
tainties evaluated.

Conclusion
We tested the rock-physics-constrained anisotropic WEMVA 

method on a 3D field data set. We first built the rock-physics 
constraints using stochastic rock-physics modeling and then 
utilized these constraints during anisotropic WEMVA inversion 
to produce reliable VTI models as well as better-focused images. 
A TTI migration would improve the image further, especially 
for the salt flank. However, it is out of the scope of this article, 
mainly due to the computational constraints.

Figure 8. Comparison between the migration images near the salt 
body (a) using the initial anisotropic model and (b) using the inverted 
anisotropic model. The fault on the depth slice (label 1) is better 
focused on the updated image. Circles 2 and 3 point out two regions 
where the updated anisotropic model produces a better image with 
better continuity and higher resolution. Angle-domain common-image 
gathers are further flattened using the inverted anisotropic model.

Stochastic rock-physics modeling is a powerful tool to model 
shale anisotropy and to explore the possible ranges of the 
anisotropic parameters. By sampling the distributions of key 
parameters, we include their uncertainties and produce an ensemble 
of anisotropic models that are realizable by rock-physics modeling. 
The field data example demonstrates that it is reasonable to assume 
a multivariate Gaussian distribution and summarize the random 
variables using the mean and the covariance matrix. Migrated 
images based on the mean model demonstrate that the rock-physics 
modeling produces good initial anisotropic models for seismic 
imaging. A 3D prior distribution model is made possible by utiliz-
ing the lithologic inversion results from a previous seismic-pro-
cessing workflow.

By constraining anisotropic WEMVA with the geologic and 
rock-physics covariance, we feed the prior rock-physics informa-
tion back to the seismic data inversion, which significantly 
improves the convergence. The inverted VTI model not only 
explains the reflection data (flattens the gathers), but also follows 
basic geologic and rock-physics principles. The 3D example in 
this study demonstrates that anisotropic WEMVA can improve 
the subsurface model further and focus the subsurface image 
further, especially for the steeply dipping reflectors around the 
salt body. 
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